Chapter 9
Integrated Population Modelling

9.1 Introduction

In Chap. 5, we recommended that formulation of population dynamics models
should be guided by aims to answer specific scientific questions or assess or predict
the effects of management actions. Management actions might target a specific life
stage. For example, we might ask “How does removing wetland plants (such as
bulrush or cattail) that have started to cover ponds and reduce the amount of open
water in a waterfowl breeding area affect reproductive success?” The consequences
of actions, however, typically ripple throughout the entire population life history and
effective management requires more detailed ecological study. This in turn requires
information about demographic processes and abundances for multiple life stages to
characterize the population dynamics.

Information at the population and individual levels is often simultaneously
available in monitoring programmes of wildlife populations. For example one
survey might be designed to provide information about survival for a specific life
stage, another for reproductive success, and a third for total population abundance.
Often the information from each survey is analysed in isolation, and the separate
results are used to fill the elements of a Leslie or Lefkovitch population projection
matrix (Chap. 2). However, the surveys may provide overlapping information about
demographic processes or abundances for multiple life stages and analyses that
utilize that overlap are likely to be more powerful and provide more information
than multiple piecemeal analyses.

In this chapter, we discuss approaches that do utilize the overlapping information,
namely integrated population modelling (IPM). We define IPM to be the fitting of
a population dynamics model to two or more sources of data where (i) the fitting
is done in a single or simultaneous stage, and (ii) each source provides information
at either the population or individual level. A third common feature of IPM, but
not necessary to our definition, is (iii) at least two sources provide overlapping
information about one or more population processes. A review of applications of
integrated population modelling is provided by Schaub and Abadi (2011).
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We emphasise single or simultaneous to distinguish IPM from multi-stage or
sequential fitting procedures. An example of a multi-stage fitting procedure is to
use one data set to estimate survival probabilities for a sequence of years, another
to estimate reproductive success, and then a third to estimate annual abundance
estimates, where the three sets of estimates are calculated independently of one
another, and the three sets of estimates are then used to fit a population dynamics
model. In contrast, an IPM analysis uses all three data sets in a single combined
analysis to fit the population dynamics model with simultaneous estimation of
survival, reproduction and abundance. Maunder (1998) discusses several advantages
of IPMs over multi-stage (non-simultaneous) analyses and we highlight some of
these advantages and others below.

An IPM analysis can account for correlations between survival, reproduction
and abundances. For example, years of higher survival are often years of higher
reproductive success. Parameters shared by multiple data sets can be estimated with
greater precision, or at least the uncertainty in an estimate based on combined data
sets can be more coherently estimated, and the sharing of parameters can overcome
parameter redundancy problems (Sect. 5.2). The gray whale analysis in Sect. 6.4.2
is an example of an IPM where non-identifiability problems were mitigated to a
degree; abundance estimates alone make separation of survival and reproduction
rates difficult at best, but the addition of harvest data provided additional information
about both sets of parameters and improved estimability.

The availability of multiple surveys can also influence model formulation
(Sect. 5.1), allowing for finer temporal and spatial modelling of population dynam-
ics when for example different surveys are taken at different times of the year.

In keeping with the theme of the book, we first show how state-space models can
provide a unifying framework for readily integrating data from multiple sources.
However, such a completely unified SSM approach to analysing multiple data
sources can be technically intricate and daunting. Most of this chapter focuses on
an alternative IPM approach, an approach we call a connected likelihood approach.
This latter approach can be less technically demanding, where a SSM is combined
with other non SSM models for different data sets. The connected likelihood
approach builds naturally on methods for estimating survival probabilities (Chap. 7)
and abundances (Chap. 8) over time. In Chap. 8, we focussed on methods for
estimating animal abundance from mark-recapture data. However, population abun-
dance measures or estimates can be provided by other kinds of data and surveys,
such as line transect surveys or aerial counts for randomly selected plots. Such
surveys in general are aimed at detecting trends, such as growth or decline, in total
population numbers, often at large scale, e.g. abundances at a national level. We
shall use the term census in a generic sense in this chapter for any procedure used
for estimating the size of a population or of a predefined part of it from field data.
General procedures for estimating the size of a population are discussed in Chap. 6.

The structure of this chapter is as follows. Sect. 9.2 discusses the single
SSM approach to IPM mentioned previously. Section 9.3 describes the connected
likelihood approach and includes a worked example. An approximation that greatly
assists the connected likelihood model is given and illustrated in Sect. 9.4 and
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technical issues that arise in forming the Kalman filter likelihood are considered
in Sect. 9.5. Extending the connected likelihood approach to multi-site and multi-
state models is the topic of Sect. 9.6. The chapter ends (Sect. 9.7) with a variety
of extensions and issues particular to IPMs, including conditional Gaussian (i.e.
normal) modelling (Sect. 9.7.1), Bayesian methods (Sect. 9.7.3), and goodness-of-
fit (Sect. 9.7.2).

9.2 Integrated Modelling within an SSM Framework

As discussed in Chap. 5, the temporal, spatial and biological resolution of the
available data constrains formulation of the state process model in terms of what
state vector components and parameters can be estimated. When more than one
survey or data set is available, flexibility in the formulation of the SSM may
be greater than what is feasible with a single data set. Multiple surveys can
provide information on population abundances distinguished by age, sex, maturity
or life history stage. Multiple surveys can also provide information about different
population dynamic processes such as survival and reproduction. Data from multiple
surveys can be incorporated in the SSM framework in two different ways: either
expand the number of components of the observation vector or increase the number
of observation vectors.

When multiple surveys make measurements on the population at the same point
in time, the observation vector is enlarged to include data from each survey. If the
different surveys are measuring the same components of the state vector, the data are
simply replicate measurements that may or may not be independent of each other
(conditional on the state component) and in general have different variances. For
example, a mark-recapture survey and a line transect survey might be carried out
within a week of each other and the population is assumed to be relatively static
during that week. Estimates of abundance for week ¢ from the two surveys are
calculated (y,,r; and y;;, for mark-recapture and line transect respectively) with
corresponding standard errors (s,,; and s;;,). Assuming that both are unbiased
estimates of total abundance N,, and are independent of each other, a general
expression for the observation model is the following.

