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Chapter 3
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Introduction

Weeds cause substantial yield loss of crops and pose a severe threat to food security 
for future generations. Controlling weeds in field crops is therefore imperative, but 
this is a hard nut to crack. However, wise management is quite effective in achiev-
ing the target weed control. Several methods of weed management, with varying 
degrees of effectiveness, are practiced according to the climatic conditions, crop-
ping systems and socioeconomic conditions of the region. Manual and mechanical 
methods of weed control have been practiced for centuries, but these are inefficient 
methods, labor intensive and weather dependent [1, 2].

Chemical means of weed control are far cheaper, the most prevalent, and quite 
effective [2]. Nonetheless, continuous and indiscriminate use of herbicides is pos-
ing environmental hazards [3], may cause development of herbicide-resistant weed 
biotypes [4, 5], and is also creating human health concerns [6–8]. For example, ba-
bies born to families living near wheat farms, with continuous use of chlorophenoxy 
herbicides for weed control, may have 65% greater risk of birth defects related to 
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the circulatory/respiratory system [9]. This situation demands to develop environ-
mentally friendly technology for weed control.

Allelopathy, a naturally occurring ecological phenomenon of interference among 
organisms, involves the synthesis and release of plant bioactive compounds which 
are known as allelochemicals [10, 11]. These allelochemicals are capable of acting 
as natural pesticides and can resolve problems of soil and environmental pollution, 
resistance development in weed biotypes, and health defects caused by the indis-
criminate use of synthetic herbicides [11].

Allelopathy may be employed for weed management in field crops through 
mix cropping intercropping [12], use of surface mulch [13], soil incorporation of 
plant residue [14], allelopathic aqueous extracts [12, 15], combined application of 
allelopathic aqueous extracts with lower herbicide doses [16, 17], and crop rotation 
[11, 18, 19]. In addition, smothering crops, such as rye ( Secale cereale L.), buck 
wheat ( Fagopyrum esculentum Moench), black mustard ( Brassica nigra L.), and 
Sorghum–Sudan grass hybrids can also be used for controlling different weeds [20]. 
Conventional breeding and modern biotechnological approaches can be used to 
breed the crop cultivars having more weed-suppressive ability through allelopathy.

Most plants with allelopathic properties, including wheat ( Triticum aestivum L.), 
rice ( Oryza sativa L.), maize ( Zea mays L.), barley ( Hordeum vulgare L.), sor-
ghum ( Sorghum bicolor [L.] Moench), oat ( Avena sativa L.), rye, and pearl millet 
( Pennisetum glaucum [L.] R. Br.), belong to the family Poaceae. However, plants 
from other families, including Brassica spp., alfalfa ( Medicago sativa L.), eucalyp-
tus ( Eucalyptus spp.), tobacco ( Nicotiana tabacum L.), sesame ( Sesamum indicum 
L.), sweet potato ( Ipomoea batatas [L.] Lam.), sunflower ( Helianthus annuus L.), 
and mulberry ( Morus alba L.), also possess allelopathic properties [21–26].

In this chapter, potential application of allelopathy for weed management in field 
crops is discussed. Furthermore, role of conventional breeding and biotechnology in 
improving the allelopathic activity of crop genotypes for weed suppression is also 
included.

Intercropping

Intercropping, growing of two or more crops together at the same time in the same 
field, can be used as an effective weed management strategy [27]. Recent studies 
have suggested to use intercropping allelopathic crops as an effective element for 
integrated weed management, particularly in low-input farming systems [11, 28, 
29]. Allelopathic intercrops suppress the weeds by shade effect, weed–crop compe-
tition, and by the release of certain allelochemicals [27, 28, 30]. In addition to weed 
suppression, intercropping may provide several other benefits, including increase in 
net returns and biological diversity, less chance of complete failure of crop, better 
use of resources, and suppressive effects on diseases and insect pests [30].

Intercropping maize with fodder legumes like Spanish tick-clover ( Desmodium 
uncinatum [Jacq.] DC.) and green leaf desmodium ( Desmodium intortum [Mill.] 
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Urb.) significantly reduced giant witchweed ( Striga hermonthica [Del.] Benth) 
infestation in maize compared to sole maize crop [31]. In another field study, in-
tercropping sesame, soybean ( Glycine max [L.] Merr.), and sorghum in cotton 
( Gossypium hirsutum L.) suppressed the density and total dry biomass of purple 
nutsedge ( Cyperus rotundus L.) [32]. Intercropping sorghum, sunflower, mung-
bean ( Vigna radiata [L.] R. Wilczek; Table 3.1) [33], bean species (Table 3.1) [34], 
cassava ( Manihot esculenta [L.]) Crantz) [35], horse gram ( Macrotyloma uniflo-
rum [Lam.] Verdc.) [36], groundnut ( Arachis hypogaea L.), sweet potato [37], and 
legumes [38] with maize reduced the densities and dry biomass of many weed spe-
cies. Maize–legume intercrop is also effective in reducing weed density and weed 
biomass compared to sole crops [39]. Bansal found that intercropping of linseed 
( Linum usitatissimum L.) with wheat suppressed corn buttercup ( Ranunculus ar-
vensis L.; Table 3.1) [40]. Bitter bottle gourd ( Cucurbita pepo L.) intercropping in 
maize at lower density also decreased weed biomass (Table 3.1) [41]. In general, 
crop yield increases with simultaneous decrease in weed growth if the intercrops are 
more effective than sole crops in usurping resources from weeds [42]. Intercropping 
sorghum with fodder cowpea ( V. unguiculata [L.] Walp.) suppressed densities and 
total biomass of several weeds [43]. Growing leek ( Allium porrum L.) and celery 
( Apium graveolens L. var dulce [Mill.] Pers.) as intercrop shortened the critical pe-
riod for weed control in the intercrop compared to pure stand of leek [44]. Likewise, 
pea ( Pisum sativum L.) intercropped with barley, instead of sole crop, increased 
the competitive ability towards weeds [45]. Similarly, intercrops of wheat–canola–
pea and wheat–canola provided better weed suppression than each individual crop 
grown alone [46].

