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Preface

The field of Algebraic Monoids owes a great deal to both Mohan Putcha and Lex
Renner. In their hands, since the 1980s, this theory has turned into a full-fledged
subject with the 2010 MSC code: 20M32. Dedicated to the 60th birthdays of Putcha
and Renner, the International Workshop on Algebraic Monoids, Group Embeddings,
and Algebraic Combinatorics took place at the Fields Institute in Toronto, Canada,
from July 3 to July 6, 2012.

The purpose of the workshop was to stimulate research on the interplay between
algebraic monoids, group embeddings, and algebraic combinatorics by bringing
together some of the principal investigators, junior researchers, and graduate
students in these three areas, as well as to contribute to the increased synthesis of
these areas. The research talks given in the workshop not only reflected the current
accomplishments of the invited speakers, but also outlined future directions of
research. As planned, it has led to active collaborations between the participants. For
example, shortly after the workshop Michel Brion and Lex Renner jointly proved
that every algebraic monoid is strongly �-regular, which settled a long standing
open problem.

The workshop had two main components. The first component consisted of mini-
courses on introductory topics for graduate students delivered by Michel Brion,
Eric Jespers, and Anne Schilling. These tutorials, staggered throughout the 4 days,
introduced the necessary background for the remaining 17 research talks, which
formed the second component of the workshop. The invited talks were delivered
by Georgia Benkart, Nantel Bergeron, Tom Denton, Stephen Doty, Wenxue Huang,
Kiumars Kaveh, Stuart Margolis, Mohan Putcha, Jan Oknínski, Lex Renner, Alvaro
Rittatore, Yuval Roichman, Dewey Taylor, Ryan Therkelsen, Nicholas Thiéry,
Sandeep Varma, and Monica Vazirani. The topics of these talks were diverse and
varied. They included structure and representation theory of reductive algebraic
monoids, monoid schemes, monoids related to Lie theory, equivariant embeddings
of algebraic groups, constructions and properties of monoids from algebraic com-
binatorics, endomorphism monoids induced from vector bundles, Hodge-Newton
decompositions of reductive monoids, and applications of monoids.

v



vi Preface

Putcha and Renner originated the systematic study of algebraic monoids inde-
pendently around 1978. Putcha, at North Carolina State University, first obtained
many foundational results from the semigroup point of view. He investigated
Green’s relations, regularity, connections of regular monoids to reductive monoids
in characteristic zero, semilattices, conjugacy classes of idempotents, and so on. In
particular, he showed the existence of cross-section lattices for irreducible algebraic
monoids, connecting Green’s relations to group actions. Soon after, it became clear
that this notion is closely related to Borel subgroups.

At the same time Renner began writing his thesis on the subject at the University
of British Columbia. This period witnessed the first wave of applications of alge-
braic geometry in algebraic monoids. One pivotal result was that reductive monoids
in any characteristic are (von Neumann) regular, a result that dramatically influenced
the later developments. In late 1980s, using the connection of cross-section lattices
to Borel subgroups as a starting point, Renner classified all normal, semisimple
monoids numerically in the spirit of classical Lie theory. As a consequence, J -
irreducible algebraic monoids (monoids with a unique J -class) appeared. He then
found an analogue of the Bruhat decomposition for reductive monoids with equally
striking consequences by introducing the concept of a Renner monoid, which plays
the same role for monoids that the Weyl group does for groups.

Meanwhile, Putcha developed the monoid analogue of Tits’s theory of groups
with BN pair, monoids of Lie type. He also discovered that every reductive monoid
has a type map, which is the monoid analogue of the Dynkin diagram and becomes
the most important combinatorial invariant in the structure theory of reductive
monoids. Around this time period, Putcha and Renner together determined explicitly
the type map of J -irreducible algebraic monoids.

In 1990s, Putcha gave a classification of monoids of Lie type, investigated highest
weight categories of representations, and studied monoid Hecke algebras. Oknínski
and Putcha showed that every complex representation of a finite monoid of Lie type
is completely reducible, in particular proving that the complex algebra of the monoid
of n�nmatrices over a finite field is semisimple. Putcha and Renner systematically
studied the canonical compactification of a finite group of Lie type and found that
the restriction of any irreducible modular representation of a finite monoid of Lie
type to its unit group is still irreducible. Furthermore, they computed the number
of such irreducible modular representations. Renner introduced the concept of finite
reductive monoids and studied modular representations of such monoids, showing
that each finite reductive monoid is a monoid of Lie type. He obtained an analogue
of the Tits system for reductive monoids by introducing a length function on the
monoids.

In the first decade of the twenty-first century, Putcha explored shellability,
Bruhat-Chevalley order, root semigroups in reductive monoids, and parabolic
monoids. Renner investigated Betti numbers of rationally smooth group embed-
dings, blocks and representations of algebraic monoids, cellular decompositions
(analogous to Schubert cells) of compactifications of a reductive group, descent
systems for Bruhat posets, and H -polynomials.
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Indeed, the theory of linear algebraic monoids has been developed significantly
over the past three decades, due in large part to the efforts of Putcha and Renner.
Meanwhile, it has also attracted researchers from different areas of mathematics
because of its connections to algebraic group emdeddings, algebraic combinatorics,
convex geometry, groups with BN-pairs, Lie theory, Kazhdan-Lusztig theory,
semigroup theory, and toric varieties among others.

Algebraic group embedding theory studies compactifications of algebraic
groups. It incorporates torus embeddings and reductive monoids, and it provides
us with a large and important class of spherical varieties. Some aspects of
representation theory are related to the geometry of group embeddings, especially
through the examples of linear algebraic monoids.

Algebraic combinatorics, which is concerned with discrete objects such as
posets, permutations, and polytopes, is an ever-growing field of mathematics with
increasing importance in other disciplines including quantum chemistry, statistical
biology, statistical physics, theoretical computer science, and so forth. Many
questions in the combinatorial representation theory of algebraic monoids remain
open.

This volume contains the refereed proceedings of the workshop; all the papers
were strictly refereed and are previously unpublished. We thank all the 35 partic-
ipants including students, research experts, and speakers from Belgium, Canada,
China, France, Israel, Poland, Turkey, Uruguay, and USA, and especially the
authors whose papers are included here. We also thank all the referees who
spent their valuable time reviewing these papers and providing useful suggestions
for their improvement. We are grateful to the Fields Institute and the National
Science Foundation of USA for the funding and support of this workshop. We
thank the editorial staff of the Fields Institute Communications Series, as well as
that of Springer, especially Ms. Debbie Iscoe and Dr. Carl Riehm for their kind
cooperation, help, and guidance in the preparation of this volume.

New Orleans, USA Mahir Can
Aiken, USA Zhenheng Li
New York, USA Benjamin Steinberg
Ottawa, Canada Qiang Wang
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On Algebraic Semigroups and Monoids

Michel Brion

Abstract We present some fundamental results on (possibly nonlinear) algebraic
semigroups and monoids. These include a version of Chevalley’s structure theorem
for irreducible algebraic monoids, and the description of all algebraic semigroup
structures on curves and complete varieties.

Keywords Algebraic semigroup • Algebraic monoid • Algebraic group

Subject Classifications: 14L10, 14L30, 20M32, 20M99

1 Introduction

Algebraic semigroups are defined in very simple terms: they are algebraic varieties
endowed with a composition law which is associative and a morphism of varieties.
So far, their study has focused on the class of linear algebraic semigroups, that is,
of closed subvarieties of the space of n � n matrices that are stable under matrix
multiplication; note that for an algebraic semigroup, being linear is equivalent to
being affine. The theory has been especially developed by Putcha and Renner
for linear algebraic monoids, i.e., those having a neutral element (see the books
[23, 26]).

In addition, there has been recent progress on the structure of (possibly nonlinear)
algebraic monoids: by work of Rittatore, the invertible elements of any irreducible
algebraic monoidM form an algebraic group G.M/, open inM (see [28, Thm. 1]).
Moreover, M is linear if and only if so is G.M/ (see [29, Thm. 5]). Also, the
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2 M. Brion

structure of normal irreducible algebraic monoids reduces to the linear case, as
shown by Rittatore and the author: any such monoid is a homogeneous fiber bundle
over an abelian variety, with fiber a normal irreducible linear algebraic monoid (see
[6, Thm. 4.1], and [27] for further developments). This was extended by the author
to all irreducible monoids in characteristic 0 (see [3, Thm. 3.2.1]).

In this article, we obtain some fundamental results on algebraic semigroups
and monoids, that include the above structure theorems in slightly more general
versions. We also describe all algebraic semigroup structures on abelian varieties,
irreducible curves and complete irreducible varieties. The latter result is motivated
by a remarkable theorem of Mumford and Ramanujam: if a complete irreducible
varietyX has a (possibly nonassociative) composition law �with a neutral element,
then X is an abelian variety with group law � (see [19, Chap. II, §4, Appendix]).

As in [23, 26], we work over an algebraically closed field of arbitrary character-
istic (most of our results extend to a perfect field without much difficulty; this is
carried out in Sect. 3.5). But we have to resort to somewhat more advanced methods
of algebraic geometry, as the varieties under consideration are not necessarily affine.
For example, to show that every algebraic semigroup has an idempotent, we use an
argument of reduction to a finite field, while the corresponding statement for affine
algebraic semigroups follows from linear algebra. Also, we occasionally use some
semigroup and monoid schemes (these are briefly considered in [9, Chap. II]), but
we did not endeavour to study them systematically.

This text is organized as follows. Section 2 presents general results on idem-
potents of algebraic semigroups and on invertible elements of algebraic monoids.
Both topics are fairly interwoven: for example, the fact that every algebraic monoid
having no nontrivial idempotent is a group (whose proof is again more involved
than in the linear case) implies a version of the Rees structure theorem for simple
algebraic semigroups. In Sect. 3, we show that the Albanese morphism of an
irreducible algebraic monoid M is a homogeneous fibration with fiber an affine
monoid scheme. This generalization of the main result of [6] is obtained via a
new approach, based on the consideration of the universal homomorphism from
M to an algebraic group. In Sect. 4, we describe all semigroup structures on
certain classes of varieties. We begin with the easy case of abelian varieties; as
an unexpected consequence, we show that all the maximal submonoids of a given
irreducible algebraic semigroup have the same Albanese variety. Then we show
that every irreducible semigroup of dimension 1 is either an algebraic group or
an affine monomial curve; this generalizes a result of Putcha in the affine case
(see [21, Thm. 2.13] and [22, Thm. 2.9]). We also describe all complete irreducible
semigroups, via another variant of the Rees structure theorem. Next, we obtain two
general rigidity results; one of them implies (in loose words) that the automorphisms
of a complete variety are open and closed in the endomorphisms. This has
applications to complete algebraic semigroups, and yields another approach to the
above theorem of Mumford and Ramanujam. Finally, we determine all families of
semigroup laws on a given complete irreducible variety.

This article makes only the first steps in the study of (possibly nonlinear)
algebraic semigroups and monoids, which presents many open questions. From the
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viewpoint of algebraic geometry, it is an attractive problem to describe all algebraic
semigroup structures on a given variety. Our classes of examples suggest that the
associativity condition imposes strong restrictions which might make this problem
tractable: for instance, the composition laws on the affine line are of course all the
polynomial functions in two variables, but those that are associative are obtained
from the maps .x; y/ 7! 0, x, y, x C y or xy by a change of coordinate. From
the viewpoint of semigroup theory, it is natural to investigate the structure of an
algebraic semigroup in terms of its idempotents and the associated (algebraic)
subgroups. Here a recent result of Renner and the author (see [5]) asserting that
every algebraic semigroup S is strongly �-regular (i.e., for any x 2 S , some power
xm belongs to a subgroup) opens the door to further developments.

Notation and conventions. Throughout this article, we fix an algebraically closed
field k. A variety is a reduced, separated scheme of finite type over k; in particular,
varieties need not be irreducible. By a point of a variety X , we mean a closed (or
equivalently, k-rational) point; we may identify X to its set of points equipped with
the Zariski topology and with the structure sheaf OX . Morphisms of varieties are
understood to be k-morphisms.

The textbook [13] will be our standard reference for algebraic geometry, and [10]
for commutative algebra. We will also use the books [33] and [19] for some basic
results on linear algebraic groups, resp. abelian varieties.

2 Algebraic Semigroups and Monoids

2.1 Basic Definitions and Examples

Definition 1. An (abstract) semigroup is a set S equipped with an associative
composition law � W S � S ! S . When S is a variety and � is a morphism,
we say that .S; �/ is an algebraic semigroup.

A neutral (resp. zero) element of a semigroup .S; �/ is an element xo 2 S such
that �.x; xo/ D �.xo; x/ D x for all x 2 S (resp. �.x; xo/ D �.xo; x/ D xo for
all x 2 S ).

An abstract (resp. algebraic) semigroup .S; �/ equipped with a neutral element
xo is called an abstract (resp. algebraic) monoid.

An algebraic group is a group G equipped with the structure of a variety, such
that the group law � and the inverse map � W G ! G, g 7! g�1 are morphisms.

Clearly, a neutral element xo of a semigroup S is unique if it exists; we then
denote xo by 1S , or just by 1 if this yields no confusion. Likewise, a zero element
is unique if it exists, and we then denote it by 0S or 0. Also, we simply denote the
semigroup law � by .x; y/ 7! xy.
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Definition 2. A left ideal of a semigroup .S; �/ is a subset I of S such that xy 2 I
for any x 2 S and y 2 I . Right ideals are defined similarly; a two-sided ideal is of
course a left and right ideal.

Definition 3. Given two semigroups S and S 0, a homomorphism of semigroups is a
map ' W S ! S 0 such that '.xy/ D '.x/'.y/ for all x; y 2 S . When S and S 0 are
monoids, we say that ' is a homomorphism of monoids if in addition '.1S/ D 1S 0 .

A homomorphism of algebraic semigroups is a homomorphism of semigroups
which is also a morphism of varieties. Homomorphisms of algebraic monoids, resp.
of algebraic groups, are defined similarly.

Definition 4. An idempotent of a semigroup S is an element e 2 S such that
e2 D e. We denote by E.S/ the set of idempotents.

Idempotents yield much insight in the structure of semigroups; this is illustrated
by the following:

Remark 1. (i) Let ' W S ! S 0 be a homomorphism of semigroups. Then ' sends
E.S/ to E.S 0/; moreover, the fiber of ' at an arbitrary point x0 2 S 0 is a
subsemigroup of S if and only if x0 2 E.S 0/.

(ii) Let S be a semigroup, and M � S a submonoid with neutral element e. Then
M is contained in the subset

fx 2 S j ex D xe D xg D fexe j x 2 Sg DW eSe;
which is the largest submonoid of S with neutral element e. This defines a
bijective correspondence between idempotents and maximal submonoids of S .

(iii) Let S be a semigroup, and e 2 E.S/. Then the subset

Se WD fxe j x 2 Sg D fx 2 S j xe D xg
is a left ideal of S , and the map

' W S �! Se; x 7�! xe

is a retraction (i.e., '.x/ D x for all x 2 Se). The fiber of ' at e,

Se WD fx 2 S j xe D eg;

is a subsemigroup of S . Moreover, the restriction

 WD 'jeS W eS �! eS \ Se D eSe

is a retraction of semigroups, that is,  .x/ D x for all x 2 eSe and  is a
homomorphism (indeed, xeye D xye for all x 2 S and y 2 eS ). The fiber of
 at e,

eSe WD fx 2 S j ex D x and xe D eg;
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is a subsemigroup of S with law .x; y/ 7! y (since xy D xey D ey D y for
all x; y 2 eSe).

When S is an algebraic semigroup, E.S/ is a closed subvariety. Moreover, Se,
Se , eSe and eSe are closed in S as well, and ' (resp.  ) is a retraction of varieties
(resp. of algebraic semigroups). In particular, every maximal abstract submonoid of
S is closed.

Similar assertions hold for the right ideal eS and the subsemigroups

eS WD fx 2 S j ex D eg; eSe WD fx 2 S j xe D x and ex D eg:

An abstract semigroup may have no idempotent; for example, the set of positive
integers equipped with the addition. Yet we have:

Proposition 1. Any algebraic semigroup has an idempotent.

Proof. We use a classical argument of reduction to a finite field. Consider first the
case where k is the algebraic closure of a prime field Fp . Then S and � are defined
over some finite subfield Fq of k, where q is a power of p. Thus, for any x 2 S , the
powers xn, where n runs over the positive integers, form a finite subsemigroup of S .
We claim that some xn is idempotent. Indeed, we have xa D xb for some integers
a > b > 0. Thus, xb D xbxa�b D xbCm.a�b/ for all m > 0. In particular, xb D
xb.a�bC1/. Multiplying by xb.a�b�1/, we obtain xb.a�b/ D x2b.a�b/, i.e., xb.a�b/ is
idempotent.

Next, consider the case of an arbitrary field k. Choose x 2 S ; then S , � and x
are defined over some finitely generated subringR of k. In the language of schemes,
we have a scheme SR together with morphisms

' W SR ! Spec.R/; �R W SR �Spec.R/ SR ! SR

and with a section xR W Spec.R/ ! SR of ', such that SR �Spec.R/ Spec.k/ is
isomorphic to S ; moreover, this isomorphism identifies �R �Spec.R/ Spec.k/ to �,
and xR�Spec.R/Spec.k/ to x. Also, SR is a semigroup scheme over Spec.R/ (that is,
�R is associative in an obvious sense), and the morphism ' is of finite type. Denote
by E.SR/ the subscheme of idempotents of SR, i.e., E.SR/ is the preimage of the
diagonal in SR � SR under the morphism SR ! SR � SR, s 7! .�R.s; s/; s/. Then
E.SR/ is a closed subscheme of SR; let

 W E.SR/! Spec.R/

be the restriction of '.
We claim that the image of  contains all closed points of Spec.R/. Indeed,

consider a maximal ideal m of R; then R=m is a finite field. By the first step, the
semigroup SR�Spec.R/Spec.R=m/ (obtained from SR by reduction mod m) contains
an idempotent; this yields the claim.

Since R is Noetherian and the morphism  is of finite type, its image is
constructible (see e.g. [13, Exer. II.3.19]). In view of the claim, it follows that this
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image contains the generic point of Spec.R/ (see e.g. [loc. cit., Exer. II.3.18]), i.e.,
E.SR/ has (not necessarily closed) points over the fraction field of R. Hence E.S/
has (closed) points over the larger algebraically closed field k. �

Combining the above proposition with Remark 1 (i), we obtain:

Corollary 1. Let f W S ! S 0 be a surjective homomorphism of algebraic
semigroups. Then f .E.S// D E.S 0/.

We now present several classes of (algebraic) semigroups:

Example 1. (i) Any set X has two semigroup laws �l , �r given by �l.x; y/ WD
x (resp. �r.x; y/ WD y) for all x; y 2 X . For both laws, every element is
idempotent and X has no proper two-sided ideal.

Also, every point x 2 X defines a semigroup law �x by �x.y; z/ WD x for
all y; z 2 X . Then x is the zero element; it is the unique idempotent, and the
unique proper two-sided ideal as well.

The maps �l , �r , �x (x 2 X ) will be called the trivial semigroup laws
on X . When X is a variety, these maps are algebraic semigroup laws. Note
that every morphism of varieties f W X ! Y yields a homomorphism of
algebraic semigroups .X;�r/ ! .Y; �r/, and likewise for �l . Also, f yields
a homomorphism .X;�x/! .Y; �y/, where y WD f .x/.

(ii) Let X be a set, Y � X a subset, � W X ! Y a retraction, and � a semigroup
law on Y: Then the map

� W X �X �! X; .x1; x2/ 7�! �.�.x1/; �.x2//

is easily seen to be a semigroup law on X . Moreover, � is a retraction of
semigroups, and E.X/ D E.Y /. If in addition X is a variety, Y is a closed
subvariety and �, � are morphisms, then .X;�/ is an algebraic semigroup.

When Y consists of a single point x, we recover the semigroup law �x of
the preceding example.

(iii) Given two semigroups .S; �/ and .S 0; �0/, we may define a composition law
� on the disjoint union S t S 0 by

�.x; y/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�.x; y/ if x; y 2 S;
y if x 2 S and y 2 S 0;
x if x 2 S 0 and y 2 S;
�0.x; y/ if x; y 2 S 0:

One readily checks that .S t S 0; �/ is a semigroup; moreover, .S; �/ is a
subsemigroup and .S 0; �0/ is a two-sided ideal. Also, note that E.S t S 0/ D
E.S/ tE.S 0/.

When S (resp. S 0) has a zero element 0S (resp. 0S 0 ), consider the set S[0S 0
obtained from S t S 0 by identifying 0S and 0S 0 . One checks that S [0 S 0 has
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a unique semigroup law �0 such that the natural map S t S 0 ! S [0 S 0 is a
homomorphism; moreover, the image of 0S is the zero element. Here again, S
is a subsemigroup of S[0S 0, and S 0 is a two-sided ideal; we haveE.S[0S 0/ D
E.S/ [0 E.S 0/.

If in addition .S; �/ and .S 0; �0/ are algebraic semigroups, then so are .S t
S 0; �/ and .S [0 S 0; �0/. This construction still makes sense when (say) S 0 is
a scheme of finite type over k, equipped with a closed point 0 D 0S 0 and with
the associated trivial semigroup law �0. Taking for S 0 the spectrum of a local
ring of finite dimension as a k-vector space, and for 0 the unique closed point
of S 0, we obtain many examples of nonreduced semigroup schemes (having a
fat point at their zero element).

(iv) Any finite semigroup is algebraic. In the opposite direction, the (finite) set
of connected components of an algebraic semigroup .S; �/ has a natural
structure of semigroup. Indeed, if C1; C2 are connected components of S , then
�.C1; C2/ is contained in a unique connected component, say, �.C1; C2/. The
resulting composition law � on the set of connected components, �o.S/, is
clearly associative, and the canonical map f W S ! �o.S/ is a homomorphism
of algebraic semigroups. In fact, f is the universal homomorphism from S to
a finite semigroup.

Next, we present examples of algebraic monoids and of algebraic groups:

Example 2. (i) Consider the setMn of n�nmatrices with coefficients in k, where
n is a positive integer. We may view Mn as an affine space of dimension n2;
this is an irreducible algebraic monoid relative to matrix multiplication, the
neutral element being of course the identity matrix.

The subspacesDn of diagonal matrices, and Tn of upper triangular matrices,
are closed irreducible submonoids of Mn. Note that Dn is isomorphic to the
affine n-space A

n equipped with pointwise multiplication.
An example of a closed reducible submonoid of Mn consists of those

matrices having at most one nonzero entry in each row and each column.
This submonoid, that we denote by Rn, is the closure in Mn of the group of
monomial matrices (those having exactly one nonzero entry in each row and
each column). Note that Rn D DnSn, where Sn denotes the symmetric group
on n letters, viewed as the group of permutation matrices. Thus, the irreducible
components of Rn are parametrized by Sn. Each such component contains the
zero matrix; in particular, Rn is connected.

(ii) A linear algebraic monoid is a closed submonoid M of some matrix monoid
Mn. Then the variety M is affine; conversely, every affine algebraic monoid is
linear (see [9, Thm. II.2.3.3]). It follows that every affine algebraic semigroup
is linear as well, see [23, Cor. 3.16].

(iii) Let A be a k-algebra (not necessarily associative, or commutative, or unital)
and denote by End.A/ the set of algebra endomorphisms of A. Then End.A/,
equipped with the composition of endomorphisms, is an (abstract) monoid
with zero. Its idempotents are exactly the retractions ofA to subalgebras. Given
such a retraction e W A! B , we have
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eEnd.A/ Š Hom.A;B/; End.A/e Š Hom.B;A/; eEnd.A/e Š End.B/;

where Hom denotes the set of algebra homomorphisms. Also, End.A/e (resp.
eEnd.A/) consists of those ' 2 End.A/ such that '.x/ D x for all x 2 B
(resp. '.x/ � x 2 I for all x 2 A, where I denotes the kernel of e).

If A is finite-dimensional as a k-vector space, then End.A/ is a linear
algebraic monoid; indeed, it identifies to a closed submonoid of Mn, where
n WD dim.A/.

(iv) Examples of algebraic groups include:

• The additive group Ga, i.e., the affine line equipped with the addition,
• The multiplicative group Gm, i.e., the affine line minus the origin, equipped

with the multiplication,
• The elliptic curves, i.e., the complete nonsingular irreducible curves of

genus 1, equipped with a base point; then there is a unique algebraic group
structure for which this point is the neutral element, see e.g. [13, Chap. II,
§4].

In fact, these examples yield all the connected algebraic groups of
dimension 1, see [15, Prop. 10.7.1].

(v) A complete connected algebraic group is called an abelian variety; elliptic
curves are examples of such algebraic groups. It is known that every abelian
variety A is a commutative group and a projective variety; moreover, the group
law on A is uniquely determined by the structure of variety and the neutral
element (see [19, Chap. II]).

2.2 The Unit Group of an Algebraic Monoid

In this section, we obtain some fundamental results on the group of invertible
elements of an algebraic monoid. We shall need the following observation:

Proposition 2. Let .M;�/ be an algebraic monoid. Then M has a unique irre-
ducible component containing 1: the neutral component Mo. Moreover, MoX D
XMo D X for any irreducible component X of M ; in particular, Mo is a closed
submonoid of M .

Proof. Let X , Y be irreducible components of M . Then XY is the image of the
restriction of � to X � Y , and hence is a constructible subset of M ; moreover, its
closure XY is an irreducible subvariety of M . If 1 2 X , then Y � XY � XY .
Since Y is an irreducible component, we must have Y D XY D XY ; likewise,
one obtains that YX D Y . In particular, XX D X , i.e., X is a closed submonoid.
If in addition 1 2 Y , then also XY D YX D Y , hence Y D X . This yields our
assertions. ut
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Remark 2. Any algebraic group G is a nonsingular variety, and hence every
connected component of G is irreducible. Moreover, the neutral component Go is a
closed normal subgroup, and the quotient groupG=Go parametrizes the components
of G.

In contrast, there exist connected reducible algebraic monoids: for example, the
monoid Rn of Example 2 (i). Also, algebraic monoids are generally singular; for
example, the zero locus of z2 � xy in A

3 equipped with pointwise multiplication.
On a more advanced level, note that any group scheme is reduced in characteristic

0 (see e.g. [9, Thm. II.6.1.1]). In contrast, there always exist nonreduced monoid
schemes. For example, one may stick an arbitrary fat point at the origin of the
multiplicative monoid .A1;�/, by the construction of Example 1 (iii).

Definition 5. Let M be a monoid and let x; y 2 M . Then y is a left (resp. right)
inverse of x if yx D 1 (resp. xy D 1). We say that x is invertible (also called a unit)
if it has a left and a right inverse.

With the above notation, one readily checks that the left and right inverses of any
unit x 2M are equal. Moreover, if x0 2M is another unit with inverse y0, then xy0
is a unit with inverse x0y. Thus, the invertible elements of M form a subgroup: the
unit group, that we denote by G.M/.

The following result on unit groups of algebraic monoids is due to Rittatore in
the irreducible case (see [28, Thm. 1]). The proof presented here follows similar
arguments.

Theorem 1. Let M be an algebraic monoid. Then G.M/ is an algebraic group,
open in M . In particular, G.M/ consists of nonsingular points of M .

Proof. Let

G WD f.x; y/ 2M �M op j xy D yx D 1g;

where M op denotes the opposite monoid to M , i.e., the variety M equipped with
the composition law .x; y/ 7! yx. One readily checks that G (viewed as a closed
subvariety of M �M op) is a submonoid; moreover, every .x; y/ 2 G has inverse
.y; x/. Thus, G is a closed algebraic subgroup of M �M op.

The first projection p1 WM�M op !M restricts to a homomorphism of monoids
� W G ! M with image being the unit group G.M/. In fact, G acts on M by
left multiplication: .x; y/ � z WD xz, and � is the orbit map .x; y/ 7! .x; y/ � 1;
in particular, G.M/ is the G-orbit of 1. The isotropy subgroup of 1 in G is clearly
trivial as a set. We claim that this also holds as a scheme; in other words, the isotropy
Lie algebra of 1 is trivial as well.

To check this, recall that the Lie algebra Lie.G/ is the Zariski tangent space
T.1;1/.G/ and hence is contained in T.1;1/.M �M op/ Š T1.M/� T1.M/. Since the
differential at .1; 1/ of the monoid law � WM �M !M is the map

T1.M/ � T1.M/ �! T1.M/; .x; y/ 7�! x C y;
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we have

T.1;1/.G/ � f.x; y/ 2 T1.M/ � T1.M/ j x C y D 0g:

Thus, the first projection Lie.G/ ! T1.M/ is injective; but this projection is the
differential of � at .1; 1/. This proves our claim.

By that claim, � is a locally closed immersion. Thus, G.M/ is a locally closed
subvariety of M , and � induces an isomorphism of groups G Š G.M/. So G.M/

is an algebraic group.
It remains to show that G.M/ is open in M ; it suffices to check that G.M/

contains an open subset U of M (then the translates gU , where g 2 G.M/, form
a covering of G.M/ by open subsets of M ). For this, we may replace M with its
neutral component Mo (Proposition 2) and hence assume that M is irreducible.
Note that

G.M/ D fx 2M j xy D zx D 1 for some y; z 2M g

(then y D zxy D z). In other words,

G.M/ D p1.��1.1// \ p2.��1.1//;

where p1; p2 WM �M !M denote the projections. Also, the set-theoretic fiber at
1 of the restriction p1 W ��1.1/ ! M consists of the single point 1. By a classical
result on the dimension of fibers of a morphism (see [13, Exer. II.3.22]), it follows
that every irreducible component C of ��1.1/ containing 1 satisfies dim.C / D
dim.M/, and that the restriction p1 W C !M is dominant. Thus, p1.C / contains a
dense open subset of M . Likewise, p2.C / contains a dense open subset of M , and
hence so does G.M/. ut

Note that the unit group of a linear algebraic monoid is linear, see [23, Cor. 3.26].
Further properties of the unit group are gathered in the following:

Proposition 3. Let M be an algebraic monoid, and G its unit group.

(i) If x 2M has a left (resp. right) inverse, then x 2 G.
(ii) M nG is the largest proper two-sided ideal of M .

(iii) If 1 is the unique idempotent of M , then M D G.

Proof. (i) Assume that x has a left inverse y. Then the left multiplication M !
M , z 7! xz is an injective endomorphism of the variety M . By [1, Thm. C]
(see also [2]), this endomorphism is surjective, and hence there exists z 2 M
such that xz D 1. Then y D yxz D z, i.e., x 2 G. The case where x has a
right inverse is handled similarly.

(ii) Clearly, any proper two-sided ideal ofM is contained inM nG. We show that
the latter is a two-sided ideal: let x 2 M n G and y 2 M . If xy 2 G, then
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y.xy/�1 is a right inverse of x. By (i), it follows that x 2 G, a contradiction.
Thus, .M nG/M �M nG. Likewise, M.M nG/ �M nG.

(iii) By Theorem 1, M n G is closed in M ; also, M n G is a subsemigroup of M
by (ii). Thus, if M ¤ G then M nG contains an idempotent by Proposition 1.

ut

2.3 The Kernel of an Algebraic Semigroup

In this subsection, we show that every algebraic semigroup has a smallest two-
sided ideal (called its kernel) and we describe the structure of that ideal, thereby
generalizing some of the known results about the kernel of a linear algebraic
semigroup (see [14, 23]).

First, recall that the idempotents of any (abstract) semigroup S are in bijective
correspondence with the maximal submonoids of S , via e 7! eSe, and hence with
the maximal subgroups of S , via e 7! G.eSe/. Thus, when S is an algebraic
semigroup, its maximal subgroups are all locally closed in view of Theorem 1.
They are also pairwise disjoint: if e 2 E.S/ and x 2 G.eSe/, then there exists
y 2 eSe such that xy D yx D e. Thus, xSx � xySyx D eSe. But
xSx � eSeSeSe � eSe, and hence xSx D eSe. So xSx is a closed submonoid
of S with neutral element e.

Next, we recall the classical definition of a partial order on the set of idempotents
of any (abstract) semigroup:

Definition 6. Let S be a semigroup and let e; f 2 E.S/. Then e � f if we have
e D ef D fe.

Note that e � f if and only if e 2 fSf ; this is also equivalent to the condition
that eSe � fSf . Thus, � is indeed a partial order on E.S/ (this fact may of
course be checked directly). Also, note that� is preserved by every homomorphism
of semigroups. For an algebraic semigroup, the partial order � satisfies additional
finiteness properties:

Proposition 4. Let S be an algebraic semigroup.

(i) Every subset of E.S/ has a minimal element with respect to the partial order
�, and also a maximal element.

(ii) e 2 E.S/ is minimal among all idempotents if and only if eSe is a group.
(iii) If S is commutative, then E.S/ is finite and has a smallest element.

Proof. (i) Note that the eSe, where e 2 E.S/, form a family of closed subsets
of the Noetherian topological space S ; hence any subfamily has a minimal
element. For the existence of maximal elements, consider the family

S �Se S WD f.x; y/ 2 S � S j xe D yeg
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of closed subsets of S � S . Let f 2 E.S/ such that e � f . Then S �Sf S �
S �Se S , since the equality xf D yf implies that xe D xfe D yfe D ye.
Moreover, if S �Se S D S �Sf S , then .x; xe/ 2 S �Sf S for all x 2 S ,
i.e., xf D xef . Hence xf D xe, and f D f 2 D fe D e. Thus, a minimal
S �Se S (for e in a given subset of E.S/) yields a maximal e.

(ii) Let e be a minimal idempotent of S . Then e is the unique idempotent of the
algebraic monoid eSe. By Proposition 3 (iii), it follows that eSe is a group.
The converse is immediate (and holds for any abstract semigroup).

(iii) Let e; f be idempotents. Then ef D fe is also idempotent, and ef D
e.ef /e D f .ef /f so that ef � e and ef � f . Thus, any two minimal
idempotents are equal, i.e., E.S/ has a smallest element.

To show thatE.S/ is finite, we may replace S with its closed subsemigroup
E.S/, and hence assume that every element of S is idempotent. Then every
connected component of S is a closed subsemigroup in view of Example 1
(iv). So we may further assume that S is connected. Let x 2 S ; then xS is a
connected commutative algebraic monoid with neutral element x, and consists
of idempotents. Thus, G.xS/ D fxg. By Theorem 1, it follows that x is an
isolated point of xS . Hence xS D fxg, i.e., xy D x for all y 2 S . Since S is
commutative, we must have S D fxg. ut

As a consequence of the above proposition, every algebraic semigroup admits
minimal idempotents. These are of special interest, as shown by the following:

Proposition 5. Let S be an algebraic semigroup, e 2 S a minimal idempotent, and
eSe the associated closed subgroup of S .

(i) The map

� D �e W S �! S; s 7�! s.ese/�1s

is a retraction of varieties of S to SeS . In particular, SeS is a closed two-sided
ideal of S .

(ii) The map

' W eSe � eSe � eSe �! S; .x; g; y/ 7�! xgy

yields an isomorphism of varieties to its image, SeS .
(iii) Via the above isomorphism, the semigroup law on SeS is identified to that on

eSe � eSe � eSe given by

.x; g; y/.x0; g0; y0/ D .x; g�.y; x0/g0; y0/;

where � W eSe � eSe ! eSe denotes the map .y; z/ 7! yz. This identifies
the idempotents of SeS to the triples .x; �.y; x/�1; y/, where x 2 eSe and
y 2 eSe . In particular, E.SeS/ Š eSe � eSe as a variety.

(iv) The semigroup SeS has no proper two-sided ideal.
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(v) SeS is the smallest two-sided ideal of S ; in particular, it does not depend on
the minimal idempotent e.

(vi) The minimal idempotents of S are exactly the idempotents of SeS .

Proof. (i) Clearly, � is a morphism; also, since s.ese/�1s 2 SeSeS for all s 2 S ,
the image of � is contained in SeS . Let z 2 SeS and write z D set , where
s; t 2 S ; then

�.z/ D set.esete/�1set D sete.ete/�1.ese/�1eset D set D z:

This yields the assertions.
(ii) Clearly, ' takes values in SeS . Moreover, for any s; t as above, we have

set D se.ese/�1esete.ete/�1t D xgy;

where x WD se.ese/�1, g WD esete and y WD .ete/�1et . Furthermore,
x 2 eSe, g 2 eSe and y 2 eSe . In particular, the image of ' is the whole
SeS . Also, the map

 W SeS �! eSe � eSe � eSe; set 7�! .x; g; y/

(where x; g; y are defined as above) is a morphism of varieties and satisfies
' ı  D id. Thus, it suffices to check that  ı ' D id. Let x 2 eSe, g 2 eSe,
y 2 eSe and put s WD xgy. Then se D xg and es D gy. Hence g D ese,
x D se.ese/�1 and y D .ese/�1es, which yields the desired assertion.

(iii) For the first assertion, just write .xgy/.x0g0y0/ D x.g.yx0/g0/y0, and note
that yx0 2 eSe eSe � eSe. The assertions on idempotents follow readily.

(iv) Let z 2 SeS and write z D '.x; g; y/. Then the subset SzS of SeS
is identified with that of eSe � eSe � eSe consisting of the triples
.x1; g1�.y1; x/g�.y; x2/g2; y2/, where x1; x2 2 eSe, g1; g2 2 eSe and
y1; y2 2 eSe . It follows that SzS D SeS ; in particular, SzS contains z. Hence
SeS is the smallest two-sided ideal containing z.

(v) Let I be a two-sided ideal of S . Then SeI is a two-sided ideal of S contained
in SeS ; hence SeI D SeS by (iv). But SeI � I ; this yields our assertions.

(vi) If f 2 E.S/ is minimal, then SfS D SeS by (v). Thus, f 2 SeS .

For the converse, let f 2 E.SeS/. Then SfS D SeS by (iv), and hence fSf D
fSfSf D f .SeS/f . Identifying f to a triple .x; �.y; x/�1; y/, one checks as in
the proof of (iv) that f .SeS/f is identified to the set of triples .x; g; y/, where
g 2 eSe. But .x; �.y; x/�1; y/ is the unique idempotent of this set. Thus, f is the
unique idempotent of fSf , i.e., f is minimal. ut

In view of these results, we may set up the following:

Definition 7. The kernel of an algebraic semigroup S is the smallest two-sided
ideal of S , denoted by ker.S/.
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Remark 3. (i) As a consequence of Proposition 5, we see that any algebraic
semigroup having no proper closed two-sided ideal is simple, i.e., has no
proper two-sided ideal at all. Moreover, any simple algebraic semigroup S ,
equipped with an idempotent e, is isomorphic (as a variety) to the product
X � G � Y , where X WD eSe and Y WD eSe are varieties, and G WD eSe

is an algebraic group. This identifies e to a point of the form .xo; 1; yo/, where
xo 2 X and yo 2 Y ; moreover, the semigroup law of S is identified to that
as in Proposition 5 (iii), where � W Y � X ! G is a morphism such that
�.xo; y/ D �.x; yo/ D 1 for all x 2 X and y 2 Y .

Conversely, any tuple .X; Y;G; �; xo; yo/ satisfying the above conditions
defines an algebraic semigroup law on S WD X � G � Y such that e WD
.xo; 1; yo/ is idempotent and eSe D X � f.1; yo/g, eSe D fxog � G � fyog,
eSe D f.xo; 1/g � Y .

This description of algebraic semigroups having no proper closed two-sided
ideal is a variant of the classical Rees structure theorem for those (abstract)
semigroups that are completely simple, that is, simple and having a minimal
idempotent (see e.g. [23, Thm. 1.9]).

(ii) By analogous arguments, one shows that every algebraic semigroup S contains
minimal left ideals, and these are exactly the subsets Sf , where f is a minimal
idempotent. In particular, the minimal left ideals are all closed. Also, given
a minimal idempotent e, these ideals are exactly the subsets X � G � fyg
of ker.S/, where X WD eSe, G WD eSe and y 2 Y WD eSe as above.
Similar assertions hold of course for the minimal right ideals; it follows that the
intersections of minimal left and minimal right ideals are exactly the subsets
fxg �G � fyg, where x 2 X and y 2 Y.

2.4 Unit Dense Algebraic Monoids

In this subsection, we introduce and study the class of unit dense algebraic monoids.
These include the irreducible algebraic monoids, and will play an important role in
their structure.

Let M be an algebraic monoid, and G.M/ its unit group. Then the algebraic
group G.M/ � G.M/ acts on M via left and right multiplication: .g; h/ � x WD
gxh�1. Moreover, the orbit of 1 under this action is just G.M/, and the isotropy
subgroup scheme of 1 equals the diagonal, diag.G.M// WD f.g; g/ j g 2 G.M/g.
Definition 8. An algebraic monoid M is unit dense if G.M/ is dense in M .

For instance, every irreducible algebraic monoid is unit dense. An example of a
reducible unit dense algebraic monoid consists of n�nmatrices having at most one
nonzero entry in each row and each column (Example 2 (i)).

Any unit dense monoid may be viewed as an equivariant embedding of its unit
group, in the sense of the following:
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Definition 9. Let G be an algebraic group. An equivariant embedding of G is a
variety X equipped with an action of G � G and with a point x 2 X such that the
orbit .G �G/ � x is dense in X , and the isotropy subgroup scheme .G �G/x is the
diagonal, diag.G/.

Note that the law of a unit dense monoid is uniquely determined by its structure
of equivariant embedding, since that structure yields the law of the unit group.
Also, given an affine algebraic group G, every affine equivariant embedding of G
has a unique structure of algebraic monoid such that G is the unit group, by [28,
Prop. 1]. Conversely, every unit dense algebraic monoid with unit group G is affine
by Theorem 2 below. For an arbitrary connected algebraic group G, the equivariant
embeddings of G that admit a monoid structure are characterized in Theorem 4
below.

Proposition 6. Let M be an algebraic monoid, and G its unit group. Then the unit
group of the neutral component Mo is the neutral component Go of G.

If M is unit dense, then its irreducible components are exactly the subsets gMo,
where g 2 G; they are indexed by G=Go, the group of components of G.

Proof. Note that G.Mo/ is contained in G, and open in Mo by Theorem 1. Hence
G.Mo/ contains an open neighborhood of 1 in Mo, or equivalently in G. Using the
group structure, it follows thatG.Mo/ is open inG; also,G.Mo/ is irreducible since
so is Mo. But the algebraic group G contains a unique open irreducible subgroup:
its neutral component. Thus, G.Mo/ D Go.

Clearly, gMo is an irreducible component of M for any g 2 G, and this
component depends only on the coset gGo. If M is unit dense, then any irreducible
component X ofM contains a unit, say g. Since g�1X is an irreducible component
containing 1, it follows that X D gMo. If X D hMo for some h 2 G, then
g�1h 2 G \Mo. Thus, g�1hGo is an open subset of Mo, and hence meets Go; so
g�1h 2 Go, i.e., gGo D hGo. ut
Proposition 7. Let M be a unit dense algebraic monoid, and G its unit group.
Then the kernel, ker.M/, is the unique closed orbit ofG�G acting by left and right
multiplication. Moreover, ker.M/ D GeG for any minimal idempotent e of M .

Proof. We may choose a closed G �G-orbit Y in M . Then

MYM D GYG � GYG D Y D Y:

Thus, Y is a two-sided ideal of M . Moreover, if Z is another two-sided ideal, then
Z is stable by G � G, and meets Y since YZ � Y \ Z. Thus, Z contains Y ; this
shows that Y D ker.M/. In particular, Y is the unique closed G � G-orbit; this
proves the first assertion. The second one follows from Proposition 5. ut
Proposition 8. Let M be a unit dense algebraic monoid with unit group G. Then
the following conditions are equivalent for any x 2M :

(i) The orbit Gx (for the G-action by left multiplication) is closed in M .
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(ii) Gx DMx.
(iii) x 2 ker.M/.

Moreover, all closed G-orbits in M are equivariantly isomorphic; in other words,
the isotropy subgroup schemes Gx , where x 2 ker.M/, are all conjugate. Also,
each closed orbit contains a minimal idempotent. For any such idempotent e, the
algebraic group eMe equals eGe.

Proof. (i))(ii) Since Gx is closed in M , we have Mx D Gx � Gx D Gx and
hence Mx D Gx.

(ii))(iii) We have Gx D Mx � ker.M/x and the latter subset is stable under
left multiplication by G. Hence Gx D ker.M/x is contained in ker.M/.

(iii))(i) Let e be a minimal idempotent of M . Since ker.M/ D GeG, the
G-orbits in ker.M/ are exactly the orbits Geg, where g 2 G. Since the right
multiplication by g is an automorphism of the variety M commuting with left
multiplications, these orbits are all isomorphic as G-varieties. In particular, they all
have the same dimension; hence they are closed in ker.M/, and thus inM . Also, the
orbit Geg contains g�1eg, which is a minimal idempotent since the map M !M ,
x 7! g�1xg is an automorphism of algebraic monoids. Finally, we have Ge DMe
by (i); likewise, eG D eM and hence eGe D eMe. ut

Note that the closed orbits for the leftG-action are exactly the minimal left ideals
(considered in Remark 3 (ii) in the setting of algebraic semigroups).

2.5 The Normalization of an Algebraic Semigroup

In this subsection, we begin by recalling some background results on the normal-
ization of an arbitrary variety (see e.g. [10, §4.2, §11.2]). Then we discuss the
normalization of algebraic semigroups and monoids; as in the previous subsection,
this construction will play an important role in their structure.

A variety X is normal at a point x if the local ring OX;x is integrally closed
in its total quotient ring; X is normal if it is so at any point. The normal points
of a variety form a dense open subset, which contains the nonsingular points. The
irreducible components of a normal variety are pairwise disjoint, and each of them
is normal.

An arbitrary varietyX has a normalization, i.e., a normal variety QX together with
a finite surjective morphism � W QX ! X which satisfies the following universal
property: for any normal variety Y and any morphism ' W Y ! X which is
dominant (i.e., the image of ' is dense in X ), there exists a unique morphism
Q' W Y ! QX such that ' D � ı Q'. Then QX is uniquely determined up to unique
isomorphism, and � is an isomorphism above the open subset of normal points of
X ; in particular, � is birational (i.e., an isomorphism over a dense open subset ofX ).

Proposition 9. Let .S; �/ be an algebraic semigroup and let � W QS ! S be the
normalization.
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(i) If the morphism � W S � S ! S is dominant, then QS has a unique algebraic
semigroup law Q� such that � is a homomorphism. Moreover, �.E. QS// D E.S/.

(ii) If S is an algebraic monoid (so that � is surjective), then QS is an algebraic
monoid as well, with neutral element the unique preimage of 1S under �.
Moreover, � induces an isomorphism G. QS/ Š G.S/.

Proof. (i) By the assumption on �, the morphism � ı .� � �/ W QS � QS ! S is
dominant. Since QS� QS is normal, there exists a unique morphism Q� W QS� QS ! QS
such that � ı Q� D � ı .� � �/. Then Q� is associative, since it coincides with �
on the dense open subset of normal points; moreover, � is a homomorphism by
construction. The assertion on idempotents is a consequence of Corollary 1.

(ii) The neutral element 1S is a nonsingular point of S by Theorem 1; thus, it has a
unique preimage 1 QS under �. Moreover, we have for any Qx 2 QS :

�. Q�. Qx; 1 QS // D �.�. Qx/; �.1 QS // D �. Qx/ D �. Q�.1 QS ; Qx//:

Thus, Q�. Qx; 1 QS / D Q�.1 QS ; Qx/ D Qx for all Qx such that �. Qx/ is a normal point
of S . By density of these points, it follows that 1 QS is the neutral element of
. QS; Q�/. Finally, the assertion on unit groups follows from the inclusion G. QS/ �
��1.G.S// and from the fact that � is an isomorphism above the nonsingular
locus of S . ut

Remark 4. (i) For an arbitrary algebraic semigroup S , there may exist several
algebraic semigroup laws on the normalization QS that lift �. For example, let
x 2 S and consider the trivial semigroup law �x of Example 1 (i). Then �Qx
lifts � for any Qx 2 QX such that �. Qx/ D x. In general, such a point Qx is not
unique, e.g., when S is a plane curve and x an ordinary multiple point.

(ii) With the above notation, there may also exist no algebraic semigroup law on
QS that lifts �. To construct examples of such algebraic semigroups, consider

a normal irreducible affine variety X and a complete nonsingular irreducible
curve C , and choose a finite surjective morphism ' W C ! P

1. Let Y WD
C n f'�1.1/g; then Y is an affine nonsingular irreducible curve equipped
with a finite surjective morphism ' W Y ! A

1. Choose a point xo 2 X and let
� W Y ! X � Y , y 7! .xo; y/; then � is a section of the second projection
p2 W X � Y ! Y . By [11, Thm. 5.1], there exists a unique irreducible variety
S that sits in a co-cartesian diagram

Y
'�����! A

1

�

?
?
y �

?
?
y

X � Y ������! S:

Then � is a closed immersion, and � is a finite morphism that restricts to
an isomorphism .X n fxog/ � Y Š S n �.A1/ and to the (given) morphism
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fxog � Y ! A
1, .xo; y/ 7! '.y/. In particular, � is the normalization; S is

obtained by “pinching X � Y along fxog � Y via '”. Since the diagram

Y
'�����! A

1

�

?
?
y id

?
?
y

X � Y 'ıp2�����! A
1

commutes, it yields a unique morphism � W S ! A
1 such that � ı � D id and

� ı � D ' ı p2. The retraction � defines in turn an algebraic semigroup law �

on S by �.s; s0/ WD �.�.s/�.s0// as in Example 1 (ii).
We claim that � does not lift to any algebraic semigroup law on X � Y , if

the curve C is nonrational. Indeed, any such lift Q� satisfies

�. Q�..x; y/; .x0; y0/// D �.�.x; y/; �.x0; y0//

D �.�.�.x; y/�.�.x0; y0//// D �.'.y/'.y0//

for any x; x0 2 X and any y; y0 2 Y . As a consequence, Q�..x; y/; .x0; y0//
only depends on .y; y0/, and this yields an algebraic semigroup law on Y such
that ' is a homomorphism. But such a law does not exist, as follows e.g. from
Theorem 5 below.

3 Irreducible Algebraic Monoids

3.1 Algebraic Monoids with Affine Unit Group

The aim of this subsection is to prove the following result, due to Rittatore for
irreducible algebraic monoids (see [29, Thm. 5]). The proof presented here follows
his argument closely, except for an intermediate step (Proposition 10).

Theorem 2. Let M be a unit dense algebraic monoid, and G its unit group. If G is
affine, then so is M .

Proof. Let � W QM ! M denote the normalization. Then QM is an algebraic monoid
with unit group isomorphic to G, by Proposition 9. Moreover, G is dense in QM
since it is so in M . If QM is affine, then M is affine by a result of Chevalley: the
image of an affine variety by a finite morphism is affine (see [13, Exer. II.4.2]). Thus,
we may assume that M is normal. Then M is the disjoint union of its irreducible
components, and each of them is isomorphic (as a variety) to the neutral component
Mo (Proposition 6). So we may assume in addition that M is irreducible.

By Proposition 7, the connected algebraic group G � G acts on M with a
unique closed orbit. In view of a result of Sumihiro (see [34]), it follows that M is
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quasiprojective; in other words, there exists a locally closed immersion � WM ! P
n

for some positive integer n. (We may further assume that � is equivariant for some
action of G on P

n; we will not need that fact in this proof). Then the pull-back
L WD ��OPn.1/ is an ample line bundle on M . The associated principal Gm-bundle
� W X ! M (where X is the complement of the zero section in L) is the pull-back
to M of the standard principal Gm-bundle A

nC1 n f0g ! P
n. Thus, X is a locally

closed subvariety of AnC1, and hence is quasi-affine.
By Proposition 10 below (a version of [29, Thm. 4]), X has a structure of

algebraic monoid such that � is a homomorphism. Since that monoid is quasi-affine,
it is in fact affine by a result of Renner (see [25, Thm. 4.4]). Moreover, the map
� W X !M is the categorical quotient by the action of Gm; hence M is affine. ut
Proposition 10. LetM be a normal irreducible algebraic monoid, and assume that
its unit group G is affine. Let ' W L ! M be a line bundle, and � W X ! M the
associated principal Gm-bundle. Then X has a structure of a normal irreducible
algebraic monoid such that � is a homomorphism.

Proof. By [16, Lem. 4.3], the preimage Y WD ��1.G/ has a structure of algebraic
group such that the restriction of � is a homomorphism; we then have an exact
sequence of algebraic groups

1 �! Gm �! Y
��! G �! 1;

where Gm is contained in the center of Y . Thus, the group law �G W G � G ! G

sits in a cartesian square

Y �Gm Y �Y�����! Y

���
?
?
y �

?
?
y

G �G �G�����! G;

where Y �Gm Y denotes the quotient of Y � Y by the action of Gm via t � .y; z/ D
.ty; t�1z/, and �Y stands for the group law on Y . Via the correspondence between
principal Gm-bundles and line bundles, this translates into a cartesian square

p�
1 .LjG/˝ p�

2 .LjG/ �����! LjG
'�'

?
?
y '

?
?
y

G �G �G�����! G;

where p1, p2 W G � G ! G denote the projections. In other words, we have an
isomorphism

p�
1 .LjG/˝ p�

2 .LjG/
Š�! ��

G.LjG/

of line bundles over G �G.
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Over M �M , this yields an isomorphism

p�
1 .L/˝ p�

2 .L/
Š�! ��.L/˝ OM�M.D/;

where D is a Cartier divisor with support in .M � M/ n .G � G/. Since G is
affine, the irreducible components E1; : : : ; En of M n G are divisors of M . Thus,
the irreducible components of .M �M/ n .G �G/ are exactly the divisors Ei �M
and M �Ej , where i; j D 1; : : : ; n. Hence

D D p�
1 .D1/C p�

2 .D2/

for some Weil divisorsD1,D2 with support inM nG. In particular, the pullback of
D to M � G is D1 � G. Since D is Cartier, so is D1; likewise, D2 is Cartier. We
thus obtain an isomorphism

p�
1 .L/˝ p�

2 .L/
Š�! ��.L/˝ p�

1 .OM.D1//˝ p�
2 .OM.D2//

of line bundles over M �M . We now pull back this isomorphism toM � f1g. Note
that ��.L/jM�f1g D L D p�

1 .L/jM�f1g; also, p�
1 .OM.D1//jM�f1g D OM.D1/,

and both p�
2 .L/jM�f1g, p�

2 .OM.D2//jM�1 are trivial. Thus, OM.D1/ is trivial; one
shows similarly that OM.D2/ is trivial. Hence we have in fact an isomorphism

p�
1 .L/˝ p�

2 .L/
Š�! ��.L/:

As above, this translates into a cartesian square

X �Gm X �����! X

���
?
?
y �

?
?
y

M �M ������! M:

In turn, this yields a morphism � W X �X ! X which lifts � W M �M ! M and
extends the group law Y � Y ! Y. It follows readily that � is associative and has
1Y as a neutral element. ut

A noteworthy consequence of Theorem 2 is the following sufficient condition for
an algebraic monoid to be affine, which slightly generalizes [6, Cor. 3.3]:

Corollary 2. LetM be a unit dense algebraic monoid having a zero element. Then
M is affine.

Proof. Consider the action of the unit group G on M via left multiplication. This
action is faithful, and fixes the zero element. It follows that G is affine (see e.g. [7,
Prop. 2.1.6]). Hence M is affine by Theorem 2. ut
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3.2 Induction of Algebraic Monoids

In this subsection, we show that any unit dense algebraic monoid has a uni-
versal homomorphism to an algebraic group, and we study the fibers of this
homomorphism.

Proposition 11. Let M be a unit dense algebraic monoid, and G its unit group.

(i) There exists a homomorphism of algebraic monoids ' W M ! G .M/, where
G .M/ is an algebraic group, such that every homomorphism of algebraic
monoids  W M ! G , where G is an algebraic group, factors uniquely as
' followed by a homomorphism of algebraic groups G .M/! G .

(ii) We have G .M/ D '.M/ D '.G/ D G=H , where H denotes the smallest
normal subgroup scheme of G containing the isotropy subgroup scheme Gx
for some x 2 ker.M/.

Proof. We show both assertions simultaneously. Let  W M ! G be a homomor-
phism as in the statement. Then  jG is a homomorphism of algebraic groups, and
hence its image is a closed subgroup of G . Since M is unit dense, it follows that
 .M/ D  .G/. Let K be the scheme-theoretic kernel of  jG . Then K is a normal
subgroup scheme ofG, and induces an isomorphism fromG=K to .G/; we may
thus view  as a G-equivariant homomorphism M ! G=K. In particular, for any
x 2 M , the map g 7!  .g � x/ yields a morphism G ! G=K which is equivariant
under the action of G by left multiplication, and invariant under the action of the
isotropy subgroup scheme Gx by right multiplication. Thus, K contains Gx ; hence
K contains H , and  jG factors as the quotient homomorphism � W G ! G=H

followed by the canonical homomorphism � W G=H ! G=K.
Next, choose x 2 ker.M/; then Gx D Mx by Proposition 8. Thus, the

morphismM !Mx, y 7! yx may be viewed as a morphismM ! Gx Š G=Gx .
Composing with the morphism G=Gx ! G=H induced by the inclusion of Gx
in H , we obtain a morphism ' W M ! G=H . Clearly, ' is G-equivariant,
and '.1/ is the neutral element of G=H . Thus, the restriction 'jG is the quotient
homomorphism � . By density, ' is a homomorphism of monoids, and  D � ı '.
So ' is the desired homomorphism. ut

Remark 5. (i) As a consequence of the above proposition, the smallest subgroup
scheme of G containing Gx is independent of the choice of x 2 ker.M/. This
also follows from the fact that the subgroup schemes Gx , where x 2 ker.M/,
are all conjugate in G (Proposition 8). By that proposition, we may take for x
any minimal idempotent of M .

(ii) As another consequence, any irreducible semigroup S has a universal homo-
morphism to an algebraic group (in the sense of the above proposition). Indeed,
choose an idempotent e in S , and consider a homomorphism of semigroups
 W S ! G , where G is an algebraic group. Then  .x/ D  .exe/ for all
x 2 S ; moreover, eSe is an irreducible monoid with neutral element e. Thus,
there exists a unique homomorphism � W G .eSe/ ! G such that  .x/ D
�.	.exe// for all x 2 S , where 	 W eSe ! G .eSe/ denotes the universal
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homomorphism. Then we must have �.	.exye// D �.	.exe/	.eye// for
all x; y 2 S . Let H denote the smallest normal subgroup scheme of G .eSe/
containing the image of the morphism

S � S �! G .eSe/; .x; y/ 7�! 	.exye/	.exe/�1	.eye/�1;

and let ' W S ! G .eSe/=H denote the homomorphism that sends every x to
the image of exe. Then � factors as ' followed by a unique homomorphism of
algebraic groups G .eSe/=H ! G , i.e., ' is the desired homomorphism. Note
that ' W S ! G .S/ is surjective by construction; in particular, G is connected.

Proposition 12. Keep the notation and assumptions of Proposition 11.

(i) If H is an algebraic group (e.g., if char.k/ D 0), then the scheme-theoretic
fibers of ' are reduced.

(ii) If M is normal, then H is a connected algebraic group; moreover, the scheme-
theoretic fibers of ' are reduced and irreducible.

Proof. (i) Denote by � W G ! G=H the quotient homomorphism and form the
cartesian square

X
'0

�����! G

� 0

?
?
y �

?
?
y

M
'�����! G=H:

Since � and ' are equivariant for the actions of G by left multiplication, X is
equipped with a G-action such that � 0 and '0 are equivariant. Denote by N the
(scheme-theoretic) fiber of '0 at the neutral element 1G . Then the morphism

G �N �! X; .g; x/ 7�! g � x
is an isomorphism with inverse given by x 7! .'0.x/; '0.x/�1 � x/. Moreover,
the fiber of '0 at every g 2 G is g �N Š N . If H is an algebraic group (i.e., if
H is smooth; this holds when char.k/ D 0), then the morphism � is smooth as
well; hence so is � 0. It follows that X is reduced. But X Š G � N and hence
N is reduced. If in additionH is connected, then the fibers of � are irreducible;
hence the same holds for � 0, and X is irreducible. As above, it follows that N
is irreducible.

(ii) Consider the reduced neutral component Ho
red � H ; then Ho

red is a closed
normal subgroup of G. Moreover, the natural map ı W G=Ho

red ! G=H is a
finite morphism and sits in a commutative square

G
������! M




?
?
y '

?
?
y

G=Ho
red

ı�����! G=H;
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where � denotes the inclusion. Let � � M � G=Ho
red be the closure of the

graph of 
. Then the projection p1 W � ! M is a finite morphism, and an
isomorphism over the dense open subsetG ofM . SinceM is normal, it follows
that p1 is an isomorphism, i.e., 
 extends to a morphism  W M ! G=Ho

red.
As 
 is a homomorphism of algebraic groups,  must be a homomorphism of
monoids. Thus,  factors through ', and hence Ho

red D H . In other words, H
is a connected algebraic group. ut

But in general, the scheme-theoretic fibers of the homomorphism ' W M !
G .M/ are reducible; also, these fibers are nonreduced in prime characteristics, as
shown by the following:

Example 3. Consider the monoid A
3 equipped with pointwise multiplication, and

the locally closed subset

M WD f.x; y; z/ j zn D xyn and x ¤ 0g;
where n is a positive integer. Then M is an irreducible commutative algebraic
monoid with unit group

G D f.x; y; z/ j zn D xyn and z ¤ 0g;
isomorphic to G

2
m via the projection .x; y; z/ 7! .y; z/. Moreover, ker.M/ D Me,

where e WD .1; 0; 0/ is the unique minimal idempotent. SinceM is commutative, the
isotropy subgroup scheme H of Proposition 11 is just Ge; the latter is the scheme-
theoretic kernel of the homomorphism x W G ! Gm. Thus,

H Š f.y; z/ 2 G
2
m j yn D zng Š Gm � �n;

where �n denotes the subgroup scheme of nth roots of unity. The universal
homomorphism ' W M ! G=H is identified to x W M ! Gm, and this identifies
the fiber of ' at 1 to the submonoid scheme .yn D zn/ of .A2;�/. The latter scheme
is reducible when n 	 2, and nonreduced when n is a multiple of char.k/.

We keep the notation and assumptions of Proposition 11, and denote by N

the scheme-theoretic fiber of ' at 1. Assume in addition that H is an algebraic
group (this holds e.g. if M is normal or if char.k/ D 0). Then N is reduced by
Proposition 12; also,N is a closed submonoid ofM , containingH and stable under
the action of G on M by conjugation (via g � x WD gxg�1). Moreover, the map

� W G �N �!M; .g; y/ 7�! gy

is a homomorphism of algebraic monoids, where G � N is equipped with the
composition law

.g1; y1/ .g2; y2/ WD .g1g2; g�1
2 y1g2y2/
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with unit .1G; 1N / (this defines the semi-direct product of G with N ). Finally, � is
the quotient morphism for the action of H on G �N via

h � .g; y/ WD .gh�1; hy/:

In other words, ' W M ! G=H identifies M to the fiber bundle G �H N ! G=H

associated to the principal H -bundle G ! G=H and to the variety N on which H
acts by left multiplication. We say that the algebraic monoid M is induced from N .

If we no longer assume thatH is an algebraic group, then N is just a submonoid
scheme of M , and the above properties hold in the setting of monoid schemes. We
now obtain slightly weaker versions of these properties in the setting of algebraic
monoids.

Proposition 13. Let M be a unit dense algebraic monoid, G its unit group, ' W
M ! G=H the universal homomorphism to an algebraic group, andN the scheme-
theoretic fiber of ' at 1. Denote by Hred (resp. Nred) the largest reduced scheme of
H (resp. N ).

(i) Hred is a closed normal subgroup of G and Nred is a closed submonoid of M ,
stable under the action of G by conjugation.

(ii) G �Hred Nred is an algebraic monoid, and the natural map

 W G �Hred Nred �!M

is a finite bijective homomorphism of algebraic monoids.
(iii) Nred is unit dense and its unit group is Hred.
(iv)  is birational.

Proof. (i) The assertion onHred is well-known. That onNred follows readily from
the fact that N is a closed submonoid scheme of M , stable under the G-action
by conjugation.

(ii) The natural map G=Hred ! G=H is a purely inseparable homomorphism of
algebraic groups, and hence is finite and bijective. Also, G �Hred N is the
fibered product of M D G �H N and G=Hred over G=H . Thus, G �Hred N is
a monoid scheme; moreover, the natural morphism G �Hred N ! M is finite,
and bijective on closed points. As G �Hred Nred D .G �Hred N/red, this yields
our assertions.

(iii) Since M is unit dense with unit group G and  is a homeomorphism, we see
thatG�HredNred is unit dense with unit groupG as well. It follows thatG�Nred

is unit dense with unit group G�Hred. Thus,Hred is the unit group of Nred and
is dense there.

(iv) Just note that  restricts to the natural isomorphism G �Hred Hred
Š! G;

moreover, G �Hred Hred is a dense open subset of G �Hred Nred. ut
Example 4. Assume that char.k/ D p > 0. Consider the monoid

M WD f.x; y; z/ 2 A
3 j zp D xyp and x ¤ 0g
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relative to pointwise multiplication, as in Example 3. Recall from this example that
G Š G

2
m and that the universal homomorphism ' W M ! G=H is just x W M !

Gm, with scheme-theoretic fiber N at 1 being the submonoid scheme .zp D yp/ of
.A2;�/. It follows that Nred Š .A1;�/, Hred Š Gm and G �Hred Nred Š Gm � A

1,
where the right-hand side is equipped with pointwise multiplication. One checks
that  W G �Hred Nred !M is identified with the map .t; u/ 7! .tp; t; u/.

Returning to the general setting, we now relate the idempotents and kernel of M
with those of Nred:

Proposition 14. Keep the notation and assumptions of Proposition 13.

(i) E.M/ D E.Nred/.
(ii) The assignment I 7! I \Nred defines a bijection between the two-sided ideals

of M and those two-sided ideals of Nred that are stable under conjugation by
G. The inverse bijection is given by J 7! GJ .

(iii) We have ker.M/ \Nred D ker.Nred/ and ker.M/ D G ker.Nred/.

Proof. (i) Clearly, E.Nred/ � E.M/. Moreover, if e 2 E.M/ then '.e/ D 1G=H
and hence e 2 N , i.e., e 2 Nred.

(ii) Consider a two-sided ideal I of M . Then J WD I \ Nred is a two-sided ideal
of Nred, stable under conjugation by G (since so are I and Nred). Moreover,
I D GJ , since M D GNred and I D GI .

Conversely, let J be a two-sided ideal of Nred, stable under conjugation
by G. Then I WD GJ is closed in M and satisfies I \ Nred D J , as follows
easily from the fact that  W G �Hred Nred ! M is a homeomorphism.
Moreover, GIG D GJG D GJ D I by stability of J under conjugation.
Since M is unit dense and I is closed in M , it follows that MIM D I ; in
other words, I is a two-sided ideal.

(iii) Since Nred is stable under conjugation by G, so is ker.Nred/. In view of (ii),
it follows that ker.M/ \ Nred D ker.Nred/. Together with Proposition 7, this
yields ker.M/ D G ker.Nred/G D G ker.Nred/. ut

Remark 6. (i) If N is reduced, then any homomorphism of algebraic monoids
from N to an algebraic group is trivial.

Indeed, let � W N ! G be such a homomorphism. We may assume that
� is the universal morphism N ! H=K of Proposition 11, where K is a
normal subgroup scheme of H . Then the G-action on N by conjugation yields
a G-action on H=K, compatible with the conjugation action on H ; thus, K
is a normal subgroup scheme of G. Moreover, the H -equivariant morphism �

induces a G-equivariant morphism

 WM D G �H N �! G �H H=K Š G=K; .g; y/H 7�! .g; �.y//H:

Also,  .1/ is the neutral element of G=K, since �.1/ is the neutral element of
H=K. It follows that  .xy/ D  .x/ .y/ for all x 2 G and y 2M , and hence
for all x; y 2M . By Proposition 11,  factors through ', and hence K D H .
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We do not know if the analogous statement holds for Nred when N is
nonreduced.

(ii) Let M be a unit dense algebraic monoid, and Mo its neutral component. Then
Mo is stable under the action of the unit group G by conjugation on M ; also,
M D GMo by Proposition 6. Thus, G �Go Mo is an algebraic monoid, the
disjoint union of the irreducible components of M . Moreover, the map

' W G �Go Mo �!M; .g; x/Go 7�! gx

is a homomorphism of algebraic monoids, which is readily seen to be finite and
birational. Hence ' is an isomorphism whenever M is normal.

For an arbitrary (unit dense) M , it follows that E.M/ D E.Mo/. Indeed,
' is surjective, and hence restricts to a surjection E.G �Go Mo/ ! E.M/ by
Corollary 1. Also, E.G �Go Mo/ D E.Mo/, since the unique idempotent of
G=Go is the coset of 1G .

3.3 Structure of Irreducible Algebraic Monoids

We begin this subsection by presenting some classical results on the structure of an
arbitrary connected algebraic group G. By Chevalley’s structure theorem, G has a
largest connected affine normal subgroup Gaff; moreover, the quotient groupG=Gaff

is an abelian variety. In other words, G sits in a unique exact sequence of connected
algebraic groups

1 �! Gaff �! G
˛�! A �! 1;

where Gaff is linear, and A WD G=Gaff is an abelian variety. This exact sequence
is generally nonsplit; yet G has a smallest closed subgroup H such that ˛jH is
surjective. Moreover, H is connected, contained in the center of G, and satisfies
O.H/ D k. In fact, H is the largest closed subgroup of G satisfying the latter
property, which defines the class of anti-affine algebraic groups; we denote H by
Gant. Finally, we have the Rosenlicht decomposition: G D GaffGant, and .Gant/aff is
the connected neutral component of the scheme-theoretic intersection Gaff \ Gant.
In other words, we have an isomorphism of algebraic groups

G Š .Gaff �Gant/=.Gant/aff;

and the quotient group scheme .Gaff\Gant/=.Gant/aff is finite. We refer to [7] for an
exposition of these results and of further developments.

We shall obtain a similar structure result for an arbitrary irreducible algebraic
monoid; then the unit group is a connected algebraic group by Theorem 1. Our
starting point is the following:



On Algebraic Semigroups and Monoids 27

Proposition 15. Let M be an irreducible algebraic monoid, G its unit group, ' W
M ! G .M/ D G=H the universal homomorphism to an algebraic group, and N
the scheme-theoretic fiber of ' at 1. Then H and N are affine.

Proof. Recall from Proposition 11 that H is the normal subgroup scheme of G
generated by Gx , where x is an arbitrary point of ker.M/. Since Gx is the isotropy
subgroup scheme of a point for a faithful action of G (the action on M by left
multiplication), it follows that Gx is affine (see e.g. [7, Cor. 2.1.9]). The image of
Gx under the homomorphism ˛ W G ! A is affine (as the image of an affine group
scheme by a homomorphism of group schemes) and proper (as a subgroup scheme
of the abelian variety G=Gaff), hence finite. But ˛.Gx/ D ˛.H/ by the definition
of H and the commutativity of A; hence ˛.H/ is finite. Also, the kernel of the
homomorphism ˛jH is a subgroup scheme of Gaff, and hence is affine. Thus, the
reduced scheme Hred is an extension of a finite group by an affine algebraic group,
and hence is affine. Thus, so is Nred in view of Theorem 2 and of Proposition 13. It
follows that N is affine, by [13, Exer. III.3.1]. ut
Remark 7. If char.k/ D 0, then N is reduced and any homomorphism from N to
an algebraic group is trivial by Remark 6 (i). If in addition N is irreducible (e.g.,
if M is normal), then ker.N / is generated by the minimal idempotents. Indeed, the
unit groupH ofN is generated by the conjugates of the isotropy groupHe for some
idempotent e 2 ker.N /, by Proposition 11 (ii). So the assertion follows from [24,
Thm. 2.1].

A noteworthy consequence of Proposition 15 is the following:

Corollary 3. Any irreducible algebraic monoid is quasiprojective.

Proof. With the notation of the above proposition, the morphism ' is affine, since
M D G �H N where N is affine. Moreover, G=H is quasiprojective since so is any
algebraic group (see e.g. [7, Prop. 3.1.1]). Thus, M is quasiprojective as well. ut

Another consequence is a version of Chevalley’s structure theorem for an
irreducible algebraic monoid; it generalizes [6, Thm. 1.1], where the monoid is
assumed to be normal.

Theorem 3. Let M be an irreducible algebraic monoid, G its unit group, and Maff

the closure of Gaff in M .

(i) Maff is an irreducible affine algebraic monoid with unit group Gaff.
(ii) The action of Gaff on Maff extends to an action of G D GaffGant, where Gant

acts trivially.
(iii) The natural map Gant �Gant\Gaff Maff ! G �Gaff Maff is an isomorphism of

irreducible algebraic monoids. Moreover, the natural map

� W G �Gaff Maff !M

is a finite birational homomorphism of algebraic monoids.
(iv) E.M/ D E.Maff/ and ker.M/ D G ker.Maff/.
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(v) M is normal if and only if Maff is normal and � is an isomorphism. Then the
assignment I 7! I \Maff defines a bijection between the two-sided ideals of
M and those of Maff; the inverse bijection is given by J 7! GJ . In particular,
ker.M/ \Maff D ker.Maff/.

Proof. (i) Clearly, Maff is an irreducible submonoid of M , and G.Maff/ con-
tains Gaff as an open subgroup. Since G.Maff/ is connected, it follows that
G.Maff/ D Gaff. Hence Maff is affine by Theorem 2.

(ii) The assertion follows readily from the Rosenlicht decomposition: since Gaff \
Gant is contained in the center of Gaff, its action on Maff by conjugation is
trivial. Thus, the Gaff-action by conjugation on Maff extends to an action of
G Š .Gaff �Gant/=.Gaff \Gant/, where Gant acts trivially.

(iii) The first assertion follows from the Rosenlicht decomposition again, since that
decomposition yields an isomorphism G Š Gant �Gant\Gaff Gaff of principal
Gaff-bundles over G=Gaff Š Gant=.Gant \Gaff/. For the second assertion, note
first that � restricts to the natural isomorphism G �Gaff Gaff ! G, and hence is
a birational homomorphism of algebraic monoids. To show that � is finite, we
use the isomorphism M Š G �H N of Sect. 3.2. Here H and N are affine by
Proposition 15; also, the natural map G �Hred Nred !M is finite and bijective
by Proposition 13. It follows that the analogous map

� W G �Ho
red No

red �!M

is finite and surjective. But Ho
red � Gaff since H is affine. Thus,

G �Ho
red No

red Š G �Gaff .Gaff �Ho
red No

red/:

Moreover, No
red � Maff, since No

red is the closure in M of Ho
red � Gaff; hence

GaffN
o
red �Maff. So � factors as the natural map

ˇ W G �Gaff .Gaff �Ho
red No

red/! G �Gaff Maff

(induced from the map ı W Gaff �Ho
red No

red ! Maff), followed by �. Now ı is
the restriction of � to a closed subvariety, and hence is finite; thus, its image
GaffN

o
red is closed in Maff. But Maff D Gaff, and hence ı is surjective. Hence ˇ

is finite and surjective. Since � D � ıˇ, it follows that � is finite and surjective
as well.

(iv) Let e 2 E.M/. By Corollary 1, we may lift e to an idempotent f of
G �Gaff Maff. Then the image of f in G=Gaff is the neutral element, and hence
f 2Maff so that e 2 E.Maff/. The converse is obvious.

Next, choose e minimal. Then ker.M/ D GeG by Proposition 7, and
hence ker.M/ D G.GaffeGaff/ in view of the Rosenlicht decomposition. But
GaffeGaff D ker.Maff/ since e is a minimal idempotent of Gaff.

(v) Assume thatM is normal. By (iii) and Zariski’s Main Theorem, it follows that
� is an isomorphism. In particular, G �Gaff Maff is normal. Since the natural
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morphismG�Maff ! G�GaffMaff is smooth, it follows thatG�Maff is normal
(e.g., by Serre’s criterion); hence so is Maff. The converse is straightforward.
This proves the first assertion.

The second assertion is proved by the argument of Proposition 14 (ii); note
that any two-sided ideal of Maff is stable under conjugation by G, in view of
(ii) above. ut

Example 5. Let n be a positive integer, �n the group scheme of nth roots of unity,
and A an abelian variety containing �n as a subgroup scheme (any ordinary elliptic
curve will do). As in Example 3, let N be the submonoid scheme .zn D yn/ of
.A2;�/, and H the unit subgroup scheme of N ; then H Š �n � Gm. Next, let
G WD A � Gm; this is a connected commutative algebraic group containing H as a
subgroup scheme. Finally, let

M WD G �H N D A ��n N:
Then one checks that M is an irreducible algebraic monoid with unit group G.
Clearly,Gaff D Gm and A.G/ D A; also, one checks thatMaff D .A1;�/ and hence
G �Gaff Maff Š A � A

1. The morphism � W G �Gaff Maff ! M sends the closed
subscheme �n � f0g to 0, and restricts to an isomorphism over the complement. So
M is obtained from A � A

1 by pinching �n � f0g to a point.

In view of Theorem 3, we may transfer information from affine algebraic
monoids (about which much is known, see [23, 26]) to general ones. For example,
the minimal idempotents of any irreducible algebraic monoid are all conjugate
under the unit group, since this holds in the affine case by [23, Prop. 6.1, Cor. 6.8].
Another noteworthy corollary is the following relation between the partial order on
idempotents and limits of one-parameter subgroups:

Corollary 4. Let .S; �/ be an irreducible algebraic semigroup, and e; f 2 E.S/.
Then e � f if and only if there exists a homomorphism of algebraic semigroups
 W .A1;�/! .S; �/ such that .0/ D e and .1/ D f .

Proof. The “if” implication is obvious (and holds in every algebraic semigroup).
For the converse, assume that e � f . Then e 2 fSf and the latter is an irreducible
algebraic monoid. Thus, we may assume that S itself is an irreducible algebraic
monoid, and f is the neutral element. In view of Theorem 3, we may further assume
that S is affine. Then the assertion follows from [22, Thm. 2.9, Thm. 2.10]. ut

3.4 The Albanese Morphism

By [30, Sec. 4], every irreducible variety X admits a universal morphism to an
abelian variety: the Albanese morphism,

˛ W X �! A.X/:
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The groupA.X/ is generated by the differences ˛.x/�˛.y/, where x; y 2 X . Also,
X admits a universal rational map to an abelian variety: the Albanese rational map,

˛rat W X� ! A.X/rat:

The maps ˛ and ˛rat are uniquely determined up to translations and isomorphisms
of the algebraic group A.X/. Moreover, there exists a unique morphism

ˇ W A.X/rat �! A.X/

such that ˛ D ˇı˛rat. The morphism ˇ is always surjective; whenX is nonsingular,
it is an isomorphism. For an arbitrary X , we have A.X/rat D A.U /, where U � X
denotes the nonsingular locus; in particular, ˛rat is defined at any nonsingular point
of X .

When X is equipped with a base point x, we may assume that ˛.x/ is the origin
of A.X/. If X is nonsingular at x, then we may further assume that ˛rat.x/ is the
origin of A.X/rat. Then ˛ and ˛rat are unique up to isomorphisms of algebraic
groups.

Next, observe that the Albanese morphism of a connected linear algebraic group
G is constant: indeed, G is generated by rational curves, and any morphism from
such a curve to an abelian variety is constant. For a connected algebraic group G
(not necessarily linear), it follows that ˛ D ˛rat is the quotient homomorphism by
the largest connected affine subgroup Gaff. This determines the Albanese rational
map of an irreducible algebraic monoidM , which is just the Albanese morphism of
its unit group. Some properties of the Albanese morphism of M are gathered in the
following:

Proposition 16. Let M be an irreducible algebraic monoid with unit group G.
Then the map ˛ W M ! A.M/ is a homomorphism of algebraic monoids, and
an affine morphism. Moreover, the map ˇ W A.M/rat D A.G/ ! A.M/ is an
isogeny. If M is normal, then ˇ is an isomorphism.

Proof. The monoid law � WM �M !M , .1M ; 1M / 7! 1M induces a morphism of
varietiesA.�/ W A.M �M/! A.M/, 0 7! 0. SinceA.M �M/ D A.M/�A.M/,
it follows that A.�/ is a homomorphism; hence so is ˛. In particular, ˛ factors
through the universal homomorphism ' W M ! G=H of Proposition 11. Hence
A.M/ D A.G=H/ D G=GaffH , where GaffH is a normal subgroup scheme of G
such that the quotient GaffH=Gaff Š H=.H \ Gaff/ is finite. Write M D G �H N
as in Proposition 15; then

M Š G �GaffH .GaffH �H N/
and this identifies ˛ with the natural map to G=GaffH , with fiber GaffH �H N . But
that fiber is affine, since so are N and GaffH=H Š Gaff=.Gaff \ H/. It follows
that the morphism ˛ is affine. Also, ˇ is identified with the natural homomorphism
G=Gaff ! G=GaffH ; hence the kernel of ˇ is isomorphic to GaffH=Gaff, a finite
group scheme.
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If M is normal, then M Š G �Gaff Maff by Theorem 3. Thus, the natural map
M ! G=Gaff is the Albanese morphism. ut

Consider for instance the monoid M constructed in Example 5. Then A.M/ Š
A=�n and A.G/ Š A; this identifies ˇ to the quotient morphism A! A=�n.

Returning to our general setting, recall that every irreducible algebraic monoid
may be viewed as an equivariant embedding of its unit group. For an arbitrary
equivariant embedding X of a connected algebraic group G, we may again identify
A.X/rat with A.G/; when X is normal, we still have A.X/ D A.X/rat as a
consequence of [4, Thm. 3]. But the morphism ˛ is generally nonaffine, and the
finiteness of ˇ is an open question in this setting.

We now characterize algebraic monoids among equivariant embeddings:

Theorem 4. Let X be an equivariant embedding of a connected algebraic group
G. Then X has a structure of algebraic monoid with unit group G if and only if the
Albanese morphism ˛ W X ! A.X/ is affine.

Proof. In view of Proposition 16, it suffices to show that X is an algebraic monoid
if ˛ is affine. Note that ˛ is G �G-equivariant for the given action of G �G on X ,
and a transitive action on A.X/. It follows that A.X/ Š .G �G/=.K �K/diag.G/
for a unique normal subgroup schemeK ofG; then A.X/ Š G=K equivariantly for
the left (or right) action of G. Moreover, ˛ is a fiber bundle of the form

G �G �.K�K/diag.G/ Y �! .G �G/=.K �K/diag.G/;

where Y is a scheme equipped with an action of .K � K/diag.G/; for the left (or
right) G-action, this yields the fiber bundle G �K Y ! G=K. Since ˛ is affine,
so is Y . Also, Y meets the open orbit G Š .G � G/=diag.G/ along a dense open
subscheme isomorphic to K, where K � K acts by left and right multiplication,
and diag.G/ by conjugation. Thus, the group scheme K is quasi-affine, and hence
is affine.

We now show that the group law �K W K � K ! K extends to a morphism
�Y W Y � Y ! Y , by following the argument of [28, Prop. 1]. The left action
K � Y ! Y and the right action Y � K ! Y restrict both to �K on K � K, and
hence yield a morphism .K � Y / [ .Y �K/! Y . Since Y is affine, it suffices to
show the equality

O..K � Y / [ .Y �K// D O.Y � Y /:
But O.Y � Y / D O.Y /˝O.Y / � O.K/˝O.K/ D O.K �K/, sinceK is dense
in Y . Moreover,

O..K � Y / [ .Y �K// D .O.K/˝ O.Y // \ .O.Y /˝ O.K//;

where the intersection is considered in O.K/˝O.K/. Now for any vector space V
and subspace W , we easily obtain the equality .W ˝ V / \ .V ˝ W / D W ˝ W
as subspaces of V ˝ V . When applied to O.Y / � O.K/, this yields the desired
equality.
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Since �Y is associative on the dense subscheme K, it is associative everywhere;
likewise, �Y admits 1K as a neutral element. Thus, �Y is an algebraic monoid law
on Y . We may now form the induced monoid G �K Y as in Sect. 3.2, to get the
desired structure on X . ut

3.5 Algebraic Semigroups and Monoids over Perfect Fields

In this subsection, we extend most of the above results to the setting of algebraic
semigroups and monoids defined over a perfect field. We use the terminology and
results of [33], especially Chapter 11 which discusses basic rationality results on
varieties.

Let F be a subfield of the algebraically closed field k. We assume that F is
perfect, i.e., every algebraic extension of F is separable; we denote by NF the
algebraic closure of F in k, and by � the Galois group of NF over F .

We say that an algebraic semigroup .S; �/ (over k) is defined over F , or an
algebraic F -semigroup, if S is an F -variety and the morphism � is defined over F .
Then the set of NF -points, S. NF /, is a subsemigroup of S equipped with an action of
� by semigroup automorphisms, and the fixed point subset S. NF /� is the semigroup
of F -points, S.F /.

Note that an algebraic F -semigroup may well have no F -point; for example,
an F -variety without F -point equipped with the trivial semigroup law �l or �r .
But this is the only obstruction to the existence of F -idempotents, as shown by the
following:

Proposition 17. Let .S; �/ be an algebraic F -semigroup.

(i) E.S/ and ker.S/ (viewed as closed subsets of S ) are defined over F .
(ii) If S is commutative, then its smallest idempotent is defined over F .

(iii) If S has an F -point, then it has an idempotent F -point.

Proof. (i) Clearly, E.S/ and ker.S/ are defined over NF and their sets of NF -points
are stable under the action of � on S. NF /. Thus, E.S/ and ker.S/ are defined
over F by [33, Prop. 11.2.8(i)].

(ii) Is proved similarly.
(iii) Let x 2 S.F / and denote by hxi the closure in S of the set fxn; n 	 1g.

Then hxi is a closed commutative subsemigroup of S , defined over F by [33,
Lem. 11.2.4]. In view of (ii), hxi contains an idempotent defined over F .

ut
We do not know if any algebraic F -semigroup S has a minimal idempotent

defined over F . This holds if S is irreducible, as we will see in Proposition 19.
First, we record two rationality results on algebraic monoids:
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Proposition 18. Let .M;�; 1M / be an algebraic monoid with unit group G and
neutral componentMo. IfM and � are defined over F , then so are 1M ,G andMo.
Moreover, the inverse map � W G ! G is defined over F .

Proof. Observe that 1M is the unique point x 2 M such that xy D yx D y for all
y 2 M. NF / (since M. NF / is dense in M ). It follows that 1M 2 M. NF /; also, 1M is
� -invariant by uniqueness. Thus, 1M 2M.F /.

The assertion on G follows from [33, Prop. 11.2.8(ii)]. It implies that Go is
defined over F by [loc. cit., Prop. 12.1.1]. Since Mo is the closure of Go in M ,
it is also defined over F in view of [loc. cit., Prop. 11.2.8(i)].

It remains to show that � is defined over F ; equivalently, its graph is an F -
subvariety of G �G. But this graph equals

f.x; y/ 2 G �G j xy D 1M g D ��1
G .1M /;

where�G W G�G ! G denotes the restriction of�, and��1
G .1M / stands for the set-

theoretic fiber. Moreover, this fiber is defined over F in view of [33, Cor. 11.2.14].
ut

Proposition 19. Let .M;�; 1M / be an irreducible algebraic monoid with unit
group G. If .M;�/ is defined over F , then the universal homomorphism to an
algebraic group, ' W M ! G .M/, is defined over F as well. Moreover, Gaff and
Maff are defined over F .

Proof. The first assertion follows from the uniqueness of ' by a standard argument
of Galois descent, see [31, Chap. V, §4]. The (well-known) assertion on Gaff is
proved similarly; it implies the assertion on Maff by [33, Prop. 11.2.8(i)]. ut

Returning to algebraic semigroups, we obtain the promised:

Proposition 20. Let .S; �/ be an irreducible algebraic F -semigroup. If S has an
F -point, then some minimal idempotent of S is defined over F .

Proof. By Proposition 17, we may choose e 2 E.S.F //. Then eSe is a closed
irreducible submonoid of S , and is defined over S in view of [33, Prop. 11.2.8(i)]
again. Moreover, any minimal idempotent of eSe is a minimal idempotent of S .
So we may assume that S is an irreducible monoid, M . In view of Theorem 3 and
Proposition 19, we may further assume that M is affine. Then the unit group of M
contains a maximal torus T defined over F , by Proposition 18 and [33, Thm. 13.3.6,
Rem. 13.3.7]. The closure NT of T in M is defined over F , and meets ker.M/ in
view of [23, Cor. 6.10]. So the (set-theoretic) intersection N WD NT \ ker.M/ is
a commutative algebraic semigroup, defined over F by [33, Thm. 11.2.13]. Now
applying Proposition 17 to N yields the desired idempotent. ut
Remark 8. The above observations leave open all the rationality questions for an
algebraic semigroup S over a field F , not necessarily perfect. In fact, S has an
idempotent F -point if it has an F -point, as follows from the main result of [5]. But
some results do not extend to this setting: for example, the kernel of an algebraic
F -monoid may not be defined over F , as shown by a variant of the standard example
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of a linear algebraic F -group whose unipotent radical is not defined over F (see
[32, Exp. XVII, 6.4.a)] or [33, 12.1.6]; specifically, replace the multiplicative group
Gm with the monoid .A1;�/ in the construction of this example). Also, note that
Chevalley’s structure theorem fails over any imperfect field F (see [32, Exp. XVII,
App. III, Cor.], and [35] for recent developments). Thus, Gaff may not be defined
over F with the notation and assumptions of Proposition 19. Yet the Albanese
morphism still exists for any F -variety equipped with an F -point (see [36, App. A])
and hence for any algebraic F -semigroup equipped with an F -idempotent.

4 Algebraic Semigroup Structures on Certain Varieties

4.1 Abelian Varieties

In this subsection, we begin by describing all the algebraic semigroup laws on an
abelian variety. Then we apply the result to the study of the Albanese morphism of
an irreducible algebraic semigroup.

Proposition 21. Let A be an abelian variety with group law denoted additively, �
an algebraic semigroup law on A, and e an idempotent of .A; �/; choose e as the
neutral element of .A;C/.
(i) There exists a unique decomposition of algebraic semigroups

.A; �/ D .A0; �0/ � .Al ; �l / � .Ar ; �r/ � .B;C/

where A0, Al , Ar and B are abelian varieties, and �0 (resp. �l ; �r ) the trivial
semigroup law on A0 (resp. Al , Ar ) defined in Example 1 (i).

(ii) The corresponding projection ' W A ! B is the universal homomorphism of
.A; �/ to an algebraic group. Moreover, we have E.S/ D feg �Al �Ar � feg
and ker.S/ D feg � Al � Ar � B .

