Chapter 3
State-Space Models

In the previous chapter, a sequence of matrices was used to model the sequence
of subprocesses, birth, survival, movement, etc., which characterize population
dynamics. We find this building block perspective attractive for at least two reasons:
(1) it allows one to mentally “divide and conquer” sometimes complicated popula-
tion dynamics processes; (2) the resulting product of matrices is a generalization of
Leslie and Lefkovitch matrices, something familiar to many biologists.

While the building block matrix model is an aid to model formulation and
understanding, it may not be as useful for fitting models to data and making
population projections. Matrix representations of population dynamics describe
at best the expected changes in a population, for example, conditional expected
numbers at time 7 given numbers at time ¢ — 1, and often, as noted in Sect. 2.5,
are just approximations of these expectations, as in the case of density-dependent
birth processes. Consequently, such matrix models fail to describe the variation and
uncertainty around these expected outcomes. There are various ways of extending
matrix models to incorporate both variability (Quinn and Deriso 1999: Sect.7.3;
Caswell 2001: Chaps.14 and 15) and nonlinearity (Quinn and Deriso 1999:
Sect. 7.4; Caswell 2001: Chap. 16). For example, variability around the expected
outcome can be described by randomly selecting elements of a matrix (Caswell
2001: Sect. 14.5.5) or randomly selecting a matrix from a set of matrices (Caswell
2001: Sect. 14.5.3).

However, limitations of stochastic and nonlinear matrix models become apparent
when one considers modelling population dynamics that involve a sequence of
random and nonlinear sub-processes. Example 1 from the previous chapter, the
BAS model, included binomial distributions for survival of two different age classes
and a third binomial distribution for births. A Leslie matrix was formulated that
accurately characterised the expected states at time ¢ (conditional on n,_;). For
projecting the population forward in time, however, one cannot readily, if at all,
formulate a stochastic version of the matrix that accurately captures the variation
of these binomials. For example, simply adding a vector of random variables to the
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matrix model, i.e. n, = BASn,_; + €,, is problematic at best. The distribution for €,
will be quite complex; e.g. its components cannot be so large that a corresponding
component of 1, is less than 0.

State-space models (SSMs) are a more flexible approach for realistically mod-
elling population dynamics than matrix models. SSMs are the backbone of the
methods discussed in this book and this chapter is an introduction to their basic
structure. Similar to some of the matrix models discussed in the previous chapter,
SSMs have a state model and an observation model, but each is now a stochastic
time series. The state model is a first-order Markov process, i.e. the distribution for
state n, is defined conditional on the previous state n,_;, and the distribution for the
observation y, is defined conditional on the current state n,. The classic SSM is a
Normal Dynamic Linear Model (NDLM, West and Harrison 1997), which consists
of two normally distributed linear models conditioning on n,_; and n,, respectively.
The two equations below are a simplistic example of an NDLM in the context of
animal abundance dynamics, where N, is the true, but unknown, abundance of an
animal population at time ¢ and y; is an index of N,, i.e. y, = yN, where y is a
constant of proportionality.

State process model N,|N,—; ~ normal (AN,—;,0%). 3.1

Observation model y;|N; ~ normal (yN,, af,) . (3.2)

Here A is the population growth rate; in a deterministic setting, A > 1 leads to
exponential growth, and A < 1 is exponential decline. We use the terms state process
model and state model interchangeably. Variation around the expected value, in
this case AN;_;, is sometimes called process noise or variation. In this example,
the magnitude of the process variation depends on the size of a,%,. An example of
simulated projections of states with A = 1.02 (2 % growth rate) and 03, = 4, and
unbiased observations (y = 1) with oy2 = 16, is shown in Fig. 3.1.

