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Abstract  In recent years, microglial cells are becoming to stand in the limelight. 
They may play a major role not only under physiological condition but also under 
many pathophysiological conditions. Manipulating their function may lead to cure 
or attenuation of neurological diseases, traumatic injury, psychiatric disorders, or 
even sleepiness or aging. In this chapter, the properties of microglial cells including 
receptors for neurotransmitters and neurohormones/neuromodulators, transporters, 
and other signals which are related to therapeutic possibilities are summarized.
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13.1 � Introduction

Microglial cells are immune cells in the central nervous system (CNS). Their contri-
butions towards physiological and pathophysiological processes have been well doc-
umented (Kettenmann et al. 2011; Eyo and Dailey 2013; Verkhratsky and Butt 2013). 
In pathophysiological condition, microglial cells rapidly respond to any kind of dam-
age signals accompanying poly-etiological insults to the CNS. Microglial responses 
in the CNS may occur as a result of trauma, ischemia, infection or neurodegenerative 
stimuli. Microglial cells have been implicated, to some extent, in the pathogenesis 
of all of the common neurodegenerative disorders involving protein aggregation 
such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral 
sclerosis (ALS). However, the precise role they play in the development of these 
pathologies remains unclear and it seems that they contribute to the pathological 
process in different ways in a disease-specific manner. A better understanding of their 
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varied roles is essential if they are to be the target for novel therapeutic strategies 
(Gentleman 2013).

Activated microglia proliferate rapidly, migrate to the site of injury or infection 
and elicit defense response by phagocytosis of cell debris, production of cytokines, 
chemokines and reactive oxygen species, and presentation of antigens to other im-
mune cells. In addition, microglia participate in tissue repair by producing neuro-
trophic factors. However, chronically activated microglia become neurotoxic to the 
surrounding CNS parenchyma.

Chronic activation of microglia has been shown to augment neurodegeneration 
in PD, AD, brain injury and number of other CNS pathologies. Identification of fac-
tors that control microglial activation, therefore, has become the major focus of re-
cent research (Rangarajan et al. 2013). Microglial dysfunction may also contribute 
to genetic neurobehavioral disorders (Benarroch 2013). At the sites of injury or any 
pathological area, classical “activated” microglia, with an amoeboid morphology, 
show different molecular and genetic characteristics compared to those in resting 
microglia. Recently, this subdivision into two main types (resting and activated mi-
croglia) is regarded as oversimplification and more sophisticated microglial activity 
states throughout an activation process were proposed (Hanisch and Kettenmann 
2007; Eyo and Dailey 2013).

Microglial activation is also regarded as a biomarker for traumatic brain injury 
(Hernandez-Ontiveros et al. 2013). During a cascade of secondary cell death and 
multiple inflammatory responses accompanying traumatic brain injury, inflam-
matory cytokines and chemokines spreads to normal brain areas juxtaposed to the 
core impacted tissue. Among immune cells involved, microglia is a key player in 
propagating inflammation to tissues neighboring the core site of injury.

Multiple sclerosis (MS) exhibits many of the hallmarks of an inflammatory 
autoimmune disorder including breakdown of the blood-brain barrier (BBB), the 
recruitment of lymphocytes, microglia, and macrophages to lesion sites. Inflam-
matory cascade is amplified by pro-inflammatory cytokines, compromising the 
BBB, recruiting immune cells from the periphery, and activating resident microg-
lia (see review; Ortiz et al. 2013). Genome-wide microarray analysis comparing 
micro-dissected active cortical MS lesions with those of tuberculous meningitis 
(inflammatory control) showed that more than 80% of the identified MS-specific 
genes were related to T cell-mediated inflammation, microglia activation, oxida-
tive injury, DNA damage and repair, remyelination and regenerative processes 
(Fischer et al. 2013).

Correlation between neurodegenerative diseases and oxidative stress is also sug-
gested since mitochondrial dysfunction, i.e. cell energy impairment, apoptosis and 
overproduction of reactive oxygen species (ROS), is a final common pathogenic 
mechanism in aging and in neurodegenerative disease such as AD, PD and ALS 
(Emerit et al. 2004).