Proof. (i) By [19, Chap. II, §4, Cor. 1], the morphism � W A � A! A satisfies

�.x; y/ D '.x/C  .y/C x0;

where x0 2 A and ',  are endomorphisms of the algebraic group A. Since
�.e; e/ D e and '.e/ D  .e/ D e, we have x0 D e, i.e., �.x; y/ D '.x/ C
 .y/. Now the associativity of � is equivalent to the equality

' ı '.x/C ' ı  .y/C  .z/ D '.x/C  ı '.y/C  ı  .z/;

that is, to the equalities

' ı ' D '; ' ı  D  ı ';  ı  D  :
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This easily yields the desired decomposition, where A0 WD Ker.'/ \ Ker. /,
Al WD Im.'/\Ker. /, Ar WD Ker.'/\ Im. /, and B WD Im.'/\ Im. /, so
that ' (resp.  ) is the projection of A to Al �B (resp. Ar �B). The uniqueness
of this decomposition follows from that of ' and  .

(ii) Let � W .A; �/! G be a homomorphism to an algebraic group. Then the image
of � is a complete irreducible variety, and hence generates an abelian subvariety
of G . Thus, we may assume that G is an abelian variety, with group law also
denoted additively. As above, we have �.x/ D �.x/C x0

0, where � W A ! G
is a homomorphism of algebraic groups and x0

0 2 G . Since �.e/ is idempotent,
we obtain x0

0 D 0, i.e., � W .A;C/ ! G is also a homomorphism. It follows
readily that � sends A0 � Al � Ar � feg to 0. So � factors as ' followed by a
unique homomorphism � 0 W B ! G . This proves the assertion on '; those on
E.S/ and ker.S/ are easily checked. ut

Proposition 22. Let .S; �/ be an irreducible algebraic semigroup, e 2 E.S/, and
˛ W S ! A.S/ the Albanese morphism; assume that ˛.e/ D 0.

(i) There exists a unique algebraic semigroup law A.�/ on A.S/ such that ˛ is a
homomorphism.

(ii) Let ' W .A.S/; A.�//! B.S/ be the universal homomorphism to an algebraic
group. Then the map eSe ! B.S/, x 7! '.˛.x// is the Albanese morphism of
eSe.

Proof. (i) The assertion follows from the functorial properties of the Albanese
morphism (see [30, Sec. 2]) by arguing as in the beginning of the proof of
Proposition 16.

(ii) Consider the inclusions eSe � eS � S . Each of them admits a retraction,
x 7! xe (resp. x 7! ex). Thus, the corresponding morphisms of Albanese
varieties, A.eSe/ ! A.eS/ ! A.S/, also admit retractions, and hence
are closed immersions. So we may identify A.eSe/ with the subgroup of
A.S/ generated by the differences ˛.exe/ � ˛.eye/, where x; y 2 S . But
˛.exe/ D A.�/.˛.e/; A.�/.˛.x/; ˛.e/// and ˛.e/ is of course an idempotent
of .A.S/; A.�//. Hence ˛.e/ D .e; al ; ar ; e/ in the decomposition of Proposi-
tion 21. Using that decomposition, we obtain ˛.exe/ D .e; al ; ar ; b.x//, where
b.x/ denotes the projection of ˛.x/ to B.S/. As a consequence, ˛.exe/ �
˛.eye/ D .e; e; e; b.x/�b.y//; this yields the desired identification ofA.eSe/
to B.S/. ut

Combined with Proposition 16, the above result yields:

Corollary 5. Let S be an irreducible algebraic semigroup.

(i) All the maximal submonoids of S have the same Albanese variety, and all the
maximal subgroups have isogenous Albanese varieties.

(ii) The irreducible monoid eSe is affine for all e 2 E.S/ if eSe is affine for some
e 2 E.S/.
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Remark 9. (i) With the notation and assumptions of Proposition 22, the morphism
' ı ˛ W S ! B.S/ is the universal homomorphism to an abelian variety.
Also, recall from Remark 5 that there exists a universal homomorphism to an
algebraic group,  W S ! G .S/, and that G .S/ is connected. It follows that
B.S/ is the Albanese variety of G .S/.

(ii) Consider an irreducible algebraic semigroup .S; �/ and its rational Albanese
map ˛rat W S� ! A.S/rat. If the image of � W S � S ! S meets the domain of
definition of ˛rat, then there exists a unique algebraic semigroup structure A.�/
on A.S/rat such that ˛rat is a ‘rational homomorphism’, i.e., ˛rat.�.x; y// D
A.�/.˛rat.x/; ˛rat.y// whenever ˛rat is defined at x; y 2 S and at �.x; y/ (as
can be checked by the argument of Proposition 22). But this does not hold for
an arbitrary .S; �/; for example, if S � A

3 is the affine cone over an elliptic
curve E � P

2 and if � D �0. Here 0, the origin of A3, is the unique singular
point of S , and ˛rat is the natural map S n f0g ! E.

4.2 Irreducible Curves

In this subsection, we classify the irreducible algebraic semigroups of dimension 1;
those having a nontrivial law (as defined in Example 1 (i)) turn out to be algebraic
monoids.

Such semigroups include of course the connected algebraic groups of dimension
1, presented in Example 2 (iv). We now construct further examples: let .a1; : : : ; an/
be a strictly increasing sequence of positive integers having no nontrivial common
divisor, and consider the map

' W A1 �! A
n; x 7�! .xa1 ; : : : ; xan/:

Then ' is a homomorphism of algebraic monoids, where A
1 and A

n are equipped
with pointwise multiplication. Also, one checks that the morphism ' is finite; hence
its image is a closed submonoid of An, containing the origin as its zero element.
We denote this monoid by M.a1; : : : ; an/, and call it an affine monomial curve; it
only depends on the abstract submonoid of .Z;C/ generated by a1; : : : ; an. One

may check that ' restricts to an isomorphism A
1 n f0g Š�! M.a1; : : : ; an/ n f0g;

also, M.a1; : : : ; an/ is singular at the origin unless ' is an isomorphism, i.e., unless
a1 D 1.

Theorem 5. Let S be an irreducible curve, and � a nontrivial algebraic semigroup
structure on S . Then .S; �/ is either an algebraic group or an affine monomial
curve.

Proof. As the arguments are somewhat long and indirect, we divide them into four
steps.
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Step 1: we show that every idempotent of S is either a neutral or a zero element.
Let e 2 E.S/. Since Se is a closed irreducible subvariety of S , it is either the
whole S or a single point; in the latter case, Se D feg. Thus, one of the following
cases occurs:

(i) Se D eS D S . Then any x 2 S satisfies xe D ex D x, i.e., e is the neutral
element.

(ii) Se D feg and eS D S . Then for any x; y 2 S , we have xe D e and ey D y.
Thus, xy D xey D ey D y. So � D �r in the notation of Example 1 (i), a
contradiction since � is assumed to be nontrivial.

(iii) eS D feg and Se D S . This case is excluded similarly.
(iv) Se D eS D feg. Then e is the zero element of S .

Step 2: we show that if S is complete, then it is an elliptic curve.
For this, we first reduce to the case where S has a zero element. Otherwise, S
has a neutral element by Step 1. Hence S is a monoid with unit group G being
Ga, Gm or an elliptic curve, in view of the classification of connected algebraic
groups of dimension 1. In the latter case, G is complete and hence G D S . On
the other hand, ifG D Ga or Gm, then S nG is a nonempty closed subsemigroup
of S in view of Proposition 3. Hence S nG contains an idempotent, which must
be the zero element of S by Step 1. This yields the desired reduction.
The semigroup law � W S � S ! S sends S � f0g to the point 0. By the rigidity
lemma (see e.g. [19, Chap. II, §4]), it follows that �.x; y/ D '.y/ for some
morphism ' W S ! S . The associativity of � yields

'.z/ D .xy/z D x.yz/ D '.yz/ D '.'.z//

for all x; y; z 2 S ; hence ' is a retraction to its image. Since S is an irreducible
curve, either ' D id or the image of ' consists of a single point x. In the former
case, � D �r , whereas � D �x in the latter case. Thus, the law � is trivial, a
contradiction.

Step 3: we show that if S is an affine monoid, then it is isomorphic to Ga, Gm or
an affine monomial curve.
We may view S as an equivariant embedding of its unit group G, and that group
is either Ga or Gm. Since Ga Š A

1 as a variety, any affine equivariant embedding
of Ga is Ga itself. So we may assume that G D Gm. Then the coordinate ring
O.S/ is a subalgebra of O.Gm/ D kŒx; x�1�, stable under the natural action of
Gm. It follows that O.S/ has a basis consisting of Laurent monomials, and hence
that

O.S/ D
M

n2M
xn;

where M is a submonoid of .Z;C/. Moreover, since Gm is open in S , the
fraction field of O.S/ is the field of rational functions k.x/; it follows that M
generates the group Z. Thus, either M D Z or M is generated by finitely many
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integers, all of the same sign and having no nontrivial common divisor. In the
former case, S D Gm; in the latter case, S is an affine monomial curve.

Step 4: in view of Step 2, we may assume that the irreducible curve S is
noncomplete, and hence is affine. Then it suffices to show that S has a nonzero
idempotent: then S is an algebraic monoid by Step 1, and we conclude by Step
3. We may further assume that S is nonsingular: indeed, by the nontriviality
assumption, the semigroup law � W S�S ! S is dominant. Using Proposition 9,
it follows that the normalization QS (an irreducible nonsingular curve) has a com-
patible algebraic semigroup structure; then the image of a nonzero idempotent of
QS is a nonzero idempotent of S .

So we assume that S is an affine irreducible nonsingular semigroup of dimension
1, having a zero element 0, and show that S has a neutral element. We use the “right
regular representation” of S , i.e., its action on the coordinate ring O.S/ by right
multiplication; specifically, an arbitrary point x 2 S acts on O.S/ by sending a
regular function f on S to the regular function x � f W y 7! f .yx/. This yields
a map

' W S �! End.O.S//; x 7�! x � f

which is readily seen to be a homomorphism of abstract semigroups. Moreover, the
action of S on O.S/ stabilizes the maximal ideal m of 0, and all its powers mn. This
defines compatible homomorphisms of abstract semigroups

'n W S 7�! End.m=mn/ .n 	 1/:

Since S is a nonsingular curve, we have compatible isomorphisms of k-algebras

m=mn Š kŒt �=tnkŒt �;

where t denotes a generator of the maximal ideal mOS;0 of the local ring OS;0;
the right-hand side is the algebra of truncated polynomials at the order n. Thus,
an endomorphism � of m=mn is uniquely determined by �.Nt/, where Nt denotes
the image of t mod tnkŒt �. Moreover, the assignment � 7! �.Nt/ yields compatible
isomorphisms of abstract semigroups

End.m=mn/
Š�! tkŒt �=tnkŒt �;

where the semigroup law on the right-hand side is the composition of truncated
polynomials. Thus, we obtain compatible homomorphisms of abstract semigroups

 n W S �! tkŒt �=tnkŒt �:

Clearly, the right-hand side is an algebraic semigroup. Moreover,  n is a morphism:
indeed, for any f 2 O.S/, we have f .yx/ D P

i2I fi .x/gi .y/ for some finite
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collection of functions fi ; gi 2 O.S/ (since the semigroup law is a morphism). In
other words, x � f DPi2I fi .x/gi . Thus, the matrix coefficients of the action of x
in O.S/=mn, and hence in m=mn, are regular functions of x.

We claim that there exists n 	 1 such that  n ¤ 0. Otherwise, we have 'n.x/ D
0 for all n 	 1 and all x 2 S . Since

T
nm

n D f0g, it follows that '.x/ sends m to
0. But O.S/ D k ˚m, where the line k of constant functions is fixed pointwise by
'.x/. Hence '.x/ D '.0/ for all x, i.e., f .yx/ D f .0/ for all f 2 O.S/ and all
x; y 2 S . Thus, yx D 0, i.e., � D �0; a contradiction.

Now let n be the smallest integer such that  n ¤ 0. Then  n sends S to the
quotient tn�1kŒt �=tnkŒt �, i.e., to the semigroup of endomorphisms of the algebra
kŒt �=tnkŒt � given by Nt 7! c Ntn�1, where c 2 k. If n 	 3, then the composition of
any two such endomorphisms is 0, and hence  n.xy/ D 0 for all x; y 2 S . Thus,
xy belongs to the fiber of  n at 0, a finite set containing 0. Since S is irreducible, it
follows that xy D 0, i.e., � D �0; a contradiction. Thus, we must have n D 2, and
we obtain a nonconstant morphism  D  2 W S ! A

1, where the semigroup law on
A
1 is the multiplication. The image of  contains 0 and a nonempty open subset U

of the unit group Gm. Then UU D Gm and hence  is surjective. By Proposition 1,
it follows that there exists an idempotent e 2 S such that  .e/ D 1. Then e is the
desired nonzero idempotent. ut
Remark 10. One may also deduce the above theorem from the description of
algebraic semigroup structures on abelian varieties (Proposition 21), when the
irreducible curve S is assumed to be nonsingular and nonrational. Then the
Albanese morphism of S is a locally closed embedding in its Jacobian variety A.
It follows that A has no trivial summand A0, Al or Ar (otherwise, the projection
to that summand is constant since � is nontrivial; as the differences of points of S
generate the group A, this yields a contradiction). In other words, the inclusion of S
into A is a homomorphism for a suitable choice of the origin of A. This implies that
S D A, and we conclude that S is an elliptic curve equipped with its group law.

4.3 Complete Irreducible Varieties

In this subsection, we obtain a description of all complete irreducible algebraic
semigroups, analogous to that of the kernels of algebraic semigroups presented in
Proposition 5:

Theorem 6. There is a bijective correspondence between the following objects:

• The triples .S; �; e/, where S is a complete irreducible variety, � an algebraic
semigroup structure on S , and e an idempotent of .S; �/,

• The tuples .X; Y;G; �; �; xo; yo/, where X (resp. Y ) is a complete irreducible
variety equipped with a base point xo (resp. yo), G is an abelian variety,
� W X � G � Y ! S is a closed immersion, and � W S ! X � G � Y a
retraction of �.
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This correspondence assigns to any such tuple, the algebraic semigroup structure
� on X �G � Y defined by

�..x; g; y/; .x0; g0; y0// WD .x; gg0; y0/

and then the algebraic semigroup structure � on S defined by

�.s; s0/ WD �.�.�.s/; �.s0///:

The idempotent is e WD �.xo; 1G; yo/. Moreover, � and � are homomorphisms of
algebraic semigroups.

The inverse correspondence will be constructed at the end of the proof. We begin
that proof with three preliminary results.

Lemma 1. Let ' W X ! Y be a morphism of varieties, where X is complete and
irreducible; assume that ' has a section (for example, ' is a retraction of X to
a subvariety Y ). Then Y is complete and irreducible as well. Moreover, the map
'# W OY ! '�.OX/ is an isomorphism; in particular, the fibers of ' are connected.

Proof. Note that ' is surjective, since it admits a section. This readily yields the first
assertion.

Next, consider the Stein factorization of ' as the composition

X
'0

�! X 0  �! Y;

where '0 is the natural morphism to the Spec of the sheaf of OY -algebras '�.OX/,
and  is finite (see [13, Cor. III.11.5]). Then '0 is surjective, and hence X 0 is a
complete irreducible variety. Also, given a section � of ', the map '0 ı� is a section
of  . In view of the irreducibility of X 0 and the finiteness of  , it follows that  is
an isomorphism; this yields the second assertion. ut
Lemma 2. Let S be a complete irreducible algebraic semigroup, and e an idempo-
tent of S . Then xy D xey for all x; y 2 S .

Proof. Recall that the map ' W S ! eS , x 7! ex is a retraction. Thus, its fibers
are connected by Lemma 1. Let F be a (set-theoretic) fiber. Then the morphism
� W S � S ! S , .x; y/ 7! xy sends feg � F to a point. By the rigidity lemma (see
e.g. [19, Chap. II, §4]), �.fxg � F / consists of a single point for any x 2 S . Thus,
the map y 7! xy is constant on the fibers of '. Since '.y/ D '.ey/ for all y 2 S ,
this yields the statement. ut
Lemma 3. Keep the assumptions of the above lemma.

(i) The closed submonoid eSe of S is an abelian variety.
(ii) The map ' W S ! eSe, x 7! exe is a retraction of algebraic semigroups.

(iii) The above map ' is the universal homomorphism to an algebraic group.
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Proof. (i) By Proposition 3 (iii), it suffices to show that e is the unique idempotent
of eSe. But if f 2 E.eSe/, then xy D xfy for all x; y 2 S , by Lemma 2.
Taking x D y D e yields e D efe D f .

(ii) By Lemma 2 again, we have exye D exeye D .exe/.eye/ for all x; y 2 S .
(iii) Let G be an algebraic group and let  W S ! G be a homomorphism of

algebraic semigroups. Then  .e/ D 1 and hence  .x/ D  .exe/ for all
x 2 S . Thus,  factors uniquely as the homomorphism ' followed by some
homomorphism of algebraic groups eSe ! G . ut

Remark 11. By Lemma 3, every idempotent e of a complete irreducible algebraic
semigroup .S; �/ is minimal. Moreover, by Lemma 2, the image of the morphism
� is exactly the kernel of S ; this is a simple algebraic semigroup in view of
Proposition 5. One may thus deduce part of Theorem 6 from the structure of simple
algebraic semigroups presented in Remark 3 (i). Yet we will provide a direct, self-
contained proof by adapting the arguments of Proposition 5.

Proof of Theorem 6. One readily checks that the map � (resp. �) as in the statement
yields an algebraic semigroup structure on X � G � Y (resp. on S ); compare with
Example 1 (ii).

Conversely, given .S; �; e/ as in the statement, consider

X WD eSe; G WD eSe; Y WD eSe
with the notation of Remark 1 (ii). Then G is an abelian variety by Lemma 3. Let
� W X�G�Y ! S denote the multiplication map: �.x; g; y/ D xgy. Finally, define
a map � W S ! S �G � S by

�.s/ D .s.ese/�1; ese; .ese/�1s/:

Then s.ese/�1 2 X , since es.ese/�1 D ese.ese/�1 D e and s.ese/�1e D
s.ese/�1. Likewise, .ese/�1s 2 Y . So the image of � is contained in X �G � Y .

We claim that �ı� is the identity ofX�G�Y . Indeed, .�ı�/.x; g; y/ D �.xgy/.
Moreover, exgye D g so that

�.xgy/ D .xgyg�1; g; g�1gy/:

Now xgyg�1 D xgyeg�1 D xgeg�1 D xe D x and likewise, g�1xgy D y. This
proves the claim.

By that claim, � is a closed immersion, and � a retraction of �. Also, we have for
any x; x0 2 X , g; g0 2 G and y; y0 2 Y :

xgyx0g0y0 D xgyex0g0y0 D xgex0g0y0 D xgeg0y0:

In other words, � is a homomorphism of algebraic semigroups, where X �G � Y is
given the semigroup structure � as in the statement.
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We next claim that � is a homomorphism of algebraic semigroups as well. Indeed,

�.ss0/ D .ss0.ess0e/�1; ess0e; .ess0e/�1ss0/

and hence, using Lemma 3,

�.ss0/ D .ss0.es0e/�1.ese/�1; eses0e; .es0e/�1.ese/�1ss0/:

Moreover,

ss0.es0e/�1.ese/�1 D ses0e.es0e/�1.ese/�1 D se.ese/�1 D s.ese/�1

by Lemma 2, and likewise .es0e/�1.ese/�1ss0 D .es0e/�1s0. Thus,

�.ss0/ D .s.ese/�1; eses0e; .es0e/�1s0/ D �.�.s/; �.s0//

as required.
Finally, we claim that ss0 D �.�.�.s/; �.s0///. Indeed, the right-hand side equals

s.ese/�1eses0e.es0e/�1s0 D ses0 D ss0

in view of Lemma 2 again.

Remark 12. (i) The description of algebraic semigroup laws on a given abelian
varietyA (Proposition 21) may of course be deduced from Theorem 6: with the
notation of that theorem, the inclusion � and retraction � yield a decomposition
A Š A0 � Al � Ar � B , where Al WD X , Ar WD Y , B WD G and A0 denotes
the fiber of � at 0. Yet the original proof of Proposition 21 is simpler and more
direct.

(ii) As a direct consequence of Theorem 6, every algebraic semigroup law on
a complete irreducible curve is either trivial or the group law of an elliptic
curve. This yields an alternative proof of part of the classification of irreducible
algebraic semigroups of dimension 1 (Theorem 5); but in fact, both arguments
make a similar use of the rigidity lemma.

(iii) As another consequence of Theorem 6, for any complete irreducible algebraic
semigroup .S; �/, the closed subset E.S/ of idempotents is an irreducible
subsemigroup. Indeed, choosing e 2 E.S/, we have with the notation of that
theorem

E.S/ D �.X � f1Gg � Y / Š X � Y:

Moreover, �.�.x; 1G; y/; �.x0; 1G; y0// D �.x; 1G; y
0/ with an obvious

notation.
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(iv) In fact, some of the ingredients of Theorem 6 only depend of .S; �/, but not
of the choice of e 2 E.S/. Specifically, note first that the projections ' W
E.S/ ! X ,  W E.S/ ! Y are independent of e. Indeed, let f 2 E.S/ and
write f D �.x; 1G; y/. Then fE.S/ D �.f.x; 1G/g � Y / and hence fE.S/ is
the fiber of ' at f ; likewise, the fiber of  at f is E.S/f .

As seen in Remark 11, ker.S/ D SeS is isomorphic to X � G � Y via �.
The resulting projection � W ker.S/ ! G is the universal homomorphism to
an algebraic group by Lemma 3, and hence is also independent of e; its fiber
at 1G is E.S/. In particular, the algebraic group G D G .S/ is independent
of e. Note however that G D eSe, viewed as a subgroup of S , does depend
of the choice of the idempotent e. Indeed, eSe D �.fxog �G � fyog/ with the
notation of Theorem 6, while fSf D �.fxg �G � fyg/ for f as above.

The map � W S ! X �G � Y satisfies � ı � D �e , where �e W S ! ker.S/
denotes the retraction s 7! s.ese/�1s of Proposition 5. We check that �e is
independent of e (this also follows from Proposition 23 below). Let f 2 E.S/,
s 2 S , and write f D �.x; 1G; y/, �.s/ D .xs; gs; ys/. Then f sf D �.x; gs; y/
and hence .f sf /�1 D �.x; g�1

s ; y/. Thus,

�f .s/ D s.f sf /�1s D �.xs; gs; ys/ D �e.s/:

Finally, consider the action of the abelian varietyG on ker.S/ Š X�G�Y
via translation on the second factor:

g0 � �.x; g; y/ WD �.x; gg0; y/:

We check that this action lifts to an action of G on S such that � W S ! ker.S/
is equivariant. For any s; s0 2 S , define

s0 � s WD s.ese/�1s0s:

Then we have

s0 � s D s.ese/�1 es0e es D s.ese/�1 ese es0e .ese/�1s:

It follows that s0 � s D es0e � s D es0e � �.s/. Moreover, s0 � S D ker.S/ and
the endomorphism s 7! s0 � s of ker.S/ is just the translation by es0e 2 G on
G D eSe; we have

s0 � s1s2 D s1s0s2

for all s1; s2 2 S . Also, one may check as above that s0 � s is independent of the
choice of e.

(v) Theorem 6 extends readily to those irreducible algebraic semigroups that are
defined over a perfect subfield F of k, and that have an F -point; indeed, this
implies the existence of an idempotent F -point by Proposition 17.
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Likewise, the results of Sects. 4.1 and 4.2 extend readily to the setting of perfect
fields. In view of Theorem 5, every nontrivial algebraic semigroup law � on an
irreducible curve S is commutative; by Proposition 17 again, it follows that S has
an idempotent F -point whenever S and � are defined over F .

4.4 Rigidity

In this subsection, we obtain two rigidity results (both possibly known, but for
which we could not locate adequate references) and we apply them to the study
of endomorphisms of complete varieties.

Our first result is a scheme-theoretic version of a classical rigidity lemma for
irreducible varieties (see [8, Lem. 1.15]; further versions can be found in [20,
Prop. 6.1]).

Lemma 4. Let f W X ! Y and g W X ! Z be morphisms of schemes of finite type
over k, satisfying the following assumptions:

(i) f is proper and the map f # W OY ! f�.OX/ is an isomorphism.
(ii) There exists a k-rational point yo 2 Y such that g maps the scheme-theoretic

fiber f �1.yo/ to a single point.
(iii) f has a section, s.
(iv) X is irreducible.

Then g factors through f ; specifically, g D h ı f , where h WD g ı s.
Proof. We first treat the case where yo is the unique closed point of Y . We claim that
X is the unique open neighborhood of f �1.yo/. Indeed, given such a neighborhood
U with complement F WD X n U , the image f .F / is closed, since f is proper. If
F is nonempty, then f .F / contains yo, a contradiction.

Let zo 2 Z be the point g.f �1.yo//, and choose an open affine neighborhood
W of zo in Z. Then g�1.W / D X by the claim together with (iii); thus, we may
assume thatZ D W is affine. Then g is uniquely determined by the homomorphism
of algebras g# W O.Z/! O.X/. But the analogous map f # W O.Y /! O.X/ is an
isomorphism in view of (iv). Thus, there exists a morphism h0 W Y ! Z such that
g D h0 ı f . Then h D g ı s D h0 ı f ı s D h0; this completes the proof in that case
(note that the assumptions (i) and (ii) suffice to conclude that g factors through f ).

Next, we treat the general case. The scheme Y 0 WD Spec.OY;yo/ has a unique
closed point y0

o and comes with a flat morphism  W Y 0 ! Y , y0
o 7! yo. Moreover,

X 0 WD X �Y Y 0 is equipped with morphisms f 0 W X 0 ! Y 0, g0 D g ı p1 W X 0 ! Z

that satisfy (i) (since taking the direct image commutes with flat base extension, see
[13, Prop. III.9.3]) and (ii). Also, note that f 0 has a section s0 given by the morphism
.s ı  / � id W Y 0 ! X � Y 0. By the preceding step, we thus have g0 D h0 ı f 0,
where h0 WD g0 ı s0. It follows that there exists an open neighborhood V of y0 in Y
such that g D h ı f over f �1.V /.
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We now consider the largest subscheme W of X over which g D h ı f , i.e., W
is the preimage of the diagonal in Z �Z under the morphism g � .h ı f /. Then W
is closed in X and contains f �1.V /. Since X is irreducible, it follows thatW D X .

ut
Remark 13. The assertion of Lemma 4 still holds under the assumptions (ii), (iii)
and the following (weaker but more technical) versions of (i), (iv):

(i)0 f is proper, and for any irreducible component Y 0 of Y , the scheme-theoretic
preimage X 0 WD f �1.Y 0/ is an irreducible component of X . Moreover, the
map f 0# W OY 0 ! f 0�.OX 0/ is an isomorphism, where f 0 W X 0 ! Y 0 denotes
the restriction of f .

(iv)0 X is connected.

Indeed, let Yo be an irreducible component of Y containing yo; then Xo WD
f �1.Yo/ is an irreducible component ofX . Moreover, the restrictions fo W Xo ! Yo,
go W Xo ! Z, and so W Yo ! Xo satisfy the assumptions of Lemma 4. By that
lemma, it follows that go D go ı so ıfo, i.e., g D hıf on Xo. In particular, g maps
the scheme-theoretic fiber of f at any point of Yo to a single point.

Next, let Y1 be an irreducible component of Y intersecting Yo. Then again,X1 WD
f �1.Y1/ is an irreducible component ofX ; moreover, the restrictions f1 W X1 ! Y1,
g1 W X1 ! Z and s1 W Y1 ! X1 satisfy the assumptions of the above lemma, for any
point y1 of Yo\Y1. Thus, g D h ıf on Xo[X1. Iterating this argument completes
the proof in view of the connectedness of X .

As a first application of the above lemma and remark, we present a rigidity result
for retractions; further applications will be obtained in the next subsection.

Proposition 23. LetX be a complete irreducible variety, and ' a retraction ofX to
a subvariety Y . Let T be a connected scheme of finite type over k, equipped with a
k-rational point to, and let ˚ W X � T ! X be a morphism such that the morphism
˚to W X ! X , x 7! ˚.x; to/ equals '.

(i) There exists a unique morphism � W Y � T ! X such that ˚.x; t/ D
�.'.x/; t/ on X � T .

(ii) If ˚ is a family of retractions to Y (i.e., ˚.y; t/ D y on Y � T ), then ˚ is
constant (i.e., ˚.x; t/ D '.x/ on X � T ).

Proof. Consider the morphisms

f W X � T �! Y � T; .x; t/ 7! .'.x/; t/;

g W X � T �! X � T; .x; t/ 7! .˚.x; t/; t/:

Then the assumption (i)0 of Remark 13 holds, since '�.OX/ D OY in view of
Lemma 1. Also, the assumption (ii) of Lemma 4 holds for any point .y; to/, where
y 2 Y , and the assumption (iii) of that lemma holds with s being the inclusion of
Y � To in X � To. Finally, the assumption (iv)0 of Remark 13 is satisfied, since T
is connected. By that remark, we thus have g D g ı s ı f on X � T . Hence there
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exists a unique morphism � W Y � T ! X such that ˚.x; t/ D �.'.x/; t/ on
X � T , namely, �.y; t/ WD ˚.y; t/. If ˚ is a family of retractions, then we get that
˚.x; t/ D '.x/ on X � T . ut
Remark 14. The preceding result has a nice interpretation when X is projective.
Then there exists a quasiprojective k-scheme, End.X/, which represents the
endomorphism functor of X , i.e., for any Noetherian k-scheme T , the set of T -
points End.X/.T / is naturally identified with the set of endomorphisms of X � T
over T ; equivalently,

End.X/.T / D Hom.X � T;X/:
Moreover, each connected component of End.X/ is of finite type. These results
hold, more generally, for the similarly defined functor Hom.X; Y / of morphisms
from a projective scheme X to another projective scheme Y (see [12, p. 21]).
The composition of morphisms yields a morphism of Hom functors, and hence of
Hom schemes by Yoneda’s lemma. In particular, End.X/ is a monoid scheme; its
idempotent k-points are exactly the retractions with source X .

Returning to the setting of an irreducible projective variety X together with a
retraction ' W X ! Y , we may identify ' with the idempotent endomorphism e

of X with image Y . Now Proposition 23 yields that the connected component of
e in End.X/ is isomorphic to the connected component of the inclusion Y ! X

in Hom.Y;X/, by assigning to any 	 2 Hom.Y;X/.T / D Hom.Y � T;X/, the
composition  ı .' � id/ 2 Hom.X �T;X/. Moreover, this isomorphism identifies
the connected component of e in

End.E/e WD f˚ 2 End.X/ j ˚ ı e D eg
to the (reduced) point e.

Next, we obtain our second rigidity result:

Lemma 5. Let X be a complete variety, T a connected scheme of finite type over
k, and

˚ W X � T �! X � T; .x; t/ 7�! .'.x; t/; t/

an endomorphism of X � T over T . Assume that T has a point to such that
˚to W X ! X , x 7! '.x; to/ is an automorphism. Then ˚ is an automorphism.

Proof. Note that ˚ is proper, as the composition of the closed immersion X �T !
X � X � T , .x; t/ 7! .x; '.x; t/; t/ and of the projection X � X � T ! X � T ,
.x; y; t/ 7! .y; t/.

We now show that the fibers of ˚ are finite. Assuming the contrary, we may find
a complete irreducible curve C � X and a point t1 2 T such that ' W X � T ! X

sends C � ft1g to a point. By the rigidity lemma, it follows that the restriction of
' to C � T factors through the projection C � T ! T . Taking t D to, we get a
contradiction.
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The morphism ˚ is finite, since it is proper and its fibers are finite; it is also
surjective, since for any t 2 T , the map ˚t W X ! X , x 7! '.x; t/ is a finite
endomorphism of X and hence is surjective.

We now claim that ˚ restricts to an automorphism of X � V , for some open
neighborhood V of to in T . This claim is proved in [17, Lem. I.1.10.1]; we recall the
argument for completeness. Since ˚ is proper, the sheaf ˚�.OX�T / is coherent; it
is also flat over T , since ˚ lifts the identity of T . Moreover, the map ˚# W OX�T !
˚�.OX�T / induces an isomorphism ˚#

to
W OX ! .˚to/�.OX/. In view of a version

of Nakayama’s lemma (see [17, Prop. I.7.4.1]), it follows that ˚# is an isomorphism
over a neighborhood of to. This yields the claim.

By that claim, the points t 2 T such ˚t is an isomorphism form an open subset
of T . Since T is connected, it suffices to show that this subset is closed. For this, we
may assume that T is an irreducible curve; replacing T with its normalization, we
may further assume that T is nonsingular. By shrinking T , we may finally assume
that it has a point s such that 't is an automorphism for all t 2 T n fsg; we have to
show that 's is an automorphism as well.

If X is normal, then so is X � T ; moreover, the above endomorphism ˚ is finite
and birational, and hence an automorphism. Thus, every 't is an automorphism.

For an arbitrary X , consider the normalization � W QX ! X . Then ˚ lifts to an
endomorphism Q̊ W QX � T ! QX � T , which is an automorphism by the above step.
In particular, 's lifts to an automorphism Q's of QX . We have a commutative diagram

QX Q's�����! QX
�

?
?
y �

?
?
y

X
's�����! X

and hence a commutative diagram of morphisms of sheaves

OX �����! .'s/�.OX/
?
?
y

?
?
y

��.O QX/ �����! ��. Q's/�.O QX/:

Moreover, the bottom horizontal arrow in the latter diagram is the identity (as
. Q's/�.O QX/ D O QX ), and the other maps are all injective. Thus, OX � .'s/�.OX/ �
��.O QX/, and hence the iterates .'ns /�.OX/ form an increasing sequence of sub-
sheaves of ��.O QX/. As the latter sheaf is coherent, we get

.'ns /�.OX/ D .'nC1
s /�.OX/ .n
 0/:

Since 's is finite and surjective, it follows that OX D .'s/�.OX/ and hence that 's
is an isomorphism. ut
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A noteworthy consequence of Lemma 5 is the following:

Corollary 6. (i) Let M be a complete algebraic monoid. Then G.M/ is a union
of connected components of M . In particular, if M is connected then it is an
abelian variety.

(ii) Let S be a complete algebraic semigroup and let e; f be distinct idempotents
such that e � f . Then e and f belong to distinct connected components of S .
In particular, if S is connected then every idempotent is minimal.

Proof. (i) Let T be a connected component of M containing a unit to. Applying
Lemma 5 to the morphism M � T !M � T , .x; t/ 7! .xt; t/, we see that the
map x 7! xt is an isomorphism for any t 2 T . Likewise, the map x 7! tx is
an isomorphism as well. Thus, t has a left and a right inverse in M , and hence
is a unit. So T is contained in G.M/.

Alternatively, we may deduce the statement from Theorem 5: indeed,G.M/

contains no subgroup isomorphic to Ga or Gm, since the latter do not occur as
unit groups of complete irreducible monoids. By Chevalley’s structure theorem,
it follows that the reduced neutral component of G.M/ is an abelian variety.
Thus, G.M/ is complete, and hence closed in M . But G.M/ is open in M ,
hence the assertion follows.

(ii) Assume that e and f belong to the same connected component T of S . Then T
is a closed subsemigroup, and hence we may assume that S is connected. Now
fSf is a complete connected algebraic monoid, and hence an abelian variety.
It follows that e D f , a contradiction. ut

Remark 15. (i) Like for Proposition 23, the statement of Lemma 5 has a nice
interpretation when X is projective. Then its functor of automorphisms is
represented by an open subscheme Aut.X/ of End.X/ (see [12, p. 21]); in
fact, Aut.X/ is the unit group scheme of the monoid scheme End.X/. Now
Lemma 5 implies that Aut.X/ is also closed in End.X/. In other words,
Aut.X/ is a union of connected components of End.X/.

For an arbitrary complete variety X , the automorphism functor defined
as above is still represented by a group scheme Aut.X/; moreover, each
connected component of Aut.X/ is of finite type (see [18, Thm. 3.7] for these
results). We do not know if End.X/ is representable in this generality; yet the
above interpretation of Lemma 5 still makes sense in terms of functors.

(ii) LetX and T be complete varieties, where T is irreducible, and let� W X�T !
X be a morphism such that �.x; to/ D x for some to 2 T and all x 2 X . Then
by Lemma 5, the map �t W x 7! �.x; t/ is an automorphism for any t 2 T .
This yields a morphism of schemes

' W T �! Aut.X/; t 7�! �t

such that '.to/ is the identity. Hence ' sends T to the neutral component
Auto.X/. Consider the subgroup G of Auto.X/ generated by the image of T ;
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then G is closed and connected by [9, Prop. II.5.4.6], and hence is an abelian
variety. In loose words, the morphism � arises from an action of an abelian
variety on X .

(iii) Let X be a complete irreducible variety, and � W X � X ! X a morphism
such that �.x; xo/ D �.xo; x/ D x for some xo 2 X and all x 2 X . Then
the above morphism ' W X ! Auto.X/ satisfies '.x/.xo/ D x, and hence is a
closed immersion; we thus identify X to its image in Auto.X/. As seen above,
X generates an abelian subvariety G of Auto.X/. The natural action of G on
X is transitive, since the orbit Gxo contains Xxo D X . Thus, X itself is an
abelian variety on which G acts by translations. Moreover, since Gxo D Xxo,
we have G D XGxo , where Gxo denotes the isotropy subgroup scheme of xo.
As G is commutative and acts faithfully and transitively on X , this isotropy
subgroup scheme is trivial, i.e., G D X . In conclusion, X is an abelian variety
with group law � and neutral element xo. This result is due to Mumford and
Ramanujam, see [19, Chap. II, §4, Appendix].

4.5 Families of Semigroup Laws

Definition 10. Let S be a variety, and T a k-scheme. A family of semigroup laws on
S parameterized by T is a morphism � W S �S �T ! S such that the associativity
condition

�.s; �.s0; s00; t /; t/ D �.�.s; s0; t /; s00; t /

holds on S � S � S � T .

Such a family yields a structure of semigroup scheme on S � T over T : to any
scheme T 0 equipped with a morphism � W T 0 ! T , one associates the (abstract)
semigroup consisting of all morphisms � W T 0 ! S , equipped with the law ��
defined by

��.�; �
0/ D �.�; � 0; �/:

In particular, the choice of a k-rational point to of T yields an algebraic semigroup
structure on S ,

�to W S � S �! S; .s; s0/ 7�! �.s; s0; to/:

This sets up a bijective correspondence between families of semigroup laws on S
parameterized by T , and structures of T -semigroup scheme on S � T .

For example, every algebraic semigroup law S � S ! S , .s; s0/ 7! ss0 defines a
family of semigroup laws on S � S parameterized by S , via

� W S � S � S �! S; .s; s0; t / 7�! sts0:
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If S is irreducible and complete, and e 2 S is idempotent, then �e.s; s0/ D ss0 in
view of Lemma 2. More generally, for any t 2 S , we have �t.s; s0/ D t � ss0, with
the notation of Remark 12 (iv). In other words, the family � arises from the action
of the abelian variety G D eSe on S , defined in that remark.

We now generalize this construction to obtain all families of semigroup structures
on a complete irreducible variety, under a mild assumption on the parameter scheme.

Theorem 7. Let S be a complete irreducible variety, T a connected scheme of
finite type over k, and � W S � S � T ! S a family of semigroup laws. Choose a
k-point to 2 T and denote by ker.S/ the kernel of .S; �to/, by � W S ! ker.S/ the
associated retraction, and by G the associated abelian variety; recall that G acts
on ker.S/ by translations.

Then there exist unique morphisms ' W ker.S/ � T ! S and � W T ! G such
that

�.s; s0; t / D '.�to.s; s0/; t/

on S � S 0 � T , and that the composition � ı ' W ker.S/ � T ! ker.S/ is the
translation .s; t/ 7! �.t/ � s.

Conversely, given ' W ker.S/ � T ! S such that there exists � W T ! G

satisfying the preceding condition, the assignment .s; s0; t / 7! '.�to.s; s
0/; t/ yields

an algebraic semigroup law over T . Moreover, '.s; to/ D s on ker.S/, and
�.to/ D 1G .

Proof. Denote for simplicity �to.s; s
0/ by ss0. We begin by showing that there exists

a unique morphism ' W ker.S/ � T ! S such that �.s; s0; t / D '.ss0; t /. For this,
we apply Lemma 4 and the subsequent Remark 13 to the morphisms

�to � id W S � S � T ! ker.S/ � T; � � id W S � S � T ! S � T:

To check the corresponding assumptions, note first that �to has a section

� W ker.S/ �! S � S; s 7�! .s; s.ese/�2s/;

where e denotes a fixed idempotent of .S; �to/. (Indeed, let � W X �G � Y ! S be
the associated closed immersion with image ker.S/. Then

�.�.x; g; y// D .�.x; g; y/; �.x; 1G; y//

as an easy consequence of Theorem 6. Thus, �to.�.�.x; g; y/// D �.x; g; y/.) By
Lemma 1, it follows that the map �#

to
W Oker.S/ ! .�to/�.OS�S / is an isomorphism.

Thus, �to satisfies the assumption (i)’ of Remark 13; hence so does �to � id. Also,
the assumption (ii) of Lemma 4 holds for any point .s; to/ with s 2 ker.S/, and the
assumption (iii) of that lemma holds as well, since � � id is a section of �to � id.
Finally, S �S � T is connected, i.e., the assumption (iv)’ of Remark 13 is satisfied.
Hence that remark yields the desired morphism '.
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In particular, ss0 D �.s; s0; to/ D '.ss0; to/ for all s; s0 2 S . Since the image of
�to equals ker.S/, it follows that '.s; to/ D s for all s 2 ker.S/.

Next, consider the morphism

� WD .� ı '/ � id W ker.S; �to/ � T �! ker.S; �to/ � T:
Then �to is the identity by the preceding step; thus, � is an automorphism in view
of Lemma 5. In other words, � arises from a morphism

� W T �! Aut.ker.S//; to 7�! id:

Since T is connected, the image of � is contained in Auto.ker.S//. We identify
ker.S/ with X �G � Y via �. Then the natural map

Auto.X/ � Auto.G/ � Auto.Y / �! Auto.ker.S//

is an isomorphism by [7, Cor. 4.2.7]. Moreover, Auto.G/ Š G via the action of G
on itself by translations, see e.g. [loc. cit.,Prop. 4.3.2]. Thus, we have

�.x; g; y; t/ D .˛.x; t/; g C �.t/; ˇ.y; t/; t/

for uniquely determined morphisms ˛ W X � T ! X , ˇ W Y � T ! Y and
� W T ! G such that ˛ � id is an automorphism of X � T over T , and likewise for
ˇ � id.

We now use the assumption that � is associative. This is equivalent to the
condition that

'.s'.s0s00; t /; t/ D '.'.ss0; t /s00; t /

on S � S � S � T . Let  WD � ı ', then

 .s .s0s00; t /; t/ D  . .ss0; t /s00; t /

on ker.S/ � ker.S/ � ker.S/ � T , since ss0 D �.s/�.s0/ D �.ss0/ on
S � S . In view of the equalities  .x; g; y/ D .˛.x; t/; g C �.t/; ˇ.y; t// and
.x; g; y/.x0; g0; y0/ D .x; gg0; y0/, the above associativity condition for  yields
that ˛.x; t/ D ˛.˛.x; t/; t/ on X � T , and ˇ.y; t/ D ˇ.ˇ.y; t/; t/ on Y � T . As
˛ � id and ˇ � id are automorphisms, it follows that ˛.x; t/ D x and ˇ.y; t/ D y.
Thus,

 .x; g; y; t/ D .x; g C �.t/; y/;
that is, � ı ' is the translation by � .

For the converse, let ', � be as in the statement. Then the morphism

� W S � S � T �! S � T; .s; s0; t / 7�! '.ss0; t /
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satisfies the associativity condition, since

'.s'.s0s00; t /; t/ D '.�.s/�.'.s0s00; t //; t/ D '.�.t/ � �.s/�.s0/�.s00/; t/

and the right-hand side is clearly associative. Moreover, as already checked,
'.s; to/ D s on ker.S/; it follows that

�.to/ � s D .� ı '/.s; to/ D �.s/ D s

for all s 2 ker.S/. Thus, �.to/ D 1G . ut
Remark 16. (i) With the notation and assumptions of Theorem 7, one can easily

obtain further results on the semigroup scheme structure of S � T over T that
corresponds to�, along the lines of Theorem 6 and of Remark 12. For example,
one may check that the idempotent sections of the projection S � T ! T are
exactly the morphisms

T �! S; t 7�! '.�.t/�2 � ".t//;

where " W T ! E.S;�to/ is a morphism. In particular, any such semigroup
scheme has an idempotent section.

(ii) Consider the functor of composition laws on a variety S , i.e., the contravariant
functor from schemes to sets given by T 7! Hom.S � S � T; S/; then
the families of algebraic semigroup laws yield a closed subfunctor (defined
by the associativity condition). When S is projective, the former functor is
represented by a quasiprojective k-scheme,

CL.S/ WD Hom.S � S; S/I

moreover, each connected component of CL.S/ is of finite type over k (as
mentioned in Remark 14). Thus, the latter subfunctor is represented by a closed
subscheme,

SL.S/ � CL.S/:

In particular, SL.S/ is quasi-projective, and its connected components are of
finite type.

By Theorem 7, the connected component of �to in SL.S/ is identified with
the closed subscheme of Hom.ker.S/; S/ �G consisting of those pairs .'; �/
such that �ı' is the translation by � . Via the assignment .'; �/ 7! .��1 �'; �/
(where ��1 �' is defined as in Remark 12 (iv)), the above component of SL.S/
is identified with the closed subscheme of Hom.ker.S/; S/ � G consisting of
those pairs .�; �/ such that �ı� D id, that is, � is a section of �. This identifies
the universal semigroup law on the above component, with the morphism

.s; s0/ 7! � � �.�to.s; s0//:
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Note that the scheme of sections of � is isomorphic to an open subscheme of
the Hilbert scheme, Hilb.S/, by assigning to every section its image (see [12,
p. 21]). This open subscheme is generally nonreduced, as shown by a classical
example where S is a ruled surface over an elliptic curve C . Specifically, S is
obtained as the projective completion of a nontrivial principal Ga-bundle over
C , and � W S ! C is the ruling; then the section at infinity of � yields a fat
point of Hilb.S/, as follows from obstruction theory (see e.g. [17, Sec. I.2]).
As a consequence, the scheme SL.S/ is generally nonreduced as well.

(iii) The families of semigroup laws on further classes of varieties are worth
investigating. Following the approach of deformation theory, one may consider
those families of semigroup laws � on a prescribed variety S that are
parameterized by the spectrum of a local artinian k-algebraRwith residue field
k, and that have a prescribed law �to at the closed point. Then the first-order
deformations (i.e., those parameterized by Spec.kŒt �=.t2//) form a k-vector
space which may well be infinite-dimensional; this happens when S is the
affine line, and �to the multiplication.
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Algebraic Semigroups Are Strongly �-Regular

Michel Brion and Lex E. Renner

Abstract Let S be an algebraic semigroup (not necessarily linear) defined over a
field F . We show that there exists a positive integer n such that xn belongs to a
subgroup of S.F / for any x 2 S.F /. In particular, the semigroup S.F / is strongly
�-regular.

Keywords Algebraic semigroup • Strong �-regularity

Subject Classifications: 20M14, 20M32, 20M99

1 Introduction

A fundamental result of Putcha (see [2, Thm. 3.18]) states that any linear algebraic
semigroup S over an algebraically closed field k is strongly �-regular. The proof
follows from the corresponding result for Mn.k/ (essentially the Fitting decompo-
sition), combined with the fact that S is isomorphic to a closed subsemigroup of
Mn.k/, for some n > 0. At the other extreme it is easy to see that any complete
algebraic semigroup is strongly �-regular. It is therefore natural to ask whether any
algebraic semigroup S is strongly �-regular. The purpose of this note is to provide
an affirmative answer to this question, over an arbitrary field F ; then the set S.F /
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of points of S over F is an abstract semigroup (we shall freely use the terminology
and results of [3, Chap. 11] for algebraic varieties defined over a field).

2 The Main Results

Theorem 1. Let S be an algebraic semigroup defined over a subfield F of k. Then
S.F / is strongly �-regular, that is for any x 2 S.F /, there exists a positive integer
n and an idempotent e 2 S.F / such that xn belongs to the unit group of eS.F /e.

Proof. We may replace S with any closed subsemigroup defined over F and
containing some power of x. Denote by hxi the smallest closed subsemigroup of
S containing x, that is, the closure of the subset fxm;m > 0g; then hxi is defined
over F by [3, Lem. 11.2.4]. The subsemigroups hxni, n > 0, form a family of closed
subsets of S , and satisfy hxmni � hxmi \ hxni. Thus, there exists a smallest such
semigroup, say hxn0i. Replacing x with xn0 , we may assume that S D hxi D hxni
for all n > 0.

Lemma 1. With the above notation and assumptions, xS is dense in S . Moreover,
S is irreducible.

Proof. Since S D hx2i, the subset fxn; n 	 2g is dense in S . Hence xS is dense in
S by an easy observation (Lemma 3) that we will use repeatedly.

Let S1; : : : ; Sr be the irreducible components of S . Then each xSi is contained
in some component Sj . Since xS is dense in S , we see that xSi is dense in Sj .
In particular, j is unique and the map � W i 7! j is a permutation. By induction,
xnSi is dense in S�n.i/ for all n and i ; thus xnSi is dense in Si for some n and
all i . Choose i such that xn 2 Si . Then it follows that xmn 2 Si for all m. Thus,
hxni � Si , and S D Si is irreducible. ut
Lemma 2. Let S be an algebraic semigroup and let x 2 S . Assume that S D hxi
(in particular, S is commutative), xS is dense in S , and S is irreducible. Then S is
a monoid and x is invertible.

Proof. For y 2 S , consider the decreasing sequence

� � � � ynC1S � ynS � � � � � yS � S
of closed, irreducible ideals of S . We claim that

ydS D ydC1S D � � � ;
where d WD dim.S/C 1. Indeed, there exists n � d such that ynC1S D ynS , that
is, ynC1S is dense in ynS . Multiplying by ym�n and using Lemma 3, it follows that
ymC1S is dense in ymS for all m 	 n and hence for m 	 d . This proves the claim.

We may thus set

Iy WD ydS D ydC1S D � � �
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Then we have for all y; z 2 S ,

ydIz D Iyz � Iz;

since yd .zdS/ D .yz/dS � zdS . Also, note that Ix D S , and Ie D eS for any
idempotent e of S . By [1, Sec. 2.3], S has a smallest idempotent eS , and eSS is the
smallest ideal of S . In particular, eSS � Iy for all y. Define

I D fI � S j I D Iy for some y 2 Sg:

This is a set of closed, irreducible ideals, partially ordered by inclusion, with
smallest element eSS and largest element S . If S D eSS , then S is a group and
we are done. Otherwise, we may choose I 2 I which covers eSS (since I n feSSg
has minimal elements under inclusion). Consider

T D fy 2 S j yI is dense in I g:

If y; z 2 T then yzI D yzI D I and hence T is a subsemigroup of S . Also, note
that T \ eSS D ;, since eS zI � eSS is not dense in I for any z 2 S . Furthermore
x 2 T . (Indeed, xS is dense in S and hence xydS is dense in ydS for all y 2 S .
Thus, x ydS is dense in ydS ; in particular, xI is dense in I ).

We now claim that

T D fy 2 S j ydI 6� eSSg:

Indeed, if y 2 T then ydI is dense in I and hence not contained in eSS .
Conversely, assume that ydI 6� eSS and let z 2 S such that I D Iz.
Since ydI D ydIz D Iyz 2 I and ydI � I , it follows that ydI D I as
I covers eSS .

By that claim, we have

S n T D fy 2 S j ydI � eSSg D fy 2 S j eSyd z D yd z for all z 2 I g:

Hence S n T is closed in S . Thus, T is an open subsemigroup of S ; in particular,
T is irreducible. Moreover, since x 2 T and xS is dense in S , it follows that xT is
dense in T ; also note that fxn; n > 0g is dense in T .

Let eT 2 T be the minimal idempotent, then eT … eSS and hence the
closed ideal eT S contains strictly eSS . Since both are irreducible, we have
dim.eT T / D dim.eT S/ > dim.eSS/. Now the proof is completed by induction on
�.S/ WD dim.S/� dim.eSS/. Indeed, if �.S/ D 0, then S D eSS is a group. In the
general case, we have �.T / < �.S/. By the induction assumption, T is a monoid
and x is invertible in T . As T is dense in S , the neutral element of T is also neutral
for S , and hence x is invertible in S . ut
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By Lemmas 1 and 2, there exists n such that hxni is a monoid defined over F ,
and xn is invertible in that monoid. To complete the proof of Theorem 1, it suffices
to show that the neutral element e of hxni is defined over F . For this, consider the
morphism

	 W S � S �! S; .y; z/ 7�! xnyz:

Then 	 is the composition of the multiplication

� W S � S �! S; .y; z/ 7�! yz

and of the left multiplication by xn; the latter is an automorphism of S , defined
over F . So 	 is defined over F as well, and the fiber Z WD 	�1.xn/ is isomorphic
to ��1.e/, hence to the unit group of S . In particular, Z is smooth. Moreover, Z
contains .e; e/, and the tangent map

d	.e;e/ W T.e;e/.S � S/ �! TxnS

is surjective, since

d�.e;e/ W T.e;e/.S � S/ D TeS � TeS �! TeS

is just the addition. So Z is defined over F by [3, Cor. 11.2.14]. But Z is sent to the
point e by �. Since that morphism is defined over F , so is e. ut
Lemma 3. Let X be a topological space, and f W X ! X a continuous map. If
Y � X is a dense subset then f .Y / � f .X/ is a dense subset.

Proof. Let U � f .X/ be a nonempty open subset. Then f �1.U / � X is open,
and nonempty since f .X/ is dense in f .X/. Hence Y \ f �1.U / ¤ ;. If y 2
Y \ f �1.U / then f .y/ 2 f .Y / \ U . Hence f .Y / \ U ¤ ;. ut
Remark 1. Given x 2 S , there exists a unique idempotent e D e.x/ 2 S such
that xn belongs to the unit group of eSe for some n > 0. Indeed, we then have
xnSxn � eSe; moreover, since there exists y 2 eSe such that xny D yxn D e,
we also have eSe D xnySyxne � xnSxn. Thus, xnSxn D eSe. It follows that
xmnSxmn is a monoid with neutral element e for any m > 0, which yields the
desired uniqueness.

In particular, if x 2 S.F / then the above idempotent e.x/ is an F -point
of the closed subsemigroup hxi. We now give some details on the structure of
the latter semigroup. For x; e; n as above, we have xn D exn D .ex/n, and
y.ex/n D e for some y 2 He (the unit group of e hxi). But then ex 2 He since
.y.ex/n�1/.ex/ D e. Thus, exm D .ex/m 2 He for all m > 0. But if m 	 n then
xm D exm. Thus, if x … He then there exists an unique r > 0 such that xr … He

and xm 2 He for any m > r . In particular, xr 2 e hxi for all m 	 r . Thus we can
write

hxi D e hxi t fx; x2; : : : ; xsg
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for some s < r . Notice also that these xi ’s, with i � s, are all distinct (if xi D xj

with 1 � i < j � s, then xiCsC1�j D xsC1 2 e hxi, a contradiction). Moreover, a
similar decomposition holds for the semigroup of F -rational points.

The set fexm;m > 0g is dense in e hxi by Lemma 3. But exm D .ex/m, and
ex 2 He . So e hxi is a unit-dense algebraic monoid. Furthermore, if hxm0i is the
smallest subsemigroup of hxi of the form hxmi, for some m > 0, then hxm0i is
the neutral component of e hxi (the unique irreducible component containing e).
Indeed, hxm0i is irreducible by Lemma 1, and ym0 2 hxm0i for any y 2 hxi in view
of Lemma 3. Thus, the unit group of hxm0i has finite index in the unit group of hxi,
and hence in that of e hxi.

Finally, we show that Theorem 1 is self-improving by obtaining the following
stronger statement:

Corollary 1. Let S be an algebraic semigroup. Then there exists n > 0 (depending
only on S ) such that xn 2 He.x/ for all x 2 S , where e W x 7! e.x/ denotes the
above map. Moreover, there exists a decomposition of S into finitely many disjoint
locally closed subsets Uj such that the restriction of e to each Uj is a morphism.

Proof. We first show that for any irreducible subvariety X of S , there exists a dense
open subset U of X and a positive integer n D n.U / such that xn 2 He.x/ for all
x 2 U , and ejU is a morphism. We will consider the semigroup S.k.X// of points
of S over the function field k.X/, and view any such point as a rational map from
X to S ; the semigroup law on S.k.X// is then given by pointwise multiplication
of rational maps. In particular, the inclusion of X in S yields a point � 2 S.k.X//
(the image of the generic point of X ). By Theorem 1, there exist a positive integer
n and points e; y 2 S.k.X// such that e2 D e, �ne D e�n D �n, ye D ey D y and
�ny D y�n D e. Let U be an open subset of X on which both rational maps e; y
are defined. Then the above relations are equalities of morphisms U ! S , where �
is the inclusion. This yields the desired statements.

Next, start with an irreducible component X0 of S and let U0 be an open subset
of X0 such that ejU0 is a morphism. Now let X1 be an irreducible component of
X0 n U0 and iterate this construction. This yields disjoint locally closed subsets
U0; U1; : : : ; Uj ; : : : such that ejUj is a morphism for all j , and X n .U0 [ � � � [ Uj /
is closed for all j . Hence U0 [ � � � [ Uj D X for j 
 0. ut
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Rees Theorem and Quotients in Linear
Algebraic Semigroups

Mohan S. Putcha

Abstract Let S be an irreducible linear algebraic semigroup over an algebraically
closed field k. We analyze the Rees theorem for a regular J -class J of S . We define
the support of J to be X D J=H . We show that X is a quasi-projective variety that
is isomorphic to the direct product of two geometric quotients of algebraic group
actions. When J is completely simple, X is an affine variety, while in reductive
monoids, X is always a projective variety. We define the support of S to be that of the
maximum regular J -class of S . We study closed irreducible regular subsemigroups
S of the full linear monoid Mn.k/ with projective supports X. We determine the
possible X and for a given X, all the possible S . Along the way, we pose some
open problems, the chief among which is the conjecture that any irreducible regular
linear algebraic semigroup S with zero has projective support. We prove this in the
simplest case of when S is a completely 0-simple semigroup.

Keywords Linear algebraic semigroups • Rees theorem • Quotients • Projective
support

Subject Classifications: Primary 20M32, Secondary 20G99

1 Introduction

The purpose of this paper is to study varieties related to the Rees theorem, when
applied to a regular J -class J of an irreducible linear algebraic semigroup S . For
reductive monoids, this topic has been touched upon by the author [11, Section 5],
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where the primary focus was to find the coordinatizing sets of the Rees theorem
for a J -class J within the reductive unit group G. The time seems ripe to
revisit the subject, 30 years later. We work in the much more general situation
of irreducible semigroups. Let e be an idempotent in J , and let R;L;H be the
respective R;L ;H -classes of e. It is easy to see that R and L are quasi-affine
varieties and that H is a connected algebraic group. We begin by showing that
J too is a quasi-affine variety (Theorem 1). For an algebraic variety X with an
equivalence relation �, X=� is generally not a variety. We show however that
Xl .J / D J=R;Xr .J / D J=L and X D J=H all have natural structures of
quasi-projective varieties. We further show (Theorem 2) that Xr .J / is the geometric
quotient R=H of the left action of the algebraic group H on R, Xl .J / is the
geometric quotientL=H of the right action ofH onL, and that X Š Xl�Xr . When
J is completely simple, we show that X.J / is an affine variety. In the situation
of irreducible linear algebraic monoids, X.J / is affine in solvable monoids and
projective in reductive monoids. The big conjecture is that X.J / is always projective
in irreducible regular linear algebraic semigroups S with 0. We easily dispose of the
simplest case when S is completely 0-simple.

Let S be a regular irreducible linear algebraic semigroup. Then it has a maximum
J -class J . We define the support X.S/ to be X.J /. We tackle the problems of: (1)
determining all the possible projective supports X, and (2) finding all semigroups
S with a given support X. We work within a fixed linear monoid Mn.k/. We find
all possible supports X within the product of the the relevant Grassmannian spaces.
We find that the only restriction on X is a non-degeneracy condition coming from
the Rees theorem. For a given X, we find (Theorem 10) that the semigroups S are
classified by their cores (H -class of a maximal idempotent). We find the precise
conditions on H , and this allows us to list all S in some examples.

Even without the assumption that S has projective support, we are able to prove
(Theorem 6) a conjecture of Renner that greatly elucidates the structure of S .
As a consequence (Theorem 7), we are able to find a Rees matrix cover for any
irreducible completely regular linear algebraic semigroup.

2 Semigroups

Many years ago, when told that I worked in semigroup theory, an algebraic geometer
quipped: “Isn’t that like studying sets?” If this view is correct, then the work of
Green [6] truly represents creating something from nothing. Let S be a semigroup
with idempotent set E.S/. E.S/ is ordered as:

e � f if e D ef D fe

For X � S , let E.X/ D X \E.S/. As usual, let S1 D S or S [ f1g, depending on
whether S has an identity element. The Green’s relations J ;R;L ;H on S , [4,6]
are defined as:
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aJ b if S1aS1DS1bS1; a R b if aS1DbS1; a L b if S1aDS1b; H DR \L

S=J is ordered as:

J � J 0 if J � S1J 0S1

In addition, the Green’s relation D is defined as, D D R ı L D L ı R. This
yields an egg box picture for each D-classD of S . If R;R0 are R-classes and L;L0
L -classes ofD, then by Green’s lemma [4, Lemma 2.2], there exist a; b 2 S1, such
that aR \R0 ¤ ; and Lb \ L0 ¤ ; and for any such a; b:

the map W x ! ax is an L - preserving bijection between R and R0 (1)

and

the map W y ! yb is an R- preserving bijection between L and L0 (2)

These maps play a pivotal role in semigroup theory. A D-class D is called regular
if E.D/ ¤ ;. This implies that each R-class and each L -class of D contains an
idempotent. S is regular if each D-class of S is regular. Equivalently for all a 2 S ,
there exists x 2 S such that a D axa. At the other end of the spectrum (generalizing
commutativity) we have semigroups that satisfy the condition that ajb (b 2 S1aS1)
implies that a2jbi for some positive integer i . Such semigroups are semilattice
unions of Archimedean semigroups (for all a; b 2 S; ajbi for some positive integer
i ), cf. [9] (undergraduate research of the author). This is analogous to the spectrum
between reductive groups and solvable groups in the theory of algebraic groups.
Indeed in the context of irreducible linear algebraic monoids with zero, this analogy
is precise, cf. [12].

In this paper, we only consider strongly �-regular semigroups. This means
that for all a 2 S; an lies in a subgroup of S . The first example is when S is
a union of groups. These semigroups are called completely regular. Their study
was initiated by Clifford [3], and is a major area of study in semigroup theory.
Finite semigroups, periodic semigroups, the monoid Mn.F / over a field, and linear
algebraic semigroups are all further examples of strongly �-regular semigroups.
Then by Munn [8], J D D . For J 2 S=J , we define the local semigroup at J to
be, J 0 D J [ f0g where for a; b 2 J ,

a ı b D
�
ab if ab 2 J
0 if ab 62 J

If E.J / D ;, then J 0 is a null semigroup. Otherwise, by Munn [8], J 0 is a
completely 0-simple semigroup. So by Rees [13], J 0 is a Rees matrix semigroup,
providing local coordinates for J . We elaborate. Let e 2 E.J / and let R;L;H
denote respectively the R-class, L -class and H -class of e. ThenH is a group. Let
� D R=H ; � D L=H . For i 2 �, let ri 2 R denote an H -class representative,
and for j 2 � , let lj 2 L denote an H -class representative. Then by the Rees
theorem [4, 13],
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J D
G

i2�;j2�
ljHri and P.i; j / D ri lj 2 H0 D H [ f0g; i 2 �; j 2 �

The map P W � � � �! H0 is called a sandwich map or a sandwich matrix. Then

P.i; j / ¤ 0 if and only if Hji D ljHri is a group (3)

Moreover P is non-degenerate:

i 2�H)P.i; j /¤ 0 for some j 2� I j 2� H)P.i; j /¤ 0 for some i 2� (4)

Thus if we view P as a � � � -matrix over H0 and the elements of J as � � �
matrices over H0 with exactly one non-zero entry, then the multiplication in J 0 is
given by:

A ı B D APB; A;B 2 J
A special case is when P has no non-zero entries, in which case J is a semigroup
and is called completely simple. By [3], every completely regular semigroup is a
semilattice union of completely simple semigroups.

For the purposes of this paper, we introduce some new notation. The group H
acts on the left on R. Let Xr D R=H denote the orbit space and for a 2 R, let
Œa� D Ha denote the orbit of a. We will call Xr D Xr .J / the right support of J . Let
r W R �! Xr , denote the orbit map given by r.a/ D Œa�. AlsoH acts on the right
on L. Let Xl D L=H denote the orbit space and for b 2 L, let Œb� D bH denote the
orbit of b. We will call Xl D Xl .J / the left support of J . Let l W L �! Xl , denote
the orbit map given by l.b/ D Œb�. We will call X D X.J / D Xl � Xr the support
of J . We call H the core of J . Thus as sets, by (1) and (2),

J=L Š Xr Š �I J=R Š Xl Š � I J=H Š X Š � ��
Thus we have a natural map  W J �! X, whose fibers are the H -classes of J . In
particular  is 1-1 on the idempotent setE.J / and by (3), its image in X is given by:

E.J / Š O D f.Œb�; Œa�/ j ab ¤ 0g

For the multiplicative monoid Mn.k/ of all n � n matrices over an algebraically
closed field k, the Rees theorem is naturally connected with some classical algebraic
geometry. We begin with n D 2. Let J denote the J -class of rank 1 matrices,

e D
�
1 0

0 0

�

. We can think of R and L as being:

R D f.x; y/ j x ¤ 0 or y ¤ 0gI L D
��

x

y

�ˇ
ˇ
ˇ
ˇ x ¤ 0 or y ¤ 0

�
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Accordingly

Xr D fŒx; y� j x ¤ 0 or y ¤ 0g Š P
1I Xl D

��
x

y

�ˇ
ˇ
ˇ
ˇ x ¤ 0 or y ¤ 0

�

Š P
1

In this case the support X Š P
1 � P

1 is a projective variety and  W J �! X is a
morphism, given by:



�
a b

c d

�

D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

��
a

c

�

; Œa; b�

�

if a ¤ 0

��
b

d

�

; Œa; b�

�

if b ¤ 0

��
a

c

�

; Œc; d �

�

if c ¤ 0

��
b

d

�

; Œc; d �

�

if d ¤ 0

Also O is an affine open subset of X given by:

O D
���

x

y

�

; Œz;w�

�

2 X

ˇ
ˇ
ˇ
ˇ xzC yw ¤ 0

�

Moreover, jE.J / W E.J / �! O is an isomorphism of varieties since its inverse e is
given by:

e

��
x

y

�

; Œz;w�

�

D 1

xzC yw

�
xz xw
yz yw

�

Now let us look at the general situation. In Mn.k/, let G D GLn.k/ denote its

unit group, e D
�
Im 0

0 0

�

. Let J.m/;R.m/;L.m/ denote respectively the J ;R

and L -classes of e. Then J.m/ is the variety of of rank m matrices. Also

P D P.e/ D fa 2 G j ae D eaeg; P� D P�.e/ D fa 2 G j ea D eaeg (5)

are opposite parabolic subgroups of G consisting respectively of block upper
triangular and block lower triangular matrices, Now the H -class of e is naturally
isomorphic to H.m/ D GLm.k/. We can think of R.m/ as the variety of m � n
matrices of rankm and L.m/ as the variety of n�mmatrices of rankm. The variety
Xr D R.m/=H.m/ Š G=P� is the Grassmannian variety Gr.m/ D Gr.m; n/ of
m-dimensional subspaces of kn�1. The map r.m/ W R.m/ �! Gr.m/ given by:
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r.m/.A/ D Row space of A (6)

is a surjective morphism of varieties. If B 2 L.m/, then

Gr.m/B D fŒA� jA 2 R.m/; det AB ¤ 0g (7)

is an affine open subset of Gr.m/, isomorphic to

R.m/B D fA 2 km�n jAB D I g (8)

with the isomorphism �1
r .m/ W Gr.m/B �! R.m/B given by:

�1
r .m/.ŒA�/ D .AB/�1A (9)

The space Xl D L.m/=H.m/ Š G=P is the Grassmannian variety Gr�.m/ D
Gr�.m; n/ of m-dimensional subspaces of k1�n. The map l.m/ W L �! Gr�.m/
given by:

l.m/.A/ D Column space of A (10)

is a surjective morphism of varieties. Thus X D Gr�.m/ � Gr.m/ is a projective
variety and .m/ W J.m/ �! X given by:

.m/.A/ D .Rowspace ofA;Column space ofA/ (11)

is a surjective morphism of varieties. The affine open subset O.m/ D
.m/.E.J.m/// of J.m/ is given by:

O.m/ D f.ŒB�; ŒA�/ 2 X j det AB ¤ 0g (12)

Then .m/jE.J.m// W E.J.m// �! O.m/ is an isomorphism of varieties since its
inverse e, that picks the idempotent in the H -class, is given by:

e.ŒB�; ŒA�/ D B.AB/�1A (13)

Let Xr.m/ and Xl.m/ denote respectively the sets of reduced row echelon
matrices in R and the set of reduced column echelon matrices of of L. Then by
the Rees theorem

J.m/ D Xl.m/ �GLm.k/ �Xr.m/ (14)

This is the full rank factorization of matrix theory. Now S.m/ D J.m/ is the regular
semigroup of matrices of rank � m and we have:

S.m/ D Xl.m/ �Mm.k/ �Xr.m/ (15)
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Since Xr.m/Xl.m/ � Mm.k/, we see that S.m/ is a homomorphic image of an
Xl.m/�Xr.m/ Rees matrix semigroup overMm.k/. We will generalize (15) to any
irreducible regular linear algebraic semigroup (Theorem 6 and Remark 3).

3 Linear Algebraic Semigroups

Let k be an algebraically closed field and Mn.k/ the full linear monoid of all
n � n matrices. We will use round parentheses for writing matrices, reserving
square parentheses for the images in the appropriate Grassmannian spaces. A linear
algebraic semigroup is a semigroup S such that the underlying set is an affine variety
and the product map is a morphism of varieties. Equivalently S is isomorphic to
a closed subsemigroup of some Mn.k/. Our interest is when S is irreducible as
an affine variety. Irreducible linear algebraic monoids have been much studied,
cf. [12, 15]. See [7] for an introduction to the classical theory of linear algebraic
groups. We note that irreducible linear algebraic semigroups have not been studied
beyond the initial work of the author [10] on irreducible (regular) linear algebraic
semigroups.

Fix an irreducible linear algebraic semigroup S and e 2 E.S/. Let J;R;L;H
denote respectively the J -class, R-class, L -class and H -class of e. So H is
the unit group of the irreducible algebraic monoid eSe, and is hence a connected
algebraic group. Also eS D fa 2 S j ea D ag and Se D fa 2 S j ae D ag
are closed irreducible subsemigroups of S . However SeS in general is not even a
variety:

Example 1. Let S D A
3 with

.a; b; c/.a0; b0; c0/ D .aa0; ab0; ca0/

Then S is an irreducible algebraic semigroup with zero 0 D .0; 0; 0/. Let e D
.1; 0; 0/. Then

S2 D SeS D f.aa0; ab0; ca0/ j a; b; c 2 kg D J [ f0g; S D SeS;

eS D f.a; 0; c/ j a; c 2 kg; Se D f.a; b; 0/ j a; b 2 kg

Then SeS is not a variety since for the projection onto the x-axis, the inverse image
of 0 has dimension 1.

Theorem 1. R;L; J are respectively open subsets of eS; Se and SeS . In particu-
lar, R;L; J are quasi-affine varieties.

Proof. We may assume that S is a closed subsemigroup of some Mn.k/. Let rk
.e/ D m. Then
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U D fa 2 S j rk a 	 mg

is an open subset of S . If a 2 SeS , then rk a � m. So,

V D fa 2 SeS j rk a D mg D SeS \ U

is an open subset of SeS . Clearly J � V . If e0 2 E.SeS/, then e0 2 SeS by [11,
Corollary 3.30]. Let J 0 denote the J -class of e0 in S . If J 0 < J , then e > e1 for
some e1 2 E.J 0/. So rk e0 D rk e1 < rk e D m. Hence:

E.SeS/ \ V D E.J /

Clearly

V 0 D fa 2 SeS j .ax/2 2 V for some x 2 Sg

is an open subset of SeS . If a 2 J , then aRf for some f 2 E.J /. Thus rkf D m
and ax D f for some x 2 S . So .ax/2 D f 2 V . So a 2 V 0 and J � V 0.

Now let a 2 V 0. Then for some x 2 S , rk .ax/2 D m. So rk ax Drk .ax/2.
Hence axH f for some f 2 E.Mn.k//, rkf D m. Since S is strongly �-regular,
f 2 E.S/ and axH f in S . Hence f 2 E.J /. Now ay D f for some y 2 S .
Since rk a D m D rkf; fa D f . So aRf in S . Hence a 2 J . Thus J D V 0 is
open SeS . So R D eS \ J is open in eS and L D Se \ J is open Se. ut

Let X be an algebraic variety and � an equivalence relation on X . Let Y be an
algebraic variety and � W X �! Y a surjective morphism such that the fibres of
� are the �-classes and for any morphism � W X �! Z of algebraic varieties,
that is constant on on �-classes, there exists a morphism � W Y �! Z such that
� D � ı � . Such a Y , if it exists, is clearly unique and we define X=� to be Y
and say that X=� exists. We note that this is the bare minimum of what one wants
in a quotient. When studying algebraic group actions, cf. [1, Definition 1.18], one
generally wants the orbit space to be a geometric quotient. This means the following.
Suppose an algebraic group H is acting on X and Y is the orbit space X=H . Let
U � Y; V D ��1.U / with V open in X . This should imply that U is open in Y and
that kŒV �H Š kŒU �.

Let S be a closed irreducible subsemigroup of Mn.k/ and let e D
�
Im 0

0 0

�

2
E.S/. Let J;R;L;H denote the respective J ;R;L ;H -classes of e in S . Let r
denote the restriction of the map r.m/ in (6) to R and let Xr D r.R/ � Gr.m/.
Let l denote the restriction of the map l.m/ in (10) to L and let Xl D l.L/ �
Gr�.m/.

Lemma 1. (i) Xr is a quasi-projective variety covered by affine open subsets
U1; � � � ; Ut such that there are closed subsets R1; � � � ; Rt of S contained in
R and isomorphisms �j W Uj �! Rj , with ��1

j D r jRj ; j D 1; � � � ; t .
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(ii) Xl is a quasi-projective variety covered by affine open subsets U 0
1; � � � ;

U 0
s such that there are closed subsets L1; � � � ; Ls of S contained in L and

isomorphisms �0
i W U 0

i �! Li , with �0�1
i D l jLi ; i D 1; � � � ; s.

Proof. Let y 2 L. Analogous to (6) and (7), let

Vy D fŒx� 2 Gr.m/ j rk xy D mg

Then Vy is an open subset of Gr.m/ and hence Uy D Vy \ Xr is open in Xr .
Clearly Uy ¤ ; by (4). By (9), we have a morphism � W Vy �! Mn.k/, given
by: �Œx� D .xy/�1x. Then clearly �.Uy/ � S . Let Œx� 2 Vy \ ��1.S/. Then
x0 D .xy/�1x 2 S; Œx0� D Œx� and x0y D e. So x0Re in S and x0 2 R. So
Œx� D Œx0� 2 Uy , Thus

Uy D Vy \ ��1.S/ is closed in Vy and hence in Xr \ Vy (16)

Now

Ry D fx 2 eS j xy D eg
is closed in S , contained in R. Let �y D �jUy W Uy �! Xy . Then r.�yŒx�/ D
Œ.xy/�1x� D Œx� for Œx� 2 Uy . Also for x 2 Xy , Œx� 2 Uy and �yŒx� D .xy/�1x D
ex D x. Hence ��1

y D r jRy and Uy Š Xy . Since R is irreducible, we see by

[7, Theorem 4.4] that Xr D r.R/ contains a non-empty open subset O of Xr .
Since Uy ¤ ;; Xr \ Vy is also a non-empty open subset of the irreducible variety
Xr . Hence O \ Vy D O \ Xr \ Vy is a non-empty open subset of Xr . Hence
O \ Vy is an open and hence dense subset of the irreducible variety Xr \ Vy . Now
O \ Vy � Xr \ Vy D Uy . Hence by (16),

Uy D Xr \ Vy; y 2 L (17)

If x 2 R, then by (4), xy 2 H for some y 2 L. Hence Œx� 2 Uy . So by (17),

Xr D Xr \
[

y2L
Vy

is a locally closed subset of the projective variety Gr.m/, and is hence a quasi-
projective variety. Now Xr is covered by the open subsets Uy; y 2 L. By the Hilbert
basis theorem, a finite number of them suffice. This completes the proof of .i/. .i i/
follows dually. ut
Theorem 2. (i) The left action of H on R has a geometric quotient R=H , that is
isomorphic to the quasi-projective variety Xr .
(ii) J=L exists and is isomorphic to Xr .

(iii) The right action of H on L has a geometric quotient L=H , that is isomorphic
to the quasi-projective variety Xl .
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(iv) J=R exists and is isomorphic to Xl .
(v) J=H Š X D Xl � Xr exists and is a quasi-projective variety.

(vi) OX D f.Œb�; Œa�/ 2 X j ab 2 H g is an open subset of X and e W OX �! E.J /

given by e.Œb�; Œa�/ D b.ab/�1a, is an isomorphism of varieties.

Proof. We continue with the notation of Lemma 1 and of (6)–(13). Let ; ¤ U � Xr

and let V D �1
r .U /. Suppose V is open in R. So V \ Rj is open in Rj . So by

Lemma 1, U \ Uj D r.V \ Rj / is open in Uj and hence in Xr ; j D 1; � � � ; t .
Hence U is open in Xr . Next let f 2 kŒV �H . Then f factors through a map Qf on
U . We need to show that Qf 2 kŒU �. Now f jV\Rj 2 kŒV \ Rj � Š kŒU \ Uj �
by Lemma 1. Hence Qf jU\Uj 2 kŒU \ Uj �; j D 1; � � � ; t . Thus Qf 2 kŒU � and
kŒV �H Š kŒU � and R==H Š Xr , proving .i/.

Now by (11), r extends to a morphism Qr W J �! Xr with the fibres being the
L -classes of J . Let � W J �! Y be a morphism that is constant on L -classes.
Then clearly � factors through a unique map � W Xr �! Y . We need to show
that � is a morphism. This is clear since by Lemma 1, Xr is covered by open sets
U1; � � � ; Ut and

�Œx� D � ı �i Œx�; if Œx� 2 Uj ; j D 1; � � � ; t

This shows that J=L exists and is isomorphic to Xr . This proves .i i/. .i i i/ and
.iv/ are proved analogously.

We now prove .v/. By (11), we have a surjective morphism  W J �! X D
Xl � Xr , with the fibres being the H -classes of J . By Lemma 1, X is covered by
open sets U 0

i � Uj ; i D 1; � � � ; s; j D 1; � � � ; t . So if � W J �! Z is a morphism
of varieties that is constant on H -classes, then � D � ı  where the morphism
� W X �! Z is given by:

�.Œb�; Œa�/ D �.�0
i Œb� � �j Œa�/ if .Œb�; Œa�/ 2 U 0

i � Uj ; i D 1; � � � ; s; j D 1; � � � ; t

Thus J=H exists and is the quasi-projective variety X. This proves .v/. .vi/ now
follows from (12) and (13). ut

Michel Brion points out that in the language of algebraic group actions, Lemma 1
and Theorem 2 show that R is a principal H -bundle which is locally trivial for the
Zariski topology and with the sets Ry being the sections of this bundle.

There is no natural action of H on J withe orbits being the H -classes. We now
show however that J=H has properties similar to a geometric quotient:

Corollary 1. The surjective morphism  W J �! X D J=H has the following
properties:

(i)  is open.
(ii) If U � X is open and V D �1.U /, then kŒV �H Š kŒU �, where kŒV �H

consisits of f 2 kŒV � that are constant on H -classes.
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Proof. By Lemma 1, there exist y1; � � � ; yt 2 L such that Xr is covered by open
subsets:

Uj D fŒa� 2 Xr j ayj 2 H g; j D 1; � � � ; t

with morphisms �j W Xr �! J given by

�j Œa� D .ayj /�1a 2 Ha; j D 1; � � � ; t

Also there exist x1; � � � ; xs 2 R such that Xl is covered by open subsets:

U 0
i D fŒb� 2 Xr j xib 2 H g; i D 1; � � � ; s

with morphisms �0
i W Xr �! J given by

�0
i Œb� D b.xib/�1 2 bH; i D 1; � � � ; t

.i/ Let V be an open subset of J and let c0 2 V . Then c0 D b0a0 for some
a0 2 R and b0 2 L. Then Œb0� 2 U 0

i and Œa0� 2 Uj for some i; j . Let h0 D
xib0; h D a0yj 2 H . Define � W U 0

i � Uj �! J as:

�.Œb�; Œa�/ D �0
i Œb� � h0h � �j Œa�H ba

Then U.c0/ D ��1.V / is open in U 0
i �Uj and hence in X. Since  ı � is the identity

map on U 0
i � Uj , we see that U.c0/ � .V /. Clearly

�.Œb0�; Œa0�/ D �0
i Œb0� � h0h � �j Œa0� D b0.xib0/�1h0h.a0yj /�1a0 D b0a0 D c0

Hence .c0/ D .Œb0�; Œa0�/ 2 U.c0/. So .V / is open in X

.i i/ Let U be an open subset of X and let V D �1.U /. Let f 2 kŒV � that is
constant on H -classes. This yields a map Qf on U . Define morphisms �ij W U 0

i �
Uj �! J as:

�ij .Œb�; Œa�/ D �0
i Œb� � �j Œa�; i D 1; � � � ; s; j D 1: � � � ; t

Then

Qf jU\.U 0

i �Uj / D f ı �ij 2 kŒU \ .U 0
i � Uj /�; i D 1; � � � ; s; j D 1: � � � ; t

Hence Qf 2 kŒU �. This completes the proof. ut
Since Qr W J �! Xr is given by Qr D � ı  where � is the projection map from

X D Xl � Xr to Xr , we have:
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Corollary 2. The surjective morphism Qr W J �! Xr D J=L has the following
properties:

(i) Qr is open.
(ii) If U � Xr is open and V D �1

r .U /, then kŒV �L Š kŒU �, where kŒV �L

consisits of f 2 kŒV � that are constant on L -classes.

If J is completely simple, then by Theorem 2(vi), X D OX Š E.J /. Hence we
have:

Corollary 3. If J is completely simple, then X.J / is an affine variety.

The converse is an open question:

Problem 1. If X.J / is an affine variety, then is J necessarily completely simple?

Remark 1. Suppose S has an identity element and G is its unit group. If G
is solvable, then by [12, Theorem 6.32], J is completely simple and hence by
Corollary 3, has affine support X. IfG is reductive, then by [11, Section 5], there is a
bijective morphism fromG=P �G=P� to X and hence J has a projective support X.

The following result points out the significant impact that Xr ;Xl or X being
projective have on the respective closures of R;L and J .

Theorem 3. (i) If Xr is projective, then SeS D SeS D SeR and eS D eSe �R.
(ii) If Xl is projective, then SeS D SeS D LeS and Se D L � eSe.

(iii) If X is projective, then SeS D SeS D L � eSe �R.

Proof. It suffices to prove .i/. Let G D GLn.k/ and let P� D P�.e/ be as in (5).
Since Xr is closed in Gr.m/,

X D fx 2 G j Œex� 2 Xrg
is closed in G and P�X � X . Let G=P� denote the projective variety of right
cosets of P� in G. The natural map from Mn.k/ � G to Mn.k/ � G=P� D
..Mn.k/;C/ �G/=.f0g � P�/ is open. Now

Z D f.a; x/ j a 2 S; x 2 X; ax�1e D ax�1g

is closed in Mn.k/ �G. If .a; x/ 2 Z and q 2 P�, then qx 2 X and

a.qx/�1e D ax�1q�1e D ax�1eq�1e D ax�1eq�1 D ax�1q�1 D a.qx/�1

So .a; qx/ 2 Z. It follows that the image of Z in Mn.k/ �G=P�,

QZ D f.a; P�x/ j a 2 S; x 2 X; ax�1e D ax�1g
is closed in Mn.k/ � G=P�. Since G=P� is a projective variety, we see that the
projection of QZ in Mn.k/,
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S1 D fa 2 S j ax�1e D ax�1 for some x 2 Xg
is closed in Mn.k/ and hence in S . Let a 2 S1. Then for some x 2 X , ax�1e D
ax�1. Let b D ax�1. Then bx D a and be D b. Since x 2 X; ex D ur for some
r 2 R and some u in the H -class of e in Mn.k/. Hence a D bur . Let c D bu.
Then a D cr and ce D bue D bu D c. Now rl D e for some l 2 L. So
c D crl D al 2 S . Hence c D ce 2 Se and a D cr 2 SeR. So S1 � SeR.
Conversely let a 2 SeR. Then a D br for some b 2 Se and r 2 R. Now r D ex

for some x 2 X . Then

ax�1 D brx�1 D be D bee D brx�1e D ax�1e

and a 2 S1. Thus SeR D S1 is closed in S . Now J D LR � SeR and J D SeS

by Theorem 1. Hence SeS D SeR. This completes the proof. ut
Example 2. Let S D A

2 with .a; b/.a0:b0/ D .aa0; ab0/; e D .1; 0/; J D R D
f.a; b/ j a ¤ 0g. Then S D eS ¤ eSe �R D R[f0g. Of course, here X D Xr Š A

1

is affine.

Corollary 4. Suppose that J has projective support and let � W S �! S 0 be a
homomorphism of algebraic semigroups. Then QJ D �.J / is a J -class of QS D �.S/
and QJ has projective support.

Proof. Let QJ ; QR; QL; QH denote respectively the J ;R;L ;H -classes of �.e/ in QS
and let QX D X. QJ /. Then �.H/ D QH and � induces a dominant morphism Q� from X

to QX. Since X is complete, QX D Q�.X/ is complete. Hence QR D �.R/ and QL D �.L/.
Hence QJ D QL QR D �.LR/ D �.J /. This completes the proof. ut

If dim H > 1, then there is no way to make the local semigroup J 0 D J [ f0g
into an algebraic semigroup. We now show that if J has projective support, then we
can do the next best thing.

Corollary 5. Suppose that J has projective support and J ¤ H . Then there is an
irreducible completely 0-simple linear algebraic semigroup S 0 D J 0 [ f0g and a
surjective homomorphism � W J D SeS �! S 0 of algebraic semigroups, such that
� is 0 on SeS n J and induces isomorphisms E.J / Š E.J 0/ and X.J / Š X.J 0/.

Proof. Let � denote the mth exterior power homomorphism from Mn.k/ into
M.nm/

.k/. Let J.m/ denote the rank m J -class of Mn.k/. By Theorem 3, SeS
is closed in Mn.k/ and J D SeS \ J.m/. If J D SeS , then by Corollary 3, J has
affine support and hence J D H , a contradiction. So J ¤ SeS . Thus �.eSe/ D
k�.e/, Hence J 0 D �.J / is closed under the action of k�. So to show that S 0 D
�.S/ is closed inM.nm/.k/, it suffices to show that the images of J 0 in Gr.1;

�
n
m

	
/ and

Gr�.1;
�
n
m

	
/ are closed. But these images are the respective isomorphic copies of the

projective varieties Xr .J / and Xl .J /, by the very definition of the Grassmannian
varieties. By Theorem 2(vi), this also establishes an isomorphism between E.J /
and E.J 0/. This completes the proof. ut
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We have seen in Theorem 2(vi) that the support X.J / determines the idempotent
set E.J / of J . We analyze this further.

Theorem 4. (i) S0 D hE.J /i is an irreducible algebraic semigroup.
(ii) J0 D J \hE.J /i is a regular J -class of S0 with R-class R0 D R\hE.J /i,

L -class L0 D L \ hE.J /i and H -class H0 D H \ hE.J /i.
(iii) X.J0/ Š X.J /; R D HR0;L D L0H; J D L0HR0.
Proof. By [12, Theorem 5.9], We see that

f 2 E.J / H) eRe1L e2Rf for some e1; e2 2 E.J / (18)

Since E.J / is irreducible, we have an ascending chain of closed irreducible sets:

E.J / � E.J /2 � E.J /3 � � � �

So for some positive integer i ,

S0 D hE.J /i D E.J /i D E.J /iC1 D � � � (19)

is an irreducible algebraic semigroup. This proves .i/.
By (18), J0 D J \S0;R0 D R\S0; L0 D L\S0;H0 D H\S0 are respectively

the J ;R;L ;H -classes of e in S0. By (19), E.J /i contains a non-empty open
subset V of S0. So eVe D eS0e and eVe contains a non-empty open subset V0 of
eS0e. So U D H0 \V0 is a non-empty open subset ofH0 and U � eE.J /i e. Since
H0 is a connected group, U 2 D H0. So H0 � hE.J /i and H0 D H \ hE.J /i.
Let a 2 R0. Then for some f 2 E.J /; aL f in S0. By (18), eRe1L e2Rf for
some e1; e2 2 E.J /. So e1fH a in S0. Hence a 2 H0e1f � hE.J /i. So R0 D
R \ hE.J /i. Similarly L0 D L \ hE.J /i. Since J0 D L0R0, we see that J0 D
J \ hE.J /i. This proves .i i/.

Let a 2 R. Then aL f for some f 2 E.J / D E.J0/. So for some a0 2
R0; a

0L f in S0. Hence aH a0 in S and a 2 Ha0. So R D HR0. Similarly L D
L0H . Hence J D LR D L0HR0. This proves .i i i/. ut

By [12, Theorem 5.10], S has a maximum regular J -class. If J is that J -
class, then we define the right support Xr .S/, left support Xl .S/ and support
X.S/ to be respectively Xr .J /;Xl .J / and X.J /. Then by Theorem 4, Xr .S/ Š
Xr .hE.J /i/;Xl .S/ Š Xl .hE.J /i/ and X.S/ Š X.hE.J /i/. We also define the
core H of J to be the core of S .

Example 3. Let S be the subsemigroup ofM3.k/ consisting of matrices of rank� 1
and having last column 0. Then

I D
8
<

:

0

@
0 0 0

0 0 0

a b 0

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
a; b 2 k

9
=

;
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is an ideal of S and J D S n I is the only non-zero regular J -class of S . Then

Xr D fŒa; b; 0� j a ¤ 0 or b ¤ 0g Š P
1

is a projective variety. However

Xl D
8
<

:

2

4
a

b

c

3

5

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
a ¤ 0 or b ¤ 0

9
=

;

is neither projective nor affine. Thus S has a projective right support but not a
projective left support.