Thus SSMs simultaneously account for two distinct sources of variation, natural
or process variation (e.g. environmental or demographic stochasticity) and observa-
tion error (e.g. sampling or measurement errors) within a single framework. SSMs
are much more general and flexible than matrix models, readily accommodating
multiple random nonlinear sub-processes. Given the conditionally-defined state
process model, forward stochastic population projection is relatively simple so
long as random samples can be generated from the distribution. When the state
process is a sequence of stochastic sub-processes, simulation is often easier than
evaluation of the pdf; i.e. it is easier to simulate n, given m,_; than it is to
calculate Pr(n,|n;—;). The inclusion of a stochastic observation process model for
the observations provides a framework for estimating parameters and accounting
for uncertainty in the data, in a way which is consistent with the underlying state
process model. This is in contrast to standard usage of matrix models where vital
rate parameters, or their estimates, are somehow supplied external to the model, and
error in such estimates is often not accounted for.
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Fig. 3.1 Simulation of NDLM for animal abundance and estimates, where the population dynam-
ics of the states are N, ~ normal(1.02N,_, 4) and estimates are unbiased, y, ~ normal(N,, 16)

In addition to the integrative nature of SSMs, there is also opportunity for a
convenient division of labour between the modelling of the population dynamics
and the modelling of the sampling and measurement of the population. Subject
matter specialists such as ecologists can focus their attention on the underlying
science through the state process model. The building block matrix models can
serve as useful first approximations to the formulation of state process models,
e.g. characterizing the deterministic portion of the state process model. Alternative
and competing hypotheses about the underlying dynamics can be formalized by
alternative state process models. Specialists in sampling, or mark-recapture, or
transect sampling, or however the population is monitored, can focus on the
formulation of one or more observation models. Different formulations of the
observation model might result by working with summarized or derived calculations
of sample data, e.g. mark-recapture-based point estimates of abundance, or the raw
sample data, e.g. recaptured marks. This potential division of labour, of course, does
not preclude a single individual, knowledgeable about the subject matter science and
quantification of the observation process, from doing both.

Applications of state-space models to ecological data sets have steadily increased
since the late 1980s. Early applications were largely restricted to the special case of
NDLMs, because such models could be readily fitted using the Kalman filter (West
and Harrison 1997). Several of the first applications were to fisheries data including
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Mendelssohn (1988) who fitted an NDLM to Pacific mackerel Scomber japonicus
catch data categorized by age class to estimate annual abundances and recruitment
to the population, and Sullivan (1992) who fitted an NDLM to fisheries catch
data categorized by length classes and then estimated parameters such as growth
and survival. Advancements in computing power combined with simulation-based
estimation procedures, such as Markov chain Monte Carlo (MCMC), extended
the class of SSMs that could be fitted to nonlinear and non-normal distributions.
Meyer and Millar (1999) gave one of the earliest demonstrations of such models for
ecological data, South Atlantic albacore Thunnus alalunga biomass, using MCMC
to fit an SSM where the state model was a univariate nonlinear, non-normal Schaefer
surplus production model and the observation model used catch-per-unit-effort
indices.

While many of the first applications of SSMs were to fisheries data, the diversity
of species modelled by SSMs has expanded considerably. Animal species modelled
by SSMs include red deer Cervus elaphus (Trenkel et al. 2000), grey herons
Ardea cinerea and northern lapwings Vanellus vanellus (Besbeas et al. 2002), grey
seals Halichoerus grypus (Thomas et al. 2005; Harrison et al. 2006), Chinook
salmon Oncorhynchus tshawytscha (Newman and Lindley 2006), leatherback turtles
Dermochelys coriacea (Jonsen et al. 2006), black bears Ursus americanus (Conn
et al. 2008), red grouse Lagopus lagopus scoticus (New et al. 2009), hen harriers
Circus cyaneus (New et al. 2011), desert bighorn sheep Ovis canadensis mexicana
(Colchero et al. 2009), skate Leucoraja ocellata (Swain et al. 2009), Weddell
seals Leptonychotes weddelli (Rotella et al. 2009), California sea lions Zalophus
californianus (Ward et al. 2010), octopus Octopus vulgaris (Robert et al. 2010) and
the Glanville fritillary butterfly Melitaea cinxia (Harrison et al. 2011).

State variables other than abundances have been considered as well. Royle and
Kéry (2007) let the true state be whether or not a particular site was occupied by
animals (and the observations were imperfect estimates of presence or absence).
Gimenez et al. (2007) and Royle (2008), considering marked and recaptured or
recovered animals, let the true state of marked animals (whether still alive or
not) be the state variable. Anderson-Sprecher and Ledolter (1991) modelled the
true location of radio-collared mule deer Odoccoileus hemionus, while Jonsen
et al. (2006) did the same for individual tagged leatherback turtles. King (2014)
describes how various types of ecological data can be modelled using a state-space
formulation.