In this chapter, receptors, and other molecules, which are expressed or up-
regulated in activated microglia and possibly contributing to pathological con-
ditions, are discussed as potential targets for medical intervention in microglia 
(Fig. 13.1).
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13.2 � Neurotransmitter Receptors

Microglia express various types of neurotransmitter receptors (Kettenmann et al. 
2011; Verkhratsky and Butt 2013; Kettenmann and Ransom 2013; Lee 2013), each 
of which can have a specific pathological role(s) which are discussed below.

13.2.1 � Glutamate Receptors

13.2.1.1 � AMPA Receptors

Microglia express functionally heterogeneous AMPA (α-amino-hydroxy-5-methyl-
isoxazole-4-propionate)-type of receptors (Noda et al. 2000; Hagino et al. 2004) and 

Fig. 13.1   Possible therapeutic targets in microglia. Neurotransmitter receptors, neuropeptide 
receptors, neuromodulatory receptors, cytokine and chemokine receptors, transporters, and vari-
ous factors affecting microglial function
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contribute to glutamate (Glu)-mediated neuron-glia interaction (Bezzi et al. 2001). 
Microglia express highly Ca2+ impermeable AMPA receptors due to the expres-
sion of GluA2 subunit. In addition, expression of plasmalemmal GluA2 subunits 
significantly increases upon activation of microglia, for example after treatment 
by lipopolysaccharide (LPS) (Beppu et al. 2013). Since a decreased expression of 
GluA2 was reported in some of the neurodegenerative diseases such as AD and 
Creutzfeldt-Jakob disease (Ferrer and Puig 2003; Carter et  al. 2004), functional 
change in GluA2-deficient microglia was investigated, showing higher Ca2+-per-
meability, consequently inducing significant increase in the release of pro-inflam-
matory cytokine, such as tumor necrosis factor-α (TNF-α). GluA2-deficient mouse 
brain also showed more neurotoxicity in response to kainic acid (Beppu et al. 2013). 
Therefore, involvement of microglia in glutamatergic synaptic transmission may be 
also important to understand the mechanism of some neurodegeneration in which 
low GluA2 is suggested (Noda and Beppu 2013).

In the hypothalamus and neurohypophysis of rats with streptozotocin (STZ)-
induced diabetes, the expression of GluA2/3 was progressively down-regulated, 
being hardly detected at 4 months of STZ-diabetes, together with up-regulation of 
N-methyl D-aspartate receptor (NMDAR) subunit GluN1 and neuronal nitric oxide 
synthase (nNOS). In addition, both astrocytes and microglia appeared activated. 
Therefore, it was speculated that the glutamate receptors and NO are linked to over-
activation of paraventricular and supraoptic nuclei leading ultimately to cell death 
(Luo et al. 2002). The lack of GluA2/3 in microglia may also contribute to the cell 
death.

13.2.1.2 � Kainate Receptors

Microglia express kainate (KA) receptor subunits (Yamada et al. 2006; Noda et al. 
2000) and KA-induced current was affected by application of concanavalin A which 
is a positive modulator selective for KA-preferring receptors (subunits GluR5–
GluR7 and KA-1 or KA-2) (Huettner 1990; Partin et al. 1993; Wong and Mayer 
1993), suggesting that only some of the KA-responsive cells express KA-preferring 
receptors and not only AMPA-preferring receptors (Noda et al. 2000). It was indica-
tive of heterogeneous distribution of AMPA- and KA-preferring receptors among 
microglial cells; some cells express predominantly AMPA-preferring receptors, 
some cells express predominantly KA-preferring receptors, and some cells express 
both. The functional difference has not been identified yet.

13.2.1.3 � NMDA Receptors

Although NMDA-induced membrane currents were not observed in primary cul-
tured microglial cells (Noda et  al. 2000), it was reported that cortical microglia 
express NMDAR subunits in vitro and in vivo and activation of the microglial 
NMDARs plays a pivotal role in neuronal cell death in the perinatal and adult brain 
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(Kaindl et  al. 2012). Microglia have unique NMDAR subunit expression with a 
high level of the GluN2D subunit that is distinct from that found in neurons, indicat-
ing distinct NMDAR subunit assembly. The pathophysiologic relevance of microg-
lial NMDARs is particularly high, as they confer sensitivity to excitotoxic cortical 
injury that is likely to be significant for a large variety of neurological diseases. For 
example, after stroke, glutamate released by damaged neurons in the infarct core 
can diffuse to nearby cells, and this can lead to an activation of microglia via their 
NMDARs and render them neurotoxic. Conversely, loss of function of the microg-
lial NMDARs protects from gray matter damage.

