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Abstract In this article we survey recent results concerning the set of prime ideals
in two-dimensional Noetherian integral domains of polynomials and power series.
We include a new result that is related to current work of the authors [Celikbas et al.,
Prime Ideals in Quotients of Mixed Polynomial-Power Series Rings; see http://www.
math.unl.edu/$\sim$swiegand1 (preprint)]: Theorem 5.4 gives a general description
of the prime spectra of the rings RŒŒx; y��=P; RŒŒx��Œy�=Q and RŒy�ŒŒx��=Q0 , where
x and y are indeterminates over a one-dimensional Noetherian integral domain R

and P; Q, and Q0 are height-one prime ideals of RŒŒx; y��, RŒŒx��Œy�, and RŒy�ŒŒx��,
respectively. We also include in this survey recent results of Eubanks-Turner,
Luckas, and Saydam describing prime spectra of simple birational extensions
RŒŒx��Œf .x/=g.x/� of RŒŒx��, where f .x/ and g.x/ are power series in RŒŒx�� such that
f .x/ ¤ 0 and is a prime ideal of RŒŒx��Œy�—this is a special case of Theorem 5.4.
We give some examples of prime spectra of homomorphic images of mixed power
series rings when the coefficient ring R is the ring of integers Z or a Henselian
domain.
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1 Introduction

Prime ideals play a fundamental role in commutative ring theory, especially in the
theory of ideals and modules. By the primary decomposition theorem, every nonzero
ideal of a Noetherian ring has a unique set of associated prime ideals. Often if
a property can be demonstrated for prime ideals, then it holds for all ideals, for
example, finite generation, by Cohen’s theorem [15, Theorem 3.4]. Murthy uses
prime ideals to show that a regular local ring is a UFD in [18]. For a Noetherian ring
R, the Grothendieck group of all finitely generated R-modules is generated by the
modules of the form R=P , where P is a prime ideal of R (see [2]). The Wiegands
demonstrate many connections between the set of prime ideals of a ring R and the
set of indecomposable R-modules in [28].

For R a commutative ring, we denote by Spec.R/ the prime spectrum of R, that
is, the set of prime ideals of R, considered as a partially ordered set, or poset, under
inclusion. In 1950, Irving Kaplansky asked:

Question 1.1. Which partially ordered sets occur as Spec.R/, for some Noetherian
ring R?

This problem remains open, although there have been many and varied results
related to Question 1.1:

(1) Hochster’s characterization of the prime spectrum of a commutative ring as a
topological space [9],

(2) Lewis’ result that every finite poset is the prime spectrum of a commutative ring
[12],

(3) Some properties of prime spectra of Noetherian rings [16, 27, 29],
(4) Examples of Noetherian rings such as those of Nagata, McAdam, and Heitmann

that do not have other properties that might be expected of Noetherian rings
[8, 17, 19, 21], and

(5) Characterizations of prime spectra of other specific classes of Noetherian rings
or of particular Noetherian rings (see, for example, [6, 13, 24, 26]).

Many of these results are discussed in more detail in [29], along with other results.
In this article we focus on results over the past decade concerning prime spectra

for two-dimensional Noetherian integral domains of polynomials and power series.
We include background information related to this focus. In particular, our results
are related to S. Wiegand’s theorem from the 1980s, Theorem 2.3, proved using
techniques developed by Heitmann and others; see [25]. Theorem 2.3 shows that
any finite amount of “misbehavior” is possible for prime ideals of a Noetherian
ring. Other results such as McAdam’s Theorem 2.4 suggest that the converse is also
true: Perhaps, in some sense, the amount of such misbehavior is finite. Our current
and recent investigations of prime spectra show that certain finite subsets of these
spectra determine the partially ordered sets that are prime spectra for our rings; see
Theorem 5.4 and Definition 5.5.
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The characterization of the prime spectrum of a particular ring requires (1) a
list of axioms that describe the prime spectrum as a poset, and (2) a proof that any
two posets satisfying these axioms are order-isomorphic. In order to characterize
prime spectra for a class of Noetherian rings, the axioms of (1) may contain “genetic
codes” that allow for some variety in the spectra of rings of the class; they depend
upon cardinalities associated to the ring. In this case we require (20). Each “genetic
code” should determine a unique partially ordered set up to order-isomorphism and
(3) examples to show that every poset fitting the axioms can be realized as a prime
spectrum for some ring in the class.

For the remainder of this article, let x and y be indeterminates over a one-
dimensional Noetherian domain R. Wiegand characterizes Spec.ZŒy�/, where Z is
the ring of integers, in [26]; see Theorem 2.9. If R is a countable, semilocal one-
dimensional Noetherian domain, Wiegand and Heinzer characterize Spec.RŒy�/ in
[6]; this characterization of course depends upon the number of maximal ideals
of R. Shah and Wiegand extend this result to Spec.RŒy�/, for R a semilocal one-
dimensional Noetherian domain of any cardinality in [23,29]—this characterization
depends upon the number of maximal ideals of R, the cardinality of R, and the
cardinality of R=m for each maximal ideal m of R; see Theorem 2.13.

Several recent articles describe prime spectra for power series rings. In [7],
Heinzer, Rotthaus, and Wiegand describe Spec.RŒŒx��/; see Theorem 2.15. In [5],
Eubanks-Turner, Luckas, and Saydam describe prime spectra of simple birational
extensions of RŒŒx��, that is, Spec.RŒŒx��Œg=f �/, where g; f 2 RŒŒx��, f ¤ 0, and
either g; f is an RŒŒx��-sequence or .g; f / D RŒŒx��; see Theorem 6.1. In current
work, the present authors describe prime spectra of rings of the form RŒŒx��Œy�=Q or
RŒy�ŒŒx��=Q, where Q is a height-one prime ideal of the appropriate ring and x … Q;
see Sect. 5 and [4].

In Sect. 2 we give notation and background results on prime spectra, and we
mention some related items, such as the intriguing Conjecture 2.12 of Roger
Wiegand. We give some general properties of mixed power series in Sect. 3.
In Sect. 4 we characterize Spec.RŒŒx��ŒŒy��=Q/, where R is a one-dimensional
Noetherian domain and Q is a height-one prime ideal of RŒŒx; y��; see Theorem 4.1.
In Sect. 5 we give new results related to the characterization of Spec.RŒŒx��Œy�=Q/

and Spec.RŒy�ŒŒx��=Q/ from [4]; see Theorems 5.2 and 5.4. In Sect. 6 we give
results from [5] concerning prime spectra of simple birational extensions of RŒŒx��;
this yields a characterization in the case R is a countable Dedekind domain. In
Sect. 7, we show two prime spectra examples of dimension two: Spec.ZŒy�ŒŒx��=Q/,
where Q is a specified prime ideal of ZŒy�ŒŒx��, and Spec.RŒŒx��Œy�=Q/, where Q is
a specified prime ideal of RŒŒx��Œy� and R is a Henselian domain.

All rings are commutative with identity throughout the paper. Let N denote the
natural numbers, let Z denote the integers, and let R denote the real numbers. Set
N0 WD N [ f0g and @0 WD jNj:
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2 Background

In this section, we give background information related to our focus on recent
work concerning prime spectra of two-dimensional Noetherian integral domains
of polynomials and power series. We refer the reader to [28, 29] for more general
information concerning prime spectra in Noetherian rings.

We first introduce some notation.

Notation 2.1. Let U be a partially ordered set, sometimes abbreviated poset; let S

be a subset of U and let u; v 2 U . We define

u".U / D u" WD fw 2 U j u < wg; u# WD fw 2 U j w < ug; Le.S/ WD fu 2 U j u" D SgI
max.S/ WD fmaximal elements of Sg; and min.S/ WD fminimal elements of Sg:

For u 2 U , the height of u, ht.u/, is the length t 2 N0 of a maximal length chain in
U of form

u0 < u1 < u2 < � � � < ut D u:

Set Hi .U / WD fu 2 U j ht.u/ D ig, for each i 2 N0. The dimension of U , dim.U /,
is the maximum of the heights of all elements of U .

We say v covers u and write u � v if u < v and there are no elements of U

strictly between u and v. The minimal upper bound set of u and v, if u — v and
v 6< u, is the set mub.u; v/ WD min.u" \ v"/ and their maximal lower bound set is
Mlb.u; v/ WD max.u# \ v#/.

