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Abstract We explore monoids generated by operators on certain infinite partial
orders. Our starting point is the work of Fomin and Greene on monoids satisfying the
relations .ur C urC1/urC1ur D urC1ur .ur C urC1/ and ur ut D ut ur if jr � t j > 1:

Given such a monoid, the non-commutative functions in the variables u are shown to
commute. Symmetric functions in these operators often encode interesting structure
constants. Our aim is to introduce similar results for more general monoids not
satisfying the relations of Fomin and Greene. This paper is an extension of a talk
by the second author at the workshop on algebraic monoids, group embeddings and
algebraic combinatorics at The Fields Institute in 2012.
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1 Introduction

In their work on the plactic monoid, Lascoux and Schützenberger [22] con-
structed the Schur functions in terms of noncommutative variables satisfying only
Knuth relations. It was subsequently discovered that symmetric functions can be
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constructed using different monoid algebras, for example the nil-plactic monoid,
the nil-coxeter monoid or the Hn.0/ algebra. A uniform understanding of these
constructions can be found in the seminal work of Fomin and Greene [15].

One of the main advantages of the work of Fomin and Green is that it shows the
Schur positivity of certain generating functions defined on those monoid algebras.
This is a central problem in algebraic combinatorics and we still have several open
problems of this kind. The theory in [15] works very well for the problems it is set
to solve, but it also has its limitations.

Here we want to show that this quest of understanding symmetric functions
inside a monoid algebra is very alive and new results are still underway and needed.
In this presentation, very close to the approach of Fomin and Greene, we look at
monoids generated by operators acting on an infinite poset. We show that a certain
space of functions on the monoid algebra of operators is isomorphic to symmetric
functions (or a subspace of symmetric functions). These subspaces are obtained via
Pieri operators as defined in [10]. The posets we consider are very often produced
from a combinatorial Hopf algebra as defined in [1, 11]. Unlike the theory in [15],
we are not guaranteed to have Schur positivity. Even when the object in question is
Schur positive the rule of Fomin and Greene is not applicable. One has to develop
new techniques to deal with this. It has been done in some cases, but it is still open
in others.

We keep this paper as a talk, like a story. We introduce the results as they come
from the examples. In the first part, Sect. 2, we look at a classical example. Next,
in Sect. 3, we look at less known examples and constructions which are unrelated
to [15]. We then look at what can be done in the future in Sect. 4.

2 A Classical Example

2.1 Operators on the Young Lattice

We start by a classical construction of Schur functions inspired by [14]. A partition
of an integer n is a sequence of integers � D .�1; �2; : : : ; �`/ such that n D �1 C
�2 C � � � C �` and �1 � �2 � � � � � �` > 0. When � is a partition of n we denote
it by � ` n, the number of parts of � will be denoted by `.�/ D ` and its size by
j�j D n. The diagram of a partition �, denoted � as well, is the subset of Z�Z given
by � D ˚

.i; j / W 1 � j � `; 1 � i � �j

�
. We draw this by putting a unit box with

coordinates .i; j / in the bottom left corner. For example the partition � D .4; 2; 1/

is depicted by

.
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The Young lattice Y consists of all partitions � ` n � 0, ordered by inclusion of
diagrams. The empty partition is the unique partition for n D 0. An inclusion � � �

is a cover if and only if � [ f.i; j /g D � for a unique cell .i; j /. We will label such
a cover by an edge labeled by ci;j D j � i :

�
ci;j�! �

We can draw the lower part of this poset as

0

1

−1

2
−1

1
−2

3
−1

2
0

−2
1

−3

Consider the free Z-module ZY spanned by all partitions of n � 0. We define
linear operators ur for each r 2 Z as follows

ur W ZY �! ZY ;

� 7�!
(

� if �
r�! � in Y

0 otherwise.

(1)

For example

u0
)

= and u1
)

= 0.
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We are interested in the monoid M huri generated by the operators ur for r 2 Z and
the zero operator 0. By the nature of these operators, it is not very hard to see that
they satisfy the following relations:

.1/ u2
r D 0

.2/ ur urC1ur D urC1ur urC1 D 0

.3/ ur ut D ut ur if jr � t j > 1:

(2)

These relations can be understood graphically. The first relation states that once we
add a cell in a given diagonal, if we try to add a second cell in the same diagonal we
will not get a partition:

:

The second relation states that if we add two consecutive cells in a row (or column)
and if we try to add a third cell in the same diagonal as the first added cell we will
not get a partition:

.

The third relation states that we can add two cells independently in diagonals that
are far from each other:

.

Proposition 1. M huri is the monoid freely generated by the ur for r 2 Z and 0
modulo the relations (2).

This is a consequence of a more general theorem and it can be shown using
some very well known facts about the symmetric group and the combinatorics of
partitions. However to our knowledge this statement is not mentioned as such in
the literature. To see that the relations (2) generate all the relations of the monoid
M huri requires a deeper understanding of the relations. We will sketch a proof here.
Recall that the symmetric group is generated by simple reflections sr satisfying the
braid relations:

.1/ s2
r D Id

.2/ srsrC1sr D srC1sr srC1

.3/ sr st D st sr if jr � t j > 1:

(3)

For a permutation w, the length `.w/ is the minimal number of generators sr

necessary to express w as a product of generators. If w D si1si2 � � � s`.w/, then we
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say that the word si1si2 � � � s`.w/ is a reduced word for w. There is a small abuse of
notation here: a reduced word is an element of the free monoid generated by the sr ’s.
Here, we are studying the equivalence classes of words modulo the relations (3).
It is a well known fact that any two reduced words for a given permutation w are
connected together using only (2) and (3) of the relations (3). Moreover, if a word
si1si2 � � � sk is not reduced, then at least one instance of the relation (1) of (3) will
be used to reduce it (see [16]). The set of equivalence classes of words that do not
have any occurrence of sr srC1sr are in bijection with 321-avoiding permutation(s).
These are permutations w with no i < j < k such that w.i/ > w.j / > w.k/

(see [29]).
Consider now the infinite group SZ of permutations of Z with only finitely many

non-fixed points. This is the group generated by the simple reflections sr for r 2 Z

subject to the relations in (3). For w 2 SZ we define the operator

uw D ui1ui2 � � � ui`.w/

where si1si2 � � � s`.w/ is any reduced word for w. Comparing the relations (3) with the
relations (2) we see that this is a well defined operator. Moreover, if w is not 321-
avoiding, then relation (2) of (2) gives uw D 0 and if si1si2 � � � sk is not a reduced
word, then ui1ui2 � � � uik D 0. In order to show that the relations (2) generate all the
relations of M huri it is enough to prove that

Lemma 1. (a) For each w 2 SZ 321-avoiding, we have uw ¤ 0,
(b) For w; w0 2 SZ 321-avoiding, we have that w ¤ w0 implies uw ¤ uw0 .

This will indeed show that the map from the free monoid generated by the ur ’s
modulo the relations (2) to M huri has no kernel and is surjective. These results are
known in some different form (see [12, 30]) and are not trivial. We will provide a
proof here in this context for completeness.

Let us start with the lattice Y and its labelled covers. It is possible to encode this
lattice and its covers with a subset of the 321-avoiding permutation(s) in SZ. Given a
partition �, add the two positive x-y axis. We put the numbers : : : ; �3; �2; �1; 0 for
every vertical step from infinity on the y-axis following the border of the partition.
We put the numbers 1; 2; 3; : : : one on each horizontal step from left to right. The
example below describes this procedure better for � D .3; 1/,

...

. . .

−3

1−2

−1 2 3

40 5



310 C. Benedetti and N. Bergeron

When we read the entries on the y-axis, then the outer boundary of � followed by
the x-axis, we obtain a 321-avoiding permutation v.�/ 2 SZ (the entries on the axis
are fixed points). In the example above we get

v.�/ D .� � � ; �3; �2; 1; �1; 2; 3; 0; 4; 5; � � � /:

If we have a cover �
r�! �, then the entry v.�/.r/ � 0 < v.�/.r C 1/. Adding a

box on the diagonal of content r has the effect of interchanging these two entries in
v.�/. We have shown the following:

Lemma 2.

�
r�! � H) v.�/ D v.�/sr and `.v.�// D `.v.�// C 1:

This lemma allows us to show Lemma 1 (b) if we know that uw ¤ 0. Indeed, if
uw.�/ D �, then the above lemma gives us that v.�/ D v.�/w. Hence if w ¤ w0,
then v.�/w ¤ v.�/w0 and uw ¤ uw0 .

Now, in order to prove Lemma 1 (a) we need to construct a partition � such that
uw.�/ D � ¤ 0 for each 321-avoiding w 2 SZ. When � � �, we say that the
diagram �=� obtained by removing the cells of � from � is a skew diagram. For
w 2 SZ that is 321-avoiding, we construct recursively on the length `.w/ a skew
diagram �=� such that uw.�/ D �. Moreover, if we read the content of the cells of
�=�, row by row, from left to right, starting at the bottom, then we get a sequence
of integers .j1; j2; : : : ; jk/ such that sj1sj2 � � � sjk

is a reduced word for w. Finally,
if .i; j / 2 � and .i C 1; j / 62 � and .i; j C 1/ 62 �, then either .i C 1; j / 2 � or
.i; j C 1/ 2 � (see Example 1 below).