The biological processes explicitly modelled by the state model include mortal-
ity, birth or recruitment, and movement. Models for mortality have distinguished
natural mortality for different life history stages (e.g. age 2, 3 and 4 Chinook
salmon, Newman and Lindley 2006) and harvest-related mortality (e.g. black bears,
Conn et al. 2008). Models for movement have included the movement of single
animals (e.g. turtles, Jonsen et al. 2006), movement between areas of members
of a single population (e.g. coho salmon, Newman 1998), and movement between
metapopulations (e.g. four sets of pupping colonies used by grey seals, Thomas et al.
2005).
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The remainder of this chapter includes a general statistical formulation of SSMs
and simple examples. General approaches to inference, i.e. the fitting of SSMs
to data, are discussed in Chap.4, while Chap.5 is a discussion of issues in SSM
formulation and diagnostics. The remaining chapters show how to put specific
problems, such as survival estimation (Chap. 7), into an SSM framework and include
more detailed examples.

3.1 State-Space Models

Here we give a more formal and mathematically general definition of state-space
models. State-space models are models for two discrete time processes running in
parallel, one called the state process and the other the observation process. The state
process is modelled by a conditional probability density function (pdf) or probability
mass function (pmf) that describes the change of the state vector from time ¢ — 1 to
time ¢, and is denoted by g;. As will become clear in some of the later examples,
g: can be quite complicated and analytically intractable, reflecting a sequence of
stochastic sub-processes. With some abuse of terminology, we will refer to pdf’s
and pmf’s simply as pdf’s. Note that we allow only discrete time indices, and to
simplify notation, we assume that these are evenly spaced.

The value of the state vector at a given point in time is seldom known with
certainty. Additionally, the parameters, such as survival rates and birth rates, are
almost never known with certainty. If inferences about the state model are to
be possible and defensible, field data must be collected. For example, various
components of the state vector might be estimated from mark-recapture or line
transect surveys. This leads to the observation process, which is modelled by
another conditional pdf, denoted f;, that describes the relationship between the state
vector, n;, and a vector of observations, y,. As noted previously, point estimates
of state vector components are typically quantities derived from sample data. We
might instead use the raw sample data as observations. In contrast with the matrix
model formulation, the general formulation presented here, which does not require
a linear relationship between states and observations, can make modelling the raw
observations more feasible.

The combination of the state model and the observation model is a state-space
model and can be mathematically described as follows:

Initial state pdf : go(ng|80) (3.3)
State ¢ pdf : g;,(n,|n,—1, 0) (3.4)
Observation ¢ pdf : f;(y,|n;, ¥), (3.5)

where @ is a vector of parameters corresponding to the state model, ¥ is a vector of
parameters corresponding to the observation model, and 7=1,..., T. A sequence of
state vectors, ng, N4 1, . . ., N, Will be denoted n,.5; y,:» has a similar meaning.
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The state process model, Eq.(3.4), is first-order Markov, i.e. the present state
only depends on the previous state. Higher order Markov models can be re-written
as first order Markov models by extending the dimension of the state vector to
include previous states (see, for example, Schnute 1994). However, simply writing
a univariate pdf for n, as a function of previous states, e.g. g,(n;|n,—;,n,_5, 0),
does not pose any inference difficulties with modern approaches such as MCMC
and sequential Monte Carlo, e.g., sequential importance sampling (see Chap.4).
The general class of such higher order Markov models was termed hidden process
models by Newman et al. (2006).

Environmental, or temporal, variation in the state process can be made explicit
by adding another level to the SSM for variability in survival, birth and other
parameters.

Parameter pdf : h(0,|I") (3.6)
Initial state pdf : go(ng|@,) (3.7)
State ¢ pdf : g;(n,|n,—1, 6,) (3.8)
Observation ¢ pdf : f;(y;|n;, ¥). (3.9

Such a model is an example of a random effects or hierarchical state-space model
(see Sect.2.2.2). The pdf h(6,|I") describes environmental stochasticity in €,
where I' is a hyperparameter. Time-varying covariates could be used to model I".