Let R be a commutative ring. We use notation similar to that for the partially
ordered set U D Spec.R/. For example, if P 2 Spec.R/, P " D fQ 2
Spec.R/ j P ¨ Qg; min.R/ is the set of minimal prime ideals of R; max.R/ is the
set of maximal ideals of R; and dim.R/ is the supremum of the heights that occur
for maximal ideals of R. We also use V.S/ WD VR.S/ WD fq 2 Spec.R/ j S � qg,
for a subset S of R; for a 2 R; put VR.a/ WD VR.fag/. For each i 2 N0, we set
Hi .R/ WD fq 2 Spec.R/ j ht.q/ D ig.

In Remarks 2.2 we establish that the rings we study are well behaved.

Remarks 2.2. (1) If a ring A is Cohen–Macaulay, n; m 2 N0, and xi and yj

are indeterminates over A, for 1 � i � n, 1 � j � m, then the mixed
polynomial-power series rings, AŒŒfxi gn

iD1��Œfyj gm
j D1� and AŒfyj gm

j D1�ŒŒfxi gn
iD1��,

are Cohen–Macaulay; see [15, Theorem 17.7]. Thus they are catenary: If
P � Q in Spec.R/, then any two maximal chains of prime ideals from P

to Q have the same length [15, Theorem 17.9].
(2) If R is a Noetherian integral domain of dimension one, then R is Cohen–

Macaulay; see [15, Exercise 17.1, p. 139]. Thus every mixed polynomial-power
series ring over a one-dimensional Noetherian domain R that involves a finite
number of variables is catenary by item (1).
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Theorem 2.3 was inspired by many examples of Noetherian prime spectra
with finite amounts of “misbehavior” that were produced by Nagata, McAdam,
Heitmann, and others; they show, for example, that Noetherian rings can be noncate-
nary and that there exist Noetherian rings containing two height-two prime ideals
whose intersection contains no height-one prime ideal; see [8, 17, 20]. The proof
of Theorem 2.3 uses techniques of these and other researchers. The statement of
Theorem 2.3 summarizes the situation: All sorts of finite noncatenary or prescribed
intersecting behavior is possible in the prime spectrum of some Noetherian rings.
This idea is related to the later sections of this article where we show that the
prime spectra that occur for our rings have a similar finite amount of “prescribed”
discrepancy within a general form of the spectra; see Sects. 5 and 6. The difference
here is that our rings are catenary by Remark 2.2.

Theorem 2.3 ([25, Theorem 1]). Let F be an arbitrary finite poset. There exist a
Noetherian ring A and a saturated order-embedding ' W F ! Spec.A/ such that
' preserves minimal upper bound sets and maximal lower bound sets. In detail, for
u; v 2 F , we have

(i) u < v if and only if '.u/ < '.v/;
(ii) v covers u if and only if '.v/ covers '.u/;

(iii) '.mubF .u; v// D mub.'.u/; '.v//; and
(iv) '.MlbF .u; v// D Mlb.'.u/; '.v//.

A related theorem of Steve McAdam, Theorem 2.4, guarantees that noncatenary
misbehavior cannot be too widespread in the prime spectrum of a Noetherian ring:

Theorem 2.4 ([16]). Let P be a prime ideal of height n in a Noetherian ring. Then
all but finitely many covers of P have height n C 1.

Perhaps one might conjecture from Theorem 2.4 that in general prime spectra of
Noetherian rings behave well, like the spectra of excellent rings, if a finite “bad”
subset is removed.1

Corollary 2.5, which follows from Theorem 2.3, relates to our focus for this
article because it describes exactly the countable posets that arise as prime spectra
of two-dimensional semilocal Noetherian domains.

Corollary 2.5 ([25, Theorem 2]). Let U be a countable poset of dimension two.
Assume that U has a unique minimal element and max.U / is finite. Then U Š
Spec.R/ for some countable Noetherian domain R if and only if Le.u/ is infinite
for each element u with ht.u/ D 2.

Lemma 2.6 is useful for counting prime ideals in our rings.

1For the definition of “excellent ring” see [15, p. 260]. Basically “excellence” means the ring is
catenary and has other nice properties that polynomial rings over a field possess.
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Lemma 2.6 ([29, Lemma 4.2] and [5, Lemma 3.6, Remarks 3.7]). Let T be a
Noetherian domain, let y be an indeterminate, and let I be a proper ideal of T . Let
ˇ D jT j and � D jT=I j. Then:

(1) j.T=I /Œy�j D � � @0 � ˇ � @0 D jT Œy�j.
(2) jT ŒŒy��j D ˇ@0 D �@0 .
(3) If ˇ � @0, then j.T=I /Œy�j D @0 D jT Œy�j.
(4) If ˇ D @0 and max.T / is infinite, then ˇ D j max.T /j D jT=I j � @0.
(5) If k is a field, y; y0 are indeterminates, and c is an irreducible element of kŒy�,

then

j.kŒy�=ckŒy�/Œy0 �j D jkj � @0 D j max.kŒy�/j:

2.1 Prime Ideals in Polynomial Rings

This subsection includes basic facts, previous results, and technical lemmas con-
cerning Spec.AŒy�/, where A is a Noetherian domain and y is an indeterminate
over A.

In Remarks 2.7, we give some basic facts.

Remarks 2.7. Let A be a Noetherian domain of dimension d and let y be an
indeterminate over A.

(1) If P is a prime ideal of AŒy�, then ht.P \ A/ � ht.P / � ht.P \ A/ C 1; see
[15, Theorem 15.1].

(2) If M is a prime ideal of AŒy� of height d C 1, then M is a maximal ideal of
AŒy�, the prime ideal m D M \ A is a maximal ideal of A of height d , and
M D .m; h.y//AŒy�, where h.y/ is irreducible in AŒy� D AŒy�=.mŒy�/ Š
.A=m/Œy�. This follows from item (1) and [10, Theorem 28, p. 17].

(3) If I is a nonzero ideal of AŒy� such that I \A D .0/, then I D h.y/KŒy�\AŒy�;

where K is the field of fractions of A and h.y/ 2 AŒy� with deg.h.y// � 1. This
follows since KŒy� D .Anf0g/�1AŒy� is a principal ideal domain (PID). If P is
a prime ideal of AŒy� such that P \ A D .0/, then ht.P / D 1. The set of prime
ideals P of AŒy� such that P \ A D .0/ is in one-to-one correspondence with
the set of height-one prime ideals of KŒy�, via P 7! PKŒy� 7! PKŒy� \ AŒy�.

The proof of Lemma 2.8 is straightforward and follows from material in [10] on
G-domains; see [4]. A G-domain is an integral domain A such that AŒy� contains a
maximal ideal that intersects A in .0/.

Lemma 2.8 ([4, 10]). Let A be a Noetherian domain. If Q is a maximal ideal of
AŒy� of height one, then

(1) Q \ A D .0/;
(2) dim.A/ � 1 and j max.A/j < 1; say max.A/ D fm1; : : : ; mt g; and
(3) Q contains an element of form h.y/ D yg.y/ C 1, where 0 ¤ g.y/ 2

.\t
iD1mi /Œy�.
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Moreover, if A is one-dimensional and semilocal with maximal ideals m1; : : : ; mt ,
and Q is a prime ideal of AŒy� that is minimal over an element of form
h.y/ D yg.y/ C 1, where g.y/ 2 .\t

iD1mi /Œy�, then Q is a height-one maximal
ideal of AŒy�.

Theorem 2.9, due to Roger Wiegand, characterizes Spec.ZŒy�/, the spectrum of
the ring of polynomials in the variable y over the integers Z. The most important
distinguishing feature of Spec.ZŒy�/ is Axiom RW.

Theorem 2.9 ([26, Theorem 2]). Let U D Spec.ZŒy�/, the partially ordered set of
prime ideals of the ring of polynomials in one variable over the integers. Then U is
characterized by the following axioms:

(P1) U is countable and has a unique minimal element.
(P2) U has dimension two.
(P3) For each element u of height-one, u" is infinite.
(P4) For each pair u, v of distinct elements of height-one, u" \ v" is finite.

(RW) Every pair .S; T / of finite subsets S and T of U such that ; ¤ S � H1.U /

and T � H2.U / has a “radical element” in U . A “radical element” for such
a pair .S; T / is a height-one element w 2 U such that s" \ w" � T � w",
for every s 2 S .

A partially ordered set U satisfies the axioms of Theorem 2.9 if and only if U is
order-isomorphic to Spec.ZŒy�/.

Theorem 2.9 leads to Question 2.10:

Question 2.10. For which two-dimensional Noetherian domains A is Spec.A/ Š
Spec.ZŒy�/?

Remarks 2.11. (1) The following is known about rings that fit Question 2.10:

(a) Let k be a field and let z be another indeterminate. Then Spec.kŒz; y�/ is order-
isomorphic to Spec.ZŒy�/ ” k is an algebraic extension of a finite field.
The .(/ direction is due to Wiegand in [26, Theorem 2]; for the .)/ direction,
see [29].