In another study, after first weeding in rice, black gram ( Phaseolus mungo [L.] 
Hepper) was seeded as intercrop, which effectively controlled rice weeds (Table 3.1) 
[47]. Banik et al. found that intercropping wheat and chickpea ( Cicer arietinum L.) 
decreased the total weed density and weed biomass compared to monocrop of both 
crops (Table 3.1) [48]. In a two-year study, intercropping pea with false flax ( Cam-
elina sativa [L.] Crantz) suppressed the weeds by 52–63% more than sole crop 
of pea [49]. Similarly, intercrop of finger millet ( Eleusine coracana [L.] Gaertn.) 
and green leaf desmodium decreased the density of giant witchweed more than 
monocrops of these crops [50]. Intercropping wheat with canola ( B. napus L.) sig-
nificantly reduced density and fresh/dry weight of littleseed canarygrass ( Phalaris 
minor Retz.), broad-leaved duck ( Rumex obtusifolius L.), swine cress ( Coronopus 
didymus [L.] Sm.), and common lambsquarters ( Chenopodium album L.) than the 
sole crops of both (Table 3.1) [51]. Similarly, intercropping canola with wheat sup-
pressed annual ryegrass ( Lolium rigidum Gaud.) and common lambsquarters [52]. 
In a two-year study, growing one strip of canola between two strips of wheat caused 
substantial decrease in weed density and dry weight than sole wheat crop [53]. 
Similarly, weed population was also significantly suppressed when either one strip 
of lentil or chickpea was planted between two strips of wheat [53].

Although intercrops are able to suppress weeds through the release of allelo-
chemicals, the use of intercropping as a strategy for weed control should be ap-
proached carefully.
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Main crop Intercrop Weeds suppressed Reference
Linseed ( Linum 

usitatissimum L.)
Wheat ( Triticum 

aestivum L.)
Corn Buttercup ( Ranun-

culus arvensis L.)
Bansal [40]

Maize ( Zea mays L.) Hyacinth-bean ( Lablab 
purpureus (L.) 
Sweet), Jack-bean 
( Canavalia 
ensiformis (L.) 
DC.), Butterfly pea 
( Pueraria phaseoloi-
des (Roxb.) Benth.)

Itchgrass ( Rottboellia 
cochinchinensis 
(Lour.) W.D. Clayton)

Cruz et al. [34]

Rice ( Oryza sativa L.) Black gram ( Phaseolus 
mungo (L.) Hepper)

Junglerice ( Echinochloa 
colona (L.) Link.), 
large crabgrass 
( Digitaria sanguinalis 
(L.) Scop.), yellow 
foxtail ( Setaria glauca 
(L.) Beauv.)

Midya et al. [47]

Wheat ( Triticum 
aestivum L.)

Chick pea ( Cicer arieti-
num L.)

Bermudagrass ( Cynodon 
dactylon (L.) Pers.), 
wild oat ( Avena fatua 
L.), purple nutsedge 
( Cyperus rotundus L.), 
common lambsquarters 
( Chenopodium album 
L.), sweet clover 
( Melilotus indica 
(L.) Pall.), honey 
clover ( Melilotus 
albus Medik.), scarlet 
pimpernel ( Anagallis 
arvensis L.), swine-
cress ( Coronopus 
didymus (L.) Sm.)

Banik et al. [48]

Pea ( Pisum sativum L.) False flax ( Camelina 
sativa (L.) Crantz)

Black bindweed 
( Fallopia convolvulus 
(L.) Á.Löve), common 
sowthistle ( Sonchus 
oleraceus L.),

chamomile ( Matricaria 
chamomillaL.)

Saucke and 
Ackermann 
[49]

Maize ( Zea mays L.) Bitter bottle gourd 
( Cucurbita pepo L.)

Pigweed amaranth 
( Amaranthus 
retroflexus L.), field 
bindweed ( Convolvu-
lus arvensis L.)

Fujiyoshi [41]
Fujiyoshi et al. 

[168]

Cotton ( Gossypium 
hirsutum L.)

Sesame ( Sesamum 
indicum L.), Soybean 
( Glycine max (L.) 
Merr.) and Sorghum 
( Sorghum bicolor 
(L.) Moench)

Purple nutsedge ( Cyperus 
rotundus L.)

Iqbal et al. [12]

Table 3.1  Effect of different intercrops on weed suppression 
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Crop Rotation

Accumulation of autotoxins and spread of plant pests are the major limitations of 
monoculture cropping systems [23, 54, 55]. Crop rotation, growing of different 
crops in sequence in a particular field over a definite time period, can be helpful in 
overcoming the autotoxicity and decreasing the pressure of plant pests, including 
weeds, pathogens and insects [11, 19].

