
Chapter 9
Optimizing the Design of Water Distribution
Networks Using Mathematical Optimization

Cristiana Bragalli, Claudia D’Ambrosio, Jon Lee, Andrea Lodi
and Paolo Toth

1 Introduction

Decaying infrastructure in municipalities is becoming a problem of increasing im-
portance as growing populations put increasing stress on all service systems. In tough
economic times, renewing and maintaining infrastructure has become increasingly
difficult. As an example, many municipal water networks were installed several
decades ago and were designed to handle much smaller demand and additionally
have decayed due to age.

For example, consider the case of Modena, a city northwest of Bologna in the
Emilia-Romagna region of Italy. We can see in Fig. 9.1 how the population has
increased by more than a factor of 2.5 over the last century. The Modena water distri-
bution network comprises 4 reservoirs, 272 junctions, and 317 pipes. Its complexity
can be gleaned from Fig. 9.2.

The aim is to replace all the pipes using the same network topology at minimum
cost to achieve pressure demands at junctions of the network. Pipes are only available
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Fig. 9.1 Population of Modena

Fig. 9.2 Water distribution network of Modena

from commercial suppliers that produce pipes in a limited number of diameters.
Reservoirs pressurize the network while most pressure is lost due to friction in pipes
(some pressure is also lost at the junctions). Our goal is to model the problem using
continuous variables as flow rates in the pipes, and pressures at the junctions; and
discrete variables for the diameters of the pipes. Noting that pressure loss due to
friction behaves nonlinearly, this puts us in the domain of mixed integer nonlinear
programming (MINLP). Thus, we will try to obtain a model which is tractable by
standard MINLP solvers.

In fluid dynamics, hydraulic head equates the energy in an incompressible fluid
with the height of an equivalent static column of that fluid. The hydraulic head
of a fluid is composed of pressure head and elevation head. The pressure head is
the internal energy of a fluid due to the pressure exerted on its container and the
elevation head is the energy given by the gravitational force acting on a column
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of fluid, in this case water. As a convention, the units of hydraulic, pressure, and
elevation head are meters, i.e., each unit represents the energy provided by a column
of water of the height of 1 m. The water in its way from the reservoir to the rest of
the junctions loses energy. This loss is called head loss. Head loss is divided into
two main categories, “major losses” associated with energy loss per length of pipe,
and “minor losses” associated with bends and relatively small obstructions. For our
purposes, considering that we are interested in networks covering relatively large
geographic areas, it suffices to ignore minor losses.

2 Nomenclature

In this section we introduce the sets and parameters, i.e., the data input of our problem.

2.1 Sets

The water network will be represented as a directed graph G = (N , E) where, N is
the set of nodes that represent the junctions and E is the set of pipes. Moreover, we
define the set of reservoirs S as a subset of N . Finally, for ease of notation, we define
δ−(i) (δ+(i)) as the sets of pipes with an head (tail) at junction i.

2.2 Parameters

In the following, we introduce the notation for the data elements that we call param-
eters.
For each junction but the reservoirs i ∈ N \ S we have:

• elev(i) = physical elevation of junction i, i.e., the height of junction i ([m]).
• dem(i) = water demand at junction i ([m3/s]).
• phmin(i) = lower bound on pressure head at junction i ([m]).
• phmax(i) = upper bound on pressure head at junction i ([m]).

Moreover, for each reservoir i ∈ S, we have hs(i), i.e., the fixed hydraulic head at
junction i.

Finally, for each pipe e = (i, j ) ∈ E the following parameters are needed:

• l(e) = length of pipe e ([m]).
• vmax(e) = upper bound on the velocity of water in pipe e ([m/s]).
• k(e) = physical constant depending on the roughness of pipe e.
• D(e, r) = r-th diameter that can be chosen for pipe e ([m]).
• C(e, r) = cost of the r-th diameter that can be chosen for pipe e ([€/m]).

Note that all the parameters described above are data input and are used to define
constraints and objective function of the model.
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3 The Mathematical Model for the Problem

We proceed further in describing the problem by specifying a formulation of it.

3.1 Decision Variables of the Problem

First, we specify the variables which are also the expected output of our problem:

• Q(e) = flow in pipe e, for all e inE [m3/s]. This is the volume of water which
passes through pipe per unit time.

• D(e) = diameter of pipe e, for all e ∈ E [m].
• H (i) = hydraulic head of junction i, for all i ∈ N [m].