Ymrp D _ N, > = Srznr,z 0
~ l’l’t = s = O 2
Vit N, Sit
where D is an arbitrary bivariate distribution with expected value vector u,, and
variance-covariance matrix X'. In this example, the observations are taken to be
derived quantities rather than the raw data (e.g. numbers marked and recaptured in
the mark-recapture survey, numbers counted and distances to animals in the line

transect survey). The raw data could be the observations, but this often requires
considerably more complex distributional structures; e.g. the likelihood models
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underlying distance sampling (Buckland et al. 2001). Knape et al. (2013) examined
the impact of using derived quantities instead of raw data and found that the loss of
information was slight in the cases considered (also see Sect. 5.1). Another scenario
is that different management agencies carry out separate surveys for distinct, non-
overlapping land units. For example, duck surveys are made at three different
wildlife refuges at nearly the same point in time. The population total might be
spatially partitioned by each refuge, where N4,, Np, and N¢, are the abundances
for refuges A, B and C, respectively. The state vector is expanded accordingly and
the components of the observation vector are independent abundance estimates,
denoted y4;, yp;, and yc,, which are matched with each refuge’s population
abundance. For example:

Yar Ny Si,; 0 0
yei |~ D, =|np, |.¥= 0 S%.t 0
Y. ncy 0 0 S(zf,t

In the case of multiple surveys making measurements at different points in time
and perhaps focussing on different population sub-processes, additional observation
vectors could be inserted and paired with different state vectors. For a concrete
example, we revisit the BRS model of Sects. 2.3 and 3.2.2. The BRS model had
two states (immature and mature animals) and three sub-processes, survival (S),
growth (i.e. maturation, R) and birth (B), occurring in that sequence. We assume
that three separate surveys were carried out independently to estimate the parameters
corresponding to these processes, namely ¢y, ¢, = and p (see Egs. (2.2), (2.5) and
(2.6)). We also assume that a fourth survey was carried out just after the breeding
season, giving an estimate of total abundance (1, n,,); thus these are census data
as defined previously. For simplicity, assume that the animals sampled to estimate
the survival probabilities are then followed throughout the subsequent growth and
reproduction processes with perfect detectability, i.e. their growth and reproduction
numbers are known without error. The observation sub-processes are modelled as
follows.

11, Y2,0-1) ~ D ((n1-1,n2,4-1). 0)
Yi(s).1,c ~ binomial (11,1, p¢1)
Yi(s)2. ~ binomial (n2,-1, p¢2)
Ya(r).2. ~ binomial (y1(s).14. ) + Yi(s) 2
Y3(b),1, ~ binomial (yz(,),zy,, p)

The terms y;,—; and y,,—; are the census data with D an arbitrary distribution
reflecting the uncertainty in the census data with corresponding parameter 6, while
p is the probability of capture for the survival study. If different animals were used
for sampling the three sub-processes, then the population abundances at each point
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in time would be substituted for yj(),1, and y»¢)2, and two additional capture
probabilities are added. For example, using the notation from Eqs. (3.25) and (3.26):

1i=1, Y2.0=1) ~ D ((n10=1,12,4-1). 0)
Yi(s).1¢ ~ binomial (11,1, psé1)
Vi(s)24 ~ binomial (15 ,—1, ps¢2)
Y2 (r)2. ~ binomial (1)1, pr7r)

Y3(b).1.¢ ~ binomial ()24, Py p)

where py, p,, and p; denote the probability of sampling animals for the three sub-
processes and Y22, denotes the immature animals that just matured.

Section 9.3 presents an alternative approach to using data from multiple surveys
in which the state-space model formulation is just used for a subset of one or
more surveys and alternative formulations characterize data from other surveys.
In particular Sect. 9.3 constructs different likelihoods for different surveys but two
or more likelihoods have one or more parameters in common.

9.3 Integrated Modelling with Connected Likelihoods

Census data are naturally dependent upon animal survival and fecundity, and this
observation motivates this section and much of the remainder of this chapter. When
information from several sources is available for a particular species, it is natural
to consider the extent to which the available types of survey data are compatible
and how they can complement each other. In early work, the emphasis was on the
former, and matching the different types of analyses was done in an ad hoc way,
by comparing model-based and census-based population growth rates (Coulson
et al. 2001) or by checking visually the similarity of model-based and census-
based population trajectories (Kanyamibwa and Lebreton 1992). In this section,
we provide a formal methodology for the simultaneous analysis of mark-recapture-
recovery data and population information such as census data.

9.3.1 Data, Models and Integrated Modelling

We introduce integrated population modelling through an extensive example in
which ring-recovery data from marked birds are combined with abundance data
on the same species. However, the approach is quite general, as we shall see. Our
example is described in Besbeas et al. (2002) and involves observations on lapwings
Vanellus vanellus breeding in Britain. This is a species of conservation concern
in the UK due to its dramatic decline in recent years and it has been placed onto
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Fig. 9.1 The lapwing CBC index. The CBC index is sometimes given relative to a baseline year.
As shown here, it is an estimate of the total population of lapwing territories for the set of sites
included in the analysis

the Red List of species of highest conservation concern (Eaton et al. 2009). The
census data we use are an index, derived from the common birds census (CBC)
(Marchant et al. 1990). The CBC data are collected from specific survey sites by
volunteers, and contain a large number of missing values. An index is constructed
using a generalized linear model (ter Braak et al. 1994) which estimates site effects
s; (forsitei = 1,...,5) and year effects u, (for year t = 1,...,T) subject to an
arbitrary constraint, e.g. s = 0. Annual index values y, are then calculated as

S
yo=Y exp(s; +u), t=1...T ©.1)

i=1

The resulting index estimates the relative abundance of the national breeding
population from 1965 to 1998 inclusive, and it is plotted in Fig. 9.1.

The corresponding ring-recovery data provide the numbers of birds recovered
dead in successive years after being ringed as chicks from 1963 to 1997. Note that
these are national figures and are unlikely to share common individuals with the
CBC data. The raw data are given in Besbeas et al. (2002), and as an illustration a
subset of the recovery data is presented in Table 9.1.

We model the ring-recovery data using annual survival probabilities ¢, with
components which describe age-dependence, and a recovery probability x, which
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Table 9.2 Cell probabilities {p;; } for a simple model for ring-recovery data,
with no over-dispersion or time-variation.

