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           Introduction 

 The development of human kidney is a complex 
process requiring intricate cell and tissue interac-
tions to assure the concerted program of cell 
growth, differentiation, and morphogenesis. 
Although the molecular and cellular nature of 
each of these interactions remains currently 
unclear, signifi cant fi ndings regarding nephro-
genesis and its completion among different ani-
mal species have been reported over the last two 

decades. Research so far indicates that there are 
differences regarding the completion of the pro-
cess of nephrogenesis among different animal 
species. In human, sheep, and spiny mouse, 
nephrogenesis is completed prior to birth, while 
in rat, mouse, and swine, nephrogenesis con-
tinuous after birth [ 1 – 7 ]. Nevertheless, the 
 unrecognized morphological or functional pecu-
liarities characterizing other animal species help 
the scientifi c community to reveal and under-
stand the physiological mechanisms during 
nephrogenesis in human. This has been achieved 
mainly due to the increased use of animal models 
in renal basic science laboratories, as well as to 
the increased expertise of researchers who study 
kidney development. In the present chapter we 
aim at presenting and reviewing the existing 
knowledge on kidney development acquired 
from experimental studies.  

    Novel Structural/Molecules 
Components that Extend 
Knowledge on Kidney Development 

    The Pine-Cone Body 

 The mature kidney of mammals is the fi nal product 
of three embryonic excretory organs, the proneph-
ros, the mesonephros, and the metanephros. The 
latest originates from two main components, 
the ureteric bud and the mesenchymal cells of 
the  metanephric mesenchyme [ 7 ,  8 ]. Recent stud-
ies using light electron microscopy reported that in 
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the subcapsular regions of the outer portions of 
renal cortex, characterized by active nephrogene-
sis, some cap mesenchymal aggregates showed 
variability in shape and morphology of their cells. 
The center of the cap aggregates was occupied by a 
roundish cell, while their outer regions were char-
acterized by the presence of thin curved shaped cell 
types twisted around a fi xed central cluster, resem-
bling a pine-cone-shaped structure [ 9 ]. 

 Although early studies on nephrogenesis spec-
ulated that the sequence of morphological events 
leading to glomerulogenesis and tubulogenesis 
might start with the outgrowth of the primary 
nephric duct and the ureteric buds, which invade 
the metanephric mesenchyme and induce the dif-
ferentiation of the renal epithelial precursors 
[ 10 ,  11 ], similar changes in the size and appear-
ance of developing renal cells may be correlated to 
the various stages of cellular differentiation occur-
ring during cap mesenchymal development [ 9 ]. 
These curved cells which may evolve from the 
ovoid cells found in the central area of the same 
aggregate could account for changes in transmem-
brane signaling and consequently for changes of 
cellular metabolic activity [ 12 ,  13 ]. Moreover, the 
presence of prominent and pleomorphic nucleoli 
may indicate a signifi cant increased cellular 
 metabolic activity associated with cellular differ-
entiation during cap mesenchymal development 
[ 14 ]. These fi ndings suggest the “pine-cone body” 
 formation as an intermediate stage between the 
condensed mesenchymal nodule to the renal vesi-
cle during conversion of mesenchyme to epithe-
lium. At cellular level, the entire cap developmental 
process seems to represent the fi nal event of a 
complex balance between specifi c intercellular 
signals involved in the regulation of protein syn-
thesis, cell proliferation, cell motility, and apopto-
sis [ 9 ]. However, further research is necessary in 
order to better investigate the intimate signifi cance 
of this new developmental structure.  

    Wnt Glycoproteins 

 Wnt-4 belongs to the Wnt family of secretory glyco-
proteins that are implicated in signaling processes 
operating during metanephric development. 

Wnt-4 is expressed in pretubular mesenchyme 
cells shortly before their aggregation and transfor-
mation to simple epithelial tubules [ 15 ]. Kispert 
et al. [ 16 ] showed that mesenchymally derived 
Wnt-4 is not only required, but also suffi cient for 
induction of tubulogenesis in the mammalian kid-
ney and can elicit the complete program of tubular 
differentiation in isolated metanephric mesen-
chyme. Interestingly, the activity of Wnt-4 con-
trasts with other factors thought to regulate 
mesenchymal development but proved not suffi -
cient or not essential for tubulogenesis [ 17 – 23 ]. 