Inclusion of allelopathic crops in crop rotation may be useful to control weeds 
[27]. In crop rotation, the allelochemicals released in the rhizosphere by plant roots 
and decomposition of previous crop residues help in weed suppression [56, 57]. For 
instance, in the crops following sorghum, weed population is significantly reduced 
due to the release of sorghum allelochemicals [58]. Therefore, in rice–wheat sys-
tem, growing of allelopathic crops after wheat harvest and prior to rice transplanta-
tion may be useful to control weeds in rice.

A 10-year study on different crop rotations, viz. maize–soybean, continuous 
maize, and soybean–wheat–maize, indicated a significant decrease in giant fox-
tail ( Setaria faberi [R.] Hermm.) density in the succeeding crop following wheat 
[59]. Likewise, in sunflower–wheat rotation, density and dry biomass of wild oat 
( Avena fatua L.) and Canada thistle ( Cirsium arvense [L.] Scop.) were decreased 

Main crop Intercrop Weeds suppressed Reference
Finger millet ( Eleusine 

coracana (L.) Gaertn.)
Green leaf desmo-

dium ( Desmodium 
intortum (Mill.) 
Urb.)

Giant witchweed ( Striga 
hermonthica (Del.) 
Benth)

Midega et al. 
[50]

Maize ( Zea mays L.) Sorghum ( Sorghum 
bicolor (L.) 
Moench), Sunflower 
( Helianthus annuus 
L.) and mungbean 
( Vigna radiate (L.) 
R. Wilczek)

Purple nutsedge ( Cyperus 
rotundus L.), field 
bindweed ( Convolvu-
lus arvensis L.), horse 
purslane ( Trianthema 
portulacastrum L.)

Khalil et al. [33]

Wheat ( Triticum aesti-
vum L.)

Canola ( Brassica  
napus L.)

Annual ryegrass ( Lolium 
rigidum Gaud.), com-
mon lambsquarter 
( Chenopodium album 
L.)

Khorramdel et al. 
[52]

Wheat ( Triticum aesti-
vum L.)

Canola ( Brassica  
napus L.)

Littleseed canarygrass 
( Phalaris minor Retz.), 
Broad-leaved dock 
( Rumex obtusifolius 
L.), Swine cress 
( Coronopus didymus 
(L.) Sm.), common 
lambsquarter ( Cheno-
podium album L.)

Naeem [51]

Table 3.1 (continued) 
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significantly in the succeeding wheat crop after sunflower [60]. In a rotation study 
conducted in Russia, weed suppression of up to 40% was noted in crops raised in ro-
tation with rapeseed [61]. Al-Khatib et al. noted that weed suppression in peas var-
ied between different green manure crops [62]. One month after planting, the high-
est weed population was in green pea following wheat, whereas the lowest was in 
green pea following rapeseed. Wild safflower ( Carthamus oxyacantha [M.] Bieb.) 
is a noxious weed of the rainfed areas of Pakistan. However, its population in field 
vacated by wheat is always higher than in the chickpea-vacated fields (Fig. 3.1), 
owing to release of certain allelochemicals from the chickpea roots. Thus, proper 
rotation of crops in any cropping system in a specific region can be used as a suc-
cessful strategy to control weeds without reliance upon chemical, manual, and me-
chanical methods used for centuries.

Mulching

In mulching, crop residues (or other materials) are applied on soil surface and/or 
incorporated into the soil. Mulching inhibits the germination and seedling growth of 
weeds through the release of certain allelochemicals [63, 64], producing microbial 
phytotoxins during decomposition, and physically obstructing the growth of seed-
lings [65]. Mulching also increases the soil’s water-holding capacity [66].

In 1979, Lockerman and Putnam floated the idea to use allelopathic crop resi-
dues as mulch [67]. Afterward, several researchers have evaluated the potential use 
of allelopathic crop residues as surface-applied or soil-incorporated mulches for 
weed suppression in field crops [13, 58, 68]. Sorghum is the most-studied crop in 
this regard. For example, surface-applied sorghum mulch (10–15 t ha−1) in maize at 
sowing provided weed control of about 26–37% [69], whereas in cotton, surface-
applied sorghum mulch (3.5–10.5 t ha−1) reduced the weed density by 23–65% [13]. 
In aerobic rice, incorporation of sorghum residue (8 t ha−1) reduced the weed den-
sity and total dry biomass by 50% [70].

Fig. 3.1  Wild safflower infestation in field previously occupied by wheat and chickpea field.  
a After wheat harvest. b After chickpea harvest
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Purple nutsedge is one of the most noxious weeds. Allelopathic mulching has 
also been very effective in managing this cumbersome weed. For instance, surface-
applied and soil-incorporated sorghum mulch (15 t ha−1) reduced the purple nut-
sedge density by 40–45% [71]. In another study, Ahmad et al. reported that sorghum 
residues suppressed the broad-leaved dock, littleseed canarygrass, field bind weed, 
common lambsquarters, purple nutsedge, and scarlet pimpernel ( Anagallis arvensis 
L.) [72].

