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Abstract Addiction to drugs of abuse is a debilitating chronic disease, for which 
long-term treatment success rates are low. Because of the human and financial cost 
of addiction, considerable effort is dedicated toward understanding the processes 
that initiate and sustain substance abuse disorders. Among these processes, grow-
ing evidence indicates an integral contribution of glial cells, including astrocytes, 
oligodendrocytes, and microglia. For example, decreased white matter content and 
integrity in the prefrontal cortex is correlated with impaired prefrontal cognitive 
control, a cardinal feature of addiction pathology. In addition, decreased astroglial 
plasma membrane glutamate transport in the nucleus accumbens is a critical media-
tor of seeking for multiple classes of drugs of abuse. The following chapter intro-
duces addiction neurocircuitry, and goes on to describe drug-dependent changes in 
glial cells that have been identified within this circuitry. Special emphasis is given 
to drug-induced impairments in the physiological relationships between neurons 
and glia. Lastly, evidence for the therapeutic potential of glial-specific targets is 
discussed.
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17.1  Introduction: The Neurocircuitry and Cell Biology 
of Addiction

Despite the fact that glial cells outnumber neurons in the brain, they have histori-
cally been largely considered as a secondary source of trophic support to neurons 
(Barres 2008). Over the past several years, however, seminal roles for neuron-glial 
interactions in nervous system function have become increasingly clear. There is 
now extensive evidence for a functional relationship between neurons and glia 
in a wide variety of nervous system processes, including development, synaptic 
plasticity, injury response, vascular function, sleep, and others (Chung and Barres 
2012; Parpura et al. 2012). As discussed in detail in this edition, there is also a con-
siderable and growing body of data that indicate important roles for glial cells in 
pathological processes, representing a target of intervention for conditions among 
epilepsy, encephalopathy, cancer, neurodegenerative diseases, and psychiatric con-
ditions (Parpura et al. 2012).

Among the psychiatric conditions in which glial dysfunction is implicated is ad-
diction to drugs of abuse (Haydon et al. 2009; Cooper et al. 2012). Drug-induced 
changes in morphology, content, and function of glial cells have been shown at the 
levels of functional magnetic resonance imaging and molecular and cellular physi-
ology in both human addicts and in preclinical animals models, and in response to 
drugs across chemical categories including psychostimulants, opiates, nicotine, and 
ethanol. In advance of an in depth discussion of the drug-induced changes in gliobi-
ology, it is worthwhile to consider the neurocircuitry engaged by the rewarding and 
pathological actions of drugs abuse. This circuitry provides the framework of brain 
nuclei where drug-related adaptations have been observed.

Cellular effects of drugs of abuse have been thoroughly described in brain re-
gions within reward centers of the brain, supporting the hypothesis that addiction 
is a disease of reward learning and associations (Hyman et al. 2006; Lalumiere and 
Kalivas 2007; Mameli and Luscher 2011). Acute reinforcing effects of many drugs 
of abuse are mediated by robust release of dopamine (DA) from the ventral tegmen-
tal area (VTA) onto structures of the mesocorticolimbic system, including prefron-
tal cortex (PFC), nucleus accumbens (NAc), dorsal striatum, amygdala, and hip-
pocampus (17.1) (Di Chiara and Imperato 1988; Koob and Nestler 1997; Martinez 
and Narendran 2010). Similarly, DA release also occurs in association with natural 
rewards, and constitutes an important mechanism of association between salience 
and environment or adaptive behaviors. However, in contrast to drug-induced DA 
signaling, DA responsiveness declines following multiple exposures to natural re-
wards, and it is the repeated release of dopamine that commandeers the normally 
adaptive process of reward learning (Lalumiere and Kalivas 2007).

The intensity and mechanisms of DA release varies depending on the addictive 
drug, but nonetheless represents a common theme of reinforcement. Following mul-
tiple exposures, changes in cellular physiology, morphology, and gene expression 
patterns are observed within the DA-ergic axon terminal fields. Thus, the hyperdo-
paminergic state induced by chronic drug exposures leads to long-term changes in 
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the cells of the VTA and in those receiving innervation from the VTA, as well as in 
synaptic connections downstream, in particular in the glutamatergic projection from 
the PFC to the NAc (Fig. 17.1) (Kalivas et al. 2005; Mameli et al. 2009; Mameli 
and Luscher 2011). Thus, it is generally believed that understanding the long term 
cellular changes induced within the mesocorticolimbic reward pathways depicted in 
Fig. 17.1 by chronic exposure to drugs of abuse will not only inform understanding 
of the fundamental biology of adaptive and maladaptive reward learning, but will 
also illuminate candidate targets for pharmacotherapies for addiction.