 Wnt-4 may have a later function in tubulogen-
esis which is masked in the earlier requirement to 
form a tubule as Wnt-4 expression in the meta-
nephric mesenchyme is initiated in the aggregat-
ing mesenchyme and maintained in the comma 
shaped bodies before it is downregulated in 
S-shaped bodies. Wnt-4 probably acts as a trigger 
to start an intrinsic program in the mesenchymal 
cells which then proceed to form complex neph-
ron like structures. Considering that a permissive 
signal from the ureter to the mesenchyme triggers 
survival and tubulogenesis in the mesenchyme, it 
can be concluded that kidney tubulogenesis is a 
multi-step process with a hierarchy of signaling 
systems. In general, the role of Wnt-4 in tubulo-
genesis refl ects that additional signaling systems 
control the ratio between interstitial and meta-
nephrogenic cells, between condensing and non- 
condensing cells, and the maintenance of the 
mesenchymal stem cells in the periphery [ 16 ]. 

 Wnt-9b is another glycoprotein expressed in 
the Wolffi an duct and its derivative that has been 
implicated in the induction of the mammalian kid-
ney development. Wnt-9b is expressed in the 
inductive epithelia and is essential for the devel-
opment of mesonephric and metanephric tubules 
and caudal extension of the Müllerian duct as it is 
required for the earliest inductive response in 
metanephric    mesenchym [ 24 ]. In addition, Wnt-
9b- expressing cells can functionally substitute for 
the ureteric bud in these interactions. Interestingly, 
Wtn-9b acts upstream of Wnt-4, demonstrating 
the major role of Wnt signaling pathway in the 
organization of the mammalian urogenital sys-
tem. Wtn-9b-dependent activation of Wnt-4 
expression in the metanephric mesenchyme plays 
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a central role in completing the process of tubule 
induction. Although Wnt-9b and Wnt-4 may act 
through distinct receptors, existing evidence sug-
gest that Wnt-9b encodes a permissive signal, the 
region-specifi c response being governed by either 
the interplay of additional signaling factors or 
preprogramming of the target cell response by 
early patterning processes [ 24 ].  

    MUC-1 

 Although human MUC-1 mucin interest has 
mainly been focused on its role in carcinogenesis 
and tumor progression, its role in human and 
non-human embryogenesis was unclear until 
now. However, recent research in mouse embryos 
and neonates has shown, among other organs, 
increased MUC-1 expression in kidney as well 
[ 25 ]. In kidney, MUC-1 expression was mainly 
restricted to the apical part of the epithelial cells, 
in line with the characteristic pattern of MUC-1 
in adult rat epithelial tissues [ 26 ,  27 ]. Although 
non-human studies related to MUC-1 have been 
mainly developed to obtain animal models useful 
for the comprehension of cancer, MUC-1 could 
play a relevant role during epithelia cellular dif-
ferentiation and proliferation.  

    Glial Cell Line-Derived Neurotrophic 
Factor 

 Glial cell line-derived neurotrophic factor 
(GDNF) was shown to play a key role in kidney 
development through actions at the RET and 
GFR 1 receptor and coreceptor by initiating bud-
ding of the ureteric duct from the Wolffi an duct, 
branching of the ureteric epithelium within the 
metanephric mesenchyme, and the formation of 
new nephrons at the branch tips [ 28 – 32 ]. In the 
late 1990s, knockout studies indicated that GDNF 
gene dosage infl uenced kidney development, with 
the loss of one allele being suffi cient to cause a 
signifi cant renal phenotype [ 33 – 40 ]. Recently, 
Cullen-McEwen et al. [ 41 ] found that the kidneys 
of GDNF heterozygous mice at 30 days of age 
were 25 % smaller than their wild- type littermates 

despite similar body weights, while stereologic 
estimates of nephron number identifi ed a 30 % 
decrease in nephron endowment in young hetero-
zygous GDNF mice compared with wild-type 
mice [ 42 ]. 

 Although it was hypothesized that reductions 
in glomerular number lead to hypertrophy of the 
remaining glomeruli with time, evidence indi-
cated that such hypertrophy also occurs when 
glomerular numbers are reduced genetically. 
Cullen-McEwen et al. [ 42 ] reported that by 14 
months of age, glomeruli of GDNF heterozy-
gotes were signifi cantly hypertrophied such that 
the total glomerular volume was no longer differ-
ent between wild-type and heterozygous litter-
mates. Thus, the results found in this low 
nephron-number mouse are in accordance with 
the hypothesis of Brenner et al. [ 43 ] that a reduc-
tion in nephron number from birth leads to the 
development of hypertension and hyperfi ltration.  

