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Abstract  Postmortem studies of schizophrenia have historically been focused on 
abnormalities of neurons, with only a small but growing body of work focused on 
astroglia. The limitations of this approach are reflected by the recent failed effi-
cacy of several neuron-centric pharmacological treatments. In this chapter, we will 
review glutamate neurochemistry and present a novel hypothesis related to astro-
cyte dysfunction in schizophrenia. We posit that plasma membrane glutamate trans-
porters expressed on astrocytes help partition extrasynaptic regions, where pools of 
extracellular glutamate may be tightly regulated. These so-called “glutamate micro-
domains” may impact excitatory neurotransmission via modulation of extrasynaptic 
glutamate receptors. This hypothesis is supported by structural, biochemical and 
electrophysiological evidence, which suggests that the fidelity of these domains 
could be altered in severe mental illness.

Keywords  Schizophrenia · Psychosis · Glutamate transporter · Microdomain · 
Glutamate spillover
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16.1 � Introduction

The study of severe mental illness includes materials/data obtained from living pa-
tients, animal models, and postmortem studies using brain tissues from afflicted 
patients. This review will primarily focus on postmortem studies that inform the 
hypothesis that remodeling of astroglial processes leads to glutamate spillover in 
glutamate circuits. We also argue that there are specialized extracellular regions, 
or microdomains, where glutamate levels are tightly regulated and contribute to 
astrocyte-neuron interactions via modulation of extrasynaptic glutamate receptors. 
We will present data that argue for an abnormality of extracellular glutamate micro-
domains secondary to astroglial deficits found in the brain in schizophrenia.

The focus of this chapter on astrocyte-associated changes in schizophrenia rep-
resents an important extension of the glutamate hypothesis of schizophrenia beyond 
the N-methyl-D-aspartate (NMDA) receptor signaling complex. For decades, the 
prevailing hypotheses of schizophrenia were centered on neurotransmitter receptor 
dysfunction, first with D2 dopamine receptors, and more recently NMDA subtype 
of glutamate receptors. Studies focused on these hypotheses explored how changes 
in neurotransmitter receptors, localized to the postsynaptic density (PSD) or pre-
synaptic structures on neurons, contributed to the pathophysiology of severe mental 
illness (reviewed in (McCullumsmith et al. 2004a)). In general, the interpretation 
of the data in these studies is biased towards the view that observed changes in 
variables such as measures of receptor subunit gene expression reflect a primary 
deficit in pre- or postsynaptic neurons. In the sections below, we seek to develop a 
more balanced view of the role(s) of astroglia in the pathophysiology of this often 
devastating illness.

16.2 � Glutamate Neurotransmission

Glutamate Release and Reuptake  The process of release, activity as a ligand, and 
reuptake of glutamate involves three distinct cell types: the astrocyte, the presynap-
tic neuron and the postsynaptic neuron (Salt et al. 1996). In the presynaptic neuron, 
glutamine can be converted to glutamate by the enzyme glutaminase, and pack-
aged into vesicles by a family of vesicular glutamate transporters (VGLUT1–3) for 
release into the synapse (Bellocchio et al. 2000; Takamori et al. 2000). Glutamate is 
released into the synapse and may occupy and activate ionotropic [NMDA, α-amino-
3-hydroxy-5-methyl-isoxazole propionate (AMPA), and kainate] or metabotropic 
(mGluR1-8) glutamate receptors on both neurons and astrocytes (Hollmann and 
Heinemann 1994; Hollmann et  al. 1994; Salt et  al. 1996). Glutamate is rapidly 
removed from the synapse by a family of plasma membrane excitatory amino acid 
transporters localized to postsynaptic neurons and astrocytes (Masson et al. 1999b). 
Recovered glutamate may enter the tricarboxylic acid cycle via conversion to alpha-
ketoglutarate by glutamate dehydrogenase, be converted to glutamine by glutamine 
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synthetase and transported back into the synapse, or be released into the extracel-
lular space by a variety of mechanisms (Malarkey and Parpura 2008), including 
the cystine/glutamate antiporter. In astrocytes, glutamate may also be added to this 
cycle via de novo synthesis of glutamate in a pathway involving pyruvate carbox-
ylase and transaminases (Brainard et al. 1989; Patel et al. 2001; McKenna 2011). 
Recovered glutamate can also contribute to formation of lactic acid. Lactate produc-
tion is favored in astrocytes, while lactate breakdown is favored in neurons (Stobart 
and Anderson 2013). Lactate may be efficiently shuttled from astrocytes to neurons, 
suggesting that lactic acid may be a preferred energy source for neuronal structures 
enveloped by astrocytic processes (Stobart and Anderson 2013). Finally, several 
families of novel glutamate receptor and transporter associated molecules regulate 
glutamate release and reuptake through intracellular signaling mechanisms (Jack-
son et al. 2001; Lin and Maiese 2001; Marie et al. 2002; Watanabe et al. 2003).

