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Abstract Nagata proved that .R; P / is a Henselian domain if and only if every
integral extension domain of R is quasi-local. We explore, with partial success, how
to generalize that result.
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1 Introduction

Notation. Throughout, R will be a commutative domain with integral closure R0
and Jacobson radical J.R). P will be a nonzero prime ideal of R.

Definition 1. We call P an H -prime if the following holds. For any non-constant
monic polynomial f .X/ 2 RŒX�, if there exist non-constant monic polynomials
g.X/ and h.X/ in RŒX� such that f .X/ D g.X/h.X/ mod P and such that g.X/

and h.X/ are comaximal (i.e., g.X/RŒX� C h.X/RŒX� D RŒX�/, then f .X/ is
reducible in RŒX�.

The following crucial result is proven in [1, (2.2)].
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Theorem 1. Let P � J.R/. The following are equivalent.

(i) P is an H -prime.
(ii) For all non-constant monic polynomials f .X/ 2 RŒX�, if there exist non-

constant monic polynomials g.X/ and h.X/ in RŒX� such that f .X/ �
g.X/h.X/ mod P and such that g.X/ and h.X/ are comaximal, then there are
monic polynomials g0.X/ and h0.X/ in RŒX� such that f .X/ D g0.X/h0.X/

and g.X/ � g0.X/ mod P and h.X/ � h0.X/ mod P .

Remark 1. 1. We do not know whether some version of Theorem 1 (i) ) (ii)
holds when P is not contained in J.R/, although (ii) ) (i) is trivially true.

2. Hensel’s lemma says that if R is complete in the P -adic topology, then P

satisfies condition (ii) of Theorem 1 and so is an H -prime. (Hence, H -primes
do exist.)

3. We will see that when P is not contained in J.R/, it is in some sense unlikely
for P to be an H -prime. In particular, we will see that if R is Noetherian, and
P is an H -prime, then P � J.R/.

4. In the above, when we wrote g.X/ and h.X/, we assumed they were comax-
imal. In some references, that is modified to say, PRŒX� C g.X/RŒX� C
h.X/RŒX� D RŒX�. However, the bulk of our interest here will be in the case
that P � J.R/, and when that is true, the two conditions are equivalent. This
is easily seen, using the fact that if M is a maximal ideal of RŒX� and M

contains a monic polynomial k.X/, then M \ R is maximal in R. That fact, [5,
Lemma 1.1(v)], is an easy consequence of the fact that the integral extension
R � RŒX�=k.X/RŒX� satisfies going up.

Lemma 1. Let P � Q be prime ideals of R. If Q is an H -prime, then so is P .

Proof. Suppose P is not an H -prime. Then there is an irreducible non-constant
monic f .X/ 2 RŒX� and non-constant monic polynomials g.X/ and h.X/ in RŒX�

such that f .X/ � g.X/h.X/ mod P and such that g.X/ and h.X/ are comaximal.
However, we also have f .X/ � g.X/h.X/ mod Q, and that implies Q is not an
H -prime. ut

The inspiration for this paper is the following well-known result of Nagata
[6, (43.12)].

Theorem 2. Let .R; P / be a quasi-local domain. Then, P satisfies condition (ii) of
Theorem 1 (i.e., an H -prime) if and only if every integral extension domain of R is
quasi-local. (When those equivalent conditions hold, .R; P / is called a Henselian
domain.)

The goal of this paper is to try to globalize that and to see if some similar result
holds for H -primes that are not the sole maximal ideal their ring R. The first guess
might be that P is an H -prime if and only if for every integral extension domain T

of R, there is a unique prime of T lying over P . However, when R is Noetherian,
that guess is hopelessly wrong, as we now show.
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By [2, Theorem 1.1(ii)], if R is Noetherian and if in every integral extension
domain of R only one prime ideal lies over P , then R is local and P is its
maximal ideal. Hence, if our above guess were correct, it would imply that if P

is an H -prime (with R Noetherian), then P would be maximal. However, Lemma 1
shows that is not always the case for H -primes. As our first guess is wrong, we need
a more appropriate (possible) extension of Nagata’s result. That leads us to our next
definition.

Definition 2. We call P a K-prime if there does not exist an integral extension
domain T of R such that exactly two primes of T lie over P and those two primes
are comaximal in T .

Question 1. How closely related are H -primes and K-primes? Specifically, if
P � J.R/, are the concepts of H -prime and K-prime equivalent?

We will prove the following two propositions.

Proposition 1. If R is integrally closed, then P is an H -prime if and only if it is a
K-prime.