Our fundamental expectation is:

Conjecture 1. Any irreducible regular linear algebraic semigroup with 0 has pro-
jective support.

Remark 2. (1) The restriction on S having 0 is essential because any irreducible
affine variety can be made into a completely simple semigroup trivially by
defining ab D b for a; b 2 S .

(2) One consequence of Conjecture 1 would be that if S is an irreducible regular
algebraic semigroup with 0, and if � W S �! S 0 is a homomorphism of
linear algebraic semigroups, then QS D �.S/ is also an irreducible regular linear
algebraic semigroup with 0. First of of all QS and �.H/ have zero �.0/. Since
H is reductive, so is �.H/ and hence �.H/ is a regular monoid. By Theorem 3
and Corollary 4, QS has projective support and QS D �.L/�.H/�.R/ is regular.

We now prove Conjecture 1 in the simplest situation.

Theorem 5. Any irreducible completely 0-simple linear algebraic semigroup S has
projective support.

Proof. Since eS D R [ f0g, R is a closed subset of X D km�n � f0g. Now H is a
one dimensional torus and eSe D H [f0g. By [11, Chapter 8], we may assume that
there exist positive integers i1; � � � ; im such thatH D fdiag .˛i1 ; � � � ; ˛im/ j˛ 2 k�g.
Hence the orbit spaceX=H is a weighted projective space, and by [5, chapter 1] is a
projective variety. Since R isH -invariant, R=H is a closed subset of this projective
variety. Hence Xr is a projective variety. Similarly Xl is a projective variety. Hence
X D Xl � Xr is also a projective variety. This completes the proof. ut

4 Renner’s Conjecture

Let S be an irreducible regular linear algebraic semigroup with maximum J -class
J . Fix e 2 E.J / and let H;R;L denote the respective H ;R;L -class of e. Then
eSe is an irreducible regular algebraic monoid with unit groupH . If S has a 0, then
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H is a reductive group. In connection with trying to prove Conjecture 1, Lex Renner
has conjectured that eS D eSe � R. Of course this is true by Theorem 3, if X.S/ is
assumed to be projective. The conjecture says that this is true without this a priori
assumption. Example 2 shows that the conjecture is not true without the assumption
of regularity. We prove the conjecture (Theorem 6) in full generality, whereby it also
applies to when S is completely regular (Theorem 7).

For e1; e2 2 E.S/; J 0 a J -class of S , let

e1 ? J
0 D e1S \ J 0; e1 ? J

0 ? e2 D e1Se2 \ J 0

Thus for instance, R D e ? J .

Lemma 2. Let e0 2 E.S/; e0 < e; J0 the J -class of e0;H0 D e0CH .e0/ the
H -class of e0. Then:

(i) e ? J0 D .He0/.e0 ? J0/.
(ii) dim e ? J0= dim He0C dim e0 ? J0� dim H0.

(iii) If f0 2 E.J0/, then dim eSf0 D dim He0 and dim e0Sf0 D dim H0.
(iv) e0 ? J0 D e0R.

Proof. He0 is the L -class of e0 in the algebraic monoid eSe and e0 ? J0 is the R-
class of e0 in S . Hence .He0/.e0?J0/ � e?J0. Let a 2 e?J0. Then a 2 J0; ea D a.
So e0L bRa; e0RcL a for some b; c 2 J0. Since ea D a; eb D b. So b 2 eSe and
e0L b in eSe. Hence b 2 He0. Clearly c 2 e0 ? J0. By the Rees Theorem for J0,

H -class of a D .H -class of b/.H -class of c/ (20)

Hence a 2 .He0/.e0 ? J0/. This proves .i/. Further we have the product map p W
He0 � e0 ? J0 �! e ? J0. By (20), the inverse image of any H -class in e ? J0 is of
the formH1�H2, whereH1 is an H -class inHe0 andH2 is an H -class in e0 ?J0.
The dimension theorem [7, Theorem 4.1] then yields .i i/.
.i i i/ e ? J0 ? f0 D J0 \ eSf0 is an open dense subset of eSf0. Now e0RaL f0

for some a 2 J0. Now e0 ? J0 ? f0 is the H -class of a and is a dense open subset
of e0Sf0. Hence

dim eSf0 D dim e ? J0 ? f0; dim e0Sf0 D dim e0 ? J0 ? f0 D dim H0

Now ab D e0 for some b 2 J0. Then aba D a. By (2), the map: x ! xa is a
bijective map from the L -class of e0 in S to the L -class of a in S with inverse
map: y ! yb. These bijections restrict to bijective morphisms between He0 and
e ? J0 ? f0. Hence the two varieties have the same dimension.
.iv/ First assume that e covers e0. Then J\eSe covers J0\eSe in the irreducible

algebraic monoid eSe and hence J covers J0 in S . Define � W eS �! e0S as,
�.x/ D e0x. Let a 2 e0 ? J0. Then e0Ra. Now for some f0 2 E.J0/; aL f0. Then
e0 ? J0 ? f0 is the H -class of a and hence
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e0 ? J0 ? f0 D H0a D e0CH.e0/a D CH.e0/e0a D CH.e0/a (21)

Now �.eSf0/ D e0Sf0. Let X be an irreducible component of ��1.e0Sf0/
containing eSf0. Suppose X \ J D ;. Then X � J 0 for some J -class J 0 of
S , J 0 ¤ J . Since a 2 J0 \ X; J0 � J 0 < J . Since J covers J0, J 0 D J0. Hence
X D J0. Now O D fx 2 X j e0x 2 J0g � J0 is an open subset of X and
a 2 O . Let x 2 O . Then e0x 2 J0 and e0Re0xL x. Then e0x D �.x/ 2 e0Sf0. So
x 2 Se0x � Sf0. Hence O � Sf0. Hence X D O � Sf0. Thus X D eSf0 By the
dimension theorem, cf. [7, Theorem 4.1], dim X 	 dim eS� dim e0SC dim e0Sf0.
So

dim eS � dim X C dim e0S � dim e0Sf0

D dim He0 C dim e0 ? J0 � dim H0; by .i i i/

D dim e ? J0; by .i i/

So eS D eJ0, a contradiction. So X \J ¤ ;. Hence X D X \R. So �.X \R/
is dense in e0Sf0. Hence for some z 2 X\R, e0z D �.z/ 2 e0?J0?f0 D CH.e0/a,
by (21). So e0z D ga for some h 2 CH.e0/. So a D e0.h�1z/ and h�1z 2 HR D R.

Now assume that e does not cover e0. Let

e0 < e1 < � � � < et D e
be a maximal chain of idempotents from e0 to e. Let Ji denote the J -class of
ei ; i D 0; � � � ; t . We prove by induction on t , the length of any maximal chain of
idempotents from e to e0. Let a 2 e0 ? J0. Considering the monoid J1, we see by
above that there exists a1 2 e1?J1, such that e0a1 D a. By the induction hypothesis,
there exists at 2 R, such that e1at D a1. Then e0at D e0e1at D e0a1 D a.
So e0R D e0 ? J0, completing the proof. ut
Theorem 6. Let S be an irreducible regular linear algebraic semigroup. Then
eS D eSe �R;Se D L � eSe and S D L � eSe �R.

Proof. Let a 2 eS . Let J0 denote the J -class of a. Then aRe0
0 for some e0

0 2
E.J0/. Since, ea D a; ee0

0 D e0
0. Let e0 D e0

0e 2 E.J0/. Then e0
0Re0 � e. Then

aRe0. So by Lemma 2 (iv), a 2 e0R � eSeR. Hence eS D eSe � R. By duality
Se D L � eSe. Hence S D Se � eS D L � eSe �R. This completes the proof. ut
Remark 3. Note that eSe is an irreducible regular linear algebraic monoid, which
if 0 2 S , is reductive monoid. Further QS D L � M � R is a Rees matrix
semigroup overM with the product sandwich map W R�L �!M . Clearly QS maps
homomorphically onto S . We note that QS is an irreducible algebraic semigroup
in the sense of Brion and Rittatore, cf. [2]. It is in general not a linear algebraic
semigroup since R and L need not be affine. We further note that the construction
of QS fits in well with the program of John Rhodes [16] of finding Rees matrix covers
for semigroups. If J is completely regular, then we can replace L by E.L/ and R
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by E.R/. In general, trimming down L and R will result in reducible sets, such as
in (15).

Theorem 7. Suppose S is completely regular. Let QS D E.L/� eSe �E.R/ be the
Rees matrix semigroup over the completely regular monoid eSe with sandwich map
being the product map from E.R/ � E.L/ to H . Then QS is a completely regular
irreducible linear algebraic semigroup and the product map ' from QS to S is a
surjective homomorphism that is finite to one.

Proof. We only need to show that ' is finite to one. By [10, Theorem 3.7], for all
f 2 E.S/,

ff 0 2 E.S/ jf 0 	 f g is finite (22)

Since S is completely regular, ' preserves J -classes. Fix a 2 S . Then a D e0
1be1

for some e0
1 2 E.L/ and e1 2 E.R/. Then b D eae. Now bH h for some h 2

E.eSe/. Then

he0
1 D .he/e0

1 D he D h D eh D e1.eh/ D e1h

So h0
1 D e0

1h; h1 D he1 2 E.S/. So

ea D be1 D bh1; ae D e0
1b D h0

1b (23)

Let e2 2 E.R/; e0
2 2 E.L/. such that a D e0

2be2. Then by (23), bh1 D be2. So
h1 D he2 and hence h1e2 D h1. Also e2h1 D e2.eh1/ D eh1 D h1. Hence h1 � e2.
Similarly h0

1 � e0
2. So by (22), the number of possible e2 and e0

2 is finite. This
completes the proof. ut
Remark 4. (1) We note that Renner [14] has classified completely regular algebraic

monoids with solvable unit groups.
(2) Let M be an irreducible completely regular linear algebraic monoid with unit

group H . Let X; Y be a irreducible affine varieties and p W X � Y �! H

any morphism. Then Y � M � X is an irreducible completely regular linear
algebraic semigroup, if we define:

.y; a; x/ � .y0; a0; x0/ D .y; ap.x; y0/a0; x0/

QS in Theorem 7 is such an example of a Rees matrix semigroup over a
completely regular monoid.

(3) It is natural to wonder about the homomorphism ' in Theorem 7. Is it always
an isomorphism of algebraic semigroups? If not, is it a finite morphism? Michel
Brion points out that if S is a normal variety, then ' is indeed an isomorphism.

We now determine all closed irreducible regular subsemigroups of S , having the
same support as S .
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Theorem 8. Let R0 D hE.J /i \ R;L0 D hE.J /i \ L;H0 D hE.J /i \H . Then
there is a 1-1 correspondence between the closed irreducible regular subsemigroups
of S containing E.J / and the closed connected subgroups H1 of H containing H0

such that H1 is a regular monoid. The semigroup associated with H1 is SH1 D
L0H1R0.

Proof. Let S0 D hE.J /i. Then by Theorem 4, R0;L0 and H0 are respectively the
R;L and H -classes of e in S0, and J0 D hE.J /i \ J is the J -class of e in
S0. Let H1 be a closed connected subgroup of H containing H0 such that H1 is a
regular monoid. Let S1 D SH1 D L0H1R0. Since R0L0 � e0S0e D H0 � H1, we
see that S1 is a subsemigroup of S . Let

S 0
1 D fa 2 S jR0aL0 � H1g

Then clearly S1 � S 0
1. Let a 2 S 0

1. By Theorems 4 and 6, S D L0eSeR0. So
a D lbr for some l 2 L0; r 2 R0; b 2 eSe. By (4) applied to J0, there exist
r 0 2 R0 and l 0 2 L0 such that h1 D r 0l; h2 D rl 0 2 H0. Since a 2 S 0

1,

bD ebeD h�1
1 h1bh2h

�1
2 D h�1

1 r 0lbrl 0h�1
2 Dh�1

1 r 0al 0h�1
2 2 h�1

1 H1h
�1
2 �H0H1H0DH1

Hence a D lbr 2 L0H1R0 D S1. Thus S1 D S 0
1 is closed. Also clearly S1 D

L0H1R0 is irreducible. Let a 2 S1. Then a D lbr for some l 2 L0; r 2 R0; b 2 H1.
By (4), there exist r 0 2 R0 and l 0 2 L0 such that h1 D r 0l; h2 D rl 0 2 H0.
So aJ h1bh2 in S1. Since h1bh2 2 H1 and H1 is regular, we see that S1 is regular.

Assume conversely that S1 is a closed irreducible regular subsemigroup of S
containing E.J /. Let H1 denote the core of S1. Then H1 is a closed connected
subgroup of H containing H0 and H1 D eS1e is a regular monoid. So by
Theorems 4 and 6, S1 D SH1 . This completes the proof. ut
Example 4. Let

S D
8
<

:

0

@
a b c

0 d 0

0 0 0

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
a; b; c; d 2 k; a ¤ 0

9
=

;
;

which is an irreducible completely regular linear algebraic semigroup with

J D

8

<̂

:̂

0

B
@

a b c

0 d 0

0 0 0

1

C
A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

ad ¤ 0

9
>=

>;
; E.J / D

8

<̂

:̂

0

B
@

1 0 c

0 1 0

0 0 0

1

C
A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

c 2 k

9
>=

>;
;H Š

( 
a b

0 d

!ˇ
ˇ
ˇ
ˇ
ˇ
ad ¤ 0

)

We list below the proper closed irreducible subsemigroups of S , not contained in J
and containing E.J /:
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H1 D
��

1 0

0 d

�ˇ
ˇ
ˇ
ˇ d ¤ 0

�

; SH1 D
8
<

:

0

@
1 0 c

0 d 0

0 0 0

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
c; d 2 k

9
=

;

H2 D
��

a 0

0 d

�ˇ
ˇ
ˇ
ˇ ad ¤ 0

�

; SH2 D
8
<

:

0

@
a 0 c

0 d 0

0 0 0

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
a ¤ 0

9
=

;

H3 D
��

1 b

0 d

�ˇ
ˇ
ˇ
ˇ d ¤ 0

�

; SH3 D
8
<

:

0

@
1 b c

0 d 0

0 0 0

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
b; c; d 2 k

9
=

;
:

We want to classify the closed irreducible regular subsemigroups of Mn.k/.

Theorem 9. Let S; S 0 be closed irreducible regular subsemigroups of Mn.k/,
having the same core and support. Then S D S 0.

Proof. Let J; J 0 be the respective top J -classes of S and S 0. Since J and J 0 have
the same support, we see by Theorem 2(vi), that E.J / D E.J 0/. Let e 2 E.J /.
Then S; S 0 have the same H -class H of e. Let R0;L0 denote the respectively the
R and L -classes of e in hE.J /i. Then by Theorems 4 and 6, S D L0HR0 D S 0.
This completes the proof. ut

Here is the problem going forward. Given a possible support X, we can by (13),
construct E.J / and hence L0;R0 andH0. Now given a potential coreH containing
H0 and with H regular, how do know if S exists? The problem is that S D L0HR0
may or may not be closed in Mn.k/. See for instance, Example 2. We will see that
this problem does not arise when the support X is projective.

5 Projective Support

Let M D Mn.k/;G D GLn.k/;m � n; e D
�
Im 0

0 0

�

;M0 D eMe. We follow

the notation of Sect. 2. Let Xr � Gr.m/ and Xl � Gr�.m/ be closed non-empty
irreducible subsets and let X D Xl � Xr . Let

OX D X \O.m/ D f.Œb�; Œa�/ 2 X j det ab ¤ 0g

and let EX D e.OX/. Then by (13), e W OX �! EX is an isomorphism of varieties.
OX is closed in O.m/ and hence EX is closed in E.J.m//. OX is an open subset of
the irreducible variety X and is hence irreducible. Thus EX is irreducible. We may
assume without loss of generality that e 2 EX. We will assume that X satisfies the
non-degeneracy condition:
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Œa� 2 Xr H) det ab¤ 0 for some Œb�2Xl I Œb�2Xl H) det ab¤ 0 for some Œa�2Xr (24)

By (4), this is a necessary condition for X to be the support of a semigroup. We
will prove that this is also sufficient. Consider the morphisms, (6) and (10), r.m/ W
R.m/ �! Gr.m/; l .m/ W L.m/ �! Gr�.m/ and let:

QR D �1
r .m/.Xr /;

QL D �1
l .m/.Xl /

Then QR; QL are irreducible, H.m/ D GLm.k/ acts on the left on QR and on the right
on QL. Our first task is to show that

QS D QSX D QLM0
QR (25)

is closed in M . Let P D P.e/; P� D P�.e/ be as in (5). Now

X D fx 2 G j ex 2 QRg

is closed in G and P�X � X . Let G=P� denote the projective variety of right
cosets of P� in G. Now

Z D f.a; x/ j a 2 eM; x 2 X; ax�1 2M0g

is closed in M �G. If .a; x/ 2 Z and q 2 P�, then qx 2 X and

a.qx/�1 D ax�1q�1 2M0q
�1 DM0eq

�1 DM0eq
�1e �M0

So .a; qx/ 2 Z. We can view M �G=P� as ..M;C/�G/=.f0g �P�/, and hence
the natural map from M �G to M �G=P� is open. It follows that the image of Z
in M �G=P�,

QZ D f.a; P�x j a 2 eM; x 2 X; ax�1 2M0g

is closed in M � G=P�. Since G=P� is a projective variety, we see that the
projection of QZ in M ,

M1 D fa 2 eM j ax�1 2M0 for some x 2 Xg

is closed in M . Let a 2 M1. Then for some x 2 X; a 2 M0x D M0ex � M0
QR.

Hence M1 �M0
QR. Conversely, let a 2M0

QR. Then a 2M0r for some r 2 QR. Now
r D ex for some x 2 X . Hence ax�1 2 M0rx

�1 D M0e D M0. So a 2 M1. Thus
M1 DM0

QR is closed in M .
Now

Y D fy 2 G jye 2 Lg
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is closed in G and YP � Y . Let G=P denote the projective variety of left cosets P
in G. Now

A D f.a; y/ j a 2M;y 2 Y; y�1a 2M1g

is closed in M �G. Let .a; y/ 2 A and p 2 P , then yp 2 Y and

.yp/�1a D p�1y�1a 2 p�1M0
QR D p�1eM0

QR D ep�1eM0
QR �M0

QR DM1

Hence .a; py/ 2 A. Since the natural map from M � G to M � G=P is open, it
follows that the image of A in M �G=P ,

QA D f.a; yP / j a 2M;y 2 Y; y�1a 2M1g
is closed inM �G=P . Since G=P is a projective variety, we see that the projection
of QA in M ,

S1 D fa 2M jy�1a 2M1 for some y 2 Y g

is closed in M . If a 2 S1, then y�1a 2M1 for some y 2 Y . So

a 2 yM1 D yM0
QR D yeM0R � QLM0

QR D QS

Conversely let a 2 QS . Then for some l 2 QL; a 2 lM0
QR D lM1. Now l D ye for

some y 2 Y . So y�1a 2 eM0
QR DM1. Hence a 2 S1 and QS D S1 is closed M .

Since QR QL � M0, we see that QS is a closed subsemigroup of M . Since QR and QL
are irreducible, QS is irreducible. Let a 2 QS . Then a D lbr for some l 2 QL; r 2
QR; b 2 M0. By the non-degenracy condition (24), there exist r 0 2 QR; l 0 2 QL such

that r 0l; lr 0 2 H.m/. It follows that aJ b in QS . Hence QS is an irreducible regular
linear algebraic semigroup with top J -class QJ D QL QR and E. QJ / D EX. Let

HX D H.m/ \ hEXi; RX D QR \ hEXi; LX D QL \ hEXi (26)

By Theorems 4 and 8, we now have our main result that determines all closed
irreducible regular subsemigroups of Mn.k/ with maximum J -class of rank m.

Theorem 10. There is a 1-1 correspondence between the closed irreducible regular
subsemigroups of subsemigroups ofMn.k/ with support X and the closed connected
subgroups H of GLm.k/ containing HX such that H is a regular monoid. The
semigroup associated with H is SH D LXHRX.

When X is degenerate, QSX is still an irreducible linear algebraic semigroup, but
it just will not be regular, and of course not have X as its support.
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Example 5. In M3.k/, let m D 1 and let:

Xr D fŒx; y; z� jy D 0�g; Xl D
8
<

:

2

4
x

y

z

3

5

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

z D 0
9
=

;

Then X D Xl � Xr is degenerate. Accordingly

QSX D
8
<

:

0

@
a 0 b

c 0 d

0 0 0

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ad D bc

9
=

;

is not regular. The only non-zero regular J -class of QSX is:

QJ D
8
<

:

0

@
a 0 b

c 0 d

0 0 0

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
a ¤ 0; ad D bc

9
=

;

which is completely simple. Hence X.S/ D X.J / is affine and not equal to X.

Example 6. In M3.k/, let m D 1 and let:

Xr D fŒx; y; z� j z2 D xy�g; Xl D
8
<

:

2

4
x

y

z

3

5

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

z D 0
9
=

;

Then X is non-degenerate and

QSX D
8
<

:

0

@
a b c

a0 b0 c0
0 0 0

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
c2 D ab; c02 D a0b0; ab0 D ba0 D cc0; ac0 D ca0; bc0 D cb0

9
=

;

is the only irreducible regular semigroup in M3.k/ with support X.

Example 7. In M3.k/, let m D 1 and let Xr D fŒx; y; z� j z2 D xy�g;Xl D Gr�.1/.
Then again X D Xl � Xr is non-degenerate. So again QSX is the only irreducible
regular linear algebraic semigroup with support X. Note also that dim Xr D 1,
while dim Xl D 2, a phenomenon that does not occur in irreducible regular linear
algebraic monoids.

Example 8. In M3.k/, let m D 2. Let Xr � Gr.2/;Xl � Gr�.2/ consist of the
planes containing the x-axis:
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Xr D
("

x y z
x0 y0 z0

#

2 Gr.2/

ˇ
ˇ
ˇ
ˇ
ˇ
yz0 D y0z

)

; Xl D

8

<̂

:̂

2

6
4

x x0
y y0
z z0

3

7
5 2 Gr�.2/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

yz0 D y0z

9
>=

>;

It is easily verified that X D Xl � Xr is non-degenerate. Accordingly

QSX D

8

<̂

:̂

0

B
@

a b c

a0 b0 c0
a00 b00 c00

1

C
A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

bc0 D b0c; bc00 D b00c; b0c00 D b00c0; a0b00 D b0a00; a0c00 D c0a00

9
>=

>;

is an irreducible regular linear algebraic semigroup of matrices with second and
third rows linearly dependent, and the second and third columns linearly dependent.
In H.2/ D GL2.k/, we compute:

HX D hEXi \H.2/ D
��

1 0

0 ˛

�ˇ
ˇ
ˇ
ˇ ˛ ¤ 0

�

;

RX D
��

1 0 0

0 ˛ ˇ

�ˇ
ˇ
ˇ
ˇ ˛ ¤ 0 or ˇ ¤ 0

�

; LX D
8
<

:

0

@
1 0

0 ˛

0 ˇ

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
˛ ¤ 0 or ˇ ¤ 0

9
=

;
;

and

SX D LXHXRX D
��

1 0

0 A

�ˇ
ˇ
ˇ
ˇ det A D 0

�

There are three closed connected subgroups betweenH.2/ andHX that have regular
closures. The first is:

H1 D
��

˛ 0

0 ˇ

�ˇ
ˇ
ˇ
ˇ ˛ˇ ¤ 0

�

with

S1 D SH1 D
��

˛ 0

0 A

�ˇ
ˇ
ˇ
ˇ˛ 2 k; det A D 0

�

The second is:

H2 D
��

1 ˛

0 ˇ

�ˇ
ˇ
ˇ
ˇ ˇ ¤ 0

�
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with

S2 D SH2 D LXH2RX D
8
<

:

0

@
1 a a0
0 b b0
0 c c0

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ab0 D ba0; ac0 D ca0; bc0 D cb0

9
=

;

The third is:

H3 D
��

1 0

˛ ˇ

�ˇ
ˇ
ˇ
ˇ ˇ ¤ 0

�

with

S3 D SH3 D LXH3RX D
8
<

:

0

@
1 0 0

a b c

a0 b0 c0

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ab0 D ba0; ac0 D ca0; bc0 D cb0

9
=

;

We note that S2 has only two J -classes with the bottom J -class being:

8
<

:

0

@
1 a b

0 0 0

0 0 0

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
a; b 2 k

9
=

;

which is completely simple and has affine support. Similarly S3 has only two J -
classes with the bottom J -class being:

8
<

:

0

@
1 0 0

a 0 0

b 0 0

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
a; b 2 k

9
=

;

which is also completely simple and has affine support.

We close with an open problem:

Problem 2. Is HX always regular? Is HX always equal to hE. QR/E. QL/ \H.m/i?
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Representations of Reductive Normal
Algebraic Monoids

Stephen Doty

Dedicated to Lex Renner and Mohan Putcha

Abstract The rational representation theory of a reductive normal algebraic
monoid (with one-dimensional center) forms a highest weight category, in the sense
of Cline, Parshall, and Scott. This is a fundamental fact about the representation
theory of reductive normal algebraic monoids. We survey how this result was
obtained, and treat some natural examples coming from classical groups.

Keywords Algebraic monoids • Normal • Representation theory

Subject Classifications: 20M32, 20G05, 16T10

1 Introduction

Let M be an affine algebraic monoid over an algebraically closed field K. See
[9, 11, 12] for general surveys and background on algebraic monoids. Assuming that
M is reductive (its groupG of units is a reductive group) what can be said about the
representation theory of M over K?

Recall that any affine algebraic group is smooth and hence normal (as a variety).
The normality of the algebraic group plays a significant role in its represen-
tation theory, for instance in the proof of Chevalley’s theorem classifying the
irreducible representations. Thus it seems reasonable in trying to extend (rational)
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representation theory from reductive groups to reductive monoids to look first at
the case when the monoid M is normal. Furthermore, even in cases where a given
reductive algebraic monoid is not normal, one may always pass to its normalization,
which should be closely related to the original object.

Renner [10] has obtained a classification theorem for reductive normal algebraic
monoids under the additional assumptions that the center Z.M/ is 1-dimensional
and thatM has a zero element. Renner’s classification theorem depends on an alge-
braic monoid version of Chevalley’s big cell, which holds for any reductive affine
algebraic monoid (with no assumptions about its center or a zero). As a corollary of
its construction, Renner derives a very useful extension principle [10, (4.5)] which
is a key ingredient in the analysis.

2 Reductive Normal Algebraic Monoids

Let M be a linear algebraic monoid over an algebraically closed field K. In other
words, M is a monoid (with unit element 1 2 M ) which is also an affine algebraic
variety over K, such that the multiplication map � W M �M ! M is a morphism
of varieties. We assume that M is irreducible as a variety. Hence the unit group
G DM� (the subgroup of invertible elements ofM ) is a connected linear algebraic
group over K and G is Zariski dense in M .

Associated with M is its affine coordinate algebra KŒM�, the ring of regular
functions on M . There exist K-algebra homomorphisms

� W KŒM�! KŒM�˝K KŒM�; " W KŒM�! K

called comultiplication and counit, respectively. For a given f 2 KŒM�, we
have ".f / D f .1/; furthermore, if �.f / D Pr

iD1 fi ˝ f 0
i then f .m1m2/ DPr

iD1 fi .m1/f
0
i .m2/, for all m1;m2 2 M . The maps �; " make KŒM� into a

bialgebra over K. This means that they satisfy the bialgebra axioms:

1. .id ˝�/ ı� D .�˝ id/ ı�,
2. ."˝ id/ ı� D id D .id ˝ "/ ı�
where ' ˝ '0 denotes the map a˝ a0 7! '.a/'0.a0/.

We note that the commutative bialgebra .KŒM�;�; "/ determines M , as the
set HomK�alg.KŒM�;K/ of K-algebra homomorphisms from KŒM� into K. The
multiplication on this set is defined by ' � '0 D .' ˝ '0/ ı � and the identity
element is just the counit ". One easily verifies that this reconstructs M from its
coordinate bialgebra KŒM�.

More generally, given any commutative bialgebra .A;�; "/ over K, one defines
on the set M.A/ D HomK�alg.A;K/ an algebraic monoid structure with multipli-
cation �.'; '0/ D ' � '0 D .' ˝ '0/ ı�. This gives a functor

fcommutative bialgebras over Kg ! falgebraic monoids over Kg
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which is quasi-inverse to the functor M 7! KŒM�. Thus the two categories are
antiequivalent.

Since G is dense in M , the restriction map KŒM�! KŒG� (given by f 7! fjG)
is injective, so we may identifyKŒM�with a subbialgebra of the Hopf algebraKŒG�
of regular functions on G.

Assume that M is reductive; i.e., its unit group G D M� is reductive as an
algebraic group. Fix a maximal torus T in G. (Up to conjugation T is unique.)
Let X.T / D Hom.T;K�/ be the character group of T ; this is the abelian group
of morphisms from T into the multiplicative group K� of K. Let X_.T / D
Hom.K�; T / be the abelian group of cocharacters into T . Let R � X.T / be the
root system for the pair .G; T / and R_ � X_.T / the system of coroots. According
to the classification of reductive algebraic groups, the reductive groupG is uniquely
determined up to isomorphism by its root datum .X.T /;R;X_.T /; R_/.

We now add the assumption that M is normal as a variety. Let D D T be the
Zariski closure of T in M . Then T � D is an affine torus embedding. Let X.D/ D
Hom.D;K/ be the monoid of algebraic monoid homomorphisms from D into K.
The restriction �jT of any � 2 X.D/ is an element of X.T /, so restriction defines
a homomorphism X.D/ ! X.T /. Since T is dense in D, this map is injective,
and thus we may identify X.D/ with a submonoid of X.T /. Renner has shown that
the additional datum X.D/ is all that is needed to determine M up to isomorphism,
under the additional hypotheses (probably unnecessary) that the center

Z.M/ D fz 2M W zm D mz; for all m 2M g

is 1-dimensional and that M has a zero element. (One can always add a zero
formally, so the last requirement is insubstantial.)

It turns out that the set X.D/ also determines the rational representation theory
of the reductive normal algebraic monoid M , in a sense made precise in Sect. 3.

Note that it is easy to construct reductive algebraic monoids. Start with a rational
representation � W G ! EndK.V / of a reductive group G in some vector space
V with dimK V D n < 1. The image �.G/ is a reductive affine algebraic
subgroup of EndK.V / ' Mn.K/, the monoid of all n � n matrices under ordinary
matrix multiplication. Desiring our monoid to have a center of at least dimension 1,
we include the scalars K� as scalar matrices, defining G0 to be the subgroup of
EndK.V / generated by �.G/ and K�. Now we set M D G0, the Zariski closure of
G0 in EndK.V / 'Mn.K/. This is a reductive algebraic monoid.

For example, if G D SLn.K/ and V is its natural representation then G0 '
GLn.K/ and M D Mn.K/. (In general, to obtain a monoid M closely related to
the starting group G, one should pick V to be a faithful representation.) There is no
guarantee that this procedure will always produce a normal reductive monoid, but if
not then one can always pass to its normalization.
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3 Examples: Symplectic and Orthogonal Monoids

The paper [4] considered some more substantial examples of reductive algebraic
monoids coming from other classical groups. Let V D Kn with its standard basis
fe1; : : : ; eng. Put i 0 D nC 1 � i for any i D 1; : : : ; n.

3.1 The Orthogonal Monoid

Assume the characteristic of K is not 2. Define a symmetric nondegenerate bilinear
form h ; i on V by putting

hei ; ej i D ıi;j 0 for any 1 � i; j � n: (a)

Here ı is Kronecker’s delta function. Let J be the matrix of h ; i with respect to the
basis fe1; : : : ; eng. Then the orthogonal group O.V / is the group of linear operators
f 2 EndK.V / preserving the form:

O.V / D ff 2 EndK.V / W hf .v/; f .v0/i D hv; v0i; all v; v0 2 V g: (b)

LetA be the matrix of f with respect to the basis fe1; : : : ; eng. Then we may identify
O.V / with the matrix group

On.K/ D fA 2 Mn.K/ W ATJA D J g: (c)

This is contained in the larger group GOn.K/, the group of orthogonal similitudes
(see e.g., [8]) defined by

GOn.K/ D fA 2 Mn.K/ W ATJA D cJ; some c 2 K�g: (d)

Note that GOn.K/ is generated by On.K/ and K�. We define the orthogonal
monoid OMn.K/ to be

OMn.K/ D GOn.K/; (e)

the Zariski closure in Mn.K/. These monoids (for n odd) were studied by
Grigor’ev [7]. In [4] the following result was proved.

Proposition 1. The orthogonal monoid OMn.K/ is the set of all A 2 Mn.K/ such
that ATJA D cJ D AJAT; for some c 2 K.

Note that the scalar c 2 K in the above is allowed to be zero, and the “extra”
condition cJ D AJAT is necessary. If c ¤ 0 then it is easy to see that ATJA D cJ
is equivalent to cJ D AJAT, but when c D 0 this equivalence fails. The equivalence
means that we could just as well have defined GOn.K/ by
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GOn.K/ D fA 2 Mn.K/ W ATJA D cJ D AJAT; some c 2 K�g

which is perhaps more suggestive for the description of OMn.K/ given above.

3.2 The Symplectic Monoid

Assume that n D dimK V is even, say n D 2m. Define an antisymmetric
nondegenerate bilinear form h ; i on V by putting

hei ; ej i D "i ıi;j 0 for any 1 � i; j � n: (a)

where "i is 1 if i � m and �1 otherwise. Let J be the matrix of h ; i with respect
to the basis fe1; : : : ; eng. Then the symplectic group Sp.V / is the group of linear
operators f 2 EndK.V / preserving the bilinear form:

Sp.V / D ff 2 EndK.V / W hf .v/; f .v0/i D hv; v0i; all v; v0 2 V g: (b)

LetA be the matrix of f with respect to the basis fe1; : : : ; eng. Then we may identify
Sp.V / with the matrix group

Spn.K/ D fA 2 Mn.K/ W ATJA D J g: (c)

This is contained in the larger group GSpn.K/, the group of symplectic similitudes,
defined by

GSpn.K/ D fA 2 Mn.K/ W ATJA D cJ; some c 2 K�g: (d)

Note that GSpn.K/ is generated by Spn.K/ and K�. As in the orthogonal case, we
could just as well have defined GSpn.K/ by

GSpn.K/ D fA 2 Mn.K/ W ATJA D cJ D AJAT; some c 2 K�g

thanks to the equivalence of the conditions ATJA D cJ and cJ D AJAT in case
c ¤ 0. We define the symplectic monoid SpMn.K/ to be

SpMn.K/ D GSpn.K/; (e)

the Zariski closure in Mn.K/. In [4] the following was proved.

Proposition 2. The symplectic monoid SpMn.K/ is the set of all A 2 Mn.K/ such
that ATJA D cJ D AJAT; for some c 2 K.

Note that the scalar c 2 K in the above is allowed to be zero, and the condition
cJ D AJAT is necessary, just as it was in the orthogonal case.
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3.3 Sketch of Proof

I want to briefly sketch the ideas involved in the proof of Propositions 1 and 2.
Full details are available in [4]. The method of proof works for any infinite field
K (except that characteristic 2 is excluded in the orthogonal case). We continue to
assume that n D 2m is even in the symplectic case.

LetG D GOn.K/ or GSpn.K/ and letM D OMn.K/ or SpMn.K/, respectively.
Let T be the maximal torus of diagonal elements of G. Then we have inclusions

T � G �M (a)

and we desire to prove that the latter inclusion is actually an equality. To accomplish
this, we consider the action of G �G on M given by .g; h/ �m D gmh�1. Suppose
that we can show that every G �G orbit is of the form GaG, for some a 2 T . Then
it follows that

M D
[

a2T
GaG � G (b)

and this gives the opposite inclusion that proves Propositions 1 and 2. In fact, as it
turned out, the distinct a 2 T in the above decomposition can be taken to be certain
idempotents in T .

This suggests the program that was carried out in [4], which in the end leads to
additional structural information on M :

(i) Classify all idempotents in T .
(ii) Obtain an explicit description of T .

(iii) Determine the G �G orbits in M .

Part (i) is easy. For part (ii) one exploits the action of T on T by left multiplication
and determines the orbits of that action. Part (iii) involves developing orthogonal
and symplectic versions of classical Gaussian elimination.

3.4 The Normality Question

It is clear from the equalities in Propositions 1 and 2 that OMn.K/ and SpMn.K/

both have one-dimensional centers and contain zero. What is not clear, and not
addressed in [4], is whether or not they are normal as algebraic varieties.

This question was recently settled in [5], where it is shown that SpMn.K/ is
always normal, while OMn.K/ is normal only in case n is even. More precisely, it
is shown in [5] that when n D 2m is even, OMC

n .K/ and OM�
n .K/ are both normal

varieties. Here

OMn.K/ D OMC
n .K/ [ OM�

n .K/ (a)

is the decomposition into irreducible components, where OMC
n .K/ is the compo-

nent containing the unit element 1.



Representations of Reductive Normal Algebraic Monoids 93

4 Representation Theory

From now on we assume that M is an arbitrary reductive normal algebraic monoid,
with unit group G DM�. We wish to describe some results of [4]. The main result
is that the category of rational M -modules is a highest weight category in the sense
of Cline et al. [1].

We work with a fixed maximal torus T � G, and set D D T . We assume
that dimZ.M/ D 1 and 0 2 M . Recall that restriction induces an injection
X.D/ ! X.T /, so we may identify X.D/ with a submonoid of X.T /. We fix
a Borel subgroup B with T � B � G and let the set R� of negative roots be
defined by the pair .B; T /. We set RC D �.R�/, the set of positive roots. We have
R D RC [R�. Let

X.T /C D f 2 X.T / W .˛_; / 	 0; for all ˛ 2 RCg
be the usual set of dominant weights. We define

X.D/C D X.T /C \X.D/:

By a (left) rational M -module we mean a linear action M � V ! V such that
the coefficient functions M ! K of the action are all in KŒM�. This is the same
as having a (right) KŒM�-comodule structure on V . This means that we have a
comodule structure map

�V W V ! V ˝K KŒM�: (a)

Since KŒM� � KŒG� the map �V induces a corresponding map V ! V ˝K
KŒG� making V into a KŒG�-comodule; i.e., a rational G-module. Thus, rational
M -modules may also be regarded as rational G-modules. Any rational M -module
is semisimple when regarded as a rational D-module, with corresponding weight
space decomposition

V D
M

2X.D/
V (b)

where V D fv 2 V W d � v D .d/ v; all d 2 Dg.
Recall that any rational G-module V is semisimple when regarded as a rational

T -module, with corresponding weight space decomposition

V D
M

2X.T /
V (c)

where V D fv 2 V W t � v D .t/ v; all t 2 T g. If V is a rational M -module
then the weight spaces relative to T are the same as the weight spaces relative toD.
So the weights of a rationalM -module all belong toX.D/. Conversely, we have the
following.
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Lemma 1. If V is a rational G-module such that

f 2 X.T / W V ¤ 0g � X.D/

then V extends uniquely to a rational M -module.

This is proved as an application of Renner’s extension principle, which is a
version of Chevalley’s big cell construction for algebraic monoids.

Remark 1. A special case of the lemma (for the case M D Mn.K/) can be found
in [6].

Next one needs a notion of induction for algebraic monoids, i.e., a left adjoint
to restriction. The usual definition of induced module for algebraic groups does not
work for algebraic monoids. Instead, we use the following definition. Let V be a
rational L-module where L is an algebraic submonoid of M . We define indML V by

indML V D ff 2 Hom.M; V / W f .lm/ D l � f .m/; all l 2 L;m 2M g:

This is viewed as a rational M -module via right translation. One can check that in
caseL;M are algebraic groups then this is isomorphic to the usual induced module.

It is well known that the Borel subgroup B has the decomposition B D T U ,
where U is its unipotent radical. Given a character  2 X.T / one regards K as a
rational T -module via ; this is often denoted by K. One extends K to a rational
B-module by letting U act trivially. Similarly, we have the decomposition B D
DU . If  2 X.D/ then we have K as above, and again we may regard this as a
rational B-module by letting U act trivially.

Now we can formulate the classification of simple rational M -modules.

Theorem 1. Let M be a reductive normal algebraic monoid. Let  2 X.D/ and
let K be the rational B-module as above. Then

(a) indM
B
K ¤ 0 if and only if  2 X.D/C.

(b) If indM
B
K ¤ 0 then its socle is a simple rationalM -module (denoted byL./).

(c) The set of L./ with  2 X.D/C gives a complete set of isomorphism classes
of simple rational M -modules.

Let  2 X.T /. Let r./ D indGBK. It is well known that r./ ¤ 0 if and only
if  2 X.T /C. The following is a key fact.

Lemma 2. If  2 X.D/C then indM
B
K D r./ D indGBK.

Now we consider truncation. Let � � X.T /C. Given a rational G-module V ,
let O�V be the unique largest rational submodule of V with the property that the
highest weights of all its composition factors belong to � . The (left exact) truncation
functor O� was defined by Donkin [2].

Recall that X.T / is partially ordered by  � � if � �  can be written as a
sum of positive roots; this is sometimes called the dominance order. A subset � of
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X.T /C is said to be saturated if it is predecessor closed under the dominance order
on X.T /. In other words, � is saturated if for any � 2 � and any  2 X.T /C,
 � � implies that  2 � .

In order to show that the category of rational M -modules is a highest weight
category, we are going to take � D X.D/C. We need the following observation.

Lemma 3. The set � D X.D/C is a saturated subset of X.T /C.

For  2 X.T /C, let I./ be the injective envelope of L./ in the category of
rational G-modules. For  2 X.D/C let Q./ be the injective envelope of L./ in
the category of rational M -modules. The following records the effect of truncation
on various classes of rational G-modules.

Theorem 2. Let � D X.D/C. For any  2 X.T /C we have the following:

(a) O�r./ D
(
r./ if  2 �
0 otherwise.

(b) O�I./ D
(
Q./ if  2 �
0 otherwise.

(c) O�KŒG� D KŒM�.

Note that KŒM� is regarded as a rational M -module via right translation. A r-
filtration for a rational G-module V is an ascending series

0 D V0 � V1 � � � � � Vr�1 � Vr D V

of rational submodules such that for each j D 1; : : : ; r , the quotient Vj =Vj�1 is
isomorphic to some r.j /. Whenever V is a rational G-module with a r-filtration,
let .V W r.// be the number of j for which  D j . This number is independent
of the filtration.

The proof of the above theorem, which relies on results of [3], also shows the
following facts.

Corollary 1. (a) Let  2 � D X.D/C. The module Q./ has a r-filtration.
Furthermore, it satisfies the reciprocity property

.Q./ W r.�// D Œr.�/ W L./�

for any � 2 X.D/C, where ŒV W L� stands for the multiplicity of a simple
module L in a composition series of V .

(b) The module KŒM� has a r-filtration. Moreover, .KŒM� W r.// D dimK r./
for each  2 X.D/C.

From these results one obtains the important fact that the category of rational
M -modules is a highest weight category, in the sense of [1]. In particular, one also
sees that dimK Q./ is finite, for any  2 X.D/C. (In contrast, it is well known that
dimK I./ is infinite.)
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It is also shown in [4], exploiting the assumption that Z.M/ is one-dimensional,
that the category of rational M -modules splits into a direct sum of ‘homogeneous’
subcategories each of which is controlled by a finite saturated subset of X.D/C.
From the results of [1] it then follows that there is a finite dimensional quasihered-
itary algebra in each homogeneous degree, whose module category is precisely the
homogeneous subcategory in that degree. Details are given in [4], where it is also
shown that the quasihereditary algebras in question are in fact generalized Schur
algebras in the sense of Donkin [2].
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1 An Introductory Example

1.1 Preliminary Notation

Let o be a complete discrete valuation ring, F its quotient field and NF an algebraic
closure of F . The discrete valuation val W F ! Z [ f1g can be uniquely extended
to a valuation map from NF to Q[ f1g, which we will still denote by val. Let $ be
a uniformizer in o.

1.2 The Newton Point Attached to T

Let V be a finite dimensional vector space over F of dimension n 2 N, and
T W V ! V an invertible linear transformation. Then we can attach elements
�1; �2; : : : ; �n 2 Q to T as follows. Recall that the roots of the characteristic
polynomial f .x/ D det.xI � T / of T (lying in NF ) are known as the generalized
eigenvalues of T . Let 1; : : : ; n 2 NF � be the generalized eigenvalues of T , and
set �i D val.i / for i D 1; : : : ; n. We may and do rearrange the i ’s to ensure
�1 � � � � � �n.

Definition 1. The n-tuple �.T / WD .�1; : : : ; �n/ 2 Q
n is known as the Newton point

attached to T W V ! V . The elements �1; �2; : : : ; �n are called the slopes of T .

1.3 The Hodge Point Attached to .T; �/

Now let � be a lattice (i.e., a free o-module of maximal rank) in V . Then one can
associate a point .�1; : : : ; �n/ 2 Z

n � Q
n to the pair .T;�/, with �1 � �2 � � � � �

�n, as follows. T� and� are both lattices in V , so one can choose a basis e1; : : : ; en
for� and �1; �2; : : : ; �n 2 Z with �1 � � � � � �n such that$�1e1; : : : ;$

�nen is a
basis for T�. Thus, .�1; : : : ; �n/, which we will also denote by inv.T�;�/ (it does
not depend on the choice of e1; : : : ; en), measures the relative position between �
and T�.

Definition 2. �.T;�/ WD .�1; : : : ; �n/ is known as the Hodge point attached to
the pair .T;�/.

1.4 A Theorem Relating the Newton Point and the Hodge Point

Definition 3. For �; � 2 Q
n, we say that � 	 � if :

�1 C � � � C �i � �1 C � � � C �i for i D 1; : : : ; n � 1; (1)
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and

�1 C � � � C �n D �1 C � � � C �n: (2)

In the following theorem, (a) is a special case of Corollary 3:6 in [2], while (b) is a
special case of Theorem 3.5 (2) of loc. cit. Alternatively, one may view the theorem
as a special case of Theorem 4.2 of [2].

Theorem 1. Let V be an n-dimensional F -vector space, let T W V ! V be an
invertible linear transformation, and let � be a lattice in V . Then :

(a) The Newton point associated to T and the Hodge point associated to .T;�/ are
related by :

�.T / � �.T;�/:

(b) Suppose V D U ˚W , with T .U / D U and T .W / D W . Assume in addition
that every slope (cf. Definition 1) of T on U is strictly less than every slope of
T on W . Further, suppose �1 C � � � C �r D �1 C � � � C �r , where r D dimU .
Then � decomposes as

� D .� \ U/˚ .� \W /:

In the above theorem, part (a) is a linear analog of Mazur’s inequality, and part (b)
a linear analog of Katz’ Hodge-Newton decomposition.

Two generalizations of the above results were given by R. Kottwitz and E.
Viehmann in [2], as will be explained in the next section. In [7] a monoid theoretic
generalization was sought for, and this write up reports on the results obtained
therein.

In Sect. 2 we describe the two generalizations of Kottwitz and Viehmann alluded
to above. We briefly comment on the proofs of one of these generalizations in
Sect. 3. In Sect. 4 we review some basic results on reductive monoids defined
over F , whose underlying unit group is split over F . Section 5 is devoted to
explaining how a crucial ingredient, known as the Newton homomorphism, is
generalized to algebraic monoids. The main results of [7] (under a simplifying
hypothesis) are stated and briefly commented on in Sect. 6.

This is an expanded version of the talk the author gave on this material at the
Fields Institute workshop on Algebraic Monoids, Group Embeddings and Algebraic
Combinatorics, held in honor of the sixtieth birthdays of Professors Putcha and
Renner.

I am very thankful to the organizers of the workshop, Professors M. Can, Z. Li,
B. Steinberg and Q. Wang, for having given me an opportunity to speak and also for
putting the conference and these proceedings together. The work of [7] which I am
reporting on was suggested by Professor Kottwitz, to whom I am extremely grateful
for his guidance and encouragement. Finally, the work was only possible because I
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could stand on the shoulders of Professors Putcha and Renner, and appeal to their
elegant machinery.

2 Two Generalizations of Theorem 1

2.1 Possible Directions to Generalize

Theorem 1 is a statement about elements T 2 GL.V /.F /, and [2] features two
generalizations of this theorem. One, namely Theorem 3.5 and Corollary 3.6 of [2],
generalizes Theorem 1 to a statement about elements � 2 G.F /, where G is a split
reductive group over F . Another, namely Theorem 4.2 of [2], generalizes it to a
statement about endomorphisms T 2 End.V / of the vector space V that are not
necessarily invertible.

2.2 The Generalization from GL.V / to End.V /

Let us state the latter generalization first. The notions of Newton point and Hodge
point generalize in an obvious fashion to endomorphisms T W V ! V . Before
stating these definitions, note that the linear order on Q naturally extends to one on
Q [ f1g, where1 is declared to be greater than every rational number.

Definition 4. For an endomorphism T W V ! V of an n-dimensional vector space
over F , the Newton point �.T / of T is defined to be .�1; : : : ; �n/ 2 .Q [ f1g/n,
where the �i ’s are the valuations of the generalized eigenvalues of T , arranged so
that �1 � � � � � �n.

Thus, the only difference here is that some of the generalized eigenvalues can be 0,
and consequently some of the �i ’s can be1.

Given a lattice � � V , T� is no longer necessarily a lattice in V but only a
finitely generated o-submodule of V . We can still define the Hodge point associated
to .T;�/ as follows.

Definition 5. Choose e1; : : : ; en 2 � that form a basis for �, such that for some
r � n and �1; : : : ; �r 2 Z with �1 � � � � � �r , $�1e1; : : : ;$

�r er form a basis for
T�. Set �i D1 for r C 1 � i � n. Then .�1; : : : ; �n/, which we will also denote
by inv.T�;�/ is defined to be the Hodge point associated to .T;�/.

Theorem 4.2 of [2] tells us that:

Theorem 2. With the conventions above, in the statement of Theorem 1, one can
take T to be any linear transformation, and not just an invertible one.
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2.3 Notations Pertaining to Our Split Reductive Group G

We next state the generalization of Theorem 1 to split reductive groups. Let G be a
connected reductive group defined and split over F . Then we may and do choose a
Chevalley basis and assume that G is defined and split over o. Let A be an o-split
maximal torus of G, and W D W.G;A/ the Weyl group of A in G. We also fix a
Borel subgroup B of G containing A, and write U for its unipotent radical. We write
B� for the Borel subgroup of G opposite to B and containing A. We will usually
write G D G.F /; A D A.F / etc.

Set K WD G.o/, which then becomes a hyperspecial maximal compact subgroup
of G. For any algebraic group H we will writeX�.H/ for algebraic homomorphisms
from the multiplicative group Gm into H, andX�.H/ for algebraic homomorphisms
from H into Gm.

Notation. Whenever P is a parabolic subgroup of G, Ru.P/ will denote the
unipotent radical of P.

2.4 Reinterpreting the Newton Point for GL.V /

We will follow [2] in describing the generalizations of Newton point and Hodge
point to general reductive groups. So how do we attach a Newton point to an element
� 2 G D G.F / (generalizing the situation of T 2 GL.V /)? It turns out to be
easier to first generalize a finer invariant of .T; V / than �.T /, namely the slope
decomposition:

V D
M

a2Q
Va (3)

of V induced by T . Here Va is the subspace of V consisting of all the generalized
eigenspaces of T corresponding to generalized eigenvalues with valuation a.
In other words, T induces a Q-grading of V , and �.T / D .�1; : : : ; �n/ is merely
the coarser invariant listing in non-decreasing order the various a such that Va ¤ 0,
and with multiplicity equal to dimVa. Just as giving a Z-grading of a vector space
is equivalent to giving a homomorphism from the multiplicative group Gm D
SpecF ŒZ� to GL.V /, giving a Q-grading, such as the slope decomposition, is
equivalent to giving a homomorphism from D WD SpecF ŒQ� to GL.V /. D is not
an algebraic group but a pro-algebraic group. Recall that Q is the direct limit of
‘N’-many copies of Z with ‘multiplication by n’ maps between appropriate copies,
and similarly (in fact consequently) D D SpecF ŒQ� is the projective limit of
‘N’-many copies of Gm, with ‘n-th power’ maps between the appropriate copies.
The slope decomposition (3) thus corresponds to an element �T in:

Hom.D;GL.V // D Hom.Gm;GL.V //˝Z Q:
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The Newton point, on the other hand, corresponds to the conjugacy class of this
homomorphism, as the invariant .�1; : : : ; �n/ picks out precisely the conjugacy class
of the slope decomposition. Indeed, one can conjugate a homomorphism as above
to take values in a split maximal torus AV of GL.V / and, denoting the Weyl group
of AV in GL.V / by, say WV Š Sn, get a well defined element in X�.AV /˝Q=Sn
which may then be identified with .Zn ˝ Q/=Sn D Q

n=Sn. If V D F n so that
GL.V / D GLn, and AV is taken to be the standard maximal torus, then our
requirement �1 � � � � � �n corresponds to picking out an element of thisWV -orbit in
X�.AV /˝Q that is dominant with respect to the Borel subgroup of lower triangular
matrices.

Thus, what we are seeking to do is to attach to every � 2 G a homomorphism
�� W D ! G, which generalizes the homomorphism �T above in an appropriate
sense. The Newton point of � will then be theW -orbit in Hom.D;A/ D X�.A/˝Q

obtained by conjugating �� so as to have image in A, or a B-dominant representative
for the same.

2.5 Review of Some Very Basic Tannakian Formalism

Attaching �� is done via the Tannakian formalism, which in some sense reduces
the question to the case of a general linear group. Note that any homomorphism
� W D! G induces a functor �� W Rep0 G ! Rep0 D from the category of finite
dimensional representations of G to that for D. This functor has two obvious
properties:

(a) It respects the tensor product structures on Rep0D and Rep0 G; and
(b) It is strictly compatible with the fiber functors on the categories Rep G and

RepD, i.e., takes a representation of D of the form .�; V /, where � W D !
GL.V /, to one of the form .�0; V /, with the same V .

The Tannakian theory says that the converse is true, or more precisely, that any
functor from Rep0 G to Rep0 D that satisfies properties (a) and (b) above is �� for a
unique homomorphism � W D! G.

2.6 Generalizing the Newton Point to G

However, the observations in the case of GL.V / above tell us just how to construct
such a functor Rep0 G ! Rep0D from a given � 2 G.F /. Indeed, given any
representation .�; V / of G, � gives rise to an element �.�/ of GL.V /, whose slope
decomposition yields a homomorphism ��;� W D ! GL.V /, i.e., a representation
of D over the same space V that � acted on. It is straight forward to see that
� 7! ��;� is compatible with tensor products too. Thus, the Tannakian theory gives
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us a homomorphism �� W D ! G as desired, and then we have the Newton point
Œ�� � 2 X�.A/˝Q, as discussed earlier.

The Newton homomorphism �� can be characterized a bit more explicitly as
follows, by slightly unraveling the above description. Let R be any F -algebra, and
d 2 D.R/ D HomF�alg.F ŒQ�; R/ D Hom.Q; R�/. Write this homomorphism
as a 7! da. We wish to characterize �� .d/ 2 G.R/. By the Tannakian theory,
it is enough to characterize �.�� .d// 2 GL.V /.R/ D GL.V ˝ R/ for every
representation .�; V / of G. We have a slope decomposition as in Eq. 3 for �.�/, and
with the notation of that equation, for every a 2 Q, �.�� .d// acts on the subspace
Va ˝F R of V ˝F R by multiplication by da.

2.7 Generalizing ‘inv’ to G

Now we come to the question of generalizing the notion of a Hodge point. In
order to do that, we must discuss the generalization of the construct inv.�1;�2/

that measured the relative position between lattices �1;�2 � V . Fixing a lattice
�0 � V gives rise to a hyperspecial compact subgroup K0 � GL.V /, namely the
stabilizer of �0 in GL.V / D GL.V /.F /. Then g 7! g � �0 realizes the lattices
in V as in one-one correspondence with GL.V /=K0. Thus, inv.�; �/ is a function
on GL.V /=K0 � GL.V /=K0, bi-invariant under the diagonal action of GL.V /.
Similarly, in the context of our group G that we have fixed, inv is a function on
G=K �G=K that is bi-invariant under G, namely a function on Gn.G=K �G=K/,
which is in one-one correspondence with KnG=K. The Cartan decomposition says
that the map� 7! K�.$/K induces a one-one correspondence betweenX�.A/=W
and KnG=K. Thus, we now have the function:

inv W G=K �G=K ! X�.A/=W;

taking .g1K; g2K/ to theW -orbit of any � 2 X�.A/ satisfying g�1
2 g1 2 K�.$/K.

2.8 The Hodge Point in the Context of G

Therefore, the Hodge point of � 2 G D G.F /, with respect to gK 2 G=K

(which generalizes the set of all lattices), should be inv.�gK; gK/, namely the
W -orbit of any � 2 X�.A/ such that g�1�g 2 K�.$/K. Indeed, suppose that
G D GLn D GL.F n/, A is the torus that scales the elements of the standard
basis of F n and K the stabilizer of the standard lattice �0 (the o-span of the
standard basis elements of F n). In this case, X�.A/ can be identified with Z

n in
an obvious fashion, and under this identification one can check that the dominant
�dom 2 X�.A/ in the W -orbit associated to � and gK as above, the notion of
dominance defined with respect to the lower triangular Borel subgroup, corresponds
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exactly to what we defined earlier as the Hodge point associated to the linear
transformation � W F n ! F n and the lattice g�0 � F n. This checking is simplified
by the appropriate G-invariance and K-invariance properties of either definitions,
which reduces the checking to the case where gK D K and � 2 A.F /.

2.9 Relating Newton and Hodge Points for G

Given T 2 GL.V /, to say that .�1; : : : ; �n/ is the Hodge point associated to T and
some lattice in V , generalizes therefore to saying that XG

� .�/ ¤ ;, where:

XG
� .�/ D fx 2 G=K j x�1�x 2 K�.$/Kg:

This explains why the following result of Kottwitz and Viehmann, found in
Corollary 3.6 of [2], generalizes Theorem 1 to our reductive group G (that is split
over F ).

Theorem 3. Let � be a (B-)dominant coweight, and let � 2 G so that we have
Œ�� � 2 X�.A/˝Q as above. If in addition XG

� .�/ is nonempty, then Œ�� � � � in the
sense that � � Œ�� � is a non-negative rational linear combination of simple coroots
(with respect to B).

2.10 Notation Towards Linear Hodge-Newton
Decomposition for G

To discuss the linear Hodge-Newton decomposition, on the other hand, we introduce
some more notation. First, one has the quotient �G of X�.A/ by the coroot lattice
of G. It is then well known that �.G/ is the cocharacter lattice of the torus T WD
G=Gsc, where Gsc is the simply connected cover of the derived group of G. Note that
there exists a unique map T D T.F / ! X�.T/, such that for all � 2 X�.T/ and
t 2 T.o/, �.$/t 7! �. The map G! T may be viewed as a generalization of the
determinant map det W GL.V / ! Gm. The resulting map wG W G ! �G, obtained
by composing the map fromG to T with the aforementioned map T ! X�.T/, may
be viewed as a generalization of val ı det W GL.V /! Z. One also has a natural map
X�.A/! �G, which will be denoted pG. Analogous constructs for a Levi subgroup
M of G will be denoted �M; pM;wM etc.
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2.11 The Hodge-Newton Decomposition for G

Now we can state Theorem 3.5 from [2], of which part (2) is the linear Hodge
Newton decomposition for reductive groups:

Theorem 4. Let � 2 X�.A/ be dominant (with respect to B), P D MN the Levi
decomposition of a standard parabolic subgroup and � 2M.F /. Then:

(a) If XG
� .�/ is nonempty, then wM.�/

P� pM.�/, in the sense that pM.�/�wM.�/

is the image in �M of a non-negative integral linear combination of coroots L̨ ,
as ˛ varies over the roots of A in N.

(b) Suppose that wM.�/ D pM.�/ and that every slope (valuation of generalized
eigenvalue) of Ad.�/ on the Lie algebra Lie N of N is strictly positive. Then the
natural injection XM

� .�/ ,! XG
� .�/ is a bijection.

2.12 Why Theorems 3 and 4 Generalize Theorem 1

In the special case where G D GL.V /, V D U ˚W is a decomposition of V into
� -invariant subspaces, P is the parabolic subgroup stabilizing W and M is the Levi
subgroup preserving U andW , part (b) of the above theorem generalizes Theorem 1
(b). To see this one chooses A to be determined by a basis obtained by putting
together a basis of U with one of W , and K to be the stabilizer of the lattices
o-spanned by that basis. To say that every slope of Ad.�/ on Lie N is strictly positive
is, in this case, to say that every slope of � on U is strictly less than every slope of
� on W . To say that wM.�/ D pM.�/ is to say that, in the notation of Theorem 1,
�1C� � �C�r D �1C� � �C�r . To say that the natural injectionXM

� .�/ ,! XG
� .�/ is

bijective is to say that any lattice � such that the Hodge point of � and � is �, has
to split as .�\ U/˚ .�\W / – this follows since the lattices stabilized by K and
hence also all lattices stabilized by compact open subgroups of the form mKm�1,
where m 2M, split in exactly such a fashion.

2.13 Comments on the Problem of Generalizing to Monoids

Theorem 3, and Theorem 4 of which Theorem 3 is a corollary, are thus natural gener-
alizations to reductive groups of corresponding statements for GLn. Conceptual and
elegant proofs of these theorems have been given in [2]. However, the formulation
of Theorem 2, in contrast, does not seem to highlight entirely transparently what
the structures involved are, for instance whether this result on Mn.F / is a monoid-
theoretic phenomenon or if the additive structure on Mn plays an indispensable role.
The proof that has been given for Theorem 2 in [2] employs slightly indirect means,
namely by first additively perturbing an element of Mn.F / by an element of the
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center of Mn.F / to get an element of GLn.F /, and then using the Hodge-Newton
decomposition for GLn.F /.

Thus, one seeks to find a formulation of Theorem 2 for general reductive
monoids, together with a monoid theoretic proof. This was partially done in [7].
Namely, Theorem 3 was generalized to reductive monoids, as also part (1) of
Theorem 4. Part (2) of Theorem 4 might perhaps generalize, the author just has
not attempted it enough to form an opinion.

3 On the Proofs of Theorems 3 and 4

Before getting into these monoid theoretic formulations and proofs, we will recall
some inputs into the proof of [2], which [7] sought to generalize to monoids.

3.1 The Bruhat-Tits Inequality

In [2], Theorem 3 is deduced from Theorem 4. One of the key inputs into the proof
of Theorem 4 is what is known as the Bruhat-Tits inequality, which we proceed to
review. This is an inequality relating the Cartan and the Iwasawa decompositions of
G. Recall that the Iwasawa decomposition says that, for any Borel subgroup B0 of
G containing A, the map � 7! �.$/ from X�.A/ to G gives a bijection between
X�.A/ and UA.o/nG=K. This gives us a map rB0 W G ! X�.A/. These maps rB0

will be referred to as retractions. Now, given any g 2 G, the Cartan decomposition
gives us an element �dom 2 X�.A/, which is B-dominant. We also have the element
rB.g/ 2 X�.A/. The Bruhat-Tits inequality says that rB.g/ � �dom, in the sense that
�dom�rB.g/ is a non-negative integral linear combination of coroots corresponding
to simple roots of A in B.

3.2 The Retractions and wG

One can also consider the map pG ı rB from G to �G. In fact, this map turns
out to be precisely the homomorphism wG that we discussed earlier. In particular,
pG ı rB is independent of B. This also follows from a well known property of the
retractions rB0 . Namely if B0;B00 are Borel subgroups containing A that are adjacent,
then rB0.g/�rB00.g/ is a non-negative integral multiple of ˛_, where ˛ is the unique
root that is positive for B0 and negative for B00. This implies that the various rB0 all
differ by elements in the coroot lattice, so that pG ı rB0 is independent of B0.

We will not comment any more on the proof of Theorem 4. We hope that the

assertion “wM.�/
P� pM.�/” in Theorem 4 (a) does not look too strange now, since
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the left hand side of this inequality is related to rB.�/ and the right hand side is
related to the Cartan decomposition for g�1�g, so it should at least begin to look
like the Bruhat-Tits inequality should play a role.

3.3 The Newton Point and wG

Let us now comment on the relationship of Theorem 3 with Theorem 4 from which
it is derived. For this we need to explain how the Newton point Œ�� � 2 X�.A/˝ Q

of � is related to the wG.�/ 2 �G. Note that X�.A/ ˝ Q and �G both map to
�G ˝Q. We claim that the image of Œ�� � in �G ˝Q equals that of wG.�/. Indeed,
when G is a torus this is easily verified. One then deduces the result for general
G by considering the quotient C WD G=Gder of G by its derived subgroup, and
using that the Newton homomorphism and wG both behave well with respect to
homomorphisms of algebraic groups. More precisely, Newton homomorphisms are
functorial (see Lemma 2.1 of [2]), and we have a commutative diagram:

G ��

wG

��

C

wC

��
�G �� �C

in which the bottom row becomes an isomorphism upon tensoring with Q.

3.4 Detecting the Newton Point from the wM’s

However, this does not yet let us detect the Newton point from wG, precisely because
the passage from X�.A/˝Q to�G˝Q results in loss of information. Nevertheless
note that, if AG � A denotes the identity component of the center of G, then the map
X�.AG/˝Q! �G˝Q is an isomorphism. This is becauseX�.AG/ and the coroot
lattice span complementary subspaces of X�.A/ ˝ Q. Therefore, in the situation
where Œ�� � 2 Hom.D;AG/ � Hom.D;A/, we can recover Œ�� � from wG.�/.

Definition 6. � 2 G is said to be basic if �� W D! G factors through the center of
G (and hence, through AG).

3.5 On Deriving Theorem 3 from Theorem 4

Though an arbitrary � 2 G will not be basic in general, one can always find a Levi
subgroup M� of G for which � is basic. Indeed, the image of �� W D! G is a split
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torus in G, whose centralizer is necessarily a Levi subgroup M� of G. It is an easy
consequence of the definition of �� that replacing � by h�h�1, h 2 G, replaces �� by
Int.h/ ı �� , where Int.h/ denotes the inner automorphism defined by h. This forces
� 2M� , so that � is a basic element ofM� . Hence, one can always conjugate � and
assume that it is basic for a Levi subgroup containing A, in fact (say by making ��
dominant) for a Levi subgroup of a standard parabolic subgroup. From this point, it
is rather straightforward to derive Theorem 3, by applying Theorem 4 to the element
� 2 M� (with M� taking the role of M), and relating the partial order � on X�.A/

with the partial order
P� on �M ˝Q.

4 Basics on Split Reductive Monoids over F

4.1 Notation for Our Reductive Monoid

Let NG be an irreducible reductive monoid over F , with unit group G. G will continue
to be split over o as before. Further, henceforth we assume F to be of characteristic
zero. Note that G �G acts on NG by .g1; g2/ � g D g1gg�1

2 .

Hypothesis. In this particular article, for simplicity of exposition, we assume NG to
be normal.

For a subset X of G (or NG), NX will denote its Zariski closure in NG. Thus, NA will be
the toric variety obtained as the Zariski closure of A in NG (since NG is normal, by
Exercise 4.6.2 (8) of [5], NA is normal too).

Notation. For any NX � NG, let E. NX/ denote the set of idempotents in NX. NF /. If NX
is a subsemigroup of NG that is a monoid in its own right, we write G. NX/ for the
group of unit elements in NX. For any algebraic monoid NH we will also write X�. NH/
for algebraic semigroup homomorphisms from Gm into NH. Such a homomorphism
should take the identity element of Gm to an idempotent, and we have in particular:

X�. NA/ D
G

e2E. NA/
X�.eA/;

where eA is viewed as a torus in its own right.

4.2 Some Groups and Homomorphisms Attached to e 2 E. NA/

Recall that the notion of a Hodge Point in the context of the group G, the map rB etc.
depended on facts from the structure theory for reductive p-adic groups, such as the
Iwasawa decomposition and the Cartan decomposition. We will need similar results
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for monoids. These will be obtained from results on the structure theory of NG over
the algebraic closure NF of F . We refer the reader to the books [3] and [5] for the
results that we are going to recall, and for a comprehensive treatment of algebraic
monoids.

Definition 7. Let e 2 E. NA/. Then (following the convention of [1]; [3] follows
a slightly different convention) the centralizer, the left centralizer and the right
centralizer of e are defined to be respectively the groups:

Fe WD CG.e/ WD fx 2 G j xe D exg;

Fle WD Cl
G.e/ WD fx 2 G j xe D exeg;

and

Fre WD Cr
G.e/ WD fx 2 G j ex D exeg:

One also associates to e the group He WD G.e NGe/ and the groups:

Gl
e D fx 2 G j xe D eg; and Gr

e D fx 2 G j ex D eg:

Here, note that e NGe is a subsemigroup of NG that is a monoid in its own right, with e
as the identity element.

Definition 8. Let e 2 E. NA/. One defines the maps (that are readily checked to be
well defined homomorphisms):

�e W Fle ! He; e W Fre ! He and �e W Fe ! He

by:

�e.x/ D xe D exe; e.x/ D ex D exe; �e.x/ D ex D xe D exe:

Thus, Gl
e D ker �e;Gr

e D kere .

4.3 Properties of Groups and Homomorphisms
Attached to e 2 E. NA/

Some early results from the theory of Putcha and Renner have been collected into
the following theorem. One can find their proofs in either [3] or [5].

Theorem 5. Let e 2 E. NA/. Then we have:
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(a) Fle and Fre are opposite parabolic subgroups of G, whose common Levi
subgroup is Fe (which contains A).

(b) Ru.Fle/ � e D e � Ru.Fre/ D feg. In other words, Ru.Fle/ � Gl
e;Ru.Fre/ � Gr

e .
(c) e; �e and �e are surjective, so that we have an exact sequence:

1! Gl
e ! Fle

�e! He ! 1;

and similarly with Gr
e;F

r
e; e;He and Ge;Fe; �e;He .

(d) The stabilizer .G �G/e of e in G �G is:

.G �G/e D f.x; y/ 2 Fle � Fre j �e.x/ D e.y/g:

4.4 Renner’s Bruhat Decomposition for NG. NF /

Definition 9. The monoid R WD NG.A/. NF /=A. NF /, namely the quotient by A. NF /
of the Zariski closure NG.A/. NF / of the normalizer NG.A/. NF / of A. NF /, is known
as the Renner monoid of A in NG.

Theorem 8.8 of [5] gives a Bruhat decomposition for NG. NF /:
Theorem 6.

NG. NF / D
G

x2R
B. NF / � x � B. NF /:

4.5 Putcha’s Description of G. NF / � G. NF /-Orbits in NG. NF /

On the other hand, the G. NF / � G. NF /-orbits in NG. NF / have a description too. First
we define:

Definition 10. Let:

� D fe 2 E. NA/ j B � Fleg; �� D fe 2 E. NA/ j B� � Fleg:

Then (see Theorem 4.5 (c) of [5] for part (a); part (b) of this theorem is Exercise
8:9:3 in [5]):

Theorem 7. Then � (and similarly, ��) forms a representatives for the W.G;A/-
orbits in E. NA/ and:

NG. NF / D
G

e2�
G. NF / � e �G. NF / D

G

e2��

G. NF / � e �G. NF /:
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Further,

NG. NF / D
G

e2E. NA/
G. NF / � e � B. NF /:

4.6 Relative Bruhat Decomposition and G � G Orbits on NG

Now, since F has characteristic zero, it turns out to be possible to use the above
Bruhat decomposition (Theorem 6) together with Galois cohomology, and get
various decompositions for NG D NG.F /. Indeed, Theorem 6 turns out to be more
convenient for this than Theorem 7, since Galois cohomology is easier to handle for
solvable groups. This way, one gets the following ‘relative’ Bruhat decomposition
as well as decompositions of NG into G �G-orbits and into G �B-orbits (for details
see [7], Sect. 3):

Theorem 8. Let RF D NG.A/.F /=A.F /, the relative Renner monoid of A in NG.
Then:

NG D
G

x2RF
BxB D

G

w2W.G;A/

G

e2E. NA/
BweB:

Then:

NG D
G

e2�

G

Pt2.eA/.F /=A.F /

.G �G/ � Pt D
G

e2�
.G �G/ � e:

Finally,

NG D
G

e2E. NA/

G

Pt2.eA/.F /=A.F /

.G � B/ � Pt D
G

e2E. NA/
.G � B/ � e:

4.7 Clarifications on the Above Result

Remark. Here are some clarifications and explanations regarding the above
result.

(a) In the latter equality of the relative Bruhat decomposition, the w ofBweB stands
for a representative in G of the Weyl group element w. On the other hand, any
e 2 E. NA/ automatically belongs to NG since A is defined over F .

(b) In each of the three decompositions in Theorem 8, the second equality uses
the fact that NG is normal, while the first does not. Indeed, one gets a counter-
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example to the second equality in each of the assertions above by considering,
following Example 6:12 in [3],

NG D NB D NA D f.a; b; c/ 2 NG3
m j a2b D c2g:

Here NGm denotes the affine line with its usual monoid structure (which has the
multiplicative group Gm as its group of units). One can see that in this case
.0; b; 0/ with b 2 F � n .F �/2 does not lie in GeG, or equivalently in any
BweB or GeB .

(c) The results in Theorem 8 are all valid for an arbitrary field of characteristic zero,
not just our fieldF that is the quotient field of a complete discrete valuation ring.

(d) Since the ‘second equalities’ in the various decompositions above are nicer,
F -points of normal monoids are much better behaved than F -points of non-
normal monoids. In fact, NG D NG.F / is a ‘split reductive monoid’ (see [4]; this
is a monoid theoretic generalization of the notion of BN -pairs) for normal NG
(as we are assuming), but this is not true without this assumption of normality.

(e) However, in [7] NG was not assumed to be normal, since that was not necessary
for the purposes of that paper. However, we will assume so here, since that
makes the statements simpler and nicer.

4.8 B-dominance for Elements of X�. NA/

Using the decomposition of NG into G � G-orbits, one can then prove monoid-
theoretic versions of the Iwasawa and the Cartan decompositions. We also wish
to state the affine Bruhat decomposition for monoids, to which end we define
the Iwahori subgroup I to be the preimage of B.kF / under the reduction map
G.o/ ! G.kF /, where kF denotes the residue field of F . A few decompositions
including the Iwasawa decomposition and the Cartan decomposition are stated in
Theorem 9 below. Before stating the theorem, we note that for any Borel subgroup
B of G containing A and for any e 2 E. NA/, BFe WD B \ Fe is a Borel subgroup
of Fe , and consequently BHe WD �e.BFe / is a Borel subgroup of He . Thus, we may
(and shall) use the following notions of dominance.

Definition 11. Let � 2 X�.eA/ � X�. NA/ where e 2 E. NA/. We say that � is
dominant if e 2 �� (cf. Definition 10) and � is a dominant element of X�.eA/
(with respect to BHe ). We denote by X�. NA/dom the set of dominant elements of
X�. NA/.
Let us briefly discuss the motivation for this definition. Recall that if � 2 X�.A/
and  2 X�.A/ are B-dominant we have, letting w0 denote the long element of the
Weyl group W.G;A/,

min
w2W.G;A/hw;�i D hw0; �i: (4)
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The pairing X�.A/ �X�.A/! Z admits a monoid theoretic variant:

X�. NA/ �X�. NA/! Z [ f1g;

sending the pair .; �/ to1 if  ı � D 0, and to n 2 Z if  ı � W Gm ! Ga is
given by t 7! tn. With these definitions, Lemma 27 of [7] says that Eq. 4 holds for
 2 X�. NA/ � X�.A/ and � 2 X�. NA/ provided  is B-dominant (as an element of
X�.A/ in the usual sense) and � is B-dominant as per Definition 11.

Theorem 9. We have the following decompositions:

(a) The Iwasawa decomposition : The map � 7! �.$/ fromX�. NA/ into NG induces
a one-to-one correspondence between X�. NA/ and U n NG=K (and, equivalently,
between X�. NA/ and UA.o/n NG=K).

(b) The affine Bruhat decomposition: The inclusion of NG.A/.F / into NG induces a
one-to-one correspondence between NG.A/.F /=A.o/ and In NG=I .

(c) The Cartan decomposition : The map � 7! �.$/ induces a one-to-one
correspondence between X�. NA/dom and KnG=K.

(d) The inclusion of NG.A/.F / into NG induces a one-to-one correspon-
dence between NG.A/.F /=A.o/ and U n NG=I (or equivalently, between
NG.A/.F /=A.o/ and UA.o/n NG=I ).

The proof of Theorem 9 is relatively easy. They all start from the decomposition of
NG into the double cosets GeG (e varying over � or equivalently ��), and use the

corresponding decompositions for groups associated to the idempotents e that show
up, combined with the early results of Putcha-Renner theory that we have recalled.
The simplest of these, the Cartan decomposition, follows from the computation
below:

Kn.GeG/=K D .KnG/ � .KnG/=.G �G/e
D .K \ F l

e nF l
e / � .K \ F r

e nF r
e /=.F

l
e � F r

e /e

D .K \ FenFe/ � .K \ FenFe/=.Fe � Fe/e
D �e.K \ Fe/nHe=�e.K \ Fe/
D X�.eA/dom;

where we have used in the second step that KF l
e D KF r

e D G (a consequence
of the Iwasawa decomposition for G), and in the final step that, for NG normal,
�e.K \ Fe/ can be shown to be a hyperspecial compact subgroup of He . The other
decompositions need more work, but not much more.
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4.9 The Retractions rB0 and the Maps p NG and w NG

The Iwasawa decomposition naturally gives the following extension of the retrac-
tions rB0 from G to NG:

Definition 12. Let B0 D AU0 be a Borel subgroup of G containing A. Then rB0 W
NG ! X�. NA/ D F

e2E. NA/. NF / X�.eA/ is defined to be the map that assigns to each

g 2 NG the element � 2 X�. NA/ satisfying g 2 U 0 � �.$/K (the existence and
uniqueness of � being guaranteed by the Iwasawa decomposition).

We need to define a monoid-theoretic analogue of the map wG W G ! �G now.
Recall that wG involved quotienting by Gsc and then taking the cocharacter lattice.
In the first step, if we had the derived subgroup Gder of G instead of Gsc, we already
would have an analogue – thanks to the abelization of NG, due to Vinberg ([8]).
While the abelization is not what we need, the description in [8] does motivate the
following definition for our normal monoid NG:

Definition 13.

� NG WD
G

e2E. NZ/
�He ;

where NZ denotes the center of NG.

There is an obvious monoid structure on � NG. Now we need to generalize the map
pG (see Sect. 2.10) to a map p NG W X�. NA/! � NG. Given � 2 X�.e0A/ � X�. NA/, we
define e WDQwe0w�1, the product running over w 2 W.G;A/. Then the centralizer
of e is a Levi subgroup of G containing A and having W.G;A/ in its Weyl group,
forcing e 2 E. NZ/ and allowing:

Definition 14. With notation as above, we define p NG.�/ D pHe .e�/ 2 �He � � NG.

Definition 15. We define w NG D p NG ı rB0 , where B0 is any Borel subgroup of G
containing A.

Of course, one then needs to verify that this definition is independent of the choice
of B0. Recall that in the group case one could see this from the fact that for any
two Borel subgroups B0;B00 containing A, rB0.g/ � rB00.g/ belonged to the coroot
lattice of A in G, and satisfied an appropriate inequality depending on the relative
positions of B0 and B00 with respect to B. In the case of monoids one can find a
similar relationship, though it is a bit more complicated. For instance, we can have
rB0.g/ 2 X�.e0A/ and rB00.g/ 2 X�.e00A/ with e0 ¤ e00. This turns out not to matter
because such e0 and e00 will always lie in the same W.G;A/-orbit. One can indeed
show that w NG does not depend on the choice of B0, and also find a natural relation
between rB0 and rB00 for Borel subgroups B0;B00 containing A, generalizing the one
for groups. We refer to Lemma 29 of [7] for the details.

One can also show, cf. Lemma 33 of [7], that w NG is a homomorphism of monoids.
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5 Generalizing the Newton Homomorphism

Recall from around Sects. 2.5 and 2.6 that the group theoretic version of the Newton
homomorphism involved Tannakian formalism. We can take a similar approach to
defining Newton points for monoids too.

5.1 Newton Homomorphism When NG D End.V /

Let us briefly take stock of what we should expect a Newton homomorphism
to be. Suppose we are in the case where NG D End.V /, and want to attach a
Newton homomorphism to T 2 End.V /. We have a natural analogue of the slope
decomposition of Eq. 3, with the exception that the summation should be taken not
over a 2 Q, but over a 2 Q [ f1g. V1 will then correspond to the subspace
of V where the given linear endomorphism T of V acts nilpotently. Let V¤1
denote the complement of V1 obtained as the direct sum of all the Va, a 2 Q

(i.e., a ¤ 1). Then the slope decomposition is captured by the decomposition
V D V1 ˚ V¤1, together with a homomorphism D ! GL.V¤1/. We thus get a
composite homomorphism

�T W D! End.V¤1/ ,! End.V /

of algebraic semigroups (where End.V¤1/ sits inside End.V / as endomorphisms
that annihilate V1). Further, the decomposition V ! V1 ˚ V¤1 can be recovered
from this homomorphism as corresponding to the idempotent �T .1/. Thus, for
a general monoid NG, and each � 2 NG, one expects an algebraic semigroup
homomorphism D! NG to take the role of the Newton homomorphism.

5.2 The Tannakian Formalism for Monoids

Fortunately, almost all of the work needed to extend the Tannakian formalism
so as to make it work in the monoid theoretic context has been done by N.
Saavedra Rivano in [6]. The only difference in our situation is that a semigroup
homomorphism D ! NG will take the identity element of D to only an idempotent
in NG, and not necessarily the identity element of NG. This forces us to work with
algebraic semigroup representations of D and NG (i.e., homomorphisms D !
End.V / or NG ! End.V / of semigroups which may not be homomorphisms of
monoids). The precise form of the result we need for our purposes is nevertheless
an easy consequence of (part of) [6], and is discussed in Section 5 of [7]. We proceed
to recall this consequence that we need. Note that any semigroup homomorphism
� W D ! NG induces a functor �� W Repsg

0
NG ! Repsg

0 D from the category of finite
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dimensional semigroup representations of NG to that for D. This functor has three
properties:

(a) It respects the tensor product structures on Repsg
0 D and Repsg

0 G; and
(b) It is strictly compatible with the fiber functors on the categories Repsg

0 G and
Repsg

0 D, i.e., takes a representation of D of the form .�; V /, where � W D !
End.V /, to one of the form .�0; V /, with the same V ; and

(c) It takes the trivial representation of NG to the trivial representation of D and the
zero representation of NG to the zero representation of D.

Fortunately, it turns out that the converse is true. More precisely, any functor from
Repsg

0 G to Repsg
0 D that satisfies properties (a), (b) and (c) above is �� for a unique

semigroup homomorphism � W D! NG.

5.3 Newton Homomorphisms in the Monoid Setting

Now let � 2 NG. It is easy to see, following the construction in the group case, that
the slope decomposition attached to � induces a functor from Repsg

0 G to Repsg
0 D,

which is easily shown to satisfy properties (a), (b) and (c) above, leading to the
desired Newton homomorphism �� .

There turns out to be a well known result in Putcha-Renner theory that lets us
access this homomorphism �� more conveniently. Page 35 of [5] associates to � an
idempotent e� 2 NG, canonically determined by � , such that for large n 2 N we
have �n 2 He� . Further, it satisfies that �e� 2 He� , so that one can consider the
Newton homomorphism ��e� W D ! He� associated to �e� 2 He� . It turns out that
�� D ��e� . This description seems more convenient in practice to access �� .

6 The Main Results

6.1 Bruhat Tits Inequality

As with groups, the final proof will crucially use a monoid theoretic variant of the
Bruhat-Tits inequality. It was Kottwitz who told the author how to formulate the
inequality in the case NG D End.V /, and also showed him its proof in this case.
It was then rather straight forward to interpret this proof in terms of constructs from
Bruhat-Tits theory, and to then unravel it to express it more plainly, without any of
those constructs. The statement of the Bruhat-Tits inequality for monoids turns out
to be as follows.

Lemma 1. Let g 2 NG, and set � D rB.g/. Let e 2 �� and � 2 X�.eA/dom �
X�. NA/dom be such that g 2 K�.$/K. Note that �dom 2 X�.eA/ by Theorem 7.
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We then have that �� � is an integral linear combination of terms of the form e˛_,
with ˛ running over positive roots of A in G (i.e., the roots of A in B).

6.2 Generalization of Theorem 4(1)

As mentioned earlier, [7] does not generalize part (2) of Theorem 4. As for
generalizing part (1) of that theorem, recall that in the group case we had a partial

order
P� on�M when P DMN was the Levi decomposition of a parabolic subgroup

of G, with M � A. We first need a generalization of this notion, to a reflexive
transitive relation on � NM where P DMN as above. Recall that:

� NM D ˚e2E. NZ NM/
�He;M ;

where NZ NM is the center of M and He;M is the group of units in e NMe (i.e., just like
He but defined for M as opposed to G).

Definition 16. Let for i D 1; 2 �i 2 �Hei ;M
� � NM, where ei 2 E. NZ NM/. Then

�1 � �2 if and only if e1 D e2 and �2 � �1 is the image in � NM of a non-negative
integral linear combination of terms of the form e˛_, as ˛ runs over the roots of A
in N (or equivalently, over the roots of A in B).

This relation is easily seen to be reflexive and transitive, but it is easy to see that
anti-symmetry can fail if e 62 ��. For e 2 ��, the author does not know whether
this is a partial order in general, though this can be checked for ‘flat reductive
monoids’ in the sense of Vinberg ([8]); see Lemmas 39, 40 and 41 of [7].

Definition 17. For � 2 X�. NA/ and � 2 NG, define:

XG
� .�/ WD fx 2 G=K j x�1�x 2 K�.$/Kg:

Here is the generalization of Theorem 4(1).

Theorem 10. Let M be a standard Levi subgroup of G, and suppose � 2 NM
satisfies � 2 M � e � M for some e 2 ��. If � 2 X�.eA/dom (dominant with
respect to NG, not just NM) with XG

� .�/ ¤ 0, then:

w NM.�/ � p NM.�/:

We do not go into the details of the proof here, but merely note that the key input is
the Bruhat-Tits inequality for monoids, namely Lemma 1.
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6.3 Generalization of Theorem 3

Finally, here is the generalization of Theorem 3 to monoids.

Theorem 11. Let � 2 X�.eA/ � X�. NA/ be B-dominant (in particular e 2 ��).
Let � 2 NG and write Œ�� � for the unique element in the G-conjugacy class of
the Newton homomorphism associated to � that is B-dominant - so there exists
e1 2 �� such that Œ�� � 2 X�.e1A/ (and in fact belongs to the cone generated by
X�.e1A/dom). Then Œ�� � � � in the sense that ee1 D e1 and e1� � Œ�� � is a non-
negative Q-linear combination of terms of the form e1˛

_ corresponding to simple
roots ˛ of A in B.

We will not recall the proof of this theorem, but merely mention that it is obtained
from Theorem 10, just as Theorem 3 was a corollary of Theorem 4. In the situation
of Theorem 3, recall that given � 2 G one chose a Levi subgroup M of G, containing
� , for which � was basic, so that wM.�/ captured �� . Similarly, given � 2 NG, one
comes up with a Levi subgroup M of G such that � 2 NM satisfies the conditions of
Theorem 10, and such that w NM.�/ captures �� . One then applies Theorem 10.
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The Structure of Affine Algebraic Monoids
in Terms of Kernel Data

Wenxue Huang

Abstract We describe the structure of affine algebraic monoids M in terms of
kernel data, especially the interconnection between ker.M/ or the isotropy groups
at minimal idempotents under the natural actions and the unipotent radical Ru.G/

of the unit group G of M .

Keywords Algebraic groups • Algebraic monoids • Kernel • Minimal idempo-
tents • Unipotent radicals

Subject Classifications: Primary 20M32; Secondary 14R20, 20G99

1 Introduction

An affine (or linear) algebraic monoid (or semigroup) M is both an affine algebraic
variety over an algebraically closed field K and a monoid (or semigroup) for which
the product mapM �M !M is a morphism of varieties. WhenM is an algebraic
monoid, its unit group G is an (affine) algebraic group; and when M is irreducible,
M D G. By [18, Theorem 3.15], an algebraic monoid is isomorphic to a (Zariski)
closed submonoid of total n by n matrix monoid Mn.K/ for some n.

Unlike a general abstract or even a linear semigroup (e.g., . 1 Z

0 1 / has no
kernel) but like a compact semigroup, an algebraic semigroup M always
has a kernel, ker.M/, that is, the minimum two-sided semigroup-theoretic
ideal ([18, Theorem 3.28]), which is the intersection of all ideals of the semigroup.
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If an algebraic semigroup has zero, then the kernel of the semigroup is zero.
The next simplest kernel is a group. A nilpotent or reductive algebraic monoid
has a group kernel. There are algebraic monoids whose kernels are non-group. For
example, the kernel of a non-nilpotent regular solvable algebraic monoid is not a
group. More generally, an algebraic monoid with more than one minimal idempotent
is not a group.

The structure of the kernel of an algebraic monoid M can be of considerable
impact on that of M or its unit group G. As we will see later that there is close
connection between the kernel and the unipotent radical of G.

We now assemble some notions and notations. All algebraic groups and monoids
involved are affine. Let M be an algebraic monoid over an algebraically closed
fieldK. By convention, throughout this article, we denote by Je , Le , Re andHe the
J -, L -, R- and H -classes of e in M under Green’s relations, respectively (see
[18, Chapter 1]). Denote by E.M/ the idempotent set of M . An algebraic monoid
is referred to as irreducible if it is so as a variety. We call an algebraic monoid M
regular (respectively, unit regular, completely regular) if it is so as a semigroup, i.e. ,
M D [e2E.M/Je (respectively, M D E.M/G, M D [e2E.M/He). Recall that He

is a maximal subgroup of M and also the unit group of the algebraic monoid eMe.
Let M be an irreducible algebraic monoid with unit group G. We call M reductive
(respectively, semisimple, solvable, nilpotent, toric) if its unit group is reductive
(respectively, reductive with 1-dimensional center, solvable, nilpotent, a torus). For
a linear algebraic group G, we denote by R.G/ (respectively, Ru.G/) the radical
(respectively, unipotent radical) of G. We call the dimension of a maximal torus
of G the rank of G, denoted rank.G/. For a subset V of an algebraic monoid M ,
denote by V the Zariski closure of V in M . An algebraic submonoid (respectively,
subsemigroup) of an algebraic monoid M is a (topologically) closed submonoid
(respectively, subsemigroup) ofM . IfN is an algebraic submonoid ofM , we denote
by Nc the identity component of N . For any subset X of M ,

C r
X.e/ D fa 2 X jae D eaeg; C l

X.e/ D fa 2M jea D eaeg;
CX.e/ D fx 2 X jxe D exg:

The one-sided annihilators Mr.e/ and Ml.e/ are defined as

Mr.e/ D fa 2M jae D eg; M l .e/ D fa 2M jea D eg; M.e/ DMl.e/ \Mr.e/

and

Ml
e WDMl.e/c; M r

e DMr.e/c; Me DM.e/c:

For any idempotent e, we write Ge for the unit group of Me . Recall that if M is
irreducible with unit group G, then both M.e/ and Mr.e/ have dense unit groups
(see [18, Theorem 6.11]) but may be reducible (see [18, Example 6.12]); by [3],
they are connected. For a semigroup S , we write C.S/ for the center of S .
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References [18,22] are our primary references for algebraic monoids, and [1,12]
for algebraic groups.