If `.w/ D 0, then the result is immediate as �=� D ;=; does the trick.
We assume that for all 321-avoiding permutations such that `.w/ < ` we can
construct �=� as above. Let w D si1si2 � � � si` be a reduced expression for a 321-
avoiding permutation of length `.w/ D `. By induction hypothesis we assume
we have constructed �=� for w0 D si1si2 � � � si`�1

. We can moreover assume that
.i1; i2; : : : ; i`�1/ is the sequence of contents we read from �=�. We consider a cell
on the diagonal of content d D i` sliding from infinity downward and stop at
.i; j / D .i; i C d/ the first contact of either �, �=� or one of the x-y-axes. We
claim that

if .i � 1; j � 1/ 2 �=�, then both .i � 1; j / 2 �=� and .i; j � 1/ 2 �=�.

In the sequence .i1; i2; : : : ; i`�1/, let k be such that .ik; ikC1; : : : ; i`/ are the contents
of the cells in rows i C 1 and up in �=�. Since no cell of �=� is in column j and
up in row i and up, we have that ik0 < j � i � 1 D d � 1 for all k � k0 � ` � 1.
This means that sik0

and sd commute for all k � k0 � ` � 1. We have that

si1si2 � � � si` D si1si2 � � � sd sik � � � si`�1
: (4)
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Now suppose .i; j � 1/ 62 �=�. This means that sd commutes with all sc where c

is the content of cells in row i of �=� and all cells of content e in row i � 1 and
column j 0 > j C 1. We depict this as follows

c

d e

where the dark cell corresponds to the added cell in position .i; j / of content d .
Since the cell .i; j �1/ 62 �=� all cells in row i have content c < d �1. The cells in
row i�1 and column j 0 > j have content e > dC1. If .i; j �1/ 62 �=�, then we get
sd sd in the reduced expression of w, a contradiction. If in addition .i �1; j / 2 �=�,
then we get sd sdC1sd which contradicts the fact that w is 321-avoiding. Hence we
must have that .i; j � 1/ 2 �=�. Now if we assume that .i � 1; j / 62 �=� and
.i; j � 1/ 2 �=� the picture is now

c

d
.

The cell in position .i � 1; j � 1/ has content d . All cells in row i and column
j 0 < j � 1 have content c < d � 1. This time we can move the reflection sd

corresponding to the cell in position .i �1; j �1/ to pass the sc in row i up to sd�1sd .
Again we get a contradiction as sd sd�1sd cannot occur in the reduced word of a 321-
avoiding permutation w. This concludes the case when .i � 1; j � 1/ 2 �=�. In this
case we simply add the cell .i; j / to � and not to �. The diagram .� [ .i; j //=�

is a skew shape with all the desired properties and the right hand side of (4) is the
reduced word of w that we read from this diagram.

We now consider the case where .i � 1; j � 1/ 2 � or falls outside the first
quadrant. If both .i � 1; j / 2 �=� and .i; j � 1/ 2 �=�, then again the diagram
.� [ .i; j //=� is a skew shape with all the desired properties and the right hand
side of (4) is the reduced word of w that we read from this diagram. By induction
hypothesis, it is not the case that both .i � 1; j / 62 �=� and .i; j � 1/ 62 �=�.
If .i � 1; j / 2 �=� and .i; j � 1/ 62 �=�, then we move all the boxes of �=� in row
r � i up each diagonal by 1 unit. This increases the size of � and � proportionally
but keeps the relative shape of �=� invariant along the diagonal lines. We then add
the box .i; j / to lambda and add all the boxes .i 0; j / for i 0 < i to both � and �.
Graphically we have

−→
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The case where .i � 1; j / 62 �=� and .i; j � 1/ 2 �=� is exactly transposed,
interchanging the roles of row and column. In any case we obtain the desired skew
shape �0=�0 such that uw.�0/ D �0 ¤ 0.

Example 1. Let us illustrate the induction procedure involved in the proof of
Lemma 1 .a/. Start with w D s3s�3s4s2 and its skew shape as illustrated on the
left hand side of the figure below. The induction step tells us that the operator uws0

is not zero since uws0 .�/ D � where � D .6; 4; 4; 3; 1/ and � D .6; 6; 5; 4; 2/:

-3

2

3 4
−→

-3

0

2

3 4

2.2 Pieri Operators on Young Lattice and Symmetric Functions

In the previous section, we obtained a very good understanding of the noncom-
mutative monoid M huri. We now introduce a commutative algebra BhHki that is
isomorphic to the (Hopf) algebra of symmetric functions Sym. The algebra BhHki
is generated by certain homogeneous series Hk in the elements of M huri. This is
using the Pieri operators theory as developed in [10] related to the multiplication of
symmetric functions (see [25]).

There are several combinatorial Hopf algebras of interest for our study. As it
turns out, Y is intimately related to Sym. The space of symmetric functions is well
known to have different bases indexed by partitions. We refer the reader to [25, 27]
for more details about our presentation of Sym. We use the standard notation for
the common bases of Sym: h� for complete homogeneous; e� for elementary; m�

for monomial; and s� for Schur functions. For simplicity, we let hi and ei denote
the corresponding generators indexed by the partition .i/.

There is a correspondence between the representation theory of all symmetric
groups and symmetric functions. The multiplication and comultiplication in Sym

corresponds to some induction and restriction of representations. In this identifica-
tion, Schur functions encode irreducible representations. In particular we must have
that the coefficients C �

�;� in

s�s� D
X

v

C �
�;�s� (5)

are non-negative integers. They count the multiplicity of an irreducible in certain
induced representations. This shows the nonnegativity of the constants C �

�;� but
does not give us a combinatorial formula for them. One is interested in a positive
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combinatorial rule to describe these numbers. This combinatorial rule is classically
known as the Littlewood-Richardson rule. A particular case of this rule is Pieri rule
that describes the multiplication by hk :

s�hk D
X

�=� a k-row strip

s�

where a k-row strip is a diagram with k cells in distinct columns. In terms of the
lattice Y we have the following characterization of k-row strip.

Lemma 3. �=� is a k-row strip if and only if there is a strictly increasing path of
length k in Y from � to �. Moreover, if such a path exists from � to �, then it is
unique.

Proof. If �=� is a k-row strip, then we can add the cells of �=� to � one by one from
left to right. Since the cells are in distinct columns, they are in distinct diagonals as
well. Adding them from left to right will give us the desired strictly increasing path
from � to �. Conversely, if we have a strictly increasing path from � to �, then
the cells of �=� are in distinct diagonals. Assume two cells of �=� are in the same
column as pictured bellow

A

B

The cell A has content strictly smaller than the content of the cell B . In the path
from � to � the cell A would be added before the cell B . But this is a contradiction
since when the cell A is added without cell B this would not be a partition. Hence,
�=� is a k-row strip. ut

This allows us to reconstruct the multiplication by hk using operators on Y . Let

Hk D
X

i1<i2<���<ik

uik � � � ui2ui1 :

This is an infinite series of operators of degree k in M huri. In view of Lemma 1, no
term in the series Hk vanishes. If one fixes �, there are only finitely many paths of
length k from � in Y . This means that Hk WZY ! ZY is a well defined operator.

Proposition 2.

Hk D
X

`.�/Dk

u� ;

where � runs over all permutations such that its disjoint cycle decomposition � D
C1C2 � � � Cs has only cycles of the form Ci D .aCb; : : : ; aC1; a/ for some a; b 2 Z

and b > 0.
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Proof. It suffices to show that

uik � � � ui2ui1 D u�

with i1 < i2 < : : : < ik if and only if � decomposes into disjoint cycles of the form
.a C b; : : : ; a C 1; a/. The disjoint cycles of � D sik � � � si2si1 for i1 < i2 < : : : < ik
correspond to the consecutive segments saCb � � � saC1sa D .a C b; : : : ; a C 1; a/.

Using Lemma 3

Hk.�/ D
X

�=� a k-row strip

� ” s�hk D
X

�=� a k-row strip

s� :

This implies that

HbHa.�/ D
X

�

d �
�;.a;b/� ” s�hahb D

X

�

d �
�;.a;b/s� :

In particular, for all � we have HbHa.�/ D HaHb.�/ since hahb D hbha. Again
the result below is derived from very classical results.

Theorem 1. The algebra BhHki spanned by fH1; H2; H3; : : :g is isomorphic to
Sym.

