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Abstract It is now well-accepted that uncontrollable (i.e., acute traumatic, pro-
longed) stress can have lingering effects on the hippocampus. At the behavioral 
level, evidence from human and animal studies indicates that stress generally 
impedes performance in a variety of hippocampal-dependent memory tasks. At 
the neural level, animal studies have shown that stress impairs induction of long-
term potentiation (LTP), a form of synaptic plasticity, in the hippocampus. Because 
the hippocampus is important for certain forms of long-term memory and because 
LTP has properties desirable of an information storage mechanism, it has been 
hypothesized that stress-induced alterations in hippocampal plasticity contribute 
to decreased memory functioning following stress exposure. This chapter reviews 
the effects of stress on three vertically related levels of hippocampal functions—
synaptic plasticity, neural activity and memory—and the recent evidence implicat-
ing the amygdala as a crucial component of the central stress mechanism.

Abbreviations

ACTH Adrenocorticotropic hormone
AMYG Amygdala
APV DL-2-amino-5-phosphonovaleric acid
CORT Cortisol/corticosterone
CRF Corticotropin-releasing factor
GABA Gamma-aminobutyric acid
GR Glucocorticoid receptor
HPA-axis Hypothalamic-pituitary-adrenal axis
I/O Input/output
LTD Long-term depression
LTP Long-term potentiation
mPFC Medial prefrontal cortex
MR Mineralocorticoid receptor
NMDA N-methyl-D-aspartate
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PTSD Post-traumatic stress disorder
S Stimulus
R Response

9.1  Introduction

Stress is a biologically significant factor that plays pervasive roles in our lives, from 
influencing daily behaviors to precipitating symptoms of mental health disorders. 
Hence, stress presents a natural means to investigate the socio-environmental con-
tributions to various psychopathologies, such as anxiety, panic and posttraumatic 
stress disorders (PTSD), depression, schizophrenia, and relapse in drug use (Kim 
and Diamond 2002; Lupien et al. 2009; Sinha et al. 2011).

Semantically, stress describes any significant socio-environmental conditions 
that require appropriate physiological and/or behavioral readjustment (or adapta-
tion) that serves to preserve the well-being of the organism (Selye 1956, 1973; 
McEwen and Sapolsky 1995). At present, stress phenomena are conceptually and 
procedurally dichotomized as physical (real) versus psychological (perceived), ear-
ly life versus adulthood, and acute versus chronic (e.g., Foy et al. 2005; Kosten et al. 
2012). While stress refers to an unpleasant state (distress) in colloquial speech, a 
related concept, eustress, has been proposed to represent positive valence of stress 
(e.g., voluntary exercise), highlighting the conceptual distinction between the emo-
tional perception of stress and the fundamental process underlying physiological 
and behavioral adaptation (Selye 1974).

A number of putative stress paradigms are utilized in different laboratories, 
making it sometimes difficult to evaluate experimental findings across studies. 
To standardize the framework of stress that can be applied across different animal 
and human models, one proposal (Kim and Diamond 2002; Kim and Haller 2007) 
suggested that stress must satisfy three conditions: (1) heighten the excitability or 
arousal of the organism, (2) induce perceived aversiveness, and (3) decrease per-
ceived controllability of the situation. This operational definition makes a clear dis-
tinction between stress and other aversive states such as fear. For instance, traffic 
congestions can elicit arousal, be aversive (but not fearful), and evoke a loss of con-
trollability (if there is no alternative route) in most people, and in such case satisfy 
the three stipulations of stress. While the stress response is an adaptive mechanism, 
the prolonged stress response can have deleterious physiological and psychological 
outcomes, such as hypertension, diabetes, gastric-intestinal ulceration, depression, 
and anxiety disorders (Sapolsky 1992; Rosen and Schulkin 1998).

In recent decades, researchers have focused on the adverse effects of stress on 
brain-memory systems (Kim and Diamond 2002; Shors 2004). Because the effects 
of stress on memory are similar between humans and a number of animals, animal 
models provide a valuable means to investigate the neurocognitive effects of stress. 
At present, neurobiological studies have found that uncontrollable stress alters syn-
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aptic plasticity and neuronal morphology (soma size, dendritic arborization), exac-
erbates neurotoxicity and suppresses neurogenesis in the hippocampus (Fig. 9.1) 
(Kim and Yoon 1998). These stress-induced physiological changes, presumably, 
can influence ensuing learning and memory functions. Accordingly, stress presents 
a natural means to study the contribution of learning and memory dysfunction to 
various psychopathologies. While diverse stress paradigms have been shown to in-
fluence a number of brain-memory systems, this chapter will highlight the effects of 
acute, uncontrollable stress on hippocampal plasticity, neural activity and memory, 
and the role that the amygdala plays in the emergence of stress effects.