For Bayesian inference, another level is added to the state-space model formu-
lation, namely, the prior pdf for the fixed and unknown parameters. For example,
referring to the above hierarchical state-space model, Egs. (3.6)—(3.9),

Prior pdf : n(I", ¢) (3.10)
Parameter pdf : h(0,|I") (3.11)
Initial state pdf : go(ng|@,) (3.12)
State ¢ pdf : g,(n;|n,—1, 0;) (3.13)
Observation ¢ pdf : f;(y,|n;, ¥). (3.14)

As will be described in more detail in Chap. 4, the end result of Bayesian inference
for a state-space model is the joint posterior distribution for the parameters and the
unknown states, i.e. w(ng.7, I', ¥ |y1.7)-

Finally, yet another layer of uncertainty is model uncertainty, also known as
structural uncertainty (Williams et al. 2001). Alternative formulations for any of the
above pdf’s are often postulated. Competing theories about the science underlying
the population dynamics translate into different state pdf’s, g;, or parameter pdf’s, &.
Denoting a particular model by ., the Bayesian hierarchical model of Egs. (3.10)-
(3.14) can be extended as follows.
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Model prior pdf : r () (3.15)
Parameter prior pdf : w (I, ¥ |.#) (3.16)
Parameter pdf : h(0,|I", #) (3.17)
Initial state pdf : go(ng|@,, .#) (3.18)
State ¢ pdf : g;(ns|n,—1, 8, .#) (3.19)
Observation ¢ pdf : f;(y,|n;, ¥, #). (3.20)

The pdf’s and associated parameters in Egs. (3.16)—(3.20) are conditional on the
model .#, where parameters and the pdf’s can vary between models. Chapter 5 will
discuss model selection and model averaging.

3.2 Examples of State-Space Models

Here we give four examples of SSMs with the state pdf g, and observation pdf
f; fully specified. The first is a nonlinear and non-normal coho salmon SSM with
a scalar state and a scalar observation variable. The other examples are stochastic
extensions of examples from Chap. 2.

3.2.1 Simplified Salmon Example

In this simplified SSM,! the state variable is a scalar N;, the number of juvenile
salmon alive in year ¢ (at some point in time in that year) in a particular river. The
dynamics of N, are modelled as a Poisson distribution version of a Ricker stock-
recruitment model (Quinn and Deriso 1999).

N;|N;—i ~ Poisson (aN,—1e V1) | a > 0,8 > 0. (3.21)

Implicitly, the parameter « includes survival between time ¢ —1 and 7, the proportion
that are female, fecundity (number of eggs produced), and survival between egg
deposition and juvenile life stage. For the deterministic version of the model at least,
to avoid chaotic behaviour, the value of o needs to be less than 2.69, and to avoid
cycling, @ must be less than 2. The parameter § is a measure of density dependence:
as f increases, density dependence increases. The equilibrium value is In(a) /8.

IThe state process in this salmon SSM is a considerable oversimplification of the population
dynamics for most, maybe all, species of salmon. Typically juvenile salmon production in a given
year is the result of spawning from two or more age classes (different cohorts) and those age classes
were juveniles two or more years previously, so that N;_», N;_s, ... contribute to N;.
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Fig. 3.2 Elementary salmon SSM with Ricker population dynamics with Poisson variation and
lognormal observations. Ricker parameters are « = 1.5 and 8 = 0.0003. Lognormal observations
are bias-corrected with a coefficient of variation of 30 %

The observations are estimates of juvenile abundance, e.g. based upon samples
take from in-river traps. A convenient probability distribution for non-negative
valued observations is the lognormal distribution, although for counts of animals,
continuous random variables are clearly an approximation:

V¢|N; ~ lognormal (10g(Nt) - 0y2/2, 0}2.) . (3.22)

This model is a bias-corrected lognormal, i.e. E[y;|N;] = N,.

Forty years of simulated population dynamics and estimates are shown in
Fig.3.2. The estimates have a coefficient of variation of 30 %. (The code that
generates this plot is given on the book website, see Sect. 1.2.)