Proposition 2. Suppose that for all nonzero non-units y 2 R0, there is a prime
ideal Q0 of R0 containing y such that either Q0 ¤ Q02, or R0=Q0 is not integrally
closed, or the quotient field of R0=Q0 is not algebraically closed. If P is a K-prime
of R, then P � J.R/ and P is an H -prime.

Proposition 2 shows that in a very large class of domains, K-primes are
H -primes, considerably strengthening the work in [5], in which R0 was the
integral closure of Noetherian domain. Much less is known about the converse of
Proposition 2, Proposition 1 being the most significant case in which it is known
to hold.

Example 1. If P is a prime in a Henselian domain .R; Q/, then P is both an
H -prime and a K-prime. Since every integral extension of R is quasi-local, P must
be a K-prime. Since Q is an H -prime, Lemma 1 shows P is an H -prime.

Example 2 (Heitmann). Let T is Noetherian integrally closed non-Henselian
domain, and (with Y an indeterminate) let R D T ŒŒY �� and P D YR. Hensel’s
lemma shows that P is an H -prime. Also, Proposition 1 shows that since R is
integrally closed, P is also a K-prime. Finally, [6, (43.4)] shows R is not Henselian.

The present paper constitutes a streamlining and extension of Sects. 2 and 3
of [5]. The improvement of this work over the earlier work is due to the availability
of Theorems 1 (above) and 4 (below), both proved in [1] (as well as a new
construction given in Sect. 5 below). Section 1 of [5] contains some related facts
of interest. Specifically, [5, (1.5(i) , (ii)] shows that if R is Noetherian and if P is
not a K-prime, then for any m � 1, there is an integral extension domain T of R

in which there are exactly m primes lying over P and those m primes are pairwise
comaximal.
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2 Proposition 1

Definition 3. Recall that if Q is a prime ideal in a ring R, then a prime q in the
polynomial ring RŒX� is called an upper to Q if q \ R D Q, but q ¤ QRŒX�.
Furthermore, if q is an upper to Q and q contains a monic polynomial, then q is
called an integral upper to Q. (All of the facts we use about uppers and integral
uppers are easily proven and can be found in [5, Lemma 1.1].)

Lemma 2. Let R � T be rings, and let P be a prime ideal of R. Let Q be a prime
ideal of T with Q \ R D P , and let t 2 Q. Then Q \ RŒt� D .P; t/RŒt�.

Proof. One inclusion is obvious. For the other, assume that f .t/ 2 Q \ RŒt� (with
f a polynomial with coefficients in R). Since t 2 Q, we must have the constant
coefficient of f in Q \ R D P . Hence f .t/ 2 .P; t/RŒt�. ut
Lemma 3. Let P be a prime ideal in a domain R. The following are equivalent.

(a) P is not a K-prime.
(b) There is an integral extension domain T of R in which the set V of prime ideals

lying over P can be partitioned into two nonempty subsets, say V D V1 [ V2,
such that \fp j p 2 V1g and \fq j q 2 V2g are comaximal in T .

(c) There is an integral upper K to 0 in RŒX� such that K is contained in the uppers
.P; X/RŒX� and .P; X C1/RŒX�, but in no other uppers to P except those two.

(d) There is an integral extension domain RŒt� of R such that the only prime ideals
of RŒt� that lie over P are .P; t/RŒt� and .P; t C 1/RŒt�.

Proof. (d) ) (a) ) (b): These are obvious from the definition of a K-prime.
(b) ) (d): Assuming (b) and using comaximality, pick t 2 T with t � 0 mod \

fp j p 2 V1g and t � �1 mod \ fq j q 2 V2g. As t is contained in each prime
in V1, Lemma 2 shows that every prime ideal in V1 intersects RŒt� at .P; t/RŒt�.
Similarly, since t C 1 2 \fq j q 2 V2g, we see that every prime in V2 intersects
RŒt C1� D RŒt� at .P; t C1/RŒt C1� D .P; t C1/RŒt�. Finally, since all primes
in V contract to one of these two primes, lying over in RŒt� � T shows they are
the only primes of RŒt� lying over P .

