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Abstract  Peripheral neuropathies belong to the commonest neurological diseases 
and underlying causes are multiple, comprising a variety of acquired and hereditary 
factors. However, clinical symptoms are often similar, rendering differential diag-
nosis difficult, with no unambiguous etiological assignment in approximately 25 % 
of all cases (Berlit et al., Guidelines German society for neurology, 2012). This has 
substantially hampered the development of therapeutic strategies and leaves many 
patients without any treatment option until now.

Most commonly, a neuropathy patient will present with distally pronounced sym-
metric muscle weakness, walking disabilities and sensory impairment. However, 
rarer forms are characterized by asymmetric nerve affection, or by an involvement 
of the autonomic nervous system (Dyck and Thomas, Med Clin North Am 52:895–
908, 2005). While hereditary neuropathies usually manifest during childhood or 
young adulthood, acquired forms may peak at advanced age (Dyck and Thomas, 
Med Clin North Am 52:895–908, 2005). Diagnosis includes careful history taking, 
in particular with regard to underlying diseases (e.g., diabetes, alcohol) and family 
history, a clinical examination, analysis of the cerebral spinal fluid, electrophysi-
ological testing of the peripheral nerves and, if required, a sural nerve biopsy.

By means of electrophysiology, peripheral neuropathies are classically subdi-
vided into axonal and demyelinating forms (Dyck and Thomas, Med Clin North Am 
52:895–908, 2005). In general, a reduction of the compound muscle action poten-
tials (CMAP), and normal nerve conduction velocity (NCV) implies purely axonal 
neuropathies, while a slowing of the NCV suggests a demyelinating neuropathy 
(Dyck and Thomas, Med Clin North Am 52:895–908, 2005). However, mixed forms 
are known. Axonal neuropathies are defined by a primary damage to the neuronal 
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body or the axon, which results histologically in a Wallerian-type of axonal degen-
eration (e.g., fragmentation of the nerve fiber in acute degeneration) and subse-
quent axonal loss (Dyck and Thomas, Med Clin North Am 52:895–908, 2005). In 
contrast, demyelinating neuropathies are caused by acquired or hereditary damage 
to Schwann cell function (Dyck and Thomas, Med Clin North Am 52:895–908, 
2005). Histologically, features of demyelination comprise abnormally thin myelin 
sheaths, and, classically, onion bulb formation (axons surrounded by concentric lay-
ers of multiple Schwann cell membranes) (Dyck and Thomas, Med Clin North Am 
52:895–908, 2005). Clinically more relevant, however, is the inability of affected 
Schwann cells to maintain axonal integrity. Consequently, axonal degeneration also 
occurs in demyelinating neuropathies, secondary to demyelination and Schwann 
cell impairment (Dyck and Thomas, Med Clin North Am 52:895–908, 2005).

Importantly, the degree of axonal loss and the subsequent denervation of the 
target tissue (muscle or sensory organs) cause the extent of clinical impairment in 
both, demyelinating and axonal neuropathies (Dyck and Thomas, Med Clin North 
Am 52:895–908, 2005). Therefore, the view has emerged that axonal loss marks the 
final common pathway of all (demyelinating and axonal) neuropathies. Whether 
the same pathomechanisms underlie this pathway has to be clarified in future. Tar-
geting the final common pathway would provide a promising therapeutic option 
which would be applicable to a large number of affected patients, independent of 
the primary disease cause.

Up to now, only limited therapies are available for immune mediated acquired 
neuropathies, whereas hereditary forms remain largely untreatable (Li, Semin Neu-
rol 32:204–214, 2012; Nobile-Orazio, Revue Neurol 169:S33–S38, 2013). The fol-
lowing chapter will focus on therapeutic approaches for acquired and hereditary 
neuropathies and a special emphasize will be given to experimental strategies in 
various animal models.

Keywords  Inherited neuropathies · Guillain-Barré-syndrome · GBS · Neurological 
diseases · Axonal · Demyelinating · Inflammatory demyelinating neuropathy ·  
CIDP · Lewis-Sumner-syndrome · Diabetic neuropathy · Charcot Marie Tooth 
disease · CMT

19.1 � Neuropathies—Clinical Presentation  
and Pathophysiology

19.1.1 � Acquired Neuropathies

Acquired demyelinating neuropathies may be immune mediated, metabolic, or less 
frequently caused by toxic substances. Most of them are characterized by a slowly 
progressive, chronic disease, despite the existence of acute forms like the immune-
mediated Guillain-Barré-syndrome (GBS).
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19.1.1.1 � Immune-mediated Demyelinating Neuropathies

The most common immune-neuropathy is the chronic inflammatory demyelinating 
neuropathy (CIDP), which is distinguished from GBS by a disease course evolving 
at least over 2  months (Vallat et  al. 2010; Dalakas 2011). Classically, CIDP pa-
tients suffer from a symmetric proximal and distal muscle weakness as well as from 
sensory symptoms (Dalakas 2011). Occasionally, an affection of cranial nerves is 
observed. Most patients display a monophasic disease course with a slow, continu-
ous disease progression, yet, a subset of patients develops a relapsing-remitting 
form (Vallat et al. 2010; Dalakas 2011). Besides the “classic” CIDP, several disease 
variants, like pure motor or sensory neuropathies exist (Vallat et al. 2010; Dalakas 
2011). In addition, related immune-mediated disorders, especially the multifocal 
acquired demyelinating sensory and motor neuropathy (MADSAM) and the Lewis-
Sumner-syndrome are often summarized as CIDP sub-entities. Though, it remains 
controversial which forms should better be ranked as distinct demyelinating neu-
ropathies (Meyer Zu Hörste et  al. 2007a; Vallat et  al. 2010; Berlit et  al. 2012). 
Mainly, the multifocal motor neuropathy (MMN) and the anti-myelin-associated 
glycoprotein neuropathies are considered as distinct diseases (Meyer Zu Hörste 
et al. 2007a; Berlit et al. 2012).

The clinical heterogeneity of CIDP renders diagnosis often difficult, and influ-
enced the development of appropriate diagnostic criteria (Vallat et al. 2010; Dalakas 
2011). Long-time, narrowly defined research oriented diagnostic criteria were used, 
which appeared, however, to be insufficient for clinical practice (too low sensitiv-
ity) (England et al. 2009; Vallat et al. 2010; Van den Bergh et al. 2010). Within the 
last years, improved guidelines have been developed, with a better relation between 
sensitivity and specificity (Van den Bergh et al. 2010). These are composed of man-
datory electrophysiological and clinical criteria but also include supportive features 
[e.g., cerebrospinal fluid (CSF) protein, clinical improvement after immunomodu-
latory treatment and nerve biopsy findings] aiming at the diagnosis of a definite, 
probable, possible or atypical CIDP (Van den Bergh et al. 2010).

The diagnostic challenges along with the large spectrum of possible clinical 
symptoms may explain why the estimated incidence of CIDP varies between 1 to 
1.9 per 100,000, with a maximum of 6.7 per 100,000 around the age of 70 to 80 
years (Lunn et al. 1999; Mygland and Monstad 2003; Rajabally et al. 2009). Like-
wise, the incidence has been supposed to be underestimated, with up to 20 % of all 
neuropathy patients without clear etiological assignment suffering de facto from 
CIDP (Latov 2002).

A firm diagnostic identification of CIDP patients is especially important with re-
gard to therapeutic consequences. CIDP was initially discovered as a steroid sensi-
tive polyneuropathy in the 1950s (Austin 1958). Indeed, CIDP is regarded as an au-
toimmune disease, although no specific trigger or autoantigen has been identified so 
far (Hughes et al. 2006; Vallat et al. 2010; Dalakas 2011). That CIDP most probably 
constitutes an autoimmune disease is derived from a variety of evidences obtained 
from studies on CIDP patient material, combined with lessons from experimental 
animal models.
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Interestingly, histopathological examinations of sural nerve biopsies from CIDP 
patients demonstrate usually only minor or no endoneurial T-cell infiltration and a 
moderate increase in macrophages which often form small clusters around endo-
neurial blood vessels (Vallat et al. 2010; Dalakas 2011; Weis et al. 2011). Macro-
phages are thought to represent the antigen-presenting cells in the disease and to 
be the final effector cells, mediating the destruction of the myelin sheath (Hughes 
et al. 2006; Dalakas 2011) (Fig. 19.1a). Endoneurial macrophages express the hu-
man leukocyte antigen (HLA)-DR and are able to express the CD1 receptor family, 
hence allowing the presentation of either conventional or non-protein antigens to 
T-cells (Van Rhijn et al. 2000; Hughes et al. 2006). In addition, different studies on 
CIDP patients revealed the expression of inflammatory cytokines, chemoattractant 
proteins and co-stimulatory proteins for T-cell activation by macrophages (Hughes 
et al. 2006; Vallat et al. 2010; Dalakas 2011) (Fig. 19.1a).