Proof. We have seen above that HbHa.�/ D HaHb.�/, but to see that the product
of series HbHa D HaHb requires a little bit more argument. As we multiply HaHb

and HbHa, some terms will go to zero and others will survive. The terms that survive
in HaHb are of the form

uw D ui1ui2 � � � uia uj1uj2 � � � ujb

where w is 321-avoiding, i1 < i2 < � � � < ia and j1 < j2 < � � � < jb .
Showing that HaHb D HbHa requires the construction of a bijection between
the possible reduced expressions of w D si1 � � � sia sj1 � � � sjb

and the ones of the
form w D sj 0

1
� � � sj 0

b
si 0

1
� � � si 0

b
where i 0

1 < i 0
2 < � � � < i 0

a and j 0
1 < j 0

2 <

� � � < j 0
b . This is done in [29] and in [9] using jeu-de-taquin. We then have that˚

H� D H�1H�2 � � � H�1 W � partition
�

spans BhHki. To see that the H� are linearly
independent, it suffices to remark that

H�.;/ D �

hence they have distinct values on ;. ut
Remark 1. Theorem 1 follows easily from the more general Theorem 1.1 of [15].
The approach of Fomin and Greene has the advantage that one does not need to have
all the relations of the ur . It is enough to show that they satisfy the relations:
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.1/ ur ut D ut ur if jr � t j > 1;

.2/ .ur C urC1/urC1ur D urC1ur .ur C urC1/
(6)

It is clear that our operators ur satisfy the relations (6). In later sections we will give
examples where Fomin and Greene theory is not applicable.

2.3 NSym and QSym

For the theory of Pieri operators as developed in [10] we need to introduce
two graded dual Hopf algebras. First, the algebra of non-commutative symmetric
functions Nsym is a non-commutative analogue of Sym that arises by considering
an algebra with one non-commutative generator at each positive degree. We define
Nsym as the algebra with generators fh1; h2; : : : g and no relations. Each generator
hi is defined to be of degree i , giving Nsym the structure of a graded algebra. We
let Nsymn denote the graded component of Nsym of degree n. A basis for Nsymn

is given by the set of complete homogeneous functions fh˛ WD h˛1h˛2 � � � h˛mg˛�n

indexed by compositions ˛ of n.
We have the projection morphism �W Nsym ! Sym defined by sending the

basis element h˛ to the complete homogeneous symmetric function

�.h˛/ WD h˛1h˛2 � � � h˛`.˛/

and extended linearly to all of Nsym. A second basis of NSym is given by the R˛ ,
usually called the ribbon basis. For this, given a composition ˛ D .˛1; � � � ; ˛m/ � n

we denote its length m by `.˛/. The ribbon basis R˛ are defined by

R˛ D
X

ˇ�˛

.�1/`.˛/�`.ˇ/hˇ; or equivalently h˛ D
X

ˇ�˛

Rˇ (7)

where ˛ � ˇ if ˛ is finer than ˇ.
The product expansion follows easily from the non-commutative product on the

generators

h˛hˇ D h˛1;:::˛`.˛/;ˇ1;:::ˇ`.ˇ/
:

Nsym has a coalgebra structure, which is defined on the generators by

�.hj / D
jX

iD0

hi ˝ hj �i :

This determines the action of the coproduct on the basis h˛ since the coproduct is
an algebra morphism with respect to the product.
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Second, the Hopf algebra of quasi-symmetric functions, Qsym is dual to Nsym

and contains Sym as a subalgebra. The graded component Qsymn is indexed by
compositions of n. This algebra is most readily realized within the ring of power
series of bounded degree QŒŒx1; x2; : : : ��. The monomial quasi-symmetric function
indexed by a composition ˛ is defined as

M˛ D
X

i1<i2<���<im

x
˛1

i1
x

˛2

i2
� � � x˛m

im
: (8)

The algebra of quasi-symmetric functions, Qsym, can then be defined as the algebra
with the monomial quasi-symmetric functions as a basis, whose multiplication is
inherited as a subalgebra of QŒŒx1; x2; : : : ��. We define the coproduct on this basis as:

�.M˛/ D
X

S�f1;2;:::;`.˛/g
M˛S ˝ M˛Sc ;

where if S D fi1 < i2 < � � � < ijS jg, then ˛S D .˛i1 ; ˛i2 ; : : : ; ˛i
jSj

/.
We view Sym as a subalgebra of Qsym. In fact, the usual monomial symmetric

functions m� 2 Sym expand positively in the quasi-symmetric monomial func-
tions:

m� D
X

sort.˛/D�

M˛;

where sort.˛/ is the partition obtained by organizing the parts of ˛ from the largest
to the smallest.

The fundamental quasi-symmetric functions, denoted by F˛ form another basis
of Qsymn and are defined by their expansion in the monomial quasi-symmetric
basis:

F˛ D
X

ˇ�˛

Mˇ:

The algebras Qsym and Nsym form graded dual Hopf algebras. The monomial
basis of Qsym is dual in this context to the complete homogeneous basis of Nsym,
and the fundamental basis of Qsym is dual to the ribbon basis of Nsym. Nsym

and Qsym have a pairing h�; �i W Nsym � Qsym ! Q, defined under this duality
as either hh˛; Mˇi D ı˛;ˇ , or hR˛; Fˇi D ı˛;ˇ .

2.4 Skew Function KŒ�;��

Associated to any � � � in Y , we construct a quasisymmetric function KŒ�;��

following the notion of Pieri operators as developed in [10]. Let h�; �i D ı�;�

define a scalar product on ZY . Using the operators Hk on ZY we can define
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KŒ�;�� D
X

˛

hH˛.�/; �iM˛:

In view of the commutation relation HaHb D HbHa, the function KŒ�;�� is not
only quasisymmetric but symmetric as well. Indeed since H˛ D Hsort.˛/ and since
m� D P

sort.˛/D� M˛ , we have that

KŒ�;�� D
X

�

hH�.�/; �im�

is symmetric. We are interested in knowing the coefficients of KŒ�;�� when expanded
in different bases. We remark that we have an action of NSym on ZY given by
h˛:� D H˛.�/. In this case the action factors through the projection �W NSym !
Sym. As observed earlier, the basis h˛ of NSym is dual to the basis M˛ of QSym.
A straightforward computation shows that

KŒ�;�� D
X

˛

hh˛:�; �iM˛ D
X

˛

hx˛:�; �iY˛;

for any dual bases x˛ and Y˛ of NSym and QSym respectively. We thus have that

Theorem 2.

KŒ�;�� D
X

˛

hR˛:�; �iF˛ D
X

�

C �
�;�s�

where C �
�;� is given in (5). Moreover for ˛ D .˛1; : : : ; ˛k/ a composition of n,

we have that hR˛:�; �i counts the number of paths in Y from � to � with labels
i1; i2; : : : ; in such that ir > irC1 if and only if r 2 D.˛/ D f˛1; ˛1 C˛2; : : : ; n�˛kg.

Proof. The first equality follows from duality between the R˛ and the F˛ . For the
second equality, from the definition of Hk we remark that for

KŒ�;�� D
X

�

hH�.�/; �im�

the coefficient hH�.�/; �i D d �
�;� is the coefficient of s� in the product s�h�.

In Sym, the bases h� and m� are dual and the basis s� is self dual. Hence the
coefficient of s� in KŒ�;�� is the same as the coefficient of s� in s�s�.

The fact that hR˛:�; �i counts the paths as described follows from a simple
inclusion-exclusion argument and the fact that by definition hh˛:�; �i counts the
paths in Y from � to � with labels i1; i2; : : : ; in such that ir > irC1 only if
r 2 D.˛/ D f˛1; ˛1 C ˛2; : : : ; n � ˛kg. ut
Remark 2. The function KŒ�;�� in Theorem 2 is the well known skew-Schur function
s�=�. It is denoted F�=� by Fomin and Greene in [15]. Theorem 1.2 of [15] shows
that the coefficients C �

�;� are positive and count paths in Y satisfying a precise rule.
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This is a very powerful method that works for any monoid of operators ur satisfying
the relations (6). Several classical examples are solved by this theory which gives a
method to understand the coefficients we are interested in. This includes the weak
order of the symmetric group and the Stanley symmetric function Fw=u originally
defined in [29]. There are many new situations where Fomin and Greene theory
cannot be applied and we will give some examples of this in the next sections.

3 Schubert vs Schur

We present an example of a monoid that does not satisfy Fomin and Greene’s
conditions, yet it is interesting and still yields some symmetry and positivity.
In this example, which is taken from the theory of Schubert polynomials (see
[7, 23, 24]), positivity results are highly non-trivial. We consider operators on
the infinite symmetric group defined from Monk’s rule. From these operators one
defines Pieri operators that mimic the multiplication of Schubert polynomials by
symmetric functions. Symmetry follows from the commutativity of multiplication
and positivity follows from geometry. A combinatorial proof of positivity is much
harder to obtain and was only recently achieved in [4] using the techniques of [2].

Let u 2 S1 WD S
n�0 Sn be an infinite permutation where all but a finite

number of positive integers are fixed. Schubert polynomials Su are indexed by
such permutations [23, 24]. These polynomials form a homogeneous basis of the
polynomial ring ZŒx1; x2; : : :� in countably many variables. The coefficients cw

u;v in

SuSv D
X

w

cw
u;vSw; (9)

are known to be positive from geometry.

3.1 Operators on the r-Bruhat Order

We now define operators on the r-Bruhat order on S1. Let `.w/ be the length
of a permutation w 2 S1. We define the r-Bruhat order <r by its covers. Given
permutations u; w 2 S1, we say that u Ér w if `.u/ C 1 D `.w/ and u�1w D .i; j /,
where .i; j / is a reflection with i � r < j .