For modeling purposes, each pipe e has a nominal orientation, and negative flow
corresponds to water flow in the direction opposite to the nominal orientation of the
pipe.

The goals of the problem are to choose, for each edge, the diameter of the pipe that
has to be installed in order to implement the drinkable water distribution network by
minimizing the installation costs and satisfying physical and operational constraints.

3.2 Constraints in the Problem

Each reservoir has a fixed hydraulic head that is specified:

H (i) = hs(i), for all i ∈ S. (9.1)

Typically, there are inequalities imposed that bound the velocity of the water in
each pipe. Because the water flow is given by the product between the cross-sectional
area of the pipe π (D(e)/2)2 and the velocity, for simplicity the velocity bounds can
be written as bounds on the flow:

−π

4
vmax(e)D2(e) ≤ Q(e) ≤ π

4
vmax(e)D2(e), for all e ∈ E. (9.2)

Notice how these equations are nonlinear in the diameter variables D(e), but we
can think of them as linear in the cross-sectional area π (D(e)/2)2.

Next, we have the usual flow-conservation equations:
∑

e∈δ−(i)

Q(e) −
∑

e∈δ+(i)

Q(e) = dem(i), for all i ∈ N \ S, (9.3)

where, dem(i) is the demand for water at junction i, δ−(i) denotes the set of pipes
oriented into junction i, and δ+(i) denotes the set of pipes oriented out of junction
i. We only have these equations for junctions that are not reservoirs.
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Fig. 9.3 Diameter set for Fossolo instance: diameter (m) and cost per meter (€/m)

Next, we impose upper and lower limits on the pressure head at each junction:

phmin(i) ≤ H (i) − elev(i) ≤ phmax(i), for all i ∈ N \ S. (9.4)

Head loss along each pipe is modeled via a nonlinear function of the diameter of
the pipe and the flow in the pipe. Typically, one uses the so-called Hazen–Williams
equation, which is an empirical formula relating the head loss caused by frictions to
the physical properties of the pipe:

H (i) − H (j ) = sgn(Q(e))|Q(e)|1.852 · 10.7 · l(e) · k(e)−1.852

D(e)4.87
,

for all e = (i, j ) ∈ E, (9.5)

where, we consider the pipe e to be oriented from junction i to junction j . Notice
how following intuition head loss is proportional to the length l(e) of the pipe e. The
dependence on the flow Q(e) and the diameter D(e) is nonlinear.

For each pipe e, the available diameters belong to a discrete set of re elements.
For e ∈ E:

dmin(e) := D(e, 1) < D(e, 2) < · · · < D(e, re) =: dmax(e) ,

and so, we have the equations:

D(e) ∈ {D(e, 1), D(e, 2), . . . , D(e, re)} , for all e ∈ E. (9.6)

For each pipe e ∈ E, there is a cost function Ce() having a discrete specification as
a (typically rapidly) increasing function of diameter. That is, C(e, r) := Ce(D(e, r)),
r = 1, . . . , re , where:

C(e, 1) < C(e, 2) < · · · < C(e, re) .
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Our objective to be minimized is:

∑

e∈E

Ce(D(e)) l(e). (9.7)

Our water-network optimization problem is now completely specified as the
minimization of (9.7), subject to (9.1)–(9.6).

The mathematical model is reported below:

min
∑

e∈E

Ce(D(e)) l(e)

H (i) = hs(i), for all i ∈ S

−π

4
vmax(e)D2(e) ≤ Q(e) ≤ π

4
vmax(e)D2(e), for all e ∈ E

∑

e∈δ−(i)

Q(e) −
∑

e∈δ+(i)

Q(e) = dem(i),

for all i ∈ N \ S

phmin(i) ≤ H (i) − elev(i) ≤ phmax(i),

for all i ∈ N \ S

H (i) − H (j ) = sgn(Q(e))|Q(e)|1.852 · 10.7 · l(e) · k(e)−1.852

D(e)4.87
,

for all e = (i, j ) ∈ E

D(e) ∈ {D(e, 1), D(e, 2), . . . , D(e, re)} , for all e ∈ E.