Year of Year of recovery

ringing 1 ) 3 4

1 (1_¢1)K o1 (1 — o) D19 (1 — ¢k ¢1¢3(1 — ¢ )k
2 (1 —¢i)k &1 (1 — da)x $19a(1 — pa)i
3 (I—¢vk $1(1 — pa)k

In this illustrative example, there are 3 years of ringing, 4 years of recovery, and
three model parameters

is the probability of recovery and reporting of marked dead birds, and which varies
over time. For the lapwings, there are two age classes of survival, corresponding
to birds in their first year of life and older birds. Both of the annual survival
probabilities are regressed on a single measure of winter severity w, using logistic
regression. Thus we have logit(¢1) = Bo + Bw, for birds in their first year of
life, with first-year annual survival probability of ¢;, and logit(¢,) = 8o + Sw,
which applies to birds aged > 1, with annual survival probability ¢,. In addition,
the reporting probabilities for dead wild birds in Britain are generally found to be
declining over time (Baillie and Green 1987), and so we set logit(k) = vy + v,
where ¢ measures year. See also McCrea et al. (2012b). We do not here consider
over-dispersion, but if necessary that may be easily incorporated, for example by
means of suitable additive random effects, as described by Barry et al. (2003), or
through the use of beta distributions.

Morgan and Freeman (1989) and Freeman and Morgan (1992) describe more
general models for ring-recovery data, involving additional age-dependence in
survival, and/or time dependence in all parameters. See also Chap. 7. In order to
write down the likelihood function, we introduce additional notation as follows. Let
the number of birds ringed in year i be R;, let the number recovered in year j,
having been ringed in year i, be m;;, and let the number which are not recovered
from the year i cohort be u; = R; — Z;:i m;;. Let the probability of recovery
in year j given a bird was ringed in year i, corresponding to m;;, be p;; and let
g =1-— Z;:i pij be the probability of non-recovery from the i™ cohort. The
recovery probability p;; is a product of annual survival probabilities (from year i to
year j — 1, mortality in year j, and recovery in year j (e.g. Table 9.2). A particular
model for the data consists of a specification of the probabilities p;; = p;;($,«)
in terms of the model parameters. In order to display appropriate multinomial cell
probabilities, we shall take a ring-recovery study with birds ringed as nestlings for
r = 3 successive years, and recoveries recorded for the ¢ = 4 years following
the initial ringing. In the simplest case, these parameters are constant, and the
recovery probabilities are given in Table 9.2. For each cohort, the probabilities
of non-recovery are (1— the corresponding row totals). Then, provided the birds
suffer independent fates, both within and between cohorts, the likelihood for the
ring-recovery data is product-multinomial in form, with log-likelihood given below.
Here and later in this chapter we shall for convenience suppress the dependence of
likelihoods on data.
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r C r
log L, (¢, k) = szif log pij +Z”i logg;, 9.2)

i=1 j=i i=1

where terms not depending on the parameters have been omitted. We shall refer to
Eq. (9.2) as the ring-recovery log-likelihood below.

The census data are described by means of a state-space model involving a
productivity measure p and measurement error variance o, in addition to the
survival probabilities. For the lapwings we set log(p) = yo + yt, to allow for a
decline in productivity; Besbeas et al. (2005) consider instead a change-point in
productivity, corresponding to the start of the decline in numbers. The elements
involved in forming the census likelihood are as follows.

Let Ny, and N, denote, respectively, the underlying numbers of one-year-old
female birds and female birds aged > 2 years at time ¢, and define N, = (Ny;, Ny;)'
and N; = Ny, + N,;. If we assume no sex effect on survival and that breeding starts
at age 2, then a natural process model for the underlying population sizes would be

Nis41 | Ny ~ Poisson(Ny; por)
and
Ng;+1 | N, ~ binomial(N,, ¢,)

where the parameter p now denotes the annual productivity of females per female.
The random variables Ny; and N, can be approximated by appropriate independent
normal variables, resulting in the following model

N t+l:| [0 17¢>1] |:N1t:| [511]
' = + , 9.3)
|:Na.t+1 ¢a ¢a Nat (Sat
where the § terms have zero means, and variances which are given by suitable
Poisson and binomial expressions:

Var(81,) = E(Nas) p1
Var(84;) = E(Ny)da (1 — ¢y).

If one is using classical inference, then it is necessary to use expectations in the
variance expressions in order to comply with the assumptions of the Kalman filter;
see Sullivan (1992) as well as the gray whale example in Sect. 6.4.2. The matrix
above is a familiar Leslie matrix. Buckland et al. (2004, 2007) provide a general
framework for deriving population projection matrices by considering intermediate
sub-processes (Chap. 2). If we assume that only breeding birds are censused, then
what we observe, y,, which we take here as the CBC index, is given by the
measurement equation,
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Fig. 9.2 Profile log-likelihood contours for § = p¢; and ¢, from the lapwing census data,
obtained by maximizing log L.(p, ¢1, ¢, ) with respect to o. The location of the maximum is
shown by X

v = (0 1)(55”) +e. (9.4)

We assume that €, is normally distributed with constant variance 02, so that
€; ~ normal(0, 0%). (In some cases it may be sensible for o to vary with time.)

Equations (9.3) and (9.4) collectively form a normal dynamic linear model (see
Sect. 4.4). Thus the likelihood for the census data, L.(p, ¢1, ¢, 0), can be derived
using the Kalman filter. However, the parameters p and ¢ in this likelihood only
appear as a product. Furthermore likelihood functions for census data generally
provide limited information on the underlying demographic mechanisms individ-
ually. Figure 9.2 plots the two-dimensional profile log-likelihood contours of L. for
parameters 6§ = p¢; and ¢, for the lapwing data and illustrates how 6 and ¢, are
negatively correlated.