(b) Let D be an order in an algebraic number field; that is, D is the ring of
algebraic integers in a field K that is a finite extension of the rational numbers.
Roger Wiegand shows Spec.DŒy�/ is order-isomorphic to Spec.ZŒy�/ in [26,
Theorem 1].

(c) In their 1998 article Li and Wiegand prove that if B WD ZŒy�Œ
g1

f
; : : : ;

gm

f
�, where

f is nonzero and f; g1; : : : ; gm 2 ZŒy�, then Spec.B/ is order-isomorphic to
Spec.ZŒy�/; see [14].

(d) Saydam and Wiegand extend the result of Li and Wiegand in 2001 to show, for
D an order in an algebraic number field and for B a finitely generated extension
of DŒy� contained in the field of fractions of DŒy�, that Spec.B/ Š Spec.ZŒy�/

in [22].
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(2) The prime spectrum of RŒy� is not known in general, for y an indeterminate
over a one-dimensional Noetherian domain R with infinitely many maximal
ideals. In fact Spec.RŒy�/ is barely known beyond the examples of item (1)
above and the rings of Theorem 2.13 below; see [29].

(3) The prime spectrum of QŒz; y�; where Q is the field of rational numbers, is
unknown, but Wiegand shows that it is not order-isomorphic to Spec.ZŒy�/ in
[26]; see also [29, Remark 2.11.3].

In relation to Question 2.10, Wiegand’s 1986 conjecture is still open:

Conjecture 2.12 (Wiegand [26]). For every two-dimensional Noetherian integral
domain D that is finitely generated as a Z-algebra, Spec.D/ Š Spec.ZŒy�/.

The next theorem, Theorem 2.13, was first proved by Heinzer and Wiegand in
case R is countable. Later Shah, Wiegand, and Wiegand proved it for cardinalities;
see also [11]. By Theorem 2.13, the prime spectrum of a polynomial ring over a
semilocal one-dimensional Noetherian domain is dependent upon whether or not
the coefficient ring is Henselian.2 For example, complete local rings, such as power
series rings over a field, are Henselian.

Theorem 2.13 ([6, Theorem 2.7], [23, Theorem 2.4], and [29, Theorem 3.1]).
Let R be a semilocal one-dimensional Noetherian domain, let m1; : : : ; mn be the
maximal ideals of R where n 2 N, let y be an indeterminate, let ˇ D jRŒy�j, and
let �i D j.R=mi /Œy�j, for each i with 1 � i � n. Then there exist exactly two
possibilities for U D Spec.RŒy�/ up to cardinality, depending upon whether or not
R is Henselian and, if R is not Henselian, depending upon the number n of maximal
ideals of R.

• In case R is not Henselian, U satisfies these axioms:

.Iˇ/ jU j D ˇ and U has a unique minimal element u0 D .0/.

.IIˇ/ jH1.U / \ max.U /j D ˇ.

.III� / dim.U / D 2.

.IVn/ There exist exactly n height-one elements u1; : : : ; un 2 U such that u"
i is

infinite. Also:
(i) u"

1 [ � � � [ u"
n D H2.U /.

(ii) u"
i \ u"

j D ; if i ¤ j .

(iii) ju"
i j D �i , for 1 � i � n.

.Vn/ If v 2 U , v is not maximal, ht.v/ D 1 and v … fu1; : : : ; ung, then v" is finite.

.VIˇ/ For every nonempty finite subset T of H2.U /, we have jLe.T /j D ˇ.

2Essentially a “Henselian” ring is one that satisfies Hensel’s Lemma; see the definition in [20].
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• If R is Henselian, then n D 1 and U satisfies Axioms Iˇ; IIˇ; III� ; IV1 and the
adjusted axioms V h

1 and VI h
ˇ below:

.V h
1 / If v 2 U , v is not maximal, ht.v/ D 1 and v ¤ u1, then jv"j D 1.

.VI h
ˇ / For every nonempty finite subset T of H2.U /, we have jLe.T /j D ˇ ”
jT j D 1, and Le.T / D ; ” jT j > 1.

β P1 β β · · ·

• • • · · · # bullets = γ1

(0)

Diagram 2.13.h: Spec.RŒy�/, R Henselian

β P1 P2 · · · Pn MESS

γ1 γ2 · · · γn

u0

Diagram 2.13.nh: Spec.RŒy�/, R non-Henselian

These diagrams show Spec.RŒy�/ for the two cases of the theorem, where Pi is
the prime ideal of RŒy� corresponding to ui , for each i with 1 � i � n, and each
block ˇ represents ˇ primes in that position.
The relations satisfied by the MESS box in Diagram 2.13 are too complicated to
show. They are described in Axiom VIˇ.

2.2 Prime Ideals in Power Series Rings

In this subsection we describe prime ideals in power series rings over a Noetherian
domain. In the remainder of the paper we use the following straightforward remarks,
particularly Remark 2.14(1).

Remarks 2.14. Let x be an indeterminate over a Noetherian domain A. Then

(1) Every maximal ideal of AŒŒx�� has the form .m; x/AŒŒx��, where m is a maximal
ideal of A; see [20, Theorem 15.1] (Nagata). Thus x is in every maximal ideal
of AŒŒx��.
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(2) If p is a prime ideal of A, then pAŒŒx�� 2 Spec.AŒŒx��/ and ht.pAŒŒx��/ D ht.p/;
see [3, Theorem 4] or [1, Theorem 4].

(3) Thus every maximal ideal of AŒŒx�� of maximal possible height in a Noetherian
catenary domain has the form .m; x/AŒŒx��, where m is a maximal ideal of A

with ht.m/ D dim.A/.

Heinzer, Rotthaus, and Wiegand almost characterized Spec.RŒŒx��/ for R a
one-dimensional Noetherian domain, except for specifying the cardinalities of
the Le.fM g/ sets of height-two maximal ideals M of RŒŒx��. Later Wiegand and
Wiegand showed that jLe.fM g/j D jRŒŒx��j for each M .

Theorem 2.15 ([7, Theorem 3.4] and [29, Theorem 4.3]). Let R be a one-
dimensional Noetherian domain and let x be an indeterminate. Set ˇ WD jRŒŒx��j and
set ˛ WD j max.R/j. Then the partially ordered set U WD Spec.RŒŒx��/ is determined
by axioms similar to those of the Henselian version of Theorem 2.13:

.Iˇ/ jU j D ˇ and U has a unique minimal element u0 D .0/.
.II0/ H1.U / \ max.U / D ;.

.III˛/ dim.U / D 2, jH2.U /j D ˛.
.IV1/ There exists a height-one element u1 2 U such that u"

1 D H2.U / namely,
u1 D xRŒŒx��.

.V h
1 / If v 2 U , v is not maximal, ht.v/ D 1, and v ¤ u1, then jv"j D 1.3

.VI h
ˇ / For every nonempty finite subset T of H2.U /, we have jLe.T /j D ˇ if and

only if jT j D 1, and Le.T / D ; if and only if jT j > 1:

Thus Spec.RŒŒx��/ is as shown in the following diagram:

(x) β β · · ·

• • • · · ·

(#{bullets} = α)

(0)

Diagram 2.15.0: Spec.RŒŒx��/

In Diagram 2.15.0, the cardinality of the set of bullets equals the cardinality
of max.R/ since the set of height-two maximal ideals of RŒŒx�� is in one-to-
one correspondence with the set of maximal ideals of the coefficient ring R by
Remark 2.14(1). The boxed ˇ beneath each maximal ideal of RŒŒx�� means that
there are exactly ˇ prime ideals in that position (beneath that maximal ideal and

3Since axiom II0 holds, this axiom could be stated here without saying “v is not maximal.”
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no other). For each value of ˛ and ˇ, any two posets described by Diagram 2.15.0
are order-isomorphic.

Remark 2.16. From Diagrams 2.15.0 and 2.13.h, we see that Spec.QŒy�ŒŒx��/ ©
Spec.Q.ŒŒx��Œy�/, where Q is the field of rational numbers. Moreover the difference
between the prime spectrum of a power series ring over a one-dimensional
Noetherian domain, such as QŒy�ŒŒx��, and that of a polynomial ring over a Henselian
ring, such as QŒŒx��Œy�, is that the partially ordered set described in the Henselian case
of Theorem 2.13 has ˇ height-one maximal elements, whereas the other partially
ordered set has no height-one maximal elements.

In our characterizations of prime spectra, we identify those prime ideals that are
an intersection of maximal ideals, such as the prime ideal .x/ in Diagram 2.15.0 and
the prime ideal P1 in Diagram 2.13.h. These are called j -prime ideals.