Furthermore, Schwann cells and endothelial cells may contribute to antigen pre-
sentation and T-cell stimulation in CIDP (Hughes et al. 2006). Both cell types are 
in principle able to express major histocompatibility complex class II (MHC-II) 
molecules, and Schwann cells can present myelin basic protein to responsive T-
cell lines and induce T-cell proliferation in vitro (Wekerle et al. 1986; Argall et al. 
1992a, b; Atkinson et al. 1993; Lilje and Armati 1997; Hughes et al. 2006).

Activated T-cells infiltrate the nerve in response to chemokines and cell adhesion 
molecules produced by endothelial cells (Hughes et al. 2006). The T-cells detected 
in sural nerve biopsies of CIDP patients demonstrate no clonal T-cell response but 
a heterogeneous Vß gene usage (Stienekemeier et al. 1999; Hughes et al. 2006). 
Whether these observations argue against a limited number of antigens, or are rather 
the result of epitope spreading remains unclear (Hughes et al. 2006).

A role for humoral factors has been suggested because of the therapeutic benefit 
of plasmapheresis in a part of CIDP patients (Dalakas 2011). However, plasma-
pheresis does not only eliminate putative autoantibodies but also removes other 
inflammatory associated molecules, which may cause clinical improvement (Dal-
akas 2011). Indeed, various studies reported different chemokines, cytokines and 
metalloproteinases to be increased in blood, cerebrospinal fluid or nerves of CIDP 
patients (Hughes 2010; Dalakas 2011).

In order to support the role of potential antibodies in CIDP, immunoglobulin G 
(IgG) from CIDP patients sera has been injected intraneurally into the sciatic nerve 
of rats, which indeed induced demyelination (Yan et al. 2000). Also, the intraneural 
injection of antibodies against myelin antigens alone results in demyelination in 
laboratory animals (Hughes et al. 1985).

In experimental auto-immune neuritis (EAN), immunization with the myelin 
proteins P0, P2 or PMP22 emulsified with Freund’s adjuvant is used in order to 
induce an inflammatory demyelinating disease (Hughes et al. 2006). However, the 
disease course is mainly acute and monophasic, thus resembling more to GBS than 
CIDP. A biphasic disease with demyelination mainly in the spinal roots and signs of 
epitope spreading has been established in a different rat strain, the Dark Agouti rat 
(Jung et al. 2004). Histologically, EAN is characterized by prominent T-cell infil-
trates and macrophages within the endoneurium (Powell et al. 1983), and a passive 
transfer of T-cells induces the disease (Linington et al. 1984, 1992), supporting the 
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Fig. 19.1   Pathomechanisms in acquired and inherited peripheral neuropathies. a Hypothetical 
model of the pathological mechanisms of autoimmune disease in the peripheral nervous system. 
In the systemic immune compartment, autoreactive T lymphocytes (T cell) become activated by 
antigen-presenting cells (APC) ( 1). The stimulation of B-cells by autoreactive T-cells leads to the 
production of autoantibodies, which pass the blood nerve barrier (BNB) ( 2). In addition, T-cells 
release proinflammatory cytokines ( 3), cross the BNB and enter the peripheral nervous system 
( 4). Here, T-cells differentiate into proinflammatory T-helper cells 1 (Th1) and antiinflammatory 
Th2 cells, as well as into Th17 cells. Infiltrating macrophages function as APCs and effector cells 
as they release cytokines, toxic mediators and directly damage myelinating Schwann cells and 
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importance of T-cells in these experimental models. However, in EAN in mice, CD4 
and CD8 T-cells as well as B-cells are not needed for disease induction, although 
disease severity is altered in animals lacking CD4/CD8 T-cells (Zhu et al. 1999; 
Zhu 2002).

Numerous studies tried to identify potential autoantibodies in CIDP, but results 
continued to be inconsistent (Hughes and Willison 2012). Initial attempts focused 
on myelin proteins, especially on P0 but also on P2 and PMP22, i.e. on those which 
are predominantly expressed in the peripheral nervous system (PNS) (Hughes and 
Willison 2012). The most promising study revealed antibodies to P0 in around 28 % 
of CIDP patients (in numbers: 6 out of 21 patients) (Yan et al. 2001). Other ap-
proaches, searching for glycolipid antibodies like for galactocerebroside remained 
negative, and more recent studies reported antibodies against proteins of the axo-
glia junction like for neurofascin in only a very low number of patients (5 out of 119 
CIDP patients) (Hughes and Willison 2012; Ng et al. 2012). Possibly, the develop-
ment of new techniques allowing a broader search for both glycolipid and protein 
antigens as well as the recognition of their physiological domains may lead to more 
positive results in future (Hughes and Willison 2012). However, observations from 
NOD mice (a non-obese spontaneous diabetes mouse model) lacking the costimula-
tory molecule B7.2 (CD86), pointed to the significance of the regulatory immune 
system which may challenge the search on single autoantigens (Salomon et  al. 
2001; Hughes et al. 2006). These mice do not develop diabetes but instead demon-
strate a chronic inflammatory polyneuropathy (Salomon et al. 2001; Hughes et al. 
2006). The costimulatory molecule CD86/B7.2. expressed by antigen-presenting 
cells is required for T-cell activation by interacting with CD28 and CTL4 receptors 
on T-cells (Hughes et  al. 2006). Also, the overexpression of CD86 in transgenic 
mice resulted in an inflammatory demyelinating disease of the central nervous sys-
tem (CNS) and spinal root. Mice lacking the costimulatory CD28 show a strongly 
attenuated EAN (Zhu et al. 2001). Another study furthermore demonstrated that a 
depletion of CD25+CD4+ regulatory T-cells induced an autoimmune neuropathy 
(Setoguchi et al. 2005). Thus, a loss of regulatory autoimmune responses, poten-
tially caused by a non-specific stimulus, may generate an autoimmune disease of 

axons ( 5). The ultimate clinical impairment is caused by the degree of axonal loss ( 6). b Factors 
linked to type 1 diabetes and/or type 2 diabetes cause DNA damage, endoplasmic reticulum stress, 
mitochondrial complex dysfunction, apoptosis, and loss of neurotrophic signaling. This cell dam-
age can occur in neurons (N), axons (Ax), sensory end-organs (SE) of the skin (S), Schwann cells 
(SC) and vascular endothelial cells (V), all of which can lead to neuropathological axonal loss. The 
relative importance of the pathways indicated in this network varies with cell type, disease profile 
and time ( AGE advanced glycation end products, ROS reactive oxygen species ( red star), ER 
endoplasmic reticulum, LOX1  oxidized LDL receptor 1, RAGE receptor for advanced glycation 
end products, TLR4 toll-like receptor 4). c Genetic defects in myelinating Schwann cells ( 1) can 
lead to missorting or accumulation of mutated/overexpressed proteins ( red star) ( 2). Besides sub-
sequent demyelination, malfunctioning Schwann cells ( 3) fail to sustain axonal support ( 4) which 
then leads to progressive axonal and neuronal loss (the final common pathway) ( 5). The clinical 
phenotype is ultimately determined by neurogenic muscle atrophy ( 6). Ax axon, SC Schwann cell, 
N neuron, M muscle
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the PNS (Hughes et al. 2006). However, a direct link between these observations in 
experimental models and the human CIDP disease still awaits to be proved. In some 
patients, an expression of costimulatory molecules has been found in nerve biopsies 
(Kiefer 2000; Murata and Dalakas 2000). In addition CD4+CD25+FoxP3+ regula-
tory T-cells are reduced in blood of CIDP patients (Chi et al. 2008). Other studies 
detected higher levels of Th17 cells and interleukin 17 (IL-17), which are thought 
to be involved in several autoimmune diseases, in blood and CSF of CIDP patients 
(Chi et al. 2010).