(c) , (d): For an integral extension of domains R � RŒt�, let K be the kernel of the
map RŒX� ! RŒt�. Thus K is an integral upper to 0 and RŒX�=K is isomorphic
to RŒt�. The prime ideals of RŒX�=K that lie over P all have the form L=K

where L is an upper to P in RŒX� with L containing K . The equivalence of (c)
and (d) follows easily. ut

Lemma 4. (a) Let R0 be an integrally closed domain, and let L be an ideal
of R0ŒX�. Then L is an integral upper to 0 if and only if L D f .X/R0ŒX�

for some non-constant monic irreducible polynomial f .X/ 2 R0ŒX�.
(b) Let R be an arbitrary domain. If f .X/ is a non-constant monic polynomial in

RŒX� which is irreducible in R0ŒX�, then f .X/RŒX� is an integral upper to 0

in RŒX�.
(c) Let R be an arbitrary domain. If g.X/ is a non-constant polynomial, then some

upper to 0 in RŒX� contains g.X/.
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Proof. (a) This is well known. (A proof is recorded in [5, Lemma 2.4].)
(b) Suppose R and f .X/ are as in (b). By part (a), f .X/R0ŒX� is an integral upper

to 0 in R0ŒX�, and so f .X/R0ŒX� \ RŒX� is an integral upper to 0 in RŒX�.
However, since f .X/ is monic in RŒX�, an easy exercise shows f .X/R0ŒX� \
RŒX� D f .X/RŒX�.

(c) Let F be the quotient field of R. Since g.X/ is not a unit of F ŒX�, it is contained
in some prime ideal H of F ŒX�. Let L D H \ RŒX�. We have L \ R D
.H \ RŒX�/ \ .F \ R/ D .H \ F / \ R D 0 \ R D 0. Thus, L is an upper to
0 in RŒX�, and g.X/ 2 L. ut

Proposition 1. Let R be integrally closed. Then P is an H -prime if and only if it
is a K-prime.

Proof. Suppose P is not an H -prime. Then there exists a non-constant monic
irreducible f .X/ 2 RŒX� and comaximal non-constant monic polynomials g.X/

and h.X/ in RŒX� such that f .X/ � g.X/h.X/ mod P . By part (a) of the previous
lemma, R � RŒX�=f .X/RŒX� is an integral extension of domains. The primes of
the larger domain that lie over P in R all have the form L=f .X/RŒX�, with L

an upper to P in RŒX� that contains f .X/. In other words, they are the images
in RŒX�=f .X/RŒX� of those uppers L to P that contain f .X/. As f .X/ �
g.X/h.X/ mod P with g.X/ and h.X/ comaximal, that set of L can be partitioned
into those L that contain g.X/ and those L that contain h.X/. Thus, the set of
primes lying over P is V D V1 [ V2, with V1 D fL=f .X/RŒX� j L is an upper
to P containing f .X/ and g.X/g and V2 D fL=f .X/RŒX� j L is an upper to
P containing f .X/ and h.X/g. The comaximality of g.X/ and h.X/ shows that
union is disjoint and also shows that the comaximality of \fq j q 2 V1g and
\fq j q 2 V2g. We claim that neither set in that union is empty. For that, it will
suffice (by symmetry) to show that there does exist an upper L to P in RŒX� with
f .X/ 2 L, such that g.X/ 2 L. Letting g0 represent g.X/ mod P , part (c) of the
previous lemma shows there is an upper L0 to 0 in .R=P /ŒX� with g0.X/ 2 L0. Now
it is easily seen that L0 has the form L=PRŒX� for some upper L to P in RŒX�, with
g.X/ 2 L. Since f .X/ � g.X/h.X/ 2 PRŒX� � L, we also have f .X/ 2 L. That
proves the claim. Finally, using Lemma 3((b) ) (a)), P is not a K-prime.

Conversely, suppose P is not a K-prime. By Lemma 3((a) ) (c)), there
is an integral upper K to 0 in RŒX� such that K is contained in the uppers
.P; X/RŒX� and .P; X C 1/RŒX�, but in no other uppers to P except those
two. By Lemma 4(a), K D f .X/RŒX� for some non-constant monic irre-
ducible polynomial f .X/ 2 RŒX�. Thus, the only uppers to P in RŒX� that
contain f .X/ are .P; X/ and .P; X C 1/. It easily follows that the factorization
of f .X/ mod P has the form Xn.X C 1/m (since if there was another factor,
Lemma 4(c) applied to R=P would show that a third upper to P also contains
f .X/). That shows P is not an H -prime. ut
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3 Concerning K -Primes P Not Contained in J.R/

Lemma 5. Let D be a domain between R and its quotient field, and let C D fr 2
R j rd 2 R for all d 2 Dg (the conductor of D to R). Suppose Q is a prime
ideal in R comaximal to C , and let q be a prime ideal of D lying over Q. Then the
following are true.