However ¢, also occurs in L,, and so we may obtain a full-rank model (see
Sect. 5.2.2), in which all parameters may in principle be estimated, by maximizing
the joint likelihood,

Lj((pl,d’a,/(, p,U) = Lr(¢lv¢avK) X Lc(pv ¢)1,¢a,0'). (95)
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Fig. 9.3 Flow chart summarising the steps in fitting an integrated population model using classical
inference incorporating the Kalman filter

(To reflect the various logistic/logarithmic regressions in the model, we can also
write the joint likelihood as L ; (Bo, B, 80, 8, vo, v, yo, ¥, 0), but we use the notation
in Eq. (9.5) in a generic fashion, for brevity.) This is very useful, as the productivity
of a species in decline is a parameter that we particularly want to investigate. The
assumption of independence made in multiplying the two likelihoods together in
Eq.(9.5) is not likely to be violated. The approach extends flexibly to include
additional likelihood components, corresponding to data on say productivity or
movement. This methodology has been termed integrated population modelling
in the literature. The flow chart in Fig. 9.3 summarizes the steps of integrated
population modelling, when classical inference is being used incorporating the
Kalman filter. We shall now illustrate the performance of the integrated approach
by application to the lapwing data before discussing a number of technical issues
and extensions.
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Table 9.3 Maximum likelihood parameter estimates from fitting
the model ¢;(w), ¢,(w)/k(vear)/p(year) to the lapwing data, (i)
using ring-recovery data alone, and (ii) using integrated population
modelling, incorporating both the ring-recovery data and the census

data
Estimated
Parameter estimates standard errors
(1) (ii) (1) (ii)
Intercept (B)  0.5158  0.5231  0.0675  0.0672
4 Slope (B) —0.0241  —0.0228  0.0072  0.0070
Intercept (8o) 1.5011 1.5210  0.0683 0.0690
$a Slope (8) —0.0360 —0.0279  0.0051  0.0045
p Intercept (vo) —4.5668 —4.5632  0.0350 0.0350
Slope (v) —0.5729 —0.5841 0.0641 0.0636
Intercept (yo) —1.1513 0.0880
P Slope (y) —0.4323 0.0743
o 159.4691 21.8712

The estimated standard errors result from inverting a numerical
approximation to the Hessian matrix at the maximum likelihood
estimate. Reprinted with permission from Biometrics

9.3.2 Results for Lapwing Example

The decline of lapwings may be described through inclusion of time in survival
and/or productivity parameters. Here we follow Besbeas et al. (2002) and allow the
productivity parameter p to be a function of time: p(year). Thus we have fitted to
the lapwing data the model,

P1(W), ¢a(w)/k(year)/ p(year),

which indicates that both ¢»; and ¢, are logistic functions of the single covariate, w,
which measures the number of days in the year when the temperature at a location
in central England was below freezing. We concentrate on logistic regressions,
as described in the last section, but alternative link functions might also be used.
Additionally, we let k (year), p(year) denote respectively logistic and logarithmic
regressions of k and p on year. Note that p is not a probability, and so is not bounded
above by unity. The maximum likelihood point estimates from the joint data, and
also from the recovery data only, are given in Table 9.3.

We can see that the joint analysis changes slightly the maximum likelihood
estimates from the ring-recovery data, as now the estimates describe both the
data sets. There is little difference between the standard errors of the common
parameters in the two analyses, due to the dominance of the ring-recovery data in
this illustration. The same conclusion arises from a Bayesian analysis; see Brooks
et al. (2004). When we repeated the analysis with a subset of the recovery data,
then we found that the joint analysis produced substantially reduced estimates of
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Fig. 9.4 The result of fitting model ¢,(w), ¢,(w)/k(year)/p(year) to the lapwing data. (a)
Observed census data (dotted line); fitted curve (solid line). (b) ¢, (solid line); ¢, (dotted line).
(¢) k(year), with estimated 95 % confidence bands. (d) p(year), with estimated 95 % confidence

bands. (e) Graph of 1\71,; (f) Graph of Na,, equivalent to the fitted curve in (a). Reprinted with
permission from Biometrics

standard error compared with the ring-recovery ones; see Besbeas et al. (2002). For
the ring-recovery data alone, due to the length of the study, correlations between
parameter estimators are typically quite small, ranging in magnitude from —0.20 to
0.29. The addition of the census data has little effect on those correlations. However
there are now correlations of —0.49 between j, and Sy, and —0.91 between P, and
30, where yg, By and & are defined in Table 9.3. These are sensible findings, since
increasing the productivity p requires a decrease in survival in order to match the
data. We would also expect a stronger correlation with the intercept estimate of
the adult survival, 30, as is seen above.

We show in Fig. 9.4 the results from maximizing the combined likelihood L ;.
The confidence bands shown result from applying the §-method. The decline of «
with time agrees with Catchpole et al. (1999). However of greater interest to us
here is the time-varying behaviour of the parameters ¢;, ¢, and p. We can see
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Table 9.4 The results from fitting by maximum likelihood a range of models to the lapwing data

®

No. of
Model —{ parameters AIC
dr(w), pa(w)/Kk(year) 7156.33 6 14325
¢1(w, year), ¢, (w, year)/k(year) 7155.16 8 14326
(i)

No. of
Model —L parameters AIC AAIC
d1(year), p,(vear)/x(year)/p 7409.54 8 14835 52
d1(w), pa(w)/Kk(year)/p 7398.40 8 14813 30
d1(W), da(w, year)/k(year)/p 7382.37 9 14783 0
¢1(w, year), p,(year)/k(year)/p 7401.14 9 14820 37
¢1(w, year), ¢, (w, year)/k(year)/p 7381.45 10 14783 0
¢1(year), pa(vear)/k(year)/p(year) 7409.29 9 14837 54
d1(w), pa(w)/k(year)/p(year) 7383.38 9 14785 2
d1(w), da(w, year)/k(year)/p(year) 7381.99 10 14784 1
¢1(w, year), p.(w)/k(year)/p(year) 7383.36 10 14787 3
¢1(w, year), ¢, (w, year)/k(year)/p(year) 7381.45 11 14786 3

In (i) we fit only the ring-recovery data; in (ii) we use integrated population modelling to fit a
range of alternative models to both ring-recovery and census data. Here £ denotes the value of the
log-likelihood evaluated at the maximum likelihood estimates of the parameters. AIC denotes the
Akaike Information Criterion, and AAIC indicates the difference between the model AIC value
and the smallest AIC value for the set of models considered. In (ii) we show in bold type the AIC
values corresponding to alternative acceptable models for the combined data set, with AAIC < 2.
Reprinted with permission from Biometrics

that the decline in lapwing numbers since 1980 is compatible with a major drop
in the productivity parameter p. An alternative explanation of the recent decline in
lapwing numbers is that there is a decline in survival probability over time. There
was no evidence for this in Catchpole et al. (1999), or for the more extensive ring-
recovery data set analysed here (see Table 9.4(i)).