For 0 < a < b, let uab denote the operator on ZS1 defined by

uab W ZS1 �! ZS1;

u 7�!
�

.a; b/u if u Ér .a; b/u;

0 otherwise.

(10)
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We have shown in [8] that these operators satisfy the following relations:

.1/ ubcucd uac 	 ubd uabubc; if a < b < c < d;

.2/ uacucd ubc 	 ubcuabubd ; if a < b < c < d;

.3/ uabucd 	 ucd uab; if b < c or a < c < d < b;

.4/ uacubd 	 ubd uac 	 0; if a � b < c � d;

.5/ ubcuabubc 	 uabubcuab 	 0; if a < b < c:

(11)

The 0 in relations (4) and (5) mean(s) that no chain in any r-Bruhat order can contain
such a sequence of transpositions. On the other hand, relations (1), (2) and (3) are
complete and transitively connect any two chains in a given interval Œu; w�r . It is
interesting to notice that the relations are independent of r . This is a fact noticed
in [7]: a nonempty interval Œu; w�r in the r-Bruhat order is isomorphic to a nonempty
interval Œx; y�r 0 in an r 0-Bruhat order as long as wu�1 D yx�1. It is important to
remark that if one fixes r , there are in fact more relations than (11). We will clarify
this after Proposition 3. For the moment we assume that the operator uab acts on
the disjoint union of all r-Bruhat orders for r > 0. Let M huabi be the monoid
generated by the 0 operator and all operators uab for a < b. A consequence of [8]
is the following proposition.

Proposition 3. M huabi is the monoid freely generated by the uab for 0 < a < b 2
Z and 0 modulo the relations (11).

Remark 3. When we specify a chain uanbn � � � ua2b2ua1b1 in the interval Œu; w�r , it is
understood that this is the actual sequence .uanbn ; : : : ; ua2b2 ; ua1b1/ of operators we
are referring to. This is a slight abuse of notation but it simplifies notation and the
context will make it clear. ut

In fact we can say much more about the monoid M huabi. Given any � 2 S1 we
produce a chain in a nonempty interval Œu; w�r for some r as follows. Let up.�/ D
fa W ��1.a/ < ag. This is a finite set and we can set r D jup.�/j. To construct w,
we sort the elements in up.�/ D fi1 < i2 < � � � < irg and its complement upc.�/ D
Z>0 n up.�/ D fj1 < j2 < : : :g. Next, we put w D Œi1; i2; : : : ; ir ; j1; j2; : : :� 2 S1
and then we let u D ��1w. Notice that u; w and r constructed this way depend on �.
From [7,8], we have that Œu; w�r is non-empty and now we want to construct a chain
in Œu; w�r . This is done recursively as follows: let

a1 D u.i1/ where i1 D maxfi � r W u.i/ < w.i/g and

b1 D u.j1/ where j1 D minfj > r W u.j / > u.i1/ � w.j /g

then uanbn � � � ua2b2ua1b1 is a chain in Œu; w�r for any chain uanbn � � � ua2b2 in
Œ.a1; b1/u; w�r . Here we have that all the other possible chains in the interval Œu; w�r
are obtained from the chain uanbn � � � ua2b2ua1b1 by sequences of transformations
given in Eq. (11). This means that the operator u� D uanbn � � � ua2b2ua1b1 is well
defined, non zero for any r 0 � r and if � ¤ �0 then u� ¤ u�0 . For a fix r ,
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u�.u/ D
�

�u if u <r �u;

0 otherwise.

Example 2. Consider � D Œ3; 6; 2; 5; 4; 1; : : :� where all other values are fixed. We
have that up.�/ D f3; 5; 6g and upc.�/ D f1; 2; 4; : : :g. In this case, r D 3,
w D Œ3; 5; 6; 1; 2; 4; : : :� and u D Œ1; 4; 2; 6; 3; 5; : : :�. The recursive procedure above
produces the chain u23u12u45u26 in Œu; v�3. We get all other chains by using the
relations (11):

u23u12u45u26; u23u12u26u45; u23u45u12u26; u45u23u12u26;

u45u13u36u23; u13u45u36u23; u13u36u45u23; u13u36u23u45:
(12)

The interval obtained in this case is

142635

152634 143625 146235

153624 146325 246135 156234

156324 346125 256134

356124

����
����u45 u23 u26

�
�
u12

u45
�

�
������
u36u45

�
�

�����������
u23

u26

�
� u23 u45

�
� u45 u13u36 �

� u12

����
����

u13 u45 u23

Since u <r �u in this case, we have u�.u/ D �u ¤ 0 for this r . Now for any r 0 � r ,
we can build w0 D Œ3; 5; 6; 7; 8; : : : ; 7Cr 0�r; 1; 2; 4; : : :�, u0 D Œ1; 4; 2; 7; 8; : : : ; 7C
r 0 � r; 6; 3; 5; : : :� by adding fixed points of � D wu�1 before the position r 0. In this
way we construct a permutation u0 such that u0 <r 0 �u0 and u�.u0/ D �u0 ¤ 0 for
any r 0 � r .

The above discussion shows the following corollary:

Corollary 1. The monoid M huabi is precisely

M huabi D ˚
u� W � 2 S1

� [ ˚
0
�
:

Moreover, if we let Mrhuabi be the monoid generated by the operator uab acting on
r-Bruhat order for a fixed r , we have

Mrhuabi D ˚
u� W � 2 S1; jup.�/j � r

� [ ˚
0
�
:

Here the multiplication in M huabi is given by u�u	 D u�	 if 	u <r �	u for some
u and r , and is 0 otherwise.
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3.2 Pieri Operators on r-Bruhat Order

We now introduce some Pieri operators related to the operators uab . These Pieri
operators are defined in such a way that they mimic the multiplication of a Schubert
polynomial by the homogeneous symmetric polynomial hk.x1; : : : ; xr /.

A permutation v 2 S1 such that v.1/ < v.2/ < � � � < v.r/ and v.r C 1/ <

v.rC2/ < � � � is called r-grassmannian. Any partition � D �1 � �2 � � � � � �r � 0

with at most r non-zero parts defines a unique r-grassmannian permutation

v.�; r/ D Œ�r C 1; �r�1 C 2; : : : ; �1 C r; v.r C 1/; : : :�;

where v.r C 1/ < v.r C 2/ < � � � are the positive integers not in f�r C 1; �r�1 C
2; : : : ; �1 C rg. As seen in [23, 24], for any such partition � we have that the Schur
polynomial S�.x1; x2; : : : ; xr / is equal to the Schubert polynomial

Sv.�;r/ D S�.x1; x2; : : : ; xr /:

In particular, the homogeneous polynomial hk.x1; : : : ; xr / is the Schubert
polynomial Sv..k/;r/. The multiplication of an arbitrary Schubert polynomial by
hk.x1; : : : ; xr / is known as the Pieri formula for Schubert polynomials. It was
originally stated as a theorem by Lascoux and Schützenberger [23] with a very brief
outline of a proof. Sottile later proved this formula geometrically and clarified the
history for us [28]. Using the operators uab on the r-Bruhat order, this can be stated
as follows.

Suhk.x1; : : : ; xr / D SuSv..k/;r/ D
X

w

Sw; (13)

where the sum is over all w >r u such that uakbk
� � � ua2b2ua1b1.u/ D w for some

b1 < b2 < � � � < bk . It is known (see [7, 8]) that in such interval Œu; w�r , there must
be a chain from u to w that is increasing in the sense that uakbk

� � � ua2b2ua1b1.u/ D w
with b1 < b2 < � � � < bk . Such a chain, when it exists, is unique among all saturated
chains in Œu; w�r .

We now introduce series Hk similar to Sect. 2.2 that will commute with each
other and encode the Pieri formula for Schubert polynomials. Let

Hk D
X

b1<b2<���<bk
ai <bi

uakbk
� � � ua2b2ua1b1 : (14)

Many of the terms in this sum are zero, the non-zero terms have a very special
form. In [23], we see that it is important to look at the disjoint decomposition
of � into disjoint cycles. In the next proposition we describe the u� appearing in
Hk and the structure of the disjoint cycles. For � 2 S1, let � D C1C2 � � � Cs

be the decomposition of � in disjoint non-trivial cycles. There are only finitely
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many non-fixed points, so only finitely many non-trivial cycles. Given a cycle
C D .c1; c2; : : : ; cm/, we say that C is increasing if cm < cm�1 < � � � < c1. Given
two disjoint increasing cycles C D .c1; c2; : : : ; cm/ and C 0 D .c0

1; c0
2; : : : ; c0

n/ we
say that they are totally disjoint if any of the following happens

1. Œcm; c1� \ Œc0
n; c0

1� D ;, or
2. Œcm; c1� \ fc0

1; c0
2; : : : ; c0

ng D ;, or
3. Œc0

n; c0
1� \ fc1; c2; : : : ; cmg D ;.

In case (1), the two cycles have support in disjoint intervals. In cases (2) and (3), If
the intervals intersect, their intersection must fall between two successive elements
in the support of the other cycles. For C D .c1; c2; : : : ; cm/ let jjC jj D m � 1.
For � D C1C2 � � � Cs a product of totally disjoint increasing cycles such that k DPs

iD1 jjCi jj, we say that � is k-increasing.