(a) For all n � 1, qn \ R D Qn.
(b) For all n � 1, the following are equivalent:

(i) Qn ¤ QnC1;
(ii) qn ¤ qnC1;

(iii) Qn 6� qnC1.

(c) R=Q D D=q.

Proof. (a) Suppose qn \ R properly contains Qn. Then there exist sij 2 q with
r D Pm

j D1

Qn
iD1 sij 2 .qn \ R/ � Qn. Now .Qn W r/ D fx 2 R j xr 2 Qng is

a proper ideal of R and consists of zero divisors modulo Qn. By Zorn’s lemma,
it can be enlarged to an ideal N maximal with respect to consisting of zero
divisors modulo Qn, and by a standard argument [3, Theorem 1], N is a prime
ideal of R. As Qn � .Qn W r/ � N , we have Q � N , so that C is not
contained in N . Pick c 2 C � N . Now cnr D Pm

j D1

Q
iD1.csij / 2 Qn, since

each csij 2 q \ R D Q. Thus cn 2 .Qn W r/ � N . That contradicts that c is
not in N . Thus qn \ R D Qn.

(b) Obviously (iii) implies (ii). Suppose (ii) holds, and let y 2 qn �qnC1. As C and
Q are comaximal, write 1 D c C z with c 2 C and z 2 Q. Raising both sides to
the nth power, we can write 1 D cn C w with w 2 Q. We have y D cny C wy.
Now wy 2 Qqn � qnC1, and since y is not in qnC1 we must have cny … qnC1.
Thus, cny … QnC1. However, since y 2 qn and C q � Q, we have cny 2 Qn.
Thus (i) holds. Finally, suppose (i) holds. Then (iii) follows, since part (a) shows
qnC1 \ R D QnC1.

(c) We have the natural embedding R=Q � D=q. In order to show equality, it
will suffice to show that for all y 2 D, there is a t 2 R with t � y 2 q. By
comaximality, there is a c 2 C with c � 1 2 Q � q. We have yc � y 2 q, and
so we let t D yc, which is in R. ut

Lemma 6. The following are equivalent for a domain D.

(i) D is integrally closed, and its quotient field is algebraically closed.
(ii) Every non-constant monic polynomial in DŒX� can be factored into a product

of monic linear polynomials in DŒX�.

Proof. Suppose (i) is true, and let f .X/ be a non-constant monic polynomial in
DŒX�. With ˝ the algebraically closed quotient field of D, in ˝ŒX� we see that
f .X/ factors into a product of linear polynomials. Let X � b be one of them. Since
f .b/ D 0, b is integral over D, and so X � b is in DŒX�. Thus (ii) holds.
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Now suppose (ii) holds. Let ˝ be an algebraic closure of the quotient field of D,
and let T be the integral closure of D in ˝ . Since ˝ is algebraic over the quotient
field of D, a standard argument shows ˝ is the quotient field of T . Therefore, it
will suffice to show D D T . Pick any t 2 T . There is a monic polynomial in DŒX�

having t as a root. By (ii), that monic polynomial factors into a product of monic
linear factors in DŒX�. Clearly one of those factors must be X � t , showing t 2 D.
Thus D D T . ut

We come to the main result of this section.

Theorem 3. Suppose P is not contained in the Jacobson radical of R, and let Q

be a prime of R comaximal to P . Consider the following three statements.

(i) Q ¤ Q2;
(ii) R=Q is not integrally closed;

(iii) the quotient field of R=Q is not algebraically closed.

(a) If any of (i), (ii), or (iii) is true, then P is not an H -prime.
(b) If the conductor C of R0 to R is comaximal to Q, and if any of (i), (ii), or

(iii) is true, then P is not a K-prime.

Proof. (a) Suppose first that Q ¤ Q2. Pick d 2 Q � Q2. Since P is comaximal
to Q and also to Q2, by the Chinese remainder theorem, pick b 2 R with
b � d mod Q and b � 1 mod P , and pick c 2 R with c � d mod Q2 and
c � 0 mod P . Let f .X/ D X2 C bX C c. Clearly f .X/ � X.X C 1/ mod P .
Thus, to show P is not an H -prime, it will suffice to show f .X/ is irreducible
in RŒX�. That follows from Eisenstein’s criterion, since d 2 Q � Q2, implies
b 2 Q and c 2 Q � Q2.
Next, suppose either (ii) or (iii) is true. Then Lemma 6 shows there is some
monic irreducible polynomial ˛.X/ 2 .R=Q/ŒX� of degree n � 2. Let k.X/