9.2  Stress Effects on Hippocampal Memory

Almost a half century ago, Seligman, Maier, and Overmier made the significant 
discovery that animals that had previously experienced uncontrollable stress (i.e., 
random, inescapable electric shocks) were impaired in learning to escape from foot-
shocks in the shuttle box task, a phenomenon known as learned helplessness (Selig-
man and Maier 1967; Overmier and Seligman 1967). According to the learned 
helplessness hypothesis, when an organism learns that its behavior (response, R) 
and aversive outcomes (stimulus, S) are independent, this learning produces cog-
nitive, emotional, and motivational transformations that later hinder learning of 
other tasks. In laboratory settings, humans, dogs, cats, rats, and even fish have been 
shown to demonstrate learned helplessness following exposure to uncontrollable 
stress (loud noise, electric shock). Importantly, when the cessation of an aversive S 
is made contingent upon the animals R (e.g., a rat emitting a wheel turn R to termi-
nate a tailshock S), the learning of this S-R association (namely, controllability) pro-
tects the animal from developing learned helplessness (Maier and Seligman 1976). 
Subsequent studies have revealed that stress particularly interferes with behavioral 
tasks that depend on the hippocampus (Kim and Yoon 1998).

Fig. 9.1  Neurobiological 
effects of stress in the hippo-
campus. As the intensity and 
duration of stress increases, 
alterations in neurochemi-
cals, synaptic plasticity, 
neural activity, morphology, 
and neurogenesis occur in 
the hippocampus. These 
changes can contribute to 
stress-induced dysfunctions 
in memory
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The hippocampus is a part of the medial temporal lobe system, which is crucial 
for the formation of long-term declarative (explicit) memory in humans (Scoville 
and Milner 1957; Eichenbaum 2000) and spatial (relational) memory in rodents 
(OKeefe and Nadel 1978; Morris et al. 1982, 1998). Declarative memory is gen-
erally defined as information about facts and events that can be consciously (or 
verbally) recollected. In animals, however, the human declarative-like memory can 
only be established by assessing whether hippocampal lesions abolish particular 
behaviors in learning tasks. The hippocampus is highly concentrated with receptors 
for corticosteroids-the principle glucocorticoids synthesized by the adrenal cortex 
( cortisol in human, corticosterone in rodent; CORT) to regulate general cellular 
energy metabolism processes-and participates in terminating the stress response 
through glucocorticoid-mediated negative feedback of the hypothalamic-pituitary-
adrenal (HPA) axis (Axelrod and Reisine 1984). Because its secretion is highly 
responsive to stress, CORT is commonly referred to as the “stress hormone” (or 
even tacitly believed as a stress-producing hormone). In the rodent hippocampus, 
CORT has been found to alter the metabolic, physiologic, and genomic functions of 
neurons (Sapolsky 1992). As a result, the mnemonic functions of the hippocampus 
appear to be sensitive to stress.

Consistent with this view, a large body of evidence indicates that exposures to 
stress and/or stress hormones negatively impact hippocampal-dependent memory 
tasks in humans and animals (see Lupien and McEwen 1997). For example, PTSD 
patients exhibit deficits in verbal recall tasks when compared to control subjects 
(Bremner et al. 1993; Utto et al. 1993). Injections of CORT in healthy human sub-
jects have been reported to selectively impair verbal declarative memory, sans af-
fecting nonverbal (nonhippocampal) memory (Newcomer et al. 1994; Kirschbaum 
et al. 1996; de Quervain et al. 2000; Kuhlmann et al. 2005). Moreover, hypercorti-
solemia conditions in certain depressive patients and those afflicted with Cushings 
disease have been implicated in declarative memory impairments (Starkman et al. 
1992; Sapolsky 2000). However, administration of CORT has also been reported to 
selectively enhance the long-term recall of emotionally arousing (but not neutral) 
pictures (e.g., Buchanan and Lovallo 2001), suggesting that stress hormone effects 
may be more subtle and complex than previously reported.