We will first describe the general structure of the kernels of linear algebraic
semigroups in Sect. 2; in Sect. 3, we discuss the properties of kernels of irreducible
linear algebraic monoids; Sect. 4 is for regularity conditions in terms of minimal
idempotents; Sect. 5 is for specific types of algebraic monoids and their characteri-
zations in terms of kernel data; Sect. 6 is for the unipotent radicals of unit groups of
irreducible monoids and the unipotent radicals of one- and two-sided centralizers of
minimal idempotents; Sect. 7 is to address the interactions between the kernels and
unipotent radicals; Sect. 8 is for applications to the structure of parabolic subgroups
of the unit groups of linear algebraic monoids; Sect. 9 is for the structure of an
irreducible algebraic monoid which is the union of the unit group and its kernel.

2 The Kernel of a Linear Algebraic Semigroup

The following are about general structure of the kernel of an affine algebraic
semigroup.

Proposition 1 ([9, Fact 1. 1]). Let S be an algebraic semigroup. Then

• E.ker.S// ¤ ; and ker.S/ D Je for any e 2 E.ker.S//;
• ker.S/ is a completely simple semigroup;
• ker.S/ is a closed subsemigroup of S ;
• (Clark) if S is a closed subsemigroup of Mn.K/, ker.S/ consists of the elements

of S with the minimal matrix rank;
• As an abstract semigroup, S is simple if and only if S is completely simple if and

only if S D ker.S/.

We denote by ml .S/ (respectively, mr .S/) the set of minimal left (respectively,
right) ideals of S . We shall see shortly that for any affine algebraic semigroup S ,
ml .S/ ¤ ;.
Proposition 2 ([9, Lemma 1.3]). Let S be an algebraic semigroup. Then

• ker.S/ D [A2ml .S/A, and the union is disjoint;
• ml .S/ D fSs j s 2 ker.S/g D fSe j e 2 E.ker.S//g;
• If a 2 A 2 ml .S/, then A D Aa D Sa;
• ml .S/ is invariant under right translation, that is, for each A 2 ml .S/ and each
s 2 S , we have As 2 ml .S/;

• For any A 2 ml .S/ and B 2 mr .S/, there exists e 2 E.ker.S// such that
A \ B D He .

Minimal idempotents play key roles in the study of algebraic monoids. As the
following proposition shows, they can be used to characterize the kernel of an
algebraic semigroup.
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Proposition 3 ([9, Proposition 1.4]). Let S be an algebraic semigroup, e 2 E.S/.
Then the following are equivalent:

• e is a minimal idempotent of S ;
• He D eSe;
• Se 2 ml .S/;
• e 2 ker.S/;
• Se D Le;
• SeS D Je .
• SeS D ker.S/.
• Je is a minimal regular J�class in S .

The following theorem characterizes ker.S/ in terms of algebraic group and
shows that ker.S/ is a completely regular semigroup.

Theorem 1 ([9, Theorem 2.1]). Let S be an algebraic semigroup. Then, for any e,
f 2 E.ker.S//, there exists g 2 E.ker.S// such that

• eL gRf and Se \ fS D Hg, where the Hhs are the maximal algebraic
subgroups of ker.S/. Moreover, ker.S/ D [h2E.ker.S//Hh, and the union is
disjoint. Thus ker.S/ as a semigroup is completely regular.

• He ! Hf defined by x 7! gxf is an algebraic group isomorphism from He

onto Hf , whose inverse morphism is given by y 7! eyg.

Recall that a subset X of an affine algebraic variety V is a retract of V if there
is a variety morphism r W V ! V such that r.V / D X and r jX D 1X . For an
algebraic semigroup S and e 2 E.S/, eSe, eS and Se are always retracts of S (in
the sense of algebraic variety); the corresponding retractions can be chosen as

a 7! eae; a 7! ea and a! ae;

respectively. We have the following result:

Theorem 2 ([9, Theorem 2.3]). Let S be a linear algebraic semigroup. Then
ker.S/ is a retract of S in the sense of algebraic variety.

Actually, for each idempotent e 2 E.ker.S//,

ıe W a 7! a.eae/�1a

is a retraction S � ker.S/. So when dimE.ker.S// > 0, there are infinitely many
retractions. In general, ıe ¤ ıf when e ¤ f . In fact, if in Theorem 2.3, S is
an algebraic monoid, then there is a natural one-to-one correspondence between
fıe j e 2 E.ker.S//g and E.ker.S//. As we shall see later, retractions ıe turn out to
be useful in the study of the relation between the kernel of an irreducible algebraic
monoid M and the unipotent radical of the unit group of M .

For any algebraic semigroup S without zero, by [18, Theorem 1.9] and [9,
Fact 1.1], ker.S/ as an abstract semigroup is isomorphic to a Rees matrix semigroup



Affine Algebraic Monoids with Kernel Data 123

without zero over a group. On the other hand, given an algebraic group H , affine
varieties X and Y and a vaiety morphism 	 W Y � X ! H , let V D X �H � Y
with multiplication (Rees construction)

.x1; h1; y1/.x2; h2; y2/ D .x1; h1	.y1; x2/h2; y2/:

Then by [17, Example 3.9], V is an algebraic semigroup, which as an abstract semi-
group is completely simple [17, Theorem 1.9]. Let S 0 be an algebraic semigroup
with zero 0 and S D S 0 � V , the direct product of algebraic semigroups S 0 and V .
Then ker.S/ D f0g�V , which as an algebraic semigroup is canonically isomorphic
to V .

Two questions arise naturally: for an algebraic semigroup S (without zero), is
ker.S/ as algebraic semigroup isomorphic to a Rees matrix semigroup without
zero of the above form? If so, how to realize the Rees construction? The following
theorem answers these two questions completely.

Theorem 3 ([9, Theorem 2.4 and Corollary 2.5]). Let S be an algebraic semi-
group with e 2 E.ker.S//. Then

• ker.S/ D E.Se/HeE.eS/.
• Let R WD E.Se/ �He � E.eS/ be the algebraic semigroup with the canonical

Rees product

.f1; x1; g1/.f2; x2; g2/ D .f1; x1g1f2x2; g2/:

The map W R! ker.S/ defined by .f; x; g/ 7! f xg is an algebraic semigroup
isomorphism.

In particular, any semigroup-theoretically simple algebraic semigroup is obtained
by the above Rees construction. Under the Rees construction ker.S/ D E.Se/ �
He �E.eS/,

E.ker.S// D f.f; .gf /�1; g/jf 2 E.Se/; g 2 E.eS/g;

which as an algebraic variety is isomorphic to E.Se/ �E.eS/.
Remark 1. Even if e 2 E.ker.S//, E.Je/.D E.ker.S/// is not necessarily a
subsemigroup of S . Let

S D
0

@
1 K K

0 K K

0 0 1

1

A WD
8
<

:

0

@
1 a b

0 d c

0 0 1

1

A ja; b; c; d 2 K
9
=

;
:

Then ker.S/ D
0

@
1 K K

0 0 K

0 0 1

1

A, and
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E.ker.S// D
8
<

:

0

@
1 a �ac
0 0 c

0 0 1

1

A j a; c 2 K
9
=

;
;

For any e D
0

@
1 a �ac
0 0 c

0 0 1

1

A 2 E.ker.S//, He D eSe D
0

@
1 a K

0 0 c

0 0 1

1

A Š .K;C/, the

one dimensional unipotent group.

E.ker.S// D
8
<

:

0

@
1 a �ab
0 0 b

0 0 1

1

A j a; b 2 K
9
=

;

is not a subsemigroup of S , for

0

@
1 a �ab
0 0 b

0 0 1

1

A

0

@
1 f �fg
0 0 g

0 0 1

1

A D
0

@
1 a �ab � fg C ag
0 0 g

0 0 1

1

A :

The following theorem answers precisely when E.ker.S// is a subsemigroup
of S .

Proposition 4 ([9, Theorem 2.7]). Let S be an algebraic semigroup. Then the
following are equivalent:

• The minimal idempotents form a (closed) subsemigroup of S ;
• For some (thus every) e 2 E.ker.S//, the map S � He defined by a 7! eae is

an (algebraic) semigroup homomorphism;
• For some (thus every) e 2 E.ker.S//, the map ker.S/ � He defined by a 7!
eae is an (algebraic) semigroup homomorphism.

Most of the above structural properties of ker.S/ have been extended to
non-affine algebraic semigroups by Brion recently, see his article [2] in these
proceedings.

3 Kernels of Irreducible Algebraic Monoids

An algebraic semigroup S may not contain identity element. If so, S1 WD f1g[S is
then an algebraic monoid and ker.S1/ D ker.S/. Unlike algebraic group instances,
an algebraic monoid M ’s irreducible identity component Mc may not equal its
connected identity component. For example, ifN is an irreducible algebraic monoid
with unit group F ¤ N , then M WD Ne [ ker.N / is connected algebraic
submonoid of N ; but M is reducible when dim ker.N / > 0. Besides, for an
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algebraic monoid M , unlike an algebraic group, the identity component Mc may
have very loose relation with other components. Nevertheless, unit dense algebraic
monoids, in particular, irreducible algebraic monoids, have better behaviors. In this
and subsequent sections, we consider irreducible linear algebraic monoids M over
an algebraically closed field K. We have seen that the kernel of an arbitrary affine
algebraic monoid has many nice properties. What about the kernels of irreducible
monoids?

3.1 Basic Properties

Proposition 5 ([9, Proposition 3.2]). Let M be an irreducible algebraic monoid
with unit group G. Then ker.M/ is an irreducible smooth closed subset of M with

dim ker.M/ D dimG � dimGe D dimHe C dimE.ker.M//;

where e is a minimal idempotent of M .

So we have

dimM D dimMe C dim ker.M/:

This equality is informative and suggests thatM be “geometrically spanned” byMe

(or Ge) and ker.M/.
In subsemigroup generating, hMe; ker.M/i D Me [ ker.M/, which is also a

smallest algebraic submonoid of M containing Me and ker.M/. However, this
algebraically generated submonoid is reducible when the kernel is nonzero. This
inspires my recent initial work on irreducible algebraic submonoid generating
problems, especially with kernel data (cf. [4]) when ker.M/ is not a group. There
can be infinitely many minimal irreducible algebraic submonoids N containing
ker.M/ and 1 (for example, M D K � K with the usual multiplication. There
are infinitely many minimal irreducible submonoids containing f1; 0g).

Suppose N is an irreducible submonoid of M containing f1g and ker.N /. Then,
by the above proposition, the smallest irreducible submonoid of M containing both
Me and N is M D hMe;N i.

There is a natural regular group action of G �G on M

.x; y/  a WD xay�1 for x; y 2 G and a 2M: (1)

ker.M/ is the “bottom” of the algebraic monoidM and carries a lot of structural
information about M as well as the unit group G.

Proposition 6. Assume M © G is irreducible and e 2 E.ker.M//.

(1) ker.M/ D GeG thus ker.M/ is a homogeneous space under the restriction
to ker.M/ of the action (1), which implies ker.M/ is an irreducible smooth
subvariety;
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(2) [10, Lemma 3.2] The retraction ı W M � ker.M/ is an open map and
ker.M/ D ıe.G/;

(3) [23, Theorem 1] ker.M/ is the unique closed G �G-orbit under the action (1),
which implies that the group embedding G ,!M is simple;

(4) ker.M/ D [f 2E.ker.M//f Gf D [f 2E.ker.M//Gf D [f 2E.ker.M//f G;
(5) ker.M/ D E.Me/GE.eM/ Š E.Me/ � eGe �E.eM/ as affine varieties.

Remark 2. There is a matrix rank interpretation to Rittatore’s characterization that
ker.M/ is the unique closed orbit of the two-sided action: assume M � Mn.K/.
For each a 2 M , all elements in the orbit GaG has the same matrix rank rank.a/.
While GaG D MaM contains certain elements in M with lower matrix rank than
rank.a/. If the orbit GaG is closed then all the elements in orbit GaG DMaM D
MaM are of constant matrix rank. This can only happen that a 2 ker.M/, due to
Clark’s theorem that ker.M/ consists of elements in M with lowest matrix rank.
As above mentioned, ker.M/ D Ja D GaG DMaM for any a 2 ker.M/.

The following properties of an irreducible algebraic monoid (see [18, Theorem
6.30]), due to Putcha [16, Theorem 2.13] and [17, Theorem 2.3], are useful.

E.ker.M// � E.R.G// D fe 2 E.M/jJe D J 2e g: (2)

So

E.ker.M// D E.ker.R.G///: (3)

3.2 One- and Two-Sided Centralizers of Minimal
Idempotents of Algebraic Monoids

If an irreducible algebraic monoid M has a group kernel, then M has a unique
minimal idempotent e so ker.M/ D eGe D He , and vise versa. Here our
main interest is the case that the kernel is non-group. In an algebraic group G,
usually, the normal subgroups assure the inheritance of many properties of G. If
e 2 E.ker.M//, then NG.Ge/ D CG.e/. We have the following

Proposition 7 ([11, Proposition 2.1]). Let M be an irreducible algebraic monoid
with unit group G and a minimal idempotent e. The following are equivalent:

(i) CG.e/ GG;
(ii) e is central in M , that is, ker.M/ D He is a group;

(iii) C.ker.M// D ker.C.M//;
(iv) C.ker.M// ¤ ;;
(v) dimE.ker.M// D 0;

(vi) CB.e/ D B for some (or any) Borel subgroup B of G;
(vii) CP .e/ D P for some (or any) parabolic subgroup P of G;
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(viii) Ru.G/ � CG.e/;
(ix) Ge GG.

Moreover, if M is regular with kernel a group, then dim ker.C.M// 	
dimRu.C.G//.

Although for any e 2 E.M/, the algebraic subgroup CG.e/ as well as C l
G.e/

is irreducible [18, Theorem 6.16], CM.e/ can be reducible [18, Example 6.15].
However, we have the following

Theorem 4 ([9, Theorem 3.8]). Assume M is an irreducible algebraic monoid
with unit group G and e 2 E.ker.M//.

• CM.e/ is irreducible and E.CM.e// D E.Me/.
• C r

M .e/ is irreducible and E.C r
M .e// D E.Mr

e /.
• If M is regular, then CM.e/ D CE.M/.e/CG.e/ D E.Me/CG.e/.
• If M is completely regular, CM.e/ D E.T /CG.e/, where T is a maximal torus

of CG.e/. (We remind the reader (cf. [18, Theorem 7.4]) that a regular solvable
algebraic monoid is completely regular.)

WhenM is an irreducible algebraic monoid and e 2 E.ker.M//, by a theorem of
Putcha (cf. [18, Theorem 6.11]), M.e/ is unit dense; by Brion [3], if char.K/ D 0,
all M.e/, CM.e/ and C l

M .e/ are connected algebraic submonoids. Brion [3] also
proved that M (as an algebraic variety) is normal if and only Me (or CM.e/) is so.
Renner [21] proved this when M is regular. So M.e/ D Me when M is normal.
Actually, Brion’s arguments for these properties work for arbitrary characteristic of
the ground field K. Thus we have the following

Theorem 5. When M is an irreducible algebraic monoid with e 2 E.ker.M//,

(1) All M.e/, CM.e/ and C l
M .e/ are connected dense unit algebraic submonoids;

(2) M (as an algebraic variety) is normal if and only if Me (or CM.e/) is so;
(3) M.e/ DMe when M is normal.

Remark 3. Property (3) does not hold in general for irreducible non-normal alge-
braic monoids. The following counter-example is suggested by [18, Example 6.12]

M D f.a; b; c/ 2 K3ja2b D c2; b ¤ 0g
with pointwise multiplication. Then M is a non-normal toric monoid with
ker.M/ D .0;K�; 0/ and with unit group G D f.a; b; c/ 2 K3ja2b D c2 ¤ 0g.
Take e D .0; 1; 0/. Then e 2 E.ker.M// and

G.e/ D fx 2 Gjxe D eg D f.a; 1; a/ja 2 K�g [ f.b; 1;�b/jb 2 K�g:
Thus G.e/ is not connected, but

M.e/ D fx 2M jxe D eg D f.a; 1; a/ja 2 Kg [ f.b; 1;�b/jb 2 Kg
is a connected monoid.
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4 Regularity Conditions

Regular algebraic monoids are of central position in the Putcha-Renner theory of
algebraic monoids. By the author [10, Theorem 5.1], every connected algebraic
group G with nontrivial characters can be realized as the proper unit group of
an irreducible regular (normal) algebraic monoid. On the other hand, every unit
dense regular algebraic monoid M with unit group G is decomposed into a disjoint
union of finite G � G orbits, of which the kernel ker.M/ is the unique closed
orbit; and each orbit is exactly a regular J -class Je , where e 2 E.M/. Since
the normalization of a regular algebraic monoid is regular, Renner [21] (or [22,
Theorem 4.13]) determines all regular normal algebraic monoids with a given unit
group as follows.

Theorem 6 ([22, Theorem 4.13]). If M is irreducible, normal and regular, and
e 2 E.ker.M//, then GeRu.G/ is normal and regular and

M D GeRu.G/ �GeRu.G/ G:

All irreducible normal regular algebraic monoids are of this form.

Since a normalization of an irreducible affine regular monoid is an irreducible
normal regular affine algebraic monoid, by the above theorem, an irreducible regular
algebraic monoid is birationally equivalent to a normal algebraic monoid of the form
given in the above theorem.

Most regularity conditions found are with kernel data.

Theorem 7. Let M be an irreducible algebraic monoid with G its unit group, e 2
E.ker.M//. Then the following are equivalent:

(1) M is regular;
(2) [18, Theorem 7.4] Me is regular (equivalently, one thus any of Ml

e , CM.e/ and
C l
M .e/, is so);

(3) [18, Theorem 7.4] Ge is reductive;
(4) [10, Theorem 5.5] dimRu.G/ D dimE.ker.M//C dimRu.eGe/;
(5) [10, Theorem 6.3] the product map

 W Ru.G
l
e/ �Ru.CG.e// �Ru.G

r
e /! Ru.G/

is a variety isomorphism.

In Theorem 7’s last condition, the constraint that Char.K/ D 0 in [10,
Theorem 6.3] is removed: the corresponding argument is replaced by using Renner’s
proof for [21, Proposition 2.5].

Characterization (3) is of fundamental impact on and the start of the development
of the Putcha-Renner theory of reductive monoids.
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Remark 4. The kernel of an irreducible regular algebraic monoid M also plays a
determining role in semigroup algebra F ŒM�. Indeed, by [13], if M is regular, for
any field F of characteristic zero, the semigroup algebra F ŒM� is semisimple if and
only if F Œker.M/� is semisimple.

5 Nilpotency, Solvability, Reductivity and Semisimpleness

The concepts of nilpotency, solvability and reductivity are of basic importance in
linear algebraic groups, Lie groups and Lie algebras.

Theorem 8. Let M be an irreducible algebraic monoid with G its unit group, e 2
E.ker.M//.

• [6] If M is nilpotent, then E.M/ is finite and ker.M/ is a nilpotent (algebraic)
group; when M is regular, the converse is true.

• [11, Proposition 2.3] M is solvable if and only if CM.e/ is so.
• [8] M is reductive if and only if M is regular and ker.M/ is a reductive group if

and only if both Me and ker.M/ are reductive.
• [8] M is semisimple if and only if Me is semisimple monoid and ker.M/ is a

semisimple group if and only if M is regular with jC.E.M//j D 2 and ker.M/

is a semisimple group.
• M is toric if and only if both Me and ker.M/ are toric.

We also have the following relevant results about nilpotency, solvability, reduc-
tivity and semisimpleness with kernel data.

Remark 5. Let M be an irreducible algebraic monoid with G its unit group, e 2
E.ker.M//.

• If M is not regular, that jE.M/j < 1 and ker.M/ being a nilpotent algebraic
group does not imply the nilpotency of G: for example,

M D
��
a b

0 a2

�

a; b 2 K
�

:

• [18, Proposition 6.24] If eGe is solvable and jE.M/j <1, then M is solvable.
• Renner [20] classifies all normal (irreducible) regular solvable algebraic monoids

with a given unit group G and proves that if M is normal, regular and solvable,
then M D Ru.G/

l
eCM .T /Ru.G/

r
e . His construction for group embedding is

generalized by the author for general group embedding [10, Theorem 5.1]:
when (and only when) rank.R.G// > 0 (equivalently, �.G/ ¤ 0), there is an
irreducible regular normal algebraic monoid M © G such that G is the unit
group of M . Indeed, by Renner’s construction [20], there is a normal regular
solvable monoid R.G/; let M D R.G/ �R.G/ G. Then M is irreducible normal
regular monoid with G its unit group.
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• It follows from the above theorem that, if M is reductive, then Me is a
reductive monoid and ker.M/ is reductive group. Vinberg [24] proves that
when char.K/ D 0, a normal reductive monoid is an almost direct product of
a reductive monoid with zero and a reductive group. It shows how a normal
reductive monoid is determined by Me and ker.M/.

6 Unipotent Radicals and Their Decompositions
with Kernel Data

In this section, we describe the relations between Ru.G/ and algebraic subgroups
Ru.G

l
e/, Ru.G

r
e /, Ru.C

l
G.e//, R.C

r
G.e//, R.Ge/, R.CG.e//, where e is a minimal

idempotent.

6.1 ker.M/, Minimal Idempotents and Unipotent Radicals

In an irreducible algebraic monoid M with unit group G, there is very close
interconnection between ker.M/ and Ru.G/ as well as its one- and two-sided
centralizers of minimal idempotents (cf. [10, 20, 21]).

Proposition 8 ([10, Corollary 4.5]). Let M be an irreducible algebraic monoid,
G its unit group and e 2 E.ker.M//. Then

ker.M/ D Ru.G
l
e/eGeRu.G

r
e /:

For any e 2 E.ker.M//, by [10, Lemma 3.7],

E.ker.M// D fvev�1jv 2 Ru.G/g:

It is well known that E.ker.M// Š E.Me/ � E.eM/ as algebraic varieties,
and that E.Me/ and E.eM/ are irreducible closed subvarieties of M (thus so
is E.ker.M//). Since E.Me/ D ker.M l

e / and E.eM/ D ker.Mr
e /, by [9,

Corollary 2.5 and Proposition 3.2], all E.Me/, E.eM/ and E.ker.M// are smooth
varieties.

We have the following decomposition of the unit group of an irreducible monoid,
which plays a key role in the study of interconnection between unipotent radicals
and the kernel data.

Proposition 9 ([10, Lemma 3.6]). LetM be an irreducible algebraic monoid with
unit group G, e a minimal idempotent of M . Then

G D CG.e/Ru.G/ D Gl
eCG.e/G

r
e D Ru.G

l
e/CG.e/Ru.G

r
e /: (4)
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Remark 6. Intriguingly, following counterexample shows that in general
M � CM.e/Ru.G/ ¤ Ru.G/CM .e/ ¨ M even if M is regular.

Let

M D

8
ˆ̂
<

ˆ̂
:

0

B
B
@

x bx 0 0

0 ax 0 0

0 0 a2x cx

0 0 0 x

1

C
C
A j a; b; c 2 K; x 2 P

9
>>=

>>;

�M4n.K/;

where P � GLn.K/ is a nontrivial connected algebraic group. Then M D G [
ker.M/ thus M is regular, where

G D

8
ˆ̂
<

ˆ̂
:

0

B
B
@

x bx 0 0

0 ax 0 0

0 0 a2x cx

0 0 0 x

1

C
C
A j a ¤ 0; b; c 2 K; x 2 P

9
>>=

>>;

;

ker.M/ D

8
ˆ̂
<

ˆ̂
:

0

B
B
@

x bx 0 0

0 0 0 0

0 0 0 cx

0 0 0 x

1

C
C
A j b; c 2 K; x 2 P

9
>>=

>>;

I

E.ker.M// D

8
ˆ̂
<

ˆ̂
:

0

B
B
@

In bIn 0 0

0 0 0 0

0 0 0 cIn
0 0 0 In

1

C
C
A j b; c 2 K; x 2 P

9
>>=

>>;

:

Take e D

8
ˆ̂
<

ˆ̂
:

0

B
B
@

In 0 0 0

0 0 0 0

0 0 0 0

0 0 0 In

1

C
C
A 2 E.ker.M//

9
>>=

>>;

. We have that

M © CM.e/Ru.G/ ¤ Ru.G/CM .e/ ¨ M

and

M © C l
M .e/ ¤ C r

M .e/ ¨ M:

As we shall see shortly, when e 2 E.ker.M//, all Ru.G
l
e/, Ru.G

r
e /, Ru.C

l
G.e//,

Ru.C
r
G.e//,Ru.Ge/,Ru.CG.e// are subgroups ofRu.G/. We remind the reader that

in general if e is not minimal, Ru.G
l
e/, Ru.G

r
e /, Ru.C

l
G.e//, Ru.C

r
G.e//, Ru.Ge/,

Ru.CG.e// may not be subgroups of Ru.G/. For example, let M DM3.K/ (whose

unit group G D GL3.K/) and e D


1 0 0
0 0 0
0 0 0

�
. We have
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CG.e/ D


K� 0
0 GL2.K/

�
; C r

G.e/ D


K� K K
0 GL2.K/

�
;

Ge D
�
1 0
0 GL2.K/

	
; Gr

e D
�
1 K K
0 GL2.K/

	
;

Ru.C
r
G.e// D

�
1 K K
0 I2

	
; Ru.G

r
e / D

�
1 K K
0 I2

	
;

R.G/ D K�I3; Ru.G/ D fI3g;

where Ij is the identity matrix of degree j and K� D K n f0g.
We shall show how Ru.G/ is decomposed into product of unipotent radicals

of those featured subgroups. The following results are basic but also serve as
convenience tools.

Proposition 10 ([10, Lemmas 4.2 and 4.4]). Let M be an irreducible algebraic
monoid, G its unit group and e 2 E.ker.M//.

(i) Ru.Ge/ � Ru.CG.e// � Ru.C
r
G.e// � Ru.G/ and

Ru.Ge/ � Ru.G
r
e / � Ru.C

r
G.e//;

(ii) Ru.Ge/ D Ru.G/e G CG.e/;
(iii) Ru.G

r
e / D Ru.G/

r
e G C r

G.e/;
(iv) Ru.CG.e// D CRu.G/.e/;
(v) Ru.C

r
G.e// D C r

Ru.G/
.e/ D Ru.CG.e//Ru.G

r
e /;

(vi) Ru.G/ has the following decompositions:

Ru.G/ D Ru.G
l
e/Ru.CG.e//Ru.G

r
e / D Ru.C

l
G.e//Ru.C

r
G.e//:

By Theorem 7 (5) below, the first decomposition is a direct product (as
varieties) when M is regular.

Corresponding to the above properties of unipotent radicals, we have the
following properties of radicals of algebraic subgroups of the unit group of an
irreducible algebraic monoid.

Proposition 11 ([10, Lemma 4.1]). Let M be an irreducible algebraic monoid, G
its unit group and e 2 E.ker.M//.

(i) R.He/ D R.He/ � R.CG.e//;
(ii) R.Ge/ D R.G/e G CG.e/;

(iii) R.Gr
e / D R.G/re D R.Ge/Ru.G

r
e / G C r

G.e/;
(iv) R.CG.e// D CR.G/.e/;
(v) R.C r

G.e// D C r
R.G/.e/ D R.CG.e//Ru.G

r
e /;

(vi) R.Ge/ � R.CG.e// � R.C r
G.e// � R.G/ and

R.Ge/ � R.Gr
e / � R.C r

G.e//.
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7 Relations Between the Kernel and Unipotent Radical

There are close relations between ker.M/ (or minimal idempotents) and Ru.G/.
Since the dimension of an algebraic variety carries lots of structural information of
the variety, the following relation is perhaps the deepest and of intrinsic interest to
structure of algebraic monoids.

Theorem 9 ([10, Theorem 5.5]). Let M be an irreducible algebraic monoid, G
the unit group of M and e 2 E.ker.M//. Then

dimRu.G/ D dimE.ker.M//C dimRu.Ge/C dimRu.eGe/

D dimE.ker.M//C dimRu.CG.e//:

Now the reductivity condition of M that Me is a reductive monoid and ker.M/ is a
reductive group is a direct consequence of the above theorem.

A closely relevant dimensional relation is the following [10, Theorem 5.5]

dimR.G/ D dimE.ker.M//C dimR.CG.e//

D dimE.ker.M//C dimR.Ge/C dimR.eGe/:

It is well known that if char.K/ D 0, then a connected algebraic group G over
K admits a Levi decomposition G D G0 Ë Ru.G/. On the other hand, whenever
an algebraic group G with nontrivial �.G/ admits a Levi decomposition, Renner
[21] shows that there is a simple group embedding G D G.M/ ¨ M such that
G0 D Ge for a minimal idempotent e of M . The following result shows that given
an irreducible algebraic monoid M when G admits a Levi decomposition G D
Ge ËRu.G/.

Proposition 12 ([10, Lemma 6.1]). Let M be an irreducible algebraic monoid
with unit group G and e 2 E.ker.M//. Then the following are equivalent:

(i) rank.Ge/ D rank.G/;
(ii) G D GeRu.G/;

(iii) ker.M/ D Ru.G/eRu.G/;
(iv) ker.M/ D ıe.Ru.G//;
(v) He D eRu.CG.e//;

(vi) He is unipotent.

Then a natural question arises: is there any easily controllable relations between
ker.M/ and Ru.G/ featuring the Levi decomposition? Via the above mentioned
retraction ıe WM � ker.M/, we have the following result.

Theorem 10 ([10, Theorem 6.4 and Corollary 6.5]). Let M be an irreducible
regular algebraic monoid with G its unit group, e 2 E.ker.M// and char.K/ D 0.
Then the following are equivalent:
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(i) G D Ge ËRu.G/ is a Levi decomposition;
(ii) G D GeRu.G/;

(iii) Ru.G/ Š ker.M/ as algebraic varieties;
(iv) dimRu.G/ D dim ker.M/.

When one thus all of the above (equivalent) conditions are satisfied, the restriction
to Ru.G/ of ıe gives rise to an algebraic variety isomorphism from Ru.G/ onto
ker.M/.

Proposition 13 ([10, Corollary 6.6]). If G is a connected algebraic group admit-
ting a Levi decomposition with �.G/ ¤ 0 and char.K/ D 0, then there is an
irreducible regular algebraic monoid M with M D G such that Ru.G/ as an affine
variety is isomorphic to ker.M/.

When ker.M/ consists of (minimal) idempotents, what will happen?

Proposition 14 ([10, Corollary 6.7]). Let M be an irreducible algebraic monoid
with unit group G, e 2 E.ker.M// and char.K/ D 0. If ker.M/ D E.ker.M//,
then the following are equivalent.

(i) M is regular;
(ii) G D Ge ËRu.G/, where Ge is a Levi subgroup;

(iii) Ru.G/ Š E.ker.M// as algebraic varieties.

Theorem 11 ([10, Theorem 6.8]). LetM be an irreducible algebraic monoid with
G its unit group, e 2 E.ker.M// and char.K/ D 0. Then the following are
equivalent:

(i) Ru.G/ Š E.ker.M// as algebraic varieties;
(ii) dimRu.G/ D dimE.ker.M//;

(iii) CG.e/ is a reductive group.

Problem 1. We do not know yet if the constraint char.K/ D 0 in the above
theorems is removable.

8 Parabolic Subgroups

The parabolic subgroups play a crucial role in the structure of the algebraic groups,
especially in the structure of reductive groups. Analogues of parabolic subgroups
of algebraic groups are parabolic subgroups in complex Lie groups [14, §6.1],
parabolic subalgebras in Lie algebras, parabolic subgroups of finite groups of Lie
type, block-triangularizable sub-algebras in linear associative algebras (cf. [5]).

Parabolic subgroups also play an important role in the Putcha-Renner theory of
(algebraic) reductive monoids. The parabolic subgroups for reductive monoids with
zero have been well studied by Putcha et al. [18,19,22], where parabolic subgroups
are realized as one-sided centralizers of idempotents in a cross-section lattice [18,
Theorem 10.20]; while parabolic subgroups for general algebraic monoids are yet to
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be studied. In [11], the author proved that there exists a one-to-one correspondence
between the parabolic subgroups of G and their counterparts of CG.e/, where e is
a minimal idempotent of M . In many situations, ker.M/ is not a group, in other
words, CG.e/ is a proper (closed connected) subgroup of G (we shall see that
this is equivalent to that CP .e/ is proper in P for any/some parabolic subgroup
P of G). Notice that when M is normal (respectively, smooth) if and only if the
irreducible algebraic submonoid CM.e/ is so; and G=CG.e/ is an affine variety
(cf. [3, Lemma 1.2.3 and Corollary 2.3.3]).

It is well known that if char.K/ D 0 or G being reductive, parabolic subgroups
of a reductive group have a Levi decomposition. Here we shall show that, for an
irreducible algebraic monoid M over an algebraically closed field and with unit
group G, any parabolic subgroup P of G is uniquely determined by the proper
subgroup CP .e/; precisely, P can be properly decomposed into a product of the
centralizer CP .e/ of a minimal idempotent e and the unipotent radical Ru.G/ of G.
In the important particular case that CG.e/ is reductive, we shall see that the product
P D CP .e/Ru.G/ is semi-direct.

Recall that if M is an irreducible algebraic monoid with unit group G and e 2
E.ker.M//, then E.ker.M// � R.G/. Thus E.ker.M// � P for any parabolic
subgroup P of G.

Theorem 12 ([11, Theorem 2.4]). LetM be an irreducible algebraic monoid with
unit group G, e 2 E.ker.M// and P a parabolic subgroup of G. Then

(i) P D CP .e/R.G/ D CP .e/Ru.G/;
(ii) P D CP .e/ ËRu.G/ ” dimRu.G/ D dimE.ker.M//;

(iii) if M is regular with ker.M/ D E.ker.M//, then P D Pe ËRu.G/.

Let’s consider the case (iii) of the above theorem: M is regular with ker.M/ D
E.ker.M// and a more general case that G D GeRu.G/. On the one hand, every
connected group over an algebraically closed field of characteristic zero admits a
Levi decomposition G D G0 Ë Ru.G/. In this case, by Renner’s construction [22,
Chapter 4], there exists an irreducible regular algebraic monoid M D G such that
G0 D Ge for some e 2 E.ker.M//. On the other hand, if M D GeRu.G/ is
regular with e 2 E.ker.M//, then the decomposition G D GeRu.G/ is a Levi
decomposition.

Recall that a Putcha lattice of cross-sections � is a subset of E.T /, where T is
a maximal torus of G, such that j� \ J j D 1 for each regular J -class J and if
e; f 2 � then Je 	 Jf H) e 	 f .

We have the following determination of the parabolic subgroups.

Theorem 13. Assume that M is an irreducible regular algebraic monoid with unit
group G and e 2 E.ker.M//. If G D GeRu.G/ (in particular, if ker.M/ D
E.ker.M//), then each parabolic subgroup P is of the form C r

Ge
.� / Ë Ru.G/ or

C l
Ge
.� /ËRu.G/, where � is a nonempty subset of a Putcha lattice of cross-sections

� of Me .
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Proof. We first prove that P D PeRu.G/. Indeed, PeRu.G/ is a connected closed
subgroup of P . By the above theorem, P D CP .e/Ru.G/. So

dimP D dimCP .e/C dimRu.G/ � dimRu.CP .e//

D dimPe C dimRu.G/C dim ePe � dimRu.Pe/ � dimRu.ePe/

D dimPeRu.G/C .dim ePe � dimRu.ePe//

D dimPeRu.G/. by [10, Lemma 6.1]/:

Thus P D PeRu.G/. The rest then follows from [18, Theorem 10.20].

Proposition 15 ([11, Corollary 2.6]). Let M be an irreducible algebraic monoid
with unit groupG, e 2 E.ker.M// and P a parabolic subgroup ofG. The following
are equivalent:

(i) P D CP .e/ ËRu.G/

(ii) G D CG.e/ ËRu.G/;
(iii) B D CB.e/ ËRu.G/ for some Borel subgroup B of G;
(iv) M is regular with eGe reductive.

When one thus all above conditions are satisfied, G D CG.e/Ru.G/ is a Levi
decomposition of G.

Example 1. Let

M D
0

@
1 Kn 0

0 Mn.K/ 0

0 0 H

1

A ;

where H is a nontrivial connected reductive group. Choose e D
0

@
1 0 0

0 0Mn.k/ 0

0 0 1H

1

A.

Then M is an irreducible regular algebraic monoid with

CG.e/ D
0

@
1 0 0

0 GLn.K/ 0
0 0 H

1

A ; CB.e/ D
0

@
1 0 0

0 Tn.K/ 0

0 0 BH

1

A

and

Ru.G/ D
0

@
1 Kn 0

0 1Mn.K/ 0

0 0 1H

1

A :

Consider a Borel subgroup B of G, the unit group of M , given by
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B D
0

@
1 Kn 0

0 Tn.K/ 0

0 0 BH

1

A

where Tn.K/ is the upper nonsingular matrices in Mn.K/ and BH is a Borel
subgroup of H . We have the following decompositions:

B D CB.e/Ru.G/ D CB.e/ ËRu.G/

D
0

@
1 0 0

0 Tn.K/ 0

0 0 BH

1

A Ë

0

@
1 Kn 0

0 1Mn.K/ 0

0 0 1H

1

A I

G D CG.e/Ru.G/ D CG.e/ ËRu.G/

D
0

@
1 0 0

0 GLn.K/ 0
0 0 H

1

A Ë

0

@
1 Kn 0

0 1Mn.K/ 0

0 0 1H

1

A :

The corresponding Levi decomposition of B is

B D TBRu.B/ D TB ËRu.B/

D
0

@
1 0 0

0 Dn.K/ 0

0 0 TH

1

A Ë

0

@
1 Kn 0

0 Un.K/ 0

0 0 Ru.BH /

1

A ;

where Dn.K/ is the set of nonsingular diagonal matrices in Mn.K/, Un.K/ the
strictly upper triangular matrices in GLn.K/ and TH � BH is a maximal torus
of H .

Notice that CG.e/ is reductive. Thus in this case the decomposition CG.e/Ru.G/

is a Levi decomposition of G.

We denote by BG the set of Borel subgroups ofG and by PG
B the set of parabolic

subgroup of G containing the Borel subgroup B . The following result as we shall
see is a direct consequence of Theorem 12.

Theorem 14 ([11, Theorem 3.1]). LetM be an irreducible algebraic monoid with
unit group G, e 2 E.ker.M//.

(i) BCG.e/ D fCB.e/jB 2 BGg and the map

BG ! BCG.e/ by B 7! CB.e/

is a bijection.
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(ii) For a given B 2 BG , PCG.e/

CB.e/
D fCP .e/jP 2 PG

B g and the map

PG
B ! P

CG.e/

CB.e/
by P 7! CP .e/

is a bijection.
(iii) If P is a parabolic subgroup of G and char.K/ D 0, then

G=P Š CG.e/=CP .e/

as projective varieties.
(iv) If P is a parabolic subgroup of G, then G=P D fxP jx 2 CG.e/g.
Remark 7. A direct consequence of Theorems 12 and 14 is the following codimen-
sion equations:

dimG � dimP D dimCG.e/ � dimCP .e/; and

dimP � dimR.G/ D dimCP .e/ � dimCR.G/.e/:

The first immediately follows from Theorem 14 (ii). The second results from
Theorem 12 (i) and [10, Lemma 3.4].

9 Group with Kernel

Putcha [15, Theorem 2.13] proved that if an irreducible algebraic monoid M is one
dimensional with M ¤ G then M D G [ f0g. Conversely, it is easy to show that if
M D G [ f0g then M is one dimensional. The author [7, Proposition 4.7] proved
that ifM is an irreducible algebraic monoid with unit groupG andM D G[E.M/,
then M is solvable with rank.G/ D 1, where e 2 E.ker.M//. Furthermore, we
see that, in this case, M D Ru.G/MeRu.G/. In fact, by [11], M is solvable and
G D CG.e/Ru.G/ D GeRu.G/. Then

M D GeRu.G/ D GeRu.G/ [ ker.GeRu.G//

D GeRu.G/ [Ru.G/eRu.G/ D Ru.G/MeRu.G/:

We now study the structure of an algebraic monoid which is a group with the kernel.

Proposition 16 ([4, Proposition 5.1]). Let M be an irreducible algebraic monoid
with unit group G.

(i) M D G [ ker.M/ if and only if dimM D 1C dim ker.M/;
(ii) if M D G [ ker.M/, then M is the smallest algebraic monoid containing

ker.M/.
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An irreducible algebraic monoid M which is a group with kernel has a simple
structure ofMe (group with zero), where e is a minimal idempotent, while its kernel
can be of quite arbitrary structure: ker.M/ can be a zero, can be any connected
group, or can be of a general Rees structure.

Example 2. Let

M D
�
1 K

0 K

�

� P;

where P is a connected algebraic group. Let e D .

�
1 0

0 0

�

; 1P /. Then e 2
E.ker.M//, and

G D
�
1 K

0 K�
�

� P I ker.M/ D
�
1 K

0 0

�

� P I

M D G [ ker.M/I Me D
�
1 0

0 K

�

� f1P g DMr
e I

CM.e/ D
�
1 0

0 K

�

� P D C r
M .e/I Ru.G/ D

�
1 K

0 1

�

�Ru.P /I

Ge D
�
1 0

0 K�
�

� f1P gI He D
�
1 0

0 0

�

� P I

HeRu.G/ D
�
1 K

0 0

�

� P D ker.M/I Ru.G/He D
�
1 0

0 0

�

� P ¨ ker.M/I

Ml
e D

�
1 K

0 K

�

� f1P gI

Ml
eRu.G/ D Ru.G/M

l
e DMeRu.G/ D

�
1 K

0 K

�

�Ru.P /I

C l
M .e/ D CM.e/Ru.G/ DM D Ru.G/CM .e/:

We saw from the counterexample in (6) that it can happen thatM D G[ker.M/

but

M © CM.e/Ru.G/ ¤ Ru.G/CM .e/ ¨ M

and

M © C l
M .e/ ¤ C r

M .e/ ¨ M:
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Problem 2. If M has no proper irreducible closed submonoid containing ker.M/,
is M a group with kernel?

Acknowledgements This work is partially supported by NSFC Grant 11171202, Guangzhou
University Grant 2001 and Yangcheng Scholar Project 10A033D.

References

1. Borel, A.: Linear Algebraic Groups, 2nd enlarged edn. Springer, Berlin/New York (1991)
2. Brion, M.: On algebraic semigroups and monoids. In: Can M., Li Z., Steinberg B., Wang Q.

(eds.) Algebraic Monoids, Group Embeddings, and Algebraic Combinatorics. Fields Institute
Communications, vol. 71. Springer, New York (2014)

3. Brion, M.: Local structure of algebraic monoids. Moscow Math. J. 8, 647–666 (2008)
4. Huang, W.: Various forms of generating semigroups in algebraic gmonoids. Comm. Algebra

42, 3833–3851 (2014)
5. Huang, W.: An algebraic monoid approach to linear associative algebras, II. Int. J. Algebra

Comput. 6, 623–634 (1996)
6. Huang, W.: Nilpotent algebraic monoids. J. Algebra 179, 720–731 (1996)
7. Huang, W.: On nilpotent and solvable algebraic groups and monoids. Commun. Algebra 24,

2079–2091 (1996)
8. Huang, W.: Reductive and semisimple algebraic monoids. Forum Math. 13, 495–504 (2001)
9. Huang, W.: The kernel of a linear algebraic semigroup. Forum Math. 17, 851–869 (2005)

10. Huang, W.: The kernel, regularity and unipotent radicals in linear algebraic monoids. Forum
Math. 23, 803–834 (2011)

11. Huang, W.: Parabolic subgroups and algebraic monoids. J. Algebra 336, 227–235 (2011)
12. Humphreys, J.E.: Linear Algebraic Groups, corrected 3rd printing edn. Springer, Berlin/New

York (1981)
13. Okninski, J., Putcha, M.: Semigroup algebras of linear semigroups. J. Algebra 151, 304–321

(1992)
14. Onishchik, A.L., Vinberg, E.B.: Lie Groups and Lie Algebras III: Structure of Lie Groups and

Lie Algebras. Encyclopaedia of Mathematical Sciences, vol. 41. Springer, Berlin (1994)
15. Putcha, M.S.: On linear algebraic semigroups. Trans. Am. Math. Soc. 259, 457–469 (1980)
16. Putcha, M.S.: Connected algebraic monoids. Trans. Am. Math. Soc. 272, 693–709 (1982)
17. Putcha, M.S.: A semigroup approach to linear algebraic groups. J. Algebra 80, 164–185 (1983)
18. Putcha, M.S.: Linear Algebraic Monoids. London Mathematical Society Lecture Note Series,

vol. 133, Cambridge University Press, Cambridge/New York (1988)
19. Putcha, M.S.: Parabolic monoids I: structure. Int. J. Algebra Comput. 16, 1109–1129 (2006)
20. Renner, L.E.: Completely regular algebraic monoids. J. Pure Appl. Algebra 59, 291–298 (1989)
21. Renner, L.E.: Regular algebraic monoids. Semigroup Forum 63, 107–113 (2001)
22. Renner, L.E.: Linear Algebraic Monoids. EMS (Invariant Theory and Algebraic Transforma-

tion Groups), vol. 134(V). Springer, Berlin/New York (2005)
23. Rittatore, A.: Algebraic monoids and group embeddings. Transform. Groups 3, 375–396

(1998)
24. Vinberg, E.B.: On reductive algebraic semigroups. In: Gindikin, S.G., et al. (eds.) Lie Groups

and Lie Algebras: E. B. Dynkin’s Seminar. American Mathematical Society Translations Series
2, vol. 169, pp. 145–182. American Mathematical Society, Providence (1995)



Algebraic Monoids and Renner Monoids

Zhenheng Li, Zhuo Li, and You’an Cao

Abstract We collect some necessary concepts and principles in the theory of linear
algebraic monoids which apply to further investigation on other topics such as the
classification of reductive monoids, representations of algebraic monoids, monoids
of Lie type, cell decompositions, monoid Hecke algebra, and monoid schemes. We
use classical monoids as examples to demonstrate notions.

Keywords Algebraic monoid • Renner monoid • Classical monoid • Rook
monoid

Subject Classifications: 20M32

1 Introduction

The Putcha-Renner theory of linear algebraic monoids is a big subject, which
is built on linear algebraic groups, torus embeddings, and semigroups [61, 82].
Over the last three decades the theory has made significant progress in different
fields: reductive monoids, Renner monoids, finite monoids of Lie type, monoids on
groups with BN -pairs, group embeddings, monoid schemes, semisimple monoids,
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J -irreducible monoids, combinatorics, and classical algebraic monoids [4, 12, 36,
40, 51, 61, 62, 64, 71, 75, 77, 80]. Unfortunately, the theory has a marketing problem
as Solomon mentioned in [85], which is a very engaging introduction to the theory.

The aim of this survey paper is two-fold. We first give an introduction to the
theory of linear algebraic monoids, and then focus on the recent developments in
Renner monoids, with the intent to attract readers with interests in algebraic groups,
combinatorics, Lie theory, and semigroup theory. We state the main theorems and
provide sources instead of giving proofs. Occasionally, for some statements of
conclusions we give short arguments.

Classical algebraic monoids are a special class of linear algebraic monoids.
Throughout the paper, classical algebraic monoids are used as examples extensively
to demonstrate important concepts.

The following section is devoted to algebraic monoids in general, including defi-
nitions, methods to construct algebraic monoids, classical monoids, J -class struc-
tures, irreducible algebraic monoids, Putcha lattices, and classical rook monoids.
In the next section we describe reductive monoids, with emphasis on Jordan
decomposition, parabolic subgroups, type maps, and J -irreducible monoids. The
finial section records various recent results on Renner monoids such as definitions
and properties, classical Renner monoids, standard form of elements in a Renner
monoid, reduced row echelon form, length function, generators and defining
relations, orders, conjugacy classes, generating functions, and generalized Renner
monoids.

2 Algebraic Monoids

Let M be an affine variety over an algebraically closed field K together with the
structure of a semigroup. We call M an affine algebraic semigroup, or simply
algebraic semigroup, if the associative operation in M is a morphism of varieties.
An affine algebraic monoid is an affine algebraic semigroup with an identity.
The unit group of an algebraic monoidM is the set of elements ofM with an inverse
inM . We are concerned mainly with algebraic monoids, though we sometimes state
some results on algebraic semigroups.

There are so many interesting examples of algebraic monoids. Every algebraic
group is an algebraic monoid; every finite monoid is an algebraic monoid. Viewed
as an affine space of dimension n2, the set Mn of all n � n matrices over K is
an algebraic monoid under matrix multiplication, called the general linear monoid.
The unit group of Mn is the general linear group GLn. The monoid Dn of diagonal
matrices is algebraic with the group Tn of invertible diagonal matrices as its unit
group. Let Bn be the monoid of all upper triangular matrices. Then Bn is an algebraic
monoid with unit group Bn consisting of all invertible upper triangular matrices.

A Zariski closed submonoid of Mn is called a linear algebraic monoid. The
following theorem shows that every affine algebraic monoid is isomorphic to a linear
algebraic monoid.
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Theorem 1 ([11, II, §2, Theorem 3.3]; [51, Corollary 1.3]). Every affine
algebraic semigroup is isomorphic to a closed subsemigroup of some Mn. In
particular, every affine algebraic monoid is isomorphic to a closed submonoid of
some Mn.

Just as the closed embedding of an algebraic group into some GLn in algebraic
group theory reduces the study of algebraic groups to that of closed subgroups
in GLn, this theorem reduces the study of algebraic monoids to that of closed
submonoids in Mn. From now on, we identify an affine algebraic monoid with its
closed embedding in Mn, and simply refer to it as an algebraic monoid. Every
algebraic monoid M has a dimension, which is the dimension of M as an algebraic
variety [24]. If M is a point then its dimension is zero; if M is a curve then its
dimension is one; if M is a surface then its dimension is two. Also dim Mn D n2,
dim Dn D n and dim Bn D n.nC1/

2
.

The unit group of an algebraic monoid M determines the structure of M to
some extent, and it has been of primary interest in finding connections between the
structures of an algebraic monoid and its unit group [60]. Theorem 2 shows that
the unit group is an open subgroup in the monoid and is equal to the intersection of
the monoid with the general linear group.

Theorem 2 ([11, II, §2, Corollary 3.5]; [74, Corollary 2.2.3]). Let M be an
algebraic monoid. Then its unit group G D M \ GLn. Furthermore, G is an
algebraic group and there is a morphism ˛ W M ! K such that G D ˛�1.K�/,
where K� D K n f0g. In particular, G is open in M .

The set E.M/ of idempotents of M contains certain controlling structural
information about M . This set carries the partial order

e � f , fe D e D ef:

In what follows, we assume that the partial order on any subset ofE.M/ is inherited
from this one.

Proposition 1 ([61, Corollary 3.26]; [82, Proposition 3.12]). Let M be an alge-
braic monoid and e 2 E.M/. Then eMe is an algebraic monoid; its unit group
is precisely the H -class of e. This unit group is an algebraic group and is open
in eMe.

The Zariski closures of subsets of M are fundamental in the theory of algebraic
monoids. Lemma 1 below is useful technically in dealing with these closures. If X
is a subset ofM , we use X to denote the Zariski closure of X inM . In particular, if
M DMn, then GLn DMn, Tn D Dn and Bn is the Zariski closure of Bn.

Lemma 1 ([53, Lemma 1.2]). Let X and Y be subsets of an algebraic monoid M
with unit group G. Then

(1) XY D X Y .
(2) If a; b 2 G, then aXb D aXb.
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How to construct algebraic monoids? It is an easy task, based on the obvious fact
that a closed submonoid of an algebraic monoid is again an algebraic monoid. The
following corollary provides us with a great deal of examples of algebraic monoids.

Corollary 1. If S is a submonoid of Mn, then S is an algebraic monoid.

Indeed, it follows from Lemma 1 that S S � S S D S S D S . Thus S is a
closed submonoid of Mn.

Corollary 2. Let G be a subgroup of Mn. Then G � Mn is an algebraic monoid.
If G � GLn, then the unit group of G is the Zariski closure of G in GLn.
Furthermore, if G is an algebraic group then the unit group of G is G.

Algebraic monoids are special semigroups, of which Green relations J , L , R,
and H are fundamental structure elements. Let S be a semigroup and a; b 2 S .
Then by definition

aJ b if S1aS1 D S1bS1I
aL b if S1a D S1bI
aRb if aS1 D bS1I
aH b if aL b and aRb:

where S1 D S if S is a monoid and S1 D S [ f1g with obvious multiplication if S
is not a monoid. We use Ja and Ha to denote the J -classes and H -classes of a,
respectively.

Algebraic semigroups are special kinds of strongly �-regular semigroups.
A semigroup S is strongly �-regular if for any a 2 S there exists a positive
integer k such that ak lies in He for some idempotent e 2 E.S/. A strongly
�-regular semigroup is also refereed to as an epigroup or a group-bound semigroup
in the literature of semigroup theory [14, 17, 27–30]. Every finite semigroup is
strongly �-regular; so is the full matrix monoid consisting of all square matrices
over a field. The concept of strongly �-regular captures the semigroup essence
of algebraic semigroups [82]. Putcha [51, 52, 61] and Brion and Renner [5] in
this proceedings contain more information on algebraic semigroups and strongly
�-regular semigroups. Okninski [48] is a very comprehensive reference on strongly
�-regular matrix semigroups.

A nonempty subset I of S is an ideal if S1IS1 � I . Clearly S is an ideal of S .
If S is strongly �-regular and S is its only ideal then we say that S is completely
simple. The minimal ideal, if it exists, is called the kernel of S . The reader who
is interested in kernel of linear algebraic monoids can find useful results in Huang
[20–22]. The following two theorems confirm that every algebraic semigroup and
hence algebraic monoid is strongly �-regular, and contains a closed completely
simple kernel.
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Theorem 3 ([51, Corollary 1.4]). Let S be an algebraic semigroup. Then there
exists a positive integer n such that an lies in a subgroup of S for all a 2 S . In
particular, every algebraic monoid is strongly �-regular.

Theorem 4 ([51, Corollary 1.5]). Every algebraic semigroup has a kernel which
is closed and completely simple.

2.1 Some Classical Monoids

We introduce some families of algebraic monoids, called classical monoids, which
are closely related to classical groups. These monoids play an important role in the
theory of algebraic monoids [31–33,36]. The parameter l in each case is 1 less than
the dimension of the closed subgroup of diagonal matrices in the unit groupG of the
monoid under discussion. This l is also the dimension of the Cartan subalgebra of
the Lie algebra of G.

Al : The general linear monoid Mn with n D lC 1: Let G D K�SLn where SLn is
the special linear group consisting of the matrices of determinant 1 in GLn. Then
G D GLn, and Mn D G.

Cl : The symplectic monoid MSpn with n D 2l : The symplectic group is

Spn D fA 2 GLn j A>JA D J g

where J D
�
0 Jl
�Jl 0

�

with Jl D
�

1��
1

�

of size l . Let G D K�Spn. Then

G � GLn. The monoidG is called the symplectic monoid which will be denoted
by MSpn. It is usually hard to give a concrete algebraic description of the Zariski
closure of a subset of an algebraic monoid. It follows, however, from Doty [12]
that

MSpn D fA 2Mn j A>JA D AJA> D cJ for some c 2 Kg:

Bl : The odd special orthogonal monoid MSOn with n D 2l C 1: If the
characteristic ofK is not 2, then the odd special orthogonal group is by definition

SOn D fA 2 SLnj A>JA D J g

where J D
0

@
0 0 Jl
0 1 0

Jl 0 0

1

A. Let G D K�SOn � GLn. The monoid G is called the

odd special orthogonal monoid, denoted by MSOn. By [12] we have

MSOn D fx 2Mn j A>JA D AJA> D cJ for some c 2 Kg:
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Dl : This is the even special orthogonal monoid MSOn with n D 2l , defined by
taking the Zariski closure ofK�SOn in which SOn is given by the same condition

as Bl : A>JA D J , where the matrix J now is

�
0 Jl
Jl 0

�

(if the characteristic of

K is not 2). Notice that the set

M D fA 2Mn j A>JA D AJA> D cJ for some c 2 Kg

is an algebraic monoid. Naturally we ask: whether MSOn equals M ? Unfortu-
nately, no. In fact, M is reducible, and MSOn is its identity component. More
information about this M will be provided in Sect. 2.3.

The symplectic and special orthogonal algebraic monoids arise geometrically as
monoids of linear transformations that dilate certain skew-symmetric and symmetric
bilinear forms, respectively.

2.2 Monoids Induced from Representations

To construct further examples of algebraic monoids, we start with rational represen-
tations of algebraic groups. A rational representation of an algebraic group G0 is a
group homomorphism � W G0 ! GLn which is also a morphism of varieties [1,24].
The image �.G0/ is an algebraic group. Let

G D K��.G0/ D fc�.g/ j c 2 K� and g 2 G0g:

Then G is an algebraic group by [24, Corollary 7.4]. However, G is not a closed
subset of Mn since the zero matrix is in G but not in G. Write

M.�/ D G:

It follows from Corollary 2 that M.�/ is an algebraic monoid with unit group G.
In addition, if G0 is irreducible, so are M.�/, G and �.G0/. Clearly, �.G0/ is a
subgroup of G.

Why do we multiple �.G0/ by K� and then take the Zariski closure of the
product? We note that if �.G0/ is closed in Mn, then the monoid �.G0/ D �.G0/ is
a group, nothing new. This is the case ifG0 is the special linear group. To make sure
that G is a monoid which includes G properly, G must contain at least one matrix
whose determinant is not 1. Renner [74, Theorem 3.3.6] and Waterhouse [91]
provide conditions under which an algebraic group G can be embedded as the unit
group of an algebraic monoid which are not a group. Huang [21, Theorem 5.1]
refines the above result and states that under the same conditions, the group G may
be embedded properly into a normal regular algebraic monoid. We refer to the above
references for more details.
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The classical monoids can be constructed via certain representations of classical
groups. Let V D Kn, and G0 be the special linear group, symplectic group (n is
even), or special orthogonal group. Then G0 acts naturally on V by their very
definition, and we obtain the natural representation � W G0 ! GLn with �.g/ D g.
The monoid M.�/ is the general linear monoid, symplectic monoid, and special
orthogonal monoid, respectively.

Let’s explore two more examples obtained by representations. They are taken
from [85] and the latter is a variant of Example 8.5 of [61].

Example 1. Let G0 D SLm and V D Km ˝ Km with basis fvi ˝ vj j 1 � i <

j � mg. Define a rational representation � W G0 ! GLn by �.g/.v˝v0/ D gv˝gv0,
where n D m2. The monoid M.�/ D fa ˝ a j a 2 Mmg is isomorphic to Mm. In
particular, G D fg ˝ g j g 2 GLmg, isomorphic to GLm.

Example 2. Let V D Km ˝ Km be as in Example 1 and let G0 D SLm. Define a
rational representation � W G0 ! GLn by �.g/.v ˝ v0/ D gv ˝ .g�1/>v0, where
n D m2. Though the monoid M.�/ is hard to describe algebraically, we however
know that the unit group of M.�/ is closely related to SLm. But M.�/ is different
dramatically from Mm since E.M.�// and E.Mm/ are not isomorphic.

2.3 Irreducible Algebraic Monoids

An algebraic monoid is irreducible if it is irreducible as an affine algebraic variety,
that is, it is not a union of proper Zariski closed subsets. The monoids Mn, Dn, and
Bn are irreducible. The classical monoids of types Al ; Bl ; Cl , and Dl above are all
irreducible. The monoid in Example 8 is irreducible since it is isomorphic to the
affine space KnC1 as varieties.

An algebraic monoid M � Mn is connected if it is connected as a subset of
Mn in the Zariski topology. Irreducible algebraic monoids are connected, but not
conversely. For example, the monoid

M D f.a; b/ 2 K2 j a2 D b2g

is connected but not irreducible. The monoid in the following example is another
instance of connected monoids even though not irreducible.

Example 3 ([12, Section 6]). Assume that the characteristic of K is not 2. Let

M D fA 2Mn j A>JA D AJA> D cJ for some c 2 Kg

where J D
�
0 Jl
Jl 0

�

. The unit group of M is

G D fA 2Mn j AJA> D cJ for some c 2 K�g:
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The subgroup T of G consisting of invertible diagonal matrices in G is a maximal
torus of G. The orthogonal group in GLn is

On D fA 2 GLn j AJA> D J g:

Let OC
n D fA 2 On j detA D 1g and O�

n D fA 2 On j detA D �1g. Then
On D OC

n [O�
n . Denote by GC the subgroup of G generated by T and OC

n . Then
GC D K�SOn is a closed and connected subgroup of G. So the Zariski closure
of GC in Mn is the even special orthogonal monoid MSOn with unit group GC.
Therefore, MSOn is the irreducible identity component of M .

If n D 2, then the monoid in Example 3 is

M D
( �

a

b

� ˇ
ˇ
ˇ
ˇ a; b 2 K

)

[
( �

c

d

� ˇ
ˇ
ˇ
ˇ c; d 2 K

)

:

This monoid has two irreducible components, and so is reducible, but is connected.
However, its unit group G is not connected since G has two connected components.

Theorem 5 ([61, Proposition 6.1]). Suppose that M is an irreducible algebraic
monoid with unit group G, and a; b 2M . Then

(1) aJ b if and only a 2 GbG.
(2) aL b if and only if a 2 Gb.
(3) aRb if and only if a 2 bG.

This theorem allows us to interpret J ;L and R-classes in M using group actions
ofG onM . Each J ;L , and R-class is an orbit of a group action, which sometimes
indicates connections with geometry such as orbits and closures.

SinceGM �M andMG �M , we have the left action ofG given by g�a D ga,
and the right action given by a�g D ag�1. Theorem 5 shows that ifM is irreducible,
then a; b lie in the same L -class if and only if they lie in the same left G orbit, and
that a; b are in the same R-class if and only if they are in the same right G orbit.
The L -class of a is thus the orbit Ga, and the R-class of a is the orbit aG. The
left and right G orbits are closely related to row and column echelon forms of M ,
respectively, which will be described in Sect. 4.4.

Consider the group action of G � G on M by .g; h/ � a D gah�1 for g; h 2 G
and a 2 M . Let GnM=G denote the set of orbits GaG for this action. It follows
from Theorem 5 that if M is irreducible, then a; b lie in the same J -class if and
only if they lie in the same G � G orbit. Moreover, the J -class Ja D GaG. We
give GnM=G the partial order

Ja � Jb ,MaM �MbM , GaG � GbG;

henceforth .GnM=G; �/ is a poset. We examine this poset for different irreducible
monoids.
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Example 4. Let M D Mn. Then G D GLn. If a; b 2 M then GaG D GbG

if and only if a and b are of the same rank. There is a bijection of GnM=G onto
f0; 1; � � � ; ng given by GaG 7! rank a. The partial order is the natural linear order
on f0; 1; � � � ; ng as illustrated in the first figure below. Clearly, the number ofG�G
orbits in M is nC 1.

Example 5. Let M D MSpn with unit group G and n D 2l . If a; b 2 M then
GaG D GbG if and only if rank a D rank b. There is a bijection of GnM=G onto
f0; 1; � � � ; l; ng given by GaG 7! rank a. The partial order is the natural linear
order on f0; 1; � � � ; l; ng as illustrated in the second figure. Note that there are no
elements of rank greater than l but less than n in M . The number of G � G orbits
in M is l C 2.

Example 6. The lattice of the G � G orbits of the odd special orthogonal monoid
MSOn with n D 2l C 1 is isomorphic to that of the symplectic monoid MSp2l .

Example 7. Let M D MSOn with unit group G and n D 2l . If a; b 2 M then
GaG D GbG if and only if rank a D rank b D 0; 1; � � � ; l � 1; n. However,
there are two G � G orbits of rank l whose representatives are, respectively,
diag(1; � � � ; 1; 0; � � � ; 0) and diag(1; � � � ; 1; 0; 1; � � � ; 0) each with l copies of 1. Let
l 0 be a symbol. Then there is a bijection ofGnM=G onto f0; 1; � � � ; l; l 0; ngwhose
partial order is given in the third figure below. There are no elements of rank greater
than l but less than n in M . The number of G �G orbits in M is l C 3.
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Example 8 ([54], Example 15). Let M �MnC1 consist of matrices
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where a; a1; : : : ; an 2 K. The unit group of M consists of matrices in M whose
diagonal element a is not zero. There are infinitely many G � G orbits if n > 1.
In fact, if we denote by .a; a1; � � � ; an/ the matrix above, then the G � G orbits
are G, f0g, and orbits which contain matrices .0; a1; � � � ; an/ with at least one ai
not zero. Moreover, for the latter we have that two elements .0; a1; � � � ; an/ and
.0; b1; � � � ; bn/ lie in the same orbit if and only if there is c 2 K� such that
bi D cai for all i . So these orbits are in bijection with points in Pn�1.K/, the
projective space of dimension n � 1. More specifically, M has n orbits of form
.0; 0; � � � ; 0; ai ; 0; � � � ; 0/ where ai ¤ 0 and 1 � i � n, and M has infinitely many
orbits .0; a1; � � � ; an/ with at least two nonzero entries. Let ai1 ; � � � ; aik be all the
nonzero entries in orbit .0; a1; � � � ; an/. Then

.0; a1; � � � ; an/ � .0; b1; � � � ; bn/ if and only if none of bi1 ; � � � ; bik is zero:

Clearly, 0; 1 are idempotents of M . Check that they are the only idempotents of M .
This leads to the following important definition.

Definition 1. LetM be an algebraic monoid. A J -class J is regular ifE.J / ¤ ;.
Define

U .M/ D fJ �M j J is a regular J -classg:

If M is irreducible, then U .M/ D fJ 2 GnM=G j J \ E.M/ ¤ ;g and is
a finite lattice. A key result of [54] is that idempotents e; f are in the same G � G
orbit if and only if they are conjugate under G. This result is useful throughout
the theory of algebraic monoids. In particular, it plays a critical role in describing
certain monoids with exactly one nonzero minimal G �G orbit.

Our intention below is to introduce height function on E.M/ and U .M/ for
irreducible algebraic monoidsM . We begin by collecting results about idempotents
of M .

Theorem 6 ([61, Corollaries 6.8 and 6.10 and Proposition 6.25]). Let M be an
irreducible algebraic monoid M with unit group G. Let T be a maximal torus, and
W the Weyl group of G. Then

(1) E.M/ D [g2G gE.T /g�1.
(2) Two elements e; f 2 E.T / are conjugate under G if and only if they are

conjugate under W .

We observe from the previous theorem that there are as many G-orbits as W -
orbits in E.T /, and that E.M/ is not only stable under the conjugation action of G
on M

a 7! gag�1 for a 2M and g 2 G;
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but also completely determined by the G-orbits of the idempotents in T . Theorem 7
below describes the lengths of chains of idempotents in E.M/. A chain of
idempotents is a linearly ordered subset � D fe0 < e1 < e2 < � � � < ekg of the
poset E.M/, and the length of � is k. A chain is maximal if it is properly contained
in no other chain.

Theorem 7 ([61, Corollary 6.10 and Theorem 6.20]). Let M be an irreducible
algebraic monoid with unit group G. Then every chain of idempotents is contained
in a maximal torus T ofG. Furthermore, the lengths of the maximal chains inE.T /,
E.M/, and U .M/ are all the same. If M has a zero, then this number is equal to
dimT .

We now define height function on U .M/ and E.M/ for any irreducible
algebraic monoid M with kernel J0.

Definition 2. Define ht.J0/ D 0 and ht.J / D ht.J 0/C 1 if J; J 0 2 U .M/ and J
covers J 0. If e 2 J 2 U .M/, then ht.e/ D ht.J /. If ht.1/ D p, then ht.M/ D
ht.E.M// D p.

This function is a powerful tool to prove and obtain useful results using induction
on height of regular J -classes of the monoid. This approach has been employed
extensively in [61].

We can extend height function from U .M/ to M if M is an irreducible regular
algebraic monoid. A monoid M is regular if for each a 2 M , there is b 2 M such
that a D aba. A monoid M with unit group G is unit regular if for each a 2 M ,
there is b 2 G such that a D aba.

Theorem 8 ([54, Theorem 1.3]; [85, Proposition 3.2]). Suppose that M is an
irreducible algebraic monoid with unit group G. The following are equivalent.

(1) M is regular.
(2) M is unit regular.
(3) M D GE.M/.
(4) GnM=G D U .M/.

By Theorem 8 if M is an irreducible regular algebraic monoid then U .M/ is
equal to the set of all J -classes. Thus height function on U .M/ can be extended
to M by

ht.a/ D ht.Ja/

for all a 2M .
The height functions on classical monoids are consistent with the usual rank

functions. If a 2 Mn, then ht.a/ 2 f0; � � � ; ng. If M is a classical monoid of type
Bl ; Cl or Dl as defined in Sect. 2.1, then ht.a/ 2 f0; � � � ; l; ng.
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2.4 Putcha Lattice

The Putcha lattice of cross sections, for short Putcha lattice, of an irreducible
algebraic monoid M with unit group G was initially introduced in [57]. Let T be a
maximal torus of G.

Definition 3. A subset � � E.T / is called a Putcha lattice of M if jJ \ �j D 1

for all J 2 U .M/, and for all e; f 2 �, e � f , Je � Jf .

A Putcha lattice� is indeed a sublattice ofE.T /. We agree that� inherits the partial
order on E.T / which in turn inherits the partial order on E.M/. By definition � is
a set of representatives for the G � G orbits. Thus M is a disjoint union of G � G
orbits GeG with � as the index set

M D
G

e2�
GeG;

and the bijection � ! GnM=G is order preserving. In addition, the lattice � is a
set of representatives for the orbits of the conjugation action of W on E.T /. Thus
E.T / DFe2�fwew�1 j w 2 W g.

Putcha lattices exist for irreducible algebraic monoids [57, Theorem 6.2]. The
following theorem describes Putcha lattices making use of R relation and Borel
subgroups of M with a zero.

Theorem 9 ([61, Theorem 9.3]). Let M be an irreducible algebraic monoid with
a zero and unit group G. Let B be a Borel subgroup of G containing a maximal
torus T . Then

� D fe 2 E.T / j for all f 2 E.M/; if eRf then f 2 Bg

is a Putcha lattice of M .

We describe Putcha lattices of classical algebraic monoids. Let ei denote the
diagonal matrix diag.1; � � � ; 1; 0; � � � ; 0/ with i -copies of 1 for i D 0; � � � ; n, and let
Eij be the matrix unit of size n whose .i; j /-entry is 1 and others are all 0. So, en is
the identity matrix of Mn. The Putcha lattice of Mn is

� D fei j i D 0; � � � ; ng:
The Putcha lattice of MSpn with n D 2l is

� D fei j i D 0; � � � ; l; ng;
which is formally the Putcha lattice of MSOn where n D 2l C 1. The Putcha lattice
of MSOn with n D 2l is

� D fei j i D 0; � � � ; l; ng [ felC1;lC1 �El;lg:
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2.5 Rook Monoids

Our objective here is to introduce the rook monoid and its relatives. These monoids
are finite, and hence algebraic. They are vital in determining the structure of classical
algebraic monoids.

2.5.1 The General Rook Monoid

A matrix of size n is a rook matrix if its entries are 0 or 1 and there is at most one
1 in each row and each column. Viewing each 1 as a rook, we can identify a rook
matrix of rank r with an arrangement of r non-attacking rooks on an n � n chess
board. Let

Rn D fA 2Mn j A is a rook matrixg:

Then Rn is a monoid with respect to the multiplication of matrices. We call this
monoid the general rook monoid, for short rook monoid. Its unit group is the
permutation group Pn consisting of permutation matrices whose each row and each
column have exactly one 1. The order of Rn is jRnj DPn

iD0
�
n
i

	2
i Š. In particular,

R2 D
��
0 0

0 0

�

;

�
1 0

0 0

�

;

�
0 1

0 0

�

;

�
0 0

1 0

�

;

�
0 0

0 1

�

;

�
1 0

0 1

�

;

�
0 1

1 0

��

:

A partial injective transformation � of n D f1; 2; � � � ; ng is a one to one
correspondence from a subset X of n onto a subset Y of n. We call X the domain
of � , denoted by I.�/, and Y the range of � , denoted by J.�/. Let In be the set
of all injective partial transformations of n. Then In is a monoid with respect to the
composition of partial transformations, and is called symmetric inverse semigroup.
The zero element of In is the empty function whose domain and range are the empty
set. The unit group of In is the symmetric group Sn on n letters.

Let A D .aji / 2 Rn, and let I.A/ and J.A/ denote the sets of indices of
nonzero columns and rows of A, respectively. Then A induces a partial injective
transformation �A W I.A/ ! J.A/ with �A W i 7! j , if aji D 1. It follows
that the rook monoid is isomorphic to the symmetric inverse semigroup In via the
isomorphism,

� W Rn ! In; A 7! �A :

2.5.2 The Symplectic Rook Monoid

To introduce symplectic rook monoids we need some preparations. Define an
involution � of n D f1; 2; � � � ; ng by �.i/ D nC1�i . A subset I of n is admissible if
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whenever i 2 I , then �.i/ … I . The empty set ; and the whole set n are considered
admissible. A proper subset I of n is admissible if and only if I \ �.I / D ; if and
only if �.I / is admissible. Write

Ni D �.i/:

Clearly fi; Nig is not admissible. If n D 4, then the admissible subsets of n are

;; f1g; f2g; f3g; f4g; f1; 2g; f1; 3g; f2; 4g; f3; 4g; f1; 2; 3; 4g:

Notice the difference of these admissible subsets from those for n D 5 below

;; f1g; f2g; f4g; f5g; f1; 2g; f1; 4g; f2; 5g; f4; 5g; f1; 2; 3; 4; 5g:

The centralizer C of � in Sn consists of those elements � 2 Sn that map any
admissible subset of n D f1; 2; � � � ; ng to an admissible subset. Indeed, if � 2 C
and I is an admissible subset of n, then for i 2 I we have �.i/ D �. Ni / … �.I /
since Ni … I . Thus �.I / is admissible. Next, if � 2 Sn and it maps all admissible
subsets to admissible subsets, so is ��1. We show that �� D �� by contradiction.
Suppose that there is i 2 n such that �.i/ ¤ �. Ni /. Then f�.i/; �. Ni /g is admissible.
But then ��1f�.i/; �. Ni /g D fi; Nig is admissible, which is a contradiction.

Thus, C acts on the set of all admissible subsets of n. From [36, Theorem 3.1.7]
it follows that the orbits of this action are

;; f1; � � � ; ig; where i D 1; � � � ; l; n:

Next, let n D 2l andW the preimage of C under �. ThenW is a subgroup of Rn,
and is referred to as the symplectic rook group. A rook matrixA is symplectic if both
I.A/ and J.A/ are proper admissible subsets of n, or if A 2 W .

The set of all symplectic rook matrices is a submonoid of Rn, called the
symplectic rook monoid, and will be denoted by RSpn. The unit group of RSpn
is W . The zero element of RSpn is the zero matrix of size n.

Theorem 10 ([36, Corollary 3.1.9 and Theorem 3.1.10]; [39, Corollary 2.3]).
The symplectic rook monoid is

RSpn D
n
A 2 Rn

ˇ
ˇ A D

nX

i2I;w2W
Ewi; i where I is admissible

o

D
n
A 2 Rn

ˇ
ˇ A is singular and I.A/ and J.A/ are admissible

o
[W

' fA 2 Rn j AJA> D A>JA D 0 or J g:

where J is as in the definition of MSpn for n D 2l .
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2.5.3 The Even Special Orthogonal Rook Monoid

Let n D 2l 	 2. An admissible subset is referred to as r-admissible if its cardinality
is r . There are no r-admissible subsets for r > l except the whole set n. A subset I
of n is r-admissible if and only if �.I / is r-admissible. Let C be the centralizer of
� in Sn. Denote by C1 the subgroup of C generated by

.1N1/.2N2/; .2N2/.3N3/; � � � ; .l � 1 l � 1/.l Nl/;
and let

C2 D f � 2 Sn j � stablizes f1; : : : ; lg and �. Ni / D �.i/ g:
Then C 0 D C1C2 is a subgroup of C . It follows from [32, Lemmas 5.2 and 5.4]
that the orbits of the restriction to C 0 of the action of C on the set of all admissible
subsets of n are

;; f1; � � � ; l � 1; l C 1g; and f1; � � � ; ig; where i D 1; � � � ; l; n:
An admissible subset I is called type I if there exists w in W such that wI D
f1; � � � ; l �1; lg; type II if wI D f1; � � � ; l �1; lC1g. Such admissible sets contain
l elements.

Let W D ��1.C 0/. Then W is a subgroup of Rn \ SOn and is isomorphic to
.Z2/

l�1 Ì Sl . In addition, jW j D 2l�1lŠ. We call W the even special orthogonal
rook group. A rook matrix A is even special orthogonal if I.A/ is admissible and
there is w 2 C 0 such that J.A/ D w.I.A//, or if A 2 W . The set of all even special
orthogonal rook matrices is a submonoid of Rn, called the even special orthogonal
rook monoid, and will be denoted by RSOn. The unit group of RSOn is W .

Theorem 11 ([32, Corollary 5.8 and Theorem 5.9]). The even special orthogonal
rook monoid is

RSOn D
n
A 2 Rn

ˇ
ˇ A D

nX

i2I;w2W
Ewi; i where I is admissible,

o

D
�

A 2 Rn

ˇ
ˇ
ˇ
A is singular, I.A/ and J.A/ are admissible
and of the same type if jI.x/j D jJ.x/j D l

�

[W

D fA 2 Rn j AJA> D A>JA D 0 or J g:
where J is as in the definition of MSOn for n D 2l .

2.5.4 The Odd Special Orthogonal Rook Monoid

Let n D 2lC1 	 3 andW the preimage of C under �, where C is the centralizer of
� in Sn. ThenW is a subgroup of Rn, and is referred to as the odd special orthogonal
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rook group. A rook matrix A is odd special orthogonal if both I.A/ and J.A/ are
proper admissible subsets of n, or if A 2 W . The set of all odd special orthogonal
rook matrices is a submonoid of Rn, called the odd special orthogonal rook monoid,
and will be denoted by RSOn. The unit group of RSOn is W . Combining [33,
Theorem 3.10] and Theorem 10, we have the following conclusion.

Theorem 12. The odd special orthogonal rook monoid RSOn is isomorphic to the
symplectic rook monoid RSp2l , where n D 2l C 1 	 3.

3 Reductive Monoids

An irreducible algebraic monoid is reductive if its unit group is a reductive algebraic
group. The monoids Mn and Dn are reductive, but Bn is not for n 	 2. The classical
monoids of types Al ; Bl ; Cl , and Dl are all reductive. The monoid in Example 3 is
not reductive if n 	 2, since its unit group is not connected and so not reductive.
The monoid in Example 8 is not reductive for n 	 1 because the unipotent radical
of its unit group is

f.1; a1; � � � ; an/ j ai 2 K for i D 1; � � � ; ng:

Reductive monoids are central to the theory of algebraic monoids; regular
semigroups form an eminent class in semigroup theory. At a glance, reductive
monoids have nothing to do with regular semigroups. But, the two notions are
connected very closely. The following result is a summary of [57, Theorem 2.11],
[58, Theorem 2.4], [59, Theorem 1.1], [74, Theorem 4.4.15], and [76, Theorem 3.1].

Theorem 13. Every reductive algebraic monoid is regular. Moreover, an irre-
ducible algebraic monoid with a zero is reductive if and only if it is regular.

It follows from Theorems 8 and 13 that every reductive monoid is unit regular.
A complete description of the reductivity of an irreducible algebraic monoid is given
in [19].

Theorem 14 ([19, Theorem 2.1]). Suppose that M is an irreducible algebraic
monoid. Then M is reductive if and only if M is regular and the semigroup kernel
of M is a reductive group.

Reductive monoids are regular and unit dense monoids, which are distinguished
from irreducible algebraic monoids in that they have finite number of G �G orbits,
and each G � G orbit contains an idempotent. This, however, is not the case for all
irreducible algebraic monoids. If n > 1, then the monoid in Example 8, again, is
not reductive since it has infinitely many G � G orbits, but only two orbits f0g and
G have idempotents 0 and 1, respectively.
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3.1 Jordan Decomposition

Every element x in an algebraic group G has its Jordan decomposition

x D su D us

where s is semisimple (diagonalizable) and u is unipotent (sole eigenvalue 1). This
decomposition is unique. Is there an analogue of such decomposition in algebraic
monoids? Putcha [71] shows that each element in a reductive monoidM is a product
of a semisimple element and a quasi-unipotent element.

The unit group He of eMe for e 2 E.M/ is an algebraic group. If a 2 M , it
follows from Theorem 3 that there is a positive integer k such that ak 2 He for
some e 2 E.M/. Such e is uniquely determined by a, since if ak 2 Hf for some
f 2 E.M/ then eH f and hence e D ef D f . By [27, Corollary 1] we have
ae D ea 2 He . The element ae is called the invertible part of a. An element
a 2 M is completely regular if a 2 He for some e 2 E.M/, and He is called
the bubble group of a. Clearly, for any a 2 M , the invertible part of a is always
completely regular.

An element s 2 M is semisimple if s is completely regular and is semisimple in
its bubble group. If s 2 M D Mn is semisimple then s is diagonalizable. The set
of all semisimple elements of M is denoted by Ms . An element u of M is quasi-
unipotent if its invertible part ue is unipotent in its bubble group He . If M has a
zero, then every nilpotent element is quasi-unipotent. The set of all quasi-unipotent
elements will be denoted by Mu. Then

Ms \Mu D E.M/:

If M is a closed monoid of Mn, then Mu is the zero set of the polynomial
Xn.X � I /n. Renner studies the conjugacy classes of semisimple elements in
algebraic monoids [78]; Winter investigates quasi-unipotent elements in a different
name in [92]. Theorem 15 below shows that Jordan decomposition exists for
reductive monoids.

Theorem 15 ([71, Theorem 2.2]). Let M be a reductive monoid and a 2 M .
Then a D su D us for some invertible semisimple element s and quasi-unipotent
element u.

Such decomposition is not unique. For example (cf. Example 2.3 of [71]), in M2,
for any b 2 K,

�
0 b

0 0

�

D
�
˛ 0

0 ˛

��
0 b=˛

0 0

�

D
�
0 b=˛

0 0

��
˛ 0

0 ˛

�

where ˛ 2 K�.
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Our next objective is to study the structure of a reductive monoid M in terms of
root semigroups, which are analogues of root groups U˛ for reductive groups. We
fix notation. Let G be the unit group of M , let T be a maximal torus of G and B a
Borel subgroup containing T , and let ˚ be the roots of G relative to T . Denote by
B� the unique Borel subgroup such that B \ B� D T . Then G is generated by the
root groups U˛ along with T where ˛ 2 ˚ [24, Theorem 26.3 d)].

Is there a monoid analogue of this result for M ? Putcha confirms this matter in
[71]. The key is to find a monoid analogue fU˛ of the one-dimensional root subgroup
U˛ associated with a root ˛ 2 ˚ . Let fU˛ D .T U ˛/u, the set of quasi-unipotent
elements of T U ˛ . Then fU˛ is referred to as the root semigroup associated with ˛.
It is easy to see that U˛ � fU˛ . Denote by QU the set of quasi-unipotents of B .
Imbedding M into Mn in such a way that every element of B is upper triangular
and every element of B� is lower triangular, we can define a map 	 W B ! T such
that 	.b/ is the diagonal matrix of the diagonal of b 2 B . Then 	 is an epimorphism
and 	jT is the identity.

Theorem 16 ([71, Theorem 2.6 and Corollary 4.4]). Let M be a reductive
monoid and let ˚C be the set of positive roots. Then

(1) QU is an algebraic monoid and equal to 	�1.E.T //:
(2) B is generated by T and fU˛ for ˛ 2 ˚C, and B D T QU D QUT .
(3) Mu DSg2G g QUg�1.

The following corollary is from [61, Proposition 6.3] and Theorem 16.

Corollary 3. Let M be a reductive monoid, T a maximal torus of the unit group of
M , and ˚ the set of roots relative to T . Then M is generated by T and QU˛ , ˛ 2 ˚ .

3.2 Parabolic Subgroups

The aim here is to describe parabolic subgroups of G in terms of idempotents
of a reductive monoid M . When M has a zero, these subgroups are completely
determined by the chains in E.M/ [57, 60]. Recall that a chain of idempotents is a
linearly ordered subset � D fe0 < e1 < e2 < � � � < ekg of the poset E.M/. In view
of [61, Corollary 6.10], every chain of idempotents is contained in a maximal torus
T of G. If � � E.M/, define the left centralizer and the right centralizer of � by

P.� / D fx 2 G j xe D exeg and P�.� / D fx 2 G j ex D exeg:

As Brion did in [3], we switched Putcha’s notation for left and right centralizers to
comply with standard conventions in algebraic geometry and algebraic groups. The
centralizer of � is by definition

CG.� / D fx 2 G j xe D exg:
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More information on local structures such as stabilizers, centralizers, and kernels of
algebraic monoids can be found in [3, 20, 22, 61, 70, 82].

Theorem 17 ([57, Theorem 4.6]; [60, Theorem 2.7]). Let M be a reductive
monoid and let � be a chain in E.M/. Then P.� / and P�.� / are a pair of
opposite parabolic subgroups with common Levi factor CG.� /. Furthermore, if M
has a zero, then every parabolic subgroup P of G is of the form P D P.� / for
some chain � � �, where � is a Putcha lattice of M .

When the chain � in the above theorem is maximal, its left and right centralizers
are Borel subgroups as described below.

Theorem 18 ([57, Theorem 4.5]; [61, Theorem 7.1]). Let M be a reductive
monoid with a zero and let � be a maximal chain of E.M/. Then

(1) P.� / is a Borel subgroup of G whose opposite Borel subgroup is P�.� /.
Moreover, every Borel subgroup of G can be obtained this way.

(2) CG.� / is a maximal torus of G and every maximal torus of G is obtainable in
this manner.

The set of Borel subgroups containing a maximal torus T is in one to one
correspondence with the set of Putcha lattices in E.T /.

Theorem 19 ([60, Lemma 1.1]; [61, Theorem 7.1]). Let M be a reductive
algebraic monoid with a zero and unit group G. Let B be a Borel subgroup of
G containing a maximal torus T . Then

�.B/ D fe 2 E.T / j Be D eBeg

is a Putcha lattice of M . Moreover, the map B 7! �.B/ is a bijection from the set
of all Borel subgroups containing T onto the set of Putcha lattices in E.T /.

3.3 The Type Map

Let M be a reductive monoid with unit group G and let W D NG.T /=T be the
Weyl group. Denote by � the set of simple roots relative to T and B , and by S D
fs˛ j ˛ 2 �g the set of simple reflections that generate the Weyl group. Let � be
the cross-section lattice of M .

Definition 4. The type map of M is defined by

 W �! 2�I .e/ D f˛ 2 � j s˛e D es˛g:

As Renner mentions in his book [82], the type map is the most important combi-
natorial invariant in the structure theory of reductive monoids. In some sense, it is
the monoid analogue of the Coxeter-Dynkin diagram. Especially, for J -irreducible
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monoids, Putcha and Renner [72] give a very precise recipe to completely determine
the type map using the Coxeter-Dynkin diagram associated with the monoids. We
consider the type maps of classical algebraic monoids, and refer the reader to
[34, 35, 72, 82] for further details about type maps of reductive monoids.

Example 9. The type maps of Mn with n D l C 1, MSpn with n D 2l , and MSOn

with n D 2l C 1. Let � D f˛1; � � � ; ˛lg be the simple roots of type Al ; Bl and Cl ,
and let ei D diag .1; � � � ; 1; 0; � � � ; 0/ with i -copies of 1, for i D 1; � � � ; l . Then
� D f0; e1; � � � ; el ; 1g, and the type map is determined by .0/ D .1/ D �,
.e1/ D f˛2; � � � ; ˛lg, and for 2 � i � l ,

.ei / D f˛1; � � � ; ˛i�1g [ f˛iC1; � � � ; ˛lg:

Example 10. The type map of MSOn with n D 2l . Let � D f˛1; � � � ; ˛lg be the
simple roots of SOn, and let ei D diag .1; � � � ; 1; 0; � � � ; 0/ with i -copies of 1,
for i D 1; � � � ; l . Let e0

l D diag .1; � � � ; 1; 0; 1; � � � ; 0/ with l-copies of 1. Then
� D f0; e1; � � � ; el ; e0

l ; 1g, and the type map is determined by .0/ D .1/ D
�, .e1/ D f˛2; � � � ; ˛lg, .el�1/ D f˛1; � � � ; ˛l�2g, .el / D f˛1; � � � ; ˛l�1g,
.e0

l / D f˛1; � � � ; ˛l�2; ˛lg, and for 2 � i � l � 2 with l 	 4,

.ei / D f˛1; � � � ; ˛i�1g [ f˛iC1; � � � ; ˛lg:

In general, associated with the type map of a reductive monoid are some
parabolic subgroups of the Weyl group. Let �.e/ D f˛ 2 � j s˛e D es˛ 6D eg
and �.e/ D f˛ 2 � j s˛e D es˛ D eg. Then .e/ D �.e/ t �.e/. Denote by
W.e/ D W.e/,W �.e/ D W�.e/ andW�.e/ D W�.e/ the parabolic subgroups ofW
associated with .e/; �.e/ and �.e/, respectively. These subgroups are useful in
determining the orders, conjugacy classes, and representations of Renner monoids
[37, 40, 41]. Descriptions and applications of these subgroups can be found in the
books [61, 82] and the references there.

Proposition 2. Let e be an element of the Putcha lattice of a reductive monoid M .
Then

(1) W.e/ D fw 2 W j we D ewg
(2) W �.e/ D \f�eW.f /.
(3) W�.e/ D \f�eW.f / D fw 2 W j we D ew D eg.
(4) W.e/ D W �.e/ �W�.e/.