In summary, a variety of different studies on patients and animal models strongly 
argues for CIDP as an autoimmune disease. The precise contribution of the diverse 
immune components to the pathomechanism of CIDP has to be further determined. 
Here, especially the complex interaction between effector cells, T-cells and the im-
munoregulatory system as well as the role and nature of autoantibodies remain key 
issues of future research.

19.1.1.2 � Diabetic Neuropathy

The prevalence of diabetes mellitus worldwide has been estimated to be 2.8 % in 
2000 and 4.4 % in 2030 (Wild et al. 2004). Diabetes is referred to as type 1 if an au-
toimmune disease leads to the destruction of insulin-producing pancreatic beta cells 
(insulin dependent type), resulting in a lack of insulin. The much more frequent 
type 2 diabetes (> 90 %), on the contrary, specifies acquired decreased insulin sen-
sitivity in peripheral tissues (insulin independent type, insulin resistance) (NIDDK 
2011). Importantly, 30–50 % of diabetic patients eventually develop neuropathic 
symptoms during their disease, rendering diabetes with 25–35 % by far the com-
monest identified cause for peripheral neuropathy (Maser et al. 1989) (Johannsen 
et al. 2001). Diabetic neuropathies are usually of predominant axonal origin, but 
frequently show mixed pathology accompanied by demyelination (Wilson et  al. 
1998; Herrmann et al. 2002; Valls-Canals et al. 2002). Purely primary demyelinat-
ing forms, however, are rare (Stewart et al. 1996).

Diabetes can impact the PNS in many ways, e.g. by distal symmetrical polyneu-
ropathy (DSP), predominant small fiber neuropathy, autonomic neuropathy, radicu-
loplexopathy (diabetic amyotrophy), mononeuritis multiplex and mononeuropathy, 
of which DSP is the most frequent presentation (Callaghan et al. 2012). Neurologi-
cal symptoms caused by DSP comprise distally pronounced and proximally spread-
ing sensory and motor impairment (Dyck and Thomas 2005). In DSP, sensory dis-
orders are much more frequent than motor deficits and patients display hyperalgesia 
and allodynia (increased and painful sensation to innocuous stimuli) (Daousi et al. 
2004). Neuropathic pain, indeed, is one of the most burdening symptoms for pa-
tients with DSP and is present in 10–20 % of all diabetic patients (Galer et al. 2000; 
Daousi et al. 2004; Barrett et al. 2007; Abbott et al. 2011). Muscular symptoms like 
weakness in the lower limbs are rare but wasting of intrinsic hand muscles may oc-
cur. Motor impairments like unsteady gait in patients with diabetic neuropathy are 
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rather the result of sensory disturbances (Dyck and Thomas 2005). Occasionally, 
diabetic patients with a small fiber type of neuropathy display an involvement of 
the autonomic nervous system which may lead to gastroparesis, constipation, uri-
nary retention, erectile dysfunction and cardiac arrhythmias (Callaghan et al. 2012). 
Degenerating small fibers also trigger foot ulceration (“diabetic foot”) and neuro-
pathic osteo-arthropathy (Said et al. 1983; Shun et al. 2004). Finally, there is also 
a substantial number of diabetic patients who have nonsymptomatic neuropathy 
(Miralles-García et al. 2010).

Histological observations reported in diabetic neuropathy include both (either 
mixed or solely), primary axonal degeneration with secondary demyelination and, 
much less frequent, primary demyelination with secondary axonal breakdown. Re-
generation associated events like axonal sprouting and Schwann cell proliferation 
are evident and the occurrence of onion bulbs (multiple promyelinating Schwann 
cells surrounding a single axon) and Schwann cell basal lamina hypertrophy pin-
point neuropathological processes (Brown et al. 1976; Behse et al. 1977;  Llewelyn 
et al. 1991; Dyck and Thomas 2005; Said 2007).

Pronounced axonal atrophy and characteristic nodal and paranodal aberrations 
that (next to demyelination) impair nerve conduction velocity are frequent findings 
in type 1 but are almost absent in type 2 diabetes. The progressive character of 
axonal atrophy generally is milder in type 2 diabetes (Greene et al. 1992; Forsblom 
et al. 1998; Sima et al. 2004; Sima and Kamiya 2006). However, initial predominant 
affection of small myelinated and nonmyelinated somatosensory fibers allows the 
use of skin biopsies and the quantification of intraepidermal nerve fiber densities as 
an early marker of type 2 diabetes (Shun et al. 2004; Umapathi et al. 2007).

Although the precise mechanisms underlying diabetic neuropathy remain un-
clear, hyperglycemia is widely considered to constitute a causative key factor (Sugi-
moto et al. 2008; Tomlinson and Gardiner 2008; Callaghan et al. 2012). In addition, 
endoneurial microvascular abnormalities have been demonstrated to impair nerve 
perfusion, and to cause hypoxic or ischemic nerve damage (Cameron et al. 2001). 
Insulin itself has been reported to harbor neurotrophic properties, although it is not 
involved in neuronal glucose uptake (Xu et al. 2004; Toth et al. 2006). The insulin 
deficiency in type 1 and the insulin resistance in type 2 diabetes are therefore dis-
cussed to directly contribute to the genesis of neuropathy (Kim and Feldman 2012). 
Other factors may contribute with respect to the specific type of diabetes, e.g., in 
the insulin-resistant type 2 diabetes, dyslipidaemia is thought to play a major role 
(Vincent et al. 2009).

Hyperglycemia is believed to be especially deleterious when persisting over 
longer time periods. Systemic overload and intracellular excess of glucose leads 
to increased activity of cellular glucose metabolizing pathways (Fig.  19.1b). In-
creased glycolysis, for example, overcharges the mitochondrial electron transport 
chain, thereby leading to the generation of reactive oxygen species (Vincent et al. 
2004). Moreover, oxidative stress is also provoked when glucose passes the polyol 
pathway which increases cellular osmolarity and the reduced form of nicotinamide 
adenine dinucleotide phosphate (NADPH) levels (Oates 2002; Obrosova 2005). 
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Finally, metabolic turnover of glucose via the hexosamine pathway can trigger 
inflammatory responses (Vincent et al. 2011). Next to metabolic pathway overload, 
hyperglycemia leads to the generation of advanced glycation end products (AGEs) 
(Sugimoto et al. 2008). Overglycation of proteins, lipids and nucleic acids impairs 
their biological function (Duran-Jimenez et al. 2009), and extracellular binding of 
AGEs to their cognate receptor (RAGE) triggers inflammatory responses and oxi-
dative stress (Vincent et al. 2007).

Furthermore, dyslipidaemia is evidently linked to type 2 diabetes and patients 
display elevated blood triglycerides and altered composition of circulating lipopro-
teins (Clemens et al. 2004; Wiggin et al. 2009) (Fig. 19.1b). Although the precise 
pathophysiological significance remains unclear, several studies pointed to a role of 
dyslipidaemia in oxidative stress (Vincent et al. 2007, 2009; Nowicki et al. 2010). 
Here, the activation of different receptors like LDL receptor LOX1, toll-like recep-
tor 4 and RAGE by oxidized or glycated plasma lipoproteins was reported to induce 
oxidative stress.

The C-peptide, which connects both insulin subchains, is reduced in patients 
with type 1 diabetes, whereas it is unaltered in type 2 diabetes (Webb and Bonser 
1981). Although initially considered to be biologically inert, C-peptide is bioactive 
and its depletion contributes to diabetic neuropathy probably via functional impair-
ment of the Na+-K+-ATPase and endothelial nitric oxide synthase enzyme activities 
(Ido et al. 1997; Sima 2004; Ekberg and Johansson 2008). In line, the therapeutic 
replacement of C-peptide in type 1 diabetic patients resulted in improved peripheral 
nerve function (Ekberg and Johansson 2008).

The abovementioned molecular mechanisms result in manifold damages to 
various cell types. Mitochondrial dysfunction, endoplasmatic reticulum stress, 
DNA damage and apoptosis may occur in neurons, Schwann cells and endothe-
lial cells of the microvasculature (Fig. 19.1b) (Callaghan et al. 2012). Eventually, 
these pathological processes lead to dysfunction or even death of peripheral nerve 
fibers, underlying the clinical symptoms as reviewed above. In summary, diabetic 
neuropathy compromises quality of life to a considerable extent and, given the fre-
quent incidence, has an enormous socio-economic impact (Williams et al. 2002). 
Therapeutic options are therefore highly demanded and are under intense research 
as discussed below.