Similar to human studies, rats subjected to uncontrollable stress (or administered 
high doses of CORT) show memory deficits in various hippocampal-dependent 
behavioral tasks (e.g., Luine et al. 1993; de Quervain et al. 1998). The test par 
excellence of hippocampal memory in rodents is the spatial memory task, typically 
utilizing variations of Oltons 8-arm radial maze (Olton and Samuelson 1976) and 
Morris water maze (Morris 1981). In a series of elegant experiments, Diamond and 
colleagues have shown that stress impairs hippocampal-dependent spatial working 
memory while hippocampal-independent spatial reference memory is unaffected 
(Diamond and Rose 1994; Diamond et al. 1999; Woodson et al. 2003).

Spatial memory deficits have also been reported in transgenic mice with elevated 
CORT levels caused by the central over-expression of corticotropin-releasing factor 
(CRF) (Heinrichs et al. 1996). CRF, a neuropeptide secreted by the paraventricular 
nucleus of the hypothalamus, triggers the release of adrenocorticotropic hormone 
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(ACTH) from the pituitary gland, and ACTH in turn stimulates the production and 
secretion of glucocorticoids by the adrenal gland (Sapolsky 1992). Paralleling the 
spatial memory deficits are recent findings that stress impairs the stability of place 
cell firing rates (Kim et al. 2007; Passecker et al. 2011). Hippocampal place cells 
are thought to support spatial learning and navigation by encoding memories of 
familiar spatial locations (O’Keefe and Distrovsky 1971; OKeefe and Nadel 1978).

The stress effects on hippocampal memory do not seem to be limited to spa-
tial information in rodents. Other studies found that stress also impairs nonspatial 
(hippocampal-dependent) object recognition memory (Beck and Luine 1999; Baker 
and Kim 2002). Stress also disrupts medial prefrontal cortex (mPFC)-based spatial 
working memory on a T-maze task (Arnsten and Goldman-Rakic 1998; Qin et al. 
2009) as well as decision-making in a foraging task in rats (Graham et al. 2010).

Interestingly, the same stress that impairs hippocampal memory has been found 
to enhance the relative use of competing hippocampal-independent memory (e.g., 
the caudate-dependent response memory) in rats and humans (Kim et al. 2001; 
Pruessner et al 2008; Wingard and Packard 2008; Quirarte et al. 2009; Lovallo 
2010; Schwabe et al. 2007; Schwabe and Wolf 2012). Stress has also been shown 
to enhance aversive memory, such as fear and eyeblink conditioning (Beylin and 
Shors 2003; Conrad et al. 1999a; Jackson et al. 2006; Rau et al. 2005). It remains 
to be determined, however, whether the learning enhancements in other behavioral 
tasks are due to direct effects of stress on those brain-memory systems or due to 
indirect effects of stress reducing the hippocampus ability to compete with other 
brain-memory systems. Thus, although the study of individual memory systems 
affected by stress has proved to be useful, particularly in the hippocampus, recent 
data increasingly point towards complex interactions between stress and multiple 
brain-memory systems (Kim and Baxter 2001).

9.3  Stress Effects on Hippocampal Synaptic Plasticity

Long-term potentiation (LTP) is characterized by an enduring increase in synaptic 
transmission resulting from high frequency stimulation (or tetanus) of afferent fi-
bers (Bliss and Lomo 1973; Bliss and Gardner-Medwin 1973). Because LTP occurs 
rapidly, is stable over time, requires cooperativity (i.e., adequate afferents to reach 
threshold), is strengthened by repetition, and demonstrates input specificity and as-
sociativity, LTP has long been proposed as a synaptic model of information storage 
in the mammalian brain (Bliss and Collingridge 1993; Martin et al. 2000). In 1987, 
Thompson and colleagues found that hippocampal slices prepared from rats that 
received 30 min of intermittent tailshocks while being restrained exhibited strik-
ing deficits in the Schaffer collateral/commissural-cornu Ammonis 1 (CA1) LTP 
(Foy et al. 1987). Importantly, hippocampal slices taken from rats that were able to 
terminate the shock showed relatively normal LTP, while slices from “yoked” ani-
mals that received the identical shock schedule without control exhibited severely 
impaired LTP (Shors et al. 1989). Hence, similar to learned helplessness, the LTP 
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impairment appears to be largely due to the psychological, rather than physical, 
qualities of stress. Other forms of psychological stress, such as forced exposures 
to a novel chamber or to a predator, have also been found to impede LTP and/or 
primed-burst potentiation (a low threshold form of LTP) in behaving rats (Diamond 
et al. 1990; Xu et al. 1997; Diamond and Park 2000).