However we can see from Table 9.4(ii) that when we analyse the combined
data using integrated population modelling, then in terms of AIC, several models
provide comparable best fit to the data, in particular with constant p and declining
probabilities of survival over time. Detailed studies of breeding lapwings have
shown a decrease in chicks produced over the period. This is usually attributed
to the switch from spring to autumn sowing of cereals and intensification of
pasture management (see Wilson et al. 2001 and references therein). Thus in
order to demonstrate model performance, we shall here only consider the model
dr1(w), p,(w)/k(vear)/p(year), as in Besbeas et al. (2002). For further discus-
sion, see King et al. (2008).

We show in Fig. 9.5 the regressions of (]31 and an on w, combined with plots of (]31,,
and qAﬁaJ resulting from a model with separate ¢; and ¢, parameters for each year,
and denoted by {¢, ;} and {¢, ,} respectively. These regressions are seen to provide
a fair description of the relationship between annual survival and w. Note that the
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Fig. 9.5 A graphical demonstration of the logistic regressions of ¢; and ¢, in the model,
o1 (W), dpa(w)/k(year)/p(year), for the lapwing data. Here the covariate w denotes the number
of days in a year when the temperature in central England was below freezing. In (a) we graph q§1
against w and in (b) we graph ¢, against w. Also plotted are the values {1, } and {¢,, } respectively,
corresponding to having a separate value for ¢; and ¢, for each year. Reprinted with permission
from Biometrics

estimates of B and § in Table 9.3 are approximately equal, and a model in which
¢1 and ¢, share a common slope parameter produces virtually no change to the
likelihood.

Shown in Fig. 9.4e is the smoothed estimate of Ny,. The figure demonstrates the
large decline in Ny, in recent years, in line with the predicted decline in p over time
in this model.

We do not provide a formal test of goodness-of-fit of the selected model, but in
Fig. 9.6 we plot the observed numbers of recoveries against the fitted numbers, and
also provide a Q-Q plot of the prediction errors from the Kalman filter, which are
expected to have a normal distribution. In the latter case, the single large prediction
error is due to the initial census value, and is to be expected because of the way in
which the Kalman filter analysis is initiated. Overall there is no serious indication of
systematic lack of fit.
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Fig. 9.6 Graphical checks of goodness-of-fit of the model ¢ (w), ¢, (w)/k(vear)/p(year), for
the lapwing data: (a) observed numbers plotted vs expected numbers for the recovery data; (b) a Q-
Q plot of the prediction errors from the Kalman filter. Reprinted with permission from Biometrics

9.4 Facilitating Connected Likelihood Modelling

9.4.1 Normal Approximation

The integrated approach described above requires specialized computer code,
not only for the Kalman filter component, but also for the additional likelihood
components, some of which may be complex, and may even have been derived
using specialist computer packages. Quite often, for example, survival data would be
analysed by Program MARK (White and Burnham 1999). This then poses obvious
difficulties for combined analysis and is likely to preclude the use of the integrated
approach in practice. A solution to this problem is provided by an approximation,
suggested and evaluated by Besbeas et al. (2003). Here, a multivariate normal
approximation is adopted for the form of the likelihood of the ring-recovery
data, making use of the parameter estimates, and their corresponding estimates of
dispersion obtained from analysing the ring-recovery data alone. In particular, we
make a multivariate normal approximation to L, (¢, k):

1 A A1 A
log L, (¢, k) ~ constant — —(6 — 0)' % l(0 -0)
2 (9.6)

log L, (¢, )
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where we write @ to denote the model parameters on the logistic scale, and where
0 and X are respectively the maximum likelihood estimates of 6 and the dispersion
matrix of @, both obtained from a separate model-fitting exercise for the ring-
recovery data alone. The approximation is motivated naturally by the asymptotically
multivariate normal distribution of maximum likelihood estimators, and has been
used to good effect in Lebreton et al. (1992). The integrated population modelling
then proceeds by replacing the exact likelihood L, (¢, «) in (9.5) with expression
(9.6):

Lj(¢1»¢a$K7p’U) = I:r((blvd)avl() X LC(pvd)lvd)ava)'

The approach has great potential to approximate likelihood components for abun-
dance data obtained from complex sampling schemes (Knape et al. 2013). This
means that particular programs or packages for survival and also for fecundity or
other data, if appropriate, need only be run once, to obtain the relevant maximum
likelihood estimates of relevant parameters and their estimates of standard error and
correlation. This clearly greatly simplifies both the resulting form for L; and its
maximization.

9.4.2 Results

For the example of the last section, we evaluate the approximation in Table 9.5; the
standard errors are obtained from the observed information matrices as in Table 9.3.
The agreement between exact and approximate results is seen to be very good.
An additional benefit from using the approximate approach is that in comparison
with the exact analysis, it is far less sensitive to starting values for the maximum
likelihood iteration. Additionally the approximate analysis was found to be about
2.5 times faster than the exact method. A

We can see from Table 9.5 that the change in the value of @ from the recovery
analysis alone to the joint analysis is not large. It is both the overall magnitude
of this change and the size of the data sets which determine the effectiveness of the
multivariate normal approximation made in the paper, as we require the multivariate
normal approximation to L, to be good for the value of  which maximizes L ;, and
not just for the value that maximizes L,. We show in Fig. 9.7 the good agreement
between exact and approximate log L, (¢, x) for the small illustrative data set of
Table 7.1, by means of profile log-likelihoods, for the parameter 8. We have found
the good agreement observed in Fig. 9.7 also for profiles with respect to other
parameters. Besbeas et al. (2003) provide further details. The good performance
of the approximation extends to the case of multi-site data (McCrea et al. 2010).
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Table 9.5 An evaluation of the multivariate normal approximation for the ring-recovery
likelihood for the lapwing data

Parameter Ring-recovery alone Exact combination Approximate combination
Bo 0.5158 (0.0679) 0.5231 (0.0679) 0.5226 (0.0678)

B —0.0241 (0.0072) —0.0228 (0.0070) —0.0227 (0.0070)