Glial Plasma Membrane Glutamate Transporters  The excitatory amino acid trans-
porters (called EAATs in human) are expressed in the plasma membranes of neu-
rons and glia throughout the brain in a region and cell specific manner (Arriza 
et al. 1993; Utsunomiya-Tate et al. 1996). EAATs mediate glutamate transport by 
an electrogenic exchange of 3 Na+, 1 H+, and 1 glutamate (monovalent anion at 
conditions in the brain) molecule into the cell and 1 K+ ion out of the cell, with the 
net inward movement of positive charges (Zerangue and Kavanaugh 1996; Levy 
et al. 1998). EAATs are likely homomers comprised of 2–3 non-covalently linked 
subunits that have 6–10 transmembrane domains (Danbolt 2001). The transporters 
have specific patterns of cellular localization. EAAT1 and EAAT2 have primar-
ily been localized to astroglia. EAAT3–4 and EAAT5 are primarily localized to 
neurons and the retina, respectively (Arriza et al. 1997; Danbolt 2001). In the pre-
frontal cortex, glial transporters (EAAT1 and EAAT2) are predominately expressed 
in discrete subsets of astrocytes which account for approximately 90 % of synaptic 
glutamate reuptake (Regan et al. 2007). The glial transporters are localized to peri-
synaptic processes facing the synaptic cleft (Tzingounis and Wadiche 2007). In the 
rodent, activation of the promoters and expression of EAAT1 (called GLAST in the 
rodent) and EAAT2 (GLT-1 in rodent) is generally nonoverlapping (Regan et al. 
2007). In addition, the GLAST, but not GLT-1, promoter was activated and EAAT1 
expressed in oligodendrocytes, suggesting that EAAT1 has a role in myelination 
and CNS connectivity (Regan et al. 2007). The functional importance, perisynaptic 
localization, and heterogeneity of expression of the glial glutamate transporters sug-
gests that examination of the expression and function of these molecules may be a 
high yield target for studies of neuropsychiatric illnesses that involve alterations in 
glutamate transmission.

EAAT Expression, Processing, and Trafficking  EAATs are synthesized in the endo-
plasmic reticulum and have extensive posttranslational modification in the Golgi, 
including N-linked glycosidation of at least two sites that are important for homo-
multimer formation (Kalandadze et  al. 2004). EAATs are then trafficked to the 
plasma membrane where, localization and clustering are regulated by protein-pro-
tein interactions and phosphorylation (Conradt and Stoffel 1997; Figiel and Engele 
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2000; Gamboa and Ortega 2002; Schluter et al. 2002; Figiel et al. 2003). Ultrastruc-
tural studies indicate that most EAAT1-2 expression is in the plasma membrane 
(Chaudhry et al. 1995). EAATs may be removed from the plasma membrane via 
endocytosis and shuttled back to the cell surface via recycling endosomes, or be 
targeted for degradation in lysosomes (Nakagawa et al. 2008).

Extracellular Glutamate  Glutamate released at the presynaptic terminal diffuses 
out of the synaptic cleft and may be transported into the astrocyte by EAATs or 
spillover to extrasynaptic areas (Masson et al. 1999a; Bridges et al. 2012). Extra-
synaptic glutamate may also originate from astrocytes via vesicular release, the 
cystine/glutamate antiporter (also known as the system Xc

−), or other less prominent 
mechanisms (Montana et al. 2004; Haydon and Carmignoto 2006; Bridges et al. 
2012). The cystine/glutamate antiporter releases glutamate and transports cystine 
into the astrocyte for glutathione synthesis. Glutamate levels in the extracellular 
milieu are postulated to be tightly regulated, as activation of extrasynaptic gluta-
mate receptors has potent effects. For example, activation of extrasynaptic NMDA 
receptors promotes initiation of NMDA spikes, while long-term potentiation (LTP) 
and long-term depression (LTD) can be readily induced in the adult cortex by acti-
vation of extrasynaptic GluN2B containing NMDA receptors (Massie et al. 2008; 
Chalifoux and Carter 2011).

Removal of glutamate from the synaptic cleft may be conceptualized as a two-
step process, involving first the high affinity binding of glutamate by perisynaptic 
transporters, and second the transport of bound glutamate by the transporter across 
the plasma membrane (Tong and Jahr 1994; Tzingounis and Wadiche 2007). Once 
bound, glutamate may be “unbound” or released, or alternatively, transported across 
the plasma membrane (Tong and Jahr 1994; Tzingounis and Wadiche 2007). The 
“capture efficiency” of the EAATs is defined as the ratio of the rate of unbinding 
of glutamate to rate of transport, which is reported to be about 0.5 (Tzingounis and 
Wadiche 2007). The relatively low rate of transport of bound glutamate compared 
to the capture efficiency suggests that the EAATs first act as buffers for released 
glutamate (Tzingounis and Wadiche 2007). Thus, glutamate molecules may bounce 
from one transporter binding site to another, until transported, limiting glutamate 
spillover from the synaptic cleft.