A growing appreciation of enduring changes in cellular dynamics within the re-
ward circuitry following chronic drug exposure has fueled the belief that cellular 
targets of addiction may lie within deficits in executing goal-directed behaviors 
(Nestler and Aghajanian 1997; Chen et al. 2010; Kalivas and Volkow 2011; Van 
den Oever et al. 2012). The appreciation has contributed to a growing shift in the 
understanding and treatment of addiction as a chronic disease based on cellular pa-
thology following protracted drug abuse (Leshner 1997; Dackis and O’Brien 2005; 
Chandler et al. 2009; Courtwright 2012). This shift has in turn fueled study of the 
relationship between drug-dependent cellular adaptations and addiction-related be-
haviors. Accordingly, within the last 10 years, changes in glial content, structure, 
and function have been revealed. The following sections provide an overview of 
studies from human and preclinical animal models across levels of analysis from 
whole brain imaging to cell biology and electrophysiology.

Fig. 17.1  Reward neurocircuitry engaged by chronic drug abuse. AMY amygdala, DS dorsal stria-
tum, HIPP hippocampus, NAc nucleus accumbens, PFC prefrontal cortex, VP ventral pallidum, 
VTA ventral tegmental area. Dopaminergic projections from the VTA are depicted by a heavy line. 
Glutamatergic and γ-aminobutyric acid (GABA)ergic projections, the latter from the NAc to VP, 
are depicted by thin lines. (For additional information, see (Feltenstein and See 2008; Koob and 
Volkow 2010; McGinty et al. 2011; Reissner and Kalivas 2013))
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17.2  Astroglial Expression of Receptors and Transporters

In considering the effects of drugs of abuse on glial cells, and on glial contributions 
to mechanisms of addiction, it is important to appreciate to what degree relevant 
classes of receptors and transporters are expressed on these cells within the brain 
reward circuitry. Because the relationship between astrocytes and neurons are the 
most thoroughly studied in this context, astrocytes will be the predominant glial cell 
type considered in this section. It has for some time been appreciated that recep-
tors for many transmitter systems are expressed on astrocytes, including glutamate, 
γ-aminobutyric acid (GABA), serotonin, opioids, purines, and others (Porter and 
McCarthy 1997; Abbracchio et al. 2006; Shigetomi et al. 2012). More recently, re-
ceptor expression has also been demonstrated for endocannabinoid CB1 receptors, 
and stimulation of astroglial CB1 receptors by neuronal endocannabinoid release 
leads to synaptic potentiation via astroglial-derived glutamate transmission (Na-
varrete and Araque 2008, 2010). Of particular relevance to this chapter, recent evi-
dence has accumulated showing expression of multiple types of DA receptors in a 
range of glial cell types in vivo, particularly astrocytes. For example, DA receptors 
of the subtypes D1, D3–5 (Miyazaki et al. 2004) and D2 (Khan et al. 2001; Shao 
et al. 2013) have been reported.

Astrocytes also express a wide range of plasma membrane transporters for ami-
no acids, nucleosides, glucose, monocarboxylates, GABA, monoamines, and more 
(Morgello et al. 1995; Inazu et al. 2003; Pierre and Pellerin 2005; Nagasawa et al. 
2007; Fuente-Martin et al. 2012; Kittel-Schneider et al. 2012). Although astroglial 
expression of DA transporters has been found in some cases (Takeda et al. 2002; 
Karakaya et al. 2007), but not others (Dahlin et al. 2007; Kittel-Schneider et al. 
2012), functional uptake of both DA and serotonin in astrocytes has been reported 
(Kimelberg and Katz 1985; Hirst et al. 1998; Inazu et al. 1999). Of relevance to this 
chapter, expression of glutamate transporters on astrocytes has been demonstrated 
to be of particular importance for protection against excitotoxicity and in main-
taining fidelity in synaptic communication. Greater than 90 % of glutamate uptake 
occurs via high affinity glutamate transporters expressed on astrocytes (Anderson 
and Swanson 2000; Danbolt 2001). A deficit in astroglial glutamate uptake has been 
widely reported following exposure to multiple drugs of abuse, and is discussed in 
greater detail below.