3.4 J -Irreducible Monoids

Renner introduces the concept of J -irreducible monoids in his work on the
classification of semisimple algebraic monoids in [75]. A reductive monoid M
with a zero is J -irreducible if its Putcha lattice has a unique minimal nonzero
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idempotent. A reductive monoid M with a zero and unit group G is semisimple
if the dimension of the center C.G/ is one. In view of [75, Lemma 8.3.2], each
J -irreducible algebraic monoid is semisimple. The classical monoids defined
in Sect. 2.1 are J -irreducible and hence semisimple. The following results give
alterative descriptions of J -irreducible monoids.

Theorem 20 ([61, Corollary 15.3]; [75, Corollary 8.3.3]). Let M be a reductive
monoid with a zero and let W be the Weyl group of the unit group of M . Then the
following are equivalent.

(a) M is J -irreducible.
(b) W acts transitively on the set of minimal nonzero idempotents of E.T /.
(c) There is an irreducible rational representation � W M ! Mn which is finite as

a morphism of algebraic varieties.

Our intention next is to confirm that all J -irreducible algebraic monoids can
be obtained, up to finite morphism, from irreducible representations of semisimple
algebraic groups. This is a known result given in Renner [83].

Theorem 21. Let G be a semisimple algebraic group and � be an irreducible
rational representation of G. Then M.�/ D K��.G/ is a J -irreducible algebraic
monoid. Furthermore, one can construct, up to finite morphism, all J -irreducible
algebraic monoids from irreducible representations of a semisimple algebraic
group.

Recall that M.�/ is the Zariski closure of K��.G/. Suppose that � is an
irreducible representation of a semisimple groupG, then the inclusion mapM.�/!
Mn is a faithful representation ofM.�/. ThusM.�/ is J -irreducible. Now suppose
that M is J -irreducible and let H be the unit group of M . Then M D H since
M is irreducible. The radical R.H/ of H is the identity component of the center
C.H/ of H , and dimR.H/ D 1, since C.H/ is one dimensional. Thanks to [87,
Proposition 6.15] and [61, Theorem 4.32], we have H D R.H/G where G is
the semisimple commutator group of H . By [61, Corollary 10.13], there exists a
finite morphism � W M ! Mn of algebraic varieties such that �.R.H// D K�.
We obtain that �.H/ D K��.G/, and hence �.M/ D �.H/ � �.H/ D K��.G/.
On the other hand, it is clear that K��.G/ � �.M/. Therefore, �.M/ D K��.G/
is J -irreducible.

The Putcha lattice of a J -irreducible monoid is completely determined by its
type J0 D .e0/ where e0 is the unique nonzero minimal element of �. Putcha and
Renner determine the Putcha lattices of J -irreducible monoids associated with an
arbitrary dominant weight by using the following theorem, which is a summary of
[72, Corollary 4.11 and Theorem 4.16].

Theorem 22. Let M be a J -irreducible monoid associated with a dominant
weight � and J0 D f˛ 2 � j h�; ˛i D 0g where h ; i is defined as in ([23],
p42). Then

(1) �.� n f0g/ D fX � � j X has no connected component lying in J0g.
(2) �.e/ D f˛ 2 J0 n �.e/ j s˛sˇ D sˇs˛ for all ˇ 2 �.e/g; for e 2 � n f0g.
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4 Renner Monoids

The Bruhat decomposition and Tits system are among the gems in the structure
theory of reductive algebraic groups G. This makes it possible to reduce many
questions about G to questions about the Weyl group. Renner [77, 80] finds an
analogue of such decomposition for reductive algebraic monoids with many useful
consequences, resulting in the Bruhat-Renner decomposition. This decomposition
is now central in the structure theory of reductive monoids.

Let M be a reductive monoid with unit group G, B � G a Borel subgroup, and
T � B a maximal torus of G. Denote by N the normalizer of T in G and N the
Zariski closure of N in M . Thus N is an algebraic monoid and has N as its unit
group, and T is an algebraic monoid with unit group T . The Weyl groupW D N=T
is a finite reflection group.

Recall that an inverse monoid is a monoid M such that for a 2 M , there is
a unique b 2 M that satisfies a D aba and b D bab. A regular monoid with
commutative idempotents is an inverse monoid. An irreducible regular monoid
M is inverse if and only if M have finitely many idempotents. In particular, by
[18, Theorem 3.1] a regular irreducible algebraic monoid with nilpotent unit group
is an inverse monoid.

Lemma 2 ([61, Proposition 11.1]; [77, Proposition 3.2.1]). N D NT is a unit
regular inverse monoid with unit group N and idempotent set E.T /. Furthermore,
N D NE.T /.

To show that N D NT , note that W is finite. Let k D jW j. Then there exists
yi 2 N such that N DSk

iD1 yiT . It follows from Lemma 1 that

N D [kiD1yiT D [kiD1yiT � NT :

By Corollary 2, the unit group of N is N .
Next, we show that an idempotent ofN is inE.T /. Let x 2 N . Then x 2 yT for

some y 2 N . Since yT D Ty, we obtain that yT D T y by Lemma 1. As yk 2 T ,
we have

xk 2 .yT /k D yk.T /k � T T � T :

If x is an idempotent in N , then x D x2 D xk 2 T , that is, x 2 E.T /.
Finally, in view of T D TE.T /, we have N D NE.T /, which shows that N is

unit regular. Since E.T / is commutative, N is an inverse monoid.

Lemma 3. Let � be the relation on N given by

x � y if and only if x 2 yT:

Then � is a congruence, and the quotient set R D N= � is a monoid.



Algebraic Monoids and Renner Monoids 163

It is straightforward that � is an equivalent relation. It suffices to show that for
x; y; u; v 2 N , if x � y and u � v then xu � yv. Assume that x D yt1, u D vt2
where t1; t2 2 T . Then xu D yt1vt2. By Lemma 2, we have v D nt3 for some n 2 N
and t3 2 T . Then

xu D yt1nt3t2 D yn.n�1t1n/t3t2:

But n�1t1n 2 T . Hence

xu D ynt3.n�1t1n/t2 D yv.n�1t1n/t2 2 yvT:

Therefore, xu � yv. Write R D N=T .

Definition 5. The monoid R is called the Renner monoid of M , and an element of
R is called a Renner element.

4.1 Classical Renner Monoids

The Renner monoids of classical algebraic monoids are called classical Renner
monoids. More specifically, the Renner monoids of the general, symplectic, and
special orthogonal algebraic monoids are referred to as general, symplectic and
special orthogonal Renner monoids, respectively. We describe these monoids below.

Example 11. The general Renner monoid. In this case M D Mn. Then T D Tn
and N consists of matrices with at most one nonzero entry in each row and each
column. The unit group of N comprises matrices which have exactly one nonzero
entry in each row and each column. Let Eji for 1 � i; j � n be the matrix units
whose .j; i/ entry is 1 and the rest are all 0. Thus

N D f˙n
iD1tiE�i;i j ti 2 K and � 2 Sng

and

N D f˙n
iD1tiE�i;i j ti 2 K� and � 2 Sng:

The map
Pn

iD1 tiE�i;i 7!
Pn

iD1 biE�i;i is an epimorphism from N onto Rn with
kernel T , where bi D 0 if ti D 0, and bi D 1 if ti ¤ 0. Thus we have proved the
following result.

Theorem 23 ([77, Section 7]). The general Renner monoid R D N=T is iso-
morphic to the general rook monoid Rn, and its unit group is isomorphic to the
symmetric group Sn. The order of R is jRnj DPn

iD0
�
n
i

	2
i Š.

In what follows we identify the general Renner monoid with the general rook
monoid Rn.
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Example 12. The symplectic Renner monoid. Here M D MSpn where n D 2l

and l 	 1. Recall that

MSpn D
G

c2K
Mc

where Mc D fA 2 Mn j A>JA D AJA> D cJ g with J D
�
0 Jl
�Jl 0

�

and

Jl D
�

1��
1

�

of size l . We are led to the following map

� WMSpn ! K; A 7! c if A 2Mc:

By [12], T D ft D P
tiEi i j ti 2 K� and ti tNi D �.t/g. From [7] it follows that

N D N [N 0 in which

N D
�

! D
nX

iD1
tiE�i;i j � 2 C; ti 2 K� and ti tNi D "i "� i�.!/

�

;

where C is as in Sect. 2.5.2, and N 0 consists of matrices of the form

!0 D
lX

iD1
aiEji ;ki

where ai 2 K, 1 � i � l , and fj1; � � � ; jlg and fk1; � � � ; klg are admissible. The
map of N onto the symplectic rook monoid RSpn, defined by

! D
nX

iD1
tiE�i;i 7!

nX

iD1
E�i;i with � 2 C; and

!0 D
lX

iD1
aiEji ;ki 7!

lX

iD1
biEji ;ki ;

where bi D 0 if ai D 0, and bi D 1 if ai ¤ 0, is a homomorphism of monoids with
kernel T . We conclude:

Theorem 24 ([7, Proposition 2.3]; [36, Corollary 3.1.9]). The symplectic Renner
monoid R D N=T is isomorphic to the symplectic rook monoid RSpn. Its unit
group is isomorphic to the symplectic rook group. The order of R is

jRSpnj D
lX

iD0
4i

 
l

i

!2

i ŠC 2l lŠ:

In what follows we identify the symplectic Renner monoid with the symplectic rook
monoid, and denote them by RSpn.
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Example 13. The odd special orthogonal Renner monoid is the Renner monoid
of the odd special orthogonal algebraic monoid MSOn with n D 2l C 1 	 3.
A similar discussion to that of Example 12 gives rise to the following result.

Theorem 25 ([13, Theorem 4.2]; [33, Corollary 3.12]). The odd special orthog-
onal Renner monoid R is isomorphic to the odd special orthogonal rook monoid
RSOn where n D 2lC 1; its unit group is isomorphic to the odd special orthogonal
rook group. The order of R is

jRSOnj D
lX

iD0
4i

 
l

i

!2

i ŠC 2l lŠ:

Example 14. The even special orthogonal Renner monoid is the Renner monoid
of MSOn where n D 2l with l 	 1. Recall that

MSOn D
G

c2K
Mc;

where Mc D fA 2 Mn j A>JA D AJA> D cJ g with J D
�
0 Jl
Jl 0

�

. We have the

following homomorphism of algebraic monoids

� WMSpn ! K; A 7! c if A 2Mc:

By [12], T D ft DP tiEi i j ti 2 K� and ti tNi D �.t/g. From [13] we obtain that

N D
[

�2An
M�;

where M� D S
c2KfaiEi;� i j ai 2 K and aiaNi D cg and An is the alternating

group on n letters. We have the result below.

Theorem 26 ([13, Theorem 4.4]; [32, Corollary 5.12]). The even special orthog-
onal Renner monoid R is isomorphic to the even special orthogonal rook monoid
RSOn; its unit group is isomorphic to the even special orthogonal rook group. The
order of R is

jRSOnj D
lX

iD0
4i

 
l

i

!2

i ŠC .1 � 2l /2l�1lŠ

We will not distinguish the even special orthogonal Renner monoid from the even
special orthogonal rook monoid, and will use RSOn to denote them.
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4.2 Basic Properties

Now return to the general theory of a Renner monoidR. Summarizing some primary
properties ofR from [77], we first describe the unit group, the idempotent setE.R/,
relations with Putcha lattices, and the Bruhat-Renner decomposition.

Proposition 3 ([77, Proposition 3.2.1, Theorem 5.7 and Corollary 5.8]). Let M
be a reductive monoid with unit group G. Let T � G be a maximal torus and
� � E.T / be a Putcha lattice. Then

(1) R is a finite inverse monoid.
(2) The unit group of R is the Weyl group W , and R D WE.R/. So R is unit

regular.
(3) The idempotent set E.R/ Š E.T / DSw2W w�w�1.
(4) R DFe2� WeW , and WeW D Wf W ) e D f .
(5) M DF�2R B�B , and B�B D B�B ) � D � .
(6) If s 2 S is a Coxeter generator then BsB � B�B � Bs�B [ B�B .

We observe from (1) and (2) of Proposition 3 that Renner monoids form a special
class of inverse monoids and they are closely connected to the Weyl group,
indicating that Renner monoids are by themselves extremely important discrete
invariants for reductive monoids. The results (3) and (4) of Proposition 3 show that
R is a disjoint union of W �W double cosets with a Putcha lattice as its index set,
and that the idempotent set E.T / of R is completely determined by the conjugation
action of W on the Putcha lattice. From (5) and (6), the Renner monoid plays the
same role for reductive monoids that the Weyl group does for reductive groups.
Many questions about M may be reduced to questions about R.

The idempotent set E.T / is closely connected to convex geometry and torus
embeddings. We characterize this connection in Proposition 4. Solomon [85]
elaborates on the connection in detail by using many interesting examples. Putcha
and Renner [55, 61, 75] have more conclusions and further examples. The theory of
torus embeddings can be found in [26].

Proposition 4 ([26, Theorem 2]; [56, Theorem 3.6]; [61, Theorem 8.7]). Let M
be a reductive monoid with unit group G. Suppose that T is a maximal torus of G.
Then there is a rational convex polytope whose face lattice is isomorphic to E.T /.

4.3 Standard Form

Let D.e/ be the set of minimal length representatives of left cosets wW.e/ and
D�.e/ be the set of minimal length representatives of left cosets wW�.e/ where e 2
�. Then D.e/�1 D fu�1 j u 2 D.e/g is the set of minimal length representatives
of right cosets W.e/w. Now R D W�W with W D F

e2� D�.e/W�.e/ and W DF
e2� W.e/D.e/�1. Each element � 2 R can be uniquely written as
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� D xey; x 2 D�.e/; e 2 �; and y 2 D.e/�1: (1)

We call (1) the standard form of the Renner element � .
The standard form of Renner elements is useful to determine RC, the index set

of the decomposition of B into double cosets B�B , that is,

B D
G

�2RC

B�B:

The set RC is a submonoid of R, and by [70]

RC D f� 2 R j � D xey with x � y�1g:

IfR is the general rook monoid, thenRC consists of upper triangular rook matrices.
The standard form of Renner elements plays a role in describing parabolic

submonoids obtained by taking the Zariski closures of parabolic subgroups of G.
Let S be the set of simple reflections that generate the Weyl group W . For I � S ,
denote by WI the subgroup of W generated by I , and call PI D BWIB and
P�
I D B�WIB

� opposite parabolic subgroups of G with common Levi factors
LI D PI \ P�

I . Define

RC
I D fxey j e 2 �; x 2 W; y 2 D.e/�1; ux � y�1 for some u 2 WI g;
R�
I D fxey j e 2 �; x 2 D.e/; y 2 W; yu � x�1 for some u 2 WI g;

�C
I D fxex�1 j e 2 �; x 2 D�1

I g D fxex�1 j e 2 �; x 2 D�1
I \D.e/g:

Theorem 27 ([70, Theorem 2.3]). Let I be a subset of S . Then

(1) RC
I and R�

I are submonoids of R.
(2) P I D BRC

I B and P
�
I D B�RC

I B
�. In particular, PS D P�

S DM .
(3) LI D P I \ P�

I D LI�ILI is a reductive group.
(4) �I is the Putcha lattice of LI and RI D RC

I \ R�
I D WI�IWI is the Renner

monoid of LI .

The standard form of elements inR can be used to describe the Bruhat-Chevalley
order on R.

Definition 6. Let �; � 2 R. We say that � � � if B�B � B�B .

The Renner monoid is a poset with this partial order. This poset is characterized in
Theorem 28 below using .�;�/ and .W;�/, where

e � f in � , fe D e D ef;

and

u � v in W , BuB � BvB:
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Theorem 28 ([50, Corollary 1.5]; [82, Corollary 8.35]). Let � D xey and � D
uf v be in standard form. Then � � � if and only if e � f and there is w 2
W.f /W�.e/ such that x � uw and w�1v � y.

4.4 Reduced Row Echelon Form

Any matrix A over K may be changed to a matrix in reduced row echelon form
by the Gauss-Jordan procedure, a finite sequence of elementary row operations.
The set of all reduced row echelon forms of matrices in Mn is the set of well
chosen representatives of the orbits of the left multiplication action of GLn on Mn.
Row reduced echelon form in linear algebra can be generalized to any reductive
monoidM with unit groupG. This generalization [77] solves the orbit classification
problem of the left multiplication action of G on M

G �M !M

.g; x/ 7! gx:

We wish to describe the Gauss-Jordan elements of M . We begin by defining the
Gauss-Jordan elements of R. The set

GJ D f� 2 R j B� � �Bg
is called the set of Gauss-Jordan elements of R. The Gauss-Jordan elements of R
are useful to index the orbits in the conjugacy decomposition of M [69, 90]. Putcha
gives a description of GJ using the standard form of Renner elements.

Theorem 29 ([70, Lemma 3.1]). GJ D fey 2 R j e 2 �; y 2 D.e/�1g.
The set GJ is a poset with respect to the following partial order

� � � if and only if �B � �B:
Combining [77, Theorem 9.6] and [82, Proposition 8.9], we conclude that the
Renner monoid is the product of its unit group and the Gauss-Jordan elements,
and that for each � 2 R the orbit W� intersects the set of Gauss-Jordan elements
at exactly one element g� . On the other hand, the orbit W� contains exactly
one idempotent e� 2 E.T / (cf. [40, Lemma 3.2]). We obtain a one to one
correspondence between GJ and E.T /

g� 7! e� :

The Gauss-Jordan elements of Rn are the usual reduced row echelon form. If n D 4,
we have

GJ D f0; g1; � � � ; g14; 1g
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where g1 D E14, g2 D E13, g3 D E12, g4 D E13 C E24, g5 D E11, g6 D
E12 C E24, g7 D E11 C E24, g8 D E12 C E23, g9 D E11 C E23, g10 D
E12CE23CE34, g11 D E11CE23CE34, g12 D E11CE22, g13 D E11CE22CE34,
g14 D E11 C E22 C E33. The poset structure of these elements is shown in the first
figure below. The idempotent ei corresponding to gi can be obtained by positioning
the 1 in each column of gi to the diagonal for 1 � i � 14.
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The Gauss-Jordan elements of the symplectic Renner monoid RSpn with n D 2l
are the usual reduced row echelon form. There are, however, no reduced row echelon
form of symplectic matrices of rank i for l < i < n. The Hasse diagram for poset
.GJ ; �/ of RSp4 is given in the middle above. Note that B0 D Bn\Spn is a Borel
subgroup of Spn, and B D K�B0 is a Borel subgroup of the unit group of MSpn. If
n D 4, then B0 consists of the invertible upper triangular matrices

0

B
B
@

a c d e

b f
bd�cf
a

1
b
� c
ab
1
a

1

C
C
A

where a; b 2 K� and c; d; e; f 2 K. A simple calculation yields that

GJ D f0; g1; : : : ; g8; 1g
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where g0 D 0, g1 D E14, g2 D E13, g3 D E12, g4 D E13 C E24, g5 D E11,
g6 D E12 CE24, g7 D E11 CE23, and g8 D E11 CE22.

The third diagram above illustrates the poset .GJ ; �/ of RSO4. Let B0 D Bn \
SOn be a Borel subgroup of SOn. Then B D K�B0 is a Borel subgroup of the
unit group of MSOn. If n D 4, then B0 consists of the following invertible upper
triangular matrices

0

B
B
@

a c d � cd
a

b 0 � bd
a

1
b
� c
ab
1
a

1

C
C
A

where a; b 2 K� and c; d 2 K. Thus

GJ D f0; g1; � � � ; g8; 1g

where g0 D 0, g1 D E14, g2 D E13, g3 D E12, g4 D E13 C E24, g5 D E11,
g6 D E12 CE34, g7 D E11 CE22, and g8 D E11 CE33.

The Gauss-Jordan elements of the even special orthogonal Renner monoid are
not the usual reduced row echelon form. For instance,

g6 D

0

B
B
@

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

1

C
C
A :

We now describe the Gauss-Jordan elements of M . An element x of M is in
reduced form if x 2 �B and x��1 2 � for some � 2 GJ . The requirement x 2 �B
tells us that x is in row echelon form; the condition x��1 2 � means roughly that
it is reduced.

Theorem 30 ([82, Theorem 8.13]). Let x 2 M . Then Gx \ �B ¤ ; for some
unique � 2 GJ . Moreover, there is a unique T -orbit in Gx \ �B such that each
element of the orbit is in reduced form.

4.5 The Length Function on R

Identifying successfully the elements of length 0, Renner [80] introduces a length
function on the Renner monoid of a reductive monoid. Each WeW has a unique
element of length 0. Since R D F

e2� WeW , there are totally j�j such elements
in R.

Theorem 31 ([80, Proposition 1.2]). There is a unique element � 2 WeW such
that B� D �B .
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Definition 7. Define the length function l W R ! N by l.�/ D dim.B�B/ �
dim.B�B/ where � 2 W�W with B� D �B .

Thus l.�/ D 0 if and only if �B D B� if and only if � D � by Theorem 31.
If s 2 S and � 2 W , then l.s�/ D l.�/ ˙ 1 ([24, 29.3, Lemma A]). If � 2 R,
there is a possibility that l.s�/ D l.�/. By [65], if �; � 2 WeW , then � � � implies
l.�/ � l.�/.

There is another description of this length function using the standard form of
elements in R. If w0; v0 are respectively the longest elements of W and W.e/, then
w0v0 is the longest element of D.e/. It is shown in [67] that

l.e/ D l.w0v0/;

and for � D xey in standard form,

l.�/ D l.x/C l.e/ � l.y/:

The length function is useful in many different topics of algebraic monoids. First,
we show that it is useful to study the decomposition of nonidempotents of RC into
positive root elements, where

RC D f� 2 R j � D xey with x � y�1g:

For ˛ 2 ˚C where ˚C is the set of positive roots, let

R˛ D fes j e 2 �; es ¤ seg; R�˛ D fse j e 2 �; es ¤ seg:

We call the elements ofR˛ positive root elements, and the elements ofR�˛ negative
root elements of R.

Theorem 32 ([71, Theorem 4.2]). Let � D xey 2 RCnE.R/ be in standard form.
Then � is a product of l.y/ � l.x/ positive root elements in WeW .

Next, we characterize the product ofB�B orbits ofM using the length function.

Theorem 33 ([80, Theorem 1.4]).

BsB�B D
8
<

:

B�B; if l.s�/ D l.�/
Bs�B; if l.s�/ D l.�/C 1
Bs�B [ B�B; if l.s�/ D l.�/ � 1:

Our aim below is to introduce finite monoids of Lie type, and then show that the
length function can also be used to describe the Iwahori-Hecke algebras associated
with these monoids. Let G be a finite group of Lie type defined over Fq , a finite
field with q elements. A finite regular monoid M with unit group G is a monoid of
Lie type [64] if M is generated by E.M/ and G, and
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1. For e 2 E.M/, the left centralizer P D fx 2 G j xe D exeg and the right
centralizer P� D fx 2 G j ex D exeg of e in G are opposite parabolic
subgroups of G, and eP�

u D Pue D feg.
2. For e 2 E.M/, if eL f or eRf then xex�1 for some x 2 G.

Finite monoids of Lie type are a large class of finite regular monoids, and there
are many examples of such monoids. For instance, the finite reductive monoids
introduced by Renner [79] are finite monoids of Lie type [82, Section 10.5]. We
elaborate briefly on finite reductive monoids now. Let Mn be the monoid of all n�n
matrices over the algebraic closure of Fq , and let � W Mn ! Mn be the Frobenius
map defined by � W Œaij � 7! Œa

q
ij �. If M �Mn is a reductive monoid with a zero and

is stable under � , then

M D fa 2M j �.a/ D ag

is a finite monoid of fixed points, and is called a finite reductive monoid. For
example, if M D Mn, then M D Mn.Fq/. If M D MSpn, then M D MSpn.Fq/.
If M D MSOn, then M D MSOn.Fq/. If M D Dn, then M is the monoid of
diagonal matrices with coefficients in Fq . If M D Bn, then M is the monoid of
upper triangular matrices with coefficients in Fq .

Iwahori [25] initiates the study of the Iwahori-Hecke algebra associated with a
Chevalley group G. Let B be a Borel subgroup of G, and W the Weyl group of G
with generating set S of simple reflections. Let


 D 1

jBj˙b2Bb 2 CŒG�:

The Iwahori-Hecke algebra

HC.G/ D HC.G;B/ D 
CŒG�
:
is semisimple and is isomorphic to CŒW � [9, 10]. The set fAw D 
w
 j w 2 W g is a
basis of HC.G;B/, which is normalized as fTw D ql.�/Aw j w 2 W g. With respect
to this base, Iwahori found that the structure constants are integer polynomials in q,
depending only on W .

Using the length function, Putcha [67] studies the monoid Iwahori-Hecke algebra
of a finite monoid M of Lie type. He introduces a Putcha lattice � for the G � G
orbits, and an analogue of the Renner monoid R D hW;�i such that

M D
G

�2R
B�B:

The complex monoid algebra CŒM � of M is semisimple [49]. Let


 D 1

jBj˙b2Bb 2 CŒG�:
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The monoid Hecke algebra of M is by definition

HC.M/ D HC.M;B/ D 
CŒM �
:

It is a semisimple algebra with a natural basis

A� D 
�
; � 2 R:
This basis can be normalized as

T� D ql.�/A� ; � 2 R:

Theorem 34 ([67, Theorem 2.1]). The structure constants of HC.M;B/ with
respect to the basis fA� j � 2 Rg, and hence with respect to the normalized basis
fT� j � 2 Rg are integer Laurent polynomials in q, depending only on R.

Using Kazhdan-Lusztig polynomials and “R-polynomials”, Putcha obtains the
following result.

Theorem 35 ([63, Theorem 4.1]). The Iwahori-Hecke algebra HC.M;B/ is iso-
morphic to the complex monoid algebra CŒR� of the Renner monoid.

Here are some historical notes on the length function and Iwahori-Hecke algebra.
Solomon [84] first finds Theorems 31 and 33 for the Renner monoid Rn of M D
Mn.Fq/. He defines a length function on Rn in a different approach, but it agrees
with Definition 7. Furthermore, he introduces the Iwahori-Hecke algebra associated
with this M

H.M;B/ D
M

x2Rn

Z � Tx

with multiplication defined by

TsTx D
8
<

:

qTx; if l.sx/ D l.x/
Tsx; if l.sx/ D l.x/C 1
qTsx C .q � 1/Tx; if l.sx/ D l.x/ � 1:

TxTs D
8
<

:

qTx; if l.xs/ D l.x/
Txs; if l.xs/ D l.x/C 1
qTxs C .q � 1/Tx; if l.xs/ D l.x/ � 1:

T�Tx D ql.x/�l.�x/T�x
TxT� D ql.x/�l.x�/Tx�

where
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� D

0

B
B
B
B
B
@

0 1 0 � � � 0 0
0 0 1 � � � 0 0
� � � � � � � � �

0 0 0 � � � 0 1
0 0 0 � � � 0 0

1

C
C
C
C
C
A

:

4.6 Presentation of R

Let G be the unit group of a reductive monoid M . Then the commutator group
.G;G/ is semisimple. The root system ˚ and the Weyl group W of .G;G/ may be
identified with those of G [24, 27.1]. Since each semisimple algebraic group is a
product of simple algebraic groups corresponding to the decomposition of ˚ into
its irreducible components [24, 27.5], without loss of generality, we may assume
that G is a simple algebraic group. Denote by � D f˛1; � � � ; ˛lg a base of ˚ and
let A D .aij / be the Cartan matrix associated with �. Then W is generated by
S D fs1; � � � ; slg with defining relations

s2i D 1 and .si sj /
mij D 1; i; j D 1; � � � ; l;

where mij D 2; 3; 4 or 6 according to aij aj i D 0; 1; 2 or 3, respectively. Let E D
f.si ; sj ;mij / j i; j D 1; � � � ; lg. For .s; t; m/ 2 E .� /, denote by js; tim the word
sts � � � st of length m or the word sts � � � s of length m.

Let e; f 2 �0 D � n f1g and w 2 D.e/�1 \ D.f /. Thanks to [15,
Proposition 1.21], there exist a unique h 2 �0, and w 2 W�.h/ such that h � e ^ f
and ewf D hw D h; this unique element h will be denoted by e ^w f . We fix a
reduced word representative w for each w 2 W .

Theorem 36 ([15, Proposition 1.24]). The Renner monoid has the following
monoid presentation with generating set S [�0 and defining relations

s2 D 1; s 2 S I
js; tim D jt; sim; .s; t ; m/ 2 E I
se D es; e 2 �0; s 2 �.e/I
se D es D e; e 2 �0; s 2 �.e/I
ew f D e ^w f; e; f 2 �0;w 2 D.e/�1 \D.f /:
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4.7 Orders of Renner Monoids

The orders of Renner monoids provide numerical information about their structures.
The information can sometimes be used to study the generating functions associated
with the orders, indicating connections between Renner monoids and combinatorics.

Theorem 37 ([38, Theorem 2.1]). The order of the Renner monoid R of a
reductive monoid is

jRj D
X

e2�

jW j2
jW.e/j � jW�.e/j

D
X

e2�

jW j2
jW�.e/j � jW�.e/j2

:

Consider the action of W � W on R defined by .w1;w2/r D w1rw�1
2 . The

isotropic group of e 2 � is

.W �W /e D f.w;ww�/ 2 W �W j w 2 W.e/ and w� 2 W�.e/g:

Thus jWeW j D jW j2=.jW.e/j � jW�.e/j/, and the theorem follows.

4.8 Group Conjugacy Classes

Two elements �; � in a Renner monoid R are group conjugate, denoted by � � � ,
if � D w�w�1 for some w 2 W . Let W=W�.e/ be the set of left cosets of W�.e/ in
W and let We D fwe j w 2 W g:
Lemma 4 ([41, Lemmas 3.1 and 3.3]). Each element in a Renner monoid R is
group conjugate to an element in fwe j w 2 D�.e/g � We for some e 2 �.
Furthermore, if f 2 � and f ¤ e, then no element of Wf is group conjugate to
an element of We.

Let W.e/ act on W=W�.e/ by conjugation

w � uW�.e/ D wuw�1W�.e/;

where w 2 W.e/ and u 2 W . The normality ofW�.e/ inW.e/ shows that the action
is well defined. The following theorem gives a necessary and sufficient condition
for two elements to be group conjugate.

Theorem 38 ([41, Theorem 3.4]). Let e 2 �. Two elements ue; ve inWe are group
conjugate if and only if the two cosets uW�.e/ and vW�.e/ lie in the same W.e/-
orbit of W=W�.e/.

Thus, there is a one-to-one correspondence between the group conjugacy classes
of a Renner monoid and the orbits of the conjugation action of W.e/ on W=W�.e/
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for e 2 �. Let ne be the number of W.e/-orbits in W=W�.e/. Then the number of
the group conjugacy classes in a Renner monoid is

P
e2� ne:

From now on, we identify the general rook monoid Rn with the symmetric
inverse semigroup In. Our purpose is to describe the group conjugacy classes
of classical Renner monoids. First we collect some standard results about the
conjugacy classes of the rook monoid.

Theorem 39 ([47, Theorem 1.1]). Every injective partial transformation in the
rook monoid Rn may be expressed uniquely as a join of disjoint cycles and links
up to the order of cycles and links, where cycles and links of length 1 cannot be
omitted.

We explain the concepts used in the theorem. A cycle .i1i2 : : : im/ of length m is
an injective partial transformation with domain and range fi1; i2; : : : ; img given by
i1 7! i2 7! � � � 7! im 7! i1. This is different from the usual meaning of .i1i2 : : : im/
in Sn whose domain and range are n. A link Œj1j2 : : : jm� of length m is an injective
partial transformation determined by j1 7! j2 7! � � � 7! jm with jm going to
nowhere; its domain is fj1; : : : ; jm�1g and range is fj2; : : : ; jmg. Note that a cycle
.i1/ of length 1 means i1 is mapped to itself, and a link Œj1� of length 1 means
that j1 is neither in its domain nor in its range, i.e., Œj1� is the zero element of
Rn. A cycle of length m has m distinct expressions: .i1 : : : im/ D .i2 : : : imi1/ D
� � � D .imi1 : : : il�1/I A link of lengthm has only one expression Œj1 : : : jm� since the
starting point j1 and the terminal point jl are fixed.

Two elements �; � 2 Rn are disjoint if .I.�/ [ J.�// \ .I.�/ [ J.�// D ;.
If �; � 2 Rn are disjoint, then the join of � and � is defined to be the map � W
I.�/ [ I.�/! J.�/ [ J.�/ given by

�.i/ D
�
�.i/ if i 2 I.�/;
�.i/ if i 2 I.�/:

This join is denoted by � D �� . It is clear that �� D �� .
A signed partition of a positive integer n is a tuple of positive integers

 D .1; : : : ; s j�1; : : : ; �t /;
where

Ps
iD1 i C

Pt
jD1 �j D n with 1 	 � � � 	 s and �1 	 � � � 	 �t . Let

� 2 Rn be the join of s cycles of lengths 1; : : : ; s with 1 	 � � � 	 s and t links
of lengths �1; : : : ; �t with �1 	 � � � 	 �t . Then � corresponds uniquely to a signed
partition of n

.1; : : : ; s j�1; : : : ; �t /:
This partition is called the cycle-link type of � .

Theorem 40 ([42, Theorem 63.5]). Two partial injective transformations are
group conjugate if and only if their cycle-link types are the same. Moreover, the
number of conjugacy classes in Rn is
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X

0�k�n
p.k/p.n � k/

where p.k/ is the number of usual partitions of k.

The orders of conjugacy classes in Rn are given in [6]. Writing the cycle-link
type of � 2 Rn as

.
p1
1 ; : : : ; 

pu
u j�q11 ; : : : ; �qv

v /; (2)

where 1; : : : ; u are distinct positive integers and so are �1; : : : ; �v, we have the
following

Theorem 41 ([6, Proposition 2.4]). The order of the conjugacy class of � is
equal to

nŠ

p1Š : : : puŠq1Š : : : qvŠ
p1
1 : : : 

pu
u
:

The conjugacy class of an injective partial transformation in Rn corresponds to
a unique signed partition of n. Is there a similar result for the conjugacy classes of
symplectic transformations? A result of [6] answers this question affirmatively. We
need some preparation to state the result.

Strictly disjoint symplectic transformations are introduced in [6]. Let OI D I [ NI
where NI D fNi j i 2 I g for I � n. It is clear that if I; J � n, then

I \ OJ D ; , OI \ J D ; , OI \ OJ D ;:

Two symplectic transformations �; � 2 RSpn are strictly disjoint if



I.�/ [ J.�/

�\

bI.�/ [ bJ.�/

�
D ;:

Strictly disjoint symplectic transformations are disjoint, but not the other way
around. Let V D RSpn n W be the submonoid of all singular symplectic
transformations. We will describe conjugacy classes in V first and then those in W .

There is an epimorphism ' W RSpn ! Rl with ' W � 7! Q� defined by

Q�.ji j/ D j�.i/j for i 2 I.�/;

where ji j D i if 1 � i � l , and ji j D n C 1 � i if l < i � n. The following
definition will be used in Theorem 42.

Definition 8. (a) The join & D Œi11 : : : i1t1 � Œi21 : : : i2t2 � : : : Œiu1 : : : iutu � of disjoint
links in V is called a string if ti 	 2 for 1 � i � u and

Ni1t1 D i21; Ni2t2 D i31; : : : ; Niu�1;tu�1 D iu1:
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(b) If Niutu D i11, then Q& is a cycle in Rl and & is referred to as positive, otherwise, Q&
is a link in Rl and & is called negative.

(c) The length of & is the length of Q& in Rl .
(d) The link Œj � of length one is considered a negative string.

Theorem 42 ([6, Theorem 3.5]). Every symplectic transformation � 2 V can be
expressed uniquely as a join of strictly disjoint cycles and strings up to the order in
which they occur.

For clarity, we now state the main result of [6], and provide necessary concepts
needed after it.

Theorem 43 ([6, Theorem 4.5]). There is a one-to-one correspondence between
conjugacy classes in V and symplectic partitions of l .

What is a symplectic partition of a positive integer l? Well, the story is quite long.
Letm be a positive integer. A composition ofm of length s is an ordered sequence of
s positive integers  D .1; 2; : : : ; s/ such that

Ps
iD1 i D m. We agree that 0 has

one composition, the empty sequence. It is also regarded as the only partition of 0.
Define an equivalence relation on the set of compositions of m of length s:  and 0
are equivalent if 0 is a cycle-permutation of . For instance, .1; 3; 5/ and .3; 5; 1/
are equivalent, but .1; 3; 5/ and .1; 5; 3/ are not equivalent. The equivalence class of
a composition  D .1; 2; : : : ; s/ in the set of compositions of m of length s is
called a positive composition, and will be denoted by  D .1; 2; : : : ; s/ if there
is no confusion. A negative composition is a composition itself.

A weak composition of a positive integer m is similar to a composition of m,
but allowing parts of the sequence to be zero. For example, .4; 0; 2/ is a weak
composition of 6 of length 3.

We can now define the symplectic partition of a positive integer l . Let
.m1;m2;m3/ be a weak composition of l of length 3. If m1 > 0, let .1; : : : ; s/
be a partition of m1 where 1 	 � � � ;	 s 	 1. If m2 > 0, let .f1; � � � ; ft / with
f1 	 � � � ;	 ft 	 1 be a partition of m2. If m3 > 0, let .g1; � � � ; gu; 1

.v// be a
partition of m3 where v 	 0, and g1 	 � � � ;	 gu 	 2 if u 	 1. A symplectic
partition of l is a set of non-negative integers

�
1; : : : ; s

ˇ
ˇ�11; ; : : : ; �1p1 I : : : I�t1; : : : ; �tpt

ˇ
ˇ �11; ; : : : ; �1q1 I : : : I �u1; : : : ; �uqu I 1.v/	 (3)

where .1; 2; : : : ; s/ is a partition of m1, .�j1; �j2; : : : ; �jpj / is a positive
composition of fj for 1 � j � t , .�k1; �k2; : : : ; �kqk / with �kqk 	 2 is a negative
composition of gk for 1 � k � u, and 1.v/ is v negative compositions of length one,
such that m1 C m2 C m3 D l . We agree that if mi D 0 for i D 1; 2; 3 then the
corresponding part in the symplectic partition is empty.

The concept of the cycle-link type of a symplectic transformation � 2 V plays a
crucial role in determining conjugacy classes.

Definition 9. Let & D Œi11 : : : i1t1 � Œi21 : : : i2t2 � : : : Œiu1 : : : iutu � be a string. If & is
positive, the positive composition .t1 � 1; t2 � 1; � � � ; tu�1 � 1; tu � 1/ is referred
to as the string type of & . If & is negative, the negative composition .t1 � 1; t2 �
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1; � � � ; tu�1 � 1; tu/ is called the string type of & . Moreover, we say that the negative
string Œj �, consisting of only one link of length 1, has the negative composition .1/
as its string type.

If � 2 V corresponds to the symplectic partition (3), then (3) is referred to as the
cycle-string type of � . For completeness we state the traditional result, taken from
[8], about conjugacy classes of the unit group W of RSpn.

Theorem 44. There is a bijection between the conjugacy classes in W and the
signed partitions of l .

We refer the reader to [6] for the formulas for calculating the number of conjugacy
classes and the order of each class.

What are the group conjugacy classes of the even special orthogonal Renner
monoid RSOn. Let W be the unit group of the symplectic Renner monoid RSpn
and An the unit group of the even rook monoid RSOn with n D 2l . Thus An is
the subgroup of W consisting of all even permutations in W . Let V D RSpn n W
and V 0 D RSOn n An. Then V 0 is the submonoid of V consisting of even special
orthogonal injective partial transformations in V .

We consider the restriction to V 0 of the conjugation action of W on V . A simple
calculation yields that if � 2 V 0 and � 2 W , then ����1 2 V 0. So the restriction
to V 0 of the conjugation action of W on V induces an action of W on V 0, the
conjugation action of W on V 0. For now, let C be a W conjugacy class in V . It
follows from [13, Lemma 6.3] that two elements of C are An conjugate if and only
if there is � 2 C that commutes with an odd permutation in W . We also know that
if there are two elements in C not An conjugate, then C is a disjoint union of two
An conjugacy classes with equal cardinality.

We define a class function c on V 0. Let � 2 V 0 with domain I.�/ D fi1; � � � ; irg
and range J.�/ D fj1; � � � ; jrg. Define c.�/ to be the cardinality of the set
fji1j; � � � ; jir j; jj1j; � � � ; jjr jg. For example, if n D 8 and � maps 3 to 5 and 7 to 2 and
leaves the rest unchanged, then c.�/ D 3 since I.�/ D f3; 7g and J.�/ D f5; 2g
and fj3j; j7j; j5j; j2jg D f2; 3; 4g. Clearly, if �; � 2 V 0 are W conjugate, then
c.�/ D c.�/.
Theorem 45 ([13, Theorem 6.8]). Let C be aW conjugacy class in V 0. If c.C / <
l , then C is an An conjugacy class. If c.C / D l , then C is a disjoint union of two
An conjugacy classes with equal number of elements.

How can one determine if an element of V is in V 0 using its cycle-link type?

Theorem 46 ([13, Theorem 6.9]). If � 2 V has cycle-link type
�
1; : : : ; s

ˇ
ˇ�11; : : : ; �1p1 I : : : I�t1; : : : ; �tpt

ˇ
ˇ �11; : : : ; �1q1 I : : : I �u1; : : : ; �uqu I 1.v/	

then � 2 V 0 if and only if uC v > 0, or u=v=0 and p1 C � � � C pt is even.
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4.9 Munn Conjugacy

The set of i 2 I.�/ such that �k.i/ is defined for all k 	 1 is called the stable
domain of � 2 R, and is denoted by I ı.�/. That is,

I ı.�/ D
1\

k�1
I.�k/:

The restriction of � to I ı.�/ induces a permutation �ı of I ı.�/. This permutation
is an element of R. If �ı 2 WeW for some e 2 �, then e is referred to as the
subrank of � .

Definition 10. Two elements �; � 2 R are called Munn conjugate, denoted by
� � � , if there exists w 2 W such that w�1�ıw D �ı.

The Munn conjugacy class of � is denoted by Œ��. All elements of Œ�� have the
same subrank, and Œ�� meets one and only one parabolic subgroup of the form
fW �.f / j f 2 �g. More specifically, Œ�� meets W �.e/ where e is the subrank
of � .

Theorem 47 ([41, Theorems 4.16 and 4.17]). There is a bijection between the set
of Munn conjugacy classes of a Renner monoidR and the set of all group conjugacy
classes of W �.e/ for all e 2 �.

As a consequence, a Renner monoid has as many Munn conjugacy classes
as inequivalent irreducible representations over an algebraically closed field of
characteristic zero.

Theorem 48 ([6, Theorem 7.2]). Let W be the unit group of RSpn and V D
RSpn n W . Then two elements in V are Munn conjugate if and only if they have
the same cycle part in their cycle-string types. Furthermore, the number of Munn
classes is

Pm
rD0 p.r/:

We describe the relationship between Munn conjugacy and other conjugacies in
semigroup theory. Notice that there are different conjugacy relations in semigroups.
We are interested in semigroup conjugacy, action conjugacy, character conjugacy,
and McAlister conjugacy.

Let S be a semigroup. Then elements �; � 2 S are called primary S -conjugate
if there are x; y 2 S for which � D xy and � D yx. This latter relation is reflexive
and symmetric, but not transitive. Let � be its transitive closure, called semigroup
conjugacy. In general, group conjugacy is finer than semigroup conjugacy. But, in a
group they are the same, equal to the usual group conjugacy.

Kudryavtseva and Mazorchuk [30] study action conjugacy and character conju-
gacy. To define action conjugacy, consider the partial action of S1 on S
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� � x D
(
�x��1; if ��1� 	 ex I
undefined, otherwise:

It follows from [30, Lemma 1] that if �; � 2 S1 and x 2 S then �� � x is defined if
and only if � � x and � � .� � x/ are both defined, in which case �� � x D � � .� � x/.
We call x; y 2 S primary action conjugate if there is � 2 S1 for which y D � � x
or x D � � y. This relation is reflexive and symmetric, but not necessarily transitive.
Its transitive closure is called action conjugacy.

Two elements x; y in a semigroup S are referred to as character conjugate if for
every finite-dimensional complex representation 	 of S we have �	.x/ D �	.y/,
where �	 is the character of 	.

McAlister [43] introduces a conjugacy. Let a be an element in a finite semigroup
S and Na D ae, where e is the unique idempotent in the subgroup hai generated
by a. Then a; b are conjugate if Nb D x0 Nax and Na D x Nbx0 for some regular element
x with inverse x0.

Theorem 49 ([41, Corollary 4.5]). The action conjugacy, character conjugacy,
McAlister conjugacy, Munn conjugacy, and semigroup conjugacy are all the same
in a Renner monoid.

4.10 Representations

What can we say about the representations of the Renner monoid R? We will state
the main result of [40] first, and then provide some related information on the
representation theory of finite monoids. For any e 2 �, let Be be the group algebra
of W �.e/ over F , a field of characteristic 0.

Theorem 50 ([40, Theorem 3.1]). The inequivalent irreducible representations of
R over F are completely determined by those of Be , where e 2 �.

We briefly elaborate on how to achieve the above result. Let

FR D
(
X

�2R
˛��

ˇ
ˇ
ˇ ˛� 2 F

)

be the monoid algebra of R over F . The key is to show that FR is isomorphic to the
direct sum

L
e2� Ae , where Ae DMde.Be/ in which de D jW j=jW.e/j. Therefore,

FR is a semisimple algebra. To this end, an explicit description of the Möbius
function of R is found and a precise formula for Solomon central idempotents is
obtained. We refer the reader to [40] for the details.

The work of [40] is a generalization of Munn [47] and Solomon [86] from
representations of rook monoids to all Renner monoids. Munn initiates the study
of irreducible representations of rook monoid Rn in terms of irreducible repre-
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sentations of certain symmetric groups contained in the monoid. Solomon [86]
investigates these representations using central idempotents of FRn, and then
studies many other aspects related to these representations as well. Steinberg [88,89]
discusses representations of finite inverse semigroups S and shows that there is an
algebra isomorphism between the monoid algebra of S and the groupiod algebra
of S .

Putcha [63, 66–68] has developed a systematic representation theory of finite
monoids, including representations of any finite monoid, irreducible characters of
full transformation semigroups, highest weight categories and blocks of the complex
algebra of the full transformation semigroups. In particular, he provides an explicit
isomorphism between the monoid algebra of the Renner monoid and the monoid
Hecke algebra introduced by Solomon [84]. Putcha and Oknínski describe complex
representations of matrix semigroups in [49]. Putcha and Renner study irreducible
modular representations of M in [73, 81]. Munn [45, 46] investigates semigroup
algebras and matrix representations of semigroups.

4.11 Generating Functions

We investigate the generating functions associated with the orders of classical
Renner monoids. Let rn D jRnj D Pn

iD0
�
n
i

	2
i Š. It follows from [2] that the

generating function r.x/ D P1
nD0

rn
nŠ
xn is convergent to the solution of the

differential equation

r 0.x/
r.x/

D 2 � x
.1 � x/2 :

This result is generalized in [37] to study the generating functions of the orders of
the symplectic and orthogonal Renner monoids.

Let sn D Pn
iD0 ai

�
n
i

	2
i Š, where a is a nonzero real number. The following

recursive formula for sn, taken from [37], is a variant of [2]. It allows us to calculate
the generating function of sn. Clearly, s0 D 1 and s1 D aC 1.

sn D Œa.2n � 1/C 1�sn�1 � a2.n � 1/2sn�2; for n 	 2: (4)

Theorem 51 ([37, Theorem 3.1]). Let s.x/ D P1
nD0

sn
annŠ

xn. If a 	 1, then
s.x/ converges for jxj < 1 to the function 1

1�x e
x=a.1�x/. Also, s.x/ satisfies the

differential equation

s0.x/
s.x/

D aC 1 � ax
a.1 � x/2 :
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The generating function of sn is closely related to the Laguerre polynomials. Let
ln.t/ be the nth Laguerre polynomial. Then

sn

an
� nsn�1
an�1 D ln


1

a

�
; for a 	 1:

Corollary 4. Let rn be the order of the symplectic Renner monoid, and let r.x/ DP1
nD0

�
rn
4nnŠ

	
xn, the generating function of rn. Then r.x/ converges for jxj < 1 to

the function 1
1�x e

x=4.1�x/ C 2
2�x .

Corollary 5. Let dn be the order of the even special orthogonal Renner monoid,
and let d.x/ DP1

nD0
�
dn
4nnŠ

	
xn, the generating function of dn. Then d.x/ converges

to the function 1
1�x

�
ex=4.1�x/ � x

2.2�x/


for jxj < 1.

Remark. The generating function of the order of the odd special orthogonal Renner
monoid is the same as that of the symplectic Renner monoid.

4.12 Generalized Renner Monoids

It is convenient, for the moment, to let R be temporally a factorizable monoid with
unit group W acting on the set E.R/ of idempotents by conjugation. Denote by �
a transversal of E.R/ for this action. For each e 2 E.R/ let

W.e/ D fw 2 W j we D ewg
W�.e/ D fw 2 W j we D ew D eg:

Godelle introduces the concept of generalized Renner monoids, a class of factoriz-
able monoids.

Definition 11. A generalised Coxeter-Renner system is a triple .R;W; S/ such
that

(1) R is a factorizable monoid and .W; S/ is Coxeter system.
(2) � a sub-semilattice of E.R/.
(3) For each pair e1 � e2 in E.R/ there exists w 2 W and f1 � f2 in � such that

wfiw�1 D ei for i D 1; 2.
(4) For every e 2 � the subgroupsW.e/ andW�.e/ are standard Coxeter subgroups

of W .
(5) The map � ! 2S W e 7! �.e/ D fs 2 S j se D es ¤ eg satisfies: if e � f

then �.e/ � �.f /.

The monoid R in a Coxeter-Renner system is referred to as a generalized Renner
monoid. Godelle [16] introduces a different length function on R, and he used
this function to investigate the generic Hecke algebra H.R/ over ZŒq�, which are
deformations of the monoid Z-algebra of R. If M is a finite reductive monoid with
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a Borel subgroup B and Renner monoid R, he then finds the associated Iwahori-
Hecke algebra H.M;B/ by specialising q in H.R/ and tensoring by C over Z.
The Renner monoid of a reductive monoid and the Renner monoid of a finite
monoid of Lie type are examples of generalized Renner monoids. Mokler [44]
studies a different type of discrete monoids constructed from Kac-Moody Lie groups
and algebras, called Weyl monoids. The Weyl monoids are generalized Renner
monoids [16].
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Conjugacy Decomposition of Canonical
and Dual Canonical Monoids

Ryan K. Therkelsen

Abstract Putcha’s theory of conjugacy classes in a reductive monoid culminates
in a decomposition of the monoid in terms of these classes, which we call the
conjugacy decomposition. With this decomposition, we have a partially ordered
set, with partial order analogous to the Bruhat-Chevalley order for the Bruhat-
Renner Decomposition of a reductive monoid. We outline the development of
the conjugacy decomposition, paying attention to the cases of canonical and dual
canonical monoids. These monoids appear in the literature as J -irreducible and
J -coirreducible, respectively, of type ;. We conclude with a summary of new
results, describing the order between classes in the conjugacy decomposition for
canonical and dual canonical monoids.
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Introduction

The development of Putcha’s theory of conjugacy classes in reductive monoids,
initiated in [10], may be followed over a series of papers, most notably [11, 13, 14],
and [17]. These results lead to the description of a decomposition of the monoid in
terms of conjugacy classes, indexed by a certain collection of its idempotents and
group elements. This so-called conjugacy decomposition, along with an associated
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partial order, is the subject of this contribution. We begin with a summary of
the relevant background material for reductive monoids. In the following section,
we go on to describe the early developments relating to conjugacy classes in a
reductive monoid, summarizing the main points from [11, 13], and [14]. From
there we describe more recent developments, including new results relating to two
special classes: canonical and dual canonical monoids. In the final section, we
briefly remark on an application of this decomposition, identifying the irreducible
components of the variety consisting of nilpotent elements in the monoid.

1 Preliminaries

Our objects of study in this paper are reductive monoids. We begin with a brief
summary of the important points. For additional details, we refer the reader to
[12, 21, 22].

1.1 Reductive Monoids, Cross-Section Lattices, and the Renner
Monoid

Let k be an algebraically closed field. By a reductive monoid, we mean an
irreducible linear algebraic monoid, over k, whose unit group is a reductive group.
Every reductive monoid is the Zariski closure of a reductive group. That is, for
a closed group G of GLn.k/, M D G � Mn.k/ is a reductive group with unit
group G. By Green’s J -relation, [6], and the fact that M is irreducible, we have

aJ b ” MaM DMbM ” GaG D GbG
as shown in [12]. The J -classes ofM are therefore exactly theG�G orbits. In [9],
Putcha showed that there exists an idempotent cross-section� of G�G orbits such
that for e; f 2 �,

e � f ” GeG � Gf G”MeM �MfM
where e � f means ef D fe D e, as usual [4], and the closure is with respect to
the Zariski topology. � is a finite lattice, called a cross-section lattice of M . This
gives us a nice decomposition ofM in terms of its J -classes (that is,G�G orbits)

M D
G

e2�
GeG: (1)

Let T be a maximal torus in G and B a Borel subgroup of G containing T .
It turns out that for a fixed T , the cross-section lattices of M are in one-to-one
correspondence with the Borel subgroups of G containing T , [9]. In particular, we
have
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� D fe 2 E.T /ˇˇBe D eBeg: (2)

Example 1. Let M D Mn.k/. If B is the group of invertible upper triangular
matrices with T � B the invertible diagonal matrices, then

� D
��
Ir 0

0 0

� ˇ
ˇ
ˇ
ˇ0 � r � n

�

where Ir is the r � r identity matrix. In this case,� is a chain and each G �G orbit
consists of matrices of a particular rank.

Let W D NG.T /=T denote the Weyl group of G. The reductive group G then
has the Bruhat decomposition

G D
G

w2W
BwB (3)

with the Bruhat-Chevalley order on W defined in terms of the B � B orbits as

x � y ” BxB � ByB (4)

for x; y 2 W and closure with respect to the Zariski topology, [3]. In [20], Renner
extends this decomposition to reductive monoids as

M D
G

�2R
B�B (5)

where R D NG.T /=T is a finite inverse monoid, called the Renner monoid. We
note that the Weyl group W is the unit group of the Renner monoid R and so we
have

R D
G

e2�
WeW: (6)

The Bruhat-Chevalley order also has a natural generalization to the monoid setting,
with

� � � ” B�B � B�B (7)

for �; � 2 R.

Example 2. For M D Mn.k/, the Renner monoid is the set of n � n partial
permutation matrices (the rook monoid), denoted Rn. By this we mean the set of
f0; 1g-matrices having at most one 1 in each column and each row. The unit group
of Rn is the set of n � n permutation matrices.
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1.2 Parabolic Subgroups and Quotients

In studying the structure of a reductive monoid, it is useful to describe elements
of the Renner monoid R in terms of parabolic subgroups of W and the resulting
quotient elements. We briefly describe these objects now.

Let W be the Weyl group of G, the unit group of a reductive monoid M . For
e; f 2 � we have

W.e/ D ˚x 2 W ˇ
ˇex D xe� (8)

W �.e/ D T

f�e
W.f / (9)

W�.e/ D T

f�e
W.f / (10)

with

W.e/ D W �.e/ �W�.e/ (11)

as shown in Chapter 10 of [12]. To clarify, the elements ofW.e/ are the Weyl group
elements that commute with the idempotent e 2 �, W�.e/ is the set of commuting
elements of W which are absorbed by e, and W �.e/ consists of those elements of
W that commute with e where nothing is absorbed. Occasionally, we will find it
convenient to describe these subgroups of W using the more common notation for
parabolic subgroups. That is, for the Weyl group W with S the set of generating
simple reflections, WI denotes the parabolic subgroup generated by I � S .

Example 3. If M D Mn.k/ with B and T � B as in Example 1, e 2 � is of the

form e D
�
Ij 0

0 0

�

for some j , 0 � j � n. Denoting this idempotent by ej , we have

W.ej / D
��
P 0

0 Q

��

and

W �.ej / D
��
P 0

0 In�j

��

; W�.ej / D
��
Ij 0

0 Q

��

where P and Q are permutation matrices. Identifying W with the symmetric group
Sn, we have W.ej / D WI, W�.ej / D WK , and W �.ej / D WInK , where

I D f.1 2/; .2 3/; : : : ; .n � 1 n/gnf.j j C 1/g
K D f.j C 1 j C 2/; : : : ; .n � 1 n/g

Let ` denote the usual length function on W , [1, 7]. Given a parabolic subgroup
W.e/, we have the following important subsets:
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D.e/ D fx 2 W ˇ
ˇ`.xw/ D `.x/C `.w/ for all w 2 W.e/g

D.e/�1 D fx 2 W ˇ
ˇ`.wx/ D `.w/C `.x/ for all w 2 W.e/g:

We call elements of D.e/ or D.e/�1 quotients and note that D.e/ consists of the
unique minimal length element from each coset xW.e/, with D.e/�1 likewise for
W.e/x. IfWI D W.e/, we will sometimes writeDI forD.e/ andD�1

I forD.e/�1.
These sets are denoted W I and IW , respectively, in [1].

1.3 Bruhat-Chevalley Order and Gauss-Jordan Elements

Every Renner monoid element may be expressed uniquely in terms of an idempotent
and quotient elements of parabolic subgroups related to the idempotent. If � 2 R,
then by (6), � 2 WeW for a unique idempotent e 2 �. This means � D w1ew2 for
some w1;w2 2 W . If we factor w2 in terms ofW.e/ andD.e/�1, commute theW.e/
term with e, and factor the resulting element on the left of e in terms of W�.e/, we
have

� D xey (12)

for unique y 2 D.e/�1 and x 2 DK whereW�.e/ D WK . An element of the Renner
monoid is said to be in standard form if it is written this way.

In [20], Renner identifies the reductive monoid elements analogous to matrices
in reduced row-echelon form. We’re interested in such elements that are also in
the Renner monoid R. We call these the Gauss-Jordan elements of R, formally
defined as GJ D fx 2 RjBx � xBg, where B is a Borel subgroup of G as usual.
We are especially interested in the Gauss-Jordan elements as we will later show that
they may be used to index the orbits in the conjugacy decomposition of a reductive
monoid M . For now, we give a more convenient description of GJ , in terms of
quotients of parabolic subgroups of W :

GJ D fey 2 R ˇˇ e 2 �; y 2 D.e/�1g: (13)

Additionally, by GJ .e/ we mean the Gauss-Jordan elements in WeW .
With this new description of Renner monoid elements we briefly look back at

the Bruhat-Chevalley order on R. For the Weyl group W , it is well known that the
condition BxB � ByB is equivalent to x being a subword of a reduced expression
of y. The situation for Renner monoids is more complicated, though the approach
is similar. The following description for the Bruhat-Chevalley order on R, (7), was
introduced in [8]:

Theorem 1. Let �; � 2 R, with � D xey and � D uf v be in standard form. Then

� � � ” e � f and x � uw; w�1v � y (14)

for some w 2 W.f /W�.e/.
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Corollary 1. Let ey and fy0 be Gauss-Jordan elements of R. Then ey � fy0 if
and only if e � f and there exists w 2 W�.e/W.f / such that wy0 � y.

Comparing �; � 2 R is easier if both elements are in the same W � W orbit
since the w required in the theorem is from the subgroup W.e/. For Gauss-Jordan
elements the comparison is easier as well since now ey � ey0 if and only if y0 � y.
Alternate descriptions of the Bruhat-Chevalley order withinWeW are found in [15]
and [23]. The order between the W � W orbits is trickier, however an effective
approach for this situation is given in [16]. Here Putcha defines his projection
maps, pe;f W WeW ! Wf W . We refer the reader to [16] for the formal description
of the maps and focus instead on their especially nice properties, outlined in the
main result of the paper:

Theorem 2. Let e; f 2 �, e � f . Then

1. pe;f W WeW ! Wf W is order-preserving and � � pe;f .�/ for all � 2 WeW .
2. If � 2 WeW , � 2 Wf W , then � � � if and only if pe;f .�/ � � .
3. If h 2 � with e � h � f , then pe;f D ph;f ı pe;h.

The essential point is this: with the projection maps, we turn a “between classes”
order problem into a “within classes” order problem which, as noted, is easier to
solve.

2 Conjugacy Classes in a Reductive Monoid

As previously noted, the theory of conjugacy classes in reductive monoids is
developed over a series of papers, [11, 13, 14], and [17]. In this section, we outline
the main results of the first three of these entries. For additional details on the
topics, Chapter 12 of Renner’s monograph, [21], is highly recommended. The most
recent paper in this series, [17], is the launching point for the primary topics of this
exposition. This paper appeared after Renner’s monograph and we will devote our
attention to its results separately in the subsequent section.

2.1 The Development of the Conjugacy Decomposition

LetM be a reductive group with unit groupG, as usual. Two elements x; y 2M are
conjugate, denoted x � y, if x D yg D g�1yg for some g 2 G. For X; Y � M ,
we write X � Y if every element in X is conjugate to an element in Y and every
element in Y is conjugate to an element in X .

The study of conjugacy classes in M began in earnest with [11]. The main result
here is the following:
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Theorem 3. There exist affine subsetsM1, . . . ,Mk ofM , reductive groups G1, . . . ,
Gk with respective automorphisms ˛i of Gi , and surjective maps �i W Mi ! Gi
such that:

1. Every element of M is conjugate to an element of some Mi , and
2. If x; y 2 Mi , then x � y if and only if there exists g 2 Gi such that
g�i .x/˛i .g/

�1 D �i .y/.
The subsets Mi were defined in terms of a diagonal idempotent and a Weyl group
element. Namely, for e 2 E.T / and w 2 W ,

Me;w D eCG.ev
ˇ
ˇv 2 hwi/w

where CG.X/ is the centralizer of X in G and hwi is the cyclic subgroup generated
by w. This was a wonderful result, however an open problem remained as it is
possible that an element in Mi is conjugate to an element in Mj for i ¤ j . This
issue was resolved in [13] with the identification of a certain closed subset New of
Me;w. With these subsets identified, Putcha goes on to prove the following:

Theorem 4. Let M be a reductive monoid with Renner monoid R.

1. If �; � 2 R with N� \N� ¤ ;, then N� D N� .
2. If u 2 W.ev

ˇ
ˇv 2 hwi/, then Neuw � Me;w and Neuw D N�

ew for some � 2
W.ev

ˇ
ˇv 2 hwi/

3. Any element of Me;w is conjugate to some element of New.
4. Any element of M is conjugate to an element of New for some e 2 �, w 2 W .
5. The map � WMe;w ! Ge;w remains surjective when restricted to New.

Theorem 5. The following are equivalent for e 2 � and u; v 2 W .

1. There exists an element of Me;u that is conjugate to an element of Me;v.
2.

S

g2G
gMe;ug

�1 D S

g2G
gMe;vg

�1.

3. There exists w 2 W , with eu � ew in R, such that
T

i�0
wiW.e/u�1 ¤ ;.

4. N�
eu D Nev for some � 2 W.e/.

These two theorems are the main results of [13]. All that remains in the analysis
of the decomposition of M in terms of conjugacy classes is a description of the
representatives of the

S

g2G
gMe;ug

�1 classes. This feat is accomplished in the next

paper in the series.
In [14], Putcha identifies a set of elements R� � R such that

M D
G

r2R�

X.r/
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where X.r/ D S

g2G
gMe;ug

�1. It turns out that R� consists of Gauss-Jordan

elements. Thus for r 2 R� � GJ , r D ey for some e 2 �, y 2 D.e/�1. For
a fixed idempotent e 2 �, we denote the set of quotients corresponding to elements
in R� as follows:

D�.e/ D fy 2 D.e/�1ˇˇey 2 R�g: (15)

Much effort is spent leading up to the definition of the D�.e/ sets and the reader is
encouraged to see [14] for the details. For now, we give a more succinct description
of the elements of D�.e/: if y 2 D�.e/ and ey � ez for some z 2 D.e/�1, then
`.y/ � `.z/ with equality if and only if z D y.

Example 4. Let M D M4.k/. For e D e2, using the notation from Example 3,
GJ .e/ consists of six elements:

e D

2

6
6
4

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

3

7
7
5; ey1 D

2

6
6
4

1 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

3

7
7
5; ey2 D

2

6
6
4

1 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

3

7
7
5

ez1 D

2

6
6
4

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

3

7
7
5; ez2 D

2

6
6
4

0 1 0 0

0 0 0 1

0 0 0 0

0 0 0 0

3

7
7
5; ev D

2

6
6
4

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

3

7
7
5

The conjugate elements in this set are ey1 � ey2 and ez1 � ez2. We note that
1 D `.y1/ < `.y2/ D 2 and 2 D `.z1/ < `.z2/ D 3, and hence

D�.e/ D f1; y1; z1; vg :

Theorem 6. Let e 2 �.

1. If y 2 D.e/�1, then X.ey/ D S

g2G
gBeyBg�1

2. GeG D F

y2D�.e/

X.ey/.

3. M D F

r2R�

X.r/.

The decomposition from the last part of the above theorem is called the conjugacy
decomposition (or Putcha decomposition, as in [21]) of the reductive monoid M .

We next define a transitive relation � on R, generated by

(a) If r1 � r2 in the Bruhat-Chevalley order, then r1 � r2,
(b) If y 2 D.e/�1 and w 2 W , then eyw � wey.
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Theorem 7. 1. .R�;�/ is a partially ordered set.
2. If r1; r2 2 R�, then X.r1/ � X.r2/ if and only if r1 � r2.
3. If r 2 R�, then X.r/ D F

s�r;s2R�

X.s/.

We call the partial order on R� the conjugacy order and the partially ordered set
in the theorem the conjugacy poset (or Putcha poset, as in [21]) of the reductive
monoid M .

Remark 1. The motivating example for the conjugacy decomposition comes from
the multiplicative monoid Mn.k/. For A;B 2 Mn.k/, define A � B if rank(Ai )
equals rank(Bi ) for all i , 1 � i � n, and denote the �-class of A by ŒA�. A natural
partial order exists on the set of these classes, defined in terms of the ranks of
successive powers of matrix representatives as follows:

ŒA� � ŒB� ” rank.Ai / � rank.Bi /; for all 1 � i � n: (16)

It turns out that the�-classes are exactly the classes in the conjugacy decomposition
and the partial order (16) corresponds to the conjugacy order. For additional details,
the reader is referred to Section 1 of [17] for the motivation and Section 3 of [17]
for the proofs.

Example 5. Consider the rank 2 elements of M4.k/. Given a matrix A, it is
straightforward to construct a matrix from the rook monoid Rn in row echelon form
that has the same sequence of ranks of successive powers as A. In other words, in
every �-class we can find a Gauss-Jordan element. We therefore consider the rank
2 Gauss-Jordan elements of M4.k/, as presented in Example 4, and observe the
following:

Element Successive ranks

e 2 ! 2 ! 2

ey1 2 ! 1 ! 1

ey2 2 ! 1 ! 1

ez1 2 ! 1 ! 0

ez2 2 ! 1 ! 0

ev 2 ! 0 ! 0

There are four classes here, as noted in Example 4, with Œev� < Œez1� < Œey1� < Œe�

by (16).
Recall that our description of the conjugacy order was in terms of R�. Since our

idempotent is fixed, we therefore consider eD�.e/ D fe; ey1; ez1; evg. Now, by Part
2 of Theorem 1.5 from [2] we have

ev < ez1 < ey1 < e

in the Bruhat-Chevalley order and hence

ev � ez1 � ey1 � e:
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3 Recent Developments

Renner’s monograph [21] outlines the development of Putcha’s theory of conjugacy
classes over [11, 13], and [14], as described in the previous section. In this section,
we track the more recent developments relating to the conjugacy poset.

In [17], Putcha continues his analysis of the conjugacy decomposition of a
reductive monoid. After a description of the motivating example of Mn.k/ in terms
of partitions, briefly noted in Remark 1 above, he gives a refined description of
the decomposition for a general reductive monoid. To begin, we’re reminded of the
definition of X.�/. That is, for � 2 R,

X.�/ D
[

g2G
gB�Bg�1:

Now, since G=B is a projective variety,

Y.�/ D X.�/ D
[

� 0��
X.� 0/

is a closed irreducible subset of M . For �; � 2 R, we define

� � � if Y.�/ D Y.�/

and

� � � if Y.�/ � Y.�/:

Putcha then goes on to describe the decomposition in terms of Gauss-Jordan
elements. Again from [17]:

Theorem 8. Let R be the Renner monoid of a reductive monoid.

1. If � 2 R, then � � � 0 for some � 0 2 GJ .
2. If �; � 2 GJ , then

� � � ” � � � in R ” X.�/ D X.�/:

Let P D GJ = �, where � is conjugacy in R (in [17], P is denoted QR) and for
� 2 GJ , define

Œ�� D f� 0 2 GJ
ˇ
ˇ� 0 � �g: (17)

Additionally, it will be useful to consider the elements of P in terms of the
idempotents from � and so we define P.e/ D fŒey�ˇˇy 2 D.e/�1g.
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For � 2 R, let p.�/ D Œ� 0�, where � � � 0 2 GJ as described in the previous
theorem. Now, � from the theorem induces a partial order � on P , where Œey� �
Œf z� if ey � f z. .P;�/ is the conjugacy poset of M , with a slightly different
description than before, as the following theorem from [17] shows.

Theorem 9. Let R be the Renner monoid of a reductive monoid M .

1. p W R!P is an order-preserving map.
2. M D F

Œey�2P
X.ey/.

3. If Œey� 2P , then Y.ey/ D F

Œf z��Œey�
X.f z/.

We next describe the conjugacy order on elements of P in terms of the Bruhat-
Chevalley order on R, (14). The following, from [24], is a refinement of a result in
[17], in which the description of the a required in the theorem is more precise.

Theorem 10. Let Œ�� 2 P.e/, Œ� � 2 P.f /. Then Œ�� � Œ� � if and only if
a�a�1 � � for some a 2 W.f /W�.e/.

With this new description, Putcha goes on to prove some new results on the
conjugacy poset, beginning with the order in P.e/ for e 2 �. Comparing two
elements is easier in this case, since by the previous theorem we check if a�a�1 � �
for some a 2 W.e/W�.e/ D W.e/. The next result, from [24], is a generalization
of Theorem 2.9 from [17]. In the theorem, we write w D Ow Lw for w 2 W.e/, where
Ow 2 W �.e/ and Lw 2 W�.e/. By (11), Ow and Lw are unique and `. Ow Lw/ D `. Ow/C`. Lw/.
Theorem 11. Let e 2 � and y; z 2 D.e/�1. Then the following conditions are
equivalent:

1. Œey� � Œez�.
2. Owz � yw for some w 2 W.e/.
3. Owzw�1 � y for some w 2 W.e/.
With this theorem, we are able to turn a conjugacy order problem into an order
problem involving only Weyl group elements. Since the Bruhat-Chevalley order on
R is more complicated than the order on W , this is an especially welcome result.

4 The Conjugacy Poset for Canonical and Dual Canonical
Monoids

Theorem 11 gives us a nice description of the conjugacy order within the P.e/

classes. What remains is to examine the order between these classes. In [16], the
analogous problem was resolved for R by defining order-preserving maps with
some nice properties. In particular, for WeW and Wf W with e � f , a map
p W WeW ! Wf W is defined such that for � 2 WeW and � 2 Wf W , � � �

if and only if p.�/ � � . The existence of similar maps for P.e/ to P.f / was
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conjectured in [17]. In this section, we give an affirmative answer to the conjecture
for the case that M is either a canonical or dual canonical monoid. These results
originally appeared in [24].

4.1 Canonical and Dual Canonical Monoids

Let� be a cross-section lattice for the reductive monoidM . As� is a finite lattice, it
contains a minimum and maximum element, which we denote 0 and 1, respectively.
Suppose � n f0g contains a unique minimal element, say e0, with W.e0/ D WI for
I � S .M is then called a J -irreducible monoid of type I . A canonical monoid
is a J -irreducible monoid of type ;. Canonical monoids were first studied in [19].
Their construction was modeled by the canonical compactification of a reductive
group, as in [5].

Example 6. Let G0 D fA ˝ .A�1/t j A 2 SL3.k/g and let M D kG0 � M9.k/.
Then M is a canonical monoid with W D S3. This example appears in [12, 16],
and [18].

Suppose instead that � n f1g contains a unique maximal element, say e0, with
W.e0/ D WI for I � S . M is then called a J -coirreducible monoid of type I .
A dual canonical monoid is a J -coirreducible monoid of type ;. Dual canonical
monoids also arise naturally, as the following example shows.

Example 7. Let G0 D fA ˚ .A�1/t j A 2 SL3.k/g and let M D kG0 � M6.k/.
ThenM is a dual canonical monoid withW D S3. This example appears in [12,16],
and [18].

Remark 2. The following points are useful to keep in mind when considering
canonical and dual canonical monoids:

1. If M is a canonical monoid, then W.e/ D W �.e/ and W�.e/ D f1g for all
e 2 � n f0g.

2. If M is a canonical monoid, then D�.e/ D D.e/�1 for all e 2 � n f0g, where
D�.e/ is as in (15).

3. If M is a dual canonical monoid, then W.e/ D W�.e/ and W �.e/ D f1g for all
e 2 � n f1g.

4. If M is a dual canonical monoid, then D�.e/ D D.e/ \ D.e/�1 for all e 2
� n f1g, where D�.e/ is as in (15).

4.2 Conjugacy Order for Dual Canonical Monoids

The order within P.e/ is described in Theorem 11. IfM is a dual canonical monoid,
then W �.e/ D f1g and the conditions in the Theorem are simplified.
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Corollary 2. Let M be a dual canonical monoid with e 2 � n f1g and y; z 2
D.e/�1. Then the following conditions are equivalent:

1. Œey� � Œez�.
2. z � yw for some w 2 W.e/.
3. zw � y for some w 2 W.e/.

As noted in Remark 2, if M is a dual canonical monoid then for e 2 � n f1g we
haveD�.e/ D D.e/\D.e/�1. By Corollary 2, Œey� � Œez� if and only if z � yw for
some w 2 W.e/. However, if y; z 2 D�.e/ then y; z 2 D.e/ and so z � yw if and
only if z � y. Hence for dual canonical monoids, we have the following description
for P.e/:

Œey� � Œez� ” z � y: (18)

For the order between P.e/ classes in a dual canonical monoid, there exist maps
analogous to those between theW �W orbits from Theorem 2. What’s more, these
maps are defined in terms of the W �W maps. The trick here is to pick the correct
representative from Œey�.

Let M be a dual canonical monoid and suppose Œ�� 2P.e/. Choose the unique
ey from Œ�� such that y 2 D�.e/. We now let WK D W.e/

T�
y�1W.e/y

	
with

wI , wK the longest elements in W.e/, WK , respectively.

Proposition 1. For y, wK , and wI as described, ywKwI 2 D.e/�1.
Proof. ywKwI D wy0 for some w 2 W.e/ and y0 2 D.e/�1. Since ey � ey0, we
have y0 D yv for some v 2 WI . Let wK D y�1vKy and so

ywKwI D wy0 D wyv: (19)

Keeping in mind that y 2 D�.e/ D D.e/ \D.e/�1 and yv 2 D.e/�1, we observe
the following:

`.ywKwI / D `.wyv/

`.y/C `.wKwI / D `.w/C `.yv/

`.y/C `.wKwI / D `.w/C `.y/C `.v/
`.wKwI / D `.w/C `.v/

On the other hand, we may rewrite (19) as

vwI D y�1w�1ywK D y�1w�1yy�1vKy D y�1w�1vKy:

Now, since y�1w�1vKy 2 WK , by definition y�1w�1vKy � wK . Both elements are
in WI as well, so v D y�1w�1vKywI 	 wKwI . Putting everything together, we see
that `.w/C `.v/ D `.wKwI / � `.v/ and hence `.w/ D 0. Therefore w D 1 and we
have ywKwI D wy0 D y0 2 D.e/�1. That is, ywKwI 2 D.e/�1. ut
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Proposition 1 tells us that each set of conjugate Gauss-Jordan elements has a
minimum element, with respect to (14). For Œey�, we denote this element by eym.
For e; f 2 �, e � f , we now define the projection of Œey� in P.f / as:

Qpe;f .Œey�/ D
�
pe;f .eym/


: (20)

The following theorem shows that these maps satisfies the conditions of the
conjecture from [17].

Theorem 12. Let e; f 2 �, with e � f . Then

1. Qpe;f WP.e/!P.f / is order-preserving.
2. Œey� � Qpe;f .Œey�/.
3. Œey� � Œf z� if and only if Qpe;f .Œey�/ � Œf z�.

Proof. 1. Let Œey� � Œey0�. Then w�1eymw � ey0
m for some w 2 W.e/ and so

eymw � ey0
m or eymw D eu1y1 D ey1 � ey0

m, where u1 2 W.e/, y1 2 D.e/�1.
However, eym � ey1 and so eym � ey1 � ey0

m. This means pe;f .eym/ �
pe;f .ey

0
m/ and hence Œpe;f .eym/� � Œpe;f .ey0

m/� or Qpe;f .Œey�/ � Qpe;f .Œey0�/.
2. By Theorem 2, eym � pe;f .eym/. Then, by Theorem 10, we have

Œey� D Œeym� � Œpe;f .eym/� D Qpe;f .Œey�/:

3. Suppose Œey� � Œf z� and let Qpe;f .Œey�/ D Œfy0�. Then weymw�1 � f zm and
eym � fy0

m. However, eym � weymw�1 D ey2 so eym � ey2 and hence eym �
f zm. Thus pe;f .eym/ � f zm, from which it follows that Qpe;f .Œey�/ � Œf z�. The
other direction follows from the previous part. ut

Example 8. Let M be a dual canonical monoid with Weyl group of type A2 (see
Example 7), with S D fA;Bg the set of simple reflections. Figure 1 shows the
Hasse diagram for the conjugacy poset P of this monoid, with the idempotents
corresponding to ;, fAg, fBg, and S denoted by e;, eA, eB , and eS , respectively.

4.3 Conjugacy Order for Canonical Monoids

In [17], Theorem 2.9 describes the order within P.e/ when M is a canonical
monoid. This theorem is a special case of Theorem 11 above—in fact, it motivated
the general result.

As noted in Remark 2,D�.e/ D D.e/�1 for a canonical monoid and so there is a
one-to-one correspondence between vertices in GJ .e/ under the Bruhat-Chevalley
order and P.e/ under the conjugacy order. The partial orders, however, do not
coincide and so the posets are not isomorphic. In particular, ey � ez implies
Œey� � Œez�, though not necessarily conversely. The following example, originally
from [17], makes this clear.
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Fig. 1 P for the dual canonical monoid with W of Type A2

Example 9. Let M be a canonical monoid with Weyl group of type A3, with
Coxeter graph A � B � C . Let e 2 � be the idempotent such that W.e/ D WI

for I D fBg. Then GJ .e/ under Bruhat-Chevalley order is isomorphic to a
(weak) subposet of P.e/ under conjugacy order. The additional relations in P.e/

are ŒeABC � � ŒeCB� and ŒeCBA� � ŒeAB�, though eABC — eCB and
eCBA — eAB in GJ .e/.

For the order between the idempotent indexed classes, in [24] the author shows
that the projection maps conjectured in [17] also exist for canonical monoids. These
maps are, however, more difficult to describe than for the dual canonical case. We
begin by noting two operations that will be crucial in the process of constructing
the maps. If a; b 2 W , then

a ı b D maxfab0 j b0 � bg

a  b D
�
ab if `.ab/ D `.a/C `.b/
undefined otherwise:
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We also will need a new relation, denoted �I , where for z 2 D�1
I and y 2 W we

define

z �I y if wzw�1 � y for some w 2 WI :

We may now describe the projection maps for M a canonical monoid. Suppose
e; f 2 � with e � f and let Œey� 2P.e/, with y 2 D.e/�1 as usual. We factor y
as y D u1y1 with u1 2 W.f / and y1 2 D.f /�1. Now y1 ı u1 D y1  u0

1 for some
u0
1 � u1 and y1  u0

1 D u2y2 for some u2 2 W.f /, y2 2 D.f /�1. We next consider
y2 ı u2 and repeat this process. In [24], it is shown that

`.u1/ > `.u2/ > � � � > `.um�1/ D `.um/ D `.umC1/ � � �
for somem 2 Z. Note that while uj and ujC1 have the same length for j 	 m, they
need not be the same element. What is important here is that yj is the same for all
j 	 m. For e; f 2 �, e � f , we now define the projection of Œey� in P.f / as:

Qpe;f .Œey�/ D Œfym� (21)

where y D u1y1 with u1 2 W.f / and y1 2 D.f /�1 and ym is as described above.
To prove that these maps satisfy the conditions we seek, we first note three helpful

results. Theorem 13 is similar to Theorem 11, but between the P.e/ classes. The
proof relies on the fact that for canonical monoids, W.e/ D W �.e/ for all e 2 �.
This result does not hold for reductive monoids in general. For additional details,
the reader is referred to [24].

Theorem 13. Let e; f 2 � with e � f , y 2 D.e/�1, and z 2 D.f /�1. If W.e/ D
W �.e/ and W.f / D W �.f /, then the following conditions are equivalent:

1. Œey� � Œf z�.
2. wz � yw for some w 2 W.f /.
3. wzw�1 � y for some w 2 W.f /.
Lemma 1. Let y 2 D�1

I , u 2 WI , and z 2 W . Then z �I uy if and only if
z �I y ı u.

Lemma 2. Let WK D T

i�0
�
y�iWIy

i
	
. Let y; z 2 D�1

I and u 2 WK . Then z �I uy

if and only if z �I y.

Finally, we prove the following for Qpe;f WP.e/!P.f / from (21):

Theorem 14. Let e; f 2 �, with e � f . Then

1. Œey� � Qpe;f .Œey�/.
2. Œey� � Œf z� if and only if Qpe;f .Œey�/ � Œf z�.
3. Qpe;f WP.e/!P.f / is order-preserving.

Proof. 1. Note that for y D u1y1, y1 ı u1 D u2y2 for some u2 2 W.f / and
y2 2 D.f /�1, and in general yj�1 ı uj�1 D uj yj . By Lemma 2, ym �J umym,
where J is such that W.f / D WJ . Now, applying Lemma 1, we have
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ym �J umym D ym�1 ı um�1
” ym �J um�1ym�1 D ym�2 ı um�2

:::

” ym �J u2y2 D y1 ı u1

” ym �J y D u1y1:

Hence ym �J y, and so by Theorem 13, Œey� � Œfym� D Qpe;f .Œey�/.
2. Suppose Œey� � Œf z� and let Qpe;f .Œey�/ D Œfym�. By Theorem 13, wzw�1 � y

for some w 2 W.f /. That is, z �J y, where W.f / D WJ . Using Lemma 1, we
have

z �J y D u1y1

” z �J y1 ı u1 D u2y2

:::

” z �J ym�2 ı um�2 D um�1ym�1
” z �J ym�1 ı um�1 D umym

and, by Lemma 2,

z �J ym
Hence z �J ym, and so by Theorem 13, Œfym� D Qpe;f .Œey�/ � Œf z�. The other
direction follows from the previous part.

3. Suppose Œey� � Œey0�. By the first part above, Œey0� � Qpe;f .Œey0�/ and hence
Œey� � Qpe;f .Œey0�/. By the second part above, Qpe;f .Œey�/ � Qpe;f .Œey0�/. ut

Example 10. Let M be a canonical monoid with Weyl group of type A2 (see
Example 6), with S D fA;Bg the set of simple reflections. Figure 2 shows the
Hasse diagram for the conjugacy poset P of this monoid, using the same notation
for the idempotents as in Example 8.

5 Concluding Remarks

In this final section, we note a useful application of the conjugacy poset. For a
reductive monoid M , the nilpotent variety is

Mnil D fa 2M
ˇ
ˇak D 0 for some kg: (22)
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Fig. 2 P for the canonical monoid with W of Type A2

The study of this variety began in [14] and connections were made with the
conjugacy decomposition of M . Mnil is in general not irreducible, however a
description of the irreducible components is obtained in [14] (with P denoted by
C in the original).

Theorem 15. The variety Mnil decomposes as

Mnil D
G

Œey�2Pnil

X.ey/

where Pnil D fŒey� 2 P
ˇ
ˇ.ey/k D 0 for some kg. The irreducible components

of Mnil are X.ey/, where Œey� is a maximal element of Pnil with respect to the
conjugacy order.

With this theorem in hand, the problem is then to identify the maximal
elements of Pnil . In [18], Putcha solves this problem for J -irreducible and
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J -coirreducible monoids of type I . We conclude with two examples from [18],
considering the case that I D ;. As previously noted, these are exactly the canonical
and dual canonical monoids.

Example 11 (Example 5.6,[18]). Let M be a canonical monoid. For ˛ 2 S , let
e˛ 2 � be such thatW.e˛/ D WSnf˛g. Then the irreducible components ofMnil are
X.e˛˛/, ˛ 2 S .

Example 12 (Example 6.5,[18]). Let M be a dual canonical monoid. Let e0 be the
(unique) maximal element in � n f1g. Then the irreducible components of Mnil are
X.e0c/, where c is a Coxeter element of W.
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The Endomorphisms Monoid of a Homogeneous
Vector Bundle

L. Brambila-Paz and Alvaro Rittatore

Abstract Let E be a homogeneous vector bundle over the abelian variety A and let
AutA.E/ be the (algebraic) group of automorphims of E as a vector bundle. Then
the fiber over 0 is a AutA.E/-module. We prove that E is the induced space of this
action to the whole group of automorphims of the homogeneous vector bundle. The
principal significance of this result is that it allows one to obtain results about the
structure of E and it provides some insight into the structure of its endomorphisms
monoid.

Keywords Homogeneous vector bundles • Algebraic monoids

Subject Classifications: 14M17, 20M32, 14J60

1 Introduction

Let A be an abelian variety over an algebraically closed field of arbitrary character-
istic k. A vector bundle, which will be denoted by � D .E; �; A/ or � W E ! A, is
called homogeneous if for all a 2 A, E Š t�a E, where ta W A! A is the translation
by a. A homomorphism  W � ! � 0 between two homogeneous vector bundles
� D .E; �; A/ and � 0 D .E 0; �0; A/ is a pair  WD .f; ta/ such that the following
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E
f

��

�

��

E 0

�0

��
A

ta

�� A

commutes and is linear in the fibers. We say that  is an isomorphism if f W E !
E 0 is an isomorphism of algebraic varieties; it is clear that in this case the pair
.f �1; t�a/ W � 0 ! � is a homomorphism of homogeneous vector bundles.

We denote by Homhb.E;E
0/ the set of homomorphisms between � D .E; �; A/

and � 0 D .E 0; �0; A/ and by HomA.E;E
0/ the set of those homomorphisms that

fix the base, i.e. ta D IdA. If E D E 0, then Endhb.E/ WD Homhb.E;E/ and
EndA.E/ WD HomA.E;E/. The group of automorphisms, i.e. those endomorphisms
where f W E ! E is an isomorphism, is denoted by Authb.E/.

It is of interest to have a natural and intrinsic characterization of Endhb.E/: One
of the main reasons is the generalization of a well known result of affine monoids to
normal algebraic monoids. More precisely, an affine monoid M can be embedded
in Endk.k

n/ as a closed submonoid, for n
 0. In [11, Theorem 5.3] it was proved
that any normal algebraic monoid M can be embedded as a closed submonoid of
the endomorphisms monoid Endhb.E/ of an indecomposable homogeneous vector
bundle E over the Albanese variety A.M/ of M .

The aim of this paper is to describe the geometric and algebraic structure of
Endhb.E/ and investigate the relation between these structures and the structure of
E as a vector bundle.

In order to state our results we first recall some known results. The idea to
study the relation of the algebraic structure of Authb.E/ to the structure of E
as a vector bundle goes back at least as far as [15], where Miyanishi considers
homogeneous bundles. In [16], Mukai describes the category of homogeneous
vector bundles over an abelian variety. Brion and the second author proved in [11]
that Endhb.E/ is an algebraic monoid with unit group Authb.E/ and they showed
that the Albanese morphism � W Endhb.E/ ! A is a morphism of algebraic
monoids, with Kernel EndA.E/. In particular, the fiber EndA.E/, over the unit
element 0 2 A, is an irreducible affine smooth algebraic monoid, with unit group
AutA.E/ WD ��1.0/ \ Authb.E/.

It follows from [11] that � W Endhb.E/ ! A is a homogeneous vector bundle
with fiber isomorphic to EndA.E/. For any indecomposable homogeneous vector
bundle � W E ! A of rank r we prove that Endhb.E/ ! A has rank at most
1 C r.r�1/

2
(see Theorem 1). Moreover, Endhb.E/ ! A is obtained by successive

extensions of a line bundle L associated with E (see Theorem 8). In particular, if L
is a homogeneous line bundle, then Endhb.L/ Š L (see Lemma 1 and Corollary 6).

In order to describe the structure of Endhb.E/ as a vector bundle denote by E0
the fiber over 0 2 A. Recall that the induced space Authb.E/ AutA.E/ E0 is defined
as the geometric quotient of Authb.E/ � E0 under the diagonal action of AutA.E/
(see Definition 1 below). In Theorem 5 we prove the following statement.
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An indecomposable homogeneous vector bundle � W E ! A is the induced
space from the action of AutA.E/ on E0 to the action of the automorphisms group
Authb.E/ on E, i.e.

E Š Authb.E/ AutA.E/ E0:

The advantage of using the above description lies on the fact that it allows us
to describe the structure of Endhb.E/ also when E is decomposable. That is, if
E DLi;j Li ˝Fi;j , where Li is a homogeneous line bundle and Fi;j an unipotent
bundle, then

Endhb.E/ Š
M

i

Li ˝
�˚j;k Homhb.Fi;j ; Fi;k/

	
;

and as algebraic monoid Endhb.E/ decomposes as

Endhb.E/ D Authb.E/ tN hb.E/;

where N hb.E/ is the ideal of pseudo-nilpotent elements (see Theorems 6 and 7).
Moreover, the kernel Ker

�
Endhb.E/

	
of the Endhb.E/ is the zero section

Ker
�
Endhb.E/

	 D ˚�a W E ! E W �a.vx/ D 0xCa 8 vx 2 Ex
�
:

In particular, Ker
�
Endhb.E/

	
is isomorphic to the abelian variety A (see

Proposition 4).
According to the above results, it is also shown that N hb.E/ is also a homoge-

neous vector bundle, obtained by successive extensions of L (see Theorem 8) and
there exists an exact sequence of vector bundles

0 �� N hb.E/ �� Endhb.E/
�

�� Endhb.L/ Š L �� 0

Moreover, the morphisms in the above sequence are compatible with the structures
of semigroup, and if E © L, then the sequence is non-trivial (see Theorem 9).

The paper is organized as follows: in Sect. 2 we set up notation and terminology,
and review some of the standard facts on algebraic monoids and homogeneous
vector bundles. In Sect. 3 we are concerned with the structure of Homhb.E;E

0/.
Our main results are stated and proved in Sect. 4. Section 5 is devoted to the study
of Endhb.E/ and EndA.E/ when E is a homogeneous vector bundle of small rank.