Glutamate Spillover  The density of perisynaptic glutamate transporter protein, the 
amount of glutamate released, and the rate of glutamate transport determine, in 
part, the kinetics of glutamate diffusion away from the synaptic cleft. While several 
regions have well characterized glutamate spillover between excitatory synapses 
(such as the cerebellum and hippocampus), there is ongoing debate regarding the 
extent of glutamate diffusion in other regions, including the frontal cortex, where 
spillover of glutamate may detrimentally lead to loss of input specificity and activa-
tion of cell death pathways (Kullmann and Asztely 1998; Hardingham and Bading 
2002; Hardingham et al. 2002; Lozovaya et al. 2004a; Tsvetkov et al. 2004; Mar-
caggi and Attwell 2007; Leveille et al. 2008). Under physiologic conditions, release 
of glutamate may exceed the capacity of cortical synapses to remove glutamate 
from the cleft (Weng et al. 2007; Drew et al. 2008). Mathematical models suggest 
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that glutamate may diffuse and activate NMDA receptors within a radius of 0.5 µm 
from the release point (Rusakov and Kullmann 1998). Thus, the spatial arrangement 
of glutamate synapses, their glutamate transporter buffering zones, and extrasynap-
tic glutamate receptors will determine the extent and effect of glutamate spillover 
(Lehre and Danbolt 1998; Sem’yanov 2005; Weng et al. 2007).

Glutamate Microdomains  We posit that glutamate microdomains are formed by 
specialized protein clusters on the membranes of astrocytic processes apposed to 
extrasynaptic glutamate receptors expressed on specialized regions of neuronal 
membranes (Fig. 16.1) (Grosche et al. 1999; Genda et al. 2011). Diffusion of glu-
tamate between domains or domains and synapses would be limited by the dense 
expression of glutamate transporters between these specialized structures (Lehre 
and Danbolt 1998).

Extrasynaptic Glutamate Receptors  The G protein-linked mGluRs have a central 
role in regulating synaptic glutamate. mGluRs are expressed perisynaptically, and 
activation of mGluR2/3 receptors decreases presynaptic glutamate release (Schoepp 
2001). Thus, activation of mGluRs may serve as a brake on glutamate spillover, 
preserving input specificity by diminishing synaptic glutamate levels (Huang and 
Bergles 2004). This mechanism has recently been exploited to develop a highly 
selective mGluR2 agonist that decreases glutamate release (Patil et al. 2007). This 
development suggests a role for the pharmacological modulation of glutamate spill-
over as a treatment for schizophrenia and other illnesses where psychosis is a cen-
tral feature.

16.3 � The Schizophrenia Syndrome

Schizophrenia is most properly considered to be a syndrome, as its specific causes 
are unknown, and the diagnosis is based on the presence of a heterogeneous 
collection of signs and symptoms. There is no blood test, specific genetic marker, or 
cognitive battery that can predict who will develop this illness. The schizophrenia 
phenotype is characterized by the presence of specific clinical findings, often 
divided into positive, negative, and cognitive symptoms (Buchanan et  al. 2000).
Positive symptoms include hallucinations, which are often auditory. Patients report 
that they hear voices that are clearly located outside of their heads, most often 
engaged in a running commentary on their thoughts and behaviors (Kay 1990; 
Badcock 2010). Other common positive symptoms include paranoid delusions and 
disorders of thought processes (Kay 1990; Badcock 2010). Much more debilitating 
are the negative symptoms, which are associated with the diminution of normal 
social behaviors, and include withdrawal, decreased speech, diminished eye 
contact, decreased or muted facial expression and vocal inflection, and diminished 
spontaneous movement (Buchanan et  al. 2000; Fleischhacker 2000). Cognitive 
impairments in this illness include, but are not limited to, deficits in verbal fluency, 
executive function, and working memory (Rajji and Mulsant 2008; Szoke et  al. 



378 D. Shan et al.

Fig. 16.1   Glutamate microdomains may be formed by specialized protein complexes found on 
plasma membranes in extrasynaptic regions where astrocytic and neuronal membranes are apposed 
to one another. Glutamate is released into the synapse ( red shading) where it may bind and activate 
glutamate receptors. Plasma membrane glutamate transporters localized to perisynaptic astroglial 
processes bind and transport glutamate ( green shading). Glutamate levels in extrasynaptic regions 
( yellow shading) may be regulated by glutamate spillover from synapses, release of glutamate 
from astrocytes, as well as reuptake of glutamate by glutamate transporters
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2008; Wobrock et al. 2008; Potkin et al. 2009; Zanello et al. 2009). Few individuals 
suffering from schizophrenia have all of these symptoms, but the persistence of 
several characteristic symptoms, like auditory hallucinations, must be present in 
order for someone to be diagnosed with this disorder (Buchanan et al. 2000).