Other than sorghum, several other allelopathic mulches also provide a good 
weed control. For example, sunflower mulching suppressed the germination and 
seedling growth of several weeds [73]. Likewise, application of rye mulch and its 
root residues controlled redroot pigweed ( Amaranthus retroflexus L.), common 
lambsquarters, and common ragweed ( Ambrosia artemisiifolia L.) by 90% in to-
bacco, sunflower, and soybean in no-tilled system [74]. Mulching of subterranean 
clover ( Trifolium subterraneum L.) and rye suppressed different weeds in tobacco, 
sorghum, sunflower, maize, and soybean [75]. Likewise, application of rice mulch 
provided a good control of several weeds in wheat [76].

Use of wheat residues as surface mulch suppressed the density and dry weight of 
several weeds in maize–legume intercropping [64]. Likewise, soil incorporation of 
wheat straw suppressed the horse purslane ( Trianthema portulacastrum L.) growth 
[77]. Soil incorporation of mint marigold ( Tagetes minuta L.) suppressed purple 
nutsedge and barnyard grass ( Echinochloa crus-galli [L.] P. Beauv.), the two most 
problematic weeds of rice [78], whereas application of root and leaf powder of 
Malabar catmint ( Anisomeles indica L.) mulch reduced the density and dry mass of 
littleseed canarygrass in wheat field [79].

Combined application of more than one allelopathic mulch has been found more 
effective in weed management than their sole application. For instance, mulching 
residues of Brassica, sunflower, and sorghum suppressed the horse purslane and 
purple nutsedge; nonetheless, combined application of these residues provided bet-
ter weed control than sole application of these crop residues [14, 80]. Sunflower 
mulch applied on soil surface alone or in mixture with legume and buckwheat sup-
pressed weeds; however, the mixed application was more effective in this regard 
[81]. In another study on wheat, surface application of sorghum, sunflower, or 
Brassica substantially suppressed weeds; however, combined application was more 
effective [53]. Thus, allelopathic crop mulches, either surface applied or soil incor-
porated, can be used to control various weed biotypes in different agro-ecological 
regions of the world.

Use of Cover Crops

Cover crops are widely used for weed management in field crops [82, 83]. Cover 
crop suppresses weeds by covering the soil surface [84] through competition, re-
lease of allelochemicals, stimulation of microbial allelochemicals, shading effect, 
and through alteration in soil physicochemical properties [85], or weed germination 
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inhibition through physical barriers [86–88]. Most of the crops used as cover 
crops—including cowpea, sunhemp (Crotalaria juncea L.), alfalfa, yellow sweet 
clover (Melilotus officinalis [L.] Pall.), ryegrass, and velvet bean ( Mucuna pruriens 
[L.] DC.)—belong to the legume family [89]. Use of leguminous crops as cover 
crop substantially decreased the population of barnyard grass [90], while use of 
barley as cover crop suppressed many weed species in soybean [91].

Rye and oat are also considered as potential cover crops. For instance, rye resi-
dues reduced the emergence of common ragweed, green foxtail ( Setaria viridis [L.] 
P. Beauv.), redroot pigweed, and common purslane (Portulaca oleracea L.) by 43, 
80, 95, and 100%, respectively [92]. Barnes et al. reported 90% reduction in weed 
biomass in a cover crop of rye compared to unplanted controls [93]. Similarly, differ-
ent oat cultivars reduced the germination of common lambsquarters from 10 to 86% 
[94]. Rye as cover crop inhibited the seedling emergence of yellow foxtail ( Setaria 
glauca [L.] Beauv.) [95]. Hoffman et al. reported that due to increase in the density of 
rye plantation, leaf number, growth, and dry matter production of barnyard grass seed-
lings were suppressed owing to allelopathy other than weed–crop competition [96].

Sudex hybrid (sorghum × Sudan grass) is often used as summer cover crop due 
to its rapid growth habit and strong ability to suppress different weed species [97]. 
Red spiderlily ( Lycoris radiata [L’Hér.] Herb.) can also be used as ground cover 
crop to suppress weeds because its dead leaves contain lycorine, an allelochemical 
with strong suppressive ability against several rice weeds [98]. In Mexico, morning 
glory ( I. tricolor Cav.) is used as an important summer cover crop for controlling 
weeds in sugarcane fields during fallow periods. Peters and Zam opined that tall 
fescue ( Festuca arundinacea Schreb.) can be grown as a cover crop for controlling 
large crabgrass ( Digitaria sanguinalis [L.] Scop.) weed in multiple crops [99]. In 
crux, inclusion of cover crops, especially leguminous crops in different cropping 
systems, can be useful to manage different weed genotypes, depending upon the 
socioeconomic conditions of the farmers.

Use of Allelopathic Water Extracts

Benefits of using crop allelopathic water extracts have been explored in several 
studies for their good efficacy to control several weed types. These water-soluble 
allelochemicals are extracted in water and then are utilized for managing weeds 
[100]. Application of sorghum water extract ( Sorgaab) has been very effective in 
suppressing weeds [19, 101–104]. For instance, Sorgaab application suppressed 
common lambsquarters, broad-leaved dock, swine cress, Indian fumitory ( Fumaria 
parviflora Lam.) [101], wild oat, field bindweed, and littleseed canarygrass [103, 
104] in wheat. Other than wheat, Sorgaab application also suppressed the weeds in 
rice [105], cotton [106], canola [15, 107], mungbean [102], sunflower [108], soy-
bean [109], and maize [69, 110].