19.1.2 � Hereditary Demyelinating Neuropathies

Hereditary demyelinating neuropathies are clinically referred to as Hereditary Sen-
sory and motor neuropathies (HMSN), or by geneticists to Charcot-Marie-Tooth 
(CMT) disease.

CMT diseases comprise the most frequent inherited disorders of the PNS with 
a prevalence of up to 1 in 2500 (Skre 1974; Emery 1991). Affected humans de-
velop slowly progressive, distally pronounced atrophic muscle weakness, sub-
sequent walking disabilities and sensory impairments. The CMT disease onset 
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and progression are strikingly variable, ranging from clinically asymptomatic to 
wheelchair-bound, and a therapy is not available (Pareyson and Marchesi 2009; 
Reilly et al. 2011; Schenone et al. 2011; Siskind and Shy 2011)

Around 50 years ago, prior to genetic insight, the first classification of seven 
CMT subtypes was introduced, demonstrating the wide clinical heterogeneity of the 
disease (Dyck 1968). Today, this classification still provides the basis for the clini-
cal categorization of CMT and the electrophysiological value of the motor NCV is 
used to distinguish the demyelinating CMT type 1 (CMT1) with strongly reduced 
NCV (< 38 m/s) from the axonal CMT type 2 (CMT2) with normal or slightly re-
duced NCV (Harding and Thomas 1980). Severely affected children were classified 
as patients with congenital hypomyelinating neuropathies (CHN) or Déjerine Sòttas 
syndrome (DSS) (Reilly and Shy 2009). Genetically determined neuropathies with 
primary sensory or autonomic impairments were termed as hereditary sensory and 
autonomic neuropathies, whereas purely motor forms were referred to as distal he-
reditary motor neuropathies (Reilly and Shy 2009).

From the 1990s on, rapid progress in genetics led to the identification of a large 
number of genomic loci associated with CMT. Importantly, different genetic de-
fects in various genes result in a very similar clinical phenotype and disease genes 
alone are not sufficient to meet the requirements of a practical CMT categorization. 
Therefore, the currently applied classification system incorporates both, genetic and 
clinical characteristics.

In the mid-1990s, the first genetically modified animal models with a CMT-like 
pathology and clinical phenotype were generated (Martini et al. 1995; Huxley et al. 
1996; Magyar et  al. 1996; Sereda et  al. 1996). Before, only naturally occurring 
mouse mutants such as the Trembler mice were available (Suter et al. 1992b). Nu-
merous CMT rodent models have been created since then and the knowledge about 
the nature of CMT disease has greatly expanded in the last 10 years, as discussed in 
recent reviews (Siskind and Shy 2011; Fledrich et al. 2012b; Li 2012). Importantly, 
several recent human therapeutic trials with ascorbic acid (vitamin C) have failed 
despite promising data derived from a CMT mouse model, leaving the urgent need 
for treatment unresolved (Burns et al. 2009; Micallef et al. 2009; Verhamme et al. 
2009; Pareyson et al. 2011; Lewis et al. 2013).

So far, more than 900 mutations in 60 genes have been identified to cause CMT 
and animal models for the most common forms of human CMT are now available 
(Fledrich et  al. 2012b). Disease genes can be expressed ubiquitously as well as 
solely in Schwann cells or neurons. A regularly updated list can be found on http://
www.molgen.ua.ac.be/CMTMutations. Rodents with aberrations in the genes of the 
peripheral myelin protein 22 kDa (PMP22), gap junction protein beta 1 (GJB1), 
also known as connexin 32, and myelin protein zero (MPZ) have been most exten-
sively studied and constitute models for the commonest subtypes of human Char-
cot Marie Tooth disease, the demyelinating neuropathies CMT1A/E, CMT1X and 
CMT1B, respectively.



44719  Experimental Treatment of Acquired and Inherited Neuropathies

19.1.2.1 � Charcot Marie Tooth disease type 1A and 1E are PMP22-related 
neuropathies

The underlying genetic defect for the most prevalent CMT subtype 1A (CMT1A) 
is an intrachromosomal duplication on chromosome 17p11.2 (Lupski et al. 1991; 
Raeymaekers et al. 1991). The PMP22gene is located within the duplicated region 
and its increased gene dosage is causative for the disease (Palau et al. 1993; Sereda 
et al. 1996; Suter and Scherer 2003). PMP22 is a small hydrophobic transmembrane 
protein, which is, next to ubiquitous expression, located in the compact myelin of 
Schwann cells in the PNS (Snipes et al. 1992). Patients with CMT1A exhibit ap-
proximately 1.7 fold PMP22 mRNA overexpression in Schwann cells (Yoshikawa 
et al. 1994), although this is not a consistent finding (Hanemann et al. 1994). Demy-
elination, concentric layers of multiple promyelinating Schwann cells around naked 
axons (onion bulbs) and secondary axonal loss are typical histopathological features 
of peripheral nerves in patients with CMT1A (Gabreëls-Festen and Wetering 1999). 
Several Pmp22 transgenic mouse lines (Huxley et  al. 1996, 1998; Magyar et  al. 
1996; Robertson et al. 2002) and one line of Pmp22 transgenic rats (‘CMT rat’) 
(Sereda et al. 1996) have been generated by the integration of extra copies of the 
cloned Pmp22 gene. CMT rats carry approximately three copies (hence “low copy”) 
of the wildtype mouse Pmp22 gene resulting in an approximately 1.6 fold mRNA 
overexpression in peripheral nerves (Sereda et al. 1996, 2003). CMT rats display 
abnormalities already during development like dysmyelination and Schwann cell 
hyperproliferation (Grandis et  al. 2004; Fledrich et  al. 2012a). Older CMT rats, 
however, demonstrate demyelination, onion bulb formation, reduction in mean 
axon size as well as axonal loss. Moreover, Pmp22 transgenic rats suffer from pro-
gressive muscle atrophy resulting in grip strength reduction and gait impairment 
(Sereda et al. 2003; Meyer Zu Hörste et al. 2007b). Although CMT rats were de-
rived from one founder, they recapitulate a striking disease variability after being 
kept on an outbred background for numerous generations (Fledrich et al. 2012a). 
High disease variability has been reported for humans affected by CMT1A within 
the same family and even among monozygotic twins (Kaku et al. 1993; Garcia et al. 
1995). Hence, the CMT rat models important molecular, histological and phenotyp-
ical hallmarks of patients with CMT1A particular well,rendering it an adequate ani-
mal model for testing therapeutic compounds. When bred to homozygosity, Pmp22 
transgenic rats display a severe amyelinating phenotype resulting in limb paralysis 
and adolescent death (Sereda et al. 1996; Niemann et al. 2000), resembling CHN 
andDSS in patients. Next to the CMT rat, various transgenic mouse models have 
been generated, many of which carry a high number of additional genomic Pmp22 
copies and may thus be less appropriate rodent models for CMT1A.

In humans, PMP22 point mutations account for only 2.5 % of all CMT cases and 
mostly underlie the severe forms of demyelinating peripheral neuropathies, CHN 
and DSS (Szigeti et  al. 2006). Neuropathies caused by PMP22 point mutations 
were historically referred to as CMT1A but are now termed CMT1 type E (Sche-
none et al. 2011). Interestingly, a family with a rare axonal CMT form (CMT2) was 
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recently described carrying a dominant point mutation in the PMP22 gene (Gess 
et al. 2011). The spontaneous, dominantly inherited mutations in the Pmp22 gene 
result in leucine-to-proline (L16P) or glycine-to aspartic acid (G160D) replace-
ments in the PMP22 protein of the Trembler-J ( Tr J) or Trembler ( Tr) mouse, re-
spectively (Suter et al. 1992a, b; Dyck and Thomas 2005). An identical Tr J single 
point mutation in a severely affected CMT disease type 1E (CMT1E) family (Val-
entijn et al. 1992) allows the use ofthese mice as models for the corresponding hu-
man disease. The pathomechanism leading to myelination defects in these mutants 
remains poorly understood. However, for both strains, Tr and Tr J, altered PMP22 
protein folding, trafficking and accumulation in Schwann cells were described and 
the differences in the phenotype may be due to different susceptibility to form pro-
tein aggregates containing mutant PMP22 (Naef and Suter 1999; Notterpek et al. 
1999; Colby et al. 2000; Fortun et al. 2006) (Fig. 19.1c).