    Sodium Transporters 

 Although experimental studies have so far 
fi rmly established that the prenatal environment 
can modify the adult blood pressure [ 44 – 47 ], 
the mechanisms in humans are poorly under-
stood. Nevertheless, several experimental models 
[ 44 ,  46 – 49 ] indicate that the various manipula-
tions work through a common pathway. 

 Manning et al. [ 50 ] examined the expression 
of 4 key apical Na transport proteins that are criti-
cal for the regulation of Na balance and extracel-
lular volume and found that upregulation of 
BSC1 and TSC, the apical Na transporters of 
TAL and DCT, respectively, occurs at both the 
mRNA and the protein level, refl ecting increased 
Na reabsorption in these two segments. Moreover, 
NHE3 expression was not changed, suggesting 
that proximal tubule Na transport, at least the 
major fraction mediated by NHE3, is not affected 
by the prenatal programming; NHE3 may be 
upregulated by mechanisms not associated with 
altered protein abundance. Interestingly, the Na 
transporters were not downregulated after the 
hypertension became manifest, at 8 week of age. 
Considering that downregulation of TSC is an 
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important component of the pressure-natriuresis 
response designed to correct hypertension by 
increasing renal Na excretion [ 51 ], prenatal pro-
gramming of the Na transporters may override 
the normal pressure-natriuresis mechanism. 
Although the signal(s) from mother to fetus 
that result in transporter upregulation remain 
unknown, the fetal overexposure to maternal 
glucocorticoids due to decreased placental activ-
ity of the 11β-hydroxysteroid dehydrogenase 
type 2 enzyme was implicated as a proposed 
explanation [ 52 ,  53 ]. Indeed, maturation of renal 
Na transport, measured as Na-K-ATPase expres-
sion, is regulated by glucocorticoids and, there-
fore, abnormal glucocorticoid exposure could 
therefore have a direct effect on the maturing 
kidney [ 54 ].   

    Infl uential Factors of Kidney 
Development 

    Maternal Nutrition 

 The relationship between nutrition and nephro-
genesis has been adequately established on animal 
models with experimental studies showing that 
maternal nutrition may have an important infl u-
ence on renal programming [ 55 ]. In rats, a 
restricted supply of nutrients to the mother during 
the critical window in which nephrogenesis occurs 
led to a reduced number of glomeruli per kidney, 
activation of the renin–angiotensin system, glo-
merular enlargement, and hypertension in later life 
[ 47 ], while in another study, early postnatal over-
feeding increased the number of postnatal neph-
rons and decreased glomerular volume, suggesting 
that global fi ltration surface area remains 
unchanged [ 56 ]. Under these  circumstances, glo-
merular hyperfi ltration to meet excretory demands 
due to early postnatal  overfeeding could contribute 
to elevated blood pressure, proteinuria, and pro-
gressive glomerulosclerosis in aging overfed 
males than overfed females. Although the reasons 
as to why the infl uence of postnatal nutrition 
on nephron endowment is limited to male gender 

are unknown, it has been speculated that 
 hyperleptinemia associated with early postnatal 
 overfeeding may infl uence renal functions through 
specifi c effects involving renal sympathetic hyper-
activity and decreased sodium excretion, partially 
due to an upregulation of Na-K-ATPase [ 57 ]. In 
either case, altered nephrogenesis plays an impor-
tant role in the early origins of cardiovascular and 
renal diseases in adulthood [ 58 – 61 ]. Considering 
that hypertension may be observed in the absence 
of glomerular number reduction, it is possible that 
mechanisms different from inborn nephron num-
ber defi cit to be involved. Of note, early postnatal 
overfeeding during the suckling period has been 
demonstrated to induce obesity and cardiovascular 
and metabolic disorders in adult rats, such as 
hyperinsulinism and insulin resistance, impairing 
vascular dilatation capacity through endothelial 
dysfunction [ 62 – 64 ]. 