4 Solver

Because of the presence of discrete choices (the pipe diameters) and intrinsic nonlin-
earity (the dependence of head loss on flow and on pipe diameter), we are in the realm
of MINLP . This is a very active area of current research (see [8], for example). We
chose to use the open-source code Bonmin (Basic Open-source Nonlinear Mixed
INteger programming) as our MINLP solver (see [3]). This choice was guided by
the facts that (i) it is accessible from the modeling language AMPL (see [5]), (ii) it
is freely distributed under an open-source license that has fairly liberal terms, (iii)
we are able to modify the source code in case that is needed, and (iv) the primary
developer, Pierre Bonami, is a very good friend (so he can modify the source code
for us, in case that would be helpful).

Among other algorithms, Bonmin includes an NLP-based branch-and-bound
implementation (see [2]). Bonmin is primarily aimed at searching for a global
optimum of a formulation having a convex relaxation. Our formulation is not convex,
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in particular because of the nonlinear Eqs. 9.5, so our use ofBonmin is as a heuristic.
We utilized several features of Bonmin that are designed to facilitate such a use.
In fact, though these features have rather general value for nonconvex formulations,
these features were implemented in Bonmin due to our needs for this project.

4.1 Decreasing Nonconvexity

BecauseBonmin is really aimed at MINLP formulations having a convex relaxation,
it is natural to expect that it will perform better as a heuristic on nonconvex formu-
lations for which the nonconvexity is not too severe. We can soften nonconvexities
by making a substitution of variables. Specifically, we can define the cross-sectional
area variables:

A(e) := π (D(e)/2)2, for all e ∈ E.

Then, the nonlinear flow bounds (9.2) become linear flow bounds:

−vmax(e)A(e) ≤ Q(e) ≤ vmaxA(e), for all e ∈ E. (9.8)

Moreover, the nonlinear head loss Eqs. (9.5) become:

H (i) − H (j ) = sgn(Q(e))|Q(e)|1.852 · 10.7 · l(e) · k(e)−1.852
(

π
4

)2.435

A(e)2.435
,

for all e = (i, j ) ∈ E. (9.9)

So, we consider the cross-sectional area variables A(e) to satisfy

A(e) ∈ {A(e, 1), A(e, 2), . . . , A(e, re)} , for all e ∈ E, (9.10)

where,

A(e, r) := π (D(e, r)/2)2, for all e ∈ E, r = 1, . . . , re.

In (9.9), sgn(y) for any number y denotes the sign (+ or −) of y. Denoting
x = Q(e), the term sgn(Q(e))|Q(e)|1.852 in (9.9) can be represented as the function
f (x), where f (x) = xp (p = 1.852) when x is nonnegative; and f (x) = −(f (−x))
when x is negative. In the next section, we will describe how we approximate f (x)
by a smooth function.

4.2 Smoothing

The MINLP code Bonmin makes use of the NLP code Ipopt (see [7]) to solve
continuous relaxations. Like many codes for NLP, it is aimed at smooth formulations.
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Unfortunately, the absolute value term in the head loss constraints (9.5) is nondif-
ferentiable (at 0) but not so bad. Thus, to accommodate Ipopt, we smoothed the
nondifferentiability. In order to do that effectively, our main goal is not to provide a
fully accurate approximation near 0 because it is well known that Hazen–Williams
Eq. (9.5) is in itself a poor approximation of the real pressure loss for small values
of the flow. Instead, we smooth away the mild nondifferentiability by defining the
head loss equation in a piecewise manner, so as to have accurate evaluations of the
function. We insure the smoothness by matching function values as well as first
and second derivatives at the breakpoints. Fortunately, piecewise constraints can be
modeled in AMPL (see §18.3 of [5]).

More precisely, let f (x) = xp (p = 1.852) when x is nonnegative, and f (x) =
−f (−x) when x is negative (x is standing in for Q(e)). This function misbehaves at
0 (the second derivative does not exist there). Choose a small positive δ, and replace
f with a function g on [ − δ, +δ]. Outside of the interval, we leave f alone. We
will choose g to be of the following form: g(x) = ax + bx3 + cx5. In this way, we
can choose a, b, c (uniquely) so that f and g agree in value, derivative, and second
derivative at x = |δ|. So we end up with a smooth-enough antisymmetric function.
It agrees in value with f at 0 and outside [ − δ, +δ]. It agrees with f in the first two
derivatives outside of [ − δ, +δ].