19.1.2.2 � Animal Models of Myelin Protein Zero (MPZ) Related 
Neuropathies Resemble Patients with CMT1B

Myelin Protein Zero (MPZ or P0 ) is an immunoglobulin-related adhesion molecule 
and constitutes the most abundant myelin protein in peripheral nerve (Greenfield 
et al. 1973; Filbin and Tennekoon 1993). More than 100 different mutations in the 
MPZ gene have been identified in patients suffering from autosomal demyelinating 
hereditary neuropathies and engineered animal models are available for some of 
them (Shy 2006a). Interestingly, there is a growing number of MPZ mutations which 
lead to axonal CMT (Warner et al. 1996; De Jonghe et al. 1999; Misu et al. 2000; 
Auer-Grumbach et al. 2003; Li et al. 2006; Marttila et al. 2012). Mild forms are 
termed CMT type 1B, the third most common CMT form, whereas severe forms are 
referred to as CHN and DSS (Warner et al. 1996; Shy 2006a). Recently, two families 
with MPZ duplication and peripheral neuropathy have been reported (Høyer et al. 
2011; Maeda et al. 2012). Cases with a deletion of an entire MPZ allele are so far not 
known. In mice, a heterozygous null allele causes a relatively mild demyelinating 
phenotype and mice are indistinguishable from wildtype littermates until postnatal 
week 4 (Martini et al. 1995). Mouse models which completely lack functional Mpz 
genes exhibit a progressive behavioural phenotype and fail to establish compact my-
elin in a large proportion of nerve fibers (Martini et al. 1995). Years before the recent 
reports of MPZ duplication cases in humans it has already been shown that trans-
genic overexpression of the MPZ gene is not tolerated and causes a severe CHN-like 
phenotype in mice (Wrabetz et al. 2000). However, MPZ mutations associated with 
severe forms of inherited neuropathy result in transcripts harbouring premature stop 
codons within terminal exons that are not subject to the nonsense mediated decay 
surveillance system (NMD) (Inoue et al. 2004). Therefore, erroneous mRNA is not 
degraded but translated into truncated proteins with potential dominant-negative ac-
tivity and subsequent aggregation in the endoplasmatic reticulum (ER) (Inoue et al. 
2004). Protein products of other MPZ mutations which also escape the NMD but are 
not retained in the ER can be integrated into the myelin sheath. A resulting mild CMT 
associated phenotype may likely be the consequence of loss of function mutations 
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in one MPZ gene which can be partially rescued by the intact allele, as underlined 
by the mild phenotype in heterozygous Mpz null mice (Martini et al. 1995; Khajavi 
et al. 2005). In humans, the deletion of Mpz serine 63 (S63del) or its mutation to 
Mpz cysteine 63 (S63C) exert demyelinating mild late onset CMT type 1B and se-
vere early onset DSS, respectively (Hayasaka et al. 1993; Kulkens et al. 1993). The 
respective pathological mechanisms are apparently different; MpzS83del is retained 
in the ER whereas MpzS63C is misarranged into the myelin sheath (Wrabetz et al. 
2006). Genetically, engineered mice harbouring mutated MpzS63del come closest to 
human CMT1B, exhibiting distally pronounced demyelination, reduced NCV and 
signs of muscle atrophy (Wrabetz et al. 2006).

19.1.2.3 � Mouse Mutants Carrying Mutations in the Gap Junction Protein 
Beta 1 (Gjb1) Gene Resemble Patients with CMT1X

The gap junction protein beta 1 (GJB1), historically termed connexin-32 (Cx-32), is 
located in the noncompact myelin of the PNS and CNS and mutations cause the sec-
ond most common demyelinating CMT (CMT1X) (Suter and Scherer 2003). CNS 
signs and symptoms have been found in some patients with CMT1X (Abrams and 
Scherer 2012). More than 250 disease causing mutations have been described and 
the X-linked inheritance explains the fact that male patients are clinically affected 
and females show only subclinical signs, e.g., NCV slowing (Kleopa and Scherer 
2006). Despite the high number of reported mutations in the GJB1 gene causing 
CMT1X in humans, the resulting clinical severity appears to be relatively uniform, 
including those with a deleted gene. Hence, most mutants are thought to cause a loss 
of function (Hahn et al. 2000; Dubourg et al. 2001). Mice hemizygous for the Gjb1 
gene may therefore be practical to study human CMT1X (Young and Suter 2001). 
Mice lacking both Gjb1 alleles as much as mice transgenically expressing mutant 
GJB1 (R142W) phenocopy human CMT1X patients and develop a late onset de-
myelinating neuropathy predominantly affecting motor fibers (Nelles et al. 1996; 
Anzini et al. 1997; Scherer et al. 1998; Jeng et al. 2006; Kleopa and Scherer 2006). 
Transgenic expression of Gjb1 under the control of the Schwann cell specific Mpz 
promoter rescued the phenotype in mice which lack endogenous Gjb1, indicating 
that loss of Schwann-cell-autonomous expression of Gjb1 causes demyelination in 
CMT1X (Scherer et al. 2005).

19.2 � Treatment of Neuropathies

19.2.1 � Treatment of Inflammatory Demyelinating 
Neuropathies

Clinically approved therapies in CIPD encompass several immunomodulatory and 
immunosuppressive substances. First line treatment includes immunoglobulins, 
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corticosteroids and plasmapheresis (Eftimov et al. 2009, 2012; Hughes and Mehndi-
ratta 2012; Mehndiratta and Hughes 2012). In a retrospective investigation, two 
third of CIDP patients responded to these first line therapies (Cocito et al. 2010). 
Corticosteroids are known for their anti-inflammatory potential and are commonly 
used in many autoimmune disorders (Dalakas 2011). Plasmapheresis removes po-
tential antibodies as well as other circulating immune molecules from the blood of 
CIDP patients and provides a well evidenced based treatment option although it is 
less safe and more invasive compared to other immune therapies (Dalakas 2011; 
Mehndiratta and Hughes 2012). Immunoglobulins are thought to exert a variety 
of effects on the immune system like on autoantibodies, the complement system, 
soluble immune factors as well as on adhesion molecules and receptors on macro-
phages, although the precise mechanism is not understood (Dalakas 2011). The in-
travenous application of immunoglobulins (IVIG) has been shown to be beneficial 
in the acute and long-term treatment of CIDP in placebo-controlled, randomized 
studies (Hughes et al. 2008; Eftimov et al. 2009; Hughes 2010). Interestingly, ap-
proximately half of the patients can discontinue the IVIG treatment after 6 months 
without clinical deterioration (Hughes et al. 2008; Dalakas 2011).

In addition to these first-line therapies, other immune therapies like interferon-ß 
(IFN-ß), azathioprine, methotrexate, cyclosporin A, cyclophosphamide or myco-
phenolate mofetil may be used in specific cases, but still need to be better assessed 
in randomized, controlled clinical trials (Vallat et al. 2010). Other new treatment 
options include, among others, the monoclonal antibody alemtuzumab, directed 
against CD52 expressed on lymphocytes and monocytes, as well as rituximab, a 
monoclonal antibody targeting the B-cell specific molecule CD20, which have been 
shown to be beneficial in small, uncontrolled studies (Marsh et  al. 2010; Bene-
detti et al. 2011; Dalakas 2011). Additionally, the antibody natalizumab targeting 
α4β1 integrin (VLA4) on leukocytes, the immunomodulatory agent fingolimod (a 
sphingosin-1-phosphat-receptor agonist) as well as eculizumab, directed against 
complement C5 may provide future therapeutic options for CIDP (Dalakas 2012). 
However, beneficial effects have to be carefully contrasted with the risk of potential 
severe side effects and toxicity.

In experimental autoimmune neuritis (EAN) a multitude of different treatment 
approaches has been tested, of which a detailed description is beyond the scope 
of this chapter (for review see Meyer Zu Hörste et al. 2007a) . Therefore, a broad, 
incomplete overview of different strategies will be given. However, it is important 
to note that therapeutic approaches in EAN may in general be more related to GBS 
than to CIDP.

In EAN, plasma exchange, immuneadsorption and IVIGs all ameliorate disease 
severity in accordance with the current treatments used in CIDP patients (Meyer 
Zu Hörste et al. 2007a). In addition, a variety of other immunomodulatory and im-
munosuppressive substances have been shown to reduce or prevent EAN, some of 
which might be promising in CIDP (Hughes et al. 2006). One example is the im-
munomodulatory substance leflunomide (Korn et al. 2001); however, it has been 
reported to cause a neuropathy (Bonnel and Graham 2004; Hughes et al. 2006).