2 General Results

In this section we recall basic results on algebraic monoids and homogeneous vector
bundles over A. For a deeper discussion of the theory of algebraic monoids we refer
the reader to [10,11,17,18] and to [1–3,15,16] for the theory of homogeneous vector
bundles.
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2.1 Algebraic Monoids

Let M be an algebraic monoid and G.M/ the unit group of M . It is well known
that G.M/ is an algebraic group, open in M (see for example [17]). If M is an
irreducible algebraic monoid, then its Kernel, denoted by Ker.M/, is the minimum
closed ideal and always exists. Indeed, if M is an affine algebraic monoid its
Ker.M/ is the unique closed

�
G.M/ �G.M/

	
-orbit (see [11, 17]).

Let M;N be algebraic monoids. A morphism of algebraic varieties ' WM ! N

is a morphism of algebraic monoids if '.ab/ D '.a/'.b/ for any a; b 2 M and
'.1M / D 1N . If ' W M ! N is an isomorphism of algebraic monoids we write
M Šam N .

Definition 1. Let H � G be an algebraic subgroup of an algebraic group G such
that H acts on an algebraic variety X . The induced space G H X is defined as the
geometric quotient of G � X under the H -action h � .g; x/ D .gh�1; h � x/. The
class of .g; x/ in G H X is denoted as Œg; x�.

Under mild conditions on X (e.g. X is covered by quasi-projective H -stable
open subsets), the induced space always exists. Clearly, G H X is a G-variety, for
the action induced by a � .g; x/ D .ag; x/. The morphism � W G H X ! G=H

induced by .g; x/ 7! Œg� D gH is a fiber bundle over G=H with fiber isomorphic
to X . If moreover X is anH -module, then G H X ! G=H is a vector bundle. For
more information about induced spaces we refer the reader to [4] and [19].

Remark 1. Chevalley’s Structure Theorem for an algebraic group G states that if
A.G/ is the Albanese group of G, then the Albanese morphism p W G ! A.G/ fits
into an exact sequence of algebraic groups

1 �� Gaff
�� G

p
�� A.G/ �� 0

where Gaff is a normal connected affine algebraic group.
In [10, 11], Brion and Rittatore generalize Chevalley’s decomposition to irre-

ducible normal algebraic monoids. In this case they prove that ifG is the unit group,
then M admits a Chevalley’s decomposition:

1 �� Maff D Gaff
�� M D G

p
�� A.G/ �� 0

1 �� Gaff
��

��

��

G
pjG

��
��

��

A.G/ �� 0

where p W M ! A.G/ D G=Gaff (respectively pjG W G ! A.G/) is the Albanese
morphism of M (respectively G). If Z0 denotes the connected center of G, then
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A.G/ Šam Z0=.Z0\Gaff/ andM D G �Maff D Z0 �Maff. Moreover,M Š G Gaff

Maff Š Z0 Z0\Gaff
Maff. Here if A;B �M , then A � B D fab W a 2 A; b 2 Bg.

Let us mention a consequence of this Chevalley’s decomposition for algebraic
monoids that will prove to be extremely useful in Sect. 4.

Corollary 1. Let M be an irreducible algebraic monoid, with unit group G. Then
Ker.M/ D G Ker.Maff/G D G � Ker.Maff/ D Z0 � Ker.Maff/ where Z0 is the
connected center of G.

Proof. Since M D Z0 � Maff, it follows that Ker.Maff/ � Ker.M/. Hence, G �
Ker.Maff/�G � Ker.M/. Since both terms in the last inclusion are

�
G.M/�G.M/

	
-

orbits, the first equality follows.
It is clear that

�
G Ker.Maff/G

	\Maff D Ker.Maff/ and from the decompositions
M D Z0 �Maff DMaff �Z0 and G D Z0 �Gaff, we deduce that

G � Ker.Maff/ �G D Z0 � Ker.Maff/ D G � Ker.Maff/: ut

2.2 Homogeneous Vector Bundles

Recall that a vector bundle � W E ! A is called homogeneous if for any a 2 A,
E Š t�a E, where ta is the translation by a. A line bundle L is homogeneous if
and only if it is algebraically equivalent to zero (see [14, Sect. 9]). In particular, the
trivial bundle OA is homogeneous.

Let � D .E; �; A/ and � 0 D .E 0; �0; A/ be two homogeneous vector bundles
over A. If .f; ta/ W � ! � 0 is a homomorphism, then the morphism ta W A !
A is determined by f W E ! E 0. Thus, when no confusion can arise, we
will write .f; ta/ simply as f . If E;E 0 are isomorphic as vector bundles we
write E Švb E 0. It is well known that HomA.E;E

0/ Š H0
�
A;Hom.E;E 0/

	

and EndA.E/ D H0.A;E� ˝E/. If E is indecomposable, the algebra of endo-
morphisms EndA.E/ is a finite-dimensional k-algebra and E is called simple if
EndA.E/ D k. A homogeneous vector bundle E ! A is indecomposable if and
only if EndA.E/ D k � 1E ˚ NA.E/, where NA.E/ � EndA.E/ is the ideal of all
the nilpotent endomorphisms (see [2]). Moreover, AutA.E/ Š Gm �UA.E/, where
Gm D k

� and UA.E/ is the unipotent affine subgroup IdCNA.E/.
Remark 2. In [15, Lemma 1.1] Miyanishi described the algebraic structure of
Authb.E/. In particular, he proved that, as an algebraic group, Authb.E/ is an
extension of A by AutA.E/, that is, we have the exact sequence of algebraic groups

1 �� AutA.E/ �� Authb.E/ �� A �� 0
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From the Chevalley’s decomposition of Endhb.E/ as an algebraic monoid (see
Remark 1 and [11]) we have that End.E/aff D EndA.E/ fits in the following exact
sequence of algebraic monoids

1 �� EndA.E/ �� Endhb.E/ �� A �� 0:

Moreover, if Z0hb.E/ is the connected center of Endhb.E/ and Z0A.E/ D Z0hb.E/ \
EndA.E/, then we have the following isomorphisms of algebraic monoids

Endhb.E/ D Authb.E/ � EndA.E/ D Z0hb.E/ � EndA.E/

Šam Authb.E/ AutA.E/ EndA.E/ Šam Z0hb.E/ Z0A.E/
EndA.E/:

Remark 3. The canonical morphism � W Homhb.E;E
0/ ! A, �.f; ta/ D a, is a

fibration over A with fiber HomA.E; t
�
a E

0/ for any a 2 A: Indeed, given .f; ta/ 2
Homhb.E;E

0/ there is a homomorphism f a W E ! t�a E 0 of vector bundles over A,
such that the following diagram

E
f a

���
��

��
��

� f

��

��

t�a E 0

��

�� E 0

��
A

ta

�� A

commutes. That is, for any a 2 A there is a natural bijection between ��1.a/ and
HomA.E; t

�
a E

0/. In particular, HomA.E;E
0/ D ��1.0/.

Definition 2. We say that a vector bundleE of rank r > 1 is obtained by successive
extensions of a vector bundle R, of length s, if there exists a filtration

R D E0 � E1 � E2 � E3 � � � � � Es�1 � Es D E

such that Ei=Ei�1 Š R for i D 1; : : : ; s. In other words, there exist extensions

�1 W 0 �! E0 Š R i1�! E1
p1�! R �! 0

�2 W 0 �! E1
i2�! E2

p2�! R �! 0
:::

:::

�s W 0 �! Es�1
is�! Es Š E ps�! R �! 0
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If R is the trivial bundle OA, then E is called unipotent. We call .�1; : : : ; �s/ the
extensions associated with E. Note that gr.E/ D ˚Ei=Ei�1, the graded bundle
associated with this filtration, is isomorphic to ˚sR. In particular, E is unipotent if
gr.E/ D ˚sOA.

Proposition 1. If E is a vector bundle of rank r obtained by successive extensions
of a vector bundle R, of length s, then 2 � dimk EndA.E/ � 1C r.r � 1/=2.

Proof. Let

�1 W 0 �! R
i1�! E1

p1�! R �! 0
:::

:::

�s W 0 �! Es�1
is�! Es Š E ps�! R �! 0

be the extensions associated with E. The composition ' D is ı � � � ı i2 ı i1 ı ps ¤ 0
defines a non invertible endomorphism of E. Therefore, 2 � dimk EndA.E/.

As in [5, Prop. 1.1.9] we have that dim EndA.E/ � 1 C r.r � 1/=2. Note that
1 C r.r � 1/=2 is the dimension of the upper triangular matrices in Endk.Ea/.
Indeed, the fiber Ea has a flag invariant under ea.EndA.E// where ea W EndA.E/!
Endk.Ea/, ea.f / D f jEa is the restriction to the fiber a 2 A. Hence,

dim EndA.E/ � 1C r.r � 1/=2: ut

Remark 4. Let � W E ! A be a vector bundle. From [15, 16] we have:

1. If E is an unipotent vector bundle, then E is homogeneous.
2. E is an indecomposable homogeneous vector bundle if and only if E is obtained

by successive extensions of a homogeneous line bundle L. Moreover, one can
choose the associated filtration 0 ¨ E1 D L ¨ � � � ¨ Ei ¨ � � � ¨ En D E in
such a way that f .Ei / � Ei for all f 2 Authb.E/, i.e. the filtration is Authb.E/-
stable.

Recall that in this case E Š L ˝ F , where L 2 Pic0.A/ and F is an
indecomposable unipotent vector bundle.

3. E is homogeneous if and only ifE decomposes as a direct sumE DLLi˝Fi ,
where Li 2 Pic0.A/ and Fi is a unipotent vector bundle.

Theorem 1. Let E ! A be a homogeneous vector bundle of rank r . Then � W
Endhb.E/! A is a homogeneous vector bundle with fiber isomorphic to EndA.E/.
Moreover, if E is indecomposable, then rk.Endhb.E// � 1C r.r � 1/=2:
Proof. Recall that Endhb.E/ Šam Authb.E/ AutA.E/ EndA.E/ (see Remark 2).
From general properties of the induced action and the fact that EndA.E/ is a finite
dimensional algebra, it follows that Endhb.E/ ! A is a vector bundle (see for
example [19]). Moreover, since Authb.E/ acts by left multiplication on Endhb.E/
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we have that Endhb.E/ is homogeneous. Indeed, given a 2 A, there exists .f; ta/ 2
Authb.E/ and, if `f W Endhb.E/ ! Endhb.E/ denotes the isomorphism `f .h/ D
f ı h for h 2 EndA.E/, then ˛.`f / D ta.

The second part follows from Proposition 1. ut
Remark 5. In [16, Proposition 6.13] Mukai proved that homogeneous vector bun-
dles are Gieseker-semistable (see [12]). Moreover, a homogeneous vector bundle E
is Gieseker-stable if and only if it is simple. It follows from Proposition 1 that a
homogeneous vector bundle E is Gieseker-stable if and only if it is a homogeneous
line bundle.

3 The Endomorphisms Monoid of a Homogeneous
Vector Bundle

The affine algebraic group AutA.E/ acts in at least two different ways on EndA.E/,
either by post-composing, f � h D f ı h, or by pre-composing, f � h D h ı f �1,
with f 2 AutA.E/ and h 2 EndA.E/. This allow us to endow Endhb.E/ with two
structures of homogeneous vector bundle. However, since

Authb.E/ AutA.E/ EndA.E/ Švb Z0hb.E/ Z0A.E/
EndA.E/;

one can prove that, in fact, these structures are the same. Instead of proving this in
full details, we give slightly more general results relating the structures of vector
bundle of Homhb.E;E

0/ (see Theorems 2 and 3).

Proposition 2. Let E and E 0 be two vector bundles over A. Suppose E 0 is
homogeneous. The inclusion Z0hb.E

0/ ,! Authb.E 0/ induces an isomorphism of
the homogeneous vector bundles

Z0hb.E
0/ Z0A.E

0/ HomA.E;E
0/ Švb Authb.E

0/ AutA.E0/ HomA.E;E
0/;

where Z0A.E
0/ and AutA.E 0/ act on HomA.E;E

0/ by post-composing.

Proof. Recall that the induced space P D Authb.E 0/ AutA.E0/ HomA.E;E
0/ is

a vector bundle over Authb.E 0/=AutA.E 0/ D A and that a vector bundle R
is homogeneous if the restriction map Aut .R/ ! A is surjective. It is clear
that the canonical action of Authb.E 0/ over P induces a morphism of groups
' W Authb.E 0/ ! Authb.P /, '.f; ta/ D . Qf ; ta/; where Qf ��.h; tb/; h0	 D�
.f ı h; tbCa/; h0. Since the projection Authb.E 0/ ! A defined as .f; ta/ 7! a, is

surjective, it follows that the canonical projection Authb.P /! A is also surjective.
In other words, the vector bundle P is homogeneous. The same conclusion can be
drawn forQ D Z0hb.E

0/Z0A.E
0/HomA.E;E

0/. The inclusion Z0hb.E
0/ ,! Authb.E 0/

induces a morphism of homogeneous vector bundlesQ! P which is bijective, this
clearly forces Q Švb P . ut
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Theorem 2. Under the same hypothesis of Proposition 2, consider the projection
� W Homhb.E;E

0/! A, �.f; ta/ D a, and let

� 0 W Authb.E 0/ AutA.E0/ HomA.E;E
0/! A

� 0.g; h/ D Œg� 2 Authb.E 0/=AutA.E 0/ Š A

be the canonical projection. Then there exists a bijection

	 W Authb.E
0/ AutA.E0/ HomA.E;E

0/! Homhb.E;E
0/

such that the following diagram

Authb.E 0/ AutA.E0/ HomA.E;E
0/

	
��

� 0

����
���

���
���

���
��

Homhb.E;E
0/

�
		���

���
���

��

A

(1)

is commutative and 	 is linear in the fibers. Moreover, 	 induces the structure of a
homogeneous vector bundle on Homhb.E;E

0/ and

Homhb.E;E
0/ Švb Z0hb.E

0/ Z0A.E
0/ HomA.E;E

0/:

Proof. From Proposition 2 it is sufficient to prove the existence of 	. Note that given
.g; ta/ 2 Authb.E 0/ and h 2 HomA.E;E

0/ the following diagram is commutative:

E
h

��



�
��

��
��

�
E 0 Š t�a E 0 g

��

�����
���

���
�

E 0

��
A

ta

�� A

If ' W Authb.E 0/ � HomA.E;E
0/ ! Homhb.E;E

0/ is given by '
�
.g; ta/; h

	 D
.g ı h; ta/, then ' is constant on the AutA.E 0/-orbits, and hence induces a
homomorphism

	 W Authb.E
0/ AutA.E0/ HomA.E;E

0/! Hom.E;E 0/:

By construction, 	 makes the diagram (1) commutative.
To prove the surjectivity of 	 let .f; ta/ 2 Hom.E;E 0/. Since E 0 is homoge-

neous, there exists .g; t�a/ 2 Authb.E 0/with a 2 A such that the following diagram
is commutative:
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E
f
��

��

E 0 Š t�a E 0 g
��

��

E 0

��
A

ta
��

t0DId

��A
t�a

�� A

Hence, the composition .g; t�a/ ı .f; ta/ D .g ı f; t0/ defines a homomorphism
g ı f W E ! E 0 of vector bundles over A. Moreover,

	
��
.g�1; ta/; g ı f

	D .g�1 ı g ı f; ta/ D .f; ta/;

and hence 	 is surjective.
We claim that 	 is injective. Indeed, if

�
.g1; ta1/; h1


;
�
.g2; ta2/; h2

 2 Authb.E/ AutA.E/ HomA.E;E
0/

are such that 	
��
.g1; ta1/; h1

	 D 	
��
.g2; ta2/; h2

	
, then, by definition of 	, we

have that g1 ı h1 D g2 ı h2 and ta1 D ta2 . Therefore, a1 D a2 and hence g�1
2 ı g1 2

AutA.E/. This completes the proof. ut
Theorem 2 states that if E 0 is homogeneous, then Homhb.E;E

0/ is homoge-
neous. Under the assumptions of Proposition 2 with “E 0 homogeneous” replaced
with “E is homogeneous” and “post-composing” by “pre-composing with the
inverse” we obtain an analogue of Theorem 2 which may be proved in much the
same way.

Theorem 3. Let E;E 0 be vector bundles over A. If E is homogeneous, then there
exists a bijection

 W Authb.E/ AutA.E/ HomA.E;E
0/ �! Hom.E;E 0/

such that the following diagram is commutative and  is linear when restricted

Authb.E/ AutA.E/ HomA.E;E
0/

 
��

� 0

��

Hom.E;E 0/

�

��
A

� Id

�� A

to the fibers. Moreover,  induces a structure of homogeneous vector bundle on
Homhb.E;E

0/ and

Homhb.E;E
0/ Švb Z0hb.E/ Z0A.E/

HomA.E;E
0/:
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If E;E 0 are both homogeneous vector bundles, it is not clear a priori that the
two vector bundle structures on Homhb.E;E

0/ given in Theorems 2 and 3 are the
same. In order to prove that the structures coincide, we first deal with the case of
Endhb.E/, for E a homogeneous vector bundle.

Consider the vector bundle P D Z0hb.E/ Z0A.E/
EndA.E/, where Z0A.E/ acts on

EndA.E/ by post-composing and let Q be the vector bundle Q D Z0hb.E/ Z0A.E/

EndA.E/, where Z0A.E/ acts on EndA.E/ by pre-composing with the inverse. An
easy calculation shows that the morphism � W Z0hb.E/ � EndA.E/ ! Q given
by �

�
.f; ta/; h

	 D�.f �1; t�a/; h

, with h 2 EndA.E/, induces an isomorphism of

vector bundles Q� W P ! .-Id/�Q and hence we have the following corollary.

Corollary 2. If E is a homogeneous vector bundle, then the structures of homoge-
neous vector bundle defined on Endhb.E/ by 	 in Theorem 2 and  in Theorem 3
are isomorphic.

Remark 6. Suppose now that E DLi Ei and E 0 DLj E
0
j are two homogeneous

vector bundles. Consider Homhb.E;E
0/ and Homhb.Ei ; E

0
j /, along with their struc-

ture as homogeneous vector bundles coming from either Theorem 2 or Theorem 3.
Then

Homhb.E;E
0/ Švb

M

i;j

Homhb.Ei ; E
0
j /:

In particular,

Endhb.E/ Švb

M

i;j

Homhb.Ei ; Ej /:

Indeed, the canonical inclusions 'ij W Homhb.Ei ; E
0
j / ,! Homhb.E;E

0/ are
morphisms of vector bundles and induce an isomorphism

' W
M

i;j

Homhb.Ei ; E
0
j /! Homhb.E;E

0/:

Theorem 4. LetE andE 0 be homogeneous vector bundles. The structures of vector
bundle on Homhb.E;E

0/ given in Theorem 2 and in Theorem 3 are isomorphic.

Proof. Consider the vector bundle E ˚E 0. From Remark 6 we have that

Endhb.E ˚E 0/ Švb Homhb.E;E
0/˚ Homhb.E

0; E/˚ Endhb.E/˚ Endhb.E
0/:

Applying Corollary 2 we obtain an isomorphism between the structures of
Homhb.E;E

0/ and Homhb.E
0; E/ given in Theorems 2 and 3. ut
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4 Relationship Between the Structure of a Homogeneous
Bundle and Its Endomorphisms Monoid

4.1 The Homogeneous Vector Bundle as an Induced Space

We begin this section by showing that a homogeneous vector bundleE!A is obtai-
ned as an extension of the fiber E0 over 0 by the principal bundle Authb.E/!A.

Theorem 5. Let E ! A be a homogeneous vector bundle. Then, as vector bundles
over A,

E Švb Authb.E/ AutA.E/ E0 Švb Z0hb.E/ Z0A.E/
E0:

Proof. Recall that A Š Authb.E/=AutA.E/. Define

	 W Authb.E/ �E0 ! E

as
�
.f; ta/; v

	 7! f .v/ 2 Ea, where .f; ta/ 2 Authb.E/ and v 2 E0. Clearly, 	 is
constant on the AutA.E/-orbits, and hence induces a homomorphism

' W Authb.E/ AutA.E/ E0 ! E:

In fact 	 is an isomorphism of vector bundles. Indeed, given a 2 A, consider
.f; ta/ 2 Authb.E/. Then

�
Authb.E/ AutA.E/ E0

	

a
D ˚�.f; ta/; v

	 W v 2 E0
�
;

and f jE0 W E0 ! Ea is a linear isomorphism. It follows that the restriction 'a W�
Authb.E/ AutA.E/ E0

	

a
! EA, 'a

�
.f; ta/; v

	 D f .v/, is a linear isomorphism and
' is an isomorphism of vector bundles as claimed.

Since Z0hb.E/! A is surjective, it is clear that we can apply the same argument
to prove that E Š Z0hb.E/ Z0A.E/

E0. ut
Theorem 5 allows us to provide some insight into the structure of homogeneous

vector bundles.

Corollary 3. Let E ! A be an indecomposable homogeneous vector bundle.
Then:

(i) E0 is an indecomposable Z0A.E/-module.
(ii) E0 is an indecomposable EndA.E/-module;

Proof. We prove (i) by way of contradiction. So assume that E0 Š V1 ˚ V2 as
Z0A.E/-modules. Then, we have the isomorphisms

�
Z0hb.E/ Z0A.E/

V1
	˚ �Z0hb.E/ Z0A.E/

V2
	 Švb

�
Z0hb.E/ Z0A.E/

.V1 ˚ V2/
	 Švb E
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as vector bundles over A, where the last isomorphism is given by Theorem 5.
It follows that E is decomposable, a contradiction. It is clear that (i) implies (ii). ut

The converse of Corollary 3 is false in general, as the following example shows.

Example 1. LetE D L˚LwhereL is a homogeneous line bundle overA. ThenE
is a decomposable homogeneous vector bundle. However, E0 is an indecomposable
AutA.E/-module, since AutA.E/ Š GL2.k/.

Denote by Ir D Lr
iD1OX D X � k

r , the trivial homogeneous vector bundle
over X of rank r , where X is a complete homogeneous space. In [15, Lemma 1.4],
Miyanishi gives a characterization of Ir ! X in terms of the existence of schematic
sections for certain fibrations. Theorem 5 allows us to characterize Ir over an abelian
variety in a simpler way in terms of their endomorphisms monoid.

Recall that a schematic section of a fibration � W Authb.E/ ! A is a morphism
� W A! Authb.E/ such that � ı � D IdA.

Corollary 4. Let E ! A be a homogeneous vector bundle of rank r . Then the
following assertions are equivalent:

1. E Švb Ir .
2. Endhb.E/ Šam A � End.kn/.
3. � W Authb.E/! A has a schematic section.

Proof. It is clear that the endomorphisms monoid Endhb.Ir / of Ir , satisfies
Endhb.Ir / Šam A � End.kn/, so (1) implies (2) and (3).

.2/) .1/ If Endhb.E/ Šam A � End.kn/, then

E Švb
�
A � GLn.k/

	 GLn.k/ k
n Švb A � k

n;

since E Švb Authb.E/ AutA.E/ E0.
.3/) .1/. Let now � W A ! Authb.E/, �.a/ D

�
�1.a/; ta

	
, be a schematic

section, and let ' W A�E0 ! Authb.E/AutA.E/E0 Švb E be the morphism given
by '.a; v/ D �

.�1.a/; ta/; v

. Clearly, ' is a homomorphism of homogeneous

vector bundles. It is enough to prove that ' is injective, since both vector bundles
have the same rank.

Suppose that .a; v/; .a0; v0/ 2 A �E0 are such that '.a; v/ D '.a; v0/. Then

�
.�1.a/; ta/; v

 D �.�1.a0/; ta0/; v0;

and it follows that a D a0. Therefore v D v0 and hence ' is an isomorphism. ut
Corollary 5. Let E;E 0 be two homogeneous vector bundle over A. Then the
following statements are equivalent:

(i) E Švb E
0;

(ii) Authb.E/ Šam Authb.E 0/, and E0 Š E 0
0 as rational AutA.E/-modules;

(iii) Authb.E/ Šam Authb.E 0/, and E0 Š E 0
0 as rational Z0A.E/-modules.
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Proof. The implications (i) H) (ii) H) (iii) are clear.
Assume that (iii) holds. Let  W Authb.E/ ! Authb.E 0/ be an isomorphism of

algebraic groups and let ˚ W E0 ! E 0
0 be a morphism of Z0A.E/-modules. Then the

morphism ' W Z0.E/ � E0 ! E 0, defined as '.g; v/ D  .g/
�
˚.v/

	
induces the

required isomorphism E ! E 0. ut
Remark 7. It is well known that there exist homogeneous vector bundles E;E 0
such that E 6Š E 0 whereas AutA.E/ Šam AutA.E 0/. Even the stronger condition
EndA.E/ Šam EndA.E 0/ is not sufficient in order to guarantee that E Š E 0.
However, Corollary 4 shows that the trivial bundle is characterized by its endomor-
phisms monoid. One can see that Z0A.Ir / D k

� Id acts by homotheties in the fiber.
In general, the group Z0A.E/ could be larger and there could exist two different
irreducible representations of the same dimension. This is the main problem we
encounter when trying to generalize Corollary 4. Thus, it raises the following
question.

Question 1. Let E;E 0 ! A be two indecomposable homogeneous vector bundles
over A. Does the existence of an isomorphism Authb.E/ Šam Authb.E 0/ (or
Endhb.E/ Šam Endhb.E 0/) imply that E Š E 0?

The following lemma is a straightforward generalization of [13, Lemma 4.3] and
may be proved in much the same way (see also [18, Theorem 2]).

Lemma 1. Let � W L ! A be a homogeneous line bundle. Then there exists a
structure of a commutative algebraic monoid on L such that � is a morphism of
algebraic monoids. The fiber ��1.0/ D L0 Š k is central in L. Moreover, the unit
group is G.L/ D L n�.L/, where �.L/ is the image of the zero section of L.

Corollary 6. If L! A is a homogeneous line bundle, then Endhb.L/ Švb L.

Proof. By Lemma 1 L is an algebraic monoid. For any x 2 L let lx W L! L be the
endomorphisms defined as lx.y/ D xy (the product on the algebraic monoid L).
Hence, L is a sub-bundle of Endhb.L/. But EndA.L/ Š k; hence Endhb.L/ is a line
bundle, and L D Endhb.L/. ut

4.2 The Vector Bundle Structure of Endhb.E/

For i D 1; 2 let Ei be a homogeneous vector bundle over A. In order to study
the structure of Homhb.E1;E2/ as a vector bundle it suffices to assume that Ei is
indecomposable (see Remark 6). In this case, we have that Ei Š Li ˝ Fi , where
Li 2 Pic0.A/ and Fi is a unipotent homogeneous vector bundle.

Proposition 3. Let Ei Š Li˝Fi be indecomposable homogeneous vector bundles
of rank ri D rk.Ei /, for i D 1; 2.
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(1) If L1 6Šhb L2, then

Homhb.E1;E2/ D f�a W E1 ! E2 W a 2 Ag Švb A � f0g;

where if v 2 .E1/x , then �a.v/ D 0aCx 2 E2.
(2) If L1 Švb L2, then

Homhb.E1;E2/ Švb L1 ˝ Homhb.F1; F2/:

Moreover, Endhb.E1/ Švb L1 ˝ Endhb.F1/.

Proof. By Proposition 2,

Homhb.E1;E2/ Š Authb.E1/ AutA.E1/ HomA.E1;E2/:

We claim that if L1 6Š L2, then HomA.E1;E2/ D 0, and hence,

Homhb.E1;E2/ Š Authb.E1/ AutA.E1/ f0g Š A � f0g:

Indeed, suppose that there exists 0 6D ' 2 HomA.E1;E2/ and let

L D H0 � H1 � H2 � � � � � Hr1�1 � Hr1 D E1
be the filtration associated with E1. Let k 2 f0; : : : ; r1 � 1g be such that Hk �
Ker.'/ but HkC1 6� Ker.'/. Let j 2 f0; : : : ; r2 � 1g be such that Im.'/ � K 0

jC1,
Im.'/ 6� K 0

j where

0 D K0 � K1 � K2 � � � � � Kr2�1 � Kr2 D E2
is the filtration associated with E2.

Then ' induces a non zero morphism Q' W L1 Š HkC1=Hk ! KjC1=Kj Š L2:

Since both are algebraically equivalent to zero, Q' is an isomorphism, and L1 Š L2
as claimed.

Suppose now that L1 Švb L2 D L. Then

HomA.E1;E2/ Š .L˝ F1/_ ˝ .L˝ F2/ Š F _
1 ˝ F2 Š HomA.F1; F2/:

It follows that Homhb.E1;E2/ and L˝Homhb.F1; F2/ are homogeneous vector
bundles of the same rank. Consider now the homomorphism of vector bundles ' W
L˝ Homhb.F1; F2/! Homhb.E1;E2/ given by '

�
.l; ta/˝ .h; ta/

	 D .l ˝ h; ta/,
where we use the identification L Švb Endhb.L/, and .l˝h/.v˝w/ D l.v/˝h.w/,
for v˝w 2 L˝F . Since ' is injective, it is an isomorphism of vector bundles, and
the proof is completed. ut

Theorem 4 and Proposition 3 give the following explicit description of Endhb.E/.
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Theorem 6. Let E D L
i;j Li ˝ Fi;j and E 0 D L

i;j Li ˝ F 0
i;j be two

homogeneous vector bundles, where Li are homogeneous line bundles, Fij and F 0
ij

unipotent homogeneous vector bundles and Li © Lj if i ¤ j . Then

Homhb.E;E
0/ Švb

M

i

Li ˝
�˚j;k Homhb.Fi;j ; F

0
i;k/
	
:

Moreover, Endhb.E/ Švb
L

i Li ˝
�˚j;k Homhb.Fi;j ; Fi;k/

	
.

4.3 The Algebraic Monoid Structure of Endhb.E/

Let us start with an important consequence of Corollary 1.

Proposition 4. The Kernel of Endhb.E/ of a homogeneous vector bundle � W E !
A is given by

Ker
�
Endhb.E/

	 D ��Endhb.E/
	 D˚�a W E ! E W �a.v/ D 0�.v/Ca

�
;

where � is the zero section. Moreover, Ker
�
Endhb.E/

	
is an algebraic group and

isomorphic to A.

Recall that an endomorphism f 2 EndA.E/ is called nilpotent of index n if
f n.v/ 2 �.E/ for all v 2 E and there exists v0 2 E such that f n�1.v0/ … �.E/.
In other words, f n D 0 2 EndA.E/ whereas f n�1 ¤ 0. The setNA.E/ of nilpotent
endomorphisms is an ideal of EndA.E/, see Sect. 2.2 and [2].

Definition 3. Let E ! A be a homogeneous vector bundle. An endomorphism
f 2 Endhb.E/ is called pseudo-nilpotent of index n if f n 2 �

�
Endhb.E/

	 D
Ker

�
Endhb.E/

	
whereas f n�1 … ��Endhb.E/

	
. We denote by N hb.E/ the set of

pseudo-nilpotent endomorphisms. It is clear that NA.E/ D N hb.E/ \ EndA.E/.

If L is a homogeneous line bundle, then Endhb.L/ D L and Authb.L/ D L n
�.L/. Hence, Endhb.L/ D Authb.L/ t �.L/. In particular, N hb.L/ D �.L/ D
Ker.L/. For indecomposable vector bundles of higher rank we have an analogue of
Atiyah’s results (see [2]).

Theorem 7. Let E ! A be an indecomposable homogeneous vector bundle.
Then:

(1) The algebraic monoid Endhb.E/ decomposes as

Endhb.E/ D Authb.E/ tN hb.E/:

Moreover, N hb.E/ is an ideal of Endhb.E/.
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(2) The set N hb.E/ of pseudo-nilpotent elements is a homogeneous vector bundle
over A of rkN hb.E/ D rk Endhb.E/ � 1. Moreover,

N hb.E/ D Z0hb.E/ �NA.E/ Š Z0hb.E/ Z0A.E/
NA.E/:

where � denotes the product in Endhb.E/. The fiber of � W N hb.E/ ! A is
isomorphic to NA.E/, and � is a morphism of algebraic semigroups.

Proof. From Remark 2 we have that

Endhb.E/ D Z0hb.E/ � EndA.E/ Š Z0hb.E/ Z0A.E/
EndA.E/:

Let f 2 EndA.E/ and z 2 Z0hb.E/. Since EndA.E/ D k Id˚NA.E/ it follows that
either f is in AutA.E/ or in NA.E/. In the first case z � f 2 Authb.E/ and in the
second if f n D 0, then .z � f /n D zn � f n D ��.zn/, where � W Z0hb.E/ ! A is the
canonical projection. Therefore,

Endhb.E/ D Authb.E/ tN hb.E/:

Note that in particular we have proved that

N hb.E/ D Z0hb.E/ �NA.E/ Š Z0hb.E/ Z0A.E/
NA.E/:

Since N hb.E/ D Endhb.E/ n Authb.E/, it follows that N hb.E/ is an ideal. In
particular, N hb.E/ is Authb.E/-stable, and hence a homogeneous vector bundle.
Finally, the equality rkN hb.E/ D rk Endhb.E/�1 follows again from the fact that
EndA.E/ D k Id˚NA.E/ and NA.E/ ¤ 0: ut

The next theorem yields information about the geometric structure of Endhb.E/
when the rank is 	 2.

Theorem 8. If E ! A is an indecomposable vector bundle of rank r 	 2 obtained
by successive extensions of the homogeneous line bundle L, then Endhb.E/ and
N hb.E/ are also obtained by successive extensions of L. Moreover, if r 	 2, then
rkN hb.E/ 	 1.

Proof. Let L0 � Endhb.E/ be a homogeneous, rank-one sub-bundle and let f 2
L0\EndA.E/ D L0

0 n f�0g be a non zero nilpotent element. Let e 2 E0 be such that
f .e/ ¤ 0 2 E0. Since Endhb.E/ Švb Authb.E/AutA.E/EndA.E/, for every a 2 A,
there exists .ha; ta/ 2 Authb.E/ such that L0

a D k.ha ı f /. Hence, ' W L0 ! E,
'.l/ D l.e/ is an injective morphism of homogeneous vector bundles, and since E
is obtained by successive extensions of L, it follows that L0 Š L. Thus, Endhb.E/
is also obtained by successive extensions of L.
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From Theorems 7 and 8, N hb.E/ is a homogeneous vector bundle, obtained
by successive extensions of L. It remains to show that rkN hb.E/ 	 1. But by
Proposition 1, there exists 0 ¤ ' 2 EndA.E/ such that '2 D 0, which is the desired
conclusion. ut

We are thus led to the following generalization of Miyanishi’s Structure Theorem
(see Remark 4).

Theorem 9. Let E Š L ˝ F ! A be an indecomposable homogeneous vector
bundle. Then there exists an exact sequence of vector bundles over A

0 �� N hb.E/ �� Endhb.E/
�

�� Endhb.L/ Š L �� 0:

Moreover, the morphisms in the above sequence are compatible with the algebraic
semigroup structures. Furthermore, if E 6Š L, then the sequence is non-split.

Proof. By Remark 4, L � E is Authb.E/-stable and Endhb.E/-stable. It is easy
to see that the restriction � W Endhb.E/ ! Endhb.L/ is a morphism of algebraic
monoids. In particular, it is compatible with the underlying vector bundle structures.

By Theorem 7, Endhb.E/ D Authb.E/ t N hb.E/. It is clear that if g 2
Authb.E/, then �.g/ 2 Authb.L/ D L n �.L/ and if .f; ta/ 2 N hb.E/, there
exists n 2 N such that f n D �na. It follows that the restriction f jL belongs to
N hb.L/ D �.L/. Therefore, N hb.E/ D Ker.�/.

Assume now that the exact sequence splits. Then there exists an immersion of
homogeneous vector bundles � W L ,! Endhb.E/, such that �ı� D IdL. In particular,
�
�
L n �.L/	 � Authb.E/. Let E0 be the fiber of E over 0 2 A and consider the

morphism of vector bundles

' W L˝E0 Š Endhb.L/˝E0 ! E; '.f ˝ v/ D f .v/:

Let e 2 E be such that �.e/ D a and f 2 L n �.L/ be such that ˛.f / D a.
Then '

�
�.f / ˝ �.f /�1.e// D e, and it follows that ' is a surjective morphism

of homogeneous vector bundles of the same rank. Thus, ' is an isomorphism. But
L˝ E0 is decomposable unless dimE0 D 1. Therefore, E Švb L, and the proof is
completed. ut

5 Explicit Calculations for Small Rank

The algebra of endomorphisms of successive extensions of line bundles over a
curve, of small rank, has been studied in [5–9]. We use a fairly straightforward
generalization of such results to give an explicit description of the endomorphisms
monoid of indecomposable homogeneous vector bundles of rank 2 and 3 over
abelian varieties.
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5.1 Homomorphisms Between a Homogeneous Line Bundle
and a Homogeneous Vector Bundle

As we saw in Sect. 4, any homogeneous line bundle is an algebraic monoid, and is
isomorphic to its endomorphisms monoid. In this section we give a description of
Homhb.E;E

0/ when one of the homogeneous vector bundles is a line bundle and
the other is an indecomposable homogeneous vector bundle.

Proposition 5. LetE D L˝F be an indecomposable homogeneous vector bundle
of rank rkE D n 	 2, and L0 a homogeneous line bundle. Then,

1. If L D L0, then

a. Homhb.L;E/ Šhb ˚rL where r D dimH0.A; F /.
b. Homhb.E;L/ Šhb ˚sL where s D dimH0.A; F _/.

2. If L ¤ L0, then Homhb.E;L
0/ Šhb Homhb.L

0; E/ Šhb A � f0g:
Proof. From what has been already proven, we have that

Homhb.OA; F / Švb Authb.OA/ AutA.OA/ HomA.OA; F /

Dvb .A � k
�/ k� Id HomA.OA; F / Švb A � HomA.OA; F /:

It follows that Homhb.OA; F / is a trivial bundle, with fiber isomorphic to
HomA.OA; F / D H0.A; F /, i.e. Homhb.OA; F / Švb A � H0.A; F /, which by
Proposition 3 proves (1).

The proof for (2) is similar. In this case we have that Homhb.F;OA/ Švb A �
H0.A; F _/. ut

5.2 Homomorphisms Between Indecomposable Homogeneous
Vector Bundles of Rank 2

Let E and E 0 be two non-isomorphic indecomposable homogeneous vector bundles
of rank 2. Let

�E W 0! L
j�! E

��! L! 0

and

�E0 W 0! L0 i1�! E 0 p1�! L0 ! 0

be the extensions associated withE andE 0, respectively. By Proposition 3, ifL ©vb

L0, then HomA.E;E
0/ D 0. If L Švb L

0, then HomA.E;E
0/ ¤ 0, since 0 ¤ 	 D

i1 ı � 2 HomA.E;E
0/.

We are thus led to the following strengthening of Theorem 8.
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Proposition 6. Let E;E 0 be as above. If L Švb L
0, then Homhb.E;E

0/ Švb L.

Proof. It is sufficient to prove that HomA.E;E
0/ D k	 (see Theorem 8).

Let 0 ¤ ' 2 HomA.E;E
0/. Since E and E 0 are non-isomorphic, the image

'.E/ is a line sub-bundle L0 of E 0. Moreover,  W p1 ı ' W E ! L is a non
zero homomorphism of homogeneous vector bundles. If '.E/ D L0 ¤ L we get a
contradiction, since, by Proposition 5, Homhb.E;L/ Šhb A�f0g. Thus,L0 Šhb L.

If ' ¤ 	 with  2 k, 0 ¤ ' ı j W L ! L0 is an isomorphism, and then
' ı .' ı j /�1 W E ! L is a spitting. This contradicts our assumption. Hence,
' D 	, which completes the proof. ut

When E D E 0 we have that dim EndA.E/ � 2 (see Theorem 1). To describe
Endhb.E/ we consider the associated exact sequence

0! L
i�! E

p�! L! 0

where L is a homogeneous line bundle.
Note that rkN hb.E/ 	 1; since 0 ¤ ' D i ı p W E ! E satisfies '2 D 0 and

rk Endhb.E/ D 2. Hence, EndA.E/ Š k Id˚k' (see [2]). Therefore,

Proposition 7. Let E be a homogeneous vector bundle of rank 2. Then Endhb.E/
is a commutative algebraic monoid, and EndA.E/ Š kŒt �=.t2/. Moreover,
Endhb.E/ Švb E.

Proof. The only assertion that still needs proof here is the last one. For this, observe
that

EndA.E/ Šam
˚�

a b
0 a

	 W a; b 2 k
�
;

with action on the fiber E0 given as follows: consider an isomorphism E0 Š k
2

such that .1; 0/ 2 Ker.p/0. In other words, .1; 0/ belongs to the fiber L0, of the
line bundle L � E which is Aut.E/-stable. Under this identification, the action
EndA.E/ �E0 ! E0 is given by

�
a b
0 a

	 � .x; y/ D .ax C by; ay/.
On the other hand, the action of AutA.E/ on EndA.E/ is given by

�
a b
0 a

	 �� x y0 x
	 D

�
ax ayCbx
0 ax

	
. Thus, there exists an isomorphism of AutA.E/-modules ' W E0 !

EndA.E/, which implies that the morphism

 W Authb.E/ AutA.E/ E0 ! Authb.E/ AutA.E/ EndA.E/
 
��
.f; ta/; e0

	 D �
.f; ta/; '.e0/



is an isomorphism of vector bundles, and E Švb Endhb.E/ as claimed. ut
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5.3 The Endomorphisms Monoid of an Indecomposable,
Homogeneous, Rank 3 Vector Bundle

For indecomposable homogeneous vector bundles E of rank 3, dim EndA.E/ � 4
(see Theorem 1). As in [5, 6], EndA.E/ is a commutative algebra of dimension
2 � dim EndA.E/ � 3 and the possibilities are

EndA.E/ D
8
<

:

kŒt �=.t2/ or
kŒt �=.t3/ or

kŒr; s�=.r; s/2

The structure of EndA.E/ depends on the extensions associated with E and their
relations. For higher rank there will be more possibilities for EndA.E/. The study
of these cases should help us find the answer to Question 1. However, this topic
exceeds the scope of this paper.

The remainder of this section is devoted to the study of the case EndA.E/ Š
kŒt �=.t r /.

Assume that E ! A has rank r 	 3 and EndA.E/ Š kŒt �=.t r /. As in the rank
2 case, we claim that there exists an isomorphism ' W E0 ! EndA.E/ of AutA.E/-
modules which induces an isomorphism

 W Authb.E/ AutA.E/ E0 ! Authb.E/ AutA.E/ EndA.E/
 
��
.f; ta/; e0

	 D �
.f; ta/; '.e0/



of vector bundles and hence, E Švb Endhb.E/. We give the proof of the claim only
for the case r D 3. The proof of the general case is similar, and is left to the reader.

Proposition 8. If rk.E/ D 3 and EndA.E/ Š kŒt �=.t3/, then Endhb.E/ is a
commutative algebraic monoid, and Endhb.E/ Švb E.

Proof. It suffices to prove that the representations AutA.E/�EndA.E/! EndA.E/
and AutA.E/ �E0 ! E0 are isomorphic. In this case,

EndA.E/ Šam
8
<

:

0

@
a b c

0 a b

0 0 a

1

A a; b 2 k

9
=

;
;

and the action over the fiber E0 is given as follows: consider an isomorphism E0 Š
k
3, such that .1; 0; 0/ 2 .E1/0, where L D E1 � E2 � E is a Aut.E/-stable

filtration. Under this identification the action EndA.E/ �E0 ! E0 is given by

0

@
a b c

0 a b

0 0 a

1

A � .x; y; z/ D .ax C by C cz; ay C bz; az/:
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On the other hand, the action of AutA.E/ on EndA.E/ is given by

0

@
a b c

0 a b

0 0 a

1

A �
0

@
x y z
0 x y

0 0 x

1

A D
0

@
ax bx C ay ax C by C cz
0 ax bzC ay
0 0 ax

1

A :

Therefore, there exists an isomorphism ' W E0 ! EndA.E/ of AutA.E/-modules
and hence the homomorphism

 W Authb.E/ AutA.E/ E0 ! Authb.E/ AutA.E/ EndA.E/
 
��
.f; ta/; e0

	 D �
.f; ta/; '.e0/



is an isomorphism of vector bundles and E Švb Endhb.E/ as claimed. ut
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On Certain Semigroups Derived from
Associative Algebras

Jan Okniński

To Mohan and Lex on the occasion of their anniversaries

Abstract This paper is based on a general project concerning semigroup theoretical
methods in the study of associative rings. Let A be an associative algebra over a
field K. The main idea is to introduce semigroup constructions of certain types
that strongly reflect the properties of A. Then the aim is to study the structure
of these semigroups and to derive certain invariants of the algebra. Some of the
classical constructions that motivate our approach include: the lattice of left ideals
of A and the set of orbits on A under the action of certain groups derived from the
unit group U.A/ of A. The focus is on the case of finite dimensional algebras over
an algebraically closed field.

Keywords Finite dimensional algebra • Left ideals • Semigroup • Unit group •
Orbit semigroup

Subject Classifications: 16D80, 16G99, 20M25, 20M99

1 Introduction

Let A be an associative unital algebra over a fieldK. The motivating idea is to study
semigroups SA of certain specific types that are naturally associated to A. Then to
describe the semigroup structure of SA as well as the ring theoretical properties of
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the semigroup algebraKŒSA�. Finally, to derive semigroup theoretical invariants and
numerical invariants of A determined by SA. Hence, the starting general simple-
minded problem is to find and study possible constructions of SA that might be
useful in this context, at least for some important classes of algebras.

Clearly, several classes of semigroups show up naturally in ring theory and
representation theory. We mention just a few such examples: path semigroups
(and algebras) [2], semigroups coming from multiplicative bases [3], monoids
arising from representations of quivers [13], or monoids arising in the context of
cancellation property for projective modules over von Neumann regular rings [1].
However, the starting point of this project comes from the following two important
constructions, that provide us with some ideas in the search for possible semi-
groups SA.

1. The set S.A/ of all K-subspaces of A equipped with the operation

X � Y D linK.XY /;

called the subspace semigroup of A, [8]. Such a semigroup carries a lot of
information on A and might be quite useful, but it is very big and seems difficult
to handle. So, the idea is to derive a smaller semigroup from S.A/.

2. The setOA.G/ of double cosetsGaG of elements a 2 A, calledG-orbits, where
G D U.A/, the unit group of A, or some important subgroup of U.A/. A natural
problem that arises here is to find a natural semigroup structure on the set of
orbits.

A model case is A D Mn.K/, G D B , a Borel subgroup of U.A/ D GLn.K/,
(for example, the group of upper triangular matrices in GLn.K/). Then

GLn.K/ D
[

x2W
BxB

(Bruhat decomposition) and

Mn.K/ D
[

x2R
BxB

(Renner decomposition), where W is the corresponding Weyl group (in this case,
the group of permutation matrices), and R is the Renner monoid corresponding to
Mn.K/ (consisting of all f0; 1g-matrices with at most one nonzero entry in each row
and in each column).

Such decompositions also hold in the more general case of reductive algebraic
groups and reductive algebraic monoids. The latter are connected monoids M
in the sense of [11] (meaning that M is an affine algebraic semigroup whose
underlying variety is irreducible), whose unit group is a reductive group. The same
applies to the abstractly defined class of finite monoids of Lie type [14]. Then
M D S

e2� U.M/eU.M/ for a finite semilattice � and M D S
x2R BxB for a

finite inverse monoid R, see [14], Theorems 4.5 and 8.8.
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Notice that if A is a finite dimensional algebra over an algebraically closed field,
then the multiplicative semigroup .A; �/ can be considered as a connected algebraic
monoid. However, A is a reductive monoid exactly when A is a semisimple algebra.
So the theory of reductive monoids can provide us with some intuition and methods,
but it only applies directly to a very restricted class of algebras.

It is worth mentioning that the classical Hecke algebras, as well as the Hecke
algebras corresponding to certain special classes of monoids, can be interpreted
as algebras with bases indexed by orbits. However, the set of orbits is not closed
under the corresponding multiplication. We refer to [12] and [15] for basic results
on Hecke algebras in the context of monoids and their representations.

One of the natural tools that are useful in the study of S.A/ is the so called
Zariski closed subsets semigroup Cl.A/, considered in [8]. So, we start with a
discussion of some of the properties of S.A/ and Cl.A/ and give some examples.
Using the semigroup of left ideals L.A/ � S.A/, we introduce the semigroup
C.A/ of conjugacy classes of left ideals of A, which is much smaller than S.A/ and
potentially easier to handle. Moreover, C.A/ is related to the finite representation
type property of the algebra A, and the finiteness of C.A/ becomes crucial in this
context. Next, a reduction to nilpotent left ideals is presented. Finally, properties
of A recognizable in terms of C.A/ and the isomorphism problem are defined and
discussed. The last section is devoted to another approach towards a construction
of a semigroup associated to certain finite dimensional algebras A, namely the so
called orbit semigroup OA and the simple orbit semigroup Os

A. The origin of this
project comes from [8, 9], while some of the recent results come from [4]. Several
aspects and open problems of the presented program form a part of a joint project
with A. Mecel.

2 Conjugacy Classes of Left Ideals and Related Semigroups

LetA be a unital algebra over a fieldK. Let C.A/ be the set of conjugacy classes ŒI �
of left ideals I in A. Then C.A/ is a semigroup for the operation ŒI � � ŒJ � D ŒIJ �.
This definition was introduced in [9].

Example 1. For any division algebra D and every n 	 1 the semigroup C.Mn.D//

is isomorphic to the semigroup with zero ff1; : : : ; fng [ f0g, where the operation is
defined by: fifj D fj , for i; j D 1; : : : ; n. This is clear because every left ideal of
Mn.D/ is conjugate to an ideal of the form Mn.D/ei , where ei D e11 C � � � C ei i , a
diagonal rank i idempotent.

Our motivation is to look for invariants of A that can be expressed in terms
of C.A/. Some of the main problems can be formulated as follows:

Problem 1. Determine necessary and sufficient conditions under which C.A/ is
finite. Determine the structure of C.A/.
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Problem 2. Determine properties of the algebra A that can be recognized by the
semigroup C.A/.

Problem 3. Assume that C.A/ is finite. Is A artinian?

In particular, one might even ask whether (or when) C.A/ Š C.B/ for two
algebras A;B implies that A Š B . In view of Example 1, in this context even if
we restrict to finite dimensional algebras over K, the field should be algebraically
closed. As the latter hypothesis is also standard in representation theory of finite
dimensional algebras, in this paper we shall assume that K is algebraically closed
and A is finite dimensional over K.

The idea to study C.A/ is motivated by two observations that will be explained
later:

1. The finiteness of C.A/ is strongly related to the finite representation type
property of finite dimensional algebras.

2. The latter is related also to the set of double cosets U.A/aU.A/, a 2 A, where
U.A/ is the group of units of A.

We start with a discussion of some related useful semigroups. Let L.A/ be the
semigroup of left ideals of A with operation I � J D IJ . Clearly, L.A/ is a right
ideal in S.A/. Moreover, C.A/ D L.A/=�, where � is the congruence defined by

.I; J / 2 �, I D J u for some u 2 U.A/:

Equivalently, I D u�1J u for some u 2 U.A/, or ŒI � D ŒJ � in C.A/.
One also uses the semigroup Cl.M/ of Zariski closed subsets of an irreducible

algebraic monoid M (with M D A) subject to X � Y D XY , the Zariski closure,
and the natural embedding

S.A/ �! Cl.A/:

In order to present the main results on the structure of S.A/ and Cl.A/ it is
convenient to first recall the classical facts about the structure of the multiplicative
monoid Mn.K/ of n � n matrices over K, [5]. This is a regular semigroup with
finitely many ideals

f0g D I0 � I1 � � � � � In D Mn.K/ (1)

with completely 0-simple factors Ik=Ik�1. A Rees presentation of these factors can
be explicitly given, but it is extremely complicated and intriguing, in terms of the
properties of the corresponding sandwich matrix.

The next step is to look at the structure of the subspace semigroup S.Mn.K//.
This is done by first considering the semigroup Cl.A/, in which some basic tools of
algebraic geometry can be used and which reveals a lot of information in terms of
the associated algebraic groups.
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Theorem 1 ([8]).

1. Every regular J -class of Cl.M/ is completely 0-simple.
2. Cl.M/ has a finite ideal chain with every factor nilpotent or a regular

semigroup.
3. Every regular factor of this chain is a 0-disjoint union of completely 0-simple

semigroups.
4. Regular J -classes correspond to conjugacy classes of connected subgroups of

certain linear algebraic groups, and the structure of every such J -class can be
described in group theoretical terms.

Using this, one can prove the following result.

Theorem 2 ([8]). There exists an ideal chain

f0g D J0 � J1 � � � � � Jt D S.Mn.K// (2)

where every factor Jk=Jk�1 is either nilpotent or a 0-disjoint union of (infinitely
many in general) completely 0-simple semigroups.

More generally, the same is true for S.A/, where A is any finite dimensional
algebra.

We list some further results on S.Mn.K// obtained in [6–8]. J.A/ stands for the
radical of an algebra A.

Proposition 1. Let J be a regular J -class of S.Mn.K//. Then

1. J contains a basic algebra D; the latter means that D=J.D/ Š K � � � � �K.
2. Every two basic algebras in J are conjugate in Mn.K/.
3. IfNGLn.K/.D/ is the normalizer ofD in GLn.K/ then the H -class of S.Mn.K//

containing D is of the form HD D fDx j x 2 NGLn.K/.D/g.
We continue with some basic properties of C.A/ for an arbitrary algebra A.

Proposition 2. C.A/ has the following properties:

1. C.A/ is a periodic semigroup (of bounded index),
2. Every L -class of C.A/ is a singleton,
3. The number of regular J -classes is equal to the number of ideals in the algebra
A=J.A/, hence it is finite.

In particular every regular J -class of C.A/ is a right zero semigroup.
As a consequence one can prove an analogue of the structural flavor of

S.Mn.K//.

Theorem 3. C.A/ has a finite ideal chain with every factor nilpotent or a right zero
semigroup.

We continue with some simple examples.
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Example 2. Let A be a semisimple algebra. Then A Š Mn1.K/ ˚ � � � ˚ Mnk .K/

and C.A/ D C1 � � � � � Ck , where every Cj D ffj1; : : : ; fjnj ; 0g, fjmfjn D fjn
(right zero semigroup with zero adjoined).

Example 3. Let A be a principal left ideal algebra (every left ideal is a principal
ideal). Then A Š Mn1.B1/ ˚ � � � ˚ Mnk .Bk/, where every Bj is a local algebra
whose radical is a principal (left) ideal. Then

Bj Š K0ŒSj �; Sj D f0; xj ; x2j ; : : : ; xrjj g; where xrjC1 D 0:

Moreover, C.A/ D C1 � � � � � Ck , where Cj can be identified with the set of all
sequences .xi1j ; : : : ; x

ik
j ; 0; : : : ; 0/ of length nj such that 0 � i1 � i2 � � � � � ik � rj ,

with respect to the product induced from Sj .

One might expect that some of the general properties of S.A/ can be understood
by looking at the class of subspace semigroups of algebras over finite fields Fq ,
which seems to be of independent interest.

Example 4. The subspace semigroup S.M2.Fq// has 8 J -classes; only one of
them is not regular. Every regular J -class J is ‘square’ (the numbers of R- and
L -classes are equal) and has an invertible (over CŒG� for the maximal subgroup G
of J ) sandwich matrix.

In particular, this leads to the following perhaps naive question.

Question. Does there exist a natural bijection between the set of R- and L -classes
of every regular J -class J of C.A/? In particular, if K D Fq , is such a J a
‘square’?

2.1 Connection with Finite Representation Type

A special attention for the semigroup C.A/ is due to the relation with the following
classical family of well-behaved algebras.

Definition 1. A is of finite representation type if there are finitely many isomor-
phism classes of finitely generated indecomposable left A-modules. Equivalently:
finitely many isomorphism classes of finitely generated indecomposable right
A-modules.

Theorem 4 ([3]). Assume that A is of finite representation type. Then A has a
multiplicative basis. This means there exists a basis B such that ab 2 B [ f0g
for all a; b 2 B .

In particular, for every n 	 1 there are finitely many algebras of finite type and of
dimension n. The following observations are used to connect the finite type property
with the semigroup C.A/.
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Lemma 1. Assume that Ax D Ay for some x; y 2 A. Then there exists u 2 U.A/
such that x D uy.

Lemma 2. Let I; J be left ideals of A. Then the left A-modules A=I;A=J are
isomorphic iff J D Iu for some u 2 U.A/.

If there are finitely many isomorphism classes of left A-modules of the form
A=I; for I 2 L.A/, then one gets the assertion of the following corollary.

Corollary 1. If A is of finite representation type then C.A/ is a finite semigroup.

Let I .A/ denote the lattice of (two-sided) ideals of A.

Theorem 5 ([9]). Consider the following conditions:

1. A is of finite representation type,
2. C.A/ is finite,
3. A has finitely many U.A/-orbits,
4. I .A/ is a distributive lattice.

The following implications hold: .1/) .2/) .3/) .4/.

We notice that condition (3) is equivalent to the finiteness of the set of conjugacy
classes of principal left ideals. On the other hand, condition (4) is equivalent to the
finiteness of I .A/, see [10], Ex.4 in � 2.2 and Ex.3 in � 2.6. It is easy to see that in
this case every ideal of A must also be principal. So the map U.A/xU.A/ 7! AxA

is onto (from the set of orbits to I .A/).
A partial converse to the implication 1: H) 2: can also be proved.

Theorem 6 ([9]). A is of finite representation type if and only if C.Mn.A// is finite
for every n 	 1.

Clearly, if A is of finite type, then so is Mn.A/ and C.Mn.A// is finite by the
previous result. For the converse, one uses the fact that if I; J is a submodules of
AA

n and I 0; J 0 are the left ideals of Mn.A/ consisting of matrices with every row in
I (respectively in J ), then

J 0g D I 0 for some g 2 U.Mn.A// , Jg D I; which implies An=I Š An=J:

This yields that for every n 	 1 there are finitely many indecomposable A-modules
with n generators. Then A is of finite type, by the Brauer-Thrall conjecture, proved
by Nazarova and Roiter, see [10], Chapter 7.

Next, we turn to a preliminary discussion of the finiteness of C.A/.

Theorem 7 ([4]). The following conditions are equivalent:

(1) C.A/ is finite,
(2) The number of conjugacy classes of nilpotent left ideals in A is finite.

Actually, the following is a direct consequence of the proof.
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Corollary 2. Assume that A has n conjugacy classes of idempotents and that the
number of conjugacy classes of nilpotent left ideals in A is finite and equal to m.
Then the semigroup C.A/ is finite and jC.A/j � nm:

2.2 Basic Algebras

We start with an important notion of the representation theory of finite dimensional
algebras.

Definition 2. Assume that fe1; e2; : : : ; eng is a complete set of primitive orthogonal
idempotents. By a basic algebra associated to A we mean the algebra

Ab D eAAeA
where eA D ej1 C : : : C ejt , and ej1 ; : : : ; ejt are chosen so that Aeji 6Š Aejk for
i ¤ k and each A-module Aej is isomorphic to one of the modules Aej1 ; : : : ; Aejt :

Ab does not depend on the choice of the sets e1; e2; : : : ; en and ej1 ; : : : ; ejt , up to
a K-algebra isomorphism. The algebra Ab is basic (Ab=J.Ab/ Š Kt ) and there is
an equivalence of categories (of left modules) mod.A/ Š mod.Ab/; see [2].

We write ŒL�e for the conjugacy class of a left ideal L in eAe, where e D e2 2 A.

Proposition 3. Assume that e D e2 is an idempotent of A. Let

	.ŒL�e/ D ŒAL� for L 2 L.eAe/:
Then 	 W C.eAe/ ! C.A/ is well defined and it is a semigroup monomorphism.
So: if C.A/ is finite then C.eAe/ is finite.

The following construction plays an important role in representation theory of
algebras and also in the approach towards a classification of algebras with finite
semigroups C.A/. We follow [10], which differs from the general definition used
for example in [2].

Definition 3. Let fe1; : : : ; eng be a complete set of orthogonal primitive idempo-
tents of A. A directed graph � D .V;E/ is called the quiver of A, denoted by
� .A/, if the vertex set of � is of the form V D f1; 2; : : : ; ng and the edge set E is
equal to f.i; j / j eiJ.A/ej ¤ 0g. Associated with � is the quiver � s D .V s; Es/,
where V s D V � f0; 1g and Es D f..i; 0/; .j; 1// j .i; j / 2 Eg. It is called the
separated quiver of A and it is denoted by � s.A/.

Theorem 8 ([9]). Let A be a finite dimensional basic algebra with a distributive
lattice of ideals over an algebraically closed fieldK and such that J.A/2 D 0. Then
the following conditions are equivalent

(1) C(A) is finite,
(2) The separated quiver � s.A/ of A has no cycles (with orientation ignored) and

dim.eJ.A// � 3 for every primitive idempotent e 2 A.



On Certain Semigroups Derived from Associative Algebras 241

One can easily give examples of non-basic algebras with a 2-nilpotent Jacobson
radical which do not satisfy the above bound on the dimension of eJ.A/.

Example 5. Consider A D Mn.KŒx�=.x
2//: This is an algebra of finite representa-

tion type, so C.A/ is finite. (Another proof: it can be verified that Mn.KŒx�=.x
2//

has exactly n C 1 conjugacy classes of left nilpotent ideals. Thus, by a previous
result, C.A/ is finite.)

The dimension of eJ.A/ could be arbitrarily large in this example. This shows
that a direct generalization of the above theorem to the non-basic case is not
possible.

Example 6. Consider the subalgebra B of the matrix algebra M7.K/ of the form
B DP7

iD1 KeiiCKe12CKe13CKe15CKe45CKe46CKe47, where eij denote the
matrix units of M7.K/. The algebra B is basic, and C.B/ is finite. Indeed, it is easy
to see that the separated quiver � s.B/ has no cycles. Moreover dim.eJ.B// � 3 for
every primitive idempotent e of B . From Theorem 8 it follows that the semigroup
C.B/ is finite. However, � s.B/ is not a disjoint union of Dynkin graphs. It is
known that the latter implies that B is not of finite representation type, see [10],
Theorem 11.8.

2.3 Recognizable Properties and the Isomorphism Problem

One of the aims is to determine properties of A which can be derived from its
semigroup C.A/. Such properties might be called recognizable. A simple example
follows.

Definition 4. The radical of C.A/ is defined as the largest semigroup ideal of C.A/
consisting of nilpotent elements. The radical of C.A/will be denoted by N .C.A//:

Observe that

N .C.A// D fŒL� 2 C.A/ jL � J.A/g: (3)

Therefore N .C.A// is the set of all nilpotent elements of C.A/ and it is the largest
nilpotent deal of C.A/.

Notice that C.A/ is a regular semigroup if and only if A is a semisimple algebra,
and a description of C.A/ follows from Example 1 in this case.

Consider the case where J.A/2 D 0. We have

A D A0 ˚ J.A/ as spaces,

where A0 Š A, A0 D A1 ˚ � � � ˚ An, Ai Š Msi .K/, for 1 � i � n.
Let Jij D AiJ.A/Aj . Then Jij are Ai � Aj -bimodules. Hence Jij are right

modules over the algebra Aopi ˝K Aj Š Msi sj .K/. So they are of the form
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Jij D Nij ˚Nij ˚ : : :˚Nij
„ ƒ‚ …

mij

;

where mij are positive integers and Nij is isomorphic to a minimal right ideal of
Msi sj .K/.

One shows that the properties of C.A/ allow us to determine the set
fs1; s2; : : : ; sng, as well as the matrix Œmij �. For example:

Proposition 4. Assume that J.A/2 D 0 and C.A/ is finite. There exists a collection
of recognizable sets Jij � C.A/, 1 � i; j � n; such that if Œmij � is the matrix
corresponding to the algebra A, then

mij D
�
0 if Jij D fŒ0�g
1 if Jij ¤ fŒ0�g: (4)

This leads to the following conclusion.

Theorem 9 ([4]). Let A;B be finite dimensional algebras over an algebraically
closed field K. Assume that J.A/2 D 0 and C.A/ is finite. If the semigroups C.A/
and C.B/ are isomorphic then the algebras A and B are isomorphic.

3 Orbit Semigroups

In this section we introduce and discuss certain semigroups arising from the double
coset decomposition of the multiplicative monoid .A; �/ with respect to important
subgroups of the unit group U.A/ of A.

Recall that a finite dimensional algebra over an algebraically closed field may be
considered as a connected algebraic monoid in the sense of [11]. If A D J.A/C A
(a direct sum of subspaces), where A Š A=J.A/ then

U.A/ D J.A/C U.A/:

Let B be a Borel subgroup of the algebraic group U.A/. So, B is a maximal closed
solvable normal subgroup of U.A/. Such B is unique up to conjugation. Since 1C
J.A/ is a nilpotent normal subgroup of U.A/, it is easy to see thatB can be identified
with J.A/C T .A/, where

T .A/ D T1 � � � � � Tn (5)

with A D A1�� � ��An and Aj D Msj .K/ for some sj and Tj is the group of upper
triangular matrices in GLsj .K/. In particular, ifA is a basic algebra thenB D U.A/.

Let E be a complete set of primitive orthogonal idempotents of A compatible
with B . The latter means that E D fei;j j i D 1; : : : ; n; j D 1; : : : ; sig in
the notation of (5) with ei;j denoting the j -th diagonal rank one idempotent in
Ai D Msi .K/.



On Certain Semigroups Derived from Associative Algebras 243

Assume first that the setOA.B/ ofB-orbitsBxB , x 2 A, is finite. Then for every
x; y 2 A there exists exactly one orbit BzB that is a dense subset of BxBByB .
We define

BxB � ByB D BzB: (6)

One verifies that in this way OA.B/ becomes a monoid with unity B . Since every
two Borel subgroups B;B 0 of U.A/ are conjugate, the corresponding monoids
OA.B/;OA.B

0/ are isomorphic. Hence, we can write OA D OA.B/ for simplicity.
Assume now that the lattice I .A/ of ideals of A is distributive (which holds

if there are finitely many B-orbits on A, by Theorem 5). This implies that every
eAe � fAf -bimodule eAf is uniserial, [3]. So, if x 2 eAe0; y 2 fAf 0 then there
exists wxy 2 eAf 0 such that eAewxyf 0Af 0 is the unique maximal submodule of
the eAe � f 0Af 0 – bimodule eAf 0 among all those generated by elements of xBy.
Let

A0 D
[

e;f 2E
eAf:

The elements BxB , for x 2 A0, are referred to as the simple B-orbits in A. The set
of all simple B-orbits is denoted by Os

A. One verifies that it becomes a semigroup
under the operation

BxB ˘ ByB D BwxyB: (7)

Lemma 3. Assume the lattice I .A/ of ideals of A is distributive. Then BaB 7!
.eAe/a.fAf /, for a 2 eAf; e; f 2 E, defines a bijection between Os

A and the
set of submodules of all eAe � fAf -bimodules eAf . In particular, Os

A is a finite
semigroup.

Lemma 4. If A has finitely many B-orbits then the product defined in OA by (6)
for x; y 2 Os

A satisfies

BxB � ByB D BwxyB:

The above means that the semigroup OA (if defined) contains Os
A as a sub-

semigroup, which might seem more suitable for our purpose. In other words, the
geometric and the algebraic definitions of the product coincide on Os

A.

Example 7. Let A D Mn.K/. Then

Os
A D fBeijB j i; j D 1; : : : ; ng [ f0g

where eij are matrix units and B D the group of upper triangular matrices. Thus

BeijB � BklB D Beil if j � k and 0 otherwise:
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Let

T D ffij D eij C eijC1 C � � � C ein j i; j D 1; : : : ; ng [ f0g:

Then T Š Os
A and T n f0g is a basis of Mn.K/. Hence

Mn.K/ Š K0ŒT � Š K0ŒO
s
A�;

the contracted semigroup algebras. Notice that T is a completely 0-simple semi-
group isomorphic to M 0.f1g; n; n; P / where the sandwich matrix P D .pjk/ is
defined by pjk D 0 if j > k and pjk D 1 if j � k.

The first natural question is to determine the structural properties of OA and of
Os
A, when they are defined. Notice that, in view of Example 7 we get that Os

A is
regular if and only if A is semisimple, and a description of Os

A follows in this case.
The next step is to look for properties of A that can be derived from Os

A.
We conclude with some sample results in this direction.

Theorem 10. Assume that the lattice I .A/ is distributive. Then

1. jOs
Aj D dimK.A/C 1.

2. A and K0ŒO
s
A� are isomorphic modulo the squares of their radicals. Moreover

J.K0ŒO
s
A�/ D K0ŒN �, where N D fBxB j x 2 J.A/ \ A0g.

3. If A is hereditary and basic then A Š K0ŒO
s
A�.

A sample natural problem that arises here is to determine for which algebras A
one has A Š K0ŒO

s
A�.
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The Betti Numbers of Simple Embeddings

Lex E. Renner

Abstract Let G be a simple algebraic group with Weyl group .W; S/ and let
w 2 W . We consider the descent set D.w/ D fs 2 S j l.ws/ < l.w/g. This has
been generalized to the situation of the Bruhat poset W J , where J � S . To do this
one identifies a certain subset SJ � W J that plays the role of S � W in the well
known case J D ;. One ends up with the descent system .W J ; SJ /. On the other
hand, each subset J � S determines a projective, simple G � G-embedding P.J /

of G. The case where J D ; is closely related to the wonderful embedding. One
obtains a complete list of all subsets J � S such that P.J / is a rationally smooth
algebraic variety. In such cases we determine the Betti numbers of P.J / in terms of
.W J ; SJ /. It turns out that P.J / can be decomposed into a union of “rational” cells.
The descent system is used here to help record the dimension of each cell.

Keywords Betti numbers • Descent systems • H-polynomials • Rationally
smooth

Subject Classifications: Primary 14M27; Secondary 20M32, 52B15, 51F15, 14L30

1 Introduction

Let G0 be a semisimple algebraic group and let � W G0 ! End.V / be a
representation of G0. Define Y� to be the Zariski closure of G D Œ�.G0/� �
P.End.V //, the projective space associated with End.V /. Finally, let X� be the
normalization of Y�. X� is a projective, normal G � G-embedding of G. That is,
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there is an open embedding G � X� such that the action G � G � G ! G,
.g; h; x/ Ý gxh�1, extends over X�. Furthermore B � B acts on X� with a finite
number of orbits. The problem here is to find a homologically useful description of
howX� fits together from theseB�B-orbits. This has been accomplished by several
authors in case X is the wonderful embedding of an adjoint semisimple group. See
[4, 7, 12] for an assortment of approaches. The purpose of this survey is to describe
what can be done here for any rationally smooth embedding of the form X� when �
is irreducible.

The main problem here is easy to describe. Suppose we have a rationally smooth,
embedding X�. We wish to calculate the Betti numbers of X� in terms of the
B � B-orbit structure ofX�. The challenge here is to first organize theB � B-orbits
into homologically meaningful “cells”, and then to quantify these cells in terms
combinatorial data coming from the Weyl group.

1.1 Motivation

We consider the following two examples as motivation for the present discussion.
The first example is P.nC1/2�1.K/which arises as a simple embedding of PGln.K/.
The second example is related to the well-known “wonderful” compactification
which is associated with any semisimple group.

Example 1. Let M D MnC1.K/. Then the two-sided action of Gln.K/ on M
results in the structure of a simple embedding on X D P

.nC1/2�1.K/. It is well-
known that the Poincaré polynomial PX of X is given by the formula

PX.t
1=2/ D

.nC1/2�1X

iD0
t i D

 
nX

iD0
t .n�i/.nC1/

! 
nX

iD0
t i

!

Example 2. A canonical monoid M is a J-irreducible monoid of type J D 	. This
is just a monoid theoretic way of saying that P.M/ WD .M n f0g/=K� is closely
related to the wonderful compactification ofG=Z.G/. LetM be a canonical monoid
with unit group G, and let G0 be the commutator subgroup of G. In fact, if G0 is
a group of adjoint type, then X D P.M/ is the canonical compactification of G0.
According to [7], the Poincaré polynomial PX of X is given by

PX.t
1=2/ D

 
X

w2W
t l.w0/�l.w/CjIwj

! 
X

v2W
t l.v/

!

:

where Iw D fs 2 S j w < wsg and w0 2 W is the longest element.

The whole point of this survey is to reveal a general method that explains these
two extreme cases. Furthermore we also explain the factorization of PX.t1=2/.
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The Poincaré polynomial of the wonderful compactification was originally obtained
by DeConcini and Procesi in [7]. It was that calculation that motivated many of the
results contained in this survey. See [12, 14–18].

1.2 Betti Numbers and Rational Cells

Let X be a complex, algebraic variety of dimension n. We say that X is rationally
smooth at x 2 X if there is a neighbourhood U of x in the complex topology such
that, for any y 2 U ,

Hm.X;X n fyg/ D .0/
for m ¤ 2n and

H2n.X;X n fyg/ D Q:

Here H�.X/ denotes the cohomology of X with rational coefficients. Danilov [6]
has characterized the rationally smooth toric varieties in combinatorial terms.

If X is a rationally smooth affine variety with C
�-action, and attractive fixed

point x 2 X , we refer to .X; x/ as a rational cell.

Proposition 1. Let suppose that X is a complex variety with a filtration

fx1g D X1 � X2 : : : � Xn D X
such that each Xi � X is closed, and each Ci D Xi nXi�1 is a rational cell. Then

.d imQH
2k.X IQ// D the number of cells of dimension k;

and the rational cohomology of X is zero in odd dimensions.

Proof. Inductively, apply the long exact sequence of rational cohomology to the
pair .Xi ; Xi�1/, using the fact that, if .C; x/ is a 2k-dimensional rational cell, then
C n fxg is a rational cohomology 2k � 1-sphere.

Any rationally smooth, projective embedding X has a filtration of the type
indicated in Proposition 1. See [14].

1.3 H -Polynomials

The H -polynomial is the obvious synthesis of two extremes, the h-polynomial of a
torus embedding, and the length polynomial of a Weyl group. In the former case one
collects summands of the form .t � 1/a (coming from an a-dimensional orbit of a
torus group) while in the latter case one collects summands of the form t b (coming
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from a b-dimensional orbit of a unipotent group). But in each case the corresponding
polynomial yields the desired coefficients. The common theme here is that, in both
cases, we are summing over a finite number ofK-orbits for the appropriate solvable
groupK. In more general cases, likeG�G-embeddings ofG with theB�B-action,
there are a finite number of B � B-orbits, and each one is composed of a unipotent
part and a diagonalizable part. In this situation, we need to collect summands of the
form .t � 1/atb for the appropriate integers a and b. Indeed, for each B � B-orbit
BxB , define

a.x/ D rank.B � B/ � rank.B � B/x
and

b.x/ D dim.UxU /:
Here .B � B/x D f.g; h/ 2 B � B j gxh�1 D xg. The summand associated with
this orbit is .t � 1/a.x/t b.x/. Thus we make the following fundamental definition.

Definition 1. Let � W G ! End.V / be an irreducible representation and let

X D X�
be as above. The H -polynomial of X is defined to be

HX.t/ D
X

x2R
.t � 1/a.x/t b.x/:

where R is a set of representatives for the B � B-orbits of X .

Remark 1. If X is rationally smooth then we have the relation

HX.t/ D PX.t1=2/

where PX.t1=2/ is the Poincaré polynomial of X . This H -polynomial is not the
correct tool for investigating varieties with singularities that are not rationally
smooth. In the case of Schubert varieties, and Kazhdan-Lusztig theory, the correct
formulation incorporates a “correction factor” (aka the KL-polynomial) that takes
into account local intersection cohomology groups. See Theorem 6.2.10 of [2]. The
authors of [5] calculate the Poincaré polynomial, for intersection cohomology, of a
large class of G �G-embeddings using the stratification by G �G-orbits.

Example 3. Let G0 D PGL3.C/, and let � W G0 ! End.V / be any irreducible
representation whose highest weight is in general position. Then the H -polynomial
of X� is given by

H.t/ D �1C 2t2 C 2t3 C t 5 �1C 2t C 2t2 C t 3

See Example 7 below for more information related to this example.
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2 Descent Systems and Simple Embeddings

2.1 Simple Embeddings

Let X D X� be a projective, normal embedding, as discussed in the introduction.
If the representation � is irreducible then one can check that X is a simple
embedding. Namely there is a uniqueG�G-orbit Y � X such that, for anyG�G-
orbit V � X , Y � V . Furthermore one can check that any projective, simple
embedding Z is of the form Z D X� for some irreducible representation � of G.
Another way to look as this is using J-irreducible monoids.

LetM be a reductive monoid [13] with unit groupG and Borel subgroupB � G.
Let T � B be a maximal torus. We let

E.T / D fe 2 T j e D e2g

be the set of idempotents of T and E1.T / D fe 2 E.T / j dim.eT / D 1g the
set of rank-one idempotents of T . The corresponding cross section lattice of M ,
relative to T and B , is

� D fe 2 E.T / j eB D eBeg D fe 2 E.T / j eb D ebe for all b 2 Bg:

It turns out that, for any cross section lattice �,

M D
G

e2�
GeG:

Notice that� is a multiplicatively closed. Furthermore, if�0 is another cross section
lattice of M then there exists g 2 G such that �0 D g�g�1. There is a one-to-one
correspondence between the set of cross section lattices of M and the set of pairs
f.T; B/g where T is a maximal torus contained in the Borel subgroup B .

Lemma 1. Let M be a reductive monoid with zero element 0 2M . Let � � E.T /
be the cross section lattice relative to T and B . The following are equivalent.

(a) �nf0g has a unique minimal element e0 (so that e0f D e0 for all f 2 �nf0g);
(b) there exists a rational representation � WM �! End.V / such that

(i) V is irreducible over M .
(ii) � is a finite morphism.

See Lemma 7.8 of [13] for the proof. A reductive monoid M is called
J-irreducible if it satisfies the conditions of Lemma 1. Any J-irreducible monoid
is also semisimple. Lemma 1 establishes a fundamental link between the orbit
structure of a J-irreducible and its representation-theoretic structure. The orbit
structure of a J-irreducible monoid has been described explicitly in [11]. Let S
denote the set of simple involutions of G relative to T and B . It turns out that
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for each proper subset J � S there is essentially one J-irreducible monoid. The
main result of [11] provides an algorithm for computing � in terms of J . If M is
J-irreducible then the center ofG is one-dimensionalX D .M nf0g/=k� is a simple
embedding.

2.2 Rationally Smooth Embeddings

We first state a general theorem from [14] that quantifies the Betti numbers of
a rationally smooth embedding in terms of combinatorial invariants (e.g. length
functions, G=Bs, etc.) To state this theorem we first recall that if .W; S/ is a Weyl
group and J � S thenW J is the set of minimal length representatives for the cosets
of WJ in W . In particular, the canonical composition

W J ! W ! W=WJ

is bijective.

Theorem 1 ([14]). Let M be a reductive monoid such that X D P
.M/ is
rationally smooth. Write G=Pe for .eG/=C�. Let e1 2 �1 and let we1w�1 D e,
where w 2 W J . w0 2 W J is the unique element of maximal length, and J D fs 2
S j se1 D e1sg. Also, let H.G=Pe/ DPw2W J t l.w/.

1. If we let w.e/ D w then

PX.t/ D
X

e2E1

�
t l.w0/�l.w.e//Cm.e/H.G=Pe/


:

2. In case Pe and Pe0 are conjugate for all e; e0 2 E1 the sum can be rewritten as

PX.t/ D
2

4
X

e2E1
t l.w0/�l.w.e//Cm.e/

3

5H.G=Pe/:

Furthermore, there is a certain idempotent fe 2 E.T / such that m.e/ D
dim.feMe/, where Me D fg 2 G.M/ j ge D eg D eg.

See Theorem 5.5 of [14] for more details about Theorem 1 and Definition 5.4 of
[14] for more details about m.e/.

It is possible to choose a 1-parameter subgroup  W k� ! G such that the
BB-decomposition

X D
G

e2E1
X.e/

is indexed by E1.T /. Furthermore, the irreducible component X.e/, e 2 E1.T /,
of the fixed point set of , is given by X.e/ D .eG/=K� Š G=Pe .
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Each summand tmH.G=Pe/ (with m D l.w0/ � l.w.e//Cm.e/) in the formula
for HP.M/.t/ in Theorem 1 mirrors the BB-projection

�e W X.e/! G=Pe Š .eG/=K�:

which is given by �e.Œx�/ D Œex�. A careful inspection of this projection yields that
the fibre of �e has dimension l.w0/ � l.w.e//Cm.e/.

The most intriguing problem here is to calculate the quantity m.e/. It contains a
subtle contribution from the induced BB-decomposition of the associated maximal
torus. See Sections 4.2 and 5.1 of [14] for more details. It turns out that, if P
.M/

is a simple embedding (where M is J-irreducible of type J ) and e 2 E1.T /, then

X.e/ D fŒy� 2 X j eBy D eBey � eGg:
In this case the calculation ofm.e/ involves the descent system .W J ; SJ / of .W; S/
for the appropriate J � S [15]. See Sect. 2.3 below for a discussion of these
descent systems. The descent system serves as an effective combinatorial substitute
for the infinitesimal part of Bialynicki-Birula’s method [1]. See Theorem 6 and
the examples that follow it for more illustration of how m.e/ is quantified in the
case of a simple embedding of the form X�. We are particularly interested in the
situation where the embedding X� is obtained from an irreducible representation
� D �, of type J D fs 2 S j s./ D g, of G. We refer to this embedding as
P.J /. This is well-defined since P.J / depends only on J and not on .

It turns out that m.e/ D dim.feMe/ where fe is a certain idempotent of T e .
Thus it remains for us to calculate dim.feMe/ for each e 2 E1 Š W J . This
requires some calculation related to the fact thatMe is essentially a product of matrix
monoids

Me � ˘s2SnJMı.s/.K/;

so that fe breaks up into a “sum” of idempotents ffe;sg, one for each e 2 E1 and
each s 2 S n J . We obtain that

�.e/ D dim.fMe/ D
X

s2SnJ
d im.fe;sMe/ D

X

s2SnJ
ı.s/.rank.fe;s/ � 1/;

where the rank here is in M (not in Me). The purpose of the descent system
.W J ; SJ / is to identify the “oriented edges” .u; v/ 2 W J � W J and use them
to calculate the numbers frank.fe;s/ � 1g.

2.3 Descent Systems

Let r W W ! GL.V / be the usual reflection representation of the Weyl group W ,
where V is a rational vector space. Along with this goes the Weyl chamber C � V
and the corresponding set of simple reflections S � W . The Weyl group W is
generated by S , and C is a fundamental domain for the action of W on V .
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Let  2 C. Consider the face lattice F of the polytope

P D Conv.W � /;

the convex hull of W �  in V . This lattice F depends only on W D fw 2
W j w./ D g D WJ D hs j s 2 J i, where J D fs 2 S j s./ D g. One
can describe F D FJ explicitly in terms of J � S . See [11].

Definition 2. We refer to J as combinatorially smooth if P is a simple polytope.

It is important to characterize the very interesting condition of Definition 2.
If J � S we let �0.J / denote the set of connected components of J . To be more
precise, let s; t 2 J . Then s and t are in the same connected component of J if there
exist s1; : : : ; sk 2 J such that ss1 ¤ s1s, s1s2 ¤ s2s1; : : : ; sk�1sk ¤ sksk�1, and
skt ¤ tsk .

The following theorem indicates exactly how to detect, combinatorially, the
condition of Definition 2.

Theorem 2 ([15]). Let  2 C. The following are equivalent.

1. P is a simple polytope.
2. There are exactly jS j edges of P meeting at .
3. J D fs 2 S j s./ D g has the properties

(a) If s 2 SnJ , and J 6� CW .s/, then there is a unique t 2 J such that st ¤ ts.
If C 2 �0.J / is the unique connected component of J with t 2 C then
Cnftg � C is a setup of type Al�1 � Al .

(b) For each C 2 �0.J / there is a unique s 2 SnJ such that st ¤ ts for some
t 2 C .

4. P.J / is rationally smooth.

Definition 3. Let .W; S/ be a Weyl group and let J � S be a proper subset. Define

SJ D .WJ .S n J /WJ / \W J:

We refer to .W J ; SJ / as the descent system associated with J � S .

Proposition 2. Let u; v 2 W J be such that u�1v 2 SJWJ . In particular, u ¤ v.
Then either u < v or v < u in the Bruhat order < on W J .

For a proof see [16]. These pairs .u; v/ give us the edges of the associated
polytope P. See Sect. 2.4 below for more interpretation relating descent systems
and polytopes.

For s 2 S n J we let

SJs D WJ sWJ \W J:
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Definition 4. Let w 2 W J . Define

1. DJ
s .w/ D fr 2 SJs j wrc < w for some c 2 WJ g, and

2. AJs .w/ D fr 2 SJs j w < wrg.
We refer to DJ .w/ D F

s2SnJ DJ
s .w/ as the descent set of w relative to J , and

AJ .w/ D ts2SnJAJs .w/ as the ascent set of w relative to J .

By Proposition 2, for any w 2 W J , SJ D DJ .w/ t AJ .w/. One should think
of w as a vertex on the polytope P, and SJ as a labelling of the edges at w. The
elements of AJ .w/ correspond to edges going “up” from w and the elements of
DJ .w/ correspond to edges going “down” from w. See Sect. 2.4 below for a more
elaborate discussion of the geometric underpinnings of the descent system.

Remark 2. Notice that wrc < w for some c 2 WJ if and only if .wr/0 < w, where
.wr/0 2 wrWJ is the element of minimal length in wrWJ . It is useful to illustrate
the fact that SJ D DJ .w/ t AJ .w/, for each w 2 W J , by doing some specific
calculations.

Definition 5. For each w 2 W J and each s 2 S n J define

�s.w/ D jAJs .w/j:
We refer to .W J ;�; f�sg/ as the augmented poset of J . For convenience we let

�.w/ D
X

s2SnJ
�s.w/:

The point here is this. We use .W J ;�; f�sg/ to quantify how the underlying torus
embedding of P.J / is involved in calculating the H -polynomial of P.J /.

The following Theorem gives us a clear picture of how these SJ work.

Theorem 3. Assume that J � S is combinatorially smooth. Then

1. SJ DFs2SnJ SJs .
2. Let s 2 S n J . In case st D ts for all t 2 J , SJs D fsg. Otherwise,

SJs D fs; t1s; t2t1s; : : : ; tm � � � t2t1sg
where C D C.s/ D ft1; t2; : : : ; tmg, st1 ¤ t1s and ti tiC1 ¤ tiC1ti for i D
1; : : : m � 1.

3. SJs Š fg 2 E2 j ge1 D e1 and cgc�1 D gs for some c 2 WJ g.
Example 4. Let

W D< s1; : : : sn >
be the Weyl group of type An (so that W Š SnC1), and let

J D fs3; : : : sng � S:
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If w 2 W J then w D ap , w D bq , or else w D apbq . Here ap D sp � � � s1
(1 � p � n) and bq D sq � � � s2 (2 � q � n). If we adopt the useful convention
a0 D 1 and b1 D 1, then we can write

W J D fapbq j 0 � p � n and 1 � q � ng

with uniqueness of decomposition. Let w D apbq 2 W J . After some tedious
calculation with braid relations and reflections, we obtain that

(a) AJs1.apbq/ D fs1g if p < q.
AJs1.apbq/ D ; if q � p.
Thus �s1.apbq/ D 1 if p < q and �s1.apbq/ D 0 if q � p.

(b) AJs2.apbq/ D fsm � � � sn j m > qg if q < n.
AJs2.apbq/ D ; if q D n.
Thus �s2.apbq/ D n � q.

2.4 The Story Told by the Descent System

The following table provides the reader with a check list of the important quantities
associated with a descent system. We include also a translation into the correspond-
ing quantities from reductive monoids. Although these monoids are not strictly
needed here they were a very enthusiastic participant in the birth of the descent
system. See [15] for more details.

Recall that E D E.T / is the set of idempotents of T and Ei D ff 2
E j dim.f T / D ig � E. As always, e1 2 E1 D E1.T / is the unique element
such that e1B D e1Be1. For e 2 E1 let v 2 W J be the unique element such that
e D ve1v�1. We write e D ev. For e; f 2 E we write e � f if there exists
w 2 W such that wew�1 D f . If s 2 S n J let gs 2 E2 be the unique idempotent

Reductive monoid jargon Bruhat order jargon

e1 2 �1 D fe1g 1 2 W J

e D ev 2 E1 The v 2 W J with e D ve1v�1

ev � ew in E1, i.e. evBew ¤ 0 w � v in W J

f.u; v/ 2 W J �W J j
E2 D fg 2 E j dim.gT / D 2g u < v and u�1v 2 SJWJ g
fg 2 E2 j gB D gBgg S n J
fg 2 E2 j ge1 D e1 g SJ D .WJ .S n J /WJ /\W J

fg 2 E2 j ge1 D e1; g 	 gsg SJs D .WJ sWJ /\W J

E2.ew/ D fg 2 E2 j gew D ewg fv 2 W J j w�1v 2 SJWJ g
� .ew/ D fg 2 E2.ew/ j ge0 D e0 for some e0 < ewg AJ .w/ D fr 2 SJ j w < wrg
�s.ew/ D � .ew/\ fg 2 E2 j g 	 gs g AJs .w/ D fr 2 SJs j w < wrg
E.T / n f0g f.w; I / j I 2 ��; w < ws if s 2 I�g
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such that gss D sgs ¤ gs and gsB D gsBgs (or what is the same, gsB � Bgs).
Let �� D fI � S j no component of I is contained in J g and for I 2 �� let
I � D I [ ft 2 J j ts D st for all s 2 I g.

The “picture” here is this. W J is canonically identified with the set of vertices
of the rational polytope P D Conv.W � /, where  is any highest weight with
fw 2 W j w./ D g D WJ . On the other hand there is a canonical ordering on
E1 D E1.T / coming from the associated reductive monoid. Evidently .E1;�/ and
.W J ;�/ are anti-isomorphic as posets. Furthermore the set of edgesEdg.P/ of P
is canonically identified with E2 D E2.T /. If g.v;w/ D g.w; v/ 2 Edg.P/ is the
edge of P joining the distinct vertices v;w 2 W J then either v < w or else w < v.
Given v 2 W J , with edges Edg.v/ D fg 2 E2 j g D g.v;w/ for some w 2 W J g,
the question of whether v < w or w < v (for a given g.v;w/ 2 Edg.v/) is coded in
the descent system .W J ; SJ /.

We can illustrate this with the following “descent picture” of typeA3 with J D ;.
Then SJ D S D f.2134/; .1324/; .1243/g. Consider � D .1324/ 2 W D S4. The
theory tells us that, for s 2 S , either s� < � or s� > � . Simple calculation yields
that .2134/.1324/ D .2314/, .1324/.1324/ D .1234/ and .1243/.1324/ D .1423/.
Thus, A.�/ D f.2134/; .1243/g and D.�/ D f.1324/g.