be a monic pre-image of ˛.X/ in RŒX�. As P and Q are comaximal, by
the Chinese remainder theorem, there is a monic polynomial f .X/ 2 RŒX�

with f .X/ � k.X/ mod Q and f .X/ � Xn�1.X C 1/ mod P . The image of
f .X/ in .R=Q/ŒX� is ˛.X/ which is irreducible in .R=Q/ŒX�, and so f .X/ is
irreducible in RŒX�. The factorization of f .X/ mod P therefore shows that P

is not an H -prime.
(b) The proof is similar to that of (a), except we must move matters from R up

to R0, since the f .X/ 2 RŒX� mentioned in the proof of (a) will now need to
be irreducible in R0ŒX�.
First suppose that Q ¤ Q2. Let Q0 be a prime ideal of R0 lying over Q.
Using Lemma 5(b)((i) ) (iii)), we see that Q is not contained in Q02. Pick
d 2 Q � Q02, and pick b and c as in the proof of (a). Let f .X/ D X2 CbX Cc.
We have b 2 Q � Q0 and (since c � d 2 Q2 � Q02/c 2 Q0 � Q02.
Eisenstein’s criterion shows f .X/ is irreducible in R0ŒX�. By Lemma 4(b),
K D f .X/RŒX� is an integral upper to 0 in RŒX�. However, we also have
f .X/ � X.X C 1/ mod P , showing that K is contained in .P; X/RŒX� and
.P; X C1/RŒX�, but in no other uppers to P in RŒX�. By Lemma 3((c) ) (a)),
P is not a K-prime.
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Now suppose that either R=Q is not integrally closed or its quotient field is not
algebraically closed. Let ˛.X/, k.X/, and f .X/ be as in the second half of the
proof of part (a). Let Q0 be a prime ideal of R0 lying over Q. Using Lemma 5(c),
the image of f .X/ in .R=Q/ŒX� D .R0=Q0/ŒX� is ˛.X/, which is irreducible,
and so f .X/ is irreducible in R0ŒX�. Thus K D f .X/RŒX� is an integral upper
to 0 in RŒX�. Since f .X/ � Xn�1.X C 1/ mod P , Lemma 3((c) ) (a)) shows
P is not a K-prime. ut

Heuristic Remark: If P is an H -prime not contained in J.R/, then for every
ideal Q comaximal to P , we must have (i), (ii), and (iii) of Theorem 3 all be false.
We feel that justifies saying that H -primes not contained in the Jacobson radical
are rather rare. In particular, since the Krull intersection theorem shows that for any
prime Q ¤ 0 in a Noetherian domain we have Q ¤ Q2, we see that in a Noetherian
domain, P can only be an H -prime if P � J.R/. Similarly, K-primes not contained
in the Jacobson radical are somewhat rare. However, Example 3 below shows both
H -primes and K-primes not contained in J.R/ do exist.

The next corollary is the first of three key pieces in the proof of Proposition 2.

Corollary 1. Suppose P is not contained in the Jacobson radical of R, and suppose
P is also an ideal of R0. Let Q be a prime of R comaximal to P , and let Q0 be a
prime ideal of R0 lying over Q. If any one of the following three conditions holds,
then P is neither an H -prime nor a K-prime.

(i) Q0 ¤ Q02;
(ii) R0=Q0 is not integrally closed;

(iii) the quotient field of R0=Q0 is not algebraically closed.

Proof. Since P is an ideal in R0, we have PR0 � P � R, so that P � C , the
conductor of R0 to R. Therefore, Q is also comaximal to C . Using Lemma 5, we
see that Q0 ¤ Q02 if and only if Q ¤ Q2, and also R=Q D R0=Q0. The corollary
now follows from the theorem.

The hitch in the corollary is the need to have P be an ideal in R0. In Sect. 5, we
deal with that problem by mimicking P with a prime we will call P #. ut
Example 3. Suppose R is the integral closure of the integers in the algebraic closure
of the rationals. If P ¤ 0 is a prime ideal of R, then P is an H -prime and a
K-prime.

Proof. Suppose P is not an H -prime. Then there is a monic irreducible f .X/ 2
RŒX� such that f .X/ is reducible modulo P . That last implies the degree of f .X/

is at least 2. However, as f .X/ is irreducible, Lemma 6 shows the degree of f .X/

is 1, a contradiction. Thus P is an H -prime, and so by Proposition 1, it is also a
K-prime. ut
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4 Going Down from Maximals

We begin with another crucial result proven in [1, (2.3)]. (As in Theorem 1, we do
not know if the assumption P � J.R/ is required.)