3.2.2 BRS Model

For a more complex example, we return to the BRS formulation, an example
of two states (e.g. immature and mature animals), summarized in Sect.2.3. The
sequence of sub-processes was survival (§), growth (R) and birth (B). Now we
define stochastic processes for each of these sub-processes. The pdf g; is difficult to
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evaluate analytically because it is a function of three different pdf’s, but it is easy
to describe symbolically and easy to simulate from. Symbolically, we write g, as
the following composite function (with the parameter vector # omitted to reduce
notation):

g;(nzlnt—l) = g3 (gz,z (gl.t(nt—l))) . (3.23)

The three pdf’s, g1, g2+, and gs,, represent the processes of survival, growth
and birth. Statistically, this is a more useful formulation of the BRS model than
is Eq. (2.11), because the latter tells us only the expected values of the states in n,,
conditional on n,_;, whereas Eq. (3.23) represents the full joint distribution of the
states in n,, conditional on n,_;.

The pdf g;,(u;,|n,—;) corresponding to survival is the result of two binomial
processes [Eq. (2.2)]:

(ul(s),l,t ~ binomial (11,1, ¢1) ) (3.24)

Ul(s),2,0 ™~ binomial (}’lzyt_] . ¢2)

Growth from immature to mature is another binomial process, so that g, ,(uy,|u; )
is determined from Eq. (2.5):

(uz(r).l,t ~ binomial (uy(5).1,4, 1 — ) ) (325)
Us(r) 20 = Ui(s) 2. + (U1s). 1.0 — Ua(r).1.0)

If each adult can have at most one young, birth can be modelled as a third binomial
process, so that g3 ,(n,|u, ) is determined from a slight reformulation of Eq. (2.6):

Ny = W31 = Uzt + by
where b; ~ binomial(uzy 2., 0) | - (3.26)
Moy = U3(p) 2, = U2(r),2,¢

In contrast to evaluation of the state pdf g;, simulation from the distribution is easy:
one simply simulates from g, that output is then input to simulate from g,, and
that output is then input to simulate from g3. Suppose ¢; = 0.50, ¢, = 0.71, & =
0.60, and p = 0.80 and let the initial numbers, ny, be (50,70). A simulation of the
population dynamics for the two size classes for 30 years is shown in Fig. 3.3. The
eventual population growth in this example is exponential and density dependence
is needed in survival or birth processes to stabilize the population. The observations
v1, (estimated number of immature animals) and yjs, (estimated number of mature
animals) were taken to be lognormally distributed, unbiased, with a coefficient of
variation of 30 %, i.e.

v1:+ ~ lognormal <ln(n1,t) - 0)2,/2, of,)

Yum: ~ lognormal (ln(nz_,,) — 0}2,/2, af,)

where O'y2 =1n(0.3% + 1).
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Fig. 3.3 Simulation of state process with two states, immature (I) and mature (M) animals, for
T = 30 years, with three sub-processes, survival, growth and birth. Lognormally distributed
estimates (the observations), with a coefficient of variation of 30 %, are also plotted

3.2.3 Coho Salmon

The processes survival, movement and harvest, that characterize the spatially par-
titioned coho salmon recoveries model described in Sect. 2.7.1, could be modelled
using binomial (for survival and harvest) and multinomial (for movement) distribu-
tions. Here we describe a normal dynamic linear model (NDLM) approximation to
those processes (Newman 1998):

n;[n,_; ~ multivariate normal (M, S,—n,—;, ¥,,), t =1,...,16 (3.27)

y:|n; ~ multivariate normal (H,n,, Eyz) , t=1,...,16. (3.28)

The expected values are identical to the deterministic matrix models of Egs. (2.18)
and (2.22). The covariance matrix for the observations, X, ;, is a diagonal matrix
with components O'J%,a,t, where

O—}zy,a.[ = na,lha,t(l - ha,t)7 (3.29)
which is the variance for a binomial(n,,, /,,) random variable. The components
of the covariance matrix for the states, X',,, can be constructed similarly using
the variances and covariances of binomial random variables (for survival) and
multinomial random variables (for movement); Newman (1998) gives a detailed
example of the construction. Sullivan (1992) used a similar approach to constructing
the covariance matrix in an NDLM approximation to binomial state processes.
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3.2.4 Deer Metapopulation

The deer metapopulation model (Sect.2.7.2) had five sub-processes characterizing
the dynamics of the two deer population abundances. For convenience the expected
state vector model is shown again below.