8o 1.5011 (0.0685) 1.5210 (0.0693) 1.5191 (0.0686)

8 —0.0360 (0.0051) —0.0279 (0.0045) —0.0280 (0.0045)

Vo —4.5668 (0.0351) —4.5632 (0.0352) —4.5634 (0.0351)

v —0.5729 (0.0640) —0.5841 (0.0637) —0.5837 (0.0638)

Yo —1.1513 (0.0886) —1.1489 (0.0876)

y —0.4323 (0.0743) —0.4314 (0.0740)

o 159.469 (22.062) 159.613 (21.875)

In each case we show the maximum likelihood parameter estimate and the corresponding
standard error. The estimates of error are obtained as in Table 9.3. Reproduced with
permission from Applied Statistics
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Fig. 9.7 Agreement between log L, (¢, k) and the multivariate normal approximation for the data
of Table 7.1. The two curves are profile log-likelihoods taken with respect to the parameter . The
solid curve is the exact likelihood, and the dotted curve approximate. Also shown is the location of
ﬁo = 0.1786, the value which maximizes the combined exact likelihood, making use of the entire
run of the census data for lapwings. Reprinted with permission from Applied Statistics
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9.5 Technical Issues for Classical Analysis

The connected likelihood approach depends on making a number of assumptions
and adopting certain procedures. For example, we assume that we can approximate
discrete distributions by normal distributions; that we can suitably start the Kalman
filter iterations; that the different surveys are independent; and that the state-space
model adopted correctly partitions variation between its transition and measurement
processes. Brooks et al. (2004) demonstrated the robustness of the normality
assumptions. In this section, we explore the other issues listed above, starting with
the problem of initializing the Kalman filter.

9.5.1 Kalman Filter Initialization

Computational algorithms in state space analyses are mainly based on recursions
in which we calculate values at time ¢ from earlier values for t — 1,...,1. The
question of how these recursions are started up at the beginning of the series is
called initialization. The initialization problem of the Kalman filter when g, and Qg
are unknown is an issue requiring attention in general, in areas such as economics
and engineering, but the problem may be more important in population ecology,
where there are often small samples, models may involve a large number of states
and unknown parameters, and models are usually non-stationary. We shall now
describe an approach to initialize the Kalman filter which is designed for integrated
population modelling in ecology.

9.5.1.1 Stable-Age Initialization

In population ecology, the state vector n; is typically a vector denoting the numbers
of individuals in the population in a number of classes at time ¢. Typical elements
of A, include age- or stage-specific survival and productivity parameters and rates
at which individuals in one state make the transition to another state, for example
through immigration or emigration. The matrix A; is referred to as a Leslie or
Lefkovitch matrix, depending on whether the population is age- or stage-classified,
respectively (Chap. 2). We encountered a Leslie matrix in Sect. 9.3.1.

The Perron-Frobenius theorem states that, for appropriate constant transition
matrices A, there exists a real positive eigenvalue x that is greater in absolute
value (or in modulus, if some of the other eigenvalues are complex) than all of the
other eigenvalues. The implications are that the dominant eigenvalue k represents
the asymptotic growth rate of the population, and the normalized right eigenvector
associated with « represents the asymptotic proportion of every age or stage class
in the total population. We call the eigenvalue « the asymptotic growth rate and
its corresponding right eigenvector, v, is called the stable age (or stable stage)
distribution.
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We propose starting the Kalman filter by taking the initial mean vector p, to be
proportional to the stable age (stage) distribution of a Leslie (Lefkovitch) matrix A,
with the proportions scaled by the total size of the first observation, ny. To choose
Qo, we adopt the conservative approach of requiring the lower end of an appropriate
confidence interval for each element of ny to be non-negative, and that elements
are independent. Thus for example for univariate observations and 95 % confidence
intervals we take

o = vy1/(Zv), P, = diag((@y/1.96)%)

where y; and Z, are the first observation and measurement vector respectively.
In practice, in order to derive the stable age distribution, we need to know A,
which may contain unknown parameters. We select the values for the parameters
in A that are in common with the demographic analyses by using their maximum
likelihood estimates obtained from analysing the demographic data alone. Any
remaining parameter(s) can then be obtained by iteration; for details see Besbeas
and Morgan (2012b). For instance if productivity p is unknown, then we take
an arbitrary value for p, and obtain a maximum likelihood fit, which provides
an estimate, 5. We then use this value to start the Kalman filter, resulting in an
estimate [3(2), and so on. When the matrix A, is time-dependent, then we obtain A
by an appropriate time-average of the A;. The good performance of this approach
compared with alternatives in which the elements of the initial state vector are
diffuse, that is, treated as random variables with infinite variance, or are treated as
unknown constants to be estimated by maximum likelihood, is shown in simulation
studies presented by Besbeas and Morgan (2012b).

9.5.2 Lack of Independence

It may be that census data and demographic data are not completely independent.
Besbeas et al. (2009) consider the effect of dependence between a ring-recovery data
set and census data. This was done for a model with two age-classes for survival, as
in Sect. 9.3.1, and with constant parameters, ¢, ¢, and «. Life histories spanning
eight years were constructed for a 20-year period, with ¢; = 0.5, ¢, = 0.7, for a
range of values of «, and probability of recapture of a live animal. Observation error
was added to the life histories, resulting in census data. It was shown that, in some
circumstances, combining dependent data sets but treating them as independent can
actually reduce estimator precision. While this was only a single study, the message
is that one should take care conducting combined analyses for dependent data sets.
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9.5.3 Heterogeneity in the State-Space Model

In Sect. 9.3.1, we used binomial error variances for when a number » of individuals
survive or die in any particular year, and Poisson error variances for recruitment
arising from reproduction. In both of these cases, we can allow for heterogeneity.
A study with an application to data on grey herons Ardea cinerea is provided by
Besbeas et al. (2009) in which census data are combined with ring-recovery data.
It was found that when overdispersion is included in the integrated modelling, it is
possible to obtain & = 0. We return to this finding in the next section. Thus while it
is in principle straightforward to include overdispersion in integrated population
modelling, there may be an interaction between the roles of the overdispersion
parameter and the parameter denoting measurement error.

9.6 From Modelling an Index to Multi-Sites: Additional
Complexity

In this section we consider how the connected likelihood approach can be extended
to multi-site and multi-state models.