Theorem 4. Let P � J.R/. The following are equivalent.

(i) P is an H -prime.
(ii) For all non-constant monic polynomials f .X/ 2 RŒX�, if there exist non-

constant monic polynomials g.X/ and h.X/ in RŒX� such that f .X/ �
g.X/h.X/ mod P and such that g.X/ and h.X/ are comaximal, then for any
upper K to 0 in RŒX� with f .X/ 2 K , either K and g.X/ are comaximal or
K and h.X/ are comaximal.

Definition 4. We say that P is a GDM prime if for all integral extension domains
T of R and all maximal ideals N of T , there is a prime ideal Q of T such that
Q � N and Q \ R D P . (By letting T D R, we see that a GDM prime must be
contained in J.R/.)

Remark 2. GDM stands for “going down from maximals.” In [5], GDM was defined
in terms of finitely generated integral extensions. However, by Lemma 8, it is easily
seen that it does not matter if we allow T to be arbitrary, or insist that it be finitely
generated, or even insist that it be generated by a single element over R. All are
equivalent.

In this section, we will show that if P is both a K-prime and a GDM prime, then
P is an H -prime. (Later, we will see that in many domains, K-primes are GDM
primes and so are H -primes.) The next result is the second key piece in the proof of
Proposition 2.

Theorem 5. If P is a K-prime and a GDM prime, then P is an H -prime.

Proof. It will suffice for us to assume that P is a GDM prime but not an H -prime
and to prove that P is not a K-prime. Since we know GDM primes are contained in
the Jacobson radical, Theorem 4 shows there are non-constant monic polynomials
f .X/, g.X/, and h.X/ in RŒX� and an upper, K , to 0 in RŒX� such that f .X/ �
g.X/h.X/ mod P , with g.X/ and h.X/ comaximal and with f .X/ 2 K , such that
K is not comaximal to either g.X/ or h.X/.

Let V D fp 2 Spec RŒX� j p is an upper to P and K � pg. If p 2 V ,
then f .X/ 2 K � p, and since f .X/ � g.X/h.X/ mod P (and P � p), we
see that either g.X/ 2 p or h.X/ 2 p. Thus if Vg D fp 2 V j g.X/ 2 pg
and Vh D fp 2 V j h.X/ 2 pg, then V D Vg [ Vh. Since g.X/ and h.X/ are
comaximal in RŒX�, clearly Vg and Vh partition V .

We claim neither Vg nor Vh is empty. (The argument used in the analogous claim
in the proof of Proposition 1 will not work here, since we only have f .X/ 2 K

instead of K D f .X/RŒX�.) Since K is not comaximal to g.X/, there is a maximal
ideal N of RŒX� that contains both K and g.X/. Now N=K is a maximal ideal
in RŒX�=K , and this last ring is an integral extension domain of R. Since P is
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assumed to be a GDM prime, there must be a prime ideal p0=K of RŒX�=K with
p0=K � N=K and with .p0=K/ \ R D P . We easily see that p0 is an upper to P in
RŒX� such that K � p0 � N . Thus p0 2 V D Vg [ Vh. Suppose p0 2 Vh. Then by
definition, h.X/ 2 p0 � N . However, N also contains g.X/, which contradicts that
g.X/ and h.X/ are comaximal. Therefore, p0 is not contained in Vh and so must be
contained in Vg, which is therefore not empty. Similarly, Vh is not empty.

We easily see that in the integral extension domain RŒX�=K of R, the set of
primes lying over P is fp=K j p 2 V g D fp=K j p 2 Vgg [ fp=K j p 2 Vhg.
Neither subset in this partition is empty (by the preceding paragraph). Also, if g0
and h0 represent g.X/ and h.X/ taken modulo K , then since g.X/ and h.X/ are
comaximal in RŒX�, g0 and h0 are comaximal in RŒX�=K . It follows that \fp=K j
p 2 Vgg and \fp=K j p 2 Vhg are comaximal. It now follows from Lemma 3((b)
) (a)) that P is not a K-prime. ut

Although we do not need it, the following is perhaps worth recording.

Lemma 7. Let R � T be an integral extension of domains. Let Q be prime in T

with Q � J.T /, and let P D Q \ R. If Q is an H -prime, then P is an H -prime.