In soybean, Sorgaab application at 25 and 50 days after sowing (DAS) reduced 
the total weed dry weight by 20–42% [109], whereas in maize, Sorgaab application 
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reduced the total weed density and total weed dry weight by 34–57 and 13–34%, 
respectively [110]. In sunflower, Sorgaab application 20 DAS decreased the den-
sity of purple nutsedge and horse purslane by 10–21% and dry weight of weeds by 
18–29%, respectively with yield increase of 25% [108].

Combined application of allelopathic water extracts may be a better option to 
control weeds than the individual application of these extracts. For example, com-
bined application of sunflower, sorghum, and eucalyptus ( Eucalyptus camaldulensis 
Dehnh.) water extracts was more effective for weed suppression in wheat than their 
sole application [111]. In another study in wheat, mixed application of Sorgaab and 
sunflower water extract was more effective in suppressing the littleseed canarygrass 
and wild oat than the individual extracts [26]. Mixed application of Sorgaab and 
sunflower and Brassica water extracts reduced the total weed dry weight by 55% 
in wheat [53].

Although complete weed control has not been achieved by the application of al-
lelopathic water extract, there exists a great scope for its use in organic agriculture.

Combined Application of Allelopathic Water Extracts  
with Reduced Doses of Herbicides

Though weed management through the use of allelopathic water extracts is 
economical as well as environmentally friendly, the decrease in weed biomass is 
less than the target. Nonetheless, these allelopathic water extracts may be applied 
in combination with reduced rates of herbicides for effective weed control [11, 19].

Herbicides applied along with allelopathic compounds could have supportive 
action, affecting the same or different weed species. A reduced level of herbicide 
may be feasible to provide weed control when it operates simultaneously with alle-
lopathic compounds [112]. Cheema et al. evaluated the combined effect of concen-
trated Sorgaab with a reduced dose of herbicide in maize crop [113]. Various doses 
of atrazine (50, 100, and 150 g a.i. ha−1) were combined with Sorgaab (12 L ha−1), 
while atrazine at 300 g a.i. ha−1 was sprayed as standard dose. Combined application 
of atrazine at 150 g a.i. ha−1 and Sorgaab at 12 L ha−1 was as effective as atrazine 
at 300 g a.i. ha−1 alone in controlling weeds such as horse purslane, field bind-
weed, and purple nutsedge. In another study, combined application of concentrated 
Sorgaab at 12 L ha−1 and pendimethalin at 0.5 g a.i. ha−1 at sowing decreased the 
horse purslane density and biomass by 72 and 76%, respectively. Similarly, appli-
cation of Sorgaab at 12 L ha−1 + S-metolachlor at 1.0 kg a.i. ha−1 enhanced yield of 
seed cotton by 70% over control [114]. In a similar study, application of Sorgaab 
at 10 L ha−1 combined with reduced doses of pendimethalin reduced total weed dry 
weight by 53–95% [115]. Use of reduced doses of pendimethalin (413 g a.i. ha−1) in 
combination with sorghum/sunflower water extract (15–18 L ha−1 each) was effec-
tive in complete suppression of common lambsquarters (Table 3.2) [116].

Iqbal et al. found that application of glyphosate (575–767 g a.i. ha−1) combined 
with Sorgaab + Brassica water extracts (15–18 L ha−1 each) reduced purple nut-
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sedge dry biomass by 89% (Table 2) [106]. Weeds were controlled successfully 
with the combined use of allelopathic crop water extract with reduced doses 
(50–67%) of herbicide in canola crop (Table 3.2) [15, 107]. Similarly, use of 
reduced doses of S-metolachlor (715–1,075 g a.i. ha−1) combined with sorghum 
water extract (12–15 L ha−1) reduced purple nutsedge dry biomass by 81% in cotton 
[16]. Combined application of various crop water extracts and herbicides reduced 
the dry biomass of many weed species in wheat [17, 117], rice [118, 119], and maize 
[120, 121].

In another study on mungbean, combined application of S-metolachlor (preemer-
gence) at 1.15 kg a.i. ha−1 or pendimethalin at 165 g a.i. ha−1 and Sorgaab (conc.) 
at 10 L ha1 reduced weed dry weight compared with the control [122]. Cheema 
et al. reported that combined application of one-third dose of S-metolachlor at 
667 g a.i. ha−1 or pendimethalin at 333 g a.i. ha−1 with concentrated Sorgaab at 
10 L ha−1 provided as good weed control as was achieved by a full dose of these 
herbicides, that is, S-metolachlor at 2 kg a.i. ha−1 and pendimethalin at 1 kg a.i. ha−1 
[115]. Cheema et al. indicated that Sorgaab combined with a lower dose of MCPA 
(2-methyl-4-chlorophenoxyacetic acid) at 150 g a.i. ha−1 and fenoxaprop-p-ethyl 
at 375 g a.i. ha−1 provided effective weed control in wheat crop [123]. Moreover, 
Sorgaab at 12 L ha−1 + isoproturon at 500 g a.i. ha−1 produced almost equal wheat 
grain yield as was obtained with a full dose of isoproturon (1,000 g a.i. ha−1), which 
clearly revealed that the isoproturon dose can be reduced by 50% in combination 
with Sorgaab at 12 L ha−1. Additionally, combined application of Sorgaab with a 
reduced dose of herbicide controlled weeds by 85% than control (Table 3.2) [124].