Formally, it is easy to prove that:

Proposition 1 The unique polynomial g(x) = ax+bx3 +cx5 having f (x) = g(x),
f ′(x) = g′(x) and f ′′(x) = g′′(x) at x = |δ| is:

g(x) =
(

3δp−5

8
+ 1

8
(p − 1)pδp−5 − 3

8
pδp−5

)

x5

+
(

−5δp−3

4
− 1

4
(p − 1)pδp−3 + 5

4
pδp−3

)

x3

+
(

15δp−1

8
+ 1

8
(p − 1)pδp−1 − 7

8
pδp−1

)

x .

Proof Via simple calculation one simply has to equate: (i) g(δ) = aδ + bδ3 +
cδ5 = δp = f (δ), (ii) g′(δ) = a + 3bδ2 + 5cδ4 = pδp−1 = f ′(δ), and (iii)
g′′(δ) = 6bδ + 20cδ3 = p(p − 1)δp−2 = f ′′(δ). This is now a square linear system
in the a, b, c variables. We solve it (symbolically), using Mathematica (see [9]).
Finally, we just observe that f and g are antisymmetric, so we have the same a, b, c
for x = −δ. �

Figure 9.4, drawn for δ = 0.1, shows that g provides a good approximation of
f . Indeed the quintic curve fits very well on ( − δ, +δ), and of course it matches up
to second order with the true function f at ±δ. This is all no surprise because we
are operating in a small interval of 0, and the function that we approximate is not
pathological. The NLP solver Ipopt responds well to this technique, as does our
MINLP solver Bonmin.
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Fig. 9.4 Smoothing f near x = 0.

Our experience is that the inaccuracy in using this smoothed function is minimal
compared to the other inaccuracies (e.g., numerical and modeling inaccuracies).

4.3 Continuous Cost Function

The NLP solver passes useful branching information to the MINLP solver by working
with a good fully-continuous model. Because the cost data is truly discrete, we need
to fit a continuous function to the data points. We use and advocate weighted fits to
minimize relative error. For example, our least-squares fit for pipe e minimizes

re∑

r=1

[

1 −
(∑te

j=0 β(j , e)
(
A(e, r)2

)j

C(e, r)

)]2

,

where, te is the desired degree and β(j , e) are the coefficients of the polynomial1

approximating Ce. Note that, for our purposes, a feature was added to Bonmin
to accommodate one objective function for calculating lower bounds to guide the
branch-and-bound search (for us, that is the fitted objective function) and another to
calculate actual objective values to improve the incumbent solution (for us this just
amounts to using the real objective function determined by the discrete cost data).

1 1Note that the least-square minimization is itself a nonconvex NLP that we solve to local optimality
by using the open-source NLP solver Ipopt (see, [7]) which we use as an NLP solver throughout
our work (see, §4.5).
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4.4 SOS

It would be nice if Bonmin could directly handle branching for imposing constraints
like (9.10), but at the present time, this is not the case. So, we simply define additional
binary variables X(e, r), where X(e, r) = 1 indicates that cross-sectional area A(e, r)
is selected for pipe e (r = 1, . . . , re , e ∈ E). Then, we use the “SOS type-1”
branching (see, [1]) that is available in Bonmin. As standard, we use AMPL suffixes
to pass along the SOS information needed by the solver: .sosno (“SOS number”) is
used to group variables into separate SOS constraints and .ref (“reference value”) is
used to indicate the value symbolized by a variable. In this way, for e ∈ E, in AMPL
we naturally set:

X(e, r).sosno := e , for r = 1, . . . , re ,

and

X(e, r).ref := A(e, r) , for r = 1, . . . , re .

4.5 Heuristic Features of Bonmin

NLP-based branch-and-bound is only a heuristic for a formulation having a noncon-
vex continuous relaxation, because relaxations are not solved to global optimality.
But Bonmin includes several options tailored to improve the quality of the solutions
it provides in such a context.

First, the NLP-solver Ipopt may end up in different local optima when started
from different starting points. The two options num_resolve_at_root and
num_resolve_at_node allow for solving the root node or each node of the
tree, respectively, with a user-specified number of different randomly-chosen start-
ing points, saving the best solution found. Note that the function to generate a random
starting point is very naive: it chooses a random point (uniformly) between the bounds
provided for the variable.

Secondly, because the solution given byIpopt does not truly give a lower bound,
the user can adjust the fathoming rule to continue branching even if the solution value
to the current node is worse than the best-known solution value. This is achieved by
setting allowable_gap, allowable_fraction_gap and cutoff_decr
to negative values.