13.2.1.4 � Metabotropic Glutamate Receptors

Microglial cells also bear metabotropic glutamate receptors (mGluRs) (Biber 
et al. 1999; Farso et al. 2009; Taylor et al. 2002); mGluR1,5 (Group I) is linked 
to intracellular Ca2+ signaling, while mGluR2,3 (Group II) (Taylor et  al. 2002) 
and mGluR4,6,8 (Group III) (Taylor et  al. 2003) are coupled to adenosine 3′:5′ 
cyclic monophosphate (cAMP) and involved in regulation of TNF-α release and 
microglial cytotoxicity (Taylor et al. 2005). Since mGluRs is proposed as targets for 
multipotential treatment of neurological disorders (Byrnes et al. 2009), microglial 
mGluRs may be critical regulators in neuron to glia transmissions especially under 
pathological state.

13.2.2 � Purinergic Receptors

The most widespread and possibly most functionally important receptors for mi-
croglia are purinoceptors (Verkhratsky et al. 2009b).

13.2.2.1 � Ionotropic Purinoceptors (P2X Receptors)

The main type of ionotropic purinoceptors expressed in mature microglial cells are 
P2X4 and P2X7 receptors. The P2X4 receptors are also constitutively expressed in 
microglia and contribute to microglial activation in particular in the context of neu-
ropathic pain. Increased levels of P2X4 receptors was found in activated microg-
lia (Tsuda et al. 2003), whereas intrathecal injection of cultured microglia bearing 
P2X4 receptors induced allodynia in the absence of peripheral nerve damage (Inoue 
and Tsuda 2009). Involvement of P2X4 in KA-induced status epilepticus was also 
reported (Ulmann et al. 2013).

The P2X7 receptors are involved in various neuropathologies (Franke et  al. 
2012) and contribute to various aspects of microglial reactions. P2X7 receptors 
are abundantly present in immune cells and mediate many immune reactions, 
including the processing and the release of various cytokines. Microglial cells 
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constitutively express P2X7 receptors and various brain lesions and neuropatholo-
gies (such as, for example, MS, ALS and AD) induce substantial up-regulation of 
P2X7 receptors expression (Sperlagh et al. 2006; Verkhratsky et al. 2009a). Acti-
vation of P2X7 receptors regulates multiple microglial processes from microglial 
activation to apoptotic death. Stimulation of P2X7 receptors was reported to be 
necessary for microglial activation by amyloid-β (Aβ) protein (Sanz et al. 2009), 
and P2X7 receptors control microglial secretion of pro-inflammatory factors (see 
(Kettenmann et al. 2011) and references therein). Incidentally, over-expression of 
P2X7 receptors in microglia triggers their activation in the in vitro system in com-
plete absence of any other exogenous factors (Monif et al. 2009). Recently P2X7 
receptor was reported to regulate microglial survival in living brain tissues (Eyo 
et al. 2013). Removal of extracellular Ca2+ or application of a potent P2X7 recep-
tor antagonist, protected microglial cell death. These pharmacological results were 
complemented by studies in tissue slices from P2X7 receptor null mice, in which 
oxygen-glucose deprivation (OGD)-induced microglial cell death was reduced by 
nearly half. These results indicate that stroke-like conditions induce Ca2+-depen-
dent microglial cell death that is mediated in part by P2X7 receptor. Increased 
neocortical expression of the P2X7 receptor after status epilepticus and anticon-
vulsant effect of P2X7 receptor antagonist were also reported (Jimenez-Pacheco 
et al. 2013). From a therapeutic standpoint, these findings could help direct novel 
approaches to enhance microglial survival and function following stroke and other 
neuropathological conditions.

13.2.2.2 � Metabotropic Purinoceptors (P2Y Receptors)

Microglia express several metabotropic purinoceptors with predominant appear-
ance of P2Y2, P2Y6, P2Y12, and P2Y13 receptors. Stimulation of these receptors as 
a rule triggers Ca2+ signals that often involve endoplasmic reticulum Ca2+ release 
and store-operated Ca2+ influx; overstimulation of P2Y pathways can produce a 
long-lasting activation of the latter that can contribute to various aspects of microg-
lial activation (Toescu et al. 1998). The P2Y6 receptors, distinctively sensitive to 
UDP, regulate microglial phagocytosis (Koizumi et al. 2007), whereas ADP-pre-
ferring P2Y12 receptors are fundamental for acute microglial responses to patho-
logical insults, for morphological activation, membrane ruffling and chemotaxis 
(Verkhratsky et  al. 2009a). In addition P2Y12 receptors are linked to integrin-β1 
signaling, which regulates extension of microglial processes (Ohsawa et al. 2010; 
Eyo and Wu 2013). In the spinal cord P2Y12 receptors are involved in the genesis of 
neuropathic pain (Inoue and Tsuda 2009).