Stress-induced LTP impairments have also been observed in other regions of 
the hippocampus (Shors and Dryver 1994), and following 30-min restraint + shock 
stress, LTP deficits continue up to 48 h in rats (Shors et al. 1997) and 24 h in mice 
(Garcia et al. 1997). There seems to be a critical stress threshold for LTP impairment 
as 10-min restraint + shock stress, while producing robust fear conditioning and 
elevating corticosterone levels, does not impair LTP (Shors et al. 1989). Other stud-
ies indicate a time-dependent, biphasic effect on hippocampal LTP (an enhancing 
effect on LTP followed by a longer-lasting suppressing effect on LTP) (Akirav and 
Richter-Levin 1999), and stress has been reported to enhance theta-burst stimula-
tion-induced LTP but impair high-frequency stimulation-induced LTP in the mouse 
hippocampus (Blank et al. 2002). These findings suggest that differences in stress 
paradigms, in vitro versus in vivo recordings, tetanus patterns, and species must be 
considered when evaluating stress effects on hippocampal synaptic plasticity.

The discovery that stress impairs hippocampal LTP is significant because it of-
fers a testable synaptic mechanism to investigate stress-induced memory deficits, 
and because the LTP impairment can serve as a “neurophysiological marker” to 
compare behavioral consequences associated with different stress paradigms. For 
example, not all putative stress procedures would be expected to impair LTP and/or 
memory. Regardless, the relationship between stress effects on LTP and memory in 
the hippocampus is consistent with the hypothesis, namely Hebbs (1949) postulate, 
that memories are stored via changes in the pattern of synaptic connections.

In theory, LTP alone cannot provide a dynamic synaptic model for information 
storage; decreases in synaptic efficacy are essential to normalize synaptic strength 
and prevent LTP saturation (Sejnowski 1977). This is accounted for by long-term 
depression (LTD) characterized by a decrease in synaptic efficacy following low-
frequency stimulation of afferent fiber which, like LTP, has several properties desir-
able for an information storage mechanism (e.g., longevity and input specificity) 
(Bear and Malenka 1994; Dudek and Bear 1992). When stress effects were exam-
ined in the Schaffer collateral/commissural-CA1 pathway, the same stress that im-
paired LTP was found to enhance LTD (Kim et al. 1996; Xu et al. 1997). Moreover, 
administration of a competitive N-methyl-D-aspartate (NMDA) receptor antagonist 
prior to stress blocked stress effects on both LTP and LTD (Table 9.1). These find-
ings indicate that stress effects on LTP and LTD are related (see also Coussens et al. 
1997; Diamond et al. 2004).

Two possibilities can explain the opposing effects of stress on LTP and LTD 
(Fig. 9.2). Since LTP is known to be “saturable” (i.e., has an upper limit of potentia-
tion), if LTP or LTP-like changes occur in the hippocampus during stress, then any 
following LTP will be occluded due to a ceiling-like effect, whereas LTD can now 
be enhanced because the range for synaptic depression has increased (e.g., Kim 
et al. 1996; Diamond et al. 2004). This possibility is analogous to learned helpless-
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ness, wherein the animals learning of the independence between its behavior and 
the aversive situation interferes with subsequent memory functioning. A different 
possibility is that stress produces a “metaplastic” effect (i.e., higher-order plasticity 
that influences ensuing plasticity) in the hippocampus such that the threshold for 
LTP and LTD is biased towards LTD over LTP induction (see Abraham and Tate 
1997; Kim and Yoon 1998). In order to reveal whether saturation or metaplastic-
ity underlies stress effects on hippocampal plasticity, future studies will need to 
methodically monitor the input/output (I/O) functions in the hippocampus (e.g., the 
Schaffer collateral/commissural-CA1 pathway) while the animal transitions from 

Table 9.1  A summary of stress effects on in vitro LTP and LTD
Hippocampus (CA1)a LTP LTD
Control (unstressed) + −
Stressed − +
Control + APV − NA
Stressed + APV NA −
Control (from LTP state) NA −
Control (from LTP state) + APV NA +
Stressed (from LTD state) + NA
Stressed (from LTD state) + APV − NA
Stressed with NMDA antagonist + −
+ present or enabled, − absent or attenuated, NA not applicable, LTP long-term potentiation, LTD 
long-term depression, APV DL-2-amino-5-phosphonovaleric acid, NMDA N-methyl-D-aspartate
a Slices prepared from adult male rats. Modified from Kim et al. 1996