Functionality of astroglial G protein-linked receptors has also been well de-
scribed (Bradley and Challiss 2012). Considerable evidence both in vitro and in 
vivo indicates that neurotransmitters released from neurons (as well as neuromodu-
lators and hormones) can stimulate astroglial receptors, leading to a Ca2+ signal 
which triggers release of gliotransmitters and in turn evoked Ca2+ signals in neurons 
(Bezzi and Volterra 2001; Agulhon et al. 2008; Lu et al. 2009; Zorec et al. 2012), as 
well as local and long-distance Ca2+ waves that are propagated through networks of 
astrocytes via gap junctions (Goldberg et al. 2010). In vivo, sensory stimulation to a 
mouse whisker leads to an astroglial Ca2+ response that is dependent upon metabo-
tropic glutamate receptors (mGluRs) (Wang et al. 2006; Halassa and Haydon 2010).
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Signaling from neurons to astrocytes also leads to reciprocal modulation of syn-
aptic and neuronal function by astrocytes themselves (Lu et al. 2009). This bidi-
rectional nature of communication between neurons and astrocytes and its role in 
shaping synaptic function has led to the concept of the tripartite synapse (Araque 
et al. 1999), which is further supported by electron microscopy and reconstruction 
studies illustrating the intimate and intricate physical relationship between neurons 
and astrocytes (Genoud et al. 2006; Witcher et al. 2007; Belanger et al. 2011).

Because changes in synaptic strength and signaling within the reward neuro-
circuitry have been heavily implicated in the cellular pathophysiology of addic-
tion, in particular to cocaine (Stuber et al. 2010; Luscher and Malenka 2011), the 
morphological and functional relationships between neurons and astrocytes indi-
cate the potential for involvement of astrocytes in mechanisms of drug dependence. 
Accordingly, the following sections will in more detail discuss evidence for drug-
dependent changes in glial cell biology in both human addicts and animal models 
of addiction, with consideration for how these changes relate to changes in synaptic 
function.

17.3  Effects of Drug Administration on White Matter 
Volume and Glial Content

Human brain imaging studies have revealed a great deal of information about neu-
ral differences between drug-dependent individuals and healthy, abstinent controls, 
particularly within regions of the PFC (Goldstein and Volkow 2011). Brain matter is 
largely characterized as white and gray matter; white matter is primarily comprised 
of glial cells and myelinated axons, in contrast to neuronal cell bodies, which are the 
major constituent of gray matter (Fowler et al. 2007). Many studies have document-
ed deficits in both volume of both white and gray matter, as well as in metabolic 
activity in the PFC, of human drug abusers (for review see (Fowler et al. 2007)).

For example, a number of studies have revealed significant differences in white 
matter content between drug addicts and healthy controls (Schlaepfer et al. 2006). 
Further, while frontal and temporal white matter volume in humans continues to 
increase until the mid-40s, compared to normal control subjects, cocaine dependent 
subjects do not exhibit an age-dependent increase in white matter volume (Bartzo-
kis et al. 2002). Relatedly, deficits in frontal white matter integrity also appear with 
chronic drug abuse (Lim et al. 2002, 2008). Integrity is a measure revealed by tech-
niques including diffusion tensor imaging, which quantifies directional diffusion 
of molecules along a fiber tract, providing an indicator of fiber structure and con-
nectivity (Le Bihan et al. 2001). White matter integrity across the brain is signifi-
cantly correlated with treatment outcome for cocaine dependence (Xu et al. 2010); 
relatedly, frontal lobe white matter integrity at the start of treatment is a predictor of 
alcohol relapse 6 months later (Sorg et al. 2012). Collectively, these studies indicate 
that structural deficits in white matter, composed largely of glia, correlate with cor-
tical structural deficits in addicted individuals.
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Other studies have reported decreased gray matter measured in a variety of brain 
regions within cocaine-dependent subjects (Bartzokis et al. 2000; Franklin et al. 
2002; Sim et al. 2007). Prolonged cocaine abuse has been postulated to represent an 
accelerated aging process with respect to reduction in gray matter volume (Bartzo-
kis et al. 2000; Ersche et al. 2013). Indeed, the rate of loss of cortical and subcortical 
gray matter volume in cocaine-dependent subjects is almost twice that of healthy 
age-matched subjects (Ersche et al. 2013) and accelerated age-dependent loss of 
gray and white matter has also been reported in chronic alcoholics (Pfefferbaum 
et al. 1992).