As mentioned above, neuron-to-microglia purinergic signaling regulates mi-
croglial extension and retraction (see review (Eyo and Wu 2013)). In the event 
of neuronal injury, neurons release purines including ATP which can be degraded 
by endogenous enzymes into ADP and adenosine. Released purines diffuse in the 
extracellular space and activate P1 adenosine (A3) and P2Y (P2Y12) receptors on 
microglia that act in concert.
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Recently, it was shown that soluble Aβ peptide 1–42 induced self-uptake in mi-
croglia through pinocytosis, a process involving activation of P2Y4 receptors by 
autocrine ATP signaling. It demonstrates a previously unknown function of ATP as a 
“drink me” signal for microglia and P2Y4 receptors as a potential therapeutic target 
for the treatment of AD (Li et al. 2013).

13.2.2.3 � Adenosine (P1) Receptors

Adenosine receptors of P1 type are represented by classical seven-transmembrane 
spanning G protein-coupled receptors and are subclassified into adenosine A1, A2A, 
A2B, and A3 receptors with distinct pharmacological and functional properties. All 
four types of adenosine receptors were identified at the mRNA level in cultured rat 
microglia (Fiebich et al. 1996b). As mentioned above, purinergic activation leads 
to extension of microglial processes towards the injury site. Following microglial 
activation, adenosine can also activate A2A receptors that mediate microglial branch 
retraction. First, a role for the adenosine A2A receptor in microglial cytoskeletal 
rearrangements was suggested (Orr et al. 2009). Adenosine A2B receptors mediate 
an increase in interleukin (IL)-6 in human astroglioma cells (Fiebich et al. 1996a). 
Recently, there was a report that microglia also express A1 receptor which is up-
regulated upon ATP treatment. Moreover, selective stimulation of A1 receptors 
inhibits morphological activation of microglia, possibly by suppressing the Ca2+ 
influx induced by ATP. Microglial cells, pretreated with the A1 receptor agonist, 
exhibit lower capability to facilitate the nociceptive neurons, as compared with the 
cells treated with ATP alone (Luongo et al. 2014).

13.2.3  �GABA (γ-Aminobutyric Acid) Receptors

Functional GABAB receptors were identified in a subpopulation of microglial cells 
in culture (Kuhn et al. 2004). The physiological role of microglial GABAB receptors 
are described in Kettenmann et al. (2011), but their pathophysiological role needs to 
be identified.

13.2.4 � Cholinergic Receptors

The expression of neuronal α7 nicotinic receptors (nACh) was initially found 
in cultured mouse microglia (De Simone et  al. 2005; Shytle et  al. 2004). The 
activation of nACh receptors generally inhibits the immune response of microg-
lial cells, thus representing endogenous “cholinergic anti-inflammatory pathway” 
(Shytle et al. 2004). On example is that nicotine was shown to inhibit P2X7-medi-
ated radical oxygen species (ROS) production in Aβ peptide 1–42 stimulated cul-
tured microglial cells (Moon et al. 2008). Also, long-term (15 days) incubation of 
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corticostriatal organotypic slices with nicotine reduced the thrombin-dependent 
activation of microglia (Ohnishi et al. 2009). More recently, the α7 nACh recep-
tor ligands reduced LPS-induced TNF-α release from microglia (Thomsen and 
Mikkelsen 2012).