The ascents A.�/ correspond to edges going “up” from � and the descents
D.�/ correspond to edges going “down” from � . The beauty of this story is that
the descent system makes it all work for any proper subset J � S such that
P D Conv.W � / is a simple polytope.

These ascent sets give us a combinatorial picture of the cell structure of the
associated toric variety X.J /. Each T -fixed point x 2 X.J / corresponds to a rank-
one idempotent e 2 E1.T /; as well as to a certain element � of W J . The set of
ascents at � correspond to the one-dimensional T -orbits of the BB-cell Cx that is
defined by

Cx D fy 2 X.J / j limt!0.t/y D xg:

Evidently, the dimension of Cx is equal to jA.�/j, the number of ascents at � . It is
useful to think of A.�/ as a combinatorial replacement for the infinitesimal part of
the BB-method [1].

2.4.1 The Betti Numbers of X.J/ and Descent Systems

Associated with the polytope P D Conv.W � / is a certain toric variety X.J /.
This toric variety can also be obtained as the closure of a maximal torus in the simple
embedding P.J / of G. See [16] for more details. Here we explain how the descent
system .W J ; SJ / encodes the Betti numbers of X.J /.

Definition 6. Let X be a complex algebraic variety. The Poincaré polynomial of X
is the polynomial P.X; t/ with the signed Betti numbers of X as coefficients.



258 L.E. Renner

P.X; t/ D
X

i�0
.�1/id imQŒH

i .X IQ/�t i :

Assume that J � S is combinatorially smooth. In this section we describe the
Poincaré polynomial of X.J / in terms of the augmented poset .W J ;�; f�sg/.

By assumption J is combinatorially smooth. Thus, by the results of [6], the Betti
numbers of X.J / can be calculated by calculating the h-polynomial. Let

fi D the number of codimension .i C 1/ � orbits of X.J /

where i D �1; 0; : : : ; n � 1. The h-polynomial is defined by insisting that

nX

iD0
hi t

n�i D
n�1X

iD�1
fi .t � 1/n�i�1:

Notice, in particular, that f�1 D 1. A simple calculation yields that

hk D
kX

iD0
.�1/k�i

 
n � i
k � i

!

fi�1:

By Theorem 10.8, Remark 10.9 and Proposition 12.11 of [6], the Poincaré polyno-
mial of X.J / is given by

P.X.J /; t/ D
X

k

hkt
2k:

On the other hand we can describe the h-polynomial of X.J / in terms of the
augmented poset .W J ;�; f�sg/. This is the main point of the entire discussion.

Theorem 4 ([16]). Assume that X.J / is rationally smooth. Then the Poincaré
polynomial of X.J / is

P.X.J /; t/ D
X

w2W J

t2�.w/:

Example 5. In this example we consider the root system of type Bl . Let E be a real
vector space with orthonormal basis f
1; : : : ; 
lg. Then

˚C D f
i � 
j j i < j g [ f
i C 
j j i ¤ j g [ f
ig, and
� D f
1 � 
2; : : : ; 
l�1 � 
l ; 
lg D f˛1; : : : ; ˛lg.

Let S D fs1; s2; : : : ; sl�1; slg be the corresponding set of simple reflections. Here
we consider the case

J D fs1; : : : ; sl�1g:
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We first calculate W J D fw 2 W j w.˛i / 2 ˚C for all 1 � i � l � 1g. This leads
to a simple calculation and we obtain

W J Š
nG

kD0
f.i1; i2; : : : ; ik/ j 1 � i1 < i2 < : : : < ik � lg;

via the correspondence

.i1; i2; : : : ; ik/ 7! w

where

w.
v/ D 
iv for 1 � v � k;

and

w.
kCv/ D �
jv for 1 � v � l � k;

where l 	 j1 > j2 > : : : > jl�k 	 1 (so that f1; : : : ; lg D fi1; i2; : : : ; ikg t
fj1; j2; : : : ; jl�kg).

Let

 D 2l D 
1 C : : :C 
l D ˛1 C 2˛2 : : :C l˛l :

By Proposition 4.1 of [9], for v;w 2 W J , w � v if and only if w./� v./ is a sum
of positive roots. A simple calculation yields that

w � v if and only if mw.i/ � mv.i/ for all i D 1; : : : ; l;

where

mw.i/ D jfj � i j w.
v/ D �
j for some v D 1; : : : ; lgj:

Let M.w/ D fj j w.
v/ D �
j for some v D 1; : : : ; lg. If M.w/ � M.v/ then also
M.v/c �M.w/c (complement of sets) and we obtain that

w./ � v./ D AC B

where

A DPj2M.w/c .˛j C ˛jC1C : : :C ˛l/�Pj2M.v/c .˛j C ˛jC1C : : :C ˛l/, and
B DPj2M.v/.˛j C ˛jC1 C : : :C ˛l/ �Pj2M.w/.˛j C ˛jC1 C : : :C ˛l/.

Thus M.w/ �M.v/ implies that w � v, at least for elements of W J.
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We now wish to calculate AJ .w/ for each w 2 W J . Recall that

AJ .w/ D fr 2 SJ j w < wrg

and

SJ D fsl ; sl�1sl ; : : : ; si si�1 � � � sl�1sl ; : : : ; s1 � � � slg:

Let w 2 W J correspond, as above, to i1 < : : : < ik and j1 > : : : > jl�k . Let
ri D si � � � sl 2 SJ . One checks that

M.wr/ DM.w/ [ fj g if i � k;

and

M.wr/ DM.w/ n fj g if i > k:

Hence by our previous calculations w < wri if and only if i � k. Thus we obtain

AJ .w/ D fsk � � � sl ; : : : ; s1 � � � slg D fr 2 SJ j w < wrg:

Thus if w 2 W J we obtain

�.w/ D jfj j w.
v/ D 
j for some vgj:

We can use this information to calculate the Poincaré polynomial of X.J /. An easy
calculation yields

P.X.J /; t/ D
X

w2W J

t2�.w/ D
X

A
f1;:::;lg
t 2jAj D .1C t 2/l :

2.4.2 The Betti Numbers of X.J/ and Eulerian Polynomials

Consider the root system of type An and let J.k; n/ D fsn�kC1; : : : ; sng for
1 � k � n. In [8] Golubitsky found a formula for PX.J.k;n//.t 1=2/ in terms of
Eulerian polynomials. Let hk.t/ denote the h-polynomial of X.J.k; n// (so that
PX.J.k;n//.t

1=2/ D hk.t/). Finally let

EnC1.t/ D
X

I�S

.nC 1/Š
jWI j .t � 1/jI j

be the .n C 1/-Eulerian polynomial. Notice that EnC1.t/ is the h-polynomial of
X.;/. In Theorem 5 of [8] the author determines the following recursion formula.
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Theorem 5. Let h and E be as above. Then

hk.t/ D hk�1.t/ �
 
nC 1
k C 1

!

.tk C : : :C t /En�k.t/:

It would be interesting to find the extent to which the Poincaré polynomial of
X.J / can be expressed in terms of generalized Eulerian Polynomials [3].

2.5 The List

One can list all possible subsets J � S that are combinatorially smooth. We
do this according to the type of the underlying simple group. The numbering of
the elements of S is as follows. For types An;Bn; Cn; F4; and G2 it is the usual
numbering. In these cases the end nodes are s1 and sn. For type E6 the end nodes
are s1; s5 and s6 with s3s6 ¤ s6s3. For type E7 the end nodes are s1; s6 and s7 with
s4s7 ¤ s7s4. For type E8 the end nodes are s1; s7 and s8 with s5s8 ¤ s8s5. In each
case of type En, the nodes corresponding to s1; s2; : : : ; sn�1 determine the unique
subdiagram of type An�1. For type Dn the end nodes are s1; sn�1 and sn. The two
subdiagrams of Dn, of type An�1, correspond to the subsets fs1; s2; : : : ; sn�2; sn�1g
and fs1; s2; : : : ; sn�2; sng of S .

The reader is referred to [15] for the details. The key ingredient here is
Theorem 2.

1. A1.

(a) J D 	.

An, n 	 2. Let S D fs1; : : : ; sng.
(a) J D 	.
(b) J D fs1; : : : ; sig, 1 � i < n.
(c) J D fsj ; : : : ; sng, 1 < j � n.
(d) J D fs1; : : : ; si ; sj ; : : : sng, 1 � i , i � j � 3 and j � n.

2. B2.

(a) J D 	.
(b) J D fs1g.
(c) J D fs2g.
Bn, n 	 3. Let S D fs1; : : : ; sng, ˛n short.

(a) J D 	.
(b) J D fs1; : : : ; sig, 1 � i < n.
(c) J D fsng.
(d) J D fs1; : : : ; si ; sng, 1 � i and i � n � 3.
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3. Cn, n 	 3. Let S D fs1; : : : ; sng, ˛n long.

(a) J D 	.
(b) J D fs1; : : : ; sig, 1 � i < n.
(c) J D fsng.
(d) J D fs1; : : : ; si ; sng, 1 � i and i � n � 3.

4. Dn, n 	 4. Let S D fs1; : : : sn�2; sn�1; sng.
(a) J D 	.
(b) J D fs1; : : : ; sig, 1 � i � n � 3.
(c) J D fsn�1g.
(d) J D fsng.
(e) J D fs1; : : : ; si ; sn�1g, 1 � i � n � 4.
(f) J D fs1; : : : ; si ; sng, 1 � i � n � 4.

5. E6. Let S D fs1; s2; s3; s4; s5; s6g.
(a) J D 	.
(b) J D fs1g or fs1; s2g.
(c) J D fs5g or fs4; s5g.
(d) J D fs6g.
(e) J D fs1; s5g; fs1; s2; s5g or fs1; s4; s5g.
(f) J D fs1; s6g.
(g) J D fs5; s6g
(h) J D fs1; s5; s6g.

6. E7. Let S D fs1; s2; s3; s4; s5; s6; s7g.
(a) J D 	.
(b) J D fs1g; fs1; s2g or fs1; s2; s3g.
(c) J D fs6g or fs5; s6g.
(d) J D fs7g.
(e) J D fs1; s6g; fs1; s2; s6g; fs1; s2; s3; s6g; fs1; s5; s6g; or fs1; s2; s5; s6g.
(f) J D fs6; s7g.
(g) J D fs1; s7g or fs1; s2; s7g.
(h) J D fs1; s6; s7g; fs1; s2; s6; s7g.

7. E8. Let S D fs1; s2; s3; s4; s5; s6; s7; s8g.
(a) J D 	.
(b) J D fs1g; fs1; s2g; fs1; s2; s3g or fs1; s2; s3; s4g.
(c) J D fs7g or fs6; s7g.
(d) J D fs8g.
(e) J D fs1; s7g; fs1; s2; s7g; fs1; s2; s3; s7g; fs1; s2; s3; s4; s7g,

fs1; s6; s7g; fs1; s2; s6; s7g; fs1; s2; s3; s6; s7g or fs1; s2; s5; s6g.
(f) J D fs7; s8g.
(g) J D fs1; s8g; fs1; s2; s8g or fs1; s2; s3; s8g.
(h) J D fs1; s7; s8g; fs1; s2; s7; s8g.
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8. F4. Let S D fs1; s2; s3; s4g.
(a) J D 	.
(b) J D fs1g or fs1; s2g.
(c) J D fs4g or fs3; s4g.
(d) J D fs1; s4g.

9. G2. Let S D fs1; s2g.
(a) J D 	.
(b) J D fs1g.
(c) J D fs2g.

3 The Poincaré Polynomial of a Simple Embedding

Recall from Theorem 1 that there is a certain quantity m.w/ (the “je ne sais quoi”)
that is missing in the formula for the Poincaré polynomial of a simple embedding.
In this section we put it all together in terms of the descent system.

3.1 That Certain “Je ne sais quoi”

We are finally in position to state the main result. Let M be a J-irreducible monoid
such that M n f0g is rationally smooth. In this section we obtain the sought-after
H -polynomial of M in terms of the augmented poset .E1;�; f�sg/.

Let J � S be combinatorially smooth and let s 2 S n J , w 2 W J . We define

(a) ı.s/ D jC.s/j C 1, and
(b) �s.w/ D jAs.w/j where e D we1w�1.

The subsetC.s/ � J is the unique connected component of J containing the unique
element t 2 J such that st ¤ ts (otherwise C.s/ D ; if there is no such t ). Hence
ı.s/ D 1 if and only if st D ts for all t 2 J . Let w0 2 W J be the longest element
(so that l.w0/ D dim.Ue/).
Theorem 6. The H -polynomial H.M/ of M is given by

H.M/ D
0

@
X

w2W J

t l.w0/�l.w/Cm.w/
1

AH.J /

where m.w/ D P
s2SnJ ı.s/�s.w/, and H.J / D P

v2W J t l.v/ the H -polynomial of

G=PJ . Thus PX.t1=2/ D H.M/ where X D .M n f0g/=K�.
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Proof. Now X DFe2E1 X.e/ where

X.e/ D fŒy� 2 X j eBy D eBey � eGg:

We write X DFw2W J X.w/, where we denote X.w/ D X.e/ if we1w�1 D e. Thus
we have, for each w 2 W J ,

� W X.w/! .eG/=K�;

and ��1.K�e/ D BfeMek
�. Here fe is a certain idempotent. Notice how this

fibration “mirrors” the factorization of H.M/. Since eG is isomorphic to a cone
on the projective variety PJ nG, it has the usual Bruhat decomposition. It turns out
that X.w/=K� has a cell decomposition

X.w/ D
G

v2W J

Ev

where, for each v 2 W J , dim.Ev/ D l.v/ C dim.BC �
e / � 1. But from [14],

BfeMek
� Š .Ue \ Bu/ � feMek

�. Hence, we obtain that

dim.BfeMek
�/�1 D dim.Ue\Bu/Cdim.feMe/ D l.w0/�l.w/Cdim.feMe/:

By counting up all these cells our preliminary calculation of H.M/, using the
formula for H.M/ from Theorem 1, is

H.M/ D
X

w2W J

0

@t l.w0/�l.w/Cdim.feMe/
X

v2W J

t l.v/

1

A

where fe is a certain idempotent of T e . Thus it remains for us to calculate
dim.feMe/ for each e 2 E1. This requires some calculation related to the fact
that Me is essentially a product of matrix monoids of size ı.s/ � ı.s/ (for each
s 2 S n J ) and f D fe breaks up into a “sum” of idempotents ffsg such that
rank.fs/ � 1 D �s.e/ (where the rank is in M not in Me). In any case we obtain

�.e/ D dim.fMe/ D
X

s2SnJ
d im.fMe/ D

X

s2SnJ
ı.s/�s.e/:

By substituting this expression (for the value of dim.feMe/) into our preliminary
formula forH.M/ (and collecting terms appropriately) we obtain the desired result.
See Corollary 6.5 and Theorem 6.6 of [18] for more details.

Remark 3. We already know from [14] that

�.e/ D dim.feMe/
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is the “obscure object of desire” in the pursuit of the Betti numbers of rationally
smooth group embeddings. See Theorem 1 above for the basic idea, or Definition 5.4
and Theorems 5.1 and 5.5 of [14] for all the details.

Most of the results about descent systems [15,16] were developed for the purpose
of calculating dim.feMe/. But one should not overlook the fact that descent
systems are a natural combinatorial part of any Coxeter group .W; S/.

3.2 Examples

In this section we use Theorem 6 to calculate the H -polynomial of four classes of
examples. In each case this boils down to findingW J and calculating l.w/ andm.w/
for each w 2 W J . Complete details of these examples can be found in [15, 16, 18].

Example 6. Let M D MnC1.K/. Then M is J-irreducible of type J � S , where
J D fs2; s3; : : : ; sng and S D fs1; s2; : : : ; sng � W is of type An (n 	 1). In this
example

SJ D fs1; s2s1; s3s2s1; : : : ; sn � � � s1g, and
W J D SJ t f1g.

Write ai D si � � � s1 if i > 1, and a0 D 1. An elementary calculation yields

S n J D fs1g,
l.ai / D i ,
w0 D sn � � � s1,
ı.s1/ D n,
�s1.ai / D n � i ,
P.J / DPn

iD0 t2i , and
X D P.M/ D P

.nC1/2�1.K/, projective space.

Another elementary calculation (using Theorem 6) then yields

PX.t
1=2/ D

 
nX

iD0
t .n�i/.nC1/

! 
nX

iD0
t i

!

D
.nC1/2�1X

iD0
t i :

Example 7. A canonical monoid M is a J-irreducible monoid of type J D 	.
It follows from Theorem 2 that if M is a canonical monoid then M n f0g is
rationally smooth. Let M be a canonical monoid with unit group G, and let G0
be the commutator subgroup of G. If G0 is a group of of adjoint type, then P.M/

is the canonical compactification of G0. The augmented poset in this example is
.W;�; f�sgs2S /. .W;�/ is the Weyl group with the usual Bruhat order and

(i) �s.w/ D 1 if w < ws,
(ii) �s.w/ D 0 if w > ws,

(iii) ı.s/ D 1 for all s 2 S D S n J , and (therefore)
(iv) m.w/ DPs2S ı.s/�s.w/ D jfs 2 S j w < wsgj.



266 L.E. Renner

Thus

PX.t
1=2/ D

 
X

w2W
t l.w0/�l.w/CjIwj

! 
X

v2W
t l.v/

!

:

where Iw D fs 2 S j w < wsg. Observe how H.M/ is determined by .W;�;
f�sgs2S /.

TheH -polynomial of theM is related to the Poincaré polynomial ofX D P.M/

by the rule H.M/.t/ D PX.t
1=2/. The Poincaré polynomial of the canonical

compactification was originally obtained by DeConcini and Procesi in [7]. It was
that calculation that motivated many of the results of this paper.

Example 8. In this example we illustrate Theorem 6 by calculating the Poincaré
polynomial of P.M/ where M is J-irreducible of type J � S , where S D
fs1; s2; : : : ; sng � W is of type An (n 	 2) and J D Jn D fs3; s4; : : : ; sng. We
shall refer the reader to Example 4.6 of [16] for some of the details.

If w 2 W J
n we can write w D apbq where ap D sp � � � s1 (1 � p � n) and

bq D sq � � � s2 (2 � q � n). We also adopt the peculiar but useful convention a0 D 1
and b1 D 1. Thus

W J
n D fapbq j 0 � p � n and 1 � q � ng

with uniqueness of decomposition.
Now S n J D fs1; s2g so that C.s1/ D 	 and C.s2/ D fs3; : : : ; sng. Thus,

(i) ı.s1/ D 1, and
(ii) ı.s2/ D .n � 2/C 1 D n � 1.

From Example 4 above,

(i) �s1.apbq/ D 1 if p < q and
�s1.apbq/ D 0 if p 	 q.

(ii) �s2.apbq/ D n � q.

Thus, by definition,

(i) m.apbq/ D .n � 1/.n � q/C 1 if p < q and
(ii) m.apbq/ D .n � 1/.n � q/ if p 	 q.

Finally,

(i) l.apbq/ D p C q � 1, and
(ii) anbn 2 W J is the longest element.

Thus, for w D apbq 2 W J , we obtain by elementary calculation that

l.w0/ � l.w/Cm.w/ D n � p C n.n � q/C 
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where 
 D 1 if 0 � p < q � n, and 
 D 0 if n 	 p 	 q 	 1. Thus

X

w2W J

t l.w0/�l.w/Cm.w/ D
X

0�p<q�n
tn�pCn.n�q/C1 C

X

n�p�q�1
tn�pCn.n�q/

The other factor here is

H.J / D
X

w2W J

t l.w/ D
nX

iD1
i.t i�1 C t 2n�i /:

Finally we obtain

PX.t
1=2/ D

0

@
X

0�p<q�n
tn�pCn.n�q/C1 C

X

n�p�q�1
tn�pCn.n�q/

1

A

 
nX

iD1
i.t i�1 C t2n�i /

!

:

Example 9. In this example we consider the root system of type Bl . Let E be a real
vector space with orthonormal basis f
1; : : : ; 
lg. Then

˚C D f
i � 
j j i < j g [ f
i C 
j j i ¤ j g [ f
ig, and
� D f
1 � 
2; : : : ; 
l�1 � 
l ; 
lg D f˛1; : : : ; ˛lg.

Let S D fs1; s2; : : : ; sl�1; slg be the corresponding set of simple reflections. Here
we consider the case the J-irreducible monoid M of type

J D fs1; : : : ; sl�1g � S:

We make the following identification.

W J Š f1 � i1 < i2 < : : : < ik � lg

as follows. Given such a sequence, 1 � i1 < i2 < : : : < ik � l , we define

w.
v/ D 
iv for 1 � v � k;

and

w.
kCv/ D �
jv for 1 � v � l � k;

where l 	 j1 > j2 > : : : > jl�k 	 1 (so that f1; : : : ; lg D fi1; i2; : : : ; ikg t
fj1; j2; : : : ; jl�kg). One can check that w 2 W J and that, conversely, any element
of W J is of this form.

With these identifications we let w 2 W J . We now recall that

AJ .w/ D fr 2 SJ j w < wrg
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and that

SJ D fs1 � � � sl ; s2 � � � sl ; : : : ; si � � � sl ; : : : ; sl�1sl ; slg:

Let w 2 W J correspond, as above, to i1 < : : : < ik and j1 > : : : > jl�k . Let
ri D si � � � sl 2 SJ . By the calculations of [16], w < wri if and only if i � k. Thus
we obtain

AJ .w/ D fs1 � � � sl ; : : : ; sk � � � slg D fr 2 SJ j w < wrg:

Now we can use Theorem 6 above to obtain the H -polynomial of M . Let us first
assemble the relevant information.

1. S n J D fslg.
2. ı.sl / D jC.sl /j C 1 D jfs1; : : : ; sl�1gj C 1 D l .
3. �.w/ D �sl .w/.
4. If w 2 W J then �.w/ D k where

w ! f1 � i1 < i2 < : : : < ik � lg

as above.
5. m.w/ D l�.w/ D kl .
6. l.w0/ � l.w/ D P

i2M 0.w/ i where M 0.w/ D fi j w.
j / D 
i for some j g D
fi1; i2; : : : ; ikg, and where w0 2 W J is the longest element (notice that l.w0/ D
l.l C 1/=2).

Collecting terms we obtain that, for w 2 W J ,

l.w0/ � l.w/Cm.w/ D
� X

i2M 0.w/

i

�

C l jM 0.w/j D
X

i2M 0.w/

.i C l/:

After recalling some elementary generating functions, and applying Theorem 6, we
obtain that

PX.t
1=2/ D �˘l

kD1.1C t kCl /
	 �
˘l
kD1.1C t k/

	
:

The ˘l
kD1.1C t k/ factor here is H.G=PJ / DPv2W J t l.v/ and the ˘l

kD1.1C t kCl /
factor is

P
w2W J t l.w0/�l.w/Cm.w/.
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SL2-Regular Subvarieties of Complete Quadrics

Mahir Bilen Can and Michael Joyce

We dedicate our work with admiration to Professors Mohan
Putcha and Lex Renner on the occasion of their 60th birthday.

Abstract We determine SLn-stable, SL2-regular subvarieties of the variety of
complete quadrics. We use the methods of Akyıldız and Carrell given in Proc
Natl Acad Sci USA 86(11):3934–3937, 1989 to give a factorization of Poincaré
polynomials of these regular subvarieties.

Keywords Complete quadrics • SL2-regular varieties • Kostant-Macdonald
identity

Subject Classifications: 14L30, 05E05, 05E10

1 Introduction

The study of the variety X WD Xn of .n � 2/-dimensional complete quadrics, a
completion of the variety of smooth quadric hypersurfaces in P

n�1.C/, dates back
to the nineteenth century, where it was used to answer fundamental questions in
enumerative geometry. Complete quadrics received renewed attention in the second
half of the twentieth century for two primary reasons: (1) the toolkit of modern
algebraic geometry made it possible to develop Schubert calculus rigorously,
thereby addressing Hilbert’s 15-th problem [12, 14]; and (2) the interpretation of
X by De Concini and Procesi as an example of a wonderful embedding [9].
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Identifying quadrics with the symmetric matrices defining them (up to scaling),
the change of variables action of SLn WD SLn.C/ on smooth quadrics corresponds
to the action on symmetric matrices given by g � A D �.g/Ag�1, for g 2 SLn, A
a non-degenerate symmetric matrix, and � the involution �.g/ D .g>/�1. Modulo
the center of SLn, the variety of smooth quadric hypersurfaces can be identified as
SLn=SOn since SOn � SLn is the stabilizer of the smooth quadric defined by the
identity matrix.

Any semi-simple, simply connected complex algebraic group G equipped with
an involution � has a canonical wonderful embedding X . Letting H denote the
normalizer of G� , X is a smooth projective G-variety containing an open G-orbit
isomorphic toG=H and whose boundary X � .G=H/ is a union of smoothG-stable
divisors with smooth transversal intersections. Boundary divisors are canonically
indexed by the elements of a certain subset � of a root system associated to .G; �/.
Each G-orbit in X corresponds to a subset I � �. The Zariski closure of the
orbit is smooth and is equal to the transverse intersection of the boundary divisors
corresponding to the elements of I .

The wonderful embedding of the symmetric pair .SLn; �/ above is X , where
�.A/ D .A>/�1. In this case, � is the set of simple roots associated to SLn relative
to its maximal torus of diagonal matrices contained in the Borel subgroup B � SLn
of upper triangular matrices, and is canonically identified with the set Œn � 1� D
f1; 2; : : : n � 1g.

The study of cohomology theories of wonderful embeddings, initiated in [9], has
been carried out through several different approaches. Poincaré polynomials have
been computed in [10, 18, 23], while the structure of the (equivariant) cohomology
rings have been described in [5, 7, 11, 15, 24].

We study the cohomology of SLn-stable subvarieties of X that are SL2-regular.
An SL2-regular variety is one which admits an action of SL2 such that any one-
dimensional unipotent subgroup of SL2 fixes a single point. Akyıldız and Carrell
developed a remarkable approach for studying the cohomology algebra H�.X IC/
of such varieties [1–3]. Their method, when applied to flag varieties, has important
representation theoretic consequences.

Let us briefly describe the contents of this paper. Section 2 sets some notation
and recalls some basic facts about SL2-regular varieties, wonderful embeddings, and
complete quadrics. In Sect. 3, we precisely identify which SLn-stable subvarieties
of X are SL2-regular. When combined with an earlier result of Strickland [23], our
result takes an especially nice form: an SLn-stable subvariety of X is SL2-regular
if and only if the dense orbit of the subvariety contains a fixed point of the maximal
torus of SLn.

In Sect. 4, we apply the machinery developed by Akyıldız and Carrell to compute
the Poincaré polynomial

PX.t/ WD
2 dimXX

iD0
dimCH

i.X IC/t i
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of a SL2-regular, SLn-stable subvariety X of X . If I � Œn�1� is the corresponding
set of simple roots, then

PX.t/ D
�
1 � t 6
1 � t 4

�jI j nY

kD1

1 � t 2k
1 � t 2 :

This factorization of the Poincaré polynomial should be viewed as an extension of
the results of [2] on the famous identity of Kostant and Macdonald [13, 16]

X

�2Sn
q`.�/ D

nY

kD1

1 � qk
1 � q ;

recognizing the left-hand side as the Poincaré polynomial of the complete flag
variety, evaluated at q D t 2.

2 Preliminaries

2.1 Notation and Conventions

All varieties are defined over C and all algebraic groups are complex algebraic
groups. Throughout, n is a fixed integer, and X WD Xn denotes the SLn-variety
of .n � 2/-dimensional complete quadrics, which is reviewed in Sect. 2.4. The set
f1; 2; : : : ; mg is denoted Œm� and if I � Œm�, then its complement is denoted I c. If I
and K are sets, then I � K denotes the set complement fa 2 I W a … Kg. The
transpose of a matrix A is denoted A>.

We denote by B 0 � SL2 the subgroup of upper triangular matrices, with its
usual decomposition B 0 D T 0U 0 into a semidirect product of a maximal torus T 0
consisting of the diagonal matrices and the unipotent radical U 0 of B 0. Let b0; t0; u0
denote their Lie algebras.

Finally, the symmetric group of permutations of Œn� is denoted by Sn, and for
w 2 Sn, `.w/ denotes `.w/ D jf.i; j / W 1 � i < j � n; w.i/ > w.j /gj.

2.2 SL2-Regular Varieties

LetX be a smooth projective variety over C on which an algebraic torus T acts with
finitely many fixed points. Let T 0 be a one-parameter subgroup withXT 0 D XT . For
p 2 XT 0

define the sets CC
p D fy 2 X W lim

t!0
t � y D p; t 2 T 0g and C�

p D fy 2
X W lim

t!1 t � y D p; t 2 T 0g, called the plus cell and minus cell of p, respectively.
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Theorem 1 ([4]). Let X; T and T 0 be as above. Then

1. CC
p and C�

p are locally closed subvarieties isomorphic to affine space;
2. If TpX is the tangent space of X at p, then CC

p (resp., C�
p ) is T 0-equivariantly

isomorphic to the subspace TC
p X (resp., T �

p X ) of TpX spanned by the positive
(resp., negative) weight spaces of the action of T 0 on TpX .

As a consequence of Theorem 1, there exists a filtration

XT 0 D V0 � V1 � � � � � Vn D X; n D dimX;

of closed subsets such that for each i D 1; : : : ; n, Vi � Vi�1 is the disjoint union
of the plus (resp., minus) cells in X of (complex) dimension i . It follows that the
odd-dimensional integral cohomology groups of X vanish, the even-dimensional
integral cohomology groups of X are free, and the Poincaré polynomial PX.t/ WDP2n

iD0 dimCH
i.X IC/t i of X is given by

PX.t/ D
X

p2XT 0

t 2 dimC
C

p D
X

p2XT 0

t 2 dimC�

p :

Because the odd-dimensional cohomology vanishes, we will prefer to study the
q-Poincaré polynomial, PX.q/ D PX.t2/.

Now suppose that X has an action of SL2. The action of U 0 gives rise to a vector
field V on X . Note that p 2 X is fixed by U 0 if and only if V.p/ 2 TpX is zero.
The SL2-varietyX is said to be SL2-regular if there is a unique U 0-fixed point onX .
An SL2-regular variety has only finitely many T 0-fixed points [2].

A smooth projectiveG-varietyX is SL2-regular if there exists an injective homo-
morphism 	 W SL2 ,! G such that the induced action makes X into an SL2-regular
SL2-variety. Recall that the Jacobson-Morozov Theorem [8, Section 5.3] implies
that whenG is simply-connected (the only case we consider) such 	 are determined
by specifying h 2 t0 and e 2 u0 satisfying Œh; e� D 2e. As an abuse of notation,
we will often identify B 0; T 0; U 0 (resp., b0; t0; u0; h; e) with their images under 	
(resp., d	).

Let p be the unique U 0-fixed point of the SL2-regular variety X . The minus cell
C�
p is open in X [1], and hence, the weights of T 0 on TpX are all negative. Let
x1; : : : ; xn be a T 0-equivariant basis for the cotangent space T �

p X of X . Then the
coordinate ring CŒC�

p � D CŒx1; : : : ; xn� is a graded algebra with deg xi > 0. View-
ing the vector field V associated to the U 0 action as a derivation of CŒx1; : : : ; xn�,
V.xi / is homogeneous of degree deg xi C2 and V.x1/; V .x2/; : : : V .xn/ is a regular
sequence in CŒx1; : : : ; xn� [2].

Theorem 2 ([1, Proposition 1.1]). Let Z be the zero scheme of the vector field V ,
supported at the point p 2 X , and let I.Z/ D .V .x1/; : : : ; V .xn// � CŒx1; : : : ; xn�

be the ideal ofZ, graded as above. Then there exists a degree-doubling isomorphism
of graded algebras CŒC�

p �=I.Z/ Š H�.X IC/.
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Consequently, the q-Poincaré polynomial of X is given by

PX.q/ D
nY

iD1

1 � qdeg xiC1

1 � qdeg xi
:

2.3 Wonderful Embeddings

We briefly review the theory of wonderful embeddings, referring the reader to [9]
and [17] for more details.

Definition 1. Let X be a smooth, complete G-variety containing a dense open
homogeneous subvariety X0. Then X is a wonderful embedding of X0 if

1. X � X0 is the union of finitely many G-stable smooth codimension one
subvarieties Xi for i D 1; 2; : : : ; r ;

2. For any I � Œr�, the intersection XI WD \i…IXi is smooth and transverse;
3. Every irreducible G-stable subvariety has the form XI for some I � Œr�.
If a wonderful embedding of X0 exists, it is unique up to G-equivariant
isomorphism.

The G-orbits of X are also parameterized by the sets I � Œr�. We denote by OI

the unique dense G-orbit in XI . There is a fundamental decomposition

XI D
G

K
I
OK: (1)

Note that X contains a unique closed orbit Z, corresponding to I D ;.
Remark 1. Fix a Borel subgroup B � G and let B� denote the opposite Borel
subgroup of B . Fix a maximal torus T � B and let p 2 Z be the unique B�-fixed
point. The spherical roots of X are the T -weights of TpX=TpZ and the set Œr� in
Definition 1 can be intrinsically identified with the set of spherical roots of X .

2.4 Complete Quadrics

There is a vast literature on the variety X of complete quadrics. See [14] for a
survey, as well as [9] and [11] for recent work on the cohomology ring of X . We
briefly recall the relevant definitions.

Let X0 denote the open set of the projectivization of Symn, the space of
symmetric n-by-n matrices, consisting of matrices with non-zero determinant.
Elements of X0 should be interpreted as (the defining equations of) smooth quadric
hypersurfaces in P

n�1. The group SLn acts on X0 by change of variables defining
the quadric hypersurfaces, which translates to the action

g � A D .g>/�1Ag�1 (2)
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on Symn. X0 is a homogeneous space under this SLn action and the stabilizer of the
quadric x21 C x22 C : : : x2n D 0 (equivalently, the identity matrix) is SOn.

The classical definition of X (see [19, 20, 25]) is as the closure of the image of
the map

ŒA� 7! .ŒA�; Œ�2.A/�; : : : ; Œ�n�1.A/�/ 2
n�1Y

iD1
P.�i .Symn//:

Renewed interest in the variety of complete quadrics can be attributed in large part
to the following theorem, which gives two alternative descriptions of X .

Theorem 3. 1. Vainsencher [26] X can be obtained by the following sequence of
blow-ups: in the naive compactification P

n�1 of X0, first blow up the locus of
rank 1 quadrics; then blow up the strict transform of the rank 2 quadrics; : : : ;
then blow up the strict transform of the rank n � 1 quadrics.

2. De Concini and Procesi [9] X is the wonderful embedding of X0 and the
spherical roots of X are the simple positive roots of the An root system.

From Theorem 3(1), a point P 2X is described by the data of a flag

F W V0 D 0 � V1 � � � � � Vs�1 � Vs D C
n (3)

and a collection Q D .Q1; : : :Qs/ of quadrics, where Qi is a quadric in P.Vi /

whose singular locus is P.Vi�1/. It is clear from Theorem 3(2) that r of Definition 1
is equal to n � 1, and moreover, i 2 Œn � 1� corresponds to the simple root ˛i WD
"i � "iC1 in the An root system (see Remark 1).

Additionally, for eachK � Œn�1�, the map .F ;Q/ 7! F is an SLn-equivariant
projection

�K WX K ! SLn=PK; (4)

where PK is the standard parabolic subgroup associated with the roots correspond-
ing to K. The fiber over F 2 SLn=PK is isomorphic to a product of varieties of
complete quadrics of smaller dimension.

OK consists of complete quadrics whose flag F satisfies fdimVi W i D
1; 2; : : : ; s�1g D Kc. X K is a wonderful embedding of OK , the variety of complete
quadrics whose flag satisfies fdimVi W i D 1; 2; : : : ; s � 1g � Kc [9].

In Fig. 1 we depict the cell decomposition of X3, the variety of complete conics
in P

2. Each colored disk represents a B-orbit and edges stand for the covering
relations between closures of B-orbits. A cell is a union of all B-orbits of the same
color. We include the label I � f1; 2g, which indicates the SL3-orbit containing the
given B-orbit. We use the label T to indicate the presence of a fixed point under
the maximal torus T of SL3.
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, T

{1}, T {2}, T , T , T

{1}, T {1} {2}, T {2} , T , T

{1, 2} {1}, T {1} {2}, T {2} , T

{1, 2} {1, 2} {1} {2}

{1, 2}

Fig. 1 Cell decomposition of the complete quadrics for n D 3

2.5 Unipotent Fixed Flags

We need the following elementary theorem on the fixed point loci of any partial
flag variety SLn=P under the action of a one dimensional unipotent subgroup
U 0 ,! SLn. Such loci are completely classified by Spaltenstein [22] and Shimo-
mura [21].

Theorem 4. Fix a one-dimensional unipotent subgroup U 0 ,! SLn with the Lie
algebra u0 D Lie.U 0/.
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1. The fixed point locus .SLn=P /U
0

is non-empty.
2. If a non-zero element e 2 u0 is regular, i.e. has a single Jordan block, then
.SLn=P /U

0

consists of a single point.
3. If .SLn=B/U

0

is a single point, then any non-zero e 2 u0 is regular.

3 SL2-Regular Subvarieties of Complete Quadrics

Definition 2. A subset I � Œn� 1� is special if it does not contain any consecutive
numbers. Equivalently, I D fi1 < i2 < � � � < isg � Œn�1� is special if ijC1�ij 	 2
for j D 1; 2; : : : ; s � 1.

Remark 2. Given a special subset I � Œn � 1�, any subset K � I is also special.

Theorem 5. Let I � Œn � 1�. The following are equivalent:

1. I is special;
2. X I is SL2-regular;
3. OI contains a T -fixed point.

Remark 3. The equivalence (1) , (3) in Theorem 5 is due to Strickland [23,
Proposition 2.1].

Proof of (1)) (2). Let I be a special subset of Œn � 1�. Let

e D

0

B
B
B
B
B
@

0 1 0 : : : 0

0 0 1 : : : 0
:::
:::
:::
: : :

:::

0 0 0 : : : 1

0 0 0 : : : 0

1

C
C
C
C
C
A

(5)

and

h D

0

B
B
B
B
B
@

2n 0 0 : : : 0

0 2n � 2 0 : : : 0

0 0 2n � 4 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 2

1

C
C
C
C
C
A

:

A routine calculation shows that Œh; e� D 2e, so let 	 W SL2 ! SLn be the associated
embedding.

Next we show that X I is SL2-regular by proving that the unique U 0-fixed point
of X I is the standard flag in C

n, viewed as a point in O Œn�1� Š SLn=B . Since
�K W OK ! SLn=PK is SLn-equivariant (4), any U 0-fixed point P D .F ;Q D
.Q1; : : : ;Qs// 2 OK � X I maps to a U 0-fixed partial flag F D �K.P/.
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By Theorem 4, there is a unique U 0-fixed partial flag FK in each SLn=PK .
Moreover, writing Kc D fk1 < k2 < � � � < ktg, FK is the flag whose i -th vector
space is spanned by the first ki standard basis vectors.

For each K � I , we determine the U 0-fixed locus of the fiber of �K over FK .
Since the flag

FK WD .0/ D V0 � V1 � V2 � � � � � Vt�1 � Vt D C
n

isU 0-fixed, the action of u 2 U 0 on a quadricQi defined by the symmetric matrixAi
in Vi=Vi�1 is given by restricting u to a linear transformation on Vi=Vi�1. Because
K is special, dimVi=Vi�1 � 2. Moreover, the matrix of u with respect to the basis

of standard basis vectors in Vi � Vi�1 is

�
1 1

0 1

�

if dim.Vi=Vi�1/ D 2.

If

A D
�
a b

b c

�

defines such a quadric on a two-dimensional vector space, then

u � A D
�

a b � a
b � a c � 2b C a

�

:

The only fixed quadric is degenerate and defined by A D
�
0 0

0 1

�

:

Therefore, if the point .FK;Q/ is U 0-fixed, then each Vi=Vi�1 is one-
dimensional. In other words, K D ; and .FK;Q/ is the standard flag in SLn=B .

Proof of (2)) (1). Assume that I is not special. Let 	 W SL2 ! SLn be any
homomorphism, giving rise to B 0 D T 0U 0 � SLn. To show that X I is not regular,
we must show that U 0 does not have a unique fixed point. First, consider the action
ofU 0 on SLn=B . By Theorem 4, there are alwaysU 0-fixed flags and there is a unique
U 0-fixed flag if and only if any non-zero e 2 u0 is regular. Thus, we assume that the
Jordan form of e is

0

B
B
B
B
B
@

0 1 0 : : : 0

0 0 1 : : : 0
:::
:::
:::
: : :

:::

0 0 0 : : : 1

0 0 0 : : : 0

1

C
C
C
C
C
A

:

Since I is not special, there exists a, 1 � a < n � 1, such that a; a C 1 2 I .
Let K D fa; a C 1g. Since K � I , OK � X I . Moreover, U 0-fixed points in OK

are in canonical bijection with the quadrics, defined on the three-dimensional vector
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space spanned by the a-th, .a C 1/-st, and .a C 2/-nd standard basis vectors, that
are fixed by the restricted action of U 0. Without loss of generality, we can assume
that U 0 � SL3 and

e D
0

@
0 1 0

0 0 1

0 0 0

1

A 2 u0:

A standard Lie theory calculation using (2) shows that a quadric defined by

A D
0

@
a b c

b d e

c e f

1

A

is fixed by U 0 if and only if e>AC A>e> D 0 if and only if

A D
0

@
0 0 c

0 �c 0
c 0 f

1

A :

Thus, OK contains a positive dimensional family of U 0-fixed quadrics, and
consequently X I is not regular.

Remark 4. The proof that (2), (3) in Theorem 5 is achieved by using the explicit
combinatorics at hand to show that each of the two statements is equivalent to (1).
It is natural to wonder whether either direction of the implication holds in a more
general setting.

4 Poincaré Polynomial of X I

We apply Theorem 2 to compute the cohomology of X I when I is a special subset
of Œn � 1�.
Proposition 1. If I � Œn � 1� is special, then the q-Poincaré polynomial of X I is
equal to

PX I .q/ D
�
1 � q3
1 � q2

�jI j nY

kD1

1 � qk
1 � q : (6)

Proof. Fix a regular SL2-action on X I corresponding to
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e D

0

B
B
B
B
B
@

0 1 0 : : : 0

0 0 1 : : : 0
:::
:::
:::
: : :

:::

0 0 0 : : : 1

0 0 0 : : : 0

1

C
C
C
C
C
A

2 u and h D

0

B
B
B
@

n � 1 0 : : : 0

0 n � 3 : : : 0
:::

:::
: : :

:::

0 0 : : : �.n � 1/

1

C
C
C
A
2 t

so that T 0 is included in T via

�
t 0

0 t�1
�

7!

0

B
B
B
@

tn�1 0 : : : 0

0 tn�3 : : : 0
:::

:::
: : :

:::

0 0 : : : t�.n�1/

1

C
C
C
A
:

From Theorem 2 and the discussion preceding it, to compute the Poincaré polyno-
mial of X I , we must understand the T 0-weight decomposition of the tangent space
TP.X I / of the unique U 0-fixed point P , corresponding to the standard flag in the
complete flag variety SLn=B �X I . Since T 0 is a subtorus of the maximal torus T
of SLn, consider the T -equivariant decomposition

TP.X
I / D TP.SLn=B/˚NP.SLn=B;X

I /:

Here, NP.SLn=B;X I / denotes the fiber of the normal bundle of SLn=B in X I at
the point P .

As a T -module, TP.SLn=B/ Š u� D ˚˛>0u�˛ . Since T 0 has weight 2 acting
on any simple positive root space, the weight of T 0 on u�˛ is �2ht.˛/, where ht.˛/
is the height of ˛ (cf. [6]). The height of ˛ D "i � "j , i < j is j � i .

Since X I is a wonderful embedding of OI , SLn=B is a transverse intersection
of the T -stable subvarieties X K where K � I has cardinality jI j � 1. Thus, as a
T -module,

NP.SLn=B;X
I / Š

M

j2I
TP.X

I /=TP.X
I�fj g/:

Since the T -weight of TP.X I /=TP.X I�fj g/ is �2˛j [9], its T 0-weight is �4.
Combining these calculations with Theorem 2 gives (6), using the elementary

identity

Y

˛>0

1 � qht.˛/C1
1 � qht.˛/ D

Y

1�i<j�n

1 � qj�iC1

1 � qj�i D
nY

kD1

1 � qk
1 � q :
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We interpret Theorem 1 as a generalization of the classical Kostant-Macdonald
identity [13, 16] for the complete flag variety:

X

�2Sn
q`.�/ D Œn�qŠ WD

nY

kD1

1 � qk
1 � q : (7)

Akyıldız and Carrell recovered (7) as a corollary of Theorem 2 applied to the variety
X D SLn=B .

In order to derive a similar “sum D product” identity in the case of the varieties
X I , I special, we compute PX I .q/ by describing a decomposition into cells and
applying Theorem 1. To do so, we make use of a result of De Concini and Springer
[10] to reduce the calculation to that of a cell decomposition for X , which was first
computed by Strickland in [23].

Let K � Œn � 1� be special and let W D Sn be the symmetric group on Œn�.
Let WK be the parabolic subgroup of W generated by transpositions .i; i C 1/

for i 2 K, let W K be the set of minimal coset representatives of W=WK , and let
w0;K D

Y

i2K
.i; i C 1/ denote the longest element of WK . The T -fixed points in OK

are indexed by W K [23, Proposition 2.3].
W acts on the free abelian group generated by f"1; "2; : : : ; "ng by w � "i D "w.i/

and the simple roots ˛i WD "i � "iC1 lie in this group. We write v DPn
iD1 ci "i > 0

(resp., < 0) if the first non-zero coefficient ci which appears in the decomposition is
positive (resp., negative). Interpreting the "i as characters of SLn, v > 0 is equivalent
to the corresponding character being positive along a suitable one-dimensional torus
T 0 � SLn. Define the set

RK.w/ WD fi 2 Kc W w.˛i C w0;K.˛i // < 0g:

Proposition 2 ([23], Theorem 2.7 and Proposition 2.6). Let p 2 OK be a T -
fixed point of X corresponding to w 2 W K . Let CC

p denote the plus cell of p in X
associated to the action of T 0. Then

dimCC
p D `.w/C jKj C jRK.w/j:

Proposition 3 ([10], Lemma 4.1). Retaining the notation of Proposition 2, an orbit
OK intersects CC

p if and only if K � I � RK.w/ [K. If K � I , then X I \ CC
p

is the plus cell of X I containing p and has dimension dimCC
p � j.I c \RK.w//j.

Theorem 6. Let I � Œn � 1� be a special subset. Then

PX I .q/ D
X

K
I

X

w2W K

q`.w/CjKjCsK;I .w/;

where sK;I .w/ D jfi 2 I �K W w.˛i C w0;K.˛i // < 0gj:
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Corollary 1. Let I be a special subset of Œn � 1�. Then

X

K
I

X

w2W K

q`.w/CjKjCsK;I .w/ D
�
1 � q3
1 � q2

�jI j nY

kD1

1 � qk
1 � q : (8)

Example 1. We illustrate Corollary 1 in the case n D 3. If I D ;, then we recover
the classical Kostant-Macdonald identity for SL3=B (cf. [2]):

1C 2q C 2q2 C q3 D .1 � q2/.1 � q3/
.1 � q/2 D .1C q/.1C q C q2/:

If I D f1g, we obtain a new identity:

.1Cq2/.1CqCq2/Cq.1CqCq2/ D .1 � q3/
.1 � q2/ �

.1 � q2/.1 � q3/
.1 � q/2 D .1CqCq2/2:

The decomposition of the left-hand side reflects the sums over individual subsets
K � I . The identity for I D f2g yields the same identity as I D f1g.
Remark 5. If I is any special subset of Œn � 1� of cardinality l and K � I has
cardinality k, then one can show directly that

X

w2W K

q`.w/CjKjCsK;I .w/ D
�

q

1C q2
�k �

1C q2
1C q

�l nY

iD1

�
1C q C � � � C qi�1	

by verifying sK;I .w/ D jfi 2 I n K W `.wsi / < `.w/gj (cf. [23, proof of
Proposition 2.6]). Then (8) is obtained by summing over all K � I and applying
the Binomial Theorem.
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1 Introduction

Schützenberger [25] introduced the notion of evacuation and promotion on the set
of linear extensions of a finite poset P of size n. This generalizes promotion on
standard Young tableaux defined in terms of jeu-de-taquin moves. Haiman [16] as
well as Malvenuto and Reutenauer [22] simplified Schützenberger’s approach by
expressing the promotion operator @ in terms of more fundamental operators �i (1 �
i < n), which either act as the identity or as a simple transposition. A beautiful
survey on this subject was written by Stanley [28].

In earlier work, we considered a slight generalization of the promotion operator
[2] defined as @i D �i �iC1 � � � �n�1 for 1 � i � n with @1 D @ being the original
promotion operator. In Sect. 2 we define the extended promotion operator, give
examples and state some of its properties. We survey our results on Markov chains
based on the operators @i , which act on the set of all linear extensions of P (denoted
L .P /) in Sect. 3.

Our results [2] can be viewed as a natural generalization of the results of
Hendricks [17, 18] on the Tsetlin library [33], which is a model for the way an
arrangement of books in a library shelf evolves over time. It is a Markov chain
on permutations, where the entry in the i th position is moved to the front with
probability pi . From our viewpoint, Hendricks’ results correspond to the case when
P is an anti-chain and hence L .P / D Sn is the full symmetric group. Many
variants of the Tsetlin library have been studied and there is a wealth of literature
on the subject. We refer the interested reader to the monographs by Letac [20] and
by Dies [11], as well as the comprehensive bibliographies in [14] and [5].

One of the most interesting properties of the Tsetlin library Markov chain
is that the eigenvalues of the transition matrix can be computed exactly. The
exact form of the eigenvalues was independently investigated by several groups.
Notably Donnelly [12], Kapoor and Reingold [19], and Phatarfod [23] studied the
approach to stationarity in great detail. There has been some interest in finding
exact formulas for the eigenvalues for generalizations of the Tsetlin library. The
first major achievement in this direction was to interpret these results in the context
of hyperplane arrangements [4, 5, 10]. This was further generalized to a class of
monoids called left regular bands [8] and subsequently to all bands [9] by Brown.
This theory has been used effectively by Björner [6,7] to extend eigenvalue formulas
on the Tsetlin library from a single shelf to hierarchies of libraries.

We present without proof our explicit combinatorial formulas [2] for the
eigenvalues and multiplicities for the transition matrix of the promotion Markov
chain when the underlying poset is a rooted forest in Sect. 4 (see Theorem 4).
The proof of eigenvalues and their multiplicities follows from the R-triviality of
the underlying monoid using results by Steinberg [30, 31]. Intuition on why the
promotion monoid is R-trivial is stated in Sect. 5.

The remainder of the paper contains new results and is outlined as follows.
In Sect. 6, we prove a formula for the mixing time of the promotion Markov chain.
This improves the result stated without proof in the Outlook section of [2]. In Sect. 7,
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we present a partial conjecture for the eigenvalues of the transition matrix of posets
which are not rooted forests. We give supporting data for our conjectures with
formulas for all posets of size 4. Lastly, Sect. 8 defines a generalization of promotion
on arbitrary subsets of Sn and gives a formula for its stationary distribution.

2 Extended Promotion on Linear Extensions

Let P be an arbitrary poset of size n, with partial order denoted by �. We assume
that the elements of P are labeled by integers in Œn� WD f1; 2; : : : ; ng. In addition,
we assume that the poset is naturally labeled, that is if i; j 2 P with i � j in P
then i � j as integers. Let L WD L .P / be the set of its linear extensions,

L .P / D f� 2 Sn j i � j in P H) ��1
i < ��1

j as integersg; (1)

which is naturally interpreted as a subset of the symmetric group Sn. Note that
the identity permutation e always belongs to L . Let Pj be the natural (induced)
subposet of P consisting of elements k such that j � k [27].

We now briefly recall the idea of promotion of a linear extension of a poset P .
Start with a linear extension � 2 L .P / and imagine placing the label ��1

i in P
at the location i . By the definition of the linear extension, the labels will be well-
ordered. The action of promotion of � will give another linear extension of P as
follows:

1. The process starts with a seed, the label 1. First remove it and replace it by the
minimum of all the labels covering it, i , say.

2. Now look for the minimum of all labels covering i in the original poset, and
replace it, and continue in this way.

3. This process ends when a label is a “local maximum.” Place the label n C 1 at
that point.

4. Decrease all the labels by 1.

This new linear extension is denoted �@ [28].

Example 1. Figure 1 shows a poset (left) to which we assign the identity linear
extension � D 123456789. The linear extension � 0 D �@ D 214537869 obtained
by applying the promotion operator is depicted on the right. Note that indeed we
place �

0�1
i in position i , namely 3 is in position 5 in � 0, so that 5 in �@ is where

3 was originally. Figure 2 illustrates the steps used to construct the linear extension
�@ from the linear extension � from Fig. 1.

The definition of promotion was originally motivated by the following construc-
tion. The Young diagram of a partition  (with English notation) can naturally be
viewed as a poset on the boxes of the diagram ordered according to the rule that
a box is covered by any boxes immediately below it or to its right. The linear
extensions of this poset are standard Young tableaux of shape . In this context,



288 A. Ayyer et al.

1
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5
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4
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6 8

9

7

Fig. 1 A linear extension � (left) and �@ (right)

the definition of promotion is a natural generalization of the standard promotion
operator used in the RSK algorithm. On semistandard tableaux, promotion is also
used to define affine crystal structures in type A [26] and it has applications to the
cyclic sieving phenomenon [24]. The above definition of promotion for arbitrary
posets is originally due to Schützenberger [25].

We now generalize the above construction to extended promotion, whose seed
is any of the numbers 1; 2; : : : ; n. The algorithm is similar to the original one, and
we describe it for seed j . Start with the subposet Pj and perform steps 1–3 in a
completely analogous fashion. Now decrease all the labels strictly larger than j by
1 in P (not only Pj ). Clearly this gives a new linear extension, which we denote
�@j . Note that @n is always the identity.

The extended promotion operator can be expressed in terms of more elementary
operators �i (1 � i < n) as shown in [16, 22, 28] and has explicitly been used to
count linear extensions in [13]. Let � D �1 � � ��n 2 L .P / be a linear extension of
a finite poset P in one-line notation. Then

��i D

8
ˆ̂
<

ˆ̂
:

�1 � � ��i�1�iC1�i � � ��n if �i and �iC1 are not

comparable in P ,

�1 � � ��n otherwise.

(2)

Alternatively, �i acts non-trivially on a linear extension if interchanging entries �i
and �iC1 yields another linear extension. Then as an operator on L .P /,

@j D �j �jC1 � � � �n�1: (3)
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Step 1: Remove the minimal el-
ement 1.

Step 2: The minimal element
that covered 1 was 3, so replace
1 with 3.

Step 2 (continued): The mini-
mal element that covered 3 was
6, so replace 3 with 6.
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Step 2 (continued): The mini-
mal element that covered 6 was
9, so replace 6 with 9.

Step 3: Since 9 was a local
maximum, replace 9 with 10.

Step 4: Decrease all labels by 1.
The resulting linear extension is

.
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Fig. 2 Constructing �@ from �
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3 Promotion Markov Chains

We now consider two discrete-time Markov chains related to the extended promo-
tion operator. For completeness, we briefly review the part of the theory relevant
to us.

Fix a finite poset P of size n. The operators f@i j 1 � i � ng define a directed
graph on the set of linear extensions L .P /. The vertices of the graph are the
elements in L .P / and there is an edge from � to � 0 if � 0 D �@i . We can now
consider random walks on this graph with probabilities given formally by x1; : : : ; xn
which sum to 1. We give two ways to assign the edge weights, see Sects. 3.1 and 3.2.
An edge with weight xi is traversed with that rate. A priori, the xi ’s must be positive
real numbers for this to make sense according to the standard techniques of Markov
chains. However, the ideas work in much greater generality and one can think of
this as an “analytic continuation.”

A discrete-time Markov chain is defined by the transition matrix M , whose
entries are indexed by elements of the state space. In our case, they are labeled
by elements of L .P /. We take the convention that the .� 0; �/ entry gives the
probability of going from � ! � 0. The special case of the diagonal entry at .�; �/
gives the probability of a loop at the � . This ensures that column sums of M are
one and consequently, one is an eigenvalue with row (left-) eigenvector being the all-
ones vector. A Markov chain is said to be irreducible if the associated digraph is
strongly connected. In addition, it is said to be aperiodic if the greatest common
divisor of the lengths of all possible loops from any state to itself is one. For
irreducible aperiodic chains, the Perron-Frobenius theorem guarantees that there is
a unique stationary distribution. This is given by the entries of the column (right-)
eigenvector of M with eigenvalue 1. Equivalently, the stationary distribution w.�/
is the solution of the master equation, given by

X

� 02L .P /

M�;� 0 w.� 0/ D
X

� 02L .P /

M� 0;� w.�/: (4)

Edges which are loops contribute to both sides equally and thus cancel out. For more
on the theory of finite state Markov chains, see [21].

We set up a running example that will be used for each case.

Example 2. Define P by its covering relations f.1; 3/; .1; 4/; .2; 3/g, so that its
Hasse diagram is the first diagram in the list below:

� �

1 2

� �

4 3

�
��

� �

1 2

� �

3 4

�
��

� �

1 3

� �

2 4

�
��

� �

2 1

� �

4 3

�
��

� �

2 1

� �

3 4

�
��

The remaining graphs correspond to the linear extensions

L .P / D f1234; 1243; 1423; 2134; 2143g:
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3.1 Uniform Promotion Graph

The vertices of the uniform promotion graph are labeled by elements of L .P /

and there is an edge between � and � 0 if and only if � 0 D �@j for some j 2 Œn�. In
this case, the edge is given the symbolic weight xj .

Example 3. The uniform promotion graph for the poset in Example 2 is illustrated
in Fig. 3. The transition matrix, with the lexicographically ordered basis, is given by

0

B
B
B
B
B
@

x4 x3 x1 C x2 0 0

x2 C x3 x4 0 x1 0

0 x2 x3 C x4 0 x1
0 x1 0 x4 x2 C x3
x1 0 0 x2 C x3 x4

1

C
C
C
C
C
A

:

Note that the row sums are one although the matrix is not symmetric, so that the
stationary state of this Markov chain is uniform. We state this for general finite
posets in Theorem 1.

The variable x4 occurs only on the diagonal in the above transition matrix. This
is because the action of @4 (or in general @n) maps every linear extension to itself
resulting in a loop.

1234

1243 2134

2143

1423x3

x1

x2

x1

x2

x3x2

x1x1

x2

Fig. 3 Uniform promotion graph for Example 2. Every vertex has four outgoing edges labeled x1
to x4 and self-loops are not drawn
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3.2 Promotion Graph

The promotion graph is defined in the same fashion as the uniform promotion
graph with the exception that the edge between � and � 0 when � 0 D �@j is given
the weight x�j .

Example 4. The promotion graph for the poset of Example 2 is illustrated in Fig. 4.
Although it might appear that there are many more edges here than in Fig. 3, this is
not the case. The transition matrix this time is given by

0

B
B
B
B
B
@

x4 x4 x1 C x4 0 0

x2 C x3 x3 0 x2 0

0 x2 x2 C x3 0 x2
0 x1 0 x4 x1 C x4
x1 0 0 x1 C x3 x3

1

C
C
C
C
C
A

:

Notice that row sums are no longer one. The stationary distribution, as a vector
written in row notation is

�

1;
x1 C x2 C x3
x1 C x2 C x4 ;

.x1 C x2/.x1 C x2 C x3/

.x1 C x2/.x1 C x2 C x4/ ;
x1

x2
;
x1.x1 C x2 C x3/
x2.x1 C x2 C x4/

�T

:

Again, we will give a general such result in Theorem 2.

1234

1243 2134

2143

1423x4x2x3

x1

x1

x2

x2

x3 x4x1

x2x1

x4

Fig. 4 Promotion graph for Example 2. Every vertex has four outgoing edges labeled x1 to x4 and
self-loops are not drawn
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3.3 Irreducibility and Stationary States

In this section we summarize some properties of the promotion Markov chains of
Sects. 3.1 and 3.2 and state their stationary distributions. Proofs of these statements
can be found in [2].

Proposition 1. Consider the digraph G whose vertices are labeled by elements of
L and whose edges are given as follows: for �; � 0 2 L , there is an edge between �
and � 0 inG if and only if � 0 D �@j for some j 2 Œn�. ThenG is strongly connected.

Corollary 1. Assuming that the edge weights are strictly positive, the two Markov
chains of Sects. 3.1 and 3.2 are irreducible and ergodic. Hence their stationary
states are unique.

Next we state properties of the stationary state of the two discrete time Markov
chains, assuming that all xi ’s are strictly positive.

Theorem 1. The discrete time Markov chain according to the uniform promotion
graph has the uniform stationary distribution, that is, each linear extension is
equally likely to occur.

We now turn to the promotion graphs. In this case we find nice product formulas
for the stationary weights.

Theorem 2. The stationary state weight w.�/ of the linear extension � 2 L .P /

for the discrete time Markov chain for the promotion graph is given by

w.�/ D
nY

iD1

x1 C � � � C xi
x�1 C � � � C x�i

; (5)

assuming w.e/ D 1.

Remark 1. The entries of w do not, in general, sum to one. Therefore this is not a
true probability distribution, but this is easily remedied by a multiplicative constant
ZP depending only on the poset P .

When P is the n-antichain, then L D Sn. In this case, the probability
distribution of Theorem 2 has been studied in the past by Hendricks [17, 18] and
is known as the Tsetlin library [33], which we now describe. Suppose that a library
consists of n books b1; : : : ; bn on a single shelf. Assume that only one book is picked
at a time and is returned before the next book is picked up. The book bi is picked
with probability xi and placed at the end of the shelf.

We now explain why promotion on the n-antichain is the Tsetlin library. A given
ordering of the books can be identified with a permutation � . The action of @k on
� gives ��k � � � �n�1 by (3), where now all the �i ’s satisfy the braid relation since
none of the �j ’s are comparable. Thus the k-th element in � is moved all the way to
the end. The probability with which this happens is x�k , which makes this process
identical to the action of the Tsetlin library.
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The stationary distribution of the Tsetlin library is a special case of Theorem 2. In
this case,ZP of Remark 1 also has a nice product formula, leading to the probability
distribution,

w.�/ D
nY

iD1

x�i
x�1 C � � � C x�i

: (6)

Letac [20] considered generalizations of the Tsetlin library to rooted trees (meaning
that each element in P besides the root has precisely one successor). Our results
hold for any finite poset P .

4 Partition Functions and Eigenvalues for Rooted Forests

For a certain class of posets, we are able to give an explicit formula for the
probability distribution for the promotion graph. Note that this involves computing
the partition function ZP (see Remark 1). We can also specify all eigenvalues and
their multiplicities of the transition matrix explicitly. Proofs of these statements can
be found in [2].

Before we can state the main theorems of this section, we need to make a couple
of definitions. A rooted tree is a connected poset, where each node has at most one
successor. Note that a rooted tree has a unique largest element. A rooted forest is a
union of rooted trees. A lower set (resp. upper set) S in a poset is a subset of the
nodes such that if x 2 S and y � x (resp. y � x), then also y 2 S . We first give
the formula for the partition function.

Theorem 3. Let P be a rooted forest of size n and let x�i D P
j�i xj . The

partition function for the promotion graph is given by

ZP D
nY

iD1

x�i
x1 C � � � C xi : (7)

Let L be a finite poset with smallest element O0 and largest element O1. Follow-
ing [8, Appendix C], one may associate to each element x 2 L a derangement
number dx defined as

dx D
X

y�x
�.x; y/f .Œy; O1�/ ; (8)

where �.x; y/ is the Möbius function for the interval Œx; y� WD fz 2 L j x �
z � yg [27, Section 3.7] and f .Œy; O1�/ is the number of maximal chains in the
interval Œy; O1�.
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A permutation is a derangement if it does not have any fixed points. A linear
extension � is called a poset derangement if it is a derangement when considered
as a permutation. Let dP be the number of poset derangements of the poset P .

A lattice L is a poset in which any two elements have a unique supremum (also
called join) and a unique infimum (also called meet). For x; y 2 L the join is
denoted by x _ y, whereas the meet is x ^ y. For an upper semi-lattice we only
require the existence of a unique supremum of any two elements.

Theorem 4. Let P be a rooted forest of size n and M the transition matrix of the
promotion graph of Sect. 3.2. Then

det.M � 1/ D
Y

S�Œn�
S upper set in P

. � xS/dS ;

where xS D P
i2S xi and dS is the derangement number in the lattice L (by

inclusion) of upper sets in P . In other words, for each subset S � Œn�, which is
an upper set in P , there is an eigenvalue xS with multiplicity dS .

The proof of Theorem 4 follows from the fact that the monoid corresponding to
the transition matrixM is R-trivial. When P is a union of chains, which is a special
case of rooted forests, we can express the eigenvalue multiplicities directly in terms
of the number of poset derangements.

Theorem 5. Let P D Œn1�C Œn2�C � � � C Œnk� be a union of chains of size n whose
elements are labeled consecutively within chains. Then

det.M � 1/ D
Y

S�Œn�
S upper set in P

. � xS/dPnS ;

where d; D 1.

Note that the antichain is a special case of a rooted forest and in particular a union
of chains. In this case the Markov chain is the Tsetlin library and all subsets of Œn� are
upper (and lower) sets. Hence Theorem 4 specializes to the results of Donnelly [12],
Kapoor and Reingold [19], and Phatarford [23] for the Tsetlin library.

The case of unions of chains, which are consecutively labeled, can be interpreted
as looking at a parabolic subgroup of Sn. If there are k chains of lengths ni for
1 � i � k, then the parabolic subgroup is Sn1 �� � ��Snk . In the realm of the Tsetlin
library, there are ni books of the same color. The Markov chain consists of taking a
book at random and placing it at the end of the stack.
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5 R-Trivial Monoids

In this section we briefly outline the proof of Theorem 4. More details can be found
in [2].

A finite monoid M is a finite set with an associative multiplication and an
identity element. Green [15] defined several preorders on M . In particular for
x; y 2M the R- and L -order is defined as

x 	R y if y D xu for some u 2M ,

x 	L y if y D ux for some u 2M .
(9)

This ordering gives rise to equivalence classes (R-classes or L -classes)

x R y if and only if xM D yM ,

x L y if and only if Mx DMy.

The monoid M is said to be R-trivial (resp. L -trivial) if all R-classes (resp.
L -classes) have cardinality one.

Now let P be a rooted forest of size n and O@i for 1 � i � n the operators on
L .P / defined by the promotion graph of Sect. 3.2. That is, for �; � 0 2 L .P /,
the operator O@i maps � to � 0 if � 0 D �@��1

i
. We are interested in the monoid M

O@

generated by fO@i j 1 � i � ng. The next lemma shows that the action of the
generators O@i for rooted forests is very similar to the action of the operators of the
Tsetlin library by moving the letter i to the end; the difference in this case is that
letters above i need to be reordered according to the poset.

Lemma 1. Let P and O@i be as above, and � 2 L .P /. Then � O@i is the linear
extension in L .P / obtained from � by moving the letter i to position n and
reordering all letters j � i .
Example 5. Let P be the union of a chain of length 3 and a chain of length 2,
where the first chain is labeled by the elements f1; 2; 3g and the second chain by
f4; 5g. Then 41235 O@1 D 41253, which is obtained by moving the letter 1 to the
end of the word and then reordering the letters f1; 2; 3g, so that the result is again a
linear extension of P .

Let M be the transition matrix of the promotion graph of Sect. 3.2. Define M to
be the monoid generated by fGi j 1 � i � ng, where Gi is the matrix M evaluated
at xi D 1 and all other xj D 0. We are now ready to state the main result of this
section.

Theorem 6. M is R-trivial.
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[0 0 0]
[1 1 1]
[0 0 0]

[0 0 0]
[1 0 0]
[0 1 1]

[1 0 0]
[0 1 0]
[0 0 1]

[1 1 1]
[0 0 0]
[0 0 0]

[0 0 0]
[1 1 0]
[0 0 1]

[0 0 0]
[0 0 0]
[1 1 1]

3 2 12

3 2 1

2 1

2

1

3

3

3 2 1

3

1

Fig. 5 Monoid M in right order for the poset of Example 6. With the conventions in (9), the
identity is the biggest element in R-order

Remark 2. Considering the matrix monoid M is equivalent to considering the
abstract monoid M

O@ generated by fO@i j 1 � i � ng. Since the operators O@i act

on the right on linear extensions, the monoid M
O@ is L -trivial instead of R-trivial.

The proof of Theorem 6 exploits Lemma 1 by proving that there is an order on

idempotents using right factors. For x 2M
O@, let rfactor.x/ be the maximal common

right factor of all elements in the image of x, that is, all elements � 2 im.x/ can be
written as � D �1 � � ��m rfactor.x/ and there is no bigger right factor for which this
is true. Let us also define the set of entries in the right factor Rfactor.x/ D fi j i 2
rfactor.x/g. Note that since all elements in the image set of x are linear extensions
of P , Rfactor.x/ is an upper set of P . Theorem 6 is then established by showing that
for idempotents x, the set Rfactor.x/ is the same as the left stabilizer fi j O@ix D xg
which imposes a partial order.

Example 6. Let P be the poset on three elements f1; 2; 3g, where 2 covers 1 and
there are no further relations. The linear extensions of P are f123; 132; 312g. The
monoid M with R-order, where an edge labeled i means right multiplication by
Gi , is depicted in Fig. 5. From the picture it is clear that the elements in the monoid
are partially ordered.
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This confirms Theorem 6 that the monoid is R-trivial. The proof of Theorem 4 now
follows from [30, Theorems 6.3 and 6.4] and some further considerations regarding
the lattice L. For more details see [2, Section 6].

6 Mixing Times

For random walks on hyperplane arrangements, Brown and Diaconis [10] (see
also [1]) give explicit bounds for the rates of convergence to stationarity. These
bounds still hold for Markov chains related to left-regular bands [8]. Here we present
analogous results for the Markov chains corresponding to the R-trivial monoids of
Sect. 4. The methods are very similar to the ones we used for Markov chains related
to nonabelian sandpile models [3], which also turn out to yield R-trivial monoids.

The rate of convergence is the total variation distance from stationarity after k
steps, that is,

jjPk � wjj D 1

2

X

�2L .P /

jPk.t/ � w.�/j;

where P
k is the distribution after k steps and w is the stationary distribution.

Theorem 7. Let P be a rooted forest with n WD jP j and px WD minfxi j 1 � i

� ng. Then, as soon as k 	 .n2�1/=px , the distance to stationarity of the promotion
Markov chain satisfies

jjPk � wjj � exp

�

� .kpx � .n
2 � 1//2

2kpx

�

:

The mixing time [21] is the number of steps k until jjPk � wjj � e�c (where
different authors use different conventions for the value of c). Using Theorem 7 we
require

.kpx � .n2 � 1//2 	 2kpxc ;

which shows that the mixing time is at most 2.n
2Cc�1/
px

. If the probability distribution
fxi j 1 � i � ng is uniform, then px is of order 1=n and the mixing time is of order
at most n3.

The proof of Theorem 7 follows the same outline as the proof in [3, Section 5.3].
We need to define a statistic u.x/ for x 2M such that u.x/ is minimal if and only
if x is the constant map and furthermore

1. u decreases along R-order: u.xx0/ � u.x/ for any x; x0 2M .
2. Existence of generator with strict decrease: There exists a generator Gi such

that u.xGi / < u.x/.
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Unlike in [3], we take u.x/ 2 Z
2�0 with lexicographic ordering on Z

2�0, that is
.x; y/ < .x0; y0/ if either x < x0, or x D x0 and y < y0. Set u.x/ WD
.n � jRfactor.x/j; j des.x/j/, where des.x/ D fi j xGi D xg. It is clear that
u.x/ D .0; n/ if and only if x is a constant map, which is the minimal value u
can achieve. The maximal value of u is achieved by the identity u.e/ D .n; 0/. The
two conditions follow from [2, Section 6]: either the right factor rfactor.x/ increases
by right multiplication by a generator Gi ; if not, then fig [ Rfactor.x/ must be an
upper set again and des.xGi / D des.x/ n fj j j covers i in P g.

Therefore, the probability that .n; 0/ 	 u.x/ > .0; n/ after k steps of the right
random walk on M is bounded above by the probability of having at most .n C
1/.n � 1/ D n2 � 1 successes in k Bernoulli trials with success probability px .
A successful step is one that decreases the statistic u. Using Chernoff’s inequality
for the cumulative distribution function of a binomial random variable as in [3] we
obtain Theorem 7.

7 Other Posets

So far [2], we have characterized posets where the Markov chains for the promotion
graph yield certain simple formulas for their eigenvalues and multiplicities. The
eigenvalues have explicit expressions for rooted forests and there is an explicit
combinatorial interpretation for the multiplicities as derangement numbers of
permutations for unions of chains by Theorem 5.

However, we have not classified all possible posets whose promotion graphs have
nice properties. For example, the eigenvalues (other than 1) of the transition matrix
of the promotion graph of the poset in Example 2 are given by

x3 C x4; x3; 0 and � x1;

even though the corresponding monoid is not R-trivial (in fact, it is not even
aperiodic). The egg-box picture of the monoid is given in Fig. 6. Notice that one
of the eigenvalues is negative.

On the other hand, not all posets have this property. In particular, the poset with
covering relations 1 < 2; 1 < 3 and 1 < 4 has six linear extensions, but the
characteristic polynomial of its transition matrix does not factorize at all. It would
be interesting to classify all posets with the property that all the eigenvalues of

� , � , � , , , � � , , � � � � � ,

Fig. 6 Egg-box picture for the monoid associated to the promotion Markov chain for the poset in
Example 2
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Table 1 All inequivalent posets of size 4 whose promotion transition matrices have simple
expressions for their eigenvalues

Poset Eigenvalues (other than 1)
2

1

3 4

0, 0, 0, x2, x3, x2 + x3, x4 − x1

1

2

3 4

−x1 − x2

4

1

3

2 0, x3, −x1, x3 + x4

1

2 3

4

x4 − x1

1 2

3 4

0, x3 + x4, −x1 − x2

the transition matrices of the promotion Markov chain are linear in the probability
distribution xi . In such cases, one would also like an explicit formula for the
multiplicity of these eigenvalues.

We list all posets of size 4, which are not down forests and which nonetheless
have simple linear expressions for their eigenvalues in Table 1 along with the
eigenvalues. For all such posets, there is at least one eigenvalue which contains a
negative term. The posets, which are not down forests and the eigenvalues of whose
promotion transition matrices have nonlinear expressions, are given in Table 2.
Comparing the two tables, it is not obvious how to characterize those posets where
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Table 2 All inequivalent posets of size 4 whose promotion transition matrices do not have simple
expressions for their eigenvalues

1

2 3 4

1

2 3

4

� , � � � ,
� �

� �
� �

Fig. 7 Egg-box picture for the monoid associated to the promotion Markov chain for the second
poset in Table 2

the eigenvalues are simple. It would be interesting to classify posets where all
eigenvalues are linear in the parameters and understand the eigenvalues and their
multiplicities completely. For comparison, the egg-box picture of the second poset
in Table 2 is presented in Fig. 7.

Using data from all posets which are not down forests of sizes up to 7, we have
the following necessary (but not sufficient) conjecture.

Conjecture 1. Let P be a poset of size n which is not a down forest and M
be its promotion transition matrix. If M has eigenvalues which are linear in the
parameters x1; : : : ; xn, then the following hold

1. The coefficients of the parameters in the eigenvalues are only one of˙1,
2. Each element of P has at most two successors,
3. The only parameters whose coefficients in the eigenvalues are�1 are those which

either have two successors or one of whose successors have two successors.

8 Subsets of Sn

We define a generalization of the action of promotion on an arbitrary nonempty
subset of Sn inspired by the ideas in [16,22,28]. Let A be such a subset and suppose
� D �1 � � ��n 2 A in one-line notation. Then we define the operator �i for i 2
f1; : : : ; ng as

��i D
(
�1 � � ��i�1�iC1�i � � ��n if �1 � � ��i�1�iC1�i � � ��n 2 A
� otherwise.

(10)
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In other words, �i acts non-trivially on a permutation inA if interchanging entries �i
and �iC1 yields another permutation in A, and otherwise acts as the identity. Then
the generalized promotion operator, also denoted @j , is an operator on A defined by

@j D �j �jC1 � � � �n�1: (11)

As in Sects. 3.1 and 3.2, we can define a promotion graph whose vertices are the
elements of the set A and where there is an edge between permutations � and � 0
if and only if � 0 D �@j . In the uniform promotion case, such an edge has weight
xj and in the promotion case, the edge has weight x�j . In both cases, we have
analogous Markov chains. We describe the stationary distribution of these chains
below.

Theorem 8. Assuming the promotion graph forA is strongly connected, the unique
stationary state weight w.�/ of the permutation � 2 A for the corresponding
discrete time Markov chain is

1. In the uniform promotion case

w.�/ D 1

jAj ; (12)

2. In the promotion case

w.�/ D
nY

iD1

x1 C � � � C xi
x�1 C � � � C x�i

: (13)

The proofs are essentially identical to the proofs of Theorems 1 and 2 given in
[2] and are skipped.

Remark 3. 1. The entries of w do not, in general, sum to one. Therefore this is
not a true probability distribution, but this is easily remedied by a multiplicative
constant ZA depending only on the subset A.

2. Even if the set A is such that the promotion graph is not strongly connected,
(12) and (13) hold. However, the formula need not be unique. The proofs of
Theorem 8 still go through because all we need to do is to verify that the master
equation (4) holds.

There is a natural way to build subsets A which cannot be the set of linear
extensions L .P / for any poset P , and whose promotion graphs are yet strongly
connected. The idea is to consider a union of sorting networks. A sorting network
from the identity permutation e to any permutation � is a shortest path from one
to the other by a series of nearest-neighbor transpositions. In other words, these are
maximal chains in right weak order starting at the identity. For example, one sorting
network to the permutation 24153 is

12345! 12435! 21435! 24135! 24153:
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Proposition 2. Let A � Sn be a union of sorting networks. Consider the digraph
GA whose vertices are labeled by the elements of A and whose edges are given as
follows: for �; � 0 2 A, there is an edge between � and � 0 in GA if and only if
� 0 D �@j for some j 2 Œn�. Then GA is strongly connected.

Proof. The operators @i are each invertible, which means that each vertex ofGA has
exactly one edge pointing in and one pointing out for each i . Therefore, it suffices
to show that there is a directed path from e to � for every � in A.

By definition of a sorting network, � can be written as e�ik : : : �i1 . Although the
action of each �ij depends crucially on the set A, they satisfy �2ij D 1. Using the
fact that �n�1 D @n�1 and (11), one can recursively express each �ij as a product of
@`’s analogous to the proof of Lemma 2.3 in [2].

As a consequence of Proposition 2, the unique stationary distribution of a subset
which is a union of sorting networks is given by (13). One is naturally led to ask
whether the eigenvalues of these transition matrices are also linear in the parameters.
This does not seem to be true in any general sense.
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Fomin-Greene Monoids and Pieri Operations

Carolina Benedetti and Nantel Bergeron

Abstract We explore monoids generated by operators on certain infinite partial
orders. Our starting point is the work of Fomin and Greene on monoids satisfying the
relations .ur C urC1/urC1ur D urC1ur .ur C urC1/ and urut D utur if jr � t j > 1:
Given such a monoid, the non-commutative functions in the variables u are shown to
commute. Symmetric functions in these operators often encode interesting structure
constants. Our aim is to introduce similar results for more general monoids not
satisfying the relations of Fomin and Greene. This paper is an extension of a talk
by the second author at the workshop on algebraic monoids, group embeddings and
algebraic combinatorics at The Fields Institute in 2012.

Keywords Monoids • Pieri operators • Partial orders • Symmetric functions •
Quasisymmetric functions • Structure constants • Combinatorial Hopf algebra

Subject Classifications: 05E05, 16S99, 20M25

1 Introduction

In their work on the plactic monoid, Lascoux and Schützenberger [22] con-
structed the Schur functions in terms of noncommutative variables satisfying only
Knuth relations. It was subsequently discovered that symmetric functions can be
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constructed using different monoid algebras, for example the nil-plactic monoid,
the nil-coxeter monoid or the Hn.0/ algebra. A uniform understanding of these
constructions can be found in the seminal work of Fomin and Greene [15].

One of the main advantages of the work of Fomin and Green is that it shows the
Schur positivity of certain generating functions defined on those monoid algebras.
This is a central problem in algebraic combinatorics and we still have several open
problems of this kind. The theory in [15] works very well for the problems it is set
to solve, but it also has its limitations.

Here we want to show that this quest of understanding symmetric functions
inside a monoid algebra is very alive and new results are still underway and needed.
In this presentation, very close to the approach of Fomin and Greene, we look at
monoids generated by operators acting on an infinite poset. We show that a certain
space of functions on the monoid algebra of operators is isomorphic to symmetric
functions (or a subspace of symmetric functions). These subspaces are obtained via
Pieri operators as defined in [10]. The posets we consider are very often produced
from a combinatorial Hopf algebra as defined in [1, 11]. Unlike the theory in [15],
we are not guaranteed to have Schur positivity. Even when the object in question is
Schur positive the rule of Fomin and Greene is not applicable. One has to develop
new techniques to deal with this. It has been done in some cases, but it is still open
in others.

We keep this paper as a talk, like a story. We introduce the results as they come
from the examples. In the first part, Sect. 2, we look at a classical example. Next,
in Sect. 3, we look at less known examples and constructions which are unrelated
to [15]. We then look at what can be done in the future in Sect. 4.

2 A Classical Example

2.1 Operators on the Young Lattice

We start by a classical construction of Schur functions inspired by [14]. A partition
of an integer n is a sequence of integers  D .1; 2; : : : ; `/ such that n D 1 C
2 C � � � C ` and 1 	 2 	 � � � 	 ` > 0. When  is a partition of n we denote
it by  ` n, the number of parts of  will be denoted by `./ D ` and its size by
jj D n. The diagram of a partition , denoted  as well, is the subset of Z�Z given
by  D ˚

.i; j / W 1 � j � `; 1 � i � j
�
. We draw this by putting a unit box with

coordinates .i; j / in the bottom left corner. For example the partition  D .4; 2; 1/

is depicted by

.
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The Young lattice Y consists of all partitions  ` n 	 0, ordered by inclusion of
diagrams. The empty partition is the unique partition for n D 0. An inclusion � � 
is a cover if and only if �[ f.i; j /g D  for a unique cell .i; j /. We will label such
a cover by an edge labeled by ci;j D j � i :

�
ci;j�! 

We can draw the lower part of this poset as

0

1

−1

2
−1

1
−2

3
−1

2
0

−2
1

−3

Consider the free Z-module ZY spanned by all partitions of n 	 0. We define
linear operators ur for each r 2 Z as follows

ur W ZY �! ZY ;

� 7�!
(

 if �
r�!  in Y

0 otherwise.

(1)

For example

u0
)

= and u1
)

= 0.
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We are interested in the monoid M huri generated by the operators ur for r 2 Z and
the zero operator 0. By the nature of these operators, it is not very hard to see that
they satisfy the following relations:

.1/ u2r D 0

.2/ ururC1ur D urC1ururC1 D 0

.3/ urut D utur if jr � t j > 1:
(2)

These relations can be understood graphically. The first relation states that once we
add a cell in a given diagonal, if we try to add a second cell in the same diagonal we
will not get a partition:

:

The second relation states that if we add two consecutive cells in a row (or column)
and if we try to add a third cell in the same diagonal as the first added cell we will
not get a partition:

.

The third relation states that we can add two cells independently in diagonals that
are far from each other:

.

Proposition 1. M huri is the monoid freely generated by the ur for r 2 Z and 0
modulo the relations (2).

This is a consequence of a more general theorem and it can be shown using
some very well known facts about the symmetric group and the combinatorics of
partitions. However to our knowledge this statement is not mentioned as such in
the literature. To see that the relations (2) generate all the relations of the monoid
M huri requires a deeper understanding of the relations. We will sketch a proof here.
Recall that the symmetric group is generated by simple reflections sr satisfying the
braid relations:

.1/ s2r D Id

.2/ srsrC1sr D srC1sr srC1

.3/ sr st D st sr if jr � t j > 1:
(3)

For a permutation w, the length `.w/ is the minimal number of generators sr
necessary to express w as a product of generators. If w D si1si2 � � � s`.w/, then we
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say that the word si1si2 � � � s`.w/ is a reduced word for w. There is a small abuse of
notation here: a reduced word is an element of the free monoid generated by the sr ’s.
Here, we are studying the equivalence classes of words modulo the relations (3).
It is a well known fact that any two reduced words for a given permutation w are
connected together using only (2) and (3) of the relations (3). Moreover, if a word
si1si2 � � � sk is not reduced, then at least one instance of the relation (1) of (3) will
be used to reduce it (see [16]). The set of equivalence classes of words that do not
have any occurrence of sr srC1sr are in bijection with 321-avoiding permutation(s).
These are permutations w with no i < j < k such that w.i/ > w.j / > w.k/
(see [29]).

Consider now the infinite group SZ of permutations of Z with only finitely many
non-fixed points. This is the group generated by the simple reflections sr for r 2 Z

subject to the relations in (3). For w 2 SZ we define the operator

uw D ui1ui2 � � � ui`.w/
where si1si2 � � � s`.w/ is any reduced word for w. Comparing the relations (3) with the
relations (2) we see that this is a well defined operator. Moreover, if w is not 321-
avoiding, then relation (2) of (2) gives uw D 0 and if si1si2 � � � sk is not a reduced
word, then ui1ui2 � � � uik D 0. In order to show that the relations (2) generate all the
relations of M huri it is enough to prove that

Lemma 1. (a) For each w 2 SZ 321-avoiding, we have uw ¤ 0,
(b) For w;w0 2 SZ 321-avoiding, we have that w ¤ w0 implies uw ¤ uw0 .

This will indeed show that the map from the free monoid generated by the ur ’s
modulo the relations (2) to M huri has no kernel and is surjective. These results are
known in some different form (see [12, 30]) and are not trivial. We will provide a
proof here in this context for completeness.

Let us start with the lattice Y and its labelled covers. It is possible to encode this
lattice and its covers with a subset of the 321-avoiding permutation(s) in SZ. Given a
partition , add the two positive x-y axis. We put the numbers : : : ;�3;�2;�1; 0 for
every vertical step from infinity on the y-axis following the border of the partition.
We put the numbers 1; 2; 3; : : : one on each horizontal step from left to right. The
example below describes this procedure better for  D .3; 1/,

...

. . .

−3

1−2

−1 2 3

40 5
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When we read the entries on the y-axis, then the outer boundary of  followed by
the x-axis, we obtain a 321-avoiding permutation v./ 2 SZ (the entries on the axis
are fixed points). In the example above we get

v./ D .� � � ;�3;�2; 1;�1; 2; 3; 0; 4; 5; � � � /:

If we have a cover �
r�! , then the entry v.�/.r/ � 0 < v.�/.r C 1/. Adding a

box on the diagonal of content r has the effect of interchanging these two entries in
v.�/. We have shown the following:

Lemma 2.

�
r�!  H) v./ D v.�/sr and `.v.// D `.v.�//C 1:

This lemma allows us to show Lemma 1 (b) if we know that uw ¤ 0. Indeed, if
uw.�/ D , then the above lemma gives us that v./ D v.�/w. Hence if w ¤ w0,
then v.�/w ¤ v.�/w0 and uw ¤ uw0 .

Now, in order to prove Lemma 1 (a) we need to construct a partition � such that
uw.�/ D  ¤ 0 for each 321-avoiding w 2 SZ. When � � , we say that the
diagram =� obtained by removing the cells of � from  is a skew diagram. For
w 2 SZ that is 321-avoiding, we construct recursively on the length `.w/ a skew
diagram =� such that uw.�/ D . Moreover, if we read the content of the cells of
=�, row by row, from left to right, starting at the bottom, then we get a sequence
of integers .j1; j2; : : : ; jk/ such that sj1sj2 � � � sjk is a reduced word for w. Finally,
if .i; j / 2 � and .i C 1; j / 62 � and .i; j C 1/ 62 �, then either .i C 1; j / 2  or
.i; j C 1/ 2  (see Example 1 below).

If `.w/ D 0, then the result is immediate as =� D ;=; does the trick.
We assume that for all 321-avoiding permutations such that `.w/ < ` we can
construct =� as above. Let w D si1si2 � � � si` be a reduced expression for a 321-
avoiding permutation of length `.w/ D `. By induction hypothesis we assume
we have constructed =� for w0 D si1si2 � � � si`�1 . We can moreover assume that
.i1; i2; : : : ; i`�1/ is the sequence of contents we read from =�. We consider a cell
on the diagonal of content d D i` sliding from infinity downward and stop at
.i; j / D .i; i C d/ the first contact of either �, =� or one of the x-y-axes. We
claim that

if .i � 1; j � 1/ 2 =�, then both .i � 1; j / 2 =� and .i; j � 1/ 2 =�.

In the sequence .i1; i2; : : : ; i`�1/, let k be such that .ik; ikC1; : : : ; i`/ are the contents
of the cells in rows i C 1 and up in =�. Since no cell of =� is in column j and
up in row i and up, we have that ik0 < j � i � 1 D d � 1 for all k � k0 � ` � 1.
This means that sik0

and sd commute for all k � k0 � ` � 1. We have that

si1si2 � � � si` D si1si2 � � � sd sik � � � si`�1 : (4)
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Now suppose .i; j � 1/ 62 =�. This means that sd commutes with all sc where c
is the content of cells in row i of =� and all cells of content e in row i � 1 and
column j 0 > j C 1. We depict this as follows

c

d e

where the dark cell corresponds to the added cell in position .i; j / of content d .
Since the cell .i; j �1/ 62 =� all cells in row i have content c < d �1. The cells in
row i�1 and column j 0 > j have content e > dC1. If .i; j�1/ 62 =�, then we get
sd sd in the reduced expression of w, a contradiction. If in addition .i �1; j / 2 =�,
then we get sd sdC1sd which contradicts the fact that w is 321-avoiding. Hence we
must have that .i; j � 1/ 2 =�. Now if we assume that .i � 1; j / 62 =� and
.i; j � 1/ 2 =� the picture is now

c

d
.

The cell in position .i � 1; j � 1/ has content d . All cells in row i and column
j 0 < j � 1 have content c < d � 1. This time we can move the reflection sd
corresponding to the cell in position .i�1; j�1/ to pass the sc in row i up to sd�1sd .
Again we get a contradiction as sd sd�1sd cannot occur in the reduced word of a 321-
avoiding permutation w. This concludes the case when .i � 1; j � 1/ 2 =�. In this
case we simply add the cell .i; j / to  and not to �. The diagram . [ .i; j //=�
is a skew shape with all the desired properties and the right hand side of (4) is the
reduced word of w that we read from this diagram.