Definitions 2.17. (1) Let A be a commutative ring.

• A j -prime (ideal) of A is a prime ideal of A that is an intersection of maximal
ideals of A.

• The j -spectrum of A is j -Spec.A/ WD fj -primes 2 Spec.A/g.

(2) For U a partially ordered set, we say that u 2 U is a j -element if u is a maximal
element of U or if min.u"/ is infinite. Then j -set.U / WD fj -elements of U g.

Thus, if A is a two-dimensional integral domain, fj -elements of U D Spec.A/g D
fj -prime ideals of Ag:
Examples 2.18. We show j -Spec.QŒy�ŒŒx��/ and j -Spec.QŒŒx��Œy�/, respectively, in
Diagram 2.18.0; they are parts of Diagrams 2.15.0 and 2.13.h.

(x) (x)|Q[[x]]|

|Q[y]| |Q[y]|

(0) (0)

Diagram 2.18.0: j -Spec.QŒy�ŒŒx��/ and j -Spec.QŒŒx��Œy�/

3 Properties of Mixed Polynomial-Power Series Rings

In this section we give some properties of prime spectra of three-dimensional
Noetherian mixed polynomial-power series rings. We use the following setting:

Setting 3.1. Let x and y be indeterminates over a one-dimensional Noetherian
domain R. Let A be either RŒy�ŒŒx��, RŒŒx��Œy�, or RŒŒx; y��. Let A1 D RŒy� if
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A D RŒy�ŒŒx�� or RŒŒx��Œy�, and let A1 D RŒŒy�� if A D RŒŒx; y��. Then A=xA Š A1

and, depending on which A1 we have, for every m 2 max.R/.

A=.m; x/A Š A1=mA1 Š .R=m/Œy� or A=.m; x/A Š .R=m/ŒŒy��:

Proposition 3.2 gives a description of the maximal ideals of A having maximal
height, that is, height three.

Proposition 3.2 ([4]). Assume Setting 3.1 and let M be a height-three maximal
ideal of A: Then

(1) M D .m; x; h.y//A; for some m 2 max.R/ and some h.y/ 2 A1 with h.y/

irreducible in A1 D A1=.mA1/ Š .R=m/Œy� or h.y/ irreducible in A1 Š
.R=m/ŒŒy��.

(2) Conversely, the ideals .m; x; h.y//A are maximal and have height three, for
every m 2 max.R/ and for every h.y/ 2 A1 such that h.y/ is irreducible in A1.

(3) If A D RŒŒx; y��, then every maximal ideal of RŒŒx; y�� has height 3; there are
j max.R/j maximal ideals in RŒŒx; y��; and max.RŒŒx; y��/ D f.m; x; y/RŒŒx; y��,
where m 2 max.R/g.

(4) For A D RŒŒx��Œy� or A D RŒy�ŒŒx��, there are j.R=m/j �@0 height-three maximal
ideals that contain m, for each fixed m 2 max.R/.

Proof. Item (3) follows from Remark 2.14(1). For the remaining items, see [4,
Proposition 4.2]. ut

Proposition 3.3 is also straightforward to prove using Remark 2.14(1) and
Lemma 2.8; see [4].

Proposition 3.3 ([4, Propostion 4.3]). There are no height-one maximal ideals in
RŒŒx; y��; RŒy�ŒŒx��, or in RŒŒx��Œy�.

Proposition 3.4 is the reason that the prime spectra of RŒŒx��Œy� and RŒy�ŒŒx�� is
much simpler than Spec.RŒx; y�/.

Proposition 3.4 ([5, Proposition 3.11] and [4, Proposition 3.3]). Assume Set-
ting 3.1. Let P be a height-two prime ideal of A such that x … P . Then P is
contained in a unique maximal ideal of A.

In Proposition 3.5, with Setting 3.1, we observe that certain obvious conditions
on a height-one prime ideal Q of A are equivalent to saying that Q is not contained
in any height-three maximal ideal of A. For A D RŒŒx; y��, these conditions never
occur; see Proposition 3.2(3) or Theorem 4.1.

Proposition 3.5 ([4, Proposition 3.8]). Assume Setting 3.1, so that R is a one-
dimensional Noetherian domain and A is RŒŒx��Œy�, RŒy�ŒŒx��, or RŒŒx; y��. Let Q be
a height-one prime ideal of A. Then statements 1–4 are equivalent:

(1) Every prime ideal of A containing .Q; x/A is a maximal ideal.
(2) For every m 2 max.R/, every prime ideal of A containing .Q; m/A is maximal.
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(3) Q is contained in no height-three maximal ideal of A.
(4) dim.A=Q/ D 1.

Moreover,

• If .Q; x/A D A, then item (1) holds.
• If m 2 max.R/ and .Q; m/A D A, then every prime ideal containing .Q; m/A is

maximal.
• Thus either of the conditions

(i) .Q; x/A D A or
(ii) .Q; m/A D A, for every m 2 max.R/,

implies (4) dim.A=Q/ D 1.

Proposition 3.6 holds for higher-dimensional rings and more variables (one
variable must be a power series variable), but to fit our focus in this article, we
consider prime ideals of A, where A D RŒŒx; y��; RŒy�ŒŒx��, or RŒŒx��Œy� has dimension
three. One case of Proposition 3.6 is given in [5, Proposition 3.8].

Proposition 3.6 ([4, Proposition 2.18]). Assume Setting 3.1 and let Q and M be
prime ideals of A with x … Q, ht.Q/ D 1, and ht.M/ D 3. Then Q" \ M#
contains exactly jRŒŒx��j height-two prime ideals.

3.1 j -Spectra of Quotients of Mixed Polynomial-Power
Series Rings

We use Setting and Notation 3.7 in the remainder of this section.

Setting and Notation 3.7. Let R be a one-dimensional Noetherian domain and let
x and y be indeterminates. Let A be RŒŒx��Œy�, RŒy�ŒŒx��, or RŒŒx; y�� and let Q be a
height-one prime ideal of A such that x … Q and .Q; x/A ¤ A. Set B WD A=Q.
By Remarks 2.2, A is catenary and has dimension three, and so B is a Noetherian
integral domain with dim.B/ � 2. Let I be a nonzero ideal of RŒy� such that
.I; x/A D .Q; x/A; that is, I D f all constant terms in RŒy� of power series in Qg.

Note 3.8. If I ¤ RŒy�, then the ideal I from Setting and Notation 3.7 is a nonzero
height-one ideal of RŒy�; that is, every prime ideal P of RŒy� minimal over I has
height one.

Proof. Let P be a prime ideal of RŒy� minimal over I . If I D .0/, then .I; x/ D
.x/ ¤ .Q; x/, since Q ¤ .0/ and x … Q. Thus I ¤ .0/, and so ht.P / � 1. Now
.Q; x/A ¤ A by assumption and 1 D ht.Q/ < ht.Q; x/ since x … Q and A is
catenary by Remarks 2.2. Also ht.Q; x/ � 2 by Krull’s principal ideal theorem.
Thus ht.Q; x/ D 2. Now .P; x/ ¤ A since P 2 Spec.RŒy�/. Also .P; x/ is a
minimal prime ideal of .I; x/ D .Q; x/. Thus ht.P; x/ D 2, and so P 2 Spec.RŒy�/

implies ht.P / D 1. ut
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We show in this subsection that the j -primes of A that contain Q also contain x.
It follows that each j -prime of A corresponds to a minimal prime ideal of RŒy�=I .
We begin to demonstrate this correspondence with the following remarks.

Remarks 3.9. With Setting and Notation 3.7, consider the following canonical
surjections:

� W A �! B D A=Q with ker.�/ D Q;

�x W A �! RŒy� D A=xA with ker.�x/ D .x/:

(i) The maps � and �x yield isomorphisms:

Spec.B/ Š Spec

�
A

Q

�
I and Spec.RŒy�/ Š Spec

�
A

xA

�
I

Spec

�
B

xB

�
Š Spec

�
A

.x; Q/A

�
D Spec

�
A

.x; I /A

�
Š Spec

�
RŒy�

I

�
:

(ii) Since A is catenary, the correspondences in Remark 3.9(i) above imply that for
each n � 2, the ht-n prime ideals of B can be identified with the ht-.n C 1/

prime ideals of A containing Q; the ht-n prime ideals of RŒy� can be identified
with the ht-.n C 1/ prime ideals of A containing x; and the ht-n primes of B

containing x can be identified with the ht-n prime ideals of RŒy� containing I .

Proposition 3.10 ([4, Proposition 3.20]). Assume Setting 3.7.