13.2.5 � Adrenergic Receptors

Accumulation of intracellular cAMP following stimulation of β2 receptors provided 
the first evidence for the expression of adrenergic receptors in microglia (Prinz et al. 
2001). While β2 receptor stimulation suppressed LPS-induced release of IL-12p40 
in cultured microglia (Prinz et  al. 2001), stimulation of β1 receptors increased 
expression of IL-1β mRNA (Tanaka et  al. 2002). Increasing intracellular cAMP 
suppressed proliferation of microglia (Fujita et  al. 1998), inhibited ATP-induced 
release of TNF-α (Morioka et  al. 2009) and modulate microglial migration and 
phagocytosis. Micoglial adrenergic receptors could be relevant in pathogenesis of 
AD as early degeneration of locus coeruleus in AD and depletion of adrenergic input 
to the brain affects the ability of microglia to provide for effective clearance of Aβ 
(Heneka et al. 2010). Recently, it became obvious that norepinephrine modulates 
the motility of resting and activated microglia via different adrenergic receptors; β2 
receptors mediate microglial process dynamics in resting cells whereas α2A recep-
tors do in activated cells. In addition, the presence of cross-talk between adrenergic 
and purinergic signaling in microglia was suggested (Gyoneva and Traynelis 2013). 
These data show that norepinephrine can modulate microglial motility, which could 
affect microglial functions in pathogenic situations of either elevated or reduced 
norepinephrine levels.

13.2.6 � Dopamine Receptors

The D1,2,3,4 (but not D5) receptors were identified on translational level in microglia 
in culture and visualized by immunostaining in substantia nigra from Parkinso-
nian brains, suggesting that activation of microglia in PD triggers expression of 
dopamine receptors, which may explain an increase in microglia-related toxicity 
towards dopamine-producing neurons (Mastroeni et al. 2009). In PD, microglial 
cells in substantia nigra are activated and concentrated around dystrophic dopami-
nergic neurons (Rogers et al. 2007); the role of dopamine receptors in this specific 
activation and migration of microglia needs to be clarified further. The inhibition 
of D4 receptors by specific agonist suppressed microglial activation in the spinal 
cord of superoxide dismutase 1 transgenic animal model of ALS; this reduced mi-
croglial activation coincided with slowing down the disease progression (Tanaka 
et al. 2008).
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13.2.7 � Serotonin Receptor

Microglia express 5-HT2 serotonin receptors (Kettenmann et al. 2011; Kato et al. 
2013b). There is a possibility that modulating microglia serotonin receptors may be 
a key target in the treatment of various psychiatric disorders, which likely will be a 
hot topic in the near future.

13.3 � Neuropeptide Receptors

In addition to neurotransmitter receptors, microglia has receptors for a wide vari-
ety of neuropeptides, such as endothelin, bradykinin, angiotensin II, somatostatin, 
neurokinin-1, vasoactive intestinal peptide (VIP), neuropeptide Y (see (Kettenmann 
et al. 2011) (Kettenmann and Ransom 2013) for details). Bradykinin receptors, for 
example, have distinct effects on microglia from those on neurons. Inducible B1 re-
ceptor stimulate microglial migration (Ifuku et al. 2007) and have rather neuropro-
tective effects against LPS-induced activation and inflammatory responses (Noda 
et al. 2006, 2007). Pituitary adenylate cyclase activating polypeptide (PACAP) ac-
tivates a quinine-sensitive K+ outward current and modulates activities in microglia 
(Ichinose et al. 1998), VIP and PACAP inhibit the MEKK1/MEK4/JNK signaling 
pathway (Delgado 2002b) and CREB binding protein (CBP)-nuclear factor (NF)-
κB interaction (Delgado 2002a) in endotoxin-activated microglia. Neuropeptide 
receptors in microglia could become a strong therapeutic target, especially for AD.

13.4 � Hormones and Hormone Receptors

It was indicated that glial cells may play a significant role in the link between the 
endocrine and nervous systems (Garcia-Segura et al. 1996; Chowen et al. 1996). 
Glial cells express nuclear receptors for both thyroid and steroid hormones and par-
ticipate in the metabolism of these hormones, resulting in the production of neuro-
active metabolites. Furthermore, glial cells synthesize endogenous neuroactive ste-
roids, including pregnenolone and progesterone, from cholesterol. It is known that 
thyroid hormones, glucocorticoids, gonadal steroids, and neurosteroids affect glial 
functions. Under physiological conditions, hormonal effects on glia may have im-
portant consequences for neuronal development, metabolism, and activity and for 
the formation and plasticity of synaptic connections. In addition, glucocorticoids, 
gonadal steroids, and neurosteroids may affect regenerative processes in neurons 
by modulating glial responses after injury. These effects include the activation of 
microglia, which is regulated by glucocorticoids. Therefore, endocrine impairments 
affect microglial function as well as other cell types in the CNS.