In conclusion, combined application of allelopathic water extracts with reduced 
doses of herbicides can control weeds as efficiently as standard dosing of a sole 
herbicide, thus reducing production costs and protecting the environment.

Improving the Allelopathic Potential of Crops

Conventional Breeding

Interest is increasing among researchers to breed crop cultivars with high weed-sup-
pressive ability because of the development of resistance against herbicides in ma-
jor weed flora as well as environmental concerns related to herbicide usage [125]. 
In the current scenario, it is of utmost importance to breed smothering crops with 
the ability of efficient weed suppression, thus lowering reliance upon herbicide us-
age. Crop cultivars suppressing weed communities can be used as an alternative to 
herbicides, often herbicide performance being superior when competitive cultivars 
are used [126]. Different crop species vary for their capabilities to suppress weeds 
[127]. Even variability in the genotypes of the same species to suppress weeds has 
been observed in rice [128], oat [129], Brassica [130], and pearl millet [131].

Laboratory and greenhouse bioassays controlling for genotypic variation in com-
petition for light, water, and nutrients should be considered as an initial screening 
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Crop Allelopathic 
extracts + herbicides

Percent 
decrease 
over 
control

Weeds suppressed Reference

Wheat ( Triticum 
aestivum L.)

Isoproturon (400–500 g a.i. 
ha−1) + Sorgaab (12 L ha−1)

85.5 Littleseed 
canarygrass 
( Phalaris minor 
Retz.), yellow 
sweet clover 
( Melilotus 
parviflora (L.) 
Pall.), swine 
cress ( Cronopus 
didymus (L.) 
Sm.)

Cheema 
et al. 
[124]

Canola ( Brassica 
napus L.)

Pendimethalin (400–600 g a.i. 
ha−1) + Sorghum/Brassica/
Rice water extracts 
(15 L ha−1)

70.76 Purple nutsedge 
( Cyperus 
rotundus L.), 
horse purslane 
( Trianthema 
portulacastrum 
L.), common 
lambsquarters 
( Chenopodium 
album L.), swine 
cress ( Cronopus 
didymus (L.) 
Sm.)

Jabran et al. 
[15]

Cotton ( Gossypium 
hirsutum L.)

S-metolachlor (715–1,075 g 
a.i. ha−1) + Sorghum water 
extract (12–15 L ha−1)

81.25 Purple nutsedge 
( Cyperus rotun-
dus L.)

Iqbal and 
Cheema 
[16]

Sunflower ( Heli-
anthus annuus 
L.)

Pendimethalin (413 mL a.i. 
ha−1) + Sorghum/Sunflower 
(15–18 L ha−1 each)

72 Common 
lambsquarters 
( Chenopodium 
album L.), sweet 
clover ( Melito-
tus indica (L.) 
Pall.)

Awan et al. 
[116]

Cotton ( Gossypium 
hirsutum L.)

Glyphosate (575–767 g a.i. 
ha−1) + Sorgaab + Brassica 
water extract (15–18 L ha−1 
each)

89.38 Purple nutsedge 
( Cyperus rotun-
dus L.)

Iqbal et al. 
[106]

Wheat ( Triticum 
aestivum L.)

Metribuzin (52.5 g a.i. ha−1)/
Isoproturon (315 g a.i. ha−1)/
Fenoxaprop (57 g a.i. ha−1)/
Idosulfuron (36 g a.i. ha−1)/
Idosulfuron (4.32 g a.i. 
ha−1) + Sorghum/Sunflower 
water extract (18 L ha−1 
each)

86.02 Swine cress 
( Coronopus 
didymus (L.) 
Sm.), littleseed 
canarygrass 
( Phalaris minor 
Retz.)

Razzaq 
et al. [17]

Table 3.2  Effect of allelopathic water extracts applied in combination with reduced doses of her-
bicides on weed control
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Crop Allelopathic 
extracts + herbicides

Percent 
decrease 
over 
control

Weeds suppressed Reference

Rice ( Oryza sativa 
L.)

Butachlor (1,200 g a.i. ha−1)/
Pretilachlor (625 g a.i. ha−1)/
Ethoxysulfuronethyl (30 g 
a.i. ha−1) + Sorghum/Sun-
flower/Rice water extract 
(15 L ha−1)

53.67 Barnyardgrass 
( Echinochloa 
crus-galli (L.) 
P.Beauv., rice 
flatsedge ( Cype-
rus iria L.), 
crowfootgrass 
( Dactyloctenium 
aegyptium (L.) 
Willd.)

Rehman 
et al. 
[118]

Rice ( Oryza sativa 
L.)

Ryzelan (15 mL ha−1) + Sor-
ghum water extract 
(7.5 L ha−1)

34.76 Barnyardgrass 
( Echinocloa 
crus-galli (L.) 
P.Beauv.), 
rice flatsedge 
( Cyperus iria 
L.), junglerice 
( Echinochloa 
colona (L.) 
Link., purple 
nutsedge ( Cype-
rus rotundus L.),

crowfootgrass 
( Dactyloctenium 
aegyptium (L.) 
Willd.

Wazir et al. 
[119]

Maize ( Zea mays 
L.)