What is the implication of a prefrontal white matter deficit? Deficient prefrontal 
cognitive control is a hallmark feature of addiction (Goldstein and Volkow 2002; 
Kalivas and Volkow 2005; George and Koob 2010). Impairments of this nature are 
correlated with increased measures of impulsivity and loss of executive control; for 
example, decreased frontal and parietal cortex white matter integrity of cocaine-
dependent subjects correlates with impaired performs on the Iowa Gambling Task, 
suggesting that white matter integrity may well be functionally related to functional 
impairments in decision making (Lane et al. 2010). However, it is difficult using 
human studies to dissociate correlation with causation in the relationship between 
white matter content and integrity with impaired executive function. Furthermore, 
in all human imaging studies, changes identified between drug-dependent and 
healthy controls cannot be differentiated between drug-related changes and pre-ex-
isting difference which might serve a correlative or causative relationship. As such, 
preclinical animal models serve a valuable function to allow comparison between 
naïve baseline and changes which develop with drug experience. Moreover, hu-
man studies are confounded by complexity of single drug versus polydrug abusers, 
length and severity of drug abuse, and other environmental factors and individual 
differences. These confounds underscore the importance of animal models in un-
derstanding the cellular mechanisms responsible for addiction-related behaviors.

In a more limited scope of studies, these principles have been recapitulated in 
preclinical animal models. For example, diffusion tensor imaging of chronic co-
caine treated rats has revealed a significant decrease in white matter integrity of 
the corpus callosum compared to saline controls; a decrease in myelin-associated 
protein in the same region was also observed (Narayana et al. 2009). In a separate 
study, rats trained to self-administer cocaine demonstrated impairment in a work-
ing memory task, which was correlated with decreased counts of both neurons 
and oligodendrocytes in the PFC (George et al. 2008). Moreover, drug seeking 
by rats trained to self-administer cocaine who choose drug seeking despite an ad-
verse consequence (foot shock) was reversed by stimulation of prefrontal cortical 
activity (Chen et al. 2013), providing an analog of the hypofrontality observed in 
human addicts. Future studies will be necessary to further ascertain the relation-
ship between drug abuse, white matter content, and compulsive drug seeking. If 
then, chronic drug use leads to deficiencies in white and/or gray matter, it be-
comes important to understand the cellular mechanism(s) by which this may oc-
cur, and whether targeting these mechanisms may represent a means of treatment 
intervention for addiction.
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17.4  Effects of Drug Administration on Properties  
of Astrocytes

17.4.1  Astroglial Inflammation

While functional imaging studies provide important insight into changes at the level 
of circuitry and anatomy, changes in expression and function of specific proteins 
provides additional information on glial consequences of drug exposure. A number 
of studies in preclinical animal models of drug abuse and addiction have demon-
strated increased measures for astrocyte activation. For example, increased glial fi-
brillary acidic protein (GFAP) expression within the reward neurocircuitry has been 
observed following exposure to cocaine (Fattore et al. 2002; Bowers and Kalivas 
2003), methamphetamine (Guilarte et al. 2003; Friend and Keefe 2013), morphine 
(Beitner-Johnson et al. 1993; Song and Zhao 2001), and alcohol (Fletcher and Shain 
1993; Goodlett et al. 1993; Franke 1995; Tagliaferro et al. 2002; Vongvatcharanon 
et al. 2010). Increased GFAP expression is a hallmark feature of inflammation (or 
activation) of astrocytes (Pekny and Nilsson 2005; Sofroniew 2009; Sofroniew and 
Vinters 2010) and hence may reflect enduring cellular inflammation initiated by 
drug exposure. In some cases, however, long-term alcohol exposure has also been 
associated with a decline in GFAP expression and astrocyte complexity (Franke 
1995; Rintala et al. 2001). Detailed histological analysis on postmortem alcohol-
ic human brains have revealed enlarged cell bodies but also patch-like losses in 
GFAP-positive cells (Cullen and Halliday 1994; Miguel-Hidalgo 2005), indicating 
a complexity of cellular effects. Nonetheless, many studies have revealed that expo-
sure to drugs of abuse leads to glial inflammation and activation of innate immune 
response (for reviews see (Watkins et al. 2005, 2009; Crews et al. 2011)).