Proposition 4.

Hk D
X

�

u� ;

where � runs over k-increasing permutations.

Proof. We proceed by induction on k. The result is clear for k D 1. Assume the
result is true for any non-zero product u�0 D uak�1bk�1

� � � ua2b2ua1b1 such that b1 <

b2 < : : : < bk�1. We assume that u�0 D uC1uC2 � � � uCs where � D C1C2 � � � Cs are
totally disjoint increasing cycles. For C D .c1; c2; : : : ; cm/, an increasing cycle, we
have uC D uc2c1uc3c2 � � � ucmcm�1 . A careful analysis of the relation (11) shows that
for totally disjoint increasing cycles C1C2 � � � Cs , the operators uCi and uCj commute
for i ¤ j . We will assume that ak�1 and bk�1 belong to the cycle C1.

We investigate what happens when we perform a non-zero product uakbk
u�0

where bk > bk�1. If ak > bk�1, then .bk; ak/ is a new increasing cycle totally
disjoint from any cycle of �0. If ak D bk�1, then ak; bk increases the cycle C1 of �0
and is still totally disjoint from the other cycles of �0.

If ak < bk�1, then from (11)–(4) we must have ak < ak�1 and the operators
uakbk

uak�1bk�1
¤ 0 commute. Let C1 D .c1; c2; : : : ; cm/ and recall that we have

bk�1 D c1 and ak�1 D c2. We have uC1 D uc2c1uc3c2 � � � ucmcm�1 and bk > bk�1 D
c1 > ci for all i . Since ak < ak�1 D c2, then uakbk

uc3c2 ¤ 0 implies ak < c3 and
uakbk

uc3c2 commutes. Continuing this process, we find that uakbk
uC1 D uC1uakbk

¤
0 and ak < cm < c1 < bk . This means C1 and .bk; ak/ are totally disjoint increasing
cycles. We have

uakbk
u�0 D uC1uakbk

uC2 � � � uCs :

From the induction hypothesis, the result holds for uakbk
uC2 � � � uCs and decomposes

into totally disjoint increasing cycles. Moreover C1 will be totally disjoint from the
cycles of .bkak/C2 � � � Cs .
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As in Corollary 1, the expression in Proposition 4 is valid as long as we consider
all possible r-Bruhat orders for r > 1. If we fix r , then most of the u� in Hk will
act as zero on the r-Bruhat order. For a fixed r , we see that Hk WZS1 ! ZS1 is a
well defined operator on the r-Bruhat order. From Corollary 1, for a fixed r ,

Hk D
X

� is k-increasing
jup.�/j�r

u� :

By definition of Hk and Eq. (13), we have

Hk.w/ D
X

wu�1 k-increasing

u ” Swhk.x1; : : : ; xr / D
X

wu�1 k-increasing

Su :

This implies that

HbHa.w/ D P
� d u

w;.a;b/u

” Swha.x1; : : : ; xr /hb.x1; : : : ; xr / D P
u d u

w;.a;b/Su :

(15)

In particular, for all w we have HbHa.w/ D HaHb.w/ since hahb D hbha. The
result below is not as well known as Theorem 1.

Theorem 3. The algebra BhHki spanned by fH1; H2; H3; : : :g as operators on the
r-Bruhat order for r > 0 is isomorphic to Sym.

Proof. As we multiply HaHb and HbHa, some terms will go to zero and others will
survive. The terms that survive in HaHb are of the form

uw D u�u	

where � is a-increasing and 	 is b-increasing. Let d w
.a;b/ be the coefficient of uw in

HaHb . From Corollary 1, for any w 2 S1 we can find u and an r > 0 such that
uw.u/ D v ¤ 0. So d w

.a;b/ is the coefficient of v in HaHb.u/. From (15), for all w,
we have

d w
.a;b/ D Coeff of v in HaHb.u/ D Coeff of v in HbHa.u/ D d w

.b;a/:

Hence HaHb D HbHa.
The algebra BhHki is clearly spanned by H� D H�1 � � � H�`

where � runs over
all partitions. To show the isomorphism with Sym, we only need to show that the
H� are linearly independent. Let r � `.�/. Using (15), we have that H�.Id/ DP

� d
�

� v� where v� is the unique grassmannian permutation defined by v.v�; r/ D
� and the d

�

� satisfy

h�.x1; : : : ; xr / D
X

�

d
�

� s�.x1; : : : ; xr /:
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If we have a finite linear combination ˚ D P
� c�H�, then for r � maxf`.�/ W

c� ¤ 0g we have that ˚.Id/ corresponds to the symmetric function
P

� c�h�. This
is zero if and only if all c� D 0. ut

As in Sect. 2.4, let hv; wi D ıv;w define a scalar product on ZS1. For a fixed
r > 0 and u <r w, we define the quasisymmetric function

KŒu;w�r D
X

˛

hH˛.u/; wiM˛: (16)

As before, since HaHb D HbHa, the function KŒu;w�r is in fact a symmetric
function. As shown in [9, 10], we have the following theorem:

Theorem 4.

KŒu;w�r D
X

˛

hR˛.u/; wiF˛ D
X

�

cw
u;v.�;r/s� ;

where cw
u;v.�;r/ are defined in (9). Moreover for ˛ a composition of n we have that

hR˛.u/; wi counts the number of paths in the r-Bruhat order S1 from u to w of the
form uanbn � � � ua2b2ua1b1 where bi > biC1 if and only if i 2 D.˛/.

Example 3. Using the chains in (12) and Theorem 4 we can compute the quasisym-
metric function associated to this interval and we get

KŒ142635;356124�3 D F13 C F121 C F22 C F112 C F121 C F31 C F211 C F22

D S31 C S22 C S211:

Remark 4. The monoid generated by the operators uab does not satisfy relations that
resemble (6), hence we cannot use the work of Fomin and Greene to conclude that
KŒu;w�r is symmetric nor deduce a combinatorial rule for constructing the coefficient
cw

u;v.�;r/ in KŒu;w�r . In fact all known attempts to give such a rule so far have failed.
In the next section we outline how it is shown combinatorially in [1] that the
coefficients are positive (without giving an explicit rule in all cases) using techniques
developed by [2].

3.3 Combinatorial Proof of Positivity of cw
u;v.�;r/

Let Compn denote the set of compositions of n. Given a finite family of objects C
and a function ˛W C ! Compn we can define a quasisymmetric function as follows

KC D
X

x2C

F˛.x/ :
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The function KŒu;w�r of Theorem 4 is clearly of this form. In that case C is the set of
saturated chains uanbn � � � ua2b2ua1b1 in the interval Œu; w�r and ˛ D ˛.uanbn � � � ua2b2

ua1b1/ is the unique composition where bi > biC1 if and only if i 2 D.˛/.
Assaf [2] develops new combinatorial techniques to show that quasisymmetric

functions of the form KC are symmetric with a positive expansion in terms of Schur
functions. To this end one must construct partially commuting involutions 
i W C !
C for 1 < i < n satisfying a set of axioms. When C consists of words (or saturated
chains), the involutions 
i can be viewed as an analogue of the dual Knuth relations.
In [1] we have defined such involution 
i on the set of chains of Œu; w�r . Given a
chain x D uanbn � � � ua2b2ua1b1 , the involution 
i will only affect the three entries
uaiC1biC1

uai bi uai�1bi�1 . We set 
i .x/ D x if and only if
ˇ̌
D.˛.x// \ fi � 1; igˇ̌ ¤ 1.

When
ˇ̌
D.˛.x//\fi �1; igˇ̌ D 1, the entries uaiC1biC1

uai bi uai�1bi�1 of x can be one
of twelve cases. To define 
i , we match the twelves cases as follows:

(A) u�cu˛auˇb $ u˛au�cuˇb ,
uˇbu˛au�c $ uˇbu�cu˛a, if fa; ˛g \ fc; �g D ; and a < b < c,

(B) ubcuabubd $ uacucd ubc ,
ubd uabubc $ ubcucd uac , if a < b < c < d ,

(C) uˇbu˛auac $ u˛auacuˇb ,
uacu˛auˇb $ uˇbuacu˛a, if f˛; a; cg \ fb; ˇg D ; and a < b < c.

This matching is completely determined by the relations in (11). We see them as
the analogue of the dual Knuth relations for this problem. Instead of using the
relation (11) one can investigate the free monoid spanned by the uab modulo the
dual Knuth relations above. Under certain axioms described in [1,2], the component
of the equivalent classes of these relations will be combinatorially symmetric and
Schur positive. To our knowledge this is the best we can do so far, and is the best
generalization of the work of Fomin and Greene.

4 k-Schur Functions

In this section we present a monoid of operators for which much less is known
but that is expected to behave as in Sect. 3. This monoid is related to the so-called
k-Schur functions [18, 21]. This time we will define operators on the Bruhat order
of the k-affine symmetric group. The operators we define will be related to the
multiplication of dual k-Schur functions. There are still many open questions in this
case, but we will present our program and we believe that it can be solved in the
same spirit as in Sect. 3. There is another order one may consider on the k-affine
symmetric group, namely the weak order. The operators corresponding to the weak
order are related to the multiplication of k-Schur functions, but we will discuss only
briefly the difficulties which arise in this situation.