Proof. Since Q � J.T /, we have P � J.R/. Assuming Q is an H -prime, we
will use Theorem 4 to show P is an H -prime. Let f .X/, g.X/, and h.X/ be non-
constant monic polynomials in RŒX� with f � g.X/h.X/ mod P and with g.X/

and h.X/ comaximal. Let K be an upper to 0 in RŒX� with f .X/ 2 K . (We must
show K is comaximal to either g.X/ or h.X/.) There is an upper L to 0 in T ŒX�

with L\RŒX� D K . In T ŒX�, we have f .X/ � g.X/h.X/ mod Q, and f .X/ 2 L.
Since Q is an H -prime contained in J.T /, Theorem 4 shows L is comaximal to one
of g.X/ or h.X/. We may suppose L and g.X/ are comaximal in T ŒX�. An easy
exercise (using going up) shows K and g.X/ are comaximal in RŒX�. ut

5 A Useful Construction

Lemma 8. Let R � T be rings, and let P be a prime ideal of R and M be a prime
ideal of T . Let W be the set of all prime ideals of T that lie over P . If W is not
empty, then there is a p 2 W such that p � M if and only if \fp0 j p0 2 W g � M .

Proof. One direction is trivial. For the other, assume \fp0 j p0 2 W g � M .
We will show there is some p 2 W with p � M . (This task is simple if W

happens to be finite.) Let p be a prime of T contained in M and minimal over
\fp0 j p0 2 W g. It is well known that p consists of zero divisors modulo that
intersection [3, Theorem 84]. That is, if x 2 p, then there is a y not contained
in \fp0 j p0 2 W g such that xy 2 \fp0 j p0 2 W g. Therefore, for some
p0 2 W , we have y … p0 but xy 2 p0. It follows that x 2 p0. This shows that
p � [fp0 j p0 2 W g. Now consider any x 2 p \ R. For some p0 2 W we have
x 2 p0 \ R D P . Thus, p \ R � P , and obviously P � \fp0 j p0 2 W �g � p, so
that P � p \ R. We now have p \ R D P , showing p 2 W . Since p � M , that
completes the argument. ut
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Remark 3. Let R � T be an integral extension of rings. In [4, Proposition 2], it
is shown that R � T satisfies going down if and only if R � RŒt� satisfies going
down for all t 2 T . We leave to the reader the exercise of giving a second proof of
that fact, using Lemma 8. Although the two approaches have much in common, we
feel that Lemma 8 throws a bit more light on the subject.

Notation. Let P # D \fp0 2 Spec R0 j p0 \ R D P g. Also let R# D R C P # D
fr C x j r 2 R and x 2 P #g.

Lemma 9. R# is a domain between R and R0. P # is a prime ideal in R# (and an
ideal in R0) and is the only prime ideal of R# lying over P in R.

Proof. Obviously R � R# � R0, and using that P # is obviously an ideal in R0, it is
easily verified that R# is a domain. The definition of P # easily implies P # \R D P .
Suppose r Cx and s Cy are two elements of R#, with r; s 2 R and x; y 2 P #, such
that .r C x/.s C y/ 2 P #. Since sx C ry C xy 2 P #, we see rs 2 P # \ R D P ,
and so we may assume r 2 P � P #, showing r Cx 2 P #. Thus P # is a prime ideal
of R#. Finally, suppose Q is any prime ideal of R# lying over P in R. Then there is
a prime ideal p0 in R0 with p0 \ R# D Q, so that p0 \ R D P . By definition, we
have P # � p0, and so P # � p0 \ R# D Q. As P # and Q are both in R# and both
lie over P , incomparability shows that Q D P #. Thus P # is the unique prime of R#

lying over P . ut
We come to the third and final key piece in our puzzle.

Lemma 10. (a) P a K-prime if and only if P # is a K-prime.
(b) The following are equivalent.

(i) P is a GDM prime.
(ii) P # is a GDM prime.

(iii) P # � J.R#/.
(iv) P # � J.R0/.

Proof. (a) Suppose P # not a K-prime, so that there is an integral extension T of
R# in which exactly two primes, say p1 and p2, lie over P #, and p1 and p2 are
comaximal. Obviously p1 and p2 lie over P , and since P # is the unique prime
of R# lying over P , there are no other primes of T lying over P . Thus we see
P is not a K-prime.
Conversely, if P is not a K-prime, then by Lemma 3((a) ) (c)) there is
an integral upper K to 0 in RŒX� with K contained in .P; X/RŒX� and in
.P; X C 1/RŒX�, but in no other uppers to P . K can be lifted to an integral
upper L to 0 in R#ŒX�. Since K � .P; X/RŒX� and L lies over K , by
going up there is a prime ideal q of R#ŒX� containing L and lying over
.P; X/RŒX�. It is easy to verify that q must be an upper to some prime of
R# lying over P . The only such prime is P #, and so q is an upper to P #.
Since X 2 .P; X/RŒX� � q, we see that q must equal .P #; X/R#ŒX�. Thus
L � .P #; X/R#ŒX�. Similarly, L � .P #; X C 1/R#ŒX�. Now any upper q0 to
P # containing L contracts to an upper to P containing K . Thus q0 \ RŒX� is
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either .P; X/RŒX� or .P; X C 1/RŒX�. Since q0 contains either X or X C 1, it
equals either .P #; X/R#ŒX� or .P #; X C 1/R#ŒX�. Now Lemma 3((c) ) (a))
shows P # is not a K-prime.