 Vitamin A has been proposed as a determinant 
in fetal renal programming in rats in view of its 
capacity to closely modulate nephron number 
and vascular supply [ 65 ,  66 ]. Moreover, the role 
of vitamin A in renal formation is considered 
essential since null mice for these genes exhib-
ited renal agenesis or rudimental kidneys [ 67 ], 
while recently, vitamin A supply restored neph-
ron endowment to normal in offspring of rat 
mothers exposed to protein restriction [ 68 ]. In 
this study, offspring exposed to maternal protein 
restriction during pregnancy and lactation had a 
signifi cantly reduced body weight, kidney size, 
and nephron endowment at weaning, suggesting 
that administration of retinoic acid during preg-
nancy, early in gestation, is able to stimulate 
nephrogenesis per volume of kidney tissue over 
and above control levels [ 67 ]. Although the 
mechanisms by which retinoic acid stimulates 
nephrogenesis are not fully understood, studies 
suggest that it mediates its effects on nephrogen-
esis by stimulating ureteric branching morpho-
genesis [ 69 ,  70 ]. The same investigators 
suggested that the likely molecular candidate 
mediating these early nephrogenic effects is 
GDNF, acting via its cell-surface receptor 
GDNF-α and subsequently activating the receptor 
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tyrosine kinase c-ret which is known to lead to 
increased branching morphogenesis of the ure-
teric bud and in turn enhance nephron formation 
[ 29 ,  30 ,  67 ,  71 ,  72 ]. Alternatively, administration 
of retinoic acid may mediate its effects on 
nephrogenesis via stimulation of the metanephric 
mesenchyme [ 73 ]. 

 Previous studies reported that in male rats, 
exposure to maternal protein restriction either in 
utero or whilst suckling can have profound 
effects on kidney telomere lengths and on urine 
albumin excretion during much of adult life 
[ 74 ]. These rats appeared to be relatively pro-
tected against future nephron damage not only 
due to the absence of the nephrotoxic effects of 
urine albumin, but, also, because of their kidney 
telomere length. Telomere shortening has been 
implicated in renal diseases, while reduced renal 
telomere shortening is associated with increased 
levels of antioxidant enzymes, suggesting the 
benefi cial effects of protein restriction on the 
development of kidney [ 75 ]. On the other hand, 
fetal exposure to a maternal low-protein diet is 
associated with disproportionate patterns of 
fetal growth and later elevation of blood pres-
sure in the rat, suggesting that maternal under-
nutrition may program the renal nephron 
number and hence impact upon adult blood 
pressure and the development of renal disease 
[ 76 ]. Of note, in another study in rats exposed to 
a maternal low- protein diet in utero, renal mor-
phometry and creatinine clearance at older ages 
were not infl uenced by prenatal diet, although 
blood pressure was elevated at all ages in the 
low-protein-exposed offspring [ 77 ]. However, 
blood urea N, urinary output, and urinary albu-
min excretion were signifi cantly greater in low-
protein-exposed rats than in control rats at 20 
weeks of age, suggesting a progressive deterio-
ration of renal function in hypertensive rats 
exposed to mild maternal protein restriction 
during fetal life. Although the mechanisms of pro-
tein restriction-induced adulthood hypertension 
are not well understood, Woods et al. reported that 
perinatal protein restriction in the rat suppresses 
the newborn intrarenal renin–angiotensin system 

and leads to a reduced number of glomeruli, 
glomerular enlargement, and hypertension in 
the adult [ 47 ]. Nevertheless, additional mecha-
nisms may be involved in kidney development 
of protein- restricted mammals. Holemans et al. 
[ 78 ] investigated the hypothesis that malnutri-
tion in pregnant rats may lead to altered cardio-
vascular function in adult female offspring and 
found that food restriction during the second 
half of pregnancy and/or lactation does not 
induce hypertension in adult offspring, but may 
effect subtle changes in vascular function. 
Interestingly, two other studies showed a very 
pronounced blunting of the response to acetyl-
choline in the neonatal vasculature from off-
spring of streptozotocin-diabetic rats on a 
high-fat diet and in the adult offspring of strep-
tozotocin-diabetic rats [ 79 ,  80 ]. Brawley et al. 
[ 81 ] assessed isolated resistance artery function 
from adult male offspring of control and pro-
tein-restricted pregnant dams at two different 
ages and reported that dietary protein restriction 
in pregnancy induces hypertension and vascular 
dysfunction in male offspring. These disorders 
may be mediated via nitric oxide–cGMP 
pathway- induced abnormalities in endothelium- 
dependent and -independent relaxation, reduc-
ing vasodilation, and elevating  systolic blood 
pressure [ 82 ]. Nevertheless, disturbances in the 
 L -arginine–nitric oxide system and blastocyst 
abnormalities may contribute to the early 
appearance of hypertension in the offspring of 
mothers submitted to signifi cant food restriction 
during pregnancy [ 83 – 87 ]. 