17.4.2  Blood-Brain Barrier Integrity

Psychostimulant abuse has also been well documented to lead to breakdown of the 
blood brain barrier (BBB)(Kousik et al. 2012). The BBB is a physical barrier to the 
central nervous system (CNS) formed by brain endothelial cells interacting with 
pericytes, basement membrane of the vasculature, and astrocytes (Banerjee and 
Bhat 2007; Abbott et al. 2010; Krueger and Bechmann 2010; Kousik et al. 2012). 
The tight association of astrocyte end-feet with vasculature is a critical component, 
and astroglial inflammation can lead to perturbation of BBB integrity. Permeabil-
ity of the BBB for any reason leads to vulnerability to CNS exposure to a variety 
of chemical and biological insults, from which it is normally protected. A good 
example is the fact that mounting evidence indicates increased vulnerability of the 
nervous system to HIV infection in psychostimulant abusers (Rippeth et al. 2004; 
Buch et al. 2012). HIV infection within the brain in turn leads to an increased inci-
dence of neuro-AIDS, a condition characterized by generalized neurologic deficits 
secondary to HIV infection (Buch et al. 2012; Hauser et al. 2012). The abuse of 



404 K. J. Reissner and P. W. Kalivas

psychstimulants such as cocaine and methamphetamine leads to glial inflammation 
and permeability of the BBB, enhanced vulnerability to HIV infection and other 
opportunistic viruses and pathogens.

17.4.3  Astroglial Glutamate Transport: A Critical Mediator  
of Drug Seeking

Among the most widely reported astroglial changes following self-administration of 
drugs of abuse is downregulation of the high affinity glutamate transporter EAAT2/
GLT-1 (Reissner and Kalivas 2010). Downregulation of GLT-1 is frequently associ-
ated with activated astrocytes, particularly following injury (Binns et al. 2005; Pe-
kny and Nilsson 2005; Cata et al. 2006; Tawfik et al. 2008). GLT-1 is downregulated 
in the NAc following self-administration and withdrawal from cocaine (Knackstedt 
et al. 2010; Fischer-Smith et al. 2012), nicotine (Gipson et al. 2013), and heroin 
(Shen et al. personal communication). Results following alcohol exposure are more 
complex; however, in one study 24 h after 7 days alcohol exposure, higher basal 
extracellular glutamate levels and corresponding decrease in glutamate uptake was 
reported in the NAc (Melendez et al. 2005), which is consistent with other stud-
ies reporting chronic increases in basal extracellular glutamate levels (Mann et al. 
2008). Moreover, chronic self-administration in alcohol-preferring rats results in 
decreased GLT-1 protein levels in the NAc; treatment with ceftriaxone reversed this 
decreased, as well as measures of alcohol seeking in alcohol-preferring rats (Qrun-
fleh et al. 2013; Sari et al. 2013).

GLT-1/EAAT2 is a member of the EAAT family of high affinity glutamate trans-
porters (Danbolt 2001), and rapid glutamate uptake is important for the tight regu-
lation of synaptic glutamate concentrations and the prevention of synaptic excito-
toxicity (Danbolt 2001; Jiang and Amara 2011). In addition, impaired clearance of 
glutamate from the synaptic cleft can impact decay currents of ionotropic glutamate 
receptors, indicating that at sub-excitotoxic levels, changes in glutamate concentra-
tions resulting from altered transporter function can shape neuronal currents (Tz-
ingounis and Wadiche 2007). Importantly, restored expression of GLT-1 is associ-
ated with decreased measures of cocaine seeking (Baker et al. 2003; Knackstedt 
et al. 2010; Reissner et al. 2014).

Interestingly, besides following drug abuse, EAAT2/GLT-1 levels and transport-
er-dependent glutamate uptake are also decreased in aged rodent brains (Wheeler 
and Ondo 1986; Najlerahim et al. 1990; Saransaari and Oja 1995; Vatassery et al. 
1998; Potier et al. 2010) as well as in aged brains in a transgenic mouse model 
of Huntington’s Disease (Behrens et al. 2002) and in postmortem brains from Al-
zheimer’s Disease (AD) patients (Masliah et al. 1996; Jacob et al. 2007; Simpson 
et al. 2010; Woltjer et al. 2010). Moreover, heterozygous-deficient GLT-1 (+/−) 
mice crossed with a double transgenic AD model mouse demonstrated an earlier 
onset of memory deficits compared with the AD model mouse with a wild-type 
GLT-1 genotype (Mookherjee et al. 2011). These findings collectively indicate that 
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impaired GLT-1 expression and function may contribute to age-dependent synap-
tic and cognitive impairment, and is supportive of the idea that cocaine-dependent 
changes may accelerate the aging process (Ersche et al. 2013).