16.4 � Prevailing Hypotheses of Schizophrenia

For decades, scientists have focused on the dopamine hypothesis of schizophrenia, 
which postulates that dysregulated dopaminergic neurotransmission is a key feature 
of the pathophysiology of the illness. The dopamine hypothesis is based on the ob-
servation that antipsychotics block D2 receptors, and antipsychotic affinity for these 
receptors correlates with the ability to attenuate psychotic symptoms. Although nu-
merous studies point to dopaminergic abnormalities in schizophrenia, dopamine 
dysfunction cannot completely account for all of the symptoms observed, since neu-
roleptics typically are effective only for the positive symptoms of the illness while 
negative symptoms and cognitive deficits are relatively refractory to treatment with 
typical antipsychotics (Joyce and Meador-Woodruff 1997; Laruelle et  al. 1999). 
Consequently, alternative hypotheses that may help explain the pathophysiology of 
schizophrenia have been sought.

While the dopaminergic neurotransmitter system was implicated due to the ef-
fects of antipsychotic drugs, this system does, of course, not act in isolation. Do-
pamine receptors are found throughout the brain, where they modulate excitatory 
and inhibitory neurotransmission via G-protein signaling pathways. Blockade of 
dopamine receptors in corticolimbic circuits directly alters release of other neu-
rotransmitters including glutamate and γ-aminobutyric acid (GABA). Not surpris-
ingly, extensive postmortem studies have found changes in glutamatergic and GA-
BAergic systems in this illness (Alda et al. 1996; Lewis et al. 2004; Deep-Soboslay 
et al. 2011; McCullumsmith and Meador-Woodruff 2011). However, evidence for 
involvement of glutamate receptor dysfunction, in particular the NMDA-subtype 
glutamate receptor, suggests a prominent role for glutamatergic abnormalities. 
NMDA receptor antagonists (but not GABA receptor antagonists) can induce both 
the positive and negative symptoms of schizophrenia, including cognitive deficits 
(Javitt and Zukin 1991; Tamminga 1999). Moreover, these compounds can exacer-
bate both positive and negative symptoms in schizophrenia (Lahti and Tamminga 
1995). Chronic administration of phencyclidine (PCP)-like compounds induces a 
persistent psychotic symptomatology (Tsai and Coyle 2002) and reduces frontal 
lobe blood flow and glucose utilization, which is remarkably similar to the “hypo-
frontality” described in schizophrenia (Hertzmann et al. 1990).

Despite these observations, the complexity of schizophrenia is not readily ex-
plained by a static neurochemical model. The onset of schizophrenia is typically 
in late adolescence or early adulthood (Alda et al. 1996). The onset of positive and 
negative symptoms in a previously normally functioning person, coupled with a life-
time of waxing and waning symptoms, accompanied by the possibility of a steady 
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decline in social, occupational, and cognitive functioning, has led to longitudinal 
neurodevelopmental models that take into account genetic and environmental fac-
tors (Marenco and Weinberger 2000). Data supporting the neurodevelopmental hy-
pothesis include studies suggesting that schizophrenia is associated with late winter 
births in urban environments, as well as a number of other prenatal, perinatal, and 
postnatal events (Marenco and Weinberger 2000; Lewis and Levitt 2002). Schizo-
phrenia is perhaps best considered a disorder of neuroplasticity (McCullumsmith 
et al. 2004a). Plasticity refers to the ability of a system to affect reversible, long 
term changes in response to stimuli. Molecular correlates of learning and memory, 
including LTP and LTD, likely facilitate neuroplasticity in the brain. These pro-
cesses are significantly impaired in severe mental illnesses, including schizophrenia 
(Malenka and Nicoll 1999; McCullumsmith et al. 2004b; Talbot et al. 2009). Gluta-
mate transmission is a central component of LTP and LTD and, hence, has a central 
role in plasticity.

16.5 � Glutamatergic Abnormalities in Schizophrenia

A number of studies have evaluated glutamate neurotransmission is schizophre-
nia using different approaches. In this section, we first discuss data from magnetic 
resonance spectroscopy (MRS), a technique which is largely focused on measuring 
glutamate, glutamine, and associated metabolites in specific brain regions of living 
patients. A strength of these studies is that the data are collected from afflicted indi-
viduals relatively close in time to the onset of the illness, while postmortem studies 
are examining brain tissues from more aged individuals who have had a lifetime of 
psychiatric illness. Next, we will briefly discuss data from postmortem studies, with 
a particular focus on extrasynaptic glutamate receptors and astroglial transporters.

Magnetic Resonance Spectroscopy Findings in Schizophrenia  The balance of 
studies using MRS to examine glutamate, glutamine, N-acetylaspartate (NAA), 
and other metabolic intermediates have yielded mixed results (Bartha et al. 1997; 
Deicken et al. 1997; Theberge et al. 2002; Hutcheson et al. 2012; Kraguljac et al. 
2012b). While a couple of studies have found changes in glutamate in schizophre-
nia, one large meta-analysis found decreases in the glutamate metabolite NAA in 
the basal ganglia and frontal lobe (Kraguljac et  al. 2012a, b). Changes in NAA 
levels suggest abnormalities of glutamate synthesis and/or cycling in schizophre-
nia (Clark et al. 2006). A different meta-analysis found decreased glutamate and 
decreased glutamine in the medial frontal cortex in schizophrenia, suggesting that 
glutamate neurotransmission is diminished in this illness (Marsman et  al. 2011). 
One interesting finding from these studies is the loss of correlation between NAA 
and glutamate levels in subjects with schizophrenia, compared to disease-free con-
trol subjects (Hutcheson et al. 2012; Kraguljac et al. 2012a). Taken together with the 
meta-analyses, these data suggest a significant abnormality in the glutamate/gluta-
mine cycle in limbic circuits in schizophrenia. One limitation of the MRS approach 
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is that it measures all glutamate, glutamine or NAA without regard for it/them being 
intra or extracellular. For example, there may be a global increase in glutamine in 
the anterior cingulate cortex, with a large increase in intracellular pools and a small 
decrease in extracellular levels.