Other therapeutic approaches may help to better understand the pathomecha-
nisms of the disease and several approaches aimed at the induction of tolerance by 
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applying myelin antigens (such as myelin homogenate, myelin peptides or deriva-
tives) before disease induction (Gaupp et al. 1997; Meyer Zu Hörste et al. 2007a). 
While these approaches proved successful in EAN, a translation into patients seems 
unlikely (Meyer Zu Hörste et  al. 2007a). In addition, an inhibition of autoreac-
tive T-cells has been addressed with T-cell receptor antibodies (TCR) or TCR DNA 
vaccination (Jung et al. 1992; Araga et al. 1999; Stienekemeier et al. 2001; Meyer 
Zu Hörste et al. 2007a). The regulatory immune system provides another target in 
EAN, for example in a statin therapy which increases T-regulatory cells, reduces 
Th1/Th17 cytokines and alleviates the disease course (Li et al. 2011). Moreover, an 
agonistic antibody against the co-stimulatory molecule CD28 improved the disease 
(Schmidt et al. 2003). That an increase in regulatory T-cells and M2-macrophages 
ameliorates the disease was also shown by an experimental therapy with a plant-or-
igin ligand of the glucocorticoid receptor (Zhang et al. 2009). The humoral immune 
response has not only been successfully targeted with immunoglobulins, but also 
with complement inhibitors in EAN (Feasby et al. 1987; Jung et al. 1995; Meyer 
Zu Hörste et al. 2007a). Further studies addressed the dysregulation of cytokines. 
Antibodies and antagonists against proinflammatory cytokines, like tumor necrosis 
factor (TNF) and IFN-γ improved the disease (Meyer Zu Hörste et al. 2007a). Vice 
versa, anti-inflammatory cytokines including interleukin 4 and 10, IFN-ß and trans-
forming growth factor ß (TGF-ß) had beneficial effects in EAN (Meyer Zu Hörste 
et al. 2007a). For example, erythropoietin has been shown to ameliorate EAN by 
inducing TGF-ß in macrophages (Mausberg et al. 2011). Cyclooxygenase inhibitors 
improved EAN via reduction of eicosanoids in macrophages (Hartung et al. 1988a; 
Miyamoto et al. 1998). The inhibition of macrophages or macrophage associated 
factors showed improvement in several experimental EAN studies (Craggs et al. 
1984; Jung et al. 1993; Zou et al. 1999; Nicoletti et al. 2005). In addition, endothe-
lial adhesion and penetration of the blood nerve barrier (BNB) has been addressed 
by blocking adhesion molecules (VLA4 and LFA1), their receptors (VCAM1 and 
ICAM1) and L-selectin (Archelos et al. 1993, 1994; Meyer Zu Hörste et al. 2007a). 
Also, inhibiting MMP and TNFα attenuated EAN, possibly by preventing BNB 
damage (Redford et al. 1997). Next to therapies directly interacting with the im-
mune system, neuroprotection provides an important approach, targeting the final 
common pathway of axonal loss in peripheral neuropathies. Destruction of the 
nerve structure has been alleviated by radical scavengers or inhibitors of nitric oxid 
synthesis (Hartung et  al. 1988b; Zielasek et  al. 1995). Furthermore, sodium and 
potassium ion channel blockers improved EAN, such as the sodium ion channel 
blocker flecainide, which prevented axonal degeneration in EAN (Bechtold et al. 
2005; Meyer Zu Hörste et al. 2007a).

In summary, corticosteroids, IVIG and plasmapheresis provide evidence based 
beneficial therapies for acute and long-term CIDP treatment. However, only two 
thirds of all patients respond to these treatments, pointing out the need of new thera-
peutic proceedings. Here, not only immunomodulatory approaches, but also neuro-
protective and remyelination promoting strategies are highly demanded. Moreover, 
although various promising treatments have been established in EAN, a successful 
translation to patients is widely lagging behind. In this regard, better animal models 
in closer relation to human CIDP would be advantageous.
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19.2.2 � Treatment of Diabetic Neuropathy

19.2.2.1 � Glucose Control in Type 1 and Type 2 Diabetes has Emerged as 
a Modifiable Risk Factor for the Development of Neuropathy in 
Diabetic Patients

For type 1, seven studies have been performed over the past 30 years (Holman et al. 
1983; Lauritzen et al. 1985; Dahl-Jørgensen et al. 1986; Jakobsen et al. 1988; Diabe-
tes Control and Complications Trial (DCCT) 1993; Reichard et al. 1993; Linn et al. 
1996). Up to 70 % reduction in neuropathy was reported in these studies and only 
one out of the seven (Lauritzen et al. 1985) showed no significant benefit of tighter 
glucose control. In sharp contrast, eight randomized controlled trials of patients 
with type 2 diabetes have produced by far less striking results with a maximum of 
7 % neuropathy reduction (Azad et al. n.d.; Kawamori and Kamada 1991; Ohkubo 
et al. 1995; Tovi et al. 1998; UK Prospective Diabetes Study Group (UKPDS) 1998; 
Shichiri et al. 2000; Gaede et al. 2003; Duckworth et al. 2009; Ismail-Beigi et al. 
2010). Among these trials, however, three out of four studies that investigated nerve 
conduction or quantitative sensory testing showed significant results in favor of glu-
cose control (Kawamori and Kamada 1991; UK Prospective Diabetes Study Group 
(UKPDS) 1998; Shichiri et al. 2000). Therefore, despite the disparate impact on 
type 1 or type 2 diabetes, glucose control constitutes the only disease-modifying 
therapy available for diabetic neuropathy so far (Said 2007; Callaghan et al. 2012). 
However, the treatment of diabetes with insulin can by itself cause neuropathy (Gib-
bons and Freeman 2010). Treatment-induced neuropathy is usually associated with 
pain and autonomic dysfunctions, but symptoms may improve significantly with 
time (Gibbons and Freeman 2010).

As described above, a number of pathophysiological events occur upon diabetes 
and neuropathy likely results as a combination of direct axonal and/or Schwann 
cell injury due to hyperglycemia, dyslipidaemia, insulin deficiency/resistance and 
microvascular dysfunction leading to ischemia. Furthermore, perturbed metabolic 
pathways induce oxidative stress and the accumulation of toxic AGEs. The de-
velopment and use of animal models of diabetes enabled preclinical therapeutic 
testing based on recognized steps in the diabetic pathophysiology (Singleton and 
Smith 2012). Although several promising results were derived from cell culture 
and experimental therapeutic approaches in animal models, largely no rational 
treatment has significantly proven effects at reversing or slowing neuropathy pro-
gression in patients (Singleton and Smith 2012). Multiple trials with vasodilatory 
agents showed no clinical response (Coppey et  al. 2006), nor did nerve growth 
factor treatment (Apfel et al. 2000). Also trials with aldose reductase inhibitors, 
which prevent excessive glucose entry into the polyol pathway thereby reducing 
oxidative stress turned out to be negative in humans after promising results in ani-
mal models (Hotta et al. 2006; Chalk et al. 2007).

Alpha lipoic acid, acetyl-L carnitine and benfotiamine are three related drugs 
which act to reduce oxidative stress, a key component of diabetic neuropathy 
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(Singleton and Smith 2012). Treatment with alpha lipoic acid has been shown to 
promote neuropathic pain relief but not improvement in other neuropathy measures 
(Ziegler et al. 2004, 2006). Acetyl-L carnitine, however, another antioxidant, has 
shown significant improvement in sural nerve morphology and visual analog pain 
scale (VAS) in two parallel randomized, blinded controlled trials in diabetic patients 
(Sima et al. 2005). Strikingly, the antioxidant benfotiamine ( S-benzoylthiamine O-
monophosphate), a vitamin B1 derivative, showed neuropathic improvement in a 
clinical phase III trial (Stracke et al. 2008). Taken together, these trials underscore 
the impact of oxidative stress and antioxidants constitute promising drugs to stop or 
reverse pathological processes in diabetic neuropathy in the future.