9.6.1 Accounting for Different Habitats

The CBC sites on which the index y; was based in Sect. 9.3.1 may be classified as
arable, grazing, mixed (i.e. arable and grazing) or “other” (which are not farmland
and could include estuaries, for example). The study by Besbeas et al. (2002) did not
make use of this information but it is interesting to consider how it might be used to
give a breakdown with respect to habitat. For illustration, we outline the integrated
analysis of the grazing and arable sites, which account for 31 % of the sites; Besbeas
et al. (2005) give detailed results and also discuss the complete set of results from
all four habitats.

The ring-recovery component estimates overall survival, and does not produce
a breakdown with respect to habitat. However we use the state-space model given
below, using superscripts A and G to indicate arable and grazing, respectively. Let
n, = (ni,n2,nG . n%) andy, = (y, yF). Then, with a general notation for
respective error terms 8, and €,

nl == An[_] +8[, yt = Bn[ +€[a
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where
0 pigr 0 0
Az | P O (? ad B |0100]
0 0 0 p ¢ 0001
0 0 ¢ ¢
Thus nf‘t, for example, is the number of one-year-old female lapwings fledged,

and assumed subsequently to live, on arable land at time 7, and y;! denotes the
CBC index value at time ¢, derived from the arable sites only. Thus the model now
assumes different productivities for arable sites, p, and grazing sites, p¢, and we
also assume that there are different observation error standard deviations, o and
o9 for arable and grazing respectively. Note that the model analyses the arable and
grazing populations separately and assumes no movement of individuals between
the two habitats. We discuss extensions to multi-site modelling incorporating
movement probabilities in Sect. 9.6.3. The likelihood function from this multivariate
model is equivalent to the product of likelihood functions for univariate data

L@, p* 0% y*) x Lo(¢, p©,0%;y%)

where ¢ = (41, ¢,), and y* (y©) denote all the observations on arable (grazing)
sites over time. These likelihood functions are constructed for the relevant index
alone, as in Sect. 9.3.1. The likelihood can readily be extended to deal with more
than two indices as well as individual site data. The analysis then follows the same
lines as above, based on the model

$1(w), ¢a(w), k(year), p*(vear), p© (vear).

The results indicate that productivity varies with habitat; see Besbeas et al. (2005)
for details.

9.6.2 Modelling Individual Site Data

Besbeas and Freeman (2006) provide an alternative approach to dealing with
individual site data which sidesteps the intermediate process of deriving an index of
abundance. The approach is single-stage and has several advantages, including no
loss of information in summarizing the raw data using an index. This approach fits
the survey data directly by incorporating the population model into the generalized
linear model used to derive the index in the existing approach. For example, from
Eq. (9.1) and the structural part of the state-space model of Egs. (9.3) and (9.4), we
obtain the recursive relationship for the year effects

u = Qauts—1 + pPr1daus—n, t>2, 9.7
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which gives rise to the likelihood function, L g, (¢1,Pa, p, u1:2,5). The form of
L, depends on the distributional assumptions made for the individual site data, ¢;;.
For example, when the ¢;, are assumed to follow independent Poisson distributions,
then the log-likelihood function is given by

s T
log Lgim($1, ¢a, p,u1:2,8) = constant + Z Zcit(si +u) + e

i=11t=1

where u;., = (u;,up) and u, is given by Eq.(9.7) for ¢+ > 2. The integrated
population modelling procedure then replaces the component corresponding to the
abundance index, L.(¢1, ¢, p.o), in Eq. (9.5), by Lgim(¢1, ¢, p.ui1:2,5). The
procedure is shown to perform well relative to analysing an index; see also Maunder
(2001) for related work. Freeman and Besbeas (2012) provide further development
with respect to analysing presence-absence survey data. The ease with which
the connected likelihood approach can integrate different types of information,
assuming independence between the sources, makes it very appealing in practice.

9.6.3 Multi-Site and Multi-State Modelling

The work described so far assumes no movement of individuals. How the general
theory of integrated population modelling extends to the multi-site case is described
by McCrea et al. (2010). The illustrative example of that paper involved great
cormorants Phalacrocorax carbo sinensis, moving between three sites in Denmark,
with the additional complication that birds could move between breeding and non-
breeding states, as well as between sites. Model selection was based on a step-up
procedure applied to the recapture data alone, in order to avoid possible problems
with overfitting the census data, as discussed in Sect. 9.5.3. The final integrated
population model included complex state- and site-dependent transitions. There was
a pronounced improvement in the precision of estimators from combining the two
data sets in a single analysis.

9.7 Additional Aspects of IPM

9.7.1 Conditional Gaussian Modelling

The main advantage of analysing census data using normal dynamic linear models
lies in the use of the Kalman filter, which greatly facilitates the estimation process.
Despite the conceptual simplicity of this model, it is both flexible and general, and
extends to a range of other models, such as linear matrix population models which
have wide application in ecology and demography (Caswell 2001). The non-linear



192 9 Integrated Population Modelling

case however is important in ecological settings, for example in accommodating
density dependence in the population model or allowing observation variance to
depend on population size; see Sect. 4.4.2. In certain important cases, non-linear
models are still amenable to analysis by the Kalman filter. These models are
known as conditional Gaussian models and are described in detail in Harvey (1989,
Sect. 3.7.1). Here system matrices A,, B;, Q; and R, may depend upon previous
observations, up to and including n, in the notation of Eq.(4.9). The essence of
these models is that even though the matrices may depend on observations up to
time ¢, they may be regarded as fixed once time ¢ has been reached, and thus the
derivation of the Kalman filter still applies.

Besbeas et al. (2009), Tavecchia et al. (2009) and Besbeas and Morgan (2012a)
provide illustrations of this approach on three different species. The illustration
below is taken from this last paper, based on the grey heron. This example also
involves ring-recovery and census data but uses a more elaborate survival age
structure than the lapwing illustration, involving four age classes. The heron census
data have been published widely and a notable characteristic of this species, other
than its marked population crashes, is that the population rebounds quickly after a
crash.

Besbeas and Morgan (2012a) considered several models for heron productivity
p; in year ¢, including a direct density-dependent model

log p; = yo + v1,

and a threshold model, where for a suitable threshold, ,

vo+v ify <rm,
log p; = .
Vo if e 2 T.