Abnormalities of Glutamatergic Enzymes in Schizophrenia  There are several key 
enzymes involved in the glutamate/glutamine cycle as well as the synthesis or 
break-down of glutamate. Changes in enzymes levels may impact the amount of 
glutamate available for release from neurons and glial cells. Several studies have 
found decreased expression of carboxypeptidase II (binding and activity), gluta-
minase (mRNA), and glutamine synthetase (mRNA and protein) in limbic regions 
in schizophrenia (Burbaeva et al. 1999; Goff and Coyle 2001; Laruelle et al. 2003; 
Bruneau et al. 2005). Other studies have found increases in glutaminase (mRNA 
and activity) (Gluck et al. 2002; Bruneau et al. 2005). While these data support the 
hypothesis that glutamate synthesis and cycling may be impaired in schizophrenia, 
all of these studies were done at the regional level, and thus fail to capture the com-
plexity of glutamate synapses at the cellular or subcellular level. For example, there 
may be diminished expression of glutamate enzymes in astrocytes, but increased 
expression in pyramidal neurons. Finally, one of the most interesting findings is 
a decrease in the dipeptidase glutamate carboxypeptidase II (GCP II; also known 
as NAALADase) activity in the frontal cortex and hippocampus in schizophrenia. 
GCPII catabolizes N-acetylaspartyl glutamate (NAAG) to glutamate and NAA 
(Ghose et  al. 2004). These findings are consistent with the MRS data discussed 
above, which found decreased levels of NAA. NAAG antagonizes NMDA recep-
tors, and increased levels (secondary to diminished GCP II activity) might contrib-
ute to NMDA receptor hypofunction. One strength of this study is that the authors 
measured enzyme activity, and not just transcript or protein levels, a technically 
demanding approach (Tsai and Coyle 2002).

Glutamate Receptor Abnormalities in Schizophrenia  The observation that PCP 
may cause a schizophreniform psychosis in persons without a prior diagnosis of 
schizophrenia led to investigation of ionotropic glutamate receptor expression in 
schizophrenia. Initial hypotheses were focused on the idea that a loss or hypofunc-
tion of NMDA receptor activity would be reflected by diminished expression of 
NMDA receptor subunits as well as NMDA receptor binding sites. However, on 
balance, studies of NMDA receptor expression in the postmortem brain in schizo-
phrenia have no clear or consistent pattern of findings (McCullumsmith et al. 2012). 
For example, there are over 18 studies of NMDA receptor subunit expression in 
the frontal cortex alone. Other than some changes in binding site expression, 
the hypothesis that there is deficient NMDA receptor expression stands largely 
unproven (McCullumsmith et al. 2012). Similar to NMDA receptors, AMPA and 
kainate receptor studies generally do not have a consistent pattern of abnormali-
ties other than perhaps changes in AMPA receptor GluA2 subunit expression in the 
hippocampus (Tamminga 1999; Meador-Woodruff et  al. 2001a; Harrison 2004). 
Interestingly, administration of PCP, which blocks the NMDA receptor channel, 
leads to increased glutamate release, which may lead to spillover of glutamate from 
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the synaptic cleft to extrasynaptic areas, activating extrasynaptic (non-NMDA) glu-
tamate receptors. This mechanism may simulate/reflect the condition in schizophre-
nia, where impaired astrocyte function leads to diminished glutamate buffering and 
reuptake.

Metabotropic Receptor Expression in Schizophrenia  While there are fewer post-
mortem studies of mGluRs, compared to ionotropic receptors, the data are no 
less contradictory. For example, mGluR3 protein expression has been reported as 
increased, decreased and unchanged in the frontal cortex (Gupta et al. 2005; Corti 
et al. 2007; Ghose et al. 2009; Shan et al. 2012). Genetic linkage studies suggest 
that mGluR5 is involved in schizophrenia, and increased mGluR5 and mGluR1 
transcript and mGluR1 protein expression have been found in prefrontal cortex in 
this illness (Ohnuma et al. 1998; Devon et al. 2001; Gupta et al. 2005; Volk et al. 
 2010).