302 M. Noda

13.4.1 � Sex Hormones

Estrogen has been shown to be neuroprotective in stroke and other neural injury 
models. The presence of estrogen receptor-β (ER-β) in rat microglial cells was re-
ported a decade ago (Mor et al. 1999). Estrogen-mediated neuroprotection is criti-
cally dependent on insulin-like growth factor (IGF)-1 signaling. Microglia appears 
as the source of IGF-1 and the locus of estrogen-IGF-1 interactions in stroke neuro-
protection (Sohrabji and Williams 2013).

Microglial cell line BV-2, responded to hypoxia by enhanced pro-inflammatory 
cytokine secretion and reduced phagocytic activity, which is prevented by sex ste-
roids resulting in a switch of microglial cells from a pro-inflammatory to a more 
anti-inflammatory phenotype. Anti-inflammatory effects of gonadal steroids might 
directly be mediated through hormone-microglia interactions in addition to known 
effects via astroglial regulation (Habib et  al. 2013a, b). Estrogen is also neuro-
protective in the MS model (Wisdom et al. 2013) and encephalomyelitis (Spence 
et  al. 2013; Wu et  al. 2013). Also, testosterone, being metabolized to estradiol 
and dihydrotestosterone, decreases reactive astroglia and reactive microglia after 
brain injury in male rats: role of its metabolites, estradiol and dihydrotestosterone 
(Barreto et al. 2007).

Neuronal plasticity is regulated by the ovarian steroids estradiol and progesterone 
in many normal brain functions, as well as in acute response to injury and chronic 
neurodegenerative disease. In a female rat model of axotomy, the estradiol-dependent 
compensatory neuronal sprouting is antagonized by progesterone (Bali et al. 2013).

In developing rat brain, microglia are essential to masculinization of brain and 
behavior (Lenz et al. 2013). Estradiol up-regulates the synthesis of prostaglandin 
E2 (PGE2), originally in neurons, and then activate microglia and stimulates their 
own release of PGE2. This feed-forward loop of PGE2 production is required for 
the masculinization of the preoptic area and therefore of sexual behavior (Welberg 
2013). Microglial dysfunction may be also involved in abnormalities of brain de-
velopment and sexual behavior.

13.4.2 � Cortisol Receptor

Glucocorticoid- and mineralocorticoid receptors in microglia were reported (Tanaka 
et al. 1997). Corticosterone suppresses the proliferation of BV2 microglia cells via 
glucocorticoid, but not mineralocorticoid receptor (Nakatani et al. 2012). Limitaion 
of microglial activation was also reported in dopaminergic neurodegeneration and 
in acute stress  model (Sugama et al. 2009; 2012). They suggest that glucocorticoids 
may serve as an important endogenous suppressive signal limiting neuroinflamma-
tion. Dexamethasone inhibits the Nox-dependent ROS production via suppression 
of MKP-1-dependent MAPK pathways in activated microglia, suggesting down-
regulation of Nox-2 and overexpression of MKP-1 that regulate ROS and NO may 
form the potential therapeutic strategy for the treatment of neuroinflammation in 
neurodegenerative diseases (Huo et al. 2011).
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13.4.3 � Oxytocin Receptors

Oxytocin mediates social neuroprotection after cerebral ischemia. There is evi-
dence for a direct suppressive action of oxytocin on cultured microglia, which is 
a key instigator in the development of neuroinflammation after cerebral ischemia 
(Karelina et  al. 2011). Since oxytocin is important for social behavior (Eckstein 
and Hurlemann 2013), possible involvement of microglia via oxytocin needs to be 
investigated.

13.5 � Cytokine and Chemokine Receptors

Microglial cells are in possession of several types of cytokine and chemokines 
receptors which regulate multitude of immune responses (see (Kettenmann et al. 
2011; Kettenmann and Ransom 2013) for details). Microglia express multiple in-
terleukin receptors (IL-1RI, IL-1RII, IL-5R, IL-6R, IL-8R, IL-9R, IL-10R, IL-12R, 
IL-13R, and IL-15R) (Lee et  al. 2002) and the activation or cultured mouse mi-
croglia with LPS induced expression of IL-2 receptors (Sawada et al. 1995). Spinal 
cord microglia showed sensitivity to IL-6, connected with a signal transducer and 
activator of transcription (STAT) pathway, contributing to development of mechani-
cal allodynia and neuropathic pain (Dominguez et al. 2008).