E[nt |n,_1] == CBAM[SI_IH[_I
Letting n’ denote the transpose of the column vector n,

I
0, = (g f10 M Am 10 TA, 2.0 A, f340> MAm 240> LB, £16> B m. 1t »
B f2.4, 18 f1,NBm],

abundances distinguished by population (A4 or B), sex (f or m), and age class
(1, 2 or 34 for females, and 1 or 2+ for males). The matrices correspond to the
processes of survival (S,_;), movement between populations A and B (M,), age
incrementation (A), births (B), and assignment of sex (C). Age incrementation is
treated as a deterministic process, but the remaining processes can be modelled
stochastically. Similar to the BRS model above, sub-process pdfs are specified, say
gs, &M, g4 (adeterministic function), g g and g¢ . Consequently, the pdf g; (n, |n;—;)
is a composite function, analytically intractable, but potentially easy to simulate
from using the individual component pdf’s. Relatedly, and of relevance to issues of
model fitting addressed in Chap. 4, analytic evaluation of probabilities of states is
only tractable by separately evaluating the pdf’s for intermediate or “latent” states,
the “u’s”.

Here we describe one construction of g;(n,|n,—;). Beginning with survival,
survivors for each of the ten components of n; are independent binomial random
variables with various survival probabilities [e.g. Eq. (2.29)]. Given the cth compo-
nent of n;_1, the survivors uy . ; have the following distribution:

Ui(s).e.t|Me—1 ~ binomial (n¢;—1, e —1) - (3.30)

The survivors in each component then move from their current population to the
other population with probabilities specified previously; e.g. w4 —p, specifies the
probability that an animal moves from population A to population B, Eq. (2.30).
The number moving is modelled as a binomial random variable; e.g. the movement
of first year females from A to B,

Ua(m), A= B. 1.1 |U1(5).4, 10 ~ binomial (u1(s) 4,110, La—By1) - (3.31)

The new number in a given population (of sex s and age class a) is the sum of two
independent binomial random variables, the “stayers” and the “movers”, e.g. the
first year females in B are those staying in B and those moving from A to B,

U(m),B, £l = Ud(m),A—>B,f1,; + U2(m),B—B, f 1, (3.32)
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As explained in Sect.2.7.2, within each population, age incrementation shifts
surviving first-year females to the second-year females group, surviving second-
year and older females are combined (and labelled older females), and all surviving
first-year and older males are combined (as older males). The fourth sub-process,
birth, is modelled as a binomial process, with different success probabilities for
second-year females and for older females, Eq. (2.32); e.g. the total births, males
and females (total denoted -) in population A, are the sum of births from the two
sets of fecund females,

Us(p). A1t = Ud(b), A1) T Uab). A1+ (3.33)

where
M4(b),,4,.,1(2).[ |u3(a),,4’f’2,l ~ binomial (u3(a),A.f.2’,, ,01) (334)
u4(b),A..,1(3+),t |M3(a),A,f,3+,l ~ binomial (u3(a),A.f.3+.,, P2) . (335)

The final sub-process, sex assignment, is treated as another binary (Bernoulli)
process, where the number of females in the newly born animals is binomial; e.g.
the number of first-year females in population A,

N 1.4 |Uapy a1 ~ binomial (tapy a1, ) . (3.36)
The observations were defined in Sect.2.7.2 to be estimates of the total number of
deer in each of the two populations, with no distinction between sex and age. Again

lognormal distributions (with bias correction) are used; assuming independence
between the population estimates,

Yarng.., ~ lognormal (ln(nA,.,.,t) — 03/2, 03) (3.37)
¥yB.|np..; ~ lognormal (ln(nB,.,,t) - 0}2,/2, 03) (3.38)

whereny ... =ng 1 +namis + 04,20 + 14 134+ + Namo+s, and likewise for
nB'.’.‘[.
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