Abnormalities of Glutamate Transporters in Schizophrenia  Several studies have 
reported region-level changes in the expression of the glial glutamate transporters 
EAAT1 and EAAT2 in schizophrenia. EAAT1 protein expression was decreased 
and EAAT1 glycosylation altered in the dorsolateral prefrontal cortex (DLPFC) 
(Bauer et  al. 2008, 2010). Decreased EAAT1 and EAAT2 protein was found in 
the superior temporal gyrus, while only EAAT2 protein was decreased in the hip-
pocampus (Shan et al. 2013). In contrast to these protein studies, increased levels 
of EAAT1 mRNA were found in the anterior cingulate cortex and thalamus (Smith 
et al. 2001; Bauer et al. 2008; Rao et al. 2012), suggesting a compensatory response 
to diminished glutamate reuptake capacity. Alterations in EAAT2 mRNA have also 
been reported in the hippocampus (decreased) and neocortex (increased, decreased 
and unchanged) in schizophrenia (Ohnuma et al. 1998, 2000; Matute et al. 2005; 
Lauriat et al. 2006; Bauer et al. 2008; Rao et al. 2012).

The neuronal transporters have also been studied. We have previously reported 
increased expression of EAAT3 protein and mRNA in the anterior cingulate cor-
tex, while other studies have measured EAAT3 mRNA expression in the frontal 
cortex (increased), DLPFC (no change) and striatum (decreased) (McCullumsmith 
and Meador-Woodruff 2002; Lauriat et al. 2006; Nudmamud-Thanoi et al. 2007; 
Bauer et al. 2008; Horiuchi et al. 2012; Rao et al. 2012). No changes in EAAT3 
protein levels were detected in the superior temporal gyrus or hippocampus (Shan 
et al. 2013). These conflicting data for neuronal glutamate transporters mirror the 
findings of glutamate receptor subunit expression, and are limited by the likelihood 
that glutamate transporter expression changes may be cell-specific, and change in 
different directions in different populations of cells. These findings have contrib-
uted to reformulation of the glutamate hypothesis of schizophrenia, with the idea 
are changes in glutamate receptor and/or transporter expression in schizophrenia 
is not a problem of too much or too little protein expression, but a problem with 
protein trafficking or signaling. Localization and activity of astroglial-localized 
glutamate transporters is mediated, in part, by protein-protein interactions. Ex-
pression of some of these EAAT-interacting proteins has been assessed in severe  
mental illness.
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EAAT-Interacting Proteins in Schizophrenia  Several glutamate transporter-interacting 
molecules have been identified, including G-protein suppressor pathway 1 (GPS1), 
JWA, ARHGEF11, and KIAA0302 (also called beta III spectrin). These molecules 
can affect glutamate transport function through trafficking, anchoring, phosphoryla-
tion, glycosylation, and degradation of transporters in the brain. For example, GPS1 
decreases EAAT2-mediated glutamate reuptake through a direct protein-protein 
interaction, and levels of GPS1 protein are elevated in the frontal cortex in schizo-
phrenia. These data suggest that there may be normal levels, but decreased activity, 
of a specific transporter due to modulation of transporter function or localization to 
the plasma membrane (Bauer et al. 2008).

In summary, changes in glutamate neurotransmission in schizophrenia point to-
wards complex abnormalities of protein localization and function, contributing to 
the molecular neuropathology that underlies the schizophrenia phenotype.

16.6 � Glutamate Spillover in Schizophrenia

Glutamate Spillover in Schizophrenia  As outlined above, several postmortem stud-
ies have found changes in EAAT expression in schizophrenia, as well as changes 
in the molecules that regulate EAAT localization and activity (Ohnuma et al. 1998, 
2000; Smith et al. 2001; McCullumsmith and Meador-Woodruff 2002; Lauriat et al. 
2006; Bauer et al. 2008). In general, these changes in gene expression are consis-
tent with diminished regional expression of astroglial (but not neuronal) glutamate 
transporter expression and activity. Further, a recent genetic study analyzing copy 
number variants reported a subject with schizophrenia with a deletion of several 
EAAT1 exons (Cook and Scherer 2008). Finally, characterization of the complete 
GLAST (EAAT1) knockout found changes consistent with behavioral endophe-
notypes associated with schizophrenia, including locomotor hyperactivity and 
abnormal social behavior (Karlsson et al. 2008, 2009). Several of these abnormal 
behavioral findings were reversed by administration of antipsychotic medication or 
mGluR2/3 receptor agonist administration, which decreases presynaptic glutamate 
release. These data suggest that there are region-specific deficits in EAAT reuptake 
capacity in schizophrenia, which could lead to glutamate spillover.