The k-Schur functions were originally defined combinatorially in terms of
k-atoms, and conjecturally provide a positive decomposition of the Macdonald
polynomials [21]. These functions have several definitions and it is conjectural
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that they are equivalent (see [18]). In this paper we will adopt the definition given
by the k-Pieri rule and k-tableaux (see [18, 20]) since this gives us a relation with
the homology and cohomology of the affine grassmannians and we therefore get
positivity in their structure constants.

Different objects index k-Schur functions: 0-grassmannian in k-affine permuta-
tions, k C 1-cores, k-bounded partitions. Originally (as in [21]), k-Schur functions
were indexed by k-bounded partitions � D .�1; �2; : : : ; �`/ where �1 � k. These
partitions are in bijection with k C 1-cores (see [19]). By definition, k C 1-cores
are integer partitions � D .�1; �2; : : : ; �m/ with no hook of length k C 1. To close
the loop, in [13] it is shown that k C 1-cores are in bijection with 0�grassmannian
permutations in the k-affine symmetric group (see [6, 18]).

4.1 Affine Symmetric Group

The k-affine symmetric group W D QAk is generated by reflections si for i 2
f0; 1; : : : ; kg, subject to the relations:

s2
i D 1I si siC1si D siC1si siC1I si sj D sj si if i � j ¤ ˙1;

where i � j and i C 1 are understood to be taken modulo k C 1. Let w 2 W and
denote its length by `.w/, given by the minimal number of generators needed to
write a reduced expression for w. We let W0 denote the parabolic subgroup obtained
from W by removing the generator s0. This is naturally isomorphic to the symmetric
group SkC1. For more details on the affine symmetric group see [13].

Let u 2 W be an affine permutation. This permutation can be represented using
window notation. That is, u can be seen as a bijection from Z to Z, so that if ui is
the image of the integer i under u, then it can be seen as a sequence:

u D � � � ju�k � � � u�1 u0 ju1 u2 � � � ukC1j
„ ƒ‚ …

main window

ukC2 ukC3 � � � u2kC2j � � �

Moreover, u satisfies the property that uiCkC1 D ui C k C 1 for all i , and the sum of
the entries in the main window u1 C u2 C � � � C ukC1 D �

kC2
2

�
. Notice that in view

of the first property, u is completely determined by the entries in the main window.
In this notation, the generator u D si is the permutation such that uiCm.kC1/ D
i C1Cm.kC1/ and uiC1Cm.kC1/ D i Cm.kC1/ for all m, and uj D j for all other
values. The multiplication uw of permutations u; w in W is the usual composition
given by .uw/i D uwi . In view of this, the parabolic subgroup W0 corresponds to the
u 2 W such that the numbers f1; 2; : : : ; k C 1g appear in the main window.

Now, let W 0 denote the set of minimal length coset representatives of W=W0.
In this paper we take right coset representatives, although left coset representatives
could be taken as well. The set of permutations in W 0 are the affine grassmannian
permutations of W , or 0-grassmannians for short.
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Definition 1. The affine 0-grassmannians W 0 are the permutations u 2 W such
that the numbers 1; 2; : : : ; k C 1 appear from left to right in the sequence u.

Example 4. Let k D 4 and

u D � � �jN3 N2 1 N5 N1 j2 3 6 N0 4j
„ ƒ‚ …
main window

7 8 11 5 9j � ��

where Ni stands for �i . By convention we say that 0 is negative. This permutation u is
0-grassmannian and it corresponds to the 5-core � D .4; 1; 1/. The correspondence
is easy to see from the window notation. We just need to read the sequence of entries
of u, drawing a vertical step down for each negative entry, and an horizontal step
right for each positive entry. The result is the diagram of �:

...

. . .

2̄ 1

5̄

1̄ 2 3 6

0̄ 4

4.2 k-Schur Functions and Weak Order

As previously mentioned, 0-grassmannian permutations index k-Schur functions,
which we denote by S

.k/
u for some u 2 W 0.

Given u 2 W , we say that u Éw usi is a cover for the weak order if `.usi / D
`.u/ C 1. The weak order on W is the transitive closure of these covers. We can
define operators

si W ZW 0 �! ZW 0;

u 7�!
�

usi if u Éw usi

0 otherwise

(17)

on the weak order of W restricted to W 0. The definition and multiplication of
k-Schur functions is based on the operators si so it is worthwhile to study the
monoid they generate. As we will see in Example 5 there are difficulties with the
behavior of this case which make it very difficult at this point to understand its
combinatorics. For this reason, we will quickly turn our attention to the dual k-Schur
after Example 5.



328 C. Benedetti and N. Bergeron

The Pieri rule for k-Schur functions is described by certain chains in the weak
order of W restricted to W 0. This result is given in [17, 18, 20]. A saturated chain
w D sim � � � si2si1 .u/ in an interval Œu; w�w of the weak order restricted to W 0 gives
us a sequence of labels .i1; i2; : : : ; im/. We say that the sequence .i1; i2; : : : ; im/ is
cyclically increasing if i1; i2; : : : ; im lies clockwise on a clock with hours 0; 1; : : : ; k

and if the min
˚
j W 0 � j � kI j … fi1; i2; : : : ; img� lies between im and i1.

In particular we must have 1 � m � k. Now, to express the Pieri rule, we first
remark that for 1 � m � k, the homogeneous symmetric function hm corresponds
to the k-Schur function S

.k/

v.m/ where v.m/ is a 0-grassmannian whose main window

is given by j2 � � � m N0 m C 1 � � � k k C 2j. Then, the multiplication of a k-Schur
function S

.k/
u by a homogeneous symmetric function hm is given by

S.k/
u hm WD

X

.i1;i2;:::;im/ cyclically increasing
sim ���si2 si1 .u/¤0

S
.k/

sim ���si2 si1 .u/: (18)

Iterating Eq. (18) one can easily see that

h� D
X

u

K�;uS.k/
u (19)

is a triangular relation [20]. One way to define k-Schur functions is to start with
Eq. (18) as a rule, and define them as follows.

Definition 2. The k-Schur functions are the unique symmetric functions S
.k/
u

obtained by inverting the matrix ŒK�;u� obtained from (19) above.

It is clear that we can define a Pieri operator

Hm D
X

.i1;i2;:::;im/ cyclically increasing

sim � � � si2si1 ;

for 1 � m � k. Again we can show that HaHb D HbHa and define KŒu;w�w using
the original definition. The example below shows the main problems we have with
this function.

Example 5. Let k D 2 and u D jN0 2 4j. We consider the interval Œu; w�w in the
weak order restricted to W 0, where w D jN3 4 5j. This interval is a single chain
w D s0s2s1.u/. In this case, we remark that

hH1H1H1.u/; wi D hH1H2.u/; wi D hH2H1.u/; wi D 1

are the only nonzero entries in KŒu;w�w and we get

KŒu;w�w D M111 C M21 C M12

D F12 C F21 � F111

D S21 � S111:
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This small example shows some of the behavior of the (quasi)symmetric function
KŒu;w�w for the weak order of W . In general, it is neither F -positive nor Schur
positive. Although, these functions contain some information about the structure
constants, it is not enough to fully understand them combinatorially. In particular,
these functions lack some of the properties needed to use the theory developed
in [2]. The functions KŒu;w�w were first defined in [10, 26] but the combinatorial
expansion in terms of Schur functions is still open.

4.3 Dual k-Schur Functions

Recall that Sym D ZŒh1; h2; : : : � is the Hopf algebra of symmetric functions. The
space of k-Schur functions Sym.k/ can be seen as a subalgebra of Sym spanned by
ZŒh1; h2; : : : ; hk�. In fact, it is a Hopf subalgebra whose comultiplication defined in
the homogeneous basis is given by

�.hm/ D
mX

iD0

hi ˝ hm�i

and extended algebraically. The degree map is given by deg.hm/ D m. The space
Sym is a self dual Hopf algebra where the Schur functions S� form a self dual basis
under the pairing hh�; m�i D ı�;�.

The map dual to the inclusion Sym.k/ ,! Sym, is a projection Sym !!
Sym.k/, where Sym.k/ D Sym�

.k/ is the graded dual of Sym.k/. It can be checked
that the kernel of this projection is the linear span of fm� W �1 > kg, hence

Sym.k/ Š Sym
ıhm� W �1 > ki :

The graded dual basis to S
.k/
u will be denoted here by S

.k/
u D S

.k/�
u which are also

known as the affine Stanley symmetric functions. The multiplication of the dual k-
Schur S.k/

u is described in terms of operator on the affine Bruhat order, as we will
see in the next section.

4.4 Affine Bruhat Order

For b�a � k, let ta;b be the transposition in W such that for all m 2 Z, it transposes
a C m.k C 1/ and b C m.k C 1/. The affine Bruhat order is given by its covering
relation. Namely, for u 2 W , we have u É uta;b is a cover in the affine Bruhat order
if `.uta;b/ D `.u/ C 1.
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Proposition 5 (see [13]). For u 2 W and b � a � k, we have that u É uta;b is a
cover in the Bruhat order if and only if u.a/ < u.b/ and for all a < i < b we have
u.i/ < u.a/ or u.i/ > u.b/.