Furamsulfuron (half 
dose) + Sorgaab

57.33 Field bindweed 
( Convolvulus 
arvensis L.), 
redroot pigweed 
( Amaranthus 
retroflexus L.)

Latifi1 and 
Jamshidi 
[120]

Wheat ( Triticum 
aestivum L.)

Sorghum + sunflower 
water extract (18 L ha−1 
each) + Metribuzin (52.5 g 
a.i./ha)/Bensulfuron + iso-
proturon (315 g a.s./ha)/
Metribuzin + phenoxaprop 
(57 g a.i./ha)/Mesosulfu-
ron + idosulfuron (36 g a.i./
ha)/Mesosulfuron + idosul-
furon (4.32 g a.i./ha)

88.24 Swine cress 
( Coronopus 
didymus L.), 
littleseed 
canarygrass 
( Phalaris minor 
Retz.)

Razzaq 
et al. 
[117]

Maize ( Zea mays 
L.)

Atrazine (125–250 g a.i. 
ha−1) + Sorghum + Bras-
sica + Sunflower + Mulberry 
water extracts (20 L ha−1 
each)

74.67 Horse purslane 
( Trianthema 
portulacastrum 
L.)

Khan et al. 
[121]

Table 3.2 (continued) 



513 Role of Allelopathy in Weed Management

tool for allelopathic research because some lines do not possess high competitive-
ness but have more allelopathic activity. Variability in traits in major crop genotypes 
can be used to breed cultivars that possess greater ability to suppress weeds [132, 
133]. For example, Haan et al. bred a smother plant by crossing dwarf B. campestris 
with B. campestris, and when this plant was intercropped with maize and soybean, it 
suppressed the weeds for 4–6 weeks without influencing the performance of maize 
and soybean [134]. In another study, hybrid rice was produced by backcrossing and 
selfing of two lines, that is, Kouketsumochi (with allelopathic gene) and IR24 (with 
restoring gene). The specific hybrid rice produced by this method suppressed barn-
yard grass more effectively [135]. Selection of “STG06L-35-061” developed from 
crosses between indica (cv. Katy) and commercial tropical japonica (cv. Drew) sup-
pressed the rice weeds, such as barnyard grass, more efficiently [136].

Continuous breeding with barley genotypes has resulted in an increase in al-
lelopathic activity of spring wheat [137] and decrease in barley [138]. Rondo is a 
line of indica rice developed by mutation breeding that has high weed-suppressive 
ability and is high yielding [139, 140]. Similarly, present crop cultivars are more al-
lelopathic than older ones [141]. So breeding of old cultivars with modern cultivars 
is of prime importance to breed crop cultivars having high allelopathic activity.

Environmental variations and environment genotype interactions can obstruct 
phenotypic selection by obscuring genotypic differences in weed-suppressive abil-
ity [142]. For example, Gealy and Yan studied the suppressive ability of differ-
ent rice genotypes against barnyard grass [140]. Some rice genotypes suppressed 
barnyard grass 1.3–1.5 times greater than long-grain rice cultivars, but genotypic 
differences were nonsignificant. These nonsignificant differences among genotypes 
may be due to environmental variation. Varietal potentials for weed suppression are 
mostly unpredictable across different study locations [143] and growing seasons 
[144], indicating strong genotype by environment interactions. Therefore, screen-
ing of genotypes for their relative competiveness or allelopathic potential must be 
carried out in different environments, locations, and years.

Use of Biotechnology

Although less attention has been given to the biotechnological aspect of allelopathy 
than others, during the last decade, the role of biotechnology in allelopathy has 
received much attention. Wu et al. tested 453 winter wheat accessions and found 
a normal distribution of allelopathic activity, indicating a quantitative mode of in-
heritance [145]. When lines having strong allelopathy activity were crossed with 
the lines having low allelopathic activity, the allelopathic activity was normally 
distributed in resulting progenies in rice [146–148] and wheat [149, 150].

Different crop species possess different allelochemicals and each allelochemical 
suppresses special weed biotype. For example, scopoletin suppresses wild mustard 
( B. kaber [DC] L.; Table 3.3) [129] and hydroxamates suppress wild oat ( Avena 
fatua L.; Table 3.3) [151]. Similarly, DIMBOA (2,4-dihydroxy-7-methoxy-1,4-
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benzoxazin-3-one), gramine/hordenine, and hydroxamic acids suppressed various 
weed biotypes in several studies (Table 3.3) [151–155].

There is a need to identify the genes controlling production of these allelo-
chemicals so that gene expression for production of these allelochemicals may be 
improved/enhanced, resulting in increased quantity of these allelochemicals pro-
duction. Some work has been done to map the allelopathic genes found in wheat 
[149, 156]. Hydroxamic acids are the important allelochemicals found in wheat. 
Niemeyer and Jerez mapped the position of genes responsible for hydroxamic acid 
production [156]. The quantitative trait loci (QTLs) responsible for accumulation of 
hydroxamic acid were identified on chromosomes 4A, 4B, 4D, and 5B. In another 
study, Wu et al. mapped allelopathic QTLs in a double haploid population, which 
was obtained from the cross of two cultivars, one being strongly allelopathic and 
other being less allelopathic [149]. For mapping these QTLs, they used amplified 
fragment length polymorphism (AFLP), restriction fragment length polymorphism 
(RFLP), and simple sequence repeat markers (SSRM). Scientists have found two 
major allelopathic QTLs on wheat chromosome 2B, based on the 189 DH lines and 
two parents [149].