(1) Spec.B=xB/ Š Spec.RŒy�/ \ .VRŒy�.I // Š Spec.RŒy�=I /.
(2) The height-one prime ideals of B that contain x correspond to the height-one

prime ideals of RŒy� that contain I .
(3) Every nonmaximal j -prime ideal of B contains x and thus corresponds to a

j -prime ideal of RŒy� containing I .
(4) j -Spec.B/ n f.0/g n fheight-one maximal elementsg Š j -Spec.B=xB/ Š j -

Spec.RŒy�=I /.
(5) If max.R/ is infinite, then j -Spec.B=xB/ D Spec.B=xB/; that is, every prime

ideal of B containing x is a j -prime, and every prime ideal of RŒy� containing
I is a j -prime.

Proof. Items (1)–(4) follow from Remarks 3.9; see [4, Proposition 3.22]. For
item (5), if P 2 Spec.B/ has height one and contains x, then P corresponds to
a height-one prime ideal P 0 of RŒy� that contains I . Therefore it suffices to show
that every prime ideal P 0 of RŒy� containing I is contained in an infinite number of
height-two maximal ideals. If P 0 D mRŒy�, for some m 2 max.R/, then

j.P 0/".RŒy�/j D j.mRŒy�/".RŒy�/ j D jRŒy�=.mRŒy�/j D j.R=m/Œy�j D jR=mj � @0;
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using Lemma 2.6; thus P 0=I is a j -prime of RŒy�=I . On the other hand, if P 0\R D
.0/, then every element of P 0 has positive degree and P 0 D h.y/KŒy�\RŒy�, where
K is the field of fractions of R and h.y/ 2 RŒy�, by Remarks 2.7(3). The leading
coefficient hn of h.y/ is contained in at most finitely many maximal ideals of R.

Claim 3.11. P 0 ¨ .m; P 0/RŒy� ¤ RŒy�, for every maximal ideal m such that
hn … m:

Proof of Claim 3.11. Since mRŒy� contains elements of degree 0, .m; P 0/ is prop-
erly bigger than P 0. For the inequality, write h.y/ D hnyn C hn�1y

n�1 C � � � C h0;

where n � 1, each hi 2 R and hn ¤ 0. If hn … m, then hi =hn 2 Rm, for each i

with 0 � i � n. Thus

P 0RmŒy� D h.y/KŒy� \ RmŒy� D
�

yn C hn�1

hn

yn�1 C � � � C h0

hn

�
RmŒy�

H) P 0RmŒy� C mRmŒy�

mRmŒy�
¨ RmŒy�

mRmŒy�
;

and so Claim 3.11 is proved. ut
For item (5), since max.R/ is infinite, there are infinitely many m 2 max.R/

such that hn … m. Each pair .m; P 0/ with m 2 max.R/ is in a distinct maximal
ideal of RŒy�; that is, a maximal ideal containing .m; P 0/ cannot contain .m0; P 0/
if m ¤ m0 and m; m0 2 max.R/. Thus j.P 0/".RŒy�/j D j max.R/j, since removing
finitely many m 2 max.R/ such that hn 2 m from the infinite set max.R/ leaves
the same number. This completes the proof of item (5) and thus Proposition 3.10 is
proved. ut
Remark 3.12. With Setting 3.7, assume that R is semilocal and I � P 0 2
Spec.RŒy�/. If P 0 is mRŒy�, for some m 2 max.R/, or P 0 is a maximal ideal of
RŒy�, then P 0 is a j -prime ideal. However not every prime ideal containing I is
necessarily a j -prime ideal. See Example 3.13 and Theorem 7.2.

Example 3.13. Let R D Z.2/ and I D 2y.2y � 1/.y C 2/. Then Spec.R=I / is
shown below:

(2y−1) (2) (y) (y + 2)

ℵ0
(2, y)

Diagram 3.13.0: Spec.Z.2/Œy�=.2y.2y � 1/.y C 2//

The structure of Spec.Z.2/Œy�=.2y.2y � 1/.y C 2/// is determined by the finite
partially ordered subset

F D f.2y � 1/; .2/; .y/; .y C 2/; .2; y/g:
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We see that Spec.Z.2/Œy�=.2y.2y �1/.y C2/// and its j-spec are not the same, since
.y/ and .y C 2/ are prime ideals that are not j -prime ideals.

4 Two-Dimensional Prime Spectra of Form RŒŒx; y��=Q

In this short section we discuss the prime spectra of homomorphic images by a
height-one prime ideal of the ring of power series in two variables over a one-
dimensional Noetherian domain. These prime spectra are similar to those for images
of mixed polynomial-power series rings. If both variables x and y are power series
variables, however, the analysis is simplified.

Theorem 4.1. Let R be a one-dimensional Noetherian domain, let x and y be
indeterminates, and let Q be a height-one prime ideal of RŒŒx; y��. Set B D
RŒŒx; y��=Q and ˇ D jRŒŒx��j. Then:

(1) If Q ª .x; y/RŒŒx; y��, then there exist n 2 N and m1; : : : ; mn 2 max.R/ such
that Spec.B/ has the form shown below:

β β · · ·

· · ·

β

(m1, x, y) (m2, x, y) (mn, x, y)

Q

(2) If Q � .x; y/RŒŒx; y��, then Spec.B/ is order-isomorphic to Spec.RŒŒx��/; that
is, Spec.B/ has the form shown below:

(x, y) β β · · ·

· · ·

Q

(m2, x, y)(m1, x, y)

where the mi range over all the elements of max.R/ and ˇ D jRŒŒx��j.
As the diagrams show, Spec.B/ is characterized by the description for each case.
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Proof. For both items we use that every maximal ideal of RŒŒx; y�� has the form
.m; x; y/ where m 2 max.R/, by Proposition 3.2(3). For item (1), let Q0 be the
ideal of R generated by all the constant terms of elements of Q. Then 1 … Q0,
since an element with constant term 1 is a unit of RŒŒx; y��—every such element
is outside every maximal ideal. Also Q0 ¤ .0/, since Q ª .x; y/. Therefore Q0

is contained in finitely many maximal ideals of R, say m1; : : : ; mn. It follows that
Q is contained in n maximal ideals of RŒŒx; y��, namely .m1; x; y/; : : : ; .mn; x; y/.
By Proposition 3.6, we have jRŒŒx��j height-two prime ideals between Q and
.mi ; x; y/, for each i . Every height-two prime ideal P between Q and a maximal
ideal .m; x; y/ is missing either x or y, since Q ª .x; y/RŒŒx; y��. Therefore by
Proposition 3.4 each such prime ideal P is contained in a unique maximal ideal,
namely .m; x; y/. Thus Spec.RŒŒx; y��=Q/ has the form given in the first diagram.

For item (2), since Q � .x; y/, we have Q � .m; x; y/, for every m 2 max.R/.
By Proposition 3.6 again the number of primes between Q and every maximal ideal
.m; x; y/ is jRŒŒx��j, and so we have jRŒŒx��j height-two prime ideals between Q and
each .mi ; x; y/, for each i . As for item (1), every height-two prime ideal P other
than .x; y/ that is between Q and a maximal ideal .m; x; y/ is missing either x or y,
since Q ª .x; y/RŒŒx; y��. Therefore every such prime ideal P is in a unique maxi-
mal ideal of RŒŒx; y��, and so we get the form of the second diagram in this case. ut

5 Spectra of Quotients of Mixed Polynomial-Power
Series Rings

Let x and y be indeterminates over a one-dimensional Noetherian domain R, let
A D RŒŒx��Œy� or RŒy�ŒŒx��, and let Q be a height-one prime ideal of A. In this
section we describe Spec.A=Q/; this is work in progress from [4]. In some cases,
we determine the spectra precisely. We need not consider A D RŒŒx; y��, since
Theorem 4.1 contains a complete description of Spec.RŒŒx; y��=Q/, for Q a height-
one prime ideal of RŒŒx; y��.

First we consider the exceptional cases where the dimension of A=Q is 1. We
need a definition:

Definition 5.1. A fan is a one-dimensional poset with a unique minimal element.

Theorem 5.2 ([4, Theorem 5.2]). Let R be a one-dimensional Noetherian domain
and let x and y be indeterminates over R. Let A D RŒŒx��Œy� or RŒy�ŒŒx��, let Q be a
height-one prime ideal of A, and let B D A=Q. Then Spec.B/ is a fan if one of the
following two cases occur:

(i) Every height-two prime ideal of A containing .Q; x/A is maximal.
(ii) For every m 2 max.R/, every height-two prime ideal of A containing .Q; m/A

is maximal.