19.2.3 � Treatment of Hereditary Demyelinating Neuropathies

There is no specific treatment option available for any genetic neuropathy so far 
(Pareyson et al. 2011). Pharmacological approaches with ganglioside, creatine and 
very recently, oral administration of ascorbic acid showed no beneficial effects in 
patients with CMT subtype 1A (Young et  al. 2008; Burns et  al. 2009; Micallef 
et al. 2009; Verhamme et al. 2009; Pareyson et al. 2011). To date, next to genetic 
counseling for diagnosis, symptomatic therapy is restricted to physical therapies, 
orthopedic treatments (e.g., for foot deformity) and pain as well as fatigue manage-
ment (Reilly and Shy 2009).

19.2.3.1 � Symptomatic Treatment of Patients with CMT

Since there is no drug therapy for CMT available yet, symptomatic therapeutic man-
agement requires multidisciplinary approaches including, among others, neurolo-
gists, orthopedists, surgeons and physiotherapists (Pareyson and Marchesi 2009). 
Rehabilitative studies have shown that moderate exercise leads to improved walk-
ing ability and lower limb strengthening (Lindeman et al. 1995; Chetlin et al. 2004; 
El Mhandi et al. 2007; Young et al. 2008). Custom fitted ankle-foot orthoses can be 
of help and are commonly used to overcome foot drop, thereby facilitate walking 
(Burns and Ouvrier 2006; Carter et al. 2008).

Surgical interventions have especially been used to medicate skeletal deformi-
ties, in particular pes cavus deformity (Beals and Nickisch 2008; Ward et al. 2008). 
Possible treatments comprise soft-tissue surgery (tendon transfers and releases), os-
teotomies and joint fusions (Beals and Nickisch 2008; Ward et al. 2008). There are, 
however, still no clear guidelines available defining the indication for foot surgery 
in patients with CMT (Pareyson et al. 2011). Furthermore, 15–20 % of patients with 
CMT suffer from substantial scoliosis and, in most severe cases, require surgical 
treatment (Horacek et al. 2007; Karol and Elerson 2007).

Posture abnormalities and foot deformities as well as the neuropathy itself can 
additionally be causative for emerging pain (Carter et al. 1998; Padua et al. 2008) 
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which can be treated pharmacologically (Burns and Ouvrier 2006; Shy 2006b; Cart-
er et al. 2008; Herrmann 2008). Reduced muscle strength and possibly impaired 
cardiopulmonary function can further lead to fatigue (Schillings et al. 2007; Kalk-
man et al. 2008). The treatment of four patients with CMT with the analeptic drug 
modafinil to address fatigue has shown some improvement, unfortunately associ-
ated with substantial side effects (Carter et al. 2006).

19.2.3.2 � Antagonizing the Progesterone Receptor Lowers Toxic Pmp22 
Overexpression and Ameliorates the Clinical Phenotype of CMT Rats

One obvious therapeutical strategy in CMT1A is lowering the toxic overexpression 
of the PMP22 gene. This notion was derived from Pmp22 transgenic rats which 
show high variability in the levels of Pmp22 mRNA expression and the severity 
of the clinical phenotype (Sereda et al. 1996; Niemann et al. 1999). Importantly, 
the Pmp22 mRNA expression in peripheral nerves of CMT rats does not correlate 
with the disease severity at a given time point. However, expression levels may 
play an important role early in the disease course as Pmp22 mRNA serves as a 
prognostic marker in CMT rats and may be used to predict the future disease course 
(Fledrich et  al. 2012a). In the quest for a target which may (co)regulate PMP22 
mRNA expression, we focused on the sexual hormone and neurosteroid progester-
one. The progesterone receptor (PR) is expressed in Schwann cells and application 
of progesterone resulted in activation of the Pmp22 gene in vitro (Désarnaud et al. 
1998) and in vivo (Melcangi et al. 1999). We hypothesized that antagonizing the PR 
may in turn reduce Pmp22 overexpression and therefore could positively influence 
CMT1A disease. Indeed, therapeutic application of the PR antagonist Onapristone 
over 7 weeks starting early postnatally ameliorated the neuropathic phenotype in 
male CMT rats by reducing the toxic overexpression of Pmp22 mRNA (Sereda 
et  al. 2003). Onapristone also prevented axonal loss in a long-term study using 
female CMT rats when treatment was started at 4 weeks of age, similar to the age 
when CMT1A patients present in the clinic in young adolescence (Meyer Zu Hörste 
et  al. 2007b). Unfortunately, Onapristone displayed side effects in humans (e.g., 
liver function test abnormalities) and is not available. We are therefore currently 
examining the effect of a new PR antagonist which is safe for humans. Our stud-
ies with PR antagonists demonstrate that targeting the toxic overexpression of the 
PMP22 gene is a promising rational to treat CMT1A.

19.2.3.3 � Vitamin C Treatment Improves Pathology in Severely Affect  
Pmp22 Transgenic Mice but has no Therapeutic Effect  
in Patients with CMT1A

Vitamin C (ascorbic acid) is an antioxidant drug and is required for myelinating 
Schwann cells in order to form extracellular matrices and basal laminae in vitro 
(Podratz et al. 2004). In severely affected Pmp22 transgenic mice (C22 het line), 
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weekly oral application of ascorbic acid reduced Pmp22 mRNA overexpression, 
lowered the number of severely hypomyelinated axons, improved the motor perfor-
mance and increased the life span of mice (Passage et al. 2004). These results from 
the Pmp22 transgenic mouse model and the simple translation of ascorbic acid, an 
over the counter (OTC) drug, to patients with CMT1A launched a number of large 
scale multi-center trials (Burns et al. 2009; Micallef et al. 2009; Verhamme et al. 
2009; Pareyson et al. 2011, Lewis et al. 2013). Unfortunately, none of these clinical 
trials reported beneficial effects of ascorbic acid to patients with CMT1A thus far. 
Nonetheless, small effects may have been missed due to insensitivity of outcome 
measures in CMT1A patients with CMT1A (Pareyson et al. 2011).

19.2.3.4 � Addressing Axonal Survival in CMT1A

Loss of peripheral axons ultimately determines the disease severity in patients with 
CMT1A (Berciano et al. 2000). Rescue of axonal degeneration as well as supporting 
their regeneration constitutes a therapeutic strategy in CMT1A. This view is sup-
ported by the notion that Pmp22 transgenic rats showed axonal preservation when 
crossbred to rats harboring the naturally occurring Wlds (Wallerian degeneration 
slowing) mutation (Meyer Zu Hörste et al. 2011). Neurotrophin-3 (NT-3) has been 
reported to promote nerve regeneration after injury and the survival of Schwann 
cells (Meier et al. 1999). Therapeutic application of NT-3 in immune incompetent 
mice with xenograft transplants of sural nerve biopsies from CMT1A patients with 
CMT1A (as well as from Trembler-J mice) augmented axonal regeneration (Sahenk 
et  al. 2005). Improved regeneration and remyelination after experimental acute 
nerve injury in Trembler-J mice, mostly of small caliber axons, was achieved af-
ter subcutaneous injection of recombinant NT-3 three times a week over 8 weeks. 
This observation was translated to patients with CMT1A patients and a clinical 
pilot study was performed (Sahenk et al. 2005). In a small group of 8 patients with 
CMT1A patients NT-3 treatment was well tolerated when performed three times 
weekly over a 6-month time period. Treated patients with CMT1A displayed an in-
crease in myelinated fiber density, a reduction of the neurological impairment score 
(NIS) as well as improved sensory modalities when compared to placebo controls 
(Sahenk et al. 2005). However, considering the small number of patients, these re-
sults need to be confirmed in larger cohort studies.

19.2.3.5 � Approaching Low Grade Inflammation as a Therapeutic Rational 
in CMT1A and CMTX

Experimental studies have demonstrated that macrophages and T lymphocytes are 
a pathological feature of mice carrying mutations in myelin proteins (Schmid et al. 
2000; Berghoff et al. 2005; Kobsar et al. 2005; Fischer et al. 2008; Martini et al. 
2008). Genetic suppression of T- and B-lympocyte function using RAG1-deficient 
mice ameliorated the demyelinating phenotype in CMT type X (GJB1 deficient) 
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mice whereas it worsened disease progression in CMT type 1B (MPZ deficient) 
mice (Kobsar 2003; Berghoff et  al. 2005). Low copy Pmp22 transgenic mice 
(C61 het line) display no pathological amelioration when cross bred with Rag-1 
mutants, indicating that lymphocytes are not disease modifying in this CMT1A 
model (Kohl et al. 2010b). However, ablation of the chemokine monocyte che-
moattractant protein-1 (MCP-1/CCL2) as well as of the colony stimulating factor 
(CSF-1) in GJB1 deficient mice reduced macrophage abundance and ameliorated 
the neuropathological features in the respective double mutants (Groh et al. 2010, 
2012). Thus, MCP-1 and CSF-1 may act as macrophage attractants which in turn 
may aggravate neuropathological processes in GJB1 deficient mice. Increased 
abundance of macrophages in the endoneurial compartment of peripheral nerve 
has also been reported in C61 het mice as well as in the CMT rat (Kobsar et al. 
2005; Wessig et al. 2008; Kohl et al. 2010a). Accordingly, crossbreeding of the 
C61 het line to Mcp-1 null mutants resulted in a reduced macrophage abundance 
in peripheral nerves and in a remarkable amelioration of the neuropathic pheno-
type (Kohl et al. 2010a).