While synaptic glutamate levels are predominantly controlled by GLT-1, basal 
extracellular glutamate levels are correspondingly largely controlled by the action 
of the cystine-glutamate exchanger, system xc− (Baker et al. 2002a, b). System xc− 
is composed of a small, catalytic subunit, xCT, and a large subunit, NF2 (Lim and 
Donaldson 2011; Lewerenz et al. 2013). While some neuronal expression of system 
xc− has been reported, it is predominantly astroglial. Hence, extracellular glutamate 
levels are controlled by release of glutamate via system xc−, and uptake by EAATs 
(largely GLT-1 in adult rodents). Interestingly, while expression of both xCT and 
GLT-1 are decreased following cocaine self-administration and extinction training 
(Knackstedt et al. 2010), net basal extracellular glutamate levels are decreased, in-
dicating that expression of xc− may be the more dominant toward controlling basal 
extracellular levels measured via microdialysis (Baker et al. 2003). This has led 
to a model in which basal levels are decreased by suppressed xCT, but synaptic 
levels are increased following glutamate release, due to the compromised synaptic 
uptake cause by impaired GLT-1 function and expression (Fig. 17.2) (McFarland 
et al. 2003).

A consequent dysregulation of synaptic and extrasynaptic glutamate levels fol-
lowing suppression of xCT and GLT-1 has considerable consequences on cellular 
function (Kalivas 2009). Decreased basal levels of extracellular glutamate (due to 
decreased xCT) lead to decreased tone on presynaptic inhibitory mGluR2/3 recep-
tors, which results in increased glutamatergic transmission. Activity of glutama-
tergic PFC innervation of medium spiny neurons of the NAc is a driving force of 
reinstatement to numerous drugs of abuse, and pharmacological agonism of these 
presynaptic mGluR2/3 receptors (or antagonism of postsynaptic excitatory gluta-
mate receptors) can block reinstatement (Moussawi and Kalivas 2010; Reissner 
and Kalivas 2010). Hence, the decreased expression of xCT and GLT-1 leads to a 
combinatorial effect on the cellular controls designed to regulate synaptic input to 
the NAc.

Extracellular glutamate levels appear not only to mediate tone on neuronal re-
ceptors, but can also stimulate Ca2+ oscillations in astrocytes via stimulation of 
mGluR receptors, as discussed in the preceding section. This Ca2+-dependent 
glutamate transmission from astrocytes leads to N-methyl D-aspartate receptors 
(NMDARs)-mediated slow inward currents (SICs) on medium spiny neurons in 
the NAc (D’Ascenzo et al. 2007). What is the behavioral consequence of changes 
in glutamate transmission from astrocytes? One clue comes from transgenic mice 
engineered to express a dominant negative vesicle protein in astrocytes; these mice 
demonstrate impaired cocaine-induced reinstatement of conditioned place prefer-
ence, as well as cue-induced reinstatement in a self-administration paradigm (Turn-
er et al. 2013). These findings are consistent with a model in which glutamatergic 
gliotransmission may mediate the cellular pathology of addiction. However, more 
studies will be required to fully understand the consequences of impairments of 
gliotransmission following drug abuse.
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Fig. 17.2  Cystine/glutamate exchange and glutamate uptake regulate synaptic and extrasynaptic 
glutamate levels. Both the glutamate transporter GLT-1 and glutamate exchanger catalytic subunit 
xCT are reduced following chronic self-administration and extinction. Ca2+-dependent glutamate 
release from astrocytes is also documented, although cystine/glutamate (Cys/Glu)exchange is the 
primary source (Baker et al. 2002a; Haydon et al. 2009). Synaptic glutamate levels ( 1) are tightly 
controlled within the sub-micromolar range at rest (during synaptic transmission glutamate can 
raise to ~ 1.1 mM), whereas extrasynaptic levels ( 2) can approach the 20 µM range. Reduced 
expression of xCT will lead to decreased basal extrasynaptic levels, and hence reduced tone of 
presynaptic inhibitory mGluR2/3 receptors. This leads to increased glutamate release (and hence, 
synaptic levels) within the NAc during cocaine seeking, which is exacerbated by reduced GLT-1 
expression. Inotropic glutamate, AMPA (α-amino-3-hydroxy-5-methyl-isoxazole propionate) and 
NMDA, receptors are shown. (Figure reproduced with permission from (Moussawi et al. 2011))
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17.5  Beyond Astrocytes: Effects of Drug Administration 
on Oligodendrocytes and Microglia