We now consider the case where .i � 1; j � 1/ 2 � or falls outside the first
quadrant. If both .i � 1; j / 2 =� and .i; j � 1/ 2 =�, then again the diagram
. [ .i; j //=� is a skew shape with all the desired properties and the right hand
side of (4) is the reduced word of w that we read from this diagram. By induction
hypothesis, it is not the case that both .i � 1; j / 62 =� and .i; j � 1/ 62 =�.
If .i �1; j / 2 =� and .i; j �1/ 62 =�, then we move all the boxes of =� in row
r 	 i up each diagonal by 1 unit. This increases the size of  and � proportionally
but keeps the relative shape of =� invariant along the diagonal lines. We then add
the box .i; j / to lambda and add all the boxes .i 0; j / for i 0 < i to both  and �.
Graphically we have

−→
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The case where .i � 1; j / 62 =� and .i; j � 1/ 2 =� is exactly transposed,
interchanging the roles of row and column. In any case we obtain the desired skew
shape 0=�0 such that uw.�

0/ D 0 ¤ 0.

Example 1. Let us illustrate the induction procedure involved in the proof of
Lemma 1 .a/. Start with w D s3s�3s4s2 and its skew shape as illustrated on the
left hand side of the figure below. The induction step tells us that the operator uws0
is not zero since uws0 .�/ D  where � D .6; 4; 4; 3; 1/ and  D .6; 6; 5; 4; 2/:

-3

2

3 4
−→

-3

0

2

3 4

2.2 Pieri Operators on Young Lattice and Symmetric Functions

In the previous section, we obtained a very good understanding of the noncom-
mutative monoid M huri. We now introduce a commutative algebra BhHki that is
isomorphic to the (Hopf) algebra of symmetric functions Sym. The algebra BhHki
is generated by certain homogeneous series Hk in the elements of M huri. This is
using the Pieri operators theory as developed in [10] related to the multiplication of
symmetric functions (see [25]).

There are several combinatorial Hopf algebras of interest for our study. As it
turns out, Y is intimately related to Sym. The space of symmetric functions is well
known to have different bases indexed by partitions. We refer the reader to [25, 27]
for more details about our presentation of Sym. We use the standard notation for
the common bases of Sym: h for complete homogeneous; e for elementary; m

for monomial; and s for Schur functions. For simplicity, we let hi and ei denote
the corresponding generators indexed by the partition .i/.

There is a correspondence between the representation theory of all symmetric
groups and symmetric functions. The multiplication and comultiplication in Sym
corresponds to some induction and restriction of representations. In this identifica-
tion, Schur functions encode irreducible representations. In particular we must have
that the coefficients C�

;� in

ss� D
X

v

C�
;�s� (5)

are non-negative integers. They count the multiplicity of an irreducible in certain
induced representations. This shows the nonnegativity of the constants C�

;� but
does not give us a combinatorial formula for them. One is interested in a positive
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combinatorial rule to describe these numbers. This combinatorial rule is classically
known as the Littlewood-Richardson rule. A particular case of this rule is Pieri rule
that describes the multiplication by hk :

shk D
X

�= a k-row strip

s�

where a k-row strip is a diagram with k cells in distinct columns. In terms of the
lattice Y we have the following characterization of k-row strip.

Lemma 3. �= is a k-row strip if and only if there is a strictly increasing path of
length k in Y from  to �. Moreover, if such a path exists from  to �, then it is
unique.

Proof. If �= is a k-row strip, then we can add the cells of �= to  one by one from
left to right. Since the cells are in distinct columns, they are in distinct diagonals as
well. Adding them from left to right will give us the desired strictly increasing path
from  to �. Conversely, if we have a strictly increasing path from  to �, then
the cells of �= are in distinct diagonals. Assume two cells of �= are in the same
column as pictured bellow

A

B

The cell A has content strictly smaller than the content of the cell B . In the path
from  to � the cell A would be added before the cell B . But this is a contradiction
since when the cell A is added without cell B this would not be a partition. Hence,
�= is a k-row strip. ut

This allows us to reconstruct the multiplication by hk using operators on Y . Let

Hk D
X

i1<i2<���<ik
uik � � � ui2ui1 :

This is an infinite series of operators of degree k in M huri. In view of Lemma 1, no
term in the series Hk vanishes. If one fixes , there are only finitely many paths of
length k from  in Y . This means that Hk WZY ! ZY is a well defined operator.

Proposition 2.

Hk D
X

`.�/Dk
u� ;

where � runs over all permutations such that its disjoint cycle decomposition � D
C1C2 � � �Cs has only cycles of the form Ci D .aCb; : : : ; aC1; a/ for some a; b 2 Z

and b > 0.
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Proof. It suffices to show that

uik � � � ui2ui1 D u�

with i1 < i2 < : : : < ik if and only if � decomposes into disjoint cycles of the form
.aC b; : : : ; aC 1; a/. The disjoint cycles of � D sik � � � si2si1 for i1 < i2 < : : : < ik
correspond to the consecutive segments saCb � � � saC1sa D .aC b; : : : ; aC 1; a/.

Using Lemma 3

Hk./ D
X

�= a k-row strip

� ” shk D
X

�= a k-row strip

s� :

This implies that

HbHa./ D
X

�

d �;.a;b/� ” shahb D
X

�

d �;.a;b/s� :

In particular, for all  we have HbHa./ D HaHb./ since hahb D hbha. Again
the result below is derived from very classical results.

Theorem 1. The algebra BhHki spanned by fH1;H2;H3; : : :g is isomorphic to
Sym.

Proof. We have seen above that HbHa./ D HaHb./, but to see that the product
of seriesHbHa D HaHb requires a little bit more argument. As we multiplyHaHb

andHbHa, some terms will go to zero and others will survive. The terms that survive
in HaHb are of the form

uw D ui1ui2 � � � uiauj1uj2 � � � ujb
where w is 321-avoiding, i1 < i2 < � � � < ia and j1 < j2 < � � � < jb .
Showing that HaHb D HbHa requires the construction of a bijection between
the possible reduced expressions of w D si1 � � � sia sj1 � � � sjb and the ones of the
form w D sj 0

1
� � � sj 0

b
si 01 � � � si 0b where i 01 < i 02 < � � � < i 0a and j 0

1 < j 0
2 <

� � � < j 0
b . This is done in [29] and in [9] using jeu-de-taquin. We then have that˚

H� D H�1H�2 � � �H�1 W � partition
�

spans BhHki. To see that theH� are linearly
independent, it suffices to remark that

H�.;/ D �

hence they have distinct values on ;. ut
Remark 1. Theorem 1 follows easily from the more general Theorem 1.1 of [15].
The approach of Fomin and Greene has the advantage that one does not need to have
all the relations of the ur . It is enough to show that they satisfy the relations:



Fomin-Greene Monoids and Pieri Operations 315

.1/ urut D utur if jr � t j > 1;

.2/ .ur C urC1/urC1ur D urC1ur .ur C urC1/
(6)

It is clear that our operators ur satisfy the relations (6). In later sections we will give
examples where Fomin and Greene theory is not applicable.

2.3 NSym and QSym

For the theory of Pieri operators as developed in [10] we need to introduce
two graded dual Hopf algebras. First, the algebra of non-commutative symmetric
functions Nsym is a non-commutative analogue of Sym that arises by considering
an algebra with one non-commutative generator at each positive degree. We define
Nsym as the algebra with generators fh1;h2; : : : g and no relations. Each generator
hi is defined to be of degree i , giving Nsym the structure of a graded algebra. We
letNsymn denote the graded component ofNsym of degree n. A basis forNsymn

is given by the set of complete homogeneous functions fh˛ WD h˛1h˛2 � � � h˛mg˛�n
indexed by compositions ˛ of n.

We have the projection morphism �WNsym ! Sym defined by sending the
basis element h˛ to the complete homogeneous symmetric function

�.h˛/ WD h˛1h˛2 � � � h˛`.˛/
and extended linearly to all of Nsym. A second basis of NSym is given by the R˛ ,
usually called the ribbon basis. For this, given a composition ˛ D .˛1; � � � ; ˛m/ � n

we denote its length m by `.˛/. The ribbon basis R˛ are defined by

R˛ D
X

ˇ�˛
.�1/`.˛/�`.ˇ/hˇ; or equivalently h˛ D

X

ˇ�˛
Rˇ (7)

where ˛ � ˇ if ˛ is finer than ˇ.
The product expansion follows easily from the non-commutative product on the

generators

h˛hˇ D h˛1;:::˛`.˛/;ˇ1;:::ˇ`.ˇ/ :

Nsym has a coalgebra structure, which is defined on the generators by

�.hj / D
jX

iD0
hi ˝ hj�i :

This determines the action of the coproduct on the basis h˛ since the coproduct is
an algebra morphism with respect to the product.
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Second, the Hopf algebra of quasi-symmetric functions,Qsym is dual to Nsym
and contains Sym as a subalgebra. The graded component Qsymn is indexed by
compositions of n. This algebra is most readily realized within the ring of power
series of bounded degree QŒŒx1; x2; : : : ��. The monomial quasi-symmetric function
indexed by a composition ˛ is defined as

M˛ D
X

i1<i2<���<im
x
˛1
i1
x
˛2
i2
� � � x˛mim : (8)

The algebra of quasi-symmetric functions,Qsym, can then be defined as the algebra
with the monomial quasi-symmetric functions as a basis, whose multiplication is
inherited as a subalgebra of QŒŒx1; x2; : : : ��. We define the coproduct on this basis as:

�.M˛/ D
X

S
f1;2;:::;`.˛/g
M˛S ˝M˛Sc ;

where if S D fi1 < i2 < � � � < ijS jg, then ˛S D .˛i1 ; ˛i2 ; : : : ; ˛ijSj
/.

We view Sym as a subalgebra of Qsym. In fact, the usual monomial symmetric
functions m 2 Sym expand positively in the quasi-symmetric monomial func-
tions:

m D
X

sort.˛/D
M˛;

where sort.˛/ is the partition obtained by organizing the parts of ˛ from the largest
to the smallest.

The fundamental quasi-symmetric functions, denoted by F˛ form another basis
of Qsymn and are defined by their expansion in the monomial quasi-symmetric
basis:

F˛ D
X

ˇ�˛
Mˇ:

The algebras Qsym and Nsym form graded dual Hopf algebras. The monomial
basis ofQsym is dual in this context to the complete homogeneous basis ofNsym,
and the fundamental basis of Qsym is dual to the ribbon basis of Nsym. Nsym
and Qsym have a pairing h�; �i W Nsym �Qsym ! Q, defined under this duality
as either hh˛;Mˇi D ı˛;ˇ , or hR˛; Fˇi D ı˛;ˇ .

2.4 Skew Function KŒ�;��

Associated to any  � � in Y , we construct a quasisymmetric function KŒ;��

following the notion of Pieri operators as developed in [10]. Let h;�i D ı;�
define a scalar product on ZY . Using the operators Hk on ZY we can define
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KŒ;�� D
X

˛

hH˛./; �iM˛:

In view of the commutation relation HaHb D HbHa, the function KŒ;�� is not
only quasisymmetric but symmetric as well. Indeed since H˛ D Hsort.˛/ and since
m DPsort.˛/D M˛ , we have that

KŒ;�� D
X

�

hH�./; �im�

is symmetric. We are interested in knowing the coefficients ofKŒ;�� when expanded
in different bases. We remark that we have an action of NSym on ZY given by
h˛: D H˛./. In this case the action factors through the projection �WNSym !
Sym. As observed earlier, the basis h˛ ofNSym is dual to the basisM˛ ofQSym.
A straightforward computation shows that

KŒ;�� D
X

˛

hh˛:; �iM˛ D
X

˛

hx˛:; �iY˛;

for any dual bases x˛ and Y˛ of NSym and QSym respectively. We thus have that

Theorem 2.

KŒ;�� D
X

˛

hR˛:; �iF˛ D
X

�

C �
;�s�

where C�
;� is given in (5). Moreover for ˛ D .˛1; : : : ; ˛k/ a composition of n,

we have that hR˛:; �i counts the number of paths in Y from  to � with labels
i1; i2; : : : ; in such that ir > irC1 if and only if r 2 D.˛/ D f˛1; ˛1C˛2; : : : ; n�˛kg.
Proof. The first equality follows from duality between the R˛ and the F˛ . For the
second equality, from the definition of Hk we remark that for

KŒ;�� D
X

�

hH�./; �im�

the coefficient hH�./; �i D d�;� is the coefficient of s� in the product sh�.
In Sym, the bases h� and m� are dual and the basis s� is self dual. Hence the
coefficient of s� in KŒ;�� is the same as the coefficient of s� in ss�.

The fact that hR˛:; �i counts the paths as described follows from a simple
inclusion-exclusion argument and the fact that by definition hh˛:; �i counts the
paths in Y from  to � with labels i1; i2; : : : ; in such that ir > irC1 only if
r 2 D.˛/ D f˛1; ˛1 C ˛2; : : : ; n � ˛kg. ut
Remark 2. The functionKŒ;�� in Theorem 2 is the well known skew-Schur function
s�=. It is denoted F�= by Fomin and Greene in [15]. Theorem 1.2 of [15] shows
that the coefficients C�

;� are positive and count paths in Y satisfying a precise rule.



318 C. Benedetti and N. Bergeron

This is a very powerful method that works for any monoid of operators ur satisfying
the relations (6). Several classical examples are solved by this theory which gives a
method to understand the coefficients we are interested in. This includes the weak
order of the symmetric group and the Stanley symmetric function Fw=u originally
defined in [29]. There are many new situations where Fomin and Greene theory
cannot be applied and we will give some examples of this in the next sections.

3 Schubert vs Schur

We present an example of a monoid that does not satisfy Fomin and Greene’s
conditions, yet it is interesting and still yields some symmetry and positivity.
In this example, which is taken from the theory of Schubert polynomials (see
[7, 23, 24]), positivity results are highly non-trivial. We consider operators on
the infinite symmetric group defined from Monk’s rule. From these operators one
defines Pieri operators that mimic the multiplication of Schubert polynomials by
symmetric functions. Symmetry follows from the commutativity of multiplication
and positivity follows from geometry. A combinatorial proof of positivity is much
harder to obtain and was only recently achieved in [4] using the techniques of [2].

Let u 2 S1 WD S
n�0Sn be an infinite permutation where all but a finite

number of positive integers are fixed. Schubert polynomials Su are indexed by
such permutations [23, 24]. These polynomials form a homogeneous basis of the
polynomial ring ZŒx1; x2; : : :� in countably many variables. The coefficients cw

u;v in

SuSv D
X

w

cw
u;vSw; (9)

are known to be positive from geometry.

3.1 Operators on the r-Bruhat Order

We now define operators on the r-Bruhat order on S1. Let `.w/ be the length
of a permutation w 2 S1. We define the r-Bruhat order <r by its covers. Given
permutations u;w 2 S1, we say that u Ér w if `.u/C 1 D `.w/ and u�1w D .i; j /,
where .i; j / is a reflection with i � r < j .

For 0 < a < b, let uab denote the operator on ZS1 defined by

uab W ZS1 �! ZS1;

u 7�!
�
.a; b/u if u Ér .a; b/u;
0 otherwise.

(10)



Fomin-Greene Monoids and Pieri Operations 319

We have shown in [8] that these operators satisfy the following relations:

.1/ ubcucduac � ubduabubc; if a < b < c < d;

.2/ uacucdubc � ubcuabubd ; if a < b < c < d;

.3/ uabucd � ucduab; if b < c or a < c < d < b;

.4/ uacubd � ubduac � 0; if a � b < c � d;

.5/ ubcuabubc � uabubcuab � 0; if a < b < c:

(11)

The 0 in relations (4) and (5) mean(s) that no chain in any r-Bruhat order can contain
such a sequence of transpositions. On the other hand, relations (1), (2) and (3) are
complete and transitively connect any two chains in a given interval Œu;w�r . It is
interesting to notice that the relations are independent of r . This is a fact noticed
in [7]: a nonempty interval Œu;w�r in the r-Bruhat order is isomorphic to a nonempty
interval Œx; y�r 0 in an r 0-Bruhat order as long as wu�1 D yx�1. It is important to
remark that if one fixes r , there are in fact more relations than (11). We will clarify
this after Proposition 3. For the moment we assume that the operator uab acts on
the disjoint union of all r-Bruhat orders for r > 0. Let M huabi be the monoid
generated by the 0 operator and all operators uab for a < b. A consequence of [8]
is the following proposition.

Proposition 3. M huabi is the monoid freely generated by the uab for 0 < a < b 2
Z and 0 modulo the relations (11).

Remark 3. When we specify a chain uanbn � � � ua2b2ua1b1 in the interval Œu;w�r , it is
understood that this is the actual sequence .uanbn ; : : : ;ua2b2 ;ua1b1/ of operators we
are referring to. This is a slight abuse of notation but it simplifies notation and the
context will make it clear. ut

In fact we can say much more about the monoid M huabi. Given any � 2 S1 we
produce a chain in a nonempty interval Œu;w�r for some r as follows. Let up.�/ D
fa W ��1.a/ < ag. This is a finite set and we can set r D jup.�/j. To construct w,
we sort the elements in up.�/ D fi1 < i2 < � � � < irg and its complement upc.�/ D
Z>0 n up.�/ D fj1 < j2 < : : :g. Next, we put w D Œi1; i2; : : : ; ir ; j1; j2; : : :� 2 S1
and then we let u D ��1w. Notice that u;w and r constructed this way depend on �.
From [7,8], we have that Œu;w�r is non-empty and now we want to construct a chain
in Œu;w�r . This is done recursively as follows: let

a1 D u.i1/ where i1 D maxfi � r W u.i/ < w.i/g and

b1 D u.j1/ where j1 D minfj > r W u.j / > u.i1/ 	 w.j /g

then uanbn � � � ua2b2ua1b1 is a chain in Œu;w�r for any chain uanbn � � � ua2b2 in
Œ.a1; b1/u;w�r . Here we have that all the other possible chains in the interval Œu;w�r
are obtained from the chain uanbn � � � ua2b2ua1b1 by sequences of transformations
given in Eq. (11). This means that the operator u� D uanbn � � � ua2b2ua1b1 is well
defined, non zero for any r 0 	 r and if � ¤ �0 then u� ¤ u�0 . For a fix r ,
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u�.u/ D
�
�u if u <r �u;
0 otherwise.

Example 2. Consider � D Œ3; 6; 2; 5; 4; 1; : : :� where all other values are fixed. We
have that up.�/ D f3; 5; 6g and upc.�/ D f1; 2; 4; : : :g. In this case, r D 3,
w D Œ3; 5; 6; 1; 2; 4; : : :� and u D Œ1; 4; 2; 6; 3; 5; : : :�. The recursive procedure above
produces the chain u23u12u45u26 in Œu; v�3. We get all other chains by using the
relations (11):

u23u12u45u26; u23u12u26u45; u23u45u12u26; u45u23u12u26;
u45u13u36u23; u13u45u36u23; u13u36u45u23; u13u36u23u45:

(12)

The interval obtained in this case is

142635

152634 143625 146235

153624 146325 246135 156234

156324 346125 256134

356124

����
����u45 u23 u26

�
�
u12

u45
�

�
						

u36u45
�

�













u23
u26

�
� u23 u45

�
� u45 u13u36 �

� u12

����
����

u13 u45 u23

Since u <r �u in this case, we have u�.u/ D �u ¤ 0 for this r . Now for any r 0 	 r ,
we can build w0 D Œ3; 5; 6; 7; 8; : : : ; 7Cr 0�r; 1; 2; 4; : : :�, u0 D Œ1; 4; 2; 7; 8; : : : ; 7C
r 0 � r; 6; 3; 5; : : :� by adding fixed points of � D wu�1 before the position r 0. In this
way we construct a permutation u0 such that u0 <r 0 �u0 and u�.u0/ D �u0 ¤ 0 for
any r 0 	 r .

The above discussion shows the following corollary:

Corollary 1. The monoid M huabi is precisely

M huabi D
˚
u� W � 2 S1

� [ ˚0�:

Moreover, if we let Mrhuabi be the monoid generated by the operator uab acting on
r-Bruhat order for a fixed r , we have

Mrhuabi D
˚
u� W � 2 S1; jup.�/j � r

� [ ˚0�:

Here the multiplication in M huabi is given by u�u� D u�� if �u <r ��u for some
u and r , and is 0 otherwise.
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3.2 Pieri Operators on r-Bruhat Order

We now introduce some Pieri operators related to the operators uab . These Pieri
operators are defined in such a way that they mimic the multiplication of a Schubert
polynomial by the homogeneous symmetric polynomial hk.x1; : : : ; xr /.

A permutation v 2 S1 such that v.1/ < v.2/ < � � � < v.r/ and v.r C 1/ <
v.rC2/ < � � � is called r-grassmannian. Any partition  D 1 	 2 	 � � � 	 r 	 0
with at most r non-zero parts defines a unique r-grassmannian permutation

v.; r/ D Œr C 1; r�1 C 2; : : : ; 1 C r; v.r C 1/; : : :�;

where v.r C 1/ < v.r C 2/ < � � � are the positive integers not in fr C 1; r�1 C
2; : : : ; 1 C rg. As seen in [23, 24], for any such partition  we have that the Schur
polynomial S.x1; x2; : : : ; xr / is equal to the Schubert polynomial

Sv.;r/ D S.x1; x2; : : : ; xr /:

In particular, the homogeneous polynomial hk.x1; : : : ; xr / is the Schubert
polynomial Sv..k/;r/. The multiplication of an arbitrary Schubert polynomial by
hk.x1; : : : ; xr / is known as the Pieri formula for Schubert polynomials. It was
originally stated as a theorem by Lascoux and Schützenberger [23] with a very brief
outline of a proof. Sottile later proved this formula geometrically and clarified the
history for us [28]. Using the operators uab on the r-Bruhat order, this can be stated
as follows.

Suhk.x1; : : : ; xr / D SuSv..k/;r/ D
X

w

Sw; (13)

where the sum is over all w >r u such that uakbk � � � ua2b2ua1b1.u/ D w for some
b1 < b2 < � � � < bk . It is known (see [7, 8]) that in such interval Œu;w�r , there must
be a chain from u to w that is increasing in the sense that uakbk � � � ua2b2ua1b1.u/ D w
with b1 < b2 < � � � < bk . Such a chain, when it exists, is unique among all saturated
chains in Œu;w�r .

We now introduce series Hk similar to Sect. 2.2 that will commute with each
other and encode the Pieri formula for Schubert polynomials. Let

Hk D
X

b1<b2<���<bk
ai <bi

uakbk � � � ua2b2ua1b1 : (14)

Many of the terms in this sum are zero, the non-zero terms have a very special
form. In [23], we see that it is important to look at the disjoint decomposition
of � into disjoint cycles. In the next proposition we describe the u� appearing in
Hk and the structure of the disjoint cycles. For � 2 S1, let � D C1C2 � � �Cs
be the decomposition of � in disjoint non-trivial cycles. There are only finitely
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many non-fixed points, so only finitely many non-trivial cycles. Given a cycle
C D .c1; c2; : : : ; cm/, we say that C is increasing if cm < cm�1 < � � � < c1. Given
two disjoint increasing cycles C D .c1; c2; : : : ; cm/ and C 0 D .c0

1; c
0
2; : : : ; c

0
n/ we

say that they are totally disjoint if any of the following happens

1. Œcm; c1� \ Œc0
n; c

0
1� D ;, or

2. Œcm; c1� \ fc0
1; c

0
2; : : : ; c

0
ng D ;, or

3. Œc0
n; c

0
1� \ fc1; c2; : : : ; cmg D ;.

In case (1), the two cycles have support in disjoint intervals. In cases (2) and (3), If
the intervals intersect, their intersection must fall between two successive elements
in the support of the other cycles. For C D .c1; c2; : : : ; cm/ let jjC jj D m � 1.
For � D C1C2 � � �Cs a product of totally disjoint increasing cycles such that k DPs

iD1 jjCi jj, we say that � is k-increasing.

Proposition 4.

Hk D
X

�

u� ;

where � runs over k-increasing permutations.

Proof. We proceed by induction on k. The result is clear for k D 1. Assume the
result is true for any non-zero product u�0 D uak�1bk�1

� � � ua2b2ua1b1 such that b1 <
b2 < : : : < bk�1. We assume that u�0 D uC1uC2 � � � uCs where � D C1C2 � � �Cs are
totally disjoint increasing cycles. For C D .c1; c2; : : : ; cm/, an increasing cycle, we
have uC D uc2c1uc3c2 � � � ucmcm�1 . A careful analysis of the relation (11) shows that
for totally disjoint increasing cyclesC1C2 � � �Cs , the operators uCi and uCj commute
for i ¤ j . We will assume that ak�1 and bk�1 belong to the cycle C1.

We investigate what happens when we perform a non-zero product uakbku�0

where bk > bk�1. If ak > bk�1, then .bk; ak/ is a new increasing cycle totally
disjoint from any cycle of �0. If ak D bk�1, then ak; bk increases the cycle C1 of �0
and is still totally disjoint from the other cycles of �0.

If ak < bk�1, then from (11)–(4) we must have ak < ak�1 and the operators
uakbkuak�1bk�1

¤ 0 commute. Let C1 D .c1; c2; : : : ; cm/ and recall that we have
bk�1 D c1 and ak�1 D c2. We have uC1 D uc2c1uc3c2 � � � ucmcm�1 and bk > bk�1 D
c1 > ci for all i . Since ak < ak�1 D c2, then uakbkuc3c2 ¤ 0 implies ak < c3 and
uakbkuc3c2 commutes. Continuing this process, we find that uakbkuC1 D uC1uakbk ¤
0 and ak < cm < c1 < bk . This means C1 and .bk; ak/ are totally disjoint increasing
cycles. We have

uakbku�0 D uC1uakbkuC2 � � � uCs :

From the induction hypothesis, the result holds for uakbkuC2 � � � uCs and decomposes
into totally disjoint increasing cycles. Moreover C1 will be totally disjoint from the
cycles of .bkak/C2 � � �Cs .
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As in Corollary 1, the expression in Proposition 4 is valid as long as we consider
all possible r-Bruhat orders for r > 1. If we fix r , then most of the u� in Hk will
act as zero on the r-Bruhat order. For a fixed r , we see that Hk WZS1 ! ZS1 is a
well defined operator on the r-Bruhat order. From Corollary 1, for a fixed r ,

Hk D
X

� is k-increasing
jup.�/j�r

u� :

By definition of Hk and Eq. (13), we have

Hk.w/ D
X

wu�1 k-increasing

u ” Swhk.x1; : : : ; xr / D
X

wu�1 k-increasing

Su :

This implies that

HbHa.w/ DP� d
u
w;.a;b/u

” Swha.x1; : : : ; xr /hb.x1; : : : ; xr / DPu d
u
w;.a;b/Su :

(15)

In particular, for all w we have HbHa.w/ D HaHb.w/ since hahb D hbha. The
result below is not as well known as Theorem 1.

Theorem 3. The algebra BhHki spanned by fH1;H2;H3; : : :g as operators on the
r-Bruhat order for r > 0 is isomorphic to Sym.

Proof. As we multiplyHaHb andHbHa, some terms will go to zero and others will
survive. The terms that survive in HaHb are of the form

uw D u�u�

where � is a-increasing and � is b-increasing. Let dw
.a;b/ be the coefficient of uw in

HaHb . From Corollary 1, for any w 2 S1 we can find u and an r > 0 such that
uw.u/ D v ¤ 0. So dw

.a;b/ is the coefficient of v in HaHb.u/. From (15), for all w,
we have

dw
.a;b/ D Coeff of v in HaHb.u/ D Coeff of v in HbHa.u/ D dw

.b;a/:

Hence HaHb D HbHa.
The algebra BhHki is clearly spanned by H D H1 � � �H` where  runs over

all partitions. To show the isomorphism with Sym, we only need to show that the
H are linearly independent. Let r 	 `./. Using (15), we have that H.Id/ DP

� d
�

 v� where v� is the unique grassmannian permutation defined by v.v�; r/ D
� and the d� satisfy

h.x1; : : : ; xr / D
X

�

d
�

 s�.x1; : : : ; xr /:
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If we have a finite linear combination ˚ D P
 cH, then for r 	 maxf`./ W

c ¤ 0g we have that ˚.Id/ corresponds to the symmetric function
P

 ch. This
is zero if and only if all c D 0. ut

As in Sect. 2.4, let hv;wi D ıv;w define a scalar product on ZS1. For a fixed
r > 0 and u <r w, we define the quasisymmetric function

KŒu;w�r D
X

˛

hH˛.u/;wiM˛: (16)

As before, since HaHb D HbHa, the function KŒu;w�r is in fact a symmetric
function. As shown in [9, 10], we have the following theorem:

Theorem 4.

KŒu;w�r D
X

˛

hR˛.u/;wiF˛ D
X

�

cw
u;v.�;r/s� ;

where cw
u;v.�;r/ are defined in (9). Moreover for ˛ a composition of n we have that

hR˛.u/;wi counts the number of paths in the r-Bruhat order S1 from u to w of the
form uanbn � � � ua2b2ua1b1 where bi > biC1 if and only if i 2 D.˛/.
Example 3. Using the chains in (12) and Theorem 4 we can compute the quasisym-
metric function associated to this interval and we get

KŒ142635;356124�3 D F13 C F121 C F22 C F112 C F121 C F31 C F211 C F22
D S31 C S22 C S211:

Remark 4. The monoid generated by the operators uab does not satisfy relations that
resemble (6), hence we cannot use the work of Fomin and Greene to conclude that
KŒu;w�r is symmetric nor deduce a combinatorial rule for constructing the coefficient
cw

u;v.�;r/ in KŒu;w�r . In fact all known attempts to give such a rule so far have failed.
In the next section we outline how it is shown combinatorially in [1] that the
coefficients are positive (without giving an explicit rule in all cases) using techniques
developed by [2].

3.3 Combinatorial Proof of Positivity of cw
u;v.�;r/

Let Compn denote the set of compositions of n. Given a finite family of objects C
and a function ˛WC ! Compn we can define a quasisymmetric function as follows

KC D
X

x2C
F˛.x/ :
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The function KŒu;w�r of Theorem 4 is clearly of this form. In that case C is the set of
saturated chains uanbn � � � ua2b2ua1b1 in the interval Œu;w�r and ˛ D ˛.uanbn � � � ua2b2
ua1b1/ is the unique composition where bi > biC1 if and only if i 2 D.˛/.

Assaf [2] develops new combinatorial techniques to show that quasisymmetric
functions of the formKC are symmetric with a positive expansion in terms of Schur
functions. To this end one must construct partially commuting involutions 	i WC !
C for 1 < i < n satisfying a set of axioms. When C consists of words (or saturated
chains), the involutions 	i can be viewed as an analogue of the dual Knuth relations.
In [1] we have defined such involution 	i on the set of chains of Œu;w�r . Given a
chain x D uanbn � � � ua2b2ua1b1 , the involution 	i will only affect the three entries
uaiC1biC1

uai biuai�1bi�1 . We set 	i .x/ D x if and only if
ˇ
ˇD.˛.x//\ fi � 1; igˇˇ ¤ 1.

When
ˇ
ˇD.˛.x//\fi �1; igˇˇ D 1, the entries uaiC1biC1

uai biuai�1bi�1 of x can be one
of twelve cases. To define 	i , we match the twelves cases as follows:

(A) u�cu˛auˇb $ u˛au�cuˇb ,
uˇbu˛au�c $ uˇbu�cu˛a, if fa; ˛g \ fc; �g D ; and a < b < c,

(B) ubcuabubd $ uacucdubc ,
ubduabubc $ ubcucduac , if a < b < c < d ,

(C) uˇbu˛auac $ u˛auacuˇb ,
uacu˛auˇb $ uˇbuacu˛a, if f˛; a; cg \ fb; ˇg D ; and a < b < c.

This matching is completely determined by the relations in (11). We see them as
the analogue of the dual Knuth relations for this problem. Instead of using the
relation (11) one can investigate the free monoid spanned by the uab modulo the
dual Knuth relations above. Under certain axioms described in [1,2], the component
of the equivalent classes of these relations will be combinatorially symmetric and
Schur positive. To our knowledge this is the best we can do so far, and is the best
generalization of the work of Fomin and Greene.

4 k-Schur Functions

In this section we present a monoid of operators for which much less is known
but that is expected to behave as in Sect. 3. This monoid is related to the so-called
k-Schur functions [18, 21]. This time we will define operators on the Bruhat order
of the k-affine symmetric group. The operators we define will be related to the
multiplication of dual k-Schur functions. There are still many open questions in this
case, but we will present our program and we believe that it can be solved in the
same spirit as in Sect. 3. There is another order one may consider on the k-affine
symmetric group, namely the weak order. The operators corresponding to the weak
order are related to the multiplication of k-Schur functions, but we will discuss only
briefly the difficulties which arise in this situation.

The k-Schur functions were originally defined combinatorially in terms of
k-atoms, and conjecturally provide a positive decomposition of the Macdonald
polynomials [21]. These functions have several definitions and it is conjectural
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that they are equivalent (see [18]). In this paper we will adopt the definition given
by the k-Pieri rule and k-tableaux (see [18, 20]) since this gives us a relation with
the homology and cohomology of the affine grassmannians and we therefore get
positivity in their structure constants.

Different objects index k-Schur functions: 0-grassmannian in k-affine permuta-
tions, k C 1-cores, k-bounded partitions. Originally (as in [21]), k-Schur functions
were indexed by k-bounded partitions  D .1; 2; : : : ; `/ where 1 � k. These
partitions are in bijection with k C 1-cores (see [19]). By definition, k C 1-cores
are integer partitions � D .�1; �2; : : : ; �m/ with no hook of length k C 1. To close
the loop, in [13] it is shown that k C 1-cores are in bijection with 0�grassmannian
permutations in the k-affine symmetric group (see [6, 18]).

4.1 Affine Symmetric Group

The k-affine symmetric group W D QAk is generated by reflections si for i 2
f0; 1; : : : ; kg, subject to the relations:

s2i D 1I si siC1si D siC1si siC1I si sj D sj si if i � j ¤ ˙1;
where i � j and i C 1 are understood to be taken modulo k C 1. Let w 2 W and
denote its length by `.w/, given by the minimal number of generators needed to
write a reduced expression for w. We letW0 denote the parabolic subgroup obtained
fromW by removing the generator s0. This is naturally isomorphic to the symmetric
group SkC1. For more details on the affine symmetric group see [13].

Let u 2 W be an affine permutation. This permutation can be represented using
window notation. That is, u can be seen as a bijection from Z to Z, so that if ui is
the image of the integer i under u, then it can be seen as a sequence:

u D � � � ju�k � � � u�1 u0 ju1 u2 � � � ukC1j
„ ƒ‚ …

main window

ukC2 ukC3 � � � u2kC2j � � �

Moreover, u satisfies the property that uiCkC1 D ui CkC1 for all i , and the sum of
the entries in the main window u1 C u2 C � � � C ukC1 D

�
kC2
2

	
. Notice that in view

of the first property, u is completely determined by the entries in the main window.
In this notation, the generator u D si is the permutation such that uiCm.kC1/ D
iC1Cm.kC1/ and uiC1Cm.kC1/ D iCm.kC1/ for allm, and uj D j for all other
values. The multiplication uw of permutations u;w in W is the usual composition
given by .uw/i D uwi . In view of this, the parabolic subgroupW0 corresponds to the
u 2 W such that the numbers f1; 2; : : : ; k C 1g appear in the main window.

Now, let W 0 denote the set of minimal length coset representatives of W=W0.
In this paper we take right coset representatives, although left coset representatives
could be taken as well. The set of permutations in W 0 are the affine grassmannian
permutations of W , or 0-grassmannians for short.
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Definition 1. The affine 0-grassmannians W 0 are the permutations u 2 W such
that the numbers 1; 2; : : : ; k C 1 appear from left to right in the sequence u.

Example 4. Let k D 4 and

u D � � �jN3 N2 1 N5 N1 j2 3 6 N0 4j
„ ƒ‚ …
main window

7 8 11 5 9j � ��

where Ni stands for�i . By convention we say that 0 is negative. This permutation u is
0-grassmannian and it corresponds to the 5-core � D .4; 1; 1/. The correspondence
is easy to see from the window notation. We just need to read the sequence of entries
of u, drawing a vertical step down for each negative entry, and an horizontal step
right for each positive entry. The result is the diagram of �:

...

. . .

2̄ 1

5̄

1̄ 2 3 6

0̄ 4

4.2 k-Schur Functions and Weak Order

As previously mentioned, 0-grassmannian permutations index k-Schur functions,
which we denote by S.k/u for some u 2 W 0.

Given u 2 W , we say that u Éw usi is a cover for the weak order if `.usi / D
`.u/ C 1. The weak order on W is the transitive closure of these covers. We can
define operators

si W ZW 0 �! ZW 0;

u 7�!
�

usi if u Éw usi
0 otherwise

(17)

on the weak order of W restricted to W 0. The definition and multiplication of
k-Schur functions is based on the operators si so it is worthwhile to study the
monoid they generate. As we will see in Example 5 there are difficulties with the
behavior of this case which make it very difficult at this point to understand its
combinatorics. For this reason, we will quickly turn our attention to the dual k-Schur
after Example 5.
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The Pieri rule for k-Schur functions is described by certain chains in the weak
order of W restricted to W 0. This result is given in [17, 18, 20]. A saturated chain
w D sim � � � si2si1 .u/ in an interval Œu;w�w of the weak order restricted to W 0 gives
us a sequence of labels .i1; i2; : : : ; im/. We say that the sequence .i1; i2; : : : ; im/ is
cyclically increasing if i1; i2; : : : ; im lies clockwise on a clock with hours 0; 1; : : : ; k
and if the min

˚
j W 0 � j � kI j … fi1; i2; : : : ; img

�
lies between im and i1.

In particular we must have 1 � m � k. Now, to express the Pieri rule, we first
remark that for 1 � m � k, the homogeneous symmetric function hm corresponds
to the k-Schur function S.k/v.m/ where v.m/ is a 0-grassmannian whose main window

is given by j2 � � � m N0 mC 1 � � � k k C 2j. Then, the multiplication of a k-Schur
function S.k/u by a homogeneous symmetric function hm is given by

S.k/u hm WD
X

.i1;i2;:::;im/ cyclically increasing
sim ���si2 si1 .u/¤0

S
.k/

sim ���si2 si1 .u/
: (18)

Iterating Eq. (18) one can easily see that

h D
X

u

K;uS
.k/
u (19)

is a triangular relation [20]. One way to define k-Schur functions is to start with
Eq. (18) as a rule, and define them as follows.

Definition 2. The k-Schur functions are the unique symmetric functions S.k/u

obtained by inverting the matrix ŒK;u� obtained from (19) above.

It is clear that we can define a Pieri operator

Hm D
X

.i1;i2;:::;im/ cyclically increasing

sim � � � si2si1 ;

for 1 � m � k. Again we can show that HaHb D HbHa and define KŒu;w�w using
the original definition. The example below shows the main problems we have with
this function.

Example 5. Let k D 2 and u D jN0 2 4j. We consider the interval Œu;w�w in the
weak order restricted to W 0, where w D jN3 4 5j. This interval is a single chain
w D s0s2s1.u/. In this case, we remark that

hH1H1H1.u/;wi D hH1H2.u/;wi D hH2H1.u/;wi D 1
are the only nonzero entries in KŒu;w�w and we get

KŒu;w�w D M111 CM21 CM12

D F12 C F21 � F111
D S21 � S111:
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This small example shows some of the behavior of the (quasi)symmetric function
KŒu;w�w for the weak order of W . In general, it is neither F -positive nor Schur
positive. Although, these functions contain some information about the structure
constants, it is not enough to fully understand them combinatorially. In particular,
these functions lack some of the properties needed to use the theory developed
in [2]. The functions KŒu;w�w were first defined in [10, 26] but the combinatorial
expansion in terms of Schur functions is still open.

4.3 Dual k-Schur Functions

Recall that Sym D ZŒh1; h2; : : : � is the Hopf algebra of symmetric functions. The
space of k-Schur functions Sym.k/ can be seen as a subalgebra of Sym spanned by
ZŒh1; h2; : : : ; hk�. In fact, it is a Hopf subalgebra whose comultiplication defined in
the homogeneous basis is given by

�.hm/ D
mX

iD0
hi ˝ hm�i

and extended algebraically. The degree map is given by deg.hm/ D m. The space
Sym is a self dual Hopf algebra where the Schur functions S form a self dual basis
under the pairing hh;m�i D ı;�.

The map dual to the inclusion Sym.k/ ,! Sym, is a projection Sym !!
Sym.k/, where Sym.k/ D Sym�

.k/ is the graded dual of Sym.k/. It can be checked
that the kernel of this projection is the linear span of fm W 1 > kg, hence

Sym.k/ Š Sym
ıhm W 1 > ki :

The graded dual basis to S.k/u will be denoted here by S
.k/
u D S

.k/�
u which are also

known as the affine Stanley symmetric functions. The multiplication of the dual k-
Schur S.k/

u is described in terms of operator on the affine Bruhat order, as we will
see in the next section.

4.4 Affine Bruhat Order

For b�a � k, let ta;b be the transposition inW such that for allm 2 Z, it transposes
a Cm.k C 1/ and b Cm.k C 1/. The affine Bruhat order is given by its covering
relation. Namely, for u 2 W , we have u É uta;b is a cover in the affine Bruhat order
if `.uta;b/ D `.u/C 1.
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Proposition 5 (see [13]). For u 2 W and b � a � k, we have that u É uta;b is a
cover in the Bruhat order if and only if u.a/ < u.b/ and for all a < i < b we have
u.i/ < u.a/ or u.i/ > u.b/.

Notice that if a0 D aCm.kC1/ and b0 D bCm.kC1/ then ta0;b0 D ta;b , therefore,
many different choices of a and b give the same covering as long as they satisfy the
conditions of the proposition. The affine 0-Bruhat order arises as a suborder of the
Bruhat order. We define it by its covers. For u 2 W , we get a covering u É0 uta;b if
there exists a transposition ta;b satisfying Proposition 5 and also u.a/ � 0 < u.b/.
As previously noted, a transposition ta0;b0 satisfying the same conditions as ta;b gives
the same affine Bruhat covering relation as long as a0 � a, b0 � b modulo k C 1.
In view of this, we introduce operators on the affine 0-Bruhat order restricted toW 0.
To keep track of the distinct a; b such that u É0 uta;b is an affine 0-Bruhat covering
for a given u. For any b � a � k, let

tab W ZW 0 �! ZW 0;

u 7�!
�

uta;b if u É uta;b and u.a/ � 0 < u.b/
0 otherwise.

(20)

We write these operators as acting on the right: utab . Remark now that if utab ¤ 0,
then utab D uta0;b0 ¤ 0 for only finitely many values of m with a0 D aCm.k C 1/
and b0 D b Cm.k C 1/. To see this, it is enough to notice that there exists m such
that u.aCm.k C 1// 	 0 and m0 such that u.b Cm0.k C 1// < 0.

Example 6. In Fig. 1 below, we have the interval ŒjN6 8 3 N1 4 13j; j8 N6 N2 9 13 N1j� in the
affine 0-Bruhat graph: In this example we see that there are three operators from
u D jN6 8 3 N1 4 13j to w D j8 N6 3 N1 13 4j. We have utN5N4 D ut12 D ut78 D w labeled by
N4; 2; 8, respectively. All other operators evaluate to 0. For example ut11 10 D 0.

When restricted to 0-grassmannian permutations, the affine 0-Bruhat order
behaves well, as shown in the next lemma whose proof (for left coset) can be
consulted in [18, Prop. 2.6]. Therefore, our operators tab are well defined.

Lemma 4. If utab D w and u 2 W 0, then we have that w 2 W 0.

At this point, there are a few questions we would like to answer regarding the
monoid M htabi generated by the operators tab . The main questions are:

(I) Can we describe all the relations satisfied by the operators tab (as in
Proposition 3)?

(II) Is there a combinatorial object that characterizes all the elements of M htabi
(as in Corollary 1)?

(III) Can we define Pieri operators Hk related to the multiplication Suhm?
(IV) Can we find a good expression for Hk as in Proposition 4?
(V) Is the algebra spanned by the Hk isomorphic Sym.k/ (as in Theorem 1)?
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···8̄ 1|12 2 3̄ 7̄ 2̄ 7 |6̄ 8 3 1̄ 4 13|
main

0̄ 14···

|8 6̄ 3 1̄ 4 13| |6̄ 8 3 1̄ 13 4| |6̄ 8 2̄ 1̄ 9 13| |6̄ 8 3 4 1̄ 13|

|8 6̄ 3 1̄ 13 4| |6̄ 8 2̄ 1̄ 13 9| |6̄ 8 2̄ 9 1̄ 13| |8 6̄ 2̄ 1̄ 9 13| |8 6̄ 3 4 1̄ 13| |6̄ 8 3 4 13 1̄|

|8 6̄ 2̄ 1̄ 13 9| |6̄ 8 2̄ 9 13 1̄| |8 6̄ 2̄ 9 1̄ 13| |8 6̄ 3 4 13 1̄|

|8 6̄ 2̄ 9 13 1̄|

t5̄4̄;t12;t78 t7̄6̄ t1̄0̄ t1̄3 t45

Fig. 1 The interval ŒjN6 8 3 N1 4 13j; j8 N6 N2 9 13 N1j�

(VI) What is the analogue of Theorem 4?
(VII) Can we show combinatorially the positivity of the structure constants in the

product Suhm as done in Sect. 3.3?

We have some partial answers to question (I) that we will discuss next. Questions
(II) and (IV) seem very difficult at this point and are still open. Questions (III), (V)
and (VI) are done in the literature (see [5, 17]), although (V) is not stated as it is
here. We are in the process of solving question (VII); this involves analyzing 3, 4, 5,
and 6-tuples of the operators tab . The number of possibilities are much greater than
the situation in Sect. 3.3 and will be available in subsequent work.

4.5 Relations of the Operators tab

The purpose of this section is to understand some of the relations satisfied by the
tab operators restricted to W 0. Our main goal at this point is not to understand
all the defining relations, but to find enough that will allow us to answer question
(VII). Answering question (II) is a very worthwhile project for future work. Most
of the relations we present here were given and proven in [5]. The relations depend
on the following data: for tab we need to consider a; b; a; b where a and b are the
residue modulo kC1 of a and b respectively. Remark that a ¤ b since b�a < kC1.
Let u 2 W 0. Lemma 4 implies that, if non-zero, utab and utabtcd are both in W 0.
The different relations satisfied by the operators tab and tcd depend on the relation
among a; b; c; d . For this reason it is useful to visualize these operators as follows.
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badc ︸ ︷︷ ︸
main

u �

utab
�

utabtcd �

Above the permutation u, the operator tab is represented by drawing a bold line
connecting positions a; b and repeating this pattern to the left and to the right in
all positions congruent to a; b modulo k C 1. Next we apply tcd to the resulting
permutation, drawing a bold line connecting positions c; d and repeating that pattern
modulo k C 1. The importance of visualizing not only the bold line but the dotted
ones as well, relies on the fact that even if in the diagram, the line representing tab
does not intersect the line representing tcd , their “virtual” copies (or dotted copies)
might intersect and this will determine the commutation relation satisfied by these
operators. Therefore, it will be important to consider the pattern produced by these
two operators in the main window.

With these definitions in mind we present some of the relations satisfied by the t
operators restricted to W 0 (there are less relations if we consider all of W ).

(A) tabtcd � tcd tab if a; b; c; d are distinct.
(B1) tabtcd � tcd tab � 0 if (a � c < b � d ) or (b D c and d �a > kC1).
(B2) tabtcd � 0 if (a D c and b � d ) or (b D d and c � a).
(B3) tabtcd � 0 if (b D c or a D d ) and (d � c C b � a > k C 1).

There are more possible zeros than what we present in (B). If the numbers a; b; c; d
are not distinct, then we must have b D c or d D a. If b D c, then d � a � k C 1
in view of (B). Similarly if d D a then b � c � k C 1.

(C) tabtbd D tabtb�k�1;a if d � a D k C 1,

if d �a < kC1 then there is no relation between tabtbd and tbd tab . Now we look at
the cases tabtcd where a; b; c; d are distinct but some equalities exists between a; b
and c; d . By symmetry of the relation we will assume that b < d , which (excluding
(B)) implies that a < b < c < d .

(D) tabtcd D td�k�1;ctb�k�1;a if b D c, d D a and .b�a/C.d�c/ D kC1.
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All the relations above are local. This means that if tabtcd D tc0d 0 ta0b0 , then
ja0 � aj, jb0 � bj, jc0 � cj and jd 0 � d j are strictly less than k C 1. For example, in
(D) we have jb � k � 1� aj, ja � bj, jd � k � 1� cj and jc � d j which are strictly
less than k C 1.

Remark 5. The relations we care about in this paper and its sequel are all local.
There are some relations that are not local:

tabtcd D ta�k�1;b�k�1tcd D taCkC1;bCkC1tcd ;

if c < a < b < d . The full description of the relations of the operators t is rather
complicated. It would take too much space here and are not all understood.

We now consider some more relations of length three:

(E1) tbctcd tac � tbd tabtbc if a < b < c < d ,
(E2) tactcd tbc � tbctabtbd if a < b < c < d .

additionally we have

(F) tbctabtbc � tabtbctab � 0 if a < b < c and c � a < k C 1.

Remark 6. If we fix a permutation u we can derive more relations of length 2. Let
r D jb � aj C jd � cj:
(X1) utabtcd D utd;cCr tb�r;a if r < k C 1, d D a, u.c/ � 0 and u.d/ � 0,
(X2) utabtcd D utcd tb�r;b if r < k C 1, d D a and u.d/ > 0,
(X3) utabtcd D utd�r;d tab if r < k C 1, b D c and u.aC r/ � 0,
(X4) utabtcd D utd�r;ctb;aCr if r < kC1, b D c, u.b/ > 0 and u.aCr/ > 0,
(X5) utabtcd D utcd ta;bCc�d if b D d , b � a > d � c and u.d � b C a/ > 0,
(X6) utabtcd D utc;d�bCata;b if b D d , b � a < d � c and u.a/ � 0.

In the (X) relations, the conditions we impose on u are minimal to assure that both
sides of the equality are non-zero. These conditions are not given by the definition
of the operators tab . For example in (X1), the left hand side is non-zero regardless
of the value of u.d/ but to guarantee that the right hand side is non-zero, we must
have u.d/ � 0. This shows that as operators tabtcd ¤ td;cCr tb�r;a.

4.6 Multiplication of Dual k-Schur

For dual k-Schur functions S.k/
u , the analogue of the Pieri formula (18) is given by

S.k/
u hm WD

X

uta1b1 ���tambm¤0

b1<b2<���<bm

S
.k/
uta1b1 ���tambm ; (21)



334 C. Benedetti and N. Bergeron

where the sum is over all increasing paths b1 < b2 < � � � < bm starting at u [18].
Since the Pieri formula is encoded by increasing composition of operators in the
affine 0-Bruhat order restricted to W 0, we can define Pieri operators similar to
Eq. (14) using increasing composition of operators tab . We can then define a Pieri
operator

Hm D
X

b1<b2<���<bk
ai <bi

ta1b1ta2b2 � � � tambm: (22)

Many terms in this sum may be zero. At this point we do not have a good description
of the terms that survive or how to express the non-zero terms as in Proposition 4.
The definition of the operator Hm in this case allows us to see that

By definition of Hk and Eq. (21), we have

wHbHa DP� d
u
w;.a;b/u

” Swhahb DPu d
u
w;.a;b/Su :

(23)

In particular, for all w we have HbHa.w/ D HaHb.w/ since hahb D hbha.

Theorem 5. The algebra BhHki spanned by fH1;H2; : : : ;Hkg as operators on the
k-affine Bruhat order restricted to W 0 is isomorphic to Sym.k/.

Proof. As we multiplyHmHn andHnHm, some terms go to zero and others survive.
The terms that survive in HmHm are of the form

! D ta1b1ta2b2 � � � tambmtc1d1tc2c2 � � � tanbn :

where b1 < b2 < : : : < bk and d1 < d2 < : : : < dn. Let d!.a;b/ be the coefficient of

! in HmHn. Since ! ¤ 0, there is a u 2 W 0 such that u! D v ¤ 0. As before, for
all !, we have

d!.a;b/ D Coeff of v in HaHb.u/ D Coeff of v in HbHa.u/ D d!.b;a/:

Hence HaHb D HbHa.
The algebra BhHki is clearly spanned by H D H1 � � �H` where  runs over

all partitions. Again, we only need to show that the H’s are linearly independent.
Using the definition of the Hm, we have that IdH D P

� d
�

 v� where v� is the
unique 0-grassmannian permutation with shape � and the d� satisfy

h.x1; : : : ; xr / D
X

�

d
�

 s�.x1; : : : ; xr /:

As we have seen in the proof of Theorem 3 this implies the linear independence of
the H. ut
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As in Sect. 2.4, let hv;wi D ıv;w define a scalar product on ZW 0. For a u < w in
the 0-Bruhat order, we define the quasisymmetric function

KŒu;w� D
X

˛

huH˛;wiM˛: (24)

Again, sinceHaHb D HbHa, the functionKŒu;w� is in fact a symmetric function. As
shown in [5, 10]

Theorem 6.

KŒu;w� D
X

˛

huR˛;wiF˛ D
X

�

cw
u;�s� ;

where cw
u;� are defined by

S.k/
u s� D

X

w

cw
u;�S

.k/
w :

Moreover for ˛ a composition of n, we have that huR˛;wi count the number of
compositions ! D ta1b2ta2b2 � � � tambm such that u! D w and bi > biC1 if and only if
i 2 D.˛/.
Example 7. Considering the interval Œu;w� D ŒjN6 8 3 N1 4 13j; j8 N6 N2 9 13 N1j� from
Example 6. The total number of composition of operators is 240. In this case

KŒu;w� D 9F1111 C 30F112 C 51F121 C 30F13 C 30F211 C 51F22 C 30F31 C 9F4
is symmetric and the expansion in term of Schur functions is positive

KŒu;w� D 9S4 C 30S31 C 21S22 C 30S211 C 9S1111 :

4.7 Comments on the Combinatorial Proof
of the Positivity of cw

u;�

If one considers an interval Œu;w� of rank 3 and computesKŒu;w�, then by Theorem 24
the coefficient of F21 and F12 must be the same inKŒu;w�. This means that every time
we have a descent followed by an ascent in a chain, we must have another chain
with an ascent followed by a descent. This should be reflected in relations like (X)
and could depend on u. To achieve a result similar to [1] for KŒu;w�, one needs first
to build a full set of relations of length 3 that pairs every ascent-descent type to a
descent-ascent. This cannot be done independently from u. The purpose of this will
be to define Dual-Knuth operations on the maximal chains in intervals Œu;w� in order
to construct dual graphs as in [2].
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We give here a partial list of the relations of length 3 that would be the analogue
for dual k-Schur of (A)–(B)–(C) in Sect. 3.3. The complete full list of 3-relations
needed is too long for this survey. In future work, we will need to show that the
corresponding 	i defined by those relations satisfy the axioms of [2]. This is a long
analysis that will appear in subsequent work. This will show that the monoid defined
by the tab behaves like the monoid of Sect. 3, even if it does not satisfy the Fomin and
Greene’s hypothesis. This shows that these monoids are worthwhile to investigate.

We have already listed some of the relations satisfied by triplets of operators tab .
Relations (A),(E1),(E2),(F) resemble the relations listed in (11). However, as noted
before in the case of the operators tab , more relations can be derived making the
analysis of relations much more complex than the uab operators.

.1a/ tabtcd tec � tecta;b�jc�ejted ; if a < b < e < c < d and Na D Nd < Ne < Nb D Nc

.1b/ tabtcd tec � t Ndct Nbatec; if a < b < e < c < d and Na D Nd D Ne; Nb D Nc

.1c/ tabtcd tef � tef tabtcd ; if a < b < c < e < f < d and Na D Nd; Nb D Nc

.1d/ tabtbctdb � tdbtad tdc; if a < d < b < c and Na D Nc

.1e/ tabtbctdb � tabtb�m;c�mtdb; if a D d < b < c and Na D Nc; m D k C 1

In analogy with relations (X1)–(X6), let us list more relations that depend on the
permutation u we apply them to. Let r D jd � cj C jb � aj < k C 1

.2a/ utabtcd tef � utd;cCstb�s;atef ; if a < b < e < f � c < d , Na D Nd; u.c/ � 0;
u.d/ � 0

.2b/ utabtcd tef � utcd tb�r;btef ; if a < b < e < f � c < d , Na D Nd; u.d/ > 0

.3a/ utabtcd tef � utd�r;ctb;aCr tef ; if a < b < e < f � c < d , Nb D Nc, Ne 	 Nd;
u.aC r/ > u.b/ > 0

.3b/ utabtcd tef � utd�r;d tabtef ; if a < b < e < f � c < d , Nb D Nc, Ne 	 Nd;
u.aC r/ � 0

.4a/ utabtcd teb � utebtaetc�jb�ej;d ; if a < e < b < c < d , Nb D Nc; Ne > Na;
u.aC r/ > u.b/ > 0

.4b/ utebtaetc�jb�ej;d � utebtd�r;d tab; if a < e < b < c < d , Nb D Nc; Ne > Na;
u.aC r/ � 0

If the reader represents these relations as a system of bars, they can be interpreted
as exchanging an ascent-descent by a descent-ascent. As an example, putting b0 D
b � jc � ej in relation .1a/ we can represent it graphically as

a b

c d

e c
≡

a b ′
e c

e d

Next we list more ascent-descent relations equivalent to descent-ascent. This is
not an exhaustive list but it gives a good sense of the behaviour of these operators.
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.6a/ uteatabtcd � utebtc;d�ja�ejtea; if c < d < e < a < b, Nc < Ne; Na D Nd;
u.b � r/ � 0

.6b/ uteatabtcd � utebtc;cCr tab; if c < d < e < a < b, Nc � e; Na D Nd;
u.b � r/ > 0

.6c/ uteatabtcd � utebtd;cCr tb�r;a; if c < d < e < a < b, Nc > Ne; Na D Nd;
u.b � r/ � 0

.6d/ uteatabtcd � utebtd�r;ctb;aCr ; if c < d < e < a < b, Nc ¤ Ne � Nd; Nb D Nc;
u.c/ > 0

.6e/ uteatabtcd � utebtcd ta;aCr ; if c < d < e < a < b, Nc ¤ Ne � Nd; Nb D Nc;
u.c/ � 0

We encourage the reader to draw the corresponding diagrams of the given
relations together with their virtual copies in order to realize what these relations
look like and understand better the interaction of these triplets. A full understanding
of the relations satisfied by tuples of the operators tab will lead us to describe
connected components of these relations. This is work in progress that we aim to
use, for instance, to solve question (VII) as stated before.

Remark 7. In a recent paper, Assaf and Billey [3] have constructed involutions 	i
on the so called star-tableaux. Such involutions preserve the spin statistic. Star-
tableaux are equivalent to non-zero sequences of operators tab acting on the identity
0-grassmannian permutation Id . These transformations 	i are strongly related to
the relations we study satisfied by triplets tab . Showing that these triplets satisfy the
spin statistic as well will in fact give us a much stronger positive result. We expect
to include this as well in future work.
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Affine Permutations and an Affine
Catalan Monoid

Tom Denton

Abstract We describe results on pattern avoidance arising from the affine Catalan
monoid. The schema of affine codes as canonical decompositions in conjunction
with two-row moves is detailed, and then applied in studying the Catalan quotient
of the 0-Hecke monoid. We prove a conjecture of Hanusa and Jones concerning
periodicity in the number of fully-commutative affine permutations. We then
re-frame prior results on fully commutative elements using the affine codes.

Keywords Affine permutations • Rank enumeration • Pattern avoidance

Subject Classifications: 05A05, 05A16, 05A30

1 Introduction

The Hecke Algebra of a Weyl group is a deformation by a parameter q D q1
q2

which
for generic values yields an algebra with representation theory equivalent to that of
the group algebra of the original Weyl group. Our interest is ultimately in the affine
symmetric group, QSn, but we will describe the basic constructions of algebras and
monoids in full generality, and then specialize where necessary.

At q1 D 0, however, we obtain the 0-Hecke algebra, which can be interpreted as
a monoid algebra of the 0-Hecke monoid. If the original Weyl group is generated
by simple reflections si for i in the index set I , then the 0-Hecke monoid is
generated by �i for i 2 I . The commutation and braid relations between the �i
match the relations on the si , but we have �2i D �i instead of s2i D 1. Thus,
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the 0-Hecke monoid is generated by projections, instead of reflections. There is
a bijection between elements of the original group and elements of the monoid,
but the representation theory changes considerably. This representation theory was
initially studied by Norton for the 0-Hecke algebra of the symmetric group [24], and
expanded to arbitrary finite Weyl type by Carter [5]. Later, the 0-Hecke algebra was
shown to have characters determined by the pairing of noncommutative and quasi-
symmetric functions [17], and was explored as a special case of the representation
theory of J -trivial monoids [10].

At q1 D q2 D 0, one obtains the nilHecke algebra, which, like the 0-Hecke
algebra, can be considered as a monoid algebra. This NilHecke monoid is generated
by ai for i 2 I , again with the same commutation and braid relations as the
original group, but now with a2i D 0. The nilHecke algebra has proven useful
in studying reduced word combinatorics, since any non-reduced word in the ai
evaluates to 0 [1]. It has also proven important in the categorification of quantum
algebras [16, 26], and provides a very useful model for the study of k-Schur
functions [19–21].

In studying the product formula on the k-Schur functions, the present author
developed a new combinatorial model for the affine symmetric group [8], combining
aspects of the inversion vector or affine code and RC-graphs, originally developed to
study reduced word combinatorics [1]. The model provides an interpretation of the
inversion vector as a unique maximal decomposition of the affine permutation into
cyclically decreasing elements, originally introduced in [19]. This combinatorial
model is equally functional in the affine symmetric group, as well as its 0-Hecke
monoid and nilHecke monoid. This model was immediately used for calculating a
special case of the k-Littlewood-Richardson rule.

In the author’s dissertation, a certain quotient of the 0-Hecke algebra for the sym-
metric group was studied in relation to pattern avoidance. This led to an algebraic
interpretation of certain kinds of pattern avoidance via the fibers of the quotient
map. The quotient is known as the Catalan monoid, since it has Catalan-many
elements, and each fiber of the quotient contains a unique maximal-length element
avoiding the pattern Œ2; 3; 1�, and a unique minimal-length element avoiding the
pattern Œ3; 2; 1�. The author also extended this result to the affine setting, defining an
affine Catalan monoid, and generalizing the Œ3; 2; 1� avoidance result to that setting.
This provides a bijection between Œ2; 3; 1� and Œ3; 2; 1�-avoiding permutations. The
bijection is equivalent to the bijection of Simion and Schmidt [27], a fundamental
early result in pattern avoidance, but we place the bijection in a new algebraic
setting. Mazorchuk and Steinberg [23] identified a ‘double Catalan monoid’ with
a natural morphism from the 0-Hecke monoid. The fibers of this monoid each
contain a unique minimal-length Œ4; 3; 2; 1�-avoiding element, and possibly several
maximal-length Œ4; 2; 3; 1�-avoiding elements. These results are similar to results in
the author’s thesis [7], but Mazorchuk and Steinberg go on to give a presentation
of the monoid and an interesting generalization involving quotients by parabolic
submonoids. Finally, it’s worth noting that Grensing and Mazorchuck have recently
posted a categorification of the Catalan monoid [14].
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In the present article, we will review the connection between cyclic
decompositions of affine permutations and the affine code, the connection between
the 0-Hecke algebra and pattern avoidance, and link the two topics via ‘shadow
diagrams.’ Along the way, we will confirm a conjecture of Hanusa and Jones [15]
concerning periodicity in the length generating function of the fully commutative
elements of the affine symmetric group. This is the content of Theorem 2.
While in review, an extended abstract submitted to FPSAC 2013 also solved this
conjecture [2], and describes many interesting results in other Lie types.

2 Background and Notation

2.1 Affine Permutations, Hecke Algebras, Specializations

An n-affine permutation (we usually omit the n when no ambiguity will arise) is a
permutation x W Z! Z satisfying the following properties:

•
Pn

iD1 x.i/ D
�
nC1
2

	
, and

• x.i C n/ D x.i/C n.

One can show easily that such permutations form a group, which is called the affine
symmetric group QSn. Many of the basic facts about the affine permutation group are
collected in [4].

The second condition implies that one may completely specify an affine permuta-
tion simply by specifying x.i/ for i in the set f1; 2; : : : ; ng. The list Œx.1/; : : : ; x.n/�
is called the window notation for x. We call any list Œx1; x2; : : : ; xn� a valid window
notation if it is the window notation of an affine permutation. One can observe
that a list of n integers is a valid window notation if and only if the sum is

�
nC1
2

	
,

and when each entry of the list is reduced mod n one obtains a permutation of Zn.
(If any residues were repeated, then the second condition could be used to show that
the presumed permutation has repeated entries, and is thus not a permutation.) For
example, Œ5;�2; 3� is a valid window notation for an affine permutation (the sum is
6, and the list reduces to Œ2; 1; 0� modulo 3). On the other hand, Œ6;�3; 3� is not a
window for an affine permutation � . The sum is 6, but the permutation reduces to
Œ0; 0; 0� modulo 3. As a result, we have:

�.8/ D �.2C 3C 3/ D �.2/C 3C 3 D �3C 3C 3 D 3 D �.3/;

so that � is not a bijection. We will usually identify an affine permutation with its
window notation.

Generators and relations for QSn are given as follows. There is one simple
reflection si for each i 2 Zn, being the permutation which exchanges mn C i and
mnCiC1 for everym 2 Z, while fixing all other numbers. The action of the simple
reflection is either on the left or the right: The left action exchanges the values, while
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the right action exchanges the numbers in the given positions. For example, if we
take x D Œ1; 3; 2�, then s1x D Œ2; 3; 1�, exchanging the values 1 and 2. On the other
hand, xs1 D Œ3; 1; 2�, exchanging the first and second positions.

These generators satisfy the following relations:

• s2i D 1,
• Commutation relations: si sj D sj si for all j > i with j � i > 1, and
• Braid relations: si siC1si D siC1si siC1 for all i .

Note that by omitting the generator s0, we recover a group isomorphic to the
usual symmetric group.

The Iwahori-Hecke algebraHq. QSn/ is a q-deformation of the group algebra C QSn,
generated by elements Ti for i 2 Zn with relations:

• T 2i D .q � 1/Ti C q,
• Commutation relations: TiTj D Tj Ti for all j > i with j � i > 1, and
• Braid relations: TiTiC1Ti D TiC1TiTiC1 for all i .

In short, the quadratic relation is deformed while the relations between different
generators are preserved. At q D 1, we recover C QSn. At q D 0, we have T 2i D �Ti .
For convenience, we set �i WD �Ti , so that �2i D �i . It is easy to see that the
�i satisfy the commutation and braid relations. The monoid generated by the �i is
then called the 0-Hecke monoid QHn. There is a bijection between elements of this
monoid and the set of affine permutations: In particular, reduced words in the affine
symmetric group are also reduced in QHn. (This is a standard fact in the study of the
Iwahori-Hecke algebra of a general Weyl group W . See, for example, [4].)

In the finite case, Margolis and Steinberg [22] noticed that the 0-Hecke monoid
arises as a submonoid of the power-set of Sn, with a proof appearing in [23]. In fact,
the proof given there applies verbatim to the affine case, though we do not make use
of this realization in this paper.

The �i may be considered as anti-sorting operators on the collection of affine
permutations, transposing values if they are in order, and leaving them fixed if not.
Thus, if x D Œ3; 1; 2�, then �1x D Œ3; 2; 1�, anti-sorting the values 1 and 2. On the
other hand, x�1 D Œ3; 1; 2� D x, since the first and second positions are already
anti-sorted.

For expedience, we will often write words in the generators as subscripts on the
generator. Furthermore, we will avoid examples with n 	 10 in this paper, and
will thus may omit commas in the writing of lists of indices. Thus, �1�2�1 may be
written as �121 unambiguously.

2.2 Pattern Avoidance

A permutation may be thought of as a sequence of numbers, and an affine
permutation may be thought of as a doubly-infinite sequence of numbers. Let
� D Œ�1; : : : ; �k� be a permutation, and x a permutation or affine permutation.
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We say that x contains � if there exist i1 < i2 < � � � < ik such that xi1 ; xi1 ; : : : ; xik
are in the same relative order as � . If x does not contain � , then we say that x avoids
� , or that x is � -avoiding.

For example, the pattern Œ1; 2� appears in any x such that there exists a xi < xj
for some i < j . The only Œ1; 2�-avoiding permutation in SN , then, is the longest
element, which is strictly decreasing in one-line notation. As a larger example, the
permutation Œ3; 4; 5; 2; 1; 6� contains the pattern Œ2; 3; 1� at the bold positions. In fact,
this permutation contains six distinct instances of the pattern Œ2; 3; 1�.

Of particular interest is the pattern Œ3; 2; 1�. A permutation (or affine permutation)
which avoids Œ3; 2; 1� is called fully commutative, or FC for short. The name arises
because one can show that if x is FC, then any reduced word for x can be obtained
from any other via a sequence of commutation relations [3, 13, 19].

3 Canonical Decompositions of Affine Permutations

Given a subset A ¨ Zn with jAj D m < n we define the cyclically decreasing
element dA (d for ‘decreasing’) to be the product dA WD Ti1 � � �Tim for il 2 A,
where if j; j � 1 2 A then j appears to the left of j � 1 in any reduced word
for dA. (One may similarly define cyclically increasing elements, where j appears
to the right of j � 1.) Note that such products may be specialized to either the affine
symmetric group or the 0-Hecke monoid. The cyclically decreasing elements are
also known as Pieri factors in the literature, and play an important role in the theory
of k-Schur functions [19].

Heuristically, we want to write the product of the generators in a decreasing list,
but then the index set Zn has no greatest element. Thus, we rely on the ‘local’
relations of j > j � 1 in Zn. Since A ¨ Zn, we can choose an element not in A to
act as the ‘top’ element, and write the elements ofA in decreasing order with respect
to this element. For example, if we take n D 9 and A D f0; 1; 3; 4; 5; 8g � Z9 at
q D 0, we can take (for example) 2 62 A to be the ‘top’ element, and write have
dA D �108543. We could also have taken 6 as the ‘top’ element, which would produce
the reduced word �543108, which is related to �108543 by a sequence of commutation
relations. In fact, the words obtained by different choice of ‘top’ element are always
related by commutation relations: There is a bijection between cyclically decreasing
elements dA and proper subsets of Zn.

Almost all affine permutations can be written in many different ways as a
product of cyclically decreasing elements, x D dAl dAl�1 � � � dA1 . (For example,
given a reduced word w D w1w2 � � �wk for x, we may write Ai D fwi g and
write x as a product of k cyclically decreasing elements.) Such a decomposition
is called an ˛-decomposition of x. We write A D .A1; A2; : : : ; Al /, and may
then form a composition sh..A// D .jA1j; : : : ; jAnj/. As mentioned, a given x
may have many different ˛-decompositions. (In fact, the affine Stanley symmetric
functions are defined as a sum over all such decompositions [19].) We may order the
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˛-decompositions lexicographically (or reverse lexicographically) by comparison of
sh..A//. Under this ordering, we have the following theorem:

Theorem 1 (Canonical Cyclically Decreasing Decomposition [8, 19]). Every
affine permutation x admits a unique maximal decomposition under the anti-
lexicographic ordering as a product of cyclically decreasing elements x D dA.
This decomposition has AiC1 � fj � 1 j j 2 Aig for each i , and thus sh.A/ is a
partition.

For an easy example, consider the permutation Œ3; 1; 2� D s2s1. This can
be written as df2gdf1g or as df1;2g. The first decomposition is associated to the
composition .1; 1/ and the second decomposition has composition .2/. Thus, the
second decomposition is the maximal decomposition.

At this point, we note that there is also a notion of cyclically increasing elements
uA, formed in the obvious way: Choose a ‘bottom’ element not in A, then take an
increasing product of the generators indexed by elements of A. For our example
above, we would have uA D �801345. There is a corresponding notion of cyclically
increasing decompositions and every affine permutation admits a unique maximal
cyclically increasing decomposition.

We’ve made two choices so far: a choice between cyclically increasing and
decreasing elements in building the decomposition of x, and the choice of whether
to find the maximal decomposition according to lexicographic or anti-lexicographic
ordering on sh.A/. We’ll henceforth call the maximal lexicographic decomposition
the left decomposition, and the anti-lexicographic decomposition the right decom-
position. Thus, the theorem is stated for the right decreasing decomposition, and
may be modified for any of the other three choices. (In particular, the containment
property for the Ai must be modified for other cases, though an analogous statement
holds.)

The maximal decomposition is closely related to the affine code of the permuta-
tion, which is also known as the inversion vector or affine Lehmer code. And there
are actually four different affine codes one can associate to any affine permutation,
corresponding to the four possible choices. The right decreasing code RD.x/ is the
list Œc1; c2; : : : ; cn� where ci is the number of j < i with x.j / > x.i/. One can
show that the numbers ci are always finite, and that one of the ci must be equal to 0.

One may recover the maximal decomposition for an affine permutation x from
the affine code by carrying out the following steps:

• Make a Ferrer’s diagram of the code of x. This diagram has n columns, and
column i has ci boxes.

• Fill each box with a residue, by filling the j th box from the bottom in the ci
column with the number i � j mod n. (We start counting j from 1, so the
bottom-most residue in the ci column is just i � 1; we then count backwards up
the column modulo n.)

• Now each row of the resulting diagram corresponds to a cyclically decreasing
element, obtained by reading cyclically right-to-left starting from any empty
column. (One should imagine the diagram drawn on a cylinder, just as the
cyclically decreasing elements come from the ‘circular’ index set Zn.)
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Fig. 1 Diagram of the
maximal decomposition of x
with window notation
Œ4;�4; 7; 5; 3�

Example 1. Let n D 5, and x be the affine permutation with window notation
Œ4;�4; 7; 5; 3�. Then the affine code of x is Œ0; 6; 0; 1; 3�. For example, there are six
elements to the left of the entry x.2/ D �4 which are larger than �4. Specifically,
these are x.�7/ D �3; x.�4/ D �1; x.�2/ D 2; x.�1/ D 0, and x.1/ D 4. The
diagram of the permutation is pictured in Fig. 1. (The grey areas are the ‘shadows’
of the columns, described later.) Starting with one of the empty columns, we read
right-to-left, top-to-bottom, considering the diagram as though it were on a cylinder.
The maximal decomposition of x is then:

x D df1gdf2gdf3gdf2;4gdf3;0gdf4;3;1g:

By using a very small modification of the ‘moves’ on RC-diagrams considered
by Bergeron and Billey [1], one can move between different ˛-decompositions of x.
There are two kinds of ‘moves’ available, by which one can move boxes in the
diagram into other rows. A commutation move moves a box with no neighbours
above or to the right up into the next row directly, using only the commutation
relations. A chute move moves a box past a two-by-l block of boxes, changing the
residue of the given box, using a sequence of braid relations. (The precise rule for
this is obtained by repeated application of the basic braid relations in QSn.) This is
illustrated in Fig. 2, with an example in Fig. 3.

How can we apply this schema to affine pattern avoidance? It is known that
an affine permutation is Œ3; 2; 1�-avoiding if and only if it has no reduced words
in which one may apply a braid relation of the form xyx D yxy. This was
shown independently by Lam [19] and Green [13]. Given a diagram of a maximal
decomposition, we can convert it to a shadow diagram. This simply involves
drawing the shadows of each column, extending down-to-the-left at 45ı. The
shadows also wrap-around the diagram. (Refer back to Fig. 1 for an example.) One
can then observe the following:

Proposition 1. An affine permutation x is Œ3; 2; 1�-avoiding if and only if no column
of the diagram of x is completely in the shadow of another column. Equivalently,
ci�j >D ci � j for all i; j 2 Zn, considering the indices as elements of Zn.

Thus, the example permutation with window Œ4;�4; 7; 5; 3� contains a Œ3; 2; 1�
pattern, since c5 D c2�2 D 3 < c2 � 2 D 4. This allows for a very fast check
of whether a given affine permutation is Œ3; 2; 1� avoiding. It takes linear time
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Fig. 2 The two-row moves on an ˛-decomposition. The collision shows a situation where a chute
move will lead to a situation involving squaring a generator. This doesn’t happen in reduced
decompositions, and the result depends on whether one is working in the affine symmetric group
(in which case the two colliding boxes annihilate one another), the nilHecke monoid (in which case
the whole permutation is equal to 0), or the 0-Hecke monoid (where one of the boxes is removed
while the other remains), according to the various specializations of T 2i at different values of q

Fig. 3 Examples of other ˛-decompositions of x with window notation Œ4;�4; 7; 5; 3�. The
leftmost picture is the maximal decomposition of x. The middle is obtained from the maximal
˛-decomposition by a commutation move. And the rightmost is obtained from the middle by a
chute move (in this case, a simple braid relation)

to construct the affine code (indeed, only one pass through the main window is
required), and only one pass through the code to determine whether the permutation
is FC.

Proof. First we show that if any non-empty column is completely shadowed, then
the element is not fully commutative. The strategy is to show that one can apply
a chute move to a diagram with a fully-shadowed column, either directly or after
applying a few commutation moves. (This direction is fairly intuitive to work
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through on paper: draw some diagrams corresponding to the cases and try to
produce chute moves. What follows is a concise but rigorous ‘proof by regular
expressions.’)

• Case 1: There exists a shadowed column adjacent to the shadowing column.
Suppose column i is completely shadowed by column i C 1. We consider only
the two rows ci and ci C 1. We can consider the diagram for these two rows
in isolation; this two-row diagram will still have a 1-box column i completely
shadowed by a 2-box column i C 1. Consider the code d for just these two rows,
which contains only 0’s, 1’s, and 2’s. This code must contain at least one zero,
and any instance of the consecutive subsequence Œ1; 2� indicates a column of
the original diagram completely shadowed by a neighbouring column. Choose
any Œ1; 2�-instance where reading to the right one finds a 0 before finding another
Œ1; 2� instance. Now consider the subword of d which begins with the chosen
Œ1; 2� instance and ends with the first 0 one meets when reading to the right. The
subword must then be of the form Œ1; 2p; 1q; 0� (meaning a 1, followed by p 2’s
and q 1’s, then a 0), possibly with q D 0. Consider the diagram of this subword.
One can apply a sequence of commutation moves to move the 1q trailing boxes
into the upper row, and then apply a chute move on the last box in the lower row.

• Case 2: A shadowed column not adjacent to the shadowing column.
Choose a completely shadowed column a. Then find the first column right of
a which completely shadows a: suppose this is the j th column. Now find the
first column to the left of j which j fully shadows, and suppose this is the i th
column. If j D i C 1, we’re in the first case. Otherwise, ciC1 < ci , so the top
box of ci can be moved up-and-to-the-right using a commutation move. Since cj
is the nearest column to the right of ci which shadows ci , the box can be brought
adjacent to column cj . Because of full shadowing of ci , the box will be below
the level of the top of cj once adjacent. We can then recycle the arguments of
Case 1 to create a chute move.

For the converse, we show that if x is not fully commutative, then x has a
shadowed column. Every ˛-decomposition of x can be obtained from the maximal
decomposition by a sequence of two-row moves [8], which includes all reduced
words for x. Let w D Œw1;w2; : : : ;wl � be a reduced word for x with a consecutive
subword si siC1si occurring farthest to the left amongst all reduced words for
x; in particular, let the braid si siC1si occur in positions wj ;wjC1;wjC2, with
j minimal amongst all reduced words for x. One may then find the maximal
decomposition of the permutation with word ŒwjC3; : : : ;wl �. Then inserting the
three letters wj ;wjC1;wjC2 will ensure that the column with top box wj is fully
shadowed by the column with top box wjC2. The column which now has top box
wj cannot grow any larger through the addition of further boxes from Œw1; : : : ;wj�1�
without the application of a braid move, which is impossible by the minimality of j .
Therefore, there is a completely shadowed column in the maximal decomposition
of x, as desired. ut
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Corollary 1. Each FC affine permutation has diagram given by a union of
partitions, separated by empty columns, such that shadow condition is satisfied.

Proof. If 0 ¤ ci < ciC1, then the shadow condition is violated. Thus, for every i ,
we have ci > ciC1 or ci D 0. ut

3.1 Enumeration of Fully Commutative Affine Permutations

We can also use this structure to study the length-enumeration of the fully
commutative elements. It was shown by Crites that there are infinitely many Œ3; 2; 1�-
avoiding elements [6], but one can still ask how many affine permutations there are
of length l . Let Fn.l/ be the number of fully commutative affine permutations of
length l in QSn. This was studied by Jones and Hanusa via generating functions [15].
In particular, they were able to show that the number of FC elements of length
l is eventually periodic in l . Observationally, this periodic behaviour began at
l D 1C d n�1

2
eb n�1

2
c. We now show that this bound is sharp.

Suppose that x has code c. Then let U.x/ be the affine permutation with code
obtained by adding one to each non-zero entry of c. Likewise, let D.x/ be the
permutation with code obtained by reducing each non-zero entry of c by one. For
our running example with window Œ4;�4; 7; 5; 3�, and affine code Œ0; 6; 0; 1; 3�,
then U.x/ has code Œ0; 7; 0; 2; 3�. Thus, U.x/ is the permutation with window
Œ6;�5; 8; 4; 2�. Likewise, D.x/ has code Œ0; 5; 0; 0; 2�, which gives the permutation
Œ3;�3; 5; 6; 4�.

It is clear that if x is fully commutative then so is U.x/ and D.x/; reducing
or increasing the size of each column does not affect the shadow condition of
Proposition 1. It is also clear that U.D.x// D x unless the code of x has some
entry ci equal to 1. We will call these shift-minimal elements.

Definition 1. A fully commutative affine permutation x is shift-minimal if the code
c of x has at least one entry equal to 1. For any fully commutative affine permutation,
we set col.x/ to be the number of non-zero entries of c, and r.x/ to be the length
of x reduced modulo col.x/. Set Mi;j to be the number of shift-minimal fully
commutative affine permutations x with col.x/ D i and r.x/ D j .

For example, let y be the affine permutation with window Œ�3;�1; 8; 1; 10�. Then
the code of y is Œ4; 3; 0; 3; 0�, and y is FC. We have col.y/ D 3, and r.y/ D 10

mod 3 D 1.

Lemma 1. There are only finitely many shift-minimal FC elements. The maximal
length of a shift-minimal element is � 1 C d n�1

2
eb n�1

2
c, and there exist elements

attaining this length.

Proof. Since each shift-minimal element contains a 1 in its code c, there can be
(by the shadow condition) no ci > n. This establishes an upper bound of 1C .n �
2/.n � 1/ on the length of a shift-minimal element, which in turn implies that there
are finitely many such elements.
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Fig. 4 A shift-minimal
element of maximal length
for n D 10. The single-box
column ensures the element is
shift-minimal. Then building
a large rectangle allows us to
maximize the total number of
boxes. We should then
maximize the size of
rectangles over the possible
heights j and widths n� j

Fig. 5 Ruling out the two-rectangle case. The rectangle on the right is freely chosen, so as not
to shadow the single box int he first column. The middle rectangle, in order to maximize the
number of boxes, should have its upper-right point on the shadow cast by the right-most rectangle.
Maximizing the width gives the constant k. Then the rectangle has area ak. Maximizing a then
‘merges’ the rectangle with the original rectangle

To construct an element of maximal length, suppose without loss of generality
that c1 D 1. Then we claim an optimal strategy to construct a long element is to
make a j � .n � j / rectangle to the right of the first column. (See Fig. 4.)

By Corollary 1, the diagram must be a union of partitions, P1; P2; : : : ; Pl , placed
so that they satisfy the shadow rule. Since we are maximizing the total number of
boxes, we may take each partition Pi and complete it to a rectangle of height equal
to the first column of Pi . This operation will never violate the shadow rule. Thus,
we consider a sequence of rectangles. The last rectangle may as well be pushed as
far to the right as possible, so that it is adjacent (on the cylinder) to the single box
in the first column.

Now consider the second-to-last rectangle. On inspection, we see that it has a
maximal width k determined by the height of the last rectangle and its placement
relative to the first column. (See Fig. 5.) If it has less than this maximal width,
then we can add more columns to the rectangle until the maximal width is reached.
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Then this rectangle has width k, and some height a which is less than or equal to the
height of the last rectangle. But to maximize the size of the rectangle, we should
then maximize the height a. Then a is equal to the height of the last rectangle,
which shows that they are, in fact, a single big rectangle. Applying this argument to
all of the partitions, we see that we only need to consider a single rectangle!

Now we should then maximize the area of our single rectangle: Thus, we
maximize the product j.n � j / over j . The maximum product of two integers that
sum to n is d n

2
eb n

2
c. Including the initial column of size 1, we obtain a maximal

length shift-minimal element of length 1C d n
2
eb n

2
c, as desired. ut

Now we consider our function Fn.l/. It is clear that for every FC affine
permutation x of length l , there exists some minimal k such that Dk.x/ is shift-
minimal. This involves subtracting some multiple of col.x/ until we are left
with a shift-minimal element. Let Mi;j be the number of shift-minimal FC affine
permutations with col.x/ D i and r.x/ D j . Then we observe that for l large:

Fn.l/ D
n�1X

iD1
Mi;l%i ;

where l%i denotes l mod i . Then every Fn.l/ is a sum of Mi;j ’s; therefore, once
all of the shift-minimal elements are accounted for, the function Fn.l/ must begin
being periodic. And this occurs exactly at 1C d n

2
eb n

2
c. Thus we have shown:

Theorem 2. The function Fn.l/ is periodic in l , with periodic behaviour beginning
at l D 1C d n

2
eb n

2
c.

Ostensibly, from this construction, the period of Fn.l/ would be � nŠ. In fact, it
was shown by Hanusa and Jones that the period divides n. This implies that there
should be some interesting relations between the numbers Mi;j which remain to be
fully explored.

4 Affine Catalan Monoid and Pattern Avoidance

In this section, we mainly summarize results from [9] and the author’s thesis,
connecting the prior results to the point of view of affine codes.

An interesting quotient of the 0-Hecke monoid may be obtained by introducing
the relation, for every i 2 I :

�iC1�i�iC1 D �i�iC1:

In the finite case, this gives a monoid isomorphic to the Catalan monoid of functions
f W f1; : : : ; ng ! f1; : : : ; ng satisfying:

• f .p/ � p, and
• p �) f .p/ � f .q/.
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These functions form a monoid under composition, called the non-decreasing
parking functions. (See e.g. [28]; it also is described under the notation CN in
e.g. [25, Chapter XI.4] and, together with many variants, in [11, Chapter 14].)
Similarly, it is a natural quotient of Kiselman’s monoid [12, 18]. In [10], this
monoid was studied as an instance of the larger class of order-preserving regressive
functions on monoids, and a set of explicit orthogonal idempotents in the algebra
was described.

The fibers of this quotient have a nice property:

Theorem 3. Each fiber of the quotient map H0.SN /! NDPFN contains a unique
Œ3; 2; 1�-avoiding element for minimal length and a unique Œ2; 3; 1�-avoiding element
of maximal length.

As mentioned in the introduction, one can check that this directly implements the
Simone-Schmidt bijection, which is one of the essential early results in the study
of pattern avoidance. The bijection’s proof was originally combinatorial, but this
theorem shows that there is actually an algebraic reason for the bijection.

We also note that by taking the quotient of the 0-Hecke monoid by the relation
�iC1�i�iC1 D �iC1�i , one obtains another monoid isomorphic to the Catalan
monoid, though the fibers contain a unique Œ3; 1; 2�-avoiding permutation instead
of a Œ2; 3; 1�-avoiding permutation.

We can use the affine codes of the finite permutations to directly construct the
fibers. The finite permutation group is a parabolic subgroup of the affine permutation
group, so all of the technology for working with affine codes descends to the finite
case. Here, the code becomes a familiar Lehmer code or inversion vector, and the
two-row moves become very close to moves on RC-graphs.

For finite permutations, the code is calculated in exactly the same way, but there
are no �0 generators and no 0-residues in the diagram of a finite permutation. Thus,
we have ci � i �1 for each i . Given the shadow diagram of a finite permutation, we
obtain the Œ3; 2; 1�-avoiding permutation by deleting all columns that are completely
shadowed. Likewise, to obtain the maximal, Œ3; 1; 2�-avoiding element, we insert
fully shadowed columns. Such a fiber is pictured in Fig. 6.

4.1 Affine Pattern Avoidance

In the affine case, the introduction of the extra relation gives a monoid isomorphic
to the affine non-decreasing parking functions.

Definition 2. The extended affine non-decreasing parking functions are the func-
tions f W Z! Z which are:

• Regressive: f .i/ � i ,
• Order Preserving: i � j ) f .i/ � f .j /, and
• Skew Periodic: f .i CN/ D f .i/CN .
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Fig. 6 A fiber of the finite quotient fromH0.SN / to the Catalan monoid, NDPFN . At the top is the
diagram of the Œ3; 2; 1�-avoiding permutation Œ2; 4; 5; 1; 6; 3�. At the bottom is the Œ2; 3; 1�-avoiding
permutation Œ6; 5; 2; 1; 4; 3�. All other elements of the fiber lie between. One may notice that the
fiber has an implicit poset structure arising from containment of diagrams; since this is obtained
by deletion of individual letters from reduced expressions, this is simply the Bruhat order on the
associated permutations

Define the shift functions sht as the functions sending i ! i � t for every i .
The affine non-decreasing parking functions NDPF.1/N are obtained from the

extended affine non-decreasing parking functions by removing the shift functions
for all t ¤ 0.

It is worth noting that the quotient seems to work well for the 0-Hecke monoid,
but isn’t useful in the case of general q.

We can summarize the correspondence in the following theorem:

Theorem 4 ([7, 9]). The affine non-decreasing parking functions NDPF.1/N are a
J -trivial monoid which can be obtained as a quotient of the 0-Hecke monoid of the
affine symmetric group by the relations �j�jC1�j D �j�jC1, where the subscripts
are interpreted modulo N . Each fiber of this quotient contains a unique Œ3; 2; 1�-
avoiding affine permutation.
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By a result of Crites, there are infinitely many affine permutations that avoid a
pattern � if and only if � contains the pattern Œ3; 2; 1� [6]. Thus, there are infinitely
many Œ3; 2; 1�-avoiding affine permutations, but only finitely many Œ2; 3; 1�-avoiding
affine permutations. As in the finite case, the Œ3; 2; 1�-avoiding element is obtained
by deleting all fully-shadowed columns. But filling in shadowed columns may be
ambiguous, since there must be at least one empty column; thus we cannot expect
that there is a unique element of maximal length in the fibers of the affine Catalan
quotient.
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