Moreover, if A D RŒy�ŒŒx��, then Spec.B/ is a fan with a finite number of elements,
but at least two. If A D RŒŒx��Œy�, then Spec.B/ is a fan with jRŒŒx��j elements.
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Proof. By Proposition 3.5, either of these conditions implies that Spec.B/ is a fan.
For the “Moreover” statement, every maximal ideal of B is the image of a height-

two maximal ideal of A that contains Q. In case A D RŒy�ŒŒx��, every height-two
maximal ideal has the form .M; x/, where M is a height-one maximal ideal of RŒy�,
by Remarks 2.14. There are just finitely many such height-two maximal ideals that
contain .Q; x/A. For both of the rings A D RŒy�ŒŒx�� and A D RŒŒx��Œy�, since A

has no height-one maximal ideals by Proposition 3.3, there must be a maximal ideal
containing Q that is bigger than Q and so the cardinality of the fan is at least two.
For A D RŒŒx��Œy�, j Spec.A=Q/j D jRŒŒx��j; see [4, Theorem 5.2]. ut

Except for the special cases of Theorem 5.2, prime spectra of homomorphic
images of mixed polynomial-power series rings RŒŒx��Œy� and RŒy�ŒŒx�� by height-
one prime ideals are two dimensional. In order to describe the partially ordered sets
that arise, we need a kind of genetic code. Definition 5.5 of this section contains
such a code and a general set of axioms involving the code that are satisfied by two-
dimensional images B D RŒŒx��Œy�=Q and B 0 D RŒy�ŒŒx��=Q0 , where Q and Q0 are
height-one prime ideals of RŒŒx��Œy� and RŒy�ŒŒx��, respectively. Basically the code
tells us, for each two-dimensional partially ordered set, how many elements are at
each level and what relationships hold between elements.

We use the following setting and notation for the rest of this section.

Setting and Notation 5.3. Let x and y be indeterminates over a one-dimensional
Noetherian domain R, let A D RŒŒx��Œy� or RŒy�ŒŒx��, and set ˇ WD ˇ̌

RŒŒx��
ˇ̌
. Let Q

be a height-one prime ideal of A such that x … Q and the domain B WD A=Q has
dimension two. Let I be the height-one ideal of RŒy� such that .I; x/A D .Q; x/A,
and let fq1; : : : ; q`g, for ` 2 N, be the minimal primes of I in RŒy�. Define:

• F WD fq1; : : : ; q`g [ fq"
i \ q

"
j g1�i<j �`, a subset of VRŒy�.I /;

• �i WD jq"
i n .

S
j ¤i q

"
j /j, for each i with 1 � i � `; that is, each �i is the number

of height-two maximal ideals of RŒy� that contain qi but none of the other qj s;
and

• " WD jfht 1 maximal ideals of Bgj.
The main theorem of [4] describes Spec.B/ in Setting and Notation 5.3. We

remark that, as might be expected from Proposition 3.10, these prime spectra are
largely determined by Spec.RŒy�=I /.

Main Theorem 5.4 ([4, Theorem 6.5]). Assume Setting and Notation 5.3. Then
there exists an order-monomorphism ' W F ! U such that U and ' have the
following properties:

(1) jU j D ˇ, dim.U / D 2, and U has a unique minimal element u0.
(2) jfH1.U / \ max.U /gj D "; f'.q1/; : : : ; '.q`/g � H1.U /.
(3) H2.U / D S

'.qi /
" D .'.F / n f'.q1/; : : : ; '.q`/g/ [ S`

iD1 Ti , where each
Ti D '.qi /

" n .[j ¤i '.qj /"/ and jTi j D �i .
(4) f'.q1/; : : : ; '.q`/g contains the set fu 2 U j ju"j D 1; ht.u/ D 1g of

nonmaximal nonzero j -elements of U .
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(5) For every u 2 H1.U / n '.F /, there exists a unique maximal element in U that
is greater than or equal to u.

(6) For every 1 � i < j � `, '.qi /
" \ '.qj /" D '.q

"
i \ q

"
j / � '.F /.

(7) For every finite nonempty subset T � H2.U / n F , Le.T / D ; if jT j > 1 and
jLe.T /j D ˇ if jT j D 1.4

These properties determine U as a partially ordered set. Moreover " � ˇ. If A D
RŒy�ŒŒx��, then " is finite; if A D RŒy�ŒŒx�� and max.R/ is infinite, then " D 0.

Proof. We give some notes about the proof: The map ' W F ,! U is given by
'.P / D P=I , for every P 2 F , so that ht.'.P // D 1 C ht.P /. Then item (4)
follows from Note 3.8 and Proposition 3.10, and items (5) and (7) follow from
Proposition 3.4. The “Moreover” statement holds since every ideal of A is finitely
generated, and thus the total number of prime ideals of A and of B is at most ˇ.
The remaining statements follow from Remark 2.14(1) and Lemma 2.8; if max.R/

is finite, every height-one maximal ideal of B corresponds to a height-two maximal
ideal of A such that N D .M; x/, where M is a height-one maximal ideal of RŒy�

and .Q; x/ � N . There are just finitely many of these. For more details, see [4]. ut
Definition 5.5. Let ` 2 N0 and let "; ˇ; �1; : : : ; �` be cardinal numbers with
"; �i � ˇ, for each �i . We say that a partially ordered set U is image polynomial-
power series of type ."I ˇI F I `I .�1; : : : ; �`//, if there exist a finite partially ordered
set F of dimension at most one with ` minimal elements such that every non-
minimal maximal element of F is greater than at least two minimal elements
of F and an order-monomorphism ' such that U satisfies properties (1)–(7) of
Theorem 5.4.

For examples of these prime spectra, see Sects. 6 and 7.

6 Prime Spectra of Simple Birational Extensions of Power
Series Rings

By a simple birational extension of an integral domain A with field of fractions K ,
we mean a ring of form AŒg=f � between A and K , where f; g 2 A with f ¤ 0,
and either f; g is an A-sequence or .f; g/A D A. As noted in Remarks 2.11(c),
the prime spectra of simple birational extensions of ZŒy� are order-isomorphic to
Spec.ZŒy�/; see [14]. In this section, for R a one-dimensional Noetherian domain
and x an indeterminate, we present some recent work of Eubanks-Turner, Luckas,
and Saydam on prime spectra of simple birational extensions of RŒŒx��; see [5].
Generally the prime spectrum of a simple birational extension of RŒŒx�� is rather
more complicated than that of RŒŒx��.

4The term “Le.T /” is defined in Notation 2.1.
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Theorem 6.1 summarizes the possible prime spectra of simple birational exten-
sions of a power series ring RŒŒx�� if R is a one-dimensional Noetherian domain
with infinitely many maximal ideals. The original statement of this theorem is given
incorrectly in [5]. We do not necessarily know that all the �i are the same, as was
assumed there.

Theorem 6.1 ([5, Theorem 4.1]). Let R be a one-dimensional Noetherian domain
such that ˛ D j max.R/j is infinite, let x and y be indeterminates, and let f and
g be elements of RŒŒx�� with f ¤ 0. Let a and b be the constant terms of f and g

respectively. Set ˇ D ˇ̌
RŒŒx��

ˇ̌
, and v D jVR.a; b/j: Let VR.a; b/ D fm1; : : : ; mvg

be a numbering of the maximal ideals of R that contain a and b. For each i with
1 � i � v, let �i WD jR=mi j � @0. Let B D RŒŒx��Œg=f �.

(1) Suppose that .f; g/RŒŒx�� D RŒŒx�� and x divides f ; equivalently B D
RŒŒx��Œ1=f �, a D 0, and b is a unit. Then Spec.B/ is a fan of cardinality ˇ.

(2) Suppose that g D 0 or .f; g/RŒŒx�� D RŒŒx�� and x does not divide f , so that
B D RŒŒx�� or B D RŒŒx��Œ1=f �, a ¤ 0, and .a; b/R D R. Then Spec.B/ is
either order-isomorphic to Spec.RŒŒx��/ or to Spec.RŒŒx��/ with jRŒŒx��j height-
one maximal elements adjoined.

(3) (a) If f; g is an RŒŒx��-sequence and x divides f , then a D 0 and b is a nonzero
nonunit.

(b) If a D 0 and b is a nonzero nonunit, then Spec.B/ is D-birational of type
.ˇI ˇI .v; 0/I �1; � � � ; �v/, as defined in Definition 6.3.

(4) (a) If f; g is an RŒŒx��-sequence and x does not divide f , then a ¤ 0 and
.a; b/R ¤ R.

(b) If a ¤ 0 and .a; b/R ¤ R, then Spec.B/ is N -birational of type .ˇI ˇI v C
1I �1; � � � ; �v; ˛I t1; � � � ; tv/, for some t1; � � � ; tv in N0; the list m1; : : : ; mv is
to be reordered so that the corresponding list t1; � � � ; tv is in increasing order.
See Definition 6.2.