Fig. 9.2  Hypothetical models to account for stress effects on hippocampal synaptic plasticity. Left: 
The saturation hypothesis posits that stress produces long-term potentiation ( LTP)-like changes 
in hippocampal synapses which then occlude subsequent LTP but enhance long-term depression 
( LTD) (λ, limit of plasticity). Right: The metaplasticity hypothesis proposes that stress shifts the 
modification threshold, θm, to the right ( represented by the red line) so that ensuing synaptic 
changes favor LTD over LTP. (Adapted from Kim and Yoon 1998)
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the baseline to during stress to post-stress. If uncontrollable stress produces LTP-
like changes, then there should be differences in the baseline synaptic transmission 
when I/O functions are compared between baseline versus during and after stress. 
Specifically, the I/O functions should increase during the stress and such change 
should remain stable after stress. If stress produces metaplastic changes instead, 
then there should be no differences in I/O functions between baseline versus during 
and after stress.

9.4  Glucocorticoids and Hippocampal Plasticity

Contemporary stress research has consistently implicated corticosteroids (and other 
neurochemicals of the HPA-axis) as the main causes of stress effects on the hippo-
campus (McEwen and Gianaros 2011; Popoli et al. 2012; Ulrich-Lai and Herman 
2009; Joels and Baram 2009). The hippocampus is enriched with both the high-af-
finity Type-I mineralocorticoid receptors (MR) and the lower-affinity Type-II gluco-
corticoid receptors (GR) (Reul and de Kloet 1985), and CORT actions through these 
receptors have been reported to mimic stress effects on hippocampal plasticity.

A dual relationship between the level of CORT and the magnitude of LTP has 
been described, where both low (via adrenalectomy) and high (via administration) 
levels of CORT are associated with impaired LTP (Diamond et al. 1992). Other 
studies have showed that selective activation of MRs increases LTP while added 
activation of GRs attenuates LTP and enhances LTD (e.g., Pavlides et al. 1995). 
This suggests that basal (low) levels of CORT enhance LTP through preferential 
stimulation of the high-affinity MRs and, during stress, GR stimulation turns out to 
be important because levels of CORT become high enough to saturate low-affinity 
receptors (McEwen and Sapolsky 1995). Behavioral studies found similar results-
spatial memory is impaired with GR but not MR activation (Vaher et al. 1994; 
Conrad et al. 1999b; Oitzl et al. 2001). Bath application of CORT also prolongs 
calcium-dependent afterhyperpolarization of CA1 neurons (Kerr et al. 1989; Nair 
et al. 1998), which would decrease cell excitability and in so doing affect synaptic 
plasticity.

If corticosteroids are the main contributing factors in the mediation of stress 
effects, then removing them during stress and directly applying them in absence 
of behavioral stress, should preclude and produce stress effects, respectively. How-
ever, there are behavioral, synaptic plasticity and neural activity data from animal 
studies inconsistent with this simple linear neurochemical-level stress effect notion 
(Shors et al. 1989, 1990; Foy et al. 1990; Woodson et al. 2003; Stranahan et al. 
2006). Very recent studies have reported that both stress and environmental enrich-
ment significantly and comparably elevate CORT levels but have opposite effects 
on hippocampal neurogenesis (e.g., Schoenfeld and Gould 2012); findings that are 
incompatible to those in vivo and in vitro studies where CORT administration mim-
ics behavioral stress effects. It is important to recognize that, like CORT, other 
hormones, peptides, and neurotransmitters implicated in stress (such as CRF, sero-
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tonin, dopamine, enkephalins) also have multifold functions and none are known to 
respond uniquely to stress, and thus none of them is likely to be a sufficient media-
tor of stress effects.

9.5  Amygdala and Stress Effects on Hippocampus

Emerging evidence indicates that the amygdala is crucial in mediating stress-related 
behaviors and modulating hippocampal function. The amygdala is one of the prin-
cipal structures of the limbic system that has access to sensory inputs from various 
brain regions (such as the thalamus, the neocortex) and sends projections to auto-
nomic and somatomotor structures involved in defensive responses (such as the 
bed nucleus of stria terminalis for activating stress hormones, the periaqueductal 
gray for defensive behavior, the lateral hypothalamus for sympathetic activation) 
(see LeDoux 1996). Such rich sensory-amygdala-defensive (autonomic and motor) 
connections can explain how amygdalar lesions can prevent stress-induced gastric 
erosions (Henke 1981), analgesia (Helmstetter 1992), and anxiety-like behaviors 
(Adamec et al. 1999).