Among chemokine receptors (CCR) which are expressed in the cells of the 
CNS, microglial cells in particular express CCR1, CCR2, CCR7 and CCR5 (ro-
dents) and CXCR1, CXCR3 and CCR3 (humans) (Boddeke et al. 1999a, b; Flynn 
et al. 2003). A major regulator of microglial activation and neurotoxicity in the 
CNS is the CX3CL1 (fractalkine, i.e. ligand)/CX3CR1 (fractalkine receptor) sig-
naling axis (Zujovic et al. 2000; Cardona et al. 2006). On the other hand, it was 
suggested that CCR2/CCR5 antagonist has the potential for broad clinical use 
in neuropathic pain treatment (Padi et  al. 2012) and decreased pain responses 
of CCR5 knockout mice to chemical or inflammatory stimuli was reported (Lee 
et al. 2013). In addition, another important chemokine, chemokine (C-C motif) 
ligand 1 (CCL-1), originally a well-characterized chemokine secreted by acti-
vated T cells, also plays an important role in neuropathic pain induced after par-
tial sciatic nerve injury (Akimoto et al. 2013a). CCL-1 plays an important role 
in neuropathic pain induced by nerve injury and is also produced in various cell 
types in the CNS, especially in dorsal root ganglia. The specific receptor for 
CCL-1, CCR8, was found mainly in neurons but also in astrocytes and microglia. 
CCL-1 has multiple effects on microglia, i.e. increasing chemotaxis, motility, 
proliferation and phagocytosis. CCL-1 also activated microglia morphologically, 
promoted mRNA levels for brain-derived neurotrophic factor (BDNF) and IL-6, 
and increased the release of nitrite from microglia (Akimoto et al. 2013b). These 
indicate that CCL-1 may contribute to the development of neurological diseases, 
especially in neuropathic pain.
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13.6 � Other Receptors and Molecules

13.6.1 � Toll Like-Receptors

Toll-like receptors (TLR1–9) are particularly diversified in microglia being in-
volved in regulation of activation in response to multiple exogenous pathologi-
cal factors. Activation of TLRs triggers several complex signaling cascades that 
often involve adaptor protein MyD88, transcription factors AP-1 and NF-κB 
(Hansson and Edfeldt 2005; Leulier and Lemaitre 2008). Different TLRs detect 
different infectious agents. Stimulation of TLRs initiates activation of microglia, 
and the type or receptor involved may define specific activation programs. It was 
recently reported that microglia works as key mediators of post-traumatic brain 
edema and was suggested that high-mobility group box protein 1 (HMGB1)-
TLR4 signaling promotes neurovascular dysfunction after traumatic brain injury 
(Laird et al. 2014).

13.6.2 � Sigma Receptor

Sigma-1 receptor (S1R), an endoplasmic reticulum-resident receptor with chaper-
one-like activity, has recently attracted great interest. S1R is involved in several 
processes leading to acute and chronic neurodegeneration, including ALS pathol-
ogy. Pharmacological manipulation of S1R seems to be a promising strategy to 
cure ALS. It pointed to increased availability of growth factors and modulation 
of astrocytosis and of macrophage/microglia as part of the mechanisms (Peviani 
et al. 2013).

13.6.3 � Ion Transporters

Microglial plasmalemmal transporters such as Na+/Ca2+ exchanger (Ifuku et  al. 
2007), Na+/HCO3

− co-transporter and/or Na+-dependent Cl−/HCO3
− exchanger 

(Schwab 2001) and Na+/H+ exchanger isoform 1 (Shi et al. 2013) are  important in 
microglial migration.

13.6.4 � Macrophage Colony Stimulating Factor

Increased levels of macrophage colony stimulating factor, increased microglia 
and microglial activation are found in many different CNS pathologies including 
tumors, neurodegenerative diseases and injury (reviewed in Charles et al. (2012); 
El Khoury and Luster (2008); Imai and Kohsaka (2002); Loane and Byrnes 
(2010)).
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13.7 � Pathological Conditions Relating to Microglial 
Activation