Proof. See [5, Theorem 4.1]; it is an easy adjustment to put in the �i instead of � .
ut

The “type” referred to in Definitions 6.2 and 6.3 below is like a genetic code
that describes the numbers of prime ideals in various positions of Spec.RŒŒx��Œg=f �/

in general. These definitions are related to Definition 5.5; here we give more details
and restrictions on the partially ordered set F than in that definition.

Definition 6.2. Let `; t1; : : : ; t`�1 2 N0 be such that t1 � t2 � � � � � t`�1, and
let ˇ; �1; : : : ; �` be infinite cardinal numbers with each �i � ˇ. Let " D 0 or ˇ; if
` D 0, there are no ti or �i and we require " D ˇ ¤ 0. Then a partially ordered set
U is N -birational of type ."I ˇI `I �1; : : : ; �`I t1; : : : ; t`�1/ if axioms 1–6 hold:

(1) jU j D ˇ, and U has a unique minimal element u0.
(2) jfheight-one maximal elements of U gj D ".
(3) If ` ¤ 0, then dim.U / D 2. If ` D 0 (and so " D ˇ ¤ 0), then dim.U / D 1

and U is a fan; see Definition 5.1.



Proceeding 75

(4) U has exactly ` height-one elements u 2 U such that ju"j D 1. Moreover, if
we list these elements as P1; P2; : : : ; P`, then they satisfy:

• jP "
i j D �i ; for each i with 1 � i � `I

•
[̀
iD1

P
"
i D fheight-two maximal elements of U g; and

• 1 � i; j < `, and i ¤ j H) jP "
i \ P

"
` j D ti and jP "

i \ P
"
j j D 0.

(5) For every height-one element u 2 U n fP1; P2; : : : ; P`g, there exists a unique
maximal element in U that is greater than or equal to u.

(6) For every height-two element t 2 U , jLe.t/j D ˇ.

If each ti D 0, then every pair .Pi ; Pj / with i ¤ j is comaximal by the condition
of axiom 4; otherwise P` is usually distinguishable from the other Pi because there
are ti maximal elements bigger than both P` and Pi , for each i with 1 � i <

`. Schematically, the condition of axiom 4 yields the following j -sets, where the
unique minimal element below all other elements has been removed:

γi ti γ tj γj γ1 γ2 . . .

. . .

γ

(4) Pi P Pj OR P1 P2 P

Diagram 6.2.0: Parts of N -birational posets; on the right each ti D 0

Abbreviations 6.2.a. If �1 D � � � D �` D � (as in all of our examples), then we
write the type as ."I ˇI `I � I t1; : : : ; t`�1/.

Definition 6.3 for D-birational is the case where every ti � 1 of the N -birational
condition. The D-birational posets correspond to prime spectra for simple birational
extensions of DŒŒx��, for some Dedekind domain D; see Theorem 6.5. In this case,
we group the nonmaximal j -primes into a comaximal subset and a non-comaximal
subset.

Definition 6.3. Let m; n 2 N0 and let ˇ; �1; : : : ; �m; ı1; : : : ; ın be infinite car-
dinal numbers with each �i ; ıj � ˇ. Let " D 0 or ˇ; if m D n D 0,
require " D ˇ ¤ 0. Then a partially ordered set U is D-birational of type
."I ˇI .m; n/I �1; : : : ; �mI ı1; : : : ; ın/ if axioms (1), (2), (5), (6) of Definition 6.2 hold
as well as axioms (30) and (40) below:

(30) If m ¤ 0 or n ¤ 0, then dim.U / D 2. If m D n D 0 D ˇ, then " D ˇ ¤ 0,
dim.U / D 1, and U is a fan.

(40) U has exactly m C n height-one elements u such that u" is infinite:
P1; P2; : : : ; Pm; Q1; � � � ; Qn, where for i; j; r; i 0; j 0 2 N with 1 � i; j �
m; i ¤ j; 1 � r � n; 1 � i 0; j 0 < n, and i 0 ¤ j 0; we have:

• jP "
i j D �i ; jQ"

r j D ır ;
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• jP "
i \ P

"
j j D 0 D jP "

i \ Q
"
r j D jQ"

i 0 \ Q
"
j 0 j and jQ"

i 0 \ Q
"
n j D 1;

•
m[

iD1

P
"
i [

n[
rD1

Q"
r D fheight-two maximal elements of U g.

Abbreviations 6.3.a. If �i D �j D ıs D ıt D � , for every i , j , s, t with 1 � i <

j � m, 1 � s < t � n, we write the type as ."I ˇI .m; n/I �/.
Diagram 6.3.0 shows the j -set of a D-birational poset of type ."I ˇI .m; n/I �1;

: : : ; �mI ı1; : : : ; ın/, where n > 1. (The complete poset U would have clumps of
size ˇ beneath each height-two maximal element by axiom 6.)

γ1 . . .

. . .

γm δ1 • . . .

. . .

δn−1 • δn

ε P1 Pm Q1 Qn−1 Qn

u0

Diagram 6.3.0: j -set of a D-birational poset of type ."I ˇI .m; n/I �1; : : : ; �mI ı1; : : : ; ın/, where
n > 1

Remark 6.4. Ambiguity: If U is an N -birational poset of type ."I ˇI `I ˛I 0; � � � ; 0/

where ` D 1, or where ` > 1 and each ti D 0, then U is D-birational, but
there is some ambiguity about the type. We could take either .m; n/ D .`; 0/

or .m; n/ D .` � 1; 1/. The picture for the spectra is the same in either case.
A D-birational partially ordered set of type ."I ˇI .1; 0/I ˛/ is order-isomorphic
to one of type ."I ˇI .0; 1/I ˛/ and a D-birational partially ordered set of type
."I ˇI .m; 0/I ˛/, for m > 1, is order-isomorphic to one of type ."I ˇI .m � 1; 1/I ˛/,
but not to one of type ."I ˇI .m � 2; 2/I ˛/. We keep this ambiguity because the
different types arise in different circumstances when the notation is applied to
Spec.RŒŒx��Œg=f �/.

When R is a countable Dedekind domain, the cardinalities in Theorem 6.1 can be
given more explicitly, yielding a true characterization. For R countable, all the �i

and ıj are equal, by Lemma 2.6, and so we use the abbreviated form of the code in
Abbreviations 6.3.a. Recall that .aR WR b/ D fc 2 R j bc 2 aRg, if a; b 2 R.

Theorem 6.5 ([5, Theorem 4.3]). Let R be a countable Dedekind domain with
quotient field K such that max.R/ is infinite, let x be an indeterminate, and let B be
a simple birational extension of RŒŒx��, as described below for f; g 2 RŒŒx�� an RŒŒx��-
sequence such that f; g have constant terms a, b respectively. Set v D jVR.a; b/j
and w D jfq 2 VR.a; b/ j .aR W b/ ª qgj. Then:

(1) If a D 0 and B WD RŒŒx��Œ1=f �, then Spec.B/ is a fan.
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(2) If a ¤ 0 and B WD RŒŒx��Œ1=f �, then Spec.B/ is order-isomorphic to
Spec.QŒy�ŒŒx��/ or Spec.QŒŒx��Œy�/.

(3) If B D RŒŒx��Œg=f �, a D 0, b ¤ 0, and bR ¤ R, then Spec.B/ is D-birational
of type .jRjI jRjI .v; 0/I @0/:

(4) If B D RŒŒx��Œg=f �, a ¤ 0, and .a; b/R ¤ R, then Spec.B/ is D-birational of
type

.jRjI jRjI .v � w; w C 1/I @0/:

In order to show that Theorem 6.5 is a characterization, we show every D-
birational poset occurs, for some Dedekind domain D. In fact this is true with
D D Z, as we see in Theorem 6.6.

Theorem 6.6 ([5, Theorem 4.8]). Let R be a PID with ˛ maximal ideals, where
˛ is infinite, let x and y be indeterminates, set ˇ D jRŒŒx��j, and suppose that
˛ D jRj �@0 D jR=mj �@0 is constant, for each m 2 max.R/. Then, for each m; n 2
N0, there exists a simple birational extension of RŒŒx�� that is D-birational of type
.ˇI ˇI .m; n/I ˛/. In particular, if R is a PID with jRj D j max.R/j D @0 and m; n 2
N0, then, for every D-birational partially ordered set U of type .jRjI jRjI .m; n/I @0/

from Definition 6.3, there is a simple birational extension B WD RŒŒx��Œg=f � of RŒŒx��

so that the prime spectrum of B is order-isomorphic to U .