Chronic Glutamate Spillover May Lead to Remodeling of Synapses  In the prefron-
tal cortex (PFC) in schizophrenia, there are changes in the structure, composition, 
and numbers of excitatory synapses (Broadbelt et al. 2002; Lewis et al. 2003, 2008). 
Increased packing density, decreased numbers of dendritic spines and diminished 
expression of structural proteins suggest significant alterations of synapses in this 
region (Selemon et al. 1995; Rajkowska et al. 1998, 2002). Several reports have 
found specific alterations in layers III and IV of the PFC, including abnormalities of 
pyramidal cells and interneurons (Hashimoto et al. 2003; Dong et al. 2005; Huang 
and Akbarian 2007; Huang et al. 2007; Lewis et al. 2008). One well-replicated find-
ing is a decrease in parvalbumin-positive interneurons in the middle cortical layers 
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(Lewis et al. 2001; Hashimoto et al. 2003). A lamina-specific deficit in inhibitory 
tone could lead to increased release of glutamate, which ,combined with diminished 
reuptake capacity, could lead to increased glutamate spillover.

Accumulating evidence from postmortem gene expression studies suggests neu-
rochemical alterations consistent with spillover. We have found increased mGluR2/3 
protein in the PFC (Gupta et al. 2005), which may be interpreted as an attempt by 
synapses to decrease spillover by decreasing presynaptic release. Expression of the 
cystine/glutamate antiporter catalytic subunit (xCT) was also increased in the DLP-
FC (Baker et al. 2008). This molecule is expressed on glia and releases glutamate 
into the extrasynaptic space in exchange for uptake of cystine, which is required 
for glutathione synthesis. The effect of increased xCT protein expression on glu-
tamate release is not known, because it is the activity, and not expression level, 
of this molecule that determines the rate of glutamate release. However, changes 
in the expression of xCT minimally suggest abnormalities of the regulation of ex-
tracellular glutamate levels (Baker et al. 2008). Finally, a number of studies have 
also described changes in ionotropic glutamate receptor binding site expression, 
suggesting a change in NMDA and AMPA receptor stoichiometry in the frontal 
cortex in schizophrenia (Akbarian et al. 1996; Healy et al. 1998; Ibrahim et al. 2000; 
Meador-Woodruff et al. 2001b; Beneyto and Meador-Woodruff 2006; Beneyto et al. 
2007; Harney et al. 2008). Interestingly, preclinical studies have shown that gluta-
mate spillover is associated with alterations in ionotropic receptor subunit composi-
tion and function (Lozovaya et al. 2004b; Harney et al. 2008).

We propose that there is remodeling of glutamate synapses in schizophrenia sec-
ondary to glutamate spillover (Fig. 16.2). Glutamate spillover may be secondary 
to increased release (in a misguided attempt to activate “sick” NMDA receptors), 
as well as deficits in glutamate reuptake capacity. In this setting, we would predict 
that perisynaptic localization of glutamate transporters on the plasma membrane of 
astrocytes is diminished, either as a primary deficit in transporter localization, as a 
compensation for increased extrasynaptic glutamate release, or both. Redistribution 
of glutamate transporters on astrocytes would lead or contribute to increased spill-
over, causing excitotoxicity and loss of input specificity. Further, we postulate that 
these deficits are initially relatively subtle but chronic in nature, leading to inap-
propriate remodeling of excitatory synapses, which do not function normally. This 
idea is supported by the phenotype of the GLAST/EAAT1 knockout mice, which 
have moderate cognitive and behavioral impairment, but no morbidity or mortality 
associated with seizures (Watase et al. 1998; Karlsson et al. 2008, 2009).

16.7 � A Role for Glutamate Microdomains

Glutamate Microdomains  Critical to cellular function of proteins is subcel-
lular locality or microenvironment, in which proteins cluster and interact with 
numerous others. These biologically and morphologically discrete microdo-
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mains require tightly regulated trafficking of component proteins and thus orga-
nize the intermolecular environment for proteins and their interactions (Grosche 
et al. 1999; Hemler 2003; Füllekrug and Simons 2004; Tzingounis and Wadiche 
2007; Farr et  al. 2009; Newpher and Ehlers 2009). Evidence for cortical gluta-
mate microdomains is based on several observations: (1) extracellular glutamate 
levels may vary between 0.2–7  µM in the extrasynaptic space in a region- and 
milieu-dependent manner; (2) a large body of work has described localization of 

Fig. 16.2   There are likely a number of primary causes, which yield the constellations of symp-
toms found in schizophrenia. Proximate causes might include NMDA receptor dysfunction or 
abnormalities of glutamate microdomains. The red boxes may be a final common pathway that 
contributes to the phenotype of this syndrome
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functional glutamate receptors outside of synapses; (3) the localization and buff-
ering/transport properties of glutamate transporters strongly suggest partitioning 
of non-synaptic extracellular spaces; (4) several recent studies have characterized 
the functional coupling of protein complexes, structural proteins, organelles, and 
signaling pathways that converge on cellular processes involving glutamate; and 
finally, (5) glial cells may form electronically independent morphological structures 
that ensheath neuronal structures of unknown function (Grosche et al. 1999, 2002; 
Szabadkai and Rizzuto 2007; Spat et al. 2009; Genda et al. 2011). Taken together, 
these data suggest that glutamate microdomains are formed by specialized regions 
of astrocytic processes and neuronal membranes (Fig. 16.1) (Grosche et al. 1999; 
Genda et al. 2011). Glutamate levels within these domains may be determined by 
spillover from synapses or release from astrocytes (Fig. 16.1) (Lehre and Danbolt  
1998).