 Intrauterine undernutrition also increases the 
oxidative stress by affecting the activity of vari-
ous enzymes. In a study of pregnant rats submit-
ted to intrauterine undernutrition, Franco et al. 
[ 88 ] tested the participation of certain enzymes 
on radical generation and found that NADPH 
oxidase inhibition attenuated superoxide anion 
generation and ameliorated vascular function. 
Indeed, release of the superoxide anion in the 
kidney can be deleterious as it inactivates NO, 
resulting in excess Na reabsorption and enhanced 
TGF feedback and thus hypertension [ 89 – 91 ]. 
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In addition, inactivation of NO with oxygen radi-
cal forms peroxynitrite which can nitrosylate 
tyrosine residues, causing renal damage and 
increasing renal vascular resistance [ 92 – 97 ]. 
Furthermore, studies have also shown that oxy-
gen radical causes direct vasoconstriction in pre-
glomerular vasculature and in the renal cortical 
and medullary circulation, and increases intracel-
lular calcium in vascular smooth muscle and 
endothelial cells, causing renal vasoconstriction 
and renal damage [ 98 – 104 ]. Accordingly, Franco 
Mdo et al. [ 105 ] reported that treatment with 
vitamins C and E reduced oxidative stress and 
high blood pressure levels, and improved vascu-
lar function in intrauterine-undernourished rats. 

 Studies in which oxidative stress was experi-
mentally induced, caused increases in oxidative 
stress and hypertension, providing strong evi-
dence for either an initiating or a sustaining role 
of reactive oxygen species in hypertension [ 94 , 
 98 ,  106 – 116 ]. In Sprague–Dawley rats that 
received a high Na diet for 8 weeks, a period 
which is much longer than that in the above- 
mentioned studies, the arterial pressure increased 
signifi cantly, and urinary albumin excretion and 
renal infl ammation increased, suggesting that 
hypertension develops slowly when Na intake is 
increased in normotensive rats, and the blood 
pressure elevations are paralleled by increases in 
ROS and renal damage [ 117 ]. Based on the afore-
mentioned data, it seems that long-term exposure 
to intrauterine oxidative stress may cause renal 
infl ammation, renal damage, and arterial pressure 
postnatally. Oxidative stress, infl ammation, and 
arterial hypertension participate in a self- 
perpetuating cycle which, if not interrupted, can 
lead to progressive cardiovascular disease and 
renal complications [ 118 ].  

    Nephrotoxic Agents 

 The administration of nephrotoxic agents may 
seriously affect renal development when per-
formed prior to completion of nephrogenesis. 
Nathanson et al. [ 119 ] examined the potential 

adverse effects of ampicillin, amoxicillin, and 
ceftriaxone in rat kidney development and 
reported that both penicillins altered renal devel-
opment in a dose-dependent manner, while cef-
triaxone weakly impaired in vitro nephrogenesis; 
at a dose of 1,000 mg/ml kidney development is 
completely blocked. In young animals exposed to 
penicillins in utero, a mild oligonephronia was 
present and cystic tubule dilation was observed in 
newborn and in young animals as well. Gilbert 
et al. [ 120 ] analyzed, in vitro, the potential direct 
effect of gentamicin on early nephrogenesis and 
found that gentamicin induced a signifi cant 
reduction in the number of nephrons in meta-
nephric explants and that this effect was more 
important on less differentiated metanephroi. 
Smaoui et al. [ 121 – 123 ] studied the effect of gen-
tamicin on the renal handling and transport of 
proteins in proximal tubular cells and reported 
that gentamicin, entering the proximal tubular 
cells via the endocytic pathway, decreased the 
tubular reabsorption of proteins, thus increasing 
urinary protein excretion and, consequently, 
nephrotoxicity. 