Extensive work has been carried out for mapping allelopathic QTLs in rice. 
Ebana et al. mapped seven allelopathic QTLs in rice on chromosomes 1, 3, 5, 6, 
7, 11, and 12 by using RFLP markers in an F2 population, which was obtained 
from the cross of high allelopathic genotype with low allelopathic genotype [157]. 
Jensen et al. identified four main-effect QTLs on chromosomes 2, 3, and 8, and 
these QTLs explained the 35% of the total phenotypic variation in the population 
of rice [158]. In another study, Jensen et al. identified 15 QTLs in a rice population, 
each explaining 5–11% of phenotypic variation [146]. These QTLs were identified 

Table 3.3  Weed-suppressing ability of some allelochemicals
Allelochemicals Weeds suppressed Reference
Scopoletin Wild mustard ( Sinapis arvensis L. 

(Brassica kaber [DC.]) wheeler 
var. pinnatifida lStokes] wheeler

Fay and Duke [129]

Hydroxamates Wild oat ( Avena fatua L.) Pérez and Ormemeño-Núñez 
[151]

DIMBOA Foxtail amaranth ( Amaranthus 
caudatus L.), garden cress 
( Lepidium sativum L.)

Pethó [153]

Gramine/Hordenine Shepherd’s purse ( Capsella 
bursa-pastoris (L.) Medik.), 
white mustard ( Sinapis alba L.), 
common chickweed ( Stellaria 
media (L.) Vill.)

Overland [152], Liu and Lovett 
[154]

Hydroxamic acids Wild oat ( Avena fatua L.), henbit 
deadnettle ( Lamium amplexi-
caule L.), common lambsquarter 
( Chenopodium album L.), 
knotgrass ( Polygonum aviculare 
L.), black bindweed ( Fallopia 
convolvulus (L.) Á. Löve)

Pérez and Ormemeño-Núñez 
[151], Friebe et al. [155]
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on chromosomes 3, 4, 6, 8, 9, 10, and 12. In a similar study, Zhou et al. identified 
three main-effect QTLs on chromosomes 5 and 11, which collectively explained 
phenotypic variation up to 13.6% [147]. These QTLs were identified from different 
recombinant inbred lines, which were obtained from the cross of two Chinese rice 
cultivars, one being strongly allelopathic and other being weakly allelopathic. In 
short, allelopathic QTLs have been identified in multiple rice genomes but still no 
QTL has been identified for chromosome 2. Discovery of additional fine-resolution 
QTLs controlling allelopathy in rice and wheat will hopefully result in the develop-
ment of effective molecular markers that can be used in marker-assisted selection 
for cultivars with improved allelopathic activity. Marker-assisted selection may be 
hindered because of the large number of minor-effect QTLs that appear to control 
allelopathy in various genotypes. Marker-assisted backcrossing can be used as a 
successful tool for breeding genotypes with high allelopathic activity if major QTLs 
controlling allelopathy are less than five [141].

Some researchers also suggested transgenic approaches as successful tools to 
enhance crop allelopathy [159]. However, before moving towards transgenic ap-
proaches, it is necessary to have a clear understanding of the genes responsible 
for the biosynthesis and regulation of allelochemicals and their synthesis path-
way. Although QTL mapping facilitates marker-assisted selection, it seldom tells 
about the gene responsible for allelochemical production. Several candidate genes 
may be located in an individual QTL spanning 5–10 cM (centimorgans) [160] and 
knowledge about individual genes is necessary. Genes responsible for regulation 
and biosynthesis of allelochemicals can be identified through isolation, discovery 
[161], activation tagging [162], purification of plant enzymes, purification of re-
lated bioactive metabolites [161], and through gene knockout libraries [163]. Par-
ticular genes responsible for the biosynthesis and regulation of allelochemicals, 
such as momilactones [164, 165], phenolic compounds [166], and benzoxazinoids 
[167], have been reported. Antisense knockout techniques and overexpression of 
genes can be used to change the quantity and quality of secondary metabolites of 
allelopathic plants. Fortunately, transgenic approaches can be utilized to introduce 
genes from high allopathic genotypes to low or non-allelopathic genotypes, but the 
goal is not easy to attain due to complex genetics of allelopathy. According to Bertin 
et al. expression of multiple genes into crop species and its regulation should be op-
timized in such a way that the transformed crop will be able to produce the desired 
allelochemicals successfully [160].

Conclusion

Allelopathy can be used as an environmentally friendly tool to manage weeds 
in modern agriculture for improving crop yields without reliance on synthetic 
herbicides, which are posing a severe threat to our environment and human health. 
Allelopathic strategies, such as intercropping, crop rotation, mulching, use of allelo-
pathic crop water extracts alone or in combination with reduced doses of herbicides, 
and incorporation of cover crops in cropping systems, may be used as successful 
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tools to manage different weed ecotypes. Conventional breeding of cultivars having 
more allelopathic activity with cultivars having low allelopathic activity may also 
be useful to enhance the allelopathic activity of existing crop cultivars. Moreover, 
Modern biotechnological approaches should be used to identify genes responsible 
for allelochemical production, and then these genes should be introduced to im-
prove the allelopathic potential of cultivars that are less allelopathic.
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