Notice that if a0 D aCm.k C1/ and b0 D b Cm.k C1/ then ta0;b0 D ta;b , therefore,
many different choices of a and b give the same covering as long as they satisfy the
conditions of the proposition. The affine 0-Bruhat order arises as a suborder of the
Bruhat order. We define it by its covers. For u 2 W , we get a covering u É0 uta;b if
there exists a transposition ta;b satisfying Proposition 5 and also u.a/ � 0 < u.b/.
As previously noted, a transposition ta0;b0 satisfying the same conditions as ta;b gives
the same affine Bruhat covering relation as long as a0 	 a, b0 	 b modulo k C 1.
In view of this, we introduce operators on the affine 0-Bruhat order restricted to W 0.
To keep track of the distinct a; b such that u É0 uta;b is an affine 0-Bruhat covering
for a given u. For any b � a � k, let

tab W ZW 0 �! ZW 0;

u 7�!
�

uta;b if u É uta;b and u.a/ � 0 < u.b/

0 otherwise.

(20)

We write these operators as acting on the right: utab . Remark now that if utab ¤ 0,
then utab D uta0;b0 ¤ 0 for only finitely many values of m with a0 D a C m.k C 1/

and b0 D b C m.k C 1/. To see this, it is enough to notice that there exists m such
that u.a C m.k C 1// � 0 and m0 such that u.b C m0.k C 1// < 0.

Example 6. In Fig. 1 below, we have the interval ŒjN6 8 3 N1 4 13j; j8 N6 N2 9 13 N1j� in the
affine 0-Bruhat graph: In this example we see that there are three operators from
u D jN6 8 3 N1 4 13j to w D j8 N6 3 N1 13 4j. We have utN5N4 D ut12 D ut78 D w labeled by
N4; 2; 8, respectively. All other operators evaluate to 0. For example ut11 10 D 0.

When restricted to 0-grassmannian permutations, the affine 0-Bruhat order
behaves well, as shown in the next lemma whose proof (for left coset) can be
consulted in [18, Prop. 2.6]. Therefore, our operators tab are well defined.

Lemma 4. If utab D w and u 2 W 0, then we have that w 2 W 0.

At this point, there are a few questions we would like to answer regarding the
monoid M htabi generated by the operators tab . The main questions are:

(I) Can we describe all the relations satisfied by the operators tab (as in
Proposition 3)?

(II) Is there a combinatorial object that characterizes all the elements of M htabi
(as in Corollary 1)?

(III) Can we define Pieri operators Hk related to the multiplication Suhm?
(IV) Can we find a good expression for Hk as in Proposition 4?
(V) Is the algebra spanned by the Hk isomorphic Sym.k/ (as in Theorem 1)?
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···8̄ 1|12 2 3̄ 7̄ 2̄ 7 |6̄ 8 3 1̄ 4 13|
main

0̄ 14···

|8 6̄ 3 1̄ 4 13| |6̄ 8 3 1̄ 13 4| |6̄ 8 2̄ 1̄ 9 13| |6̄ 8 3 4 1̄ 13|

|8 6̄ 3 1̄ 13 4| |6̄ 8 2̄ 1̄ 13 9| |6̄ 8 2̄ 9 1̄ 13| |8 6̄ 2̄ 1̄ 9 13| |8 6̄ 3 4 1̄ 13| |6̄ 8 3 4 13 1̄|

|8 6̄ 2̄ 1̄ 13 9| |6̄ 8 2̄ 9 13 1̄| |8 6̄ 2̄ 9 1̄ 13| |8 6̄ 3 4 13 1̄|

|8 6̄ 2̄ 9 13 1̄|

t5̄4̄;t12;t78 t7̄6̄ t1̄0̄ t1̄3 t45

Fig. 1 The interval ŒjN6 8 3 N1 4 13j; j8 N6 N2 9 13 N1j�

(VI) What is the analogue of Theorem 4?
(VII) Can we show combinatorially the positivity of the structure constants in the

product Suhm as done in Sect. 3.3?

We have some partial answers to question (I) that we will discuss next. Questions
(II) and (IV) seem very difficult at this point and are still open. Questions (III), (V)
and (VI) are done in the literature (see [5, 17]), although (V) is not stated as it is
here. We are in the process of solving question (VII); this involves analyzing 3, 4, 5,
and 6-tuples of the operators tab . The number of possibilities are much greater than
the situation in Sect. 3.3 and will be available in subsequent work.

4.5 Relations of the Operators tab

The purpose of this section is to understand some of the relations satisfied by the
tab operators restricted to W 0. Our main goal at this point is not to understand
all the defining relations, but to find enough that will allow us to answer question
(VII). Answering question (II) is a very worthwhile project for future work. Most
of the relations we present here were given and proven in [5]. The relations depend
on the following data: for tab we need to consider a; b; a; b where a and b are the
residue modulo kC1 of a and b respectively. Remark that a ¤ b since b�a < kC1.
Let u 2 W 0. Lemma 4 implies that, if non-zero, utab and utabtcd are both in W 0.
The different relations satisfied by the operators tab and tcd depend on the relation
among a; b; c; d . For this reason it is useful to visualize these operators as follows.
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badc ︸ ︷︷ ︸
main

u �

utab �

utabtcd �

Above the permutation u, the operator tab is represented by drawing a bold line
connecting positions a; b and repeating this pattern to the left and to the right in
all positions congruent to a; b modulo k C 1. Next we apply tcd to the resulting
permutation, drawing a bold line connecting positions c; d and repeating that pattern
modulo k C 1. The importance of visualizing not only the bold line but the dotted
ones as well, relies on the fact that even if in the diagram, the line representing tab

does not intersect the line representing tcd , their “virtual” copies (or dotted copies)
might intersect and this will determine the commutation relation satisfied by these
operators. Therefore, it will be important to consider the pattern produced by these
two operators in the main window.

With these definitions in mind we present some of the relations satisfied by the t
operators restricted to W 0 (there are less relations if we consider all of W ).

(A) tabtcd 	 tcd tab if a; b; c; d are distinct.
(B1) tabtcd 	 tcd tab 	 0 if (a � c < b � d ) or (b D c and d � a > k C 1).
(B2) tabtcd 	 0 if (a D c and b � d ) or (b D d and c � a).
(B3) tabtcd 	 0 if (b D c or a D d ) and (d � c C b � a > k C 1).

There are more possible zeros than what we present in (B). If the numbers a; b; c; d

are not distinct, then we must have b D c or d D a. If b D c, then d � a � k C 1

in view of (B). Similarly if d D a then b � c � k C 1.

(C) tabtbd D tabtb�k�1;a if d � a D k C 1,

if d �a < k C1 then there is no relation between tabtbd and tbd tab . Now we look at
the cases tabtcd where a; b; c; d are distinct but some equalities exists between a; b

and c; d . By symmetry of the relation we will assume that b < d , which (excluding
(B)) implies that a < b < c < d .

(D) tabtcd D td�k�1;ctb�k�1;a if b D c, d D a and .b�a/C.d �c/ D kC1.
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All the relations above are local. This means that if tabtcd D tc0d 0 ta0b0 , then
ja0 � aj, jb0 � bj, jc0 � cj and jd 0 � d j are strictly less than k C 1. For example, in
(D) we have jb � k � 1 � aj, ja � bj, jd � k � 1 � cj and jc � d j which are strictly
less than k C 1.

Remark 5. The relations we care about in this paper and its sequel are all local.
There are some relations that are not local:

tabtcd D ta�k�1;b�k�1tcd D taCkC1;bCkC1tcd ;

if c < a < b < d . The full description of the relations of the operators t is rather
complicated. It would take too much space here and are not all understood.

We now consider some more relations of length three:

(E1) tbctcd tac 	 tbd tabtbc if a < b < c < d ,
(E2) tactcd tbc 	 tbctabtbd if a < b < c < d .

additionally we have

(F) tbctabtbc 	 tabtbctab 	 0 if a < b < c and c � a < k C 1.

Remark 6. If we fix a permutation u we can derive more relations of length 2. Let
r D jb � aj C jd � cj:
(X1) utabtcd D utd;cCr tb�r;a if r < k C 1, d D a, u.c/ � 0 and u.d/ � 0,
(X2) utabtcd D utcd tb�r;b if r < k C 1, d D a and u.d/ > 0,
(X3) utabtcd D utd�r;d tab if r < k C 1, b D c and u.a C r/ � 0,
(X4) utabtcd D utd�r;ctb;aCr if r < k C1, b D c, u.b/ > 0 and u.aCr/ > 0,
(X5) utabtcd D utcd ta;bCc�d if b D d , b � a > d � c and u.d � b C a/ > 0,
(X6) utabtcd D utc;d�bCata;b if b D d , b � a < d � c and u.a/ � 0.

In the (X) relations, the conditions we impose on u are minimal to assure that both
sides of the equality are non-zero. These conditions are not given by the definition
of the operators tab . For example in (X1), the left hand side is non-zero regardless
of the value of u.d/ but to guarantee that the right hand side is non-zero, we must
have u.d/ � 0. This shows that as operators tabtcd ¤ td;cCr tb�r;a.