McGaugh and colleagues (Packard et al. 1994; McGaugh 2000; Roozendaal et al. 
2003) have shown that pharmacological manipulations that alter synaptic transmis-
sions in the amygdala (such as GABA, opioid, norepinephrine, and acetylcholine) 
can modulate memory strength in the hippocampus. Other studies have reported 
that lesions, stimulations, and drug infusions in the amygdala can also regulate LTP 
magnitude in the dentate gyrus (Abe 2001; Akirav and Richter-Levin 1999, 2002). 
Hence, the amygdala, via its (largely ipsilateral) projections to the hippocampus 
(Krettek and Price 1977; Pikkarainen et al. 1999), might also regulate stress effects 
on the hippocampus.

Consistent with this notion, amygdalar lesions have been found to block stress 
effects on hippocampal LTP and spatial memory in rats (Kim et al. 2001). Similarly, 
temporary inactivation of the amygdala via the GABAA receptor agonist musci-
molprior to stress effectively blocked stress-induced physiological and behavioral 
effects (Kim et al. 2005). Intra-amygdalar muscimol also blocked spatial memory 
impairment following predator stress experience (Park et al. 2008). Because im-
mediate post-stress muscimol infusions into the amygdala failed to prevent stress 
effects on LTP and memory, the critical time window of amygdalar activity is dur-
ing (and not after) stress (Kim et al. 2005). It should be mentioned that amygdalar 
lesions/inactivation blocked stress effects on hippocampal LTP and memory despite 
the increase in corticosterone secretion to stress (Kim et al. 2001, 2005). An earlier 
study implicated the NMDA receptors in the amygdala in mediating stress-induced 
facilitation of classical eyeblink conditioning (Shors and Mathew 1998). Thus, it 
is likely that NMDA receptor-dependent plasticity in the amygdala is somehow 
involved in mediating stress effects on hippocampal plasticity and memory (Kim 
et al. 1996). Recently, electrical stimulation of the amygdala was found to selec-
tively suppress CA1 LTP in the hippocampus (Vouimba and Richter-Levin 2005) 
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and produce stress-like impairment effects on hippocampal place cells (Kim et al. 
2012). These findings suggest that the amygdala is a critical component of the cen-
tral stress mechanism that alters hippocampal functioning (Fig. 9.3).

Stress has also been found to induce LTP and morphological changes in the 
amygdala. Unlike the hippocampus, which inhibits stress-induced HPA activation, 
the amygdala enhances glucocorticoid secretion in response to stress (Herman et al. 
2005). Moreover, in contrast to hippocampal effects, stress (i.e., chronic immo-
bilization stress) enhances LTP and increases growth of dendrites and spines in 
amygdalar neurons (Vyas et al. 2002, 2003; Mitra et al. 2005; Radley and Mor-
rison 2005). These changes in the amygdala have been proposed to underlie stress-
induced symptoms of chronic anxiety disorders (McEwen 2004). However, because 
different stress paradigms were used in hippocampal and amygdalar studies, it re-
mains to be investigated whether neurophysiological changes in the amygdala pre-
cede and/or are prerequisite to stress-induced changes in the hippocampus. Thus, 
additional work is necessary to understand the nature of amygdala–hippocampal 
interaction during stress.

9.6  Summary

Contemporary stress research has focused on the effects of particular hormones 
(e.g., glucocorticoids), peptides (e.g., CRF, enkephalins), or neurotransmitters 
(e.g., serotonin, dopamine) on intracellular signaling cascades, synaptic plasticity, 
structural changes, cell death, and neurogenesis, which has generated a wealth of 
information. However, given that these chemical messengers are also engaged in 

Fig. 9.3  A connectionist model of stress. The hypothalamic-pituitary-adrenal axis ( HPA) axis 
(signifying the function of excitability, f( E)), amygdala ( AMYG; aversiveness, f( 0)), and medial 
prefrontal cortex ( mPFC) (controllability, f( C)) interact to produce alterations (ΔX) in stress-vul-
nerable structures (e.g., the hippocampus). The model posits that HPA and AMYG exert excitatory 
(+) stress influences while mPFC exerts inhibitory (−) stress influence. (Adapted from Kim and 
Diamond 2002)
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nonstress functions, it is likely that focusing on specific chemical messengers can-
not provide an adequate representation of how uncontrollable stress impacts brain 
and behavior. Recent data from stress-amygdala-mPFC studies increasingly point 
towards complex neural-endocrine interactions in mediating stress effects on the 
hippocampus. Thus, consideration of multiple stress factors and their dynamics will 
advance our current understanding of the neural-cognitive effects of stress that may 
lead to stress-related psychopathology.
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