19.2.3.6 � Restoring Missorted Proteins in PMP22 Related Neuropathies

Under normal conditions, PMP22 protein folding is only moderately effective and 
approximately 80 % of the newly synthesized protein is degraded by the proteasome 
(Pareek et al. 1997; Notterpek et al. 1999; Sanders et al. 2001). In Schwann cells of 
Trembler-J mice the protein degrading pathways of the lysosome and proteasome 
are overloaded and abnormal cytosolic aggregates containing mutant (misfolded) 
PMP22 and ubiquitin are formed (Notterpek et al. 1999; Ryan et al. 2002). These 
aggregates (aggresomes) are found in both, Pmp22 mutants carrying point muta-
tions ( Tr-J) and high copy number Pmp22 overexpressing mice (C22 line) (Notter-
pek et al. 1999; Fortun et al. 2006). Autophagy emerged to play an important role in 
the removal of aggresomes (Fortun et al. 2003) and its induction, either by nutrient 
deprivation or via pharmacological activation by rapamycin, resulted in aggresome 
degradation in Schwann cells of Pmp22 mutant and overproducing mice (Fortun 
et al. 2007; Madorsky et al. 2009; Rangaraju et al. 2010). A further promising thera-
peutic rational for protein misfolding disorders involves the enhancement of chap-
erone expression (Muchowski and Wacker 2005). Inhibition of heat shock protein 
90 (HSP90) by geldenamycin effectively enhanced cytosolic chaperone levels and 
improved myelination, along with the trafficking of PMP22 in dorsal root ganglion 
explant cultures from C22 het neuropathic mice (Rangaraju et al. 2008). Support-
ing the correct protein folding and turnover of PMP22 may therefore constitute a 
promising therapeutic strategy upon strong PMP22 overexpression. Unfortunately, 
dramatic caloric restriction is not suitable for patients with CMT. For both drugs, 
rapamycin and geldanamycin derivatives, preclinical therapy studies have not been 
performed yet.

Aggregates containing point mutated PMP22 have also been reported to be 
located and retained in the ER of the Trembler-J (CMT1E) mice which induces 
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Schwann cell death via apoptosis(Khajavi et al. 2007). Treatment with the curry 
spice compound curcumin may facilitate translocation of misfolded protein from 
the ER to the plasma membrane, subsequently reducing cytotoxicity (Egan et al. 
2004; Teijido et al. 2004; Khajavi et al. 2005; Yang et al. 2005). Importantly, in 
Trembler-J mice oral administration of curcumin not only reduced ER retention and 
cytotoxicity of mutant PMP22 protein, but also mitigated their neuropathic pheno-
type in a dose dependent manner. On the histological level, axonal size and myelin 
sheath thickness were improved upon curcumin diet (Khajavi et al. 2007). Besides 
its effect of facilitating the release of ER retained proteins, curcumin may also sup-
port axonal survival via its potential as a neuroprotective agent (Cole et al. 2007). 
Given the low toxicity profile of curcumin, this treatment of CMT1E may be well 
translatable to affected patients.

19.2.3.7 � Therapeutic Targets in MPZ Related Neuropathies

Similar to PMP22 mutant protein, ER retention and cytotoxicity was also reduced 
by curcumin treatment in HeLa cells when transfected with S83del mutant forms 
of MPZ (Khajavi et al. 2005). Furthermore, in ER stressed MpzS63del transgenic-
mice Schwann cells display a consequential canonical unfolded protein response 
(UPR), including the expression of the transcription factor C/EBP homologous 
protein (CHOP), a protein previously reported to induce apoptosis in ER stressed 
cells (Pennuto et al. 2008; Zinszner et al. 1998; Rutkowski et al. 2006; D’Antonio 
et al. 2009). Importantly, genomic ablation of Chop in MpzS63del mice completely 
rescued motor impairments and reduced demyelination (Pennuto et al. 2008). The 
UPR in these mice is associated with detrimental attenuation of the translational 
machinery mediated by the phosphatase GADD34, a downstream effector of CHOP 
(D’Antonio et  al. 2013). Genetic and pharmacological inhibition of GADD34 in 
mutant Schwann cells in vitro and in vivo leads to a reset of the perturbed transla-
tional homeostasis, ultimately resulting in striking amelioration of protein accumu-
lation, demyelination and neurophysiological dysfunction in MpzS63del transgenic 
mice (D’Antonio et al. 2013). Therefore, targeting the UPR and the translational 
machinery may provide new possible therapeutic interventions for ER stress related 
inherited neuropathies.

19.2.3.8 � Biomarkers Could Improve the Development  
of a Therapy for CMT

Despite its monogenetic cause, patients with CMT1A display a marked interin-
dividual variability of disease severity. The underlying reason for this variability 
is largely unknown and epigenetic factors have been discussed (Pareyson et  al. 
2009). At present, the assessment of the individual disease severity in patients 
with CMT1A is performed solely by clinical and electrophysiological examina-
tions. The CMT neuropathy score (CMTNS) is a nine item composite scale taking 
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into account sensory and motor symptoms (Shy et al. 2005) and is currently be-
ing applied as primary outcome measure in clinical trials (Reilly et al. 2010). The 
CMTNS ranges from 1 (good clinical performance) to 36 (severely affected) and 
was reported to increase only about 0.68 points per year in patients with CMT1A 
(Shy et al. 2005). An even slower progression was reported within a recent therapy 
trial with ascorbic acid (0.25 points per year) (Pareyson et al. 2011). In light of the 
slow disease progression, insensitive outcome measures may increase the risk of 
false negative results in clinical trials and biomarkers could add powerful tools to 
monitor therapeutic effects (Pareyson et al. 2011; de Visser and Verhamme 2011). 
Biomarkers may not only serve as a sensitive surrogate marker of clinical sever-
ity, but may also identify responders to a putative therapy. CMT rats recapitulate 
the striking disease variability observed in patients with CMT1A. In a proof of 
principle study we have demonstrated that the expression levels of selected genes 
in sciatic nerve and skin tissue can be utilized to measure and predict the disease 
severity in CMT rats. Importantly, we validated these disease severity markers in 
skin biopsies of 46 patients with CMT1A (Fledrich et al. 2012a). At the moment, 
these markers are examined with regard to disease progression within a large pan-
European consortium. In the near future we hope to provide the clinical practice 
with applicable biomarkers which in turn may accelerate the development of a 
therapy for CMT1A.

19.3 � Summary

Within the last decades, substantial progress has been made in the characterization 
and diagnosis of peripheral neuropathies. Especially, numerous new genes causing 
hereditary neuropathies have been described, with more than 900 identified muta-
tions in total (Fledrich et al. 2012b). Clinical symptoms, however, may be similar, 
regardless of whether an immune-mediated process, diabetes or a genetic alteration 
is the underlying factor. Moreover, diseases can overlap, with for instance a super-
imposed CIDP or DNP in primarily hereditary neuropathies (Rajabally et al. 2000; 
Ursino et al. 2013). Hence, deciphering the right diagnosis remains challenging in 
many cases, pointing to the demand for new diagnostic tools such as biomarkers 
(Fledrich et al. 2012a, b).

Whereas the onset of different neuropathy types is related to the respective pri-
mary cause, the ultimate clinical deterioration is invariably caused by axonal loss. A 
shared final pathway, common for all neuropathies, may therefore implicate similar 
underlying mechanisms. Thus, identifying the molecular processes leading to axo-
nal dysfunction and breakdown is one major challenge in the future, which would 
pave the way for new therapeutic strategies applicable for a large spectrum of neu-
ropathy patients independent of the primary defect.
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