5 Example

In this section, we describe a real-world instance as an example. The data are taken
from a neighborhood of Bologna called Fossolo. We have 37 junctions (of which 1
reservoir, identified by the index 37), and 58 pipes. The topology of the network is
represented in Fig. 9.5 and provided in detail in Table 9.3.
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Fig. 9.5 Fossolo network

The hydraulic head at the reservoir is always fixed. In our example it is fixed to
121.0 m. The value of vmax(e) is set to 1 m3/s and the roughness coefficient is set to
100 for all e ∈ E. The lower bound on the pressure head phmin(i) is equal to 40 m
and the upper bound phmax(i) is equal to 121 − eval(i) meters for all i ∈ N . The
values of the elevation and the demand for each junction besides the reservoir are
reported in Table 9.1. The network topology and the length of the pipes are reported
in Table 9.3.

Concerning the available diameters for each pipe, we have 13 different pos-
sibilities. Table 9.2 reports for each e ∈ E the value of (D(e, r), C(e, r)) for all
r = 1, . . . , re.

6 Solution Found by the MINLP Model

The solution found byBonmin is depicted in Fig. 9.6 where the size of each diameter
is proportional to the thickness of the arc. The diameters are expressed in meters, and
the diameter is equal to 0.06 for the pipes without explicit number, i.e., the minimum
diameter permissible for this data set.

The analysis of this solution shows a configuration in which the size of the selected
diameters decreases from the reservoir toward the parts of the network farther away
from the inlet point. This characteristic of the allocation of diameters to pipes plays
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Table 9.1 Elevation (meters) and water demand (m3/s) for instance Fossolo

i elev(i) dem(i)
1 65.15 0.00049
2 64.40 0.00104
3 63.35 0.00102
4 62.50 0.00081
5 61.24 0.00063
6 65.40 0.00079
7 67.90 0.00026
8 66.50 0.00058
9 66.00 0.00054
10 64.17 0.00111
11 63.70 0.00175
12 62.64 0.00091
13 61.90 0.00116
14 62.60 0.00054
15 63.50 0.00110
16 64.30 0.00121
17 65.50 0.00127
18 64.10 0.00202

i elev(i) dem(i)
19 62.90 0.00188
20 62.83 0.00093
21 62.80 0.00096
22 63.90 0.00097
23 64.20 0.00086
24 67.50 0.00067
25 64.40 0.00077
26 63.40 0.00169
27 63.90 0.00142
28 65.65 0.00030
29 64.50 0.00062
30 64.10 0.00054
31 64.40 0.00090
32 64.20 0.00103
33 64.60 0.00077
34 64.70 0.00074
35 65.43 0.00116
36 65.90 0.00047

Table 9.2 Diameter set
(meters) and relative cost per
meter (€/m) for instance
Fossolo for each pipe

r (e, r) (e, r)
1 0.060 19.8
2 0.080 24.5
3 0.100 27.2
4 0.125 37.0
5 0.150 39.4
6 0.200 54.4
7 0.250 72.9
8 0.300 90.7
9 0.350 119.5
10 0.400 139.1
11 0.450 164.4
12 0.500 186.0
13 0.600 241.3

in favor of a correct hydraulic operation of the network and has a beneficial effect
on water quality, see, e.g., the discussion in [10].

This characteristic could be noticed in the solution of MINLP for different
instances, see Bragalli et al. [4] for details.

Note that the proposed solution is not guaranteed to be a global optimum of
the problem. However, because of the intrinsic difficulty of the problem at hand, the
proposed solution is, from a practical viewpoint, a very good quality feasible solution.
Other approaches based on heuristic algorithms, mixed integer linear programming,
or nonlinear programming models are not effective for medium/large instances. In
this application, modeling the problem in the most natural way seems to be the most
successful approach.
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Table 9.3 Network topology and length of the pipes (meters) for instance Fossolo

e = (i, j) i j l(e)
1 1 17 132.76
2 17 2 374.68
3 2 3 119.74
4 3 4 312.72
5 4 5 289.09
6 5 6 336.33
7 6 7 135.81
8 7 24 201.26
9 24 8 132.53
10 8 28 144.66
11 28 9 175.72
12 9 36 112.17
13 36 1 210.74
14 1 31 75.41
15 31 10 181.42
16 10 11 146.96
17 11 19 162.69
18 19 12 99.64
19 12 4 52.98
20 2 18 162.97
21 18 10 83.96
22 10 32 49.82
23 32 27 78.5
24 27 16 99.27
25 16 25 82.29
26 25 8 147.49
27 3 11 197.32
28 11 26 83.3
29 26 15 113.8