In addition to cellular adaptations within astrocytes, drug-dependent changes in oli-
godendrocytes and microglia have been reported. Withdrawal from chronic cocaine 
administration is associated with decreased expression of white matter proteins in 
the NAc including myelin basic protein, proteolipid protein (PLP), myelin oligo-
dendrocyte glycoprotein, and myelin associated glycoprotein, which is prevented 
by treatment with the β-lactam antibiotic ceftriaxone (Kovalevich et al. 2012). As 
mentioned above, ceftriaxone is a known inducer of GLT-1 expression (Rothstein 
et al. 2005), and is effective at preventing reinstatement of cocaine (Sari et al. 2009; 
Knackstedt et al. 2010; Fischer et al. 2013). Interestingly, postmortem gene expres-
sion profiling in NAc tissue from human addicts has revealed a decrease in mRNA 
coding for myelin-associated proteins, including myelin basic protein and PLP1 
(Albertson et al. 2004; Bannon et al. 2005). In a separate study, a decrease in PLP1 
was confirmed by in situ hybridization in the ventral caudate, putamen, and internal 
capsule of postmortem tissue from human cocaine abusers (Kristiansen et al. 2009).

As stated in the preceding section, it is well documented that activation of glial 
cells occurs in response to opioid exposure. However, in contrast to the analgesic ef-
fects of opioids that are mediated through opioid receptors, activation of glial cells 
appears to occur via toll-like receptors (TLRs) and mediate nonanalgesic effects of 
opioids (Hutchinson et al. 2011). TLRs are microbe receptors expressed on immune 
cells, named for homology to the Drosophila Toll protein (Anderson et al. 1985; 
Lemaitre et al. 1996). The signaling of TLRs is a critical component in activating an 
immune response (Hanke and Kielian 2011). Within the CNS, TLRs are expressed 
predominantly on microglia, but are found on activated astrocytes as well, and on 
oligodendrocytes and neurons to a lesser degree (Hanke and Kielian 2011). TLR4 
serves as the receptor for lipopolysaccharide, which has allowed for elucidation of a 
complex downstream signaling cascade leading to increased transcriptional regula-
tion by nuclear factor kappa-light-chain-enhancer of activated B cells (Kawai and 
Akira 2006). Activation of the TLR4 receptor in response to opioid exposure in vivo 
opposes the analgesic effects and is responsible for opioid-induced hyperalgesia, or 
hypersensitivity to pain that often occurs after long term opioid use and abuse and 
in fact oppose the analgesic effects mediated through opioid receptor (Ossipov et al. 
2005; Buchanan et al. 2010). Effects of opioid versus TLR actions can be dissoci-
ated using (−) and (+) stereoisomers of opioid agonists and antagonists; while TLRs 
are nonstereoselective, opioid receptors only bind to (−)-isomers. Genetic deletion 
or pharmacological inhibition of TLR4 receptors with (+)-naloxone impair opioid-
induced CPP and reduce opioid self-administration (Hutchinson et al. 2012).
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17.6  Modulation of Neuronal Cell Biology  
by Glial-derived Factors

17.6.1  GDNF, A Negative Regulator of Drug Reward

In the preceding section, we introduced the concept of glutamatergic gliotransmis-
sion, and how the regulation of glutamate release and uptake by astrocytes may con-
tribute to disruptions in glutamate homeostasis and drug-induced cellular patholo-
gies (Cali et al. 2009). Importantly, glial cells and in particular astrocytes secrete 
many proteins and molecules in addition to glutamate which may also be adaptive 
or inflammatory in response to a protracted drug history. For example, glial cell 
line-derived neurotrophic factor (GDNF) is a member of the transforming growth 
factor-βfamily of growth factors that, despite its glio-centric name, is expressed in 
a variety of cell types including astrocytes, microglia, and neurons (Schaar et al. 
1993; Pochon et al. 1997). GDNF is predominantly expressed within the basal fore-
brain, substantia nigra, and striatum, and was initially isolated on the basis of its 
ability as a component of astrocytes to selectively protect DA neurons of the sub-
stantia nigra in culture (O’Malley et al. 1992; Schaar et al. 1993; Duarte et al. 2012). 
A number of studies collectively indicate that GDNF action opposes drug taking, 
as well as the effects of chronic exposure on seeking of multiple drugs of abuse 
(Pierce and Bari 2001; Carnicella and Ron 2009; Ghitza et al. 2010). However, 
manipulation of GDNF expression and activity in the VTA promotes the incubation 
of cocaine craving (Lu et al. 2009) but not heroin craving (Airavaara et al. 2011), 
indicating the different roles may exist in difference brain regions and at different 
times following drug exposure.