We give an example adjusted from [5] to illustrate Theorems 6.5 and 6.6.

Example 6.7. Let B be the simple birational extension B WD ZŒŒx��Œg=f � of ZŒŒx��,
where f D x C 2079 and g D x C 4851. Then, in the notation of Theorem 6.5,
a D 2079 D 33 � 7 � 11; b D 4851 D 32 � 72 � 11, .aZ W b/ D 3Z, and so v D
jf3; 7; 11gj D 3, w D 2, and .f; g/ZŒŒx�� ¤ ZŒŒx��, since .f; g/ � .x; 3/. Since
7f � 3g D 4x 2 .f; g/, we have .f; x/ � P or .f; 2/ � P , for every prime ideal
P minimal over .f; g/. Therefore the ideal .f; g/ has height two, and so, by [15,
Theorem 17.4], f; g is a ZŒŒx��-sequence. Also, in ZŒy�, the ideal

.fy � g/ZŒy� D .2079y � 4851/ZŒy� D .32 � 7 � 11.3y � 7//ZŒy�:

The height-one prime ideals in ZŒy� containing this ideal are .3/, .7/, .11/, and
.3y � 7/. By Theorem 6.5, Spec.B/ is D-birational of type .jRjI jRjI .1; 3/I @0/,
since the cardinality of ZŒŒx�� is jRj and the cardinality of max.Z/ is jZj � @0 D @0.
Thus Diagram 6.7.1 shows the partially ordered set Spec.B/, except that we cannot
show the clumps of size jRj beneath every height-two maximal ideal. Here � is the
canonical map from ZŒŒx��Œy� ! B WD ZŒŒx��Œg=f �; and �.x; 3/ denotes the image
in B under � of the ideal .x; 3/ZŒŒx��. There is one j -prime ideal, namely �.x; 3/,
that is unrelated to the others; the other three are connected by height-two maximal
ideals that contain the last j -prime ideal, �.x; 3y � 7/.

Diagram 6.7.2 is a close-up picture showing relations for elements of the set
labeled C@0 , to show, for every M 2 C@0 , that jLe.M /j D jRj.
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Cℵ0 ℵ0 π(x,7, y) ℵ0 π(x,11,3y + 4) ℵ0

|R| π(x,3) π(x,7) π(x,11)|R| π(x,3y − 7)|R|

(0)

Diagram 6.7.1: Spec.B/ for Example 6.7

• • . . . •

|R| π(x,3) |R| |R|

(0)

Diagram 6.7.2: Relations in C@0 from Diagram 6.7.1

Remark 6.8. If R is a countable one-dimensional Noetherian domain R such that
Spec.RŒy�=.ay�b// is know then one can also find Spec.B/; see [5]. When R is not
Dedekind, however, the relations among the minimal elements of Spec.RŒy�=.ay �
b// may be more complex than they are for Dedekind domains, and we do not know
what posets are realizable as Spec.RŒy�=.ay � b//. It is not clear that every form of
the axioms for that situation can be realized.

The following example from [5] gives a simple birational extension B of
ZŒ5i �ŒŒx�� that has two distinct maximal ideals containing two distinct nonmaximal
height-one j -primes. Thus Spec.B/ is not D-birational.

Example 6.9. For R D ZŒ5i �, a non-Dedekind ring, let B D ZŒ5i �ŒŒx��Œg=f �, f D
x C 5; g D 5i . Then the two nonmaximal height-one j -primes of B correspond in
ZŒ5i �Œy� to .5; 5i/ZŒ5i �Œy� and to

p WD .y � i/ZŒi �Œy� \ ZŒ5i �Œy� D .y2 � 1; 5y � 5i; 5iy C 5/ZŒ5i �Œy�:

Therefore .5; 5i/ C p D .y2 � 1; 5; 5i/ D .y2 � 4; 5; 5i/ � .y � 2; 5; 5i/ \ .y C
2; 5; 5i/: If we let M1 D .y � 2; 5; 5i/ZŒ5i �Œy�; M2 D .y C 2; 5; 5i/ZŒ5i �Œy�, and

denotes the image in B of the map Spec.ZŒ5i �Œy�=.5y � 5i// ! VB.x/ from
Remarks 3.9.1, we have j -Spec.B/ in Diagram 6.9.1:

To make Diagram 6.9.1 show all of Spec.B/, we would add clumps of size
jRj beneath every height-two prime ideal but beneath no other height-two prime
ideal. This partially ordered set is N -birational of type .jRjI jRjI 2I @0I 2/, since the
number of height-one maximal ideals is jRj and jLe.P /j D jRj for every height-two
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ℵ0

|R| (5,5i) p

ℵ0

(0)

M1 M2
Diagram 6.9.1: j -Spec.B/,
for B WD ZŒ5i �ŒŒx��Œg=f �,
f D x C 5; g D 5i

P 2 Spec.B/; also `, the number of nonmaximal j -prime ideals, is 2. Since the
number t1 of maximal ideals containing both of them is 2, we have that j -Spec.B/

is not D-birational.

The following question raised in [5] is still unknown:

Question 6.10. Does every N -birational poset of type .jRjI jRjI `I @0I t1; � � � ; t`�1/,
for all values of `; and t1 � � � � � t`, occur as Spec.RŒŒx��Œg=f �/, where g; f are as
described in Theorem 6.1?

7 Examples of Two-Dimensional Polynomial-Power Series
Prime Spectra

To illustrate Theorem 5.4, we give an example with R D Z; this partially ordered set
is the prime spectrum of ZŒy�ŒŒx��=Q, for an appropriately chosen height-one prime
ideal Q of ZŒy�ŒŒx��:

Example 7.1. For ˛ D .2y � 1/ � 3 � .y C 1/ � y � .y.y C 1/ C 6/ � 2 � .3y C 1/,
we describe Spec.ZŒy�ŒŒx��=.x �˛//, by displaying j -Spec.ZŒy�ŒŒx��=.x �˛// in this
diagram:

(x,2y−1) (x,3) (x, y)(x, y+1)

(0) = (x − α)

(x, y(y+1)+6) (x,2) (x,3y+1)

{(p, x,2y− 1)} {(3, x, h(y))} |N| |N| |N| |N| |N|
(3, x, y+1) (2, x, y)(3, x, y) (2, x, y+1)(5, x, y+2)

Diagram 7.1.1: j -Spec.ZŒy�ŒŒx��=.x � ˛//
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The partially ordered set in Diagram 7.1.1 is image polynomial-power series
of type .0I jRjI 7I @0I F / from Definition 5.5, where F is the part of the poset
shown that includes only the ideals at the second and third levels and their
connections; that is, F corresponds to the twelve ideals .x; 2y � 1/; .x; 3/; : : : and
.3; x; y C 1/; .3; x; y/; : : : and with the relations (lines) connecting them.

We close with a description of the two-dimensional partially ordered sets that
arise as Spec.A=Q/, where A D RŒŒx��Œy� or RŒy�ŒŒx�� and R is a one-dimensional
Henselian integral domain with unique maximal ideal m. As with Example 7.1,
Spec.A=Q/ is largely determined by Spec.RŒy�=I /, where I is a height-one prime
ideal of RŒy� such that .I; x/A D .Q; x/A.

Theorem 7.2 ([4, Theorem 7.2]). Let .R; m/ be a Henselian integral domain. Let
x and y be indeterminates; let A D RŒŒx��Œy� or RŒy�ŒŒx��. Let Q be a height-one
prime ideal of A and let B D A=Q. Then Spec.B/ n fthe set of height-one maximal
ideals} is determined by Spec.RŒy�=I /, where I is a height-one prime ideal of RŒy�

such that .I; x/A D .Q; x/A. If I is contained in mRŒy�, then Spec.B/ is given in
Diagram 7.2.0.

ε

|(R/m)[y]|

•
(m, Q) |R[[x]]| |R[[x]]| · · · |R[[x]]|

•
Q

M1•
M2• · · · Mt•

Diagram 7.2.0: Spec.B/ if I � mRŒy�

Notes

• M1; M2; � � � ; Mt are the height-two ideals of RŒy� that contain m and another
height-one prime ideal of RŒy� that contains I .

• M1; � � � ; Mt denote the image of .Mi ; x/A in A=Q.
• If A D RŒy�ŒŒx��, " is 0; for A D RŒŒx��Œy�, " is sometimes finite and sometimes

jRŒŒx��j.
• The sets Le.M /, for elements M of the block of size j.R=m/Œy�j, are not shown.
• The partially ordered set in Diagram 7.2.0 is image polynomial-power series of

type ."I jRŒŒx��jI F I 1I jR=mj � @0/, where F corresponds to f.m; Q/g in Spec.B/.
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