The motivating assumption of this model is that as the birds nest in heronries, then
when numbers are low, there might be less competition for space and resources,
resulting in higher productivity than when the numbers are high. We would thus
expect v; > 0. The threshold model is found to perform well relative to alternative
models; see Besbeas and Morgan (2012a) for details, including extensions to more
than one threshold. This paper also compares the results of a conditional Gaussian
model with those from a Bayesian approach.

9.7.2 Goodness of Fit

A global goodness-of-fit test does not exist for integrated population models.
For IPMs using a single SSM, the methods discussed in Sect. 5.6, e.g. recursive
residuals, are a possibility.
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For connected likelihood models, it seems intuitively reasonable to examine
goodness of fit for each component of the model separately, which enables us to
use off-the-shelf goodness-of-fit techniques in each of MRR modelling and time-
series modelling, for example. Thus, in the case of mark-recovery and census data,
as in Sect. 9.3.1, it is possible to examine plots of observed versus fitted numbers
of recoveries which will indicate the fit of the mark-recovery component of the
model, whilst for the census component, the prediction errors v, are expected to
be normally distributed and thus it might be appropriate to examine a Q-Q plot of
these errors. Figure 9.6 provides an example of this approach for the lapwing data.
The per-component goodness of fit can also be examined using standard tests, such
as chi-square tests or numerical tests for normality. The extension to other types
of mark-recapture-recovery data is obvious. However in all cases, it is important to
note that integrated population modelling estimates are joint estimates, describing
several components simultaneously, and may thus inherently manifest some lack-
of-fit to each component individually.

The time-series plot of the observed and corresponding smoothed population
estimates is an additional, natural diagnostic tool for the census component to
examine whether the fitted model exhibits the stylised characteristics concerning
the series. This plot is illustrated in Fig. 9.4a for the lapwing data. The time-
series plot of the smoothed states against time is also a valuable diagnostic tool
to check if the components extracted provide a suitable representation of these
characteristics, and these are illustrated in Fig. 9.4e and f. The estimated observation
variance provides a quantitative indication of the overall fit, with smaller values
indicating a better model fit. However as discussed in the last section, it is important
to consider this approach in parallel with model selection and heterogeneity in
the state-space model, and the approach may need to be informed by additional
considerations, which might for instance provide guidance on the appropriate
magnitude of observation error. The potential to over-fit census data exists as shown
in Besbeas et al. (2009), and any integrated population modelling should conclude
with a particular assessment of the estimated measurement error, and consideration
of whether or not it is appropriate.

In recent work, Besbeas and Morgan (2014) illustrate how Monte Carlo simula-
tion can be used in the evaluation of goodness of fit of integrated models. We expect
goodness-of-fit Monte Carlo simulation techniques to be become increasingly
adopted both in integrated modelling and in capture-recapture in the future.

9.7.3 Bayesian Methods

The emphasis in this chapter has been on the connected likelihood approach using
methods of classical analysis. Bayesian methods for state-space modelling have
been described in Sect. 4.3. See also, for example, Meyer and Millar (1999) and
Millar and Meyer (2000a,b). These papers involve fisheries applications, where
there have been numerous other applications— see for example Rivot et al. (2001,
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2004), Rivot and Prévost (2002) and Rifflart et al. (2006). The Bayesian approach
to integrated population modelling was initially described by Brooks et al. (2004)
and for more information, as well as simple WinBUGS programs to perform the
necessary Markov chain Monte Carlo iterations, see Schaub et al. (2007), Gimenez
et al. (2009b) and King et al. (2009). A clear advantage of the Bayesian approach
is that it removes the need to use the Kalman filter, and hence the need to make
normal approximations, as well as to specify the variances of the § terms of Eq. (9.3)
in terms of expectations. However the work of Brooks et al. (2004) showed that
classical methods are robust to the normal approximation. We can also model
density dependence directly with a Bayesian approach, and avoid the conditionally
Gaussian modelling of the last section. In addition, goodness of fit can be assessed
using Bayesian p-values; see Sect. 5.6.4. However King (2011) discusses how
MCMC can be slow for fitting SSMs. The interplay between integrated modelling
and Bayesian analysis is discussed in Maunder (2003).

9.7.4 Model Selection

The general procedures discussed in Sect. 5.6 still apply but some specifics to the
connected likelihood method are worth noting. Besbeas et al. (2002) combined ring-
recovery data with census data. The number of age classes, and other model aspects,
were those obtained from analysing the ring-recovery data alone. An alternative
approach would be to base model selection on the connected likelihood. However
for that kind of data combination, when selecting the number of age classes using
AIC, Besbeas et al. (2014) found that it can be better to use recovery data alone.

9.7.5 Integrated Modelling in Fisheries Research

In this chapter, we have seen how state-space models and integrated population
modelling allow the inclusion of information at the population and individual levels
in a single framework. The state-space model for the population survey data opens
the way to integrating different types of information and we have shown how data
from multiple surveys can be simultaneously analysed in two different ways: by
adding additional model structure in the model, as in Sect. 9.2, or by combining
different likelihoods for different surveys with shared parameters for common
processes, as in Sect. 9.3. The focus in the chapter has been on the latter and
its application in population ecology, but integrated analysis has a long history in
fisheries, dating back to Fournier and Archibald (1982), with developments in e.g.
Maunder (1998, 2001, 2003). A recent review of integrated analysis in fisheries
research is provided by Maunder and Punt (2013). Hoyle and Maunder (2004)
provide a non-fisheries example, northeastern offshore spotted dolphin Stenella
attenuata. Maunder (2004) uses IPM to carry out Population Viability Analysis (see
Sect. 4.2).
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One of the highly generalized integrated analysis models in fisheries is termed
stock synthesis (Methot and Wetzel 2013), in which different data sets often contain
contradictory information, and one of the main difficulties is determining the appro-
priate weighting factor between the different data types. In such cases, sensitivity
analyses that investigate the influence of the weighting factors are an important part
of the assessment. There are thus interesting analogies but also differences between
integrated analysis in population ecology in general and particular applications in
fisheries research and management. These differences stem from the different types
of data, processes such as catchability, selectivity and aging imprecision, but also
modelling purpose and complexity. However the underlying logic is the same, and
research in both areas would benefit from better connection.
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