4.6 Multiplication of Dual k-Schur

For dual k-Schur functions S.k/
u , the analogue of the Pieri formula (18) is given by

S.k/
u hm WD

X

uta1b1
���tambm ¤0

b1<b2<���<bm

S
.k/
uta1b1

���tambm
; (21)
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where the sum is over all increasing paths b1 < b2 < � � � < bm starting at u [18].
Since the Pieri formula is encoded by increasing composition of operators in the
affine 0-Bruhat order restricted to W 0, we can define Pieri operators similar to
Eq. (14) using increasing composition of operators tab . We can then define a Pieri
operator

Hm D
X

b1<b2<���<bk
ai <bi

ta1b1ta2b2 � � � tambm: (22)

Many terms in this sum may be zero. At this point we do not have a good description
of the terms that survive or how to express the non-zero terms as in Proposition 4.
The definition of the operator Hm in this case allows us to see that

By definition of Hk and Eq. (21), we have

wHbHa D P
� d u

w;.a;b/u

” Swhahb D P
u d u

w;.a;b/Su :
(23)

In particular, for all w we have HbHa.w/ D HaHb.w/ since hahb D hbha.

Theorem 5. The algebra BhHki spanned by fH1; H2; : : : ; Hkg as operators on the
k-affine Bruhat order restricted to W 0 is isomorphic to Sym.k/.

Proof. As we multiply HmHn and HnHm, some terms go to zero and others survive.
The terms that survive in HmHm are of the form

! D ta1b1ta2b2 � � � tambmtc1d1tc2c2 � � � tanbn :

where b1 < b2 < : : : < bk and d1 < d2 < : : : < dn. Let d !
.a;b/ be the coefficient of

! in HmHn. Since ! ¤ 0, there is a u 2 W 0 such that u! D v ¤ 0. As before, for
all !, we have

d !
.a;b/ D Coeff of v in HaHb.u/ D Coeff of v in HbHa.u/ D d !

.b;a/:

Hence HaHb D HbHa.
The algebra BhHki is clearly spanned by H� D H�1 � � � H�`

where � runs over
all partitions. Again, we only need to show that the H�’s are linearly independent.
Using the definition of the Hm, we have that IdH� D P

� d
�

� v� where v� is the
unique 0-grassmannian permutation with shape � and the d

�

� satisfy

h�.x1; : : : ; xr / D
X

�

d
�

� s�.x1; : : : ; xr /:

As we have seen in the proof of Theorem 3 this implies the linear independence of
the H�. ut



Fomin-Greene Monoids and Pieri Operations 335

As in Sect. 2.4, let hv; wi D ıv;w define a scalar product on ZW 0. For a u < w in
the 0-Bruhat order, we define the quasisymmetric function

KŒu;w� D
X

˛

huH˛; wiM˛: (24)

Again, since HaHb D HbHa, the function KŒu;w� is in fact a symmetric function. As
shown in [5, 10]

Theorem 6.

KŒu;w� D
X

˛

huR˛; wiF˛ D
X

�

cw
u;�s� ;

where cw
u;� are defined by

S.k/
u s� D

X

w

cw
u;�S

.k/
w :

Moreover for ˛ a composition of n, we have that huR˛; wi count the number of
compositions ! D ta1b2ta2b2 � � � tambm such that u! D w and bi > biC1 if and only if
i 2 D.˛/.

Example 7. Considering the interval Œu; w� D ŒjN6 8 3 N1 4 13j; j8 N6 N2 9 13 N1j� from
Example 6. The total number of composition of operators is 240. In this case

KŒu;w� D 9F1111 C 30F112 C 51F121 C 30F13 C 30F211 C 51F22 C 30F31 C 9F4

is symmetric and the expansion in term of Schur functions is positive

KŒu;w� D 9S4 C 30S31 C 21S22 C 30S211 C 9S1111 :

4.7 Comments on the Combinatorial Proof
of the Positivity of cw

u;�

If one considers an interval Œu; w� of rank 3 and computes KŒu;w�, then by Theorem 24
the coefficient of F21 and F12 must be the same in KŒu;w�. This means that every time
we have a descent followed by an ascent in a chain, we must have another chain
with an ascent followed by a descent. This should be reflected in relations like (X)
and could depend on u. To achieve a result similar to [1] for KŒu;w�, one needs first
to build a full set of relations of length 3 that pairs every ascent-descent type to a
descent-ascent. This cannot be done independently from u. The purpose of this will
be to define Dual-Knuth operations on the maximal chains in intervals Œu; w� in order
to construct dual graphs as in [2].
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We give here a partial list of the relations of length 3 that would be the analogue
for dual k-Schur of (A)–(B)–(C) in Sect. 3.3. The complete full list of 3-relations
needed is too long for this survey. In future work, we will need to show that the
corresponding 
i defined by those relations satisfy the axioms of [2]. This is a long
analysis that will appear in subsequent work. This will show that the monoid defined
by the tab behaves like the monoid of Sect. 3, even if it does not satisfy the Fomin and
Greene’s hypothesis. This shows that these monoids are worthwhile to investigate.

We have already listed some of the relations satisfied by triplets of operators tab .
Relations (A),(E1),(E2),(F) resemble the relations listed in (11). However, as noted
before in the case of the operators tab , more relations can be derived making the
analysis of relations much more complex than the uab operators.

.1a/ tabtcd tec 	 tecta;b�jc�ejted ; if a < b < e < c < d and Na D Nd < Ne < Nb D Nc

.1b/ tabtcd tec 	 t Ndct Nbatec; if a < b < e < c < d and Na D Nd D Ne; Nb D Nc

.1c/ tabtcd tef 	 tef tabtcd ; if a < b < c < e < f < d and Na D Nd; Nb D Nc

.1d/ tabtbctdb 	 tdbtad tdc; if a < d < b < c and Na D Nc

.1e/ tabtbctdb 	 tabtb�m;c�mtdb; if a D d < b < c and Na D Nc; m D k C 1

In analogy with relations (X1)–(X6), let us list more relations that depend on the
permutation u we apply them to. Let r D jd � cj C jb � aj < k C 1

.2a/ utabtcd tef 	 utd;cCstb�s;atef ; if a < b < e < f � c < d , Na D Nd; u.c/ � 0;

u.d/ � 0

.2b/ utabtcd tef 	 utcd tb�r;btef ; if a < b < e < f � c < d , Na D Nd; u.d/ > 0

.3a/ utabtcd tef 	 utd�r;ctb;aCr tef ; if a < b < e < f � c < d , Nb D Nc, Ne � Nd;

u.a C r/ > u.b/ > 0

.3b/ utabtcd tef 	 utd�r;d tabtef ; if a < b < e < f � c < d , Nb D Nc, Ne � Nd;

u.a C r/ � 0

.4a/ utabtcd teb 	 utebtaetc�jb�ej;d ; if a < e < b < c < d , Nb D Nc; Ne > Na;

u.a C r/ > u.b/ > 0

.4b/ utebtaetc�jb�ej;d 	 utebtd�r;d tab; if a < e < b < c < d , Nb D Nc; Ne > Na;

u.a C r/ � 0

If the reader represents these relations as a system of bars, they can be interpreted
as exchanging an ascent-descent by a descent-ascent. As an example, putting b0 D
b � jc � ej in relation .1a/ we can represent it graphically as

a b

c d

e c
≡
a b ′

e c

e d

Next we list more ascent-descent relations equivalent to descent-ascent. This is
not an exhaustive list but it gives a good sense of the behaviour of these operators.
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.6a/ uteatabtcd 	 utebtc;d�ja�ejtea; if c < d < e < a < b, Nc < Ne; Na D Nd;

u.b � r/ � 0

.6b/ uteatabtcd 	 utebtc;cCr tab; if c < d < e < a < b, Nc � e; Na D Nd;

u.b � r/ > 0

.6c/ uteatabtcd 	 utebtd;cCr tb�r;a; if c < d < e < a < b, Nc > Ne; Na D Nd;

u.b � r/ � 0

.6d/ uteatabtcd 	 utebtd�r;ctb;aCr ; if c < d < e < a < b, Nc ¤ Ne � Nd; Nb D Nc;

u.c/ > 0

.6e/ uteatabtcd 	 utebtcd ta;aCr ; if c < d < e < a < b, Nc ¤ Ne � Nd; Nb D Nc;

u.c/ � 0

We encourage the reader to draw the corresponding diagrams of the given
relations together with their virtual copies in order to realize what these relations
look like and understand better the interaction of these triplets. A full understanding
of the relations satisfied by tuples of the operators tab will lead us to describe
connected components of these relations. This is work in progress that we aim to
use, for instance, to solve question (VII) as stated before.

Remark 7. In a recent paper, Assaf and Billey [3] have constructed involutions 
i

on the so called star-tableaux. Such involutions preserve the spin statistic. Star-
tableaux are equivalent to non-zero sequences of operators tab acting on the identity
0-grassmannian permutation Id . These transformations 
i are strongly related to
the relations we study satisfied by triplets tab . Showing that these triplets satisfy the
spin statistic as well will in fact give us a much stronger positive result. We expect
to include this as well in future work.
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