 Other drugs which probably have major 
embryo-fetal toxic effects are the nonsteroidal 
anti-infl ammatory drugs (NSAIDs) which cross 
the placenta, reach the fetal circulation, and 
cause a spectrum of changes in the kidneys of 
the offspring [ 124 ]. Hasan et al. [ 125 ] examined 
the hypothesis that early postnatal ibuprofen has 
less adverse effects on neonatal rat renal pros-
tanoids, COX-2 expression, and angiotensin II 
than indomethacin in newborn rats and found 
that indomethacin exhibited more potent sup-
pressive effects on renal COX-2 and vasodilator 
prostanoids which are important regulators of 
renal development and function. Kent et al. 
[ 126 ] studied the type of renal changes found on 
light and electron microscopy following admin-
istration of indomethacin, ibuprofen, and genta-
micin in a neonatal rat model and reported 
vacuolization of the epithelial proximal tubules, 
interstitial edema, intratubular protein deposition 
but no signifi cant glomerular changes. Moreover, 
they found pleomorphic mitochondria and loss 
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of microvilli in the tubules and extensive foot 
process effacement and irregularities of the glo-
merular basement membrane, concluding that 
these drugs cause signifi cant change in glomer-
ular and tubular structure in the neonatal rat 
model. 

 A number of studies have demonstrated the 
effect of angiotensin-converting enzyme (ACE) 
inhibition on systolic blood pressure and renal 
and uterine blood fl ow. Olsson et al. [ 127 ] 
studied the effects of intravenous captopril in 
goats during the last months of pregnancy and 
lactation and reported a more pronounced fall 
in arterial blood pressure and a larger increase 
in plasma renin activity during pregnancy 
when compared with the lactating period or 
with the nonpregnant state. It is quite interest-
ing though that in a study evaluating the effect 
of the Renin Angiotensin System inhibition on 
the blood pressure and the mesenteric arterio-
lar reactivity of the intrauterine- undernourished 
rats, use of Angiotensin System inhibitors nor-
malized the cardiovascular alterations induced 
by intrauterine undernutrition [ 128 ]. Blood 
pressure may be elevated in young rats follow-
ing intrauterine exposure to a maternal low-
protein diet in order to maintain glomerular 
fi ltration rate against a background of fewer 
nephrons via the increased expression of AT(1) 
receptors, which may arise as a result of the 
direct effect of protein restriction or in response 
to the reported decrease in renal tissue angio-
tensin II concentration [ 129 ].   

    Anatomical/Congenital 
Malformations 

 A number of animal models have been devel-
oped to study the pathophysiology of congenital 
hydronephrosis. These include ureteral obstruc-
tion in the fetal sheep, as well as in the postnatal 
opossum, pig, rabbit, and rodent [ 130 – 134 ]. In 
addition, the renal cellular and functional conse-
quences of complete unilateral ureteral obstruc-
tion in the neonatal rat and mouse have been 

examined, which bear many similarities to 
human obstructive nephropathy [ 135 ,  136 ]. 
Based on previous studies showing that impair-
ment of renal growth is directly dependent on 
the duration of temporary complete unilateral 
ureteral obstruction in the neonatal rat [ 137 ], 
Thornhill et al. [ 138 ] have recently developed a 
new model of variable partial unilateral ureteral 
obstruction in the neonatal rat that will aid in the 
elucidation of the mechanisms underlying the 
renal consequences of congenital ureteropelvic 
junction obstruction. The authors concluded 
that renal growth is impaired by a critical degree 
of partial unilateral ureteral obstruction. 
Persistent partial unilateral ureteral obstruction 
progressively reduces the number of nephrons 
during the period of nephron maturation (after 
the completion of nephrogenesis). Fixed partial 
ureteropelvic  junction obstruction leads to a 
progressive dilatation of the renal pelvis and 
proximal ureter, tubular atrophy and interstitial 
fi brosis that are correlated with tubular apopto-
sis and are developed before detectable pelvic 
dilatation. Persistent moderate partial unilateral 
ureteral obstruction leads to a marked reduction 
in ipsilateral glomerular fi ltration rate and 
increased protein excretion before signifi cant 
impairment of renal growth. Partial unilateral 
ureteral obstruction has a delayed stimulatory 
effect on adaptive growth of the contralateral 
kidney when compared to complete unilateral 
ureteral obstruction, and fi nally partial neonatal 
unilateral ureteral obstruction impairs somatic 
growth (Fig.  7.1 ).

       Conclusion 

 Although the exact mechanisms governing renal 
development remain unclear, the increased use of 
animal models in renal basic science laboratories 
has extended our knowledge on this remarkable 
process. These promising results not only clarify 
many of the dark areas of nephrogenesis, but also 
they will boost the scientifi c efforts towards the 
elucidation of this phenomenon.     
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