17.6.2  Gliotransmitters: Beyond Glutamate

D-serine is a naturally occurring amino acid transmitter mainly released by astro-
cytes (and neurons in some brain regions), and is a co-agonist for NMDA recep-
tors (Ben Achour and Pascual 2012; Radzishevsky et al. 2013). Stimulation of 
NMDARs by D-serine is necessary for hippocampal NMDA-dependent long-term 
potentiation. Relatedly, D-cycloserine (DCS) is a broad spectrum antibiotic and par-
tial agonist at the glycine site of NMDA receptors, with functions as a cognitive 
enhancer and anticonvulsant (Ohno and Watanabe 1996; Wlaz et al. 1996; Myers 
and Carlezon 2012), and is under investigation as a treatment for substance use 
disorder (Olive et al. 2012).

A growing body of evidence suggests that administration of either D-serine 
or DCS may reduce drug seeking. Reduced D-Serine levels are observed in the 
NAc following cocaine administration (Curcio et al. 2013). Further, perfusion of 
D-Serine in the bath of NAc core slice electrophysiology restored the ability to 
induce long-term potentiation and depression. Relatedly, microinjection of D-Ser-
ine in the NAc blocked behavioral sensitization to cocaine. D-Serine administered 
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systemically prior to or immediately after extinction training sessions significantly 
reduces the reinstatement of cocaine seeking (Kelamangalath and Wagner 2010). 
Similarly, systemic administration of D-serine or DCS blocks expression of cocaine 
conditioned place preference (CPP) (Yang et al. 2013). DCS facilitates extinction of 
cocaine CPP (Botreau et al. 2006). Moreover, the effect of DCS can be long-lasting 
and reduce reinstatement of the CPP behavior (Paolone et al. 2009; Thanos et al. 
2009). A Phase 2, “D-Serine for Cocaine Dependence Pilot” clinical study is cur-
rently underway (http://www.clinical trials.gov NCT01715051).

Besides glutamate and D-Serine, ATP is an additional gliotransmitter released 
by astrocytes. Extracellular adenosine is largely derived from astroglial ATP, acting 
on neuronal adenosine receptors. Evidence exists for a role of adenosine receptors, 
in particular A2A receptors, in the rewarding effects of drugs of abuse, and in rein-
statement to drug seeking (Soria et al. 2006; Brown et al. 2009; O’Neill et al. 2012).

17.7  Glial Cells: An Emerging Pharmacotherapeutic 
Target for Addiction

The study described above illustrates the potential for astrocyte-derived D-serine 
as pharmacotherapy for substance abuse disorder. D-serine is one of a number of 
examples of therapies based in glial cell biology, and adaptions in neuron-glial 
signaling (Cooper et al. 2012). For example, as stated previously, at least three 
compounds known to induce expression of GLT-1 are also under investigation as 
addiction therapies. N-acetylcysteine, ceftriaxone, and propentofylline are all com-
pounds of separate classes which upregulate GLT-1, and suppress reinstatement to 
cocaine(Baker et al. 2003; Sari et al. 2009; Knackstedt et al. 2010; Reissner et al. 
2014). Human clinical trials indicate safety and efficacy of N-acetylcysteine against 
drug use for nicotine, cocaine, and cannabis (LaRowe et al. 2007, 2013; Knackstedt 
et al. 2009; Gray et al. 2012; Berk et al. 2013). Further, the restored expression of 
GLT-1 is necessary in order for propentofylline to effectively block reinstatement to 
cocaine (Reissner et al. 2014). Thus, while the field of gliobiology in drug abuse is 
in a relatively early stage, credible evidence already exists to support the hypothesis 
that targeting glial physiology affects neuronal cell biology and drug craving.

 Conclusions and Perspectives

There is no question that both acute and chronic exposure to drugs of abuse leads 
to changes in astrocytes, oligodendrocytes, and microglia, within regions heavily 
implicated in reward neurocircuitry. However, our understanding of the effects of 
drug-dependent changes in glial structure and activity is at an early stage. Impor-
tant questions remain to be addressed, such as: what are the relationships between 
changes in expression of myelin-related genes, deficits in white matter volume and 
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integrity, and compulsive drug seeking? What are the relationships between glial 
inflammation and changes in white matter content, or between drug-dependent 
changes in astrocyte physiology and neuronal synaptic communication? These 
questions will be central toward future progress in understanding and treating ad-
diction as a brain disease.
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