e = (i, j) i j l(e)
30 15 22 80.82
31 22 7 340.97
32 5 13 77.39
33 13 14 112.37
34 14 20 37.34
35 20 15 108.85
36 15 16 182.82
37 16 29 136.02
38 29 30 56.7
39 30 9 124.08
40 17 18 234.6
41 12 13 203.83
42 19 20 248.05
43 14 21 65.19
44 21 6 210.09
45 21 22 147.57
46 22 23 103.8
47 24 23 210.95
48 23 25 75.08
49 26 27 180.29
50 28 29 149.05
51 29 33 215.05
52 32 33 144.44
53 33 34 34.74
54 31 34 59.93
55 34 35 165.67
56 30 35 119.97
57 35 36 83.17
58 37 1 1.0

7 Conclusions

More details concerning our methodology and results can be found in [4].

8 A Practical Exercise

In this section, we describe a small but interesting example taken from the literature,
in particular it was introduced by Fujiwara and Khang [6]. The network is a simplified
version of the water network of the city of Hanoi, Vietnam.

We have 32 junctions (of which 1 reservoir, identified by the index 1), and 34
pipes. The topology of the network is represented in Fig. 9.7.

The hydraulic head at the reservoir is always fixed. In our example it is fixed to
100.0 m. The roughness coefficient is set to 130 and the elevation of each junction
is 0. The lower bound on the pressure head phmin(i) is equal to 30 m and the upper
bound phmax(i) is equal to 100 m for all i ∈ N . The values of the demand for each
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Fig. 9.6 Solution for Fossolo network: the size of each diameter is proportional to the thickness of
the arc. The diameter (expressed in meters) is equal to 0.06 m for the pipes without explicit number

Fig. 9.7 Hanoi network



9 Optimizing the Design of Water Distribution Networks . . . 197

Table 9.4 Diameter set
(meters) and relative cost per
meter (€/m) for instance
Hanoi for each pipe

r (e, r) (e, r)
1 0.3048 45.73
2 0.4064 70.40
3 0.5080 98.39
4 0.6096 129.33
5 0.7620 180.75
6 1.0160 278.28

Table 9.5 Water demand (m3/s), topology, pipe length (m), and maximum speed of the water
within the pipes (m3/s) for instance Hanoi

i dem(i)
2 0.24722
3 0.23611
4 0.03611
5 0.20139
6 0.27917
7 0.375
8 0.15278
9 0.14583
10 0.14583
11 0.13889
12 0.15556
13 0.26111
14 0.17083
15 0.07778
16 0.08611
17 0.24028
18 0.37361
19 0.01667
20 0.35417
21 0.25833
22 0.13472
23 0.29028
24 0.22778
25 0.04722
26 0.25000
27 0.10278
28 0.08056
29 0.10000
30 0.10000
31 0.02917
32 0.22361

e = (i, j) i j l(e) vmax(e)
1 1 2 100 7.0
2 2 3 1350 7.0
3 3 4 900 3.0
4 4 5 1150 3.0
5 5 6 1450 2.5
6 6 7 450 2.5
7 7 8 850 2.0
8 8 9 850 2.0
9 9 10 800 2.0
10 10 11 950 2.0
11 11 12 1200 2.0
12 12 13 3500 2.0
13 10 14 800 2.0
14 14 15 500 2.0
15 15 16 550 2.0
16 16 17 2730 2.0
17 17 18 1750 2.0
18 18 19 800 3.5
19 19 3 400 3.5
20 3 20 2200 3.0
21 20 21 1500 2.0
22 21 22 500 2.0
23 20 23 2650 2.0
24 23 24 1230 3.0
25 24 25 1300 2.0
26 25 26 850 2.0
27 26 27 300 2.0
28 27 16 750 2.0
29 23 28 1500 2.0
30 28 29 2000 2.0
31 29 30 1600 2.0
32 30 31 150 2.0
33 31 32 860 2.0
34 32 25 950 2.0

junction besides the reservoir, the network topology, the upper bound on the speed
of the water within the pipes, and the length of the pipes are reported in Table 9.5.

Concerning the available diameters for each pipe, we have 6 different possibilities.
Table 9.4 reports for each e ∈ E the value of (D(e, r), C(e, r)) for all r = 1, . . . , re.
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