13.7.1 � Sleep Deprivation

Deficit of sleep triggers changes in inflammatory signaling pathways in the brain and 
periphery. The TLR4 receptors activate inflammatory signaling cascades in response 
to endogenous and pathogen-associated ligands known to be elevated in association 
with sleep loss. TLR4 is therefore a possible mediator of some of the inflammation-
related effects of sleep loss (Wisor et al. 2011a). In agreement to this observation, 
microglial changes in the cerebral response were observed after sleep loss, which 
was modulated by minocycline, a compound that attenuates microglial activation oc-
curring in association with neuroinflammatory events (Wisor et al. 2011c). Actually 
changes in the sleep/wake cycle that occur subsequent to administration of D-meth-
amphetamine are modulated by cerebral microglia; the effects of D-methamphet-
amine on sleep/wake cycles are mediated in part by actions on microglia, including 
possibly nNOS activity and cytokine synthesis (Wisor et al. 2011b). Recently more 
information about interaction between microglial activation and sleep or circadian 
rythm have been reported (Hayashi et al. 2013; Yang et al. 2013; Yu et al. 2013).

13.7.2 � Obesity

In addition to neurodegenerative disorders, obesity is also considered to be associ-
ated with a state of chronic neuroinflammation. High-fat-diet exposure induces sig-
nificant microglial activation not only in the hypothalamus (Yi et al. 2012) but also 
in the cerebellar white matter (Tapia-Gonzalez et al. 2011). Free fatty acid palmitate 
on its own induces activation of BV2 microglia cell line. Further, pre-exposure to 
palmitate changed the response of microglia to LPS, affecting the mRNA levels of 
the pro-inflammatory cytokines IL-1β and IL-6 (Tracy et al. 2013).

13.7.3 � Aging

With aging, microglia change their morphology and may display diminished capac-
ity for normal functions related to migration, clearance, and the ability to shift from 
a pro-inflammatory to an anti-inflammatory state to regulate injury and repair. This 
shift in microglia potentially contributes to increased susceptibility and neurode-
generation as a function of age (Harry 2013), though aging itself it not a disease. 
However, age-related macular degeneration, as well as neurodegenerative diseases 
such as AD, PD, share two characteristics in common: (1) a disease prevalence that 
increases markedly with advancing age, and (2) microglia-related neuroinflamma-
tion. These characteristics have led to the hypothesis that pathogenic mechanisms 
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underlying age-related neurodegenerative disease involve aging changes in microg-
lia (Wong 2013).

As mentioned above, microglia have been implicated in disease progression 
for several age-related brain disorders (Lai et al. 2013). Also, hypothalamic in-
flammation and control of systemic ageing was reported. The hypothalamus is 
important for the development of whole-body ageing in mice, and that the un-
derlying basis involves hypothalamic immunity mediated by IκB kinase-β, NF-
κB and related microglia–neuron immune crosstalk (Gabuzda and Yankner 2013; 
Zhang et al. 2013).

Considering these evidence mentioned above, understanding and controlling mi-
croglial aging and age-associated microglial priming, being increased inflammatory 
status, may represent an opportunity for elucidating disease mechanisms and for 
formulating novel therapies (Wong 2013; Norden and Godbout 2013).

13.7.4 � Psychiatric Disorders Including Autism Spectrum 
Disorder

Microglial cells, are more and more considered to contribute to multiple neuro-
pathologies, including neuropsychiatric and developmental disorders. Growing 
evidence indicates a role for deregulation or malfunction of glial cells and their 
neuroinflammatory response in the brains of autistic patients (Theoharides et al. 
2013).

Recently neurobiological basis of oligodendroglial abnormalities in schizophre-
nia and microglial activity in the context of the disease, in neonatal brain injury and 
in various experimental models of white matter damage were described (Chew et al. 
2013). Microglia, have recently been also suggested to play important roles in neu-
ropsychiatric disorders (Kato et al. 2013a) and possibility that modulating microglia 
may be a key target in the treatment of various psychiatric disorders has been pro-
posed (Kato et al. 2013b). Future investigations to clarify the correlation between 
neuroendocrine factors and microglia may contribute to a novel understanding of 
the pathophysiology of neuropsychiatric disorders.

�Conclusion

Microglial cells are fundamental elements of neuropathology. Microglial cells are 
constantly scanning the brain tissue for any signs of damage and when these latter 
occur microglial launch a defensive response generally known as microglial activa-
tion. Microglia express variety of receptors and respond to many signals. Identifica-
tion of those signaling and manipulating microglial functions may lead to promising 
therapeutic strategy for neuropathological processes.
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