The composition and function of specialized protein clusters in astrocytes has 
recently been investigated in rodent brain tissues. Using immunoisolation, one 
study found a complex comprised of GLT-1 (the rodent isoform of EAAT2), Na+/
K+-ATPase, hexokinase, and mitochondria (Genda et al. 2011), while another found 
Na+/K+-ATPase, the water channel aquaporin 4, and mGluR5 (Fig. 16.2) (Illariono-
va et al. 2010). Other studies have found functional coupling of glutamate reuptake, 
cytosolic and mitochondrial sodium exchange, and glucose utilization in astrocytes 
(Hertz 2011; Skytt et al. 2012). Interacting partners and ultrastructural localization 
have not been determined for the cystine/glutamate antiporter.

Evidence for Abnormalities of Glutamate Microdomains in Schizophrenia: Struc-
tural Abnormalities  In the frontal cortex in schizophrenia, there are changes in 
volume and cell density suggesting significant alterations in the spatial arrange-
ment of synapses and microdomains in this illness (Selemon et al. 1995; Rajkowska 
et al. 1998, 2002; Broadbelt et al. 2002; Lewis et al. 2003; Lewis and Gonzalez-
Burgos 2008). Specifically, there is thinning of cortical gray matter accompanied 
by decreased density of astrocytes as well as a loss of neuropil, while the balance 
of studies has typically found no changes in the number of neurons (Selemon et al. 
1995; Rajkowska et al. 1998, 2002; Broadbelt et al. 2002; Lewis et al. 2003; Lewis 
and Gonzalez-Burgos 2008). These findings suggest a marked abnormality in the 
ultrastructural elements that account for the large volume of gray matter not occu-
pied by cell bodies or synapses.

Abnormalities of Mitochondria  A few studies have assessed the density of mito-
chondria in schizophrenia. One study found a decrease in the number of mitochon-
dria per synapse in the striatum in treatment-responsive subjects with schizophrenia, 
while another found decreased volume fraction and area density of mitochondria in 
subjects with duration of disease more than 21 years (Uranova et al. 2001; Somer-
ville et al. 2011, 2012). In addition, decreased expression of transcripts for a mito-
chondrial proton transporter were found in the frontal cortex in schizophrenia, and 
association of the glycolytic enzyme hexokinase 1 with mitochondria was decreased 
in the parietal cortex in this illness (Gigante et al. 2011; Regenold et al. 2012). These 
data suggest an abnormality of mitochondrial coupling in schizophrenia, which may 
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reflect an alteration in the association of mitochondria with proteins that comprise 
these domains.

Changes in Glutamate Receptor and Transporter Expression  The changes in 
glutamate receptor and transporter expression detailed above are consistent with 
diminished glutamate reuptake capacity, indicating increased diffusion of glutamate 
between synapses and microdomains. In addition, changes in extrasynaptic expres-
sion of the cystine/glutamate antiporter (which releases glutamate from astrocytes) 
indicate an increased capacity for extrasynaptic release of glutamate (Kristiansen 
and Meador-Woodruff 2005; Baker et al. 2008). Both of these mechanisms could 
lead to increased activation of extrasynaptic glutamate receptors in extracellular 
glutamate microdomains.

�Conclusions

We propose that there is increased activity of extrasynaptic glutamate receptors in 
schizophrenia secondary to increased levels of extrasynaptic glutamate (Fig. 16.2). 
Increased extrasynaptic glutamate may be due to increased presynaptic release and 
spillover (in a misguided attempt to activate sick NMDA receptors in the PSD), 
increased diffusion of glutamate out of the cleft secondary to deficits in glutamate 
buffering and reuptake capacity, and/or increased release of glutamate from astro-
cytes. In this setting, we would predict that integrity of glutamate microdomains 
is disrupted, either as a primary deficit in the assembly and localization of these 
domains, as a compensation for increased synaptic glutamate release and spillover, 
or both. Regardless of the mechanism, we hypothesize that the composition and lo-
calization of astrocytic proteins in glutamate microdomains are abnormal in schizo-
phrenia, leading to pathological neuroplastic changes in the structure and function 
of glutamate circuits in schizophrenia.

Interestingly, several promising trials of various glutamate receptor modula-
tors have failed to yield new pharmacological treatments for schizophrenia, in-
cluding NMDA receptor glycine-site agonists (targeting NMDA receptors in the 
PSD), AMPA receptor modulators, called AMPAkines (targeting AMPA receptors 
in the PSD), and more recently mGluR2 modulators (targeting presynaptic release 
of glutamate). The challenges of developing effective glutamatergic drugs may be 
harder to surmount because the pathosphysiology of excitatory neurotransmission 
in schizophrenia has generally been viewed in a neuron-centric manner. Viewing 
abnormalities of glutamate transmission as a problem of astrocyte dysfunction may 
yield fresh insights for developing pharmacological targets to treat this devastating 
illness.
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