(b) (i) ) (iii): Suppose (i) holds. Let M be a maximal ideal of R#. As R � R#

is an integral extension, the definition of GDM prime shows that M contains
a prime of R# lying over P . The only possibility is that M contains P #. Thus
P # � J.R#/, and so (i) ) (iii).
(iii) ) (iv): Use that maximal ideals of R0 contract to maximal ideals of R#.
(iv) ) (i): Suppose P # � J.R0/. We will show P is a GDM prime. Let T be an
integral extension domain of R, and let M be a maximal ideal of T . (We must
show some prime of T contained in M lies over P .) Let S be the domain gotten
by adjoining all the elements of R0 to T . Thus T � S is an integral extension,
and so we can lift M to a maximal ideal N of S . As R0 � S , N \ R0 is a
maximal ideal of R0.
Since (iv) shows \fp0 2 Spec R0 j p0 \ R D P g D P # � N \ R0, Lemma 8
shows there is a p 2 Spec R0 lying over P , with p � N \ R0. Since R0 (being
integrally closed) satisfies the famous going down theorem, there is a prime q

of S with q \ R0 D p and q � N . Contracting to T , we see that q \ T is
contained in N \ T D M and lies over P , showing P is a GDM prime.
(ii) , (iii): We iterate, now finding .R#/# and .P #/#. Since P # is the unique
prime ideal of R# lying over P in R, we see that a prime ideal p0 in R0 lies
over P # in R# if and only if it lies over P in R. Therefore, the definition shows
P ## D P #. Also, R## D R# C P ## D R# C P # D R#. Using the equivalence
of (i) and (iii) applied to P #, we now see P # is a GDM prime if and only if
P ## � J.R##/ if and only if P # � J.R#/. ut

Corollary 2. Suppose P is a K-prime. If P # � J.R#/, then P is an H -prime and
a GDM prime (so that P � J.R/).

Proof. If P # � J.R#/, by Lemma 10(b), P is a GDM prime. By Theorem 5, P is
an H -prime. ut

6 Proposition 2 (Slightly Augmented)

Proposition 2. Suppose that for all nonzero non-units y 2 R0, there is a prime ideal
Q0 of R0 containing y such that at least one of the following is true: Q0 ¤ Q02, or
R0=Q0 is not integrally closed, or the quotient field of R0=Q0 is not algebraically
closed. If P is a K-prime of R, then P � J.R/, and P is an H -prime and a GDM
prime.

Proof. Assume P is a K-prime of R. By Corollary 2, it will suffice to show that
P # � J.R#/. If not, let M be a maximal ideal of R# not containing P #, and write
x C y D 1 with x 2 P # and y 2 M . Obviously y is a nonzero non-unit in R# and
so also in the integral extension R0. By hypothesis, there is a prime ideal Q0 of R0
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containing y such that either Q0 ¤ Q02, or R0=Q0 is not integrally closed, or the
quotient field of R0=Q0 is not algebraically closed. Let Q D Q0 \R#. Since y 2 Q,
we see that P # and Q are comaximal. By Corollary 1 applied to R#, and its primes
P # and Q, we see that P # is not a K-prime. That contradicts Lemma 10(a). ut

The next corollary shows that Proposition 2 applies to a large class of domains.

Corollary 3. Suppose R0 satisfies any one of conditions (i) through (iv) below. If P

is a K-prime of R, then P � J.R/, and P is an H -prime and a GDM prime.

(i) There is a subset S of SpecR0 such that R0 D \fR0
Q0 j Q0 2 Sg and such that

for each Q0 2 S , at least one of the following holds: (i) Q02 ¤ Q0; (ii) R0=Q0
is not integrally closed; or (iii) the quotient field of R0=Q0 is not algebraically
closed.

(ii) For every maximal ideal M of R0, either M ¤ M 2 or R=M is not
algebraically closed.

(iii) R0 is an intersection of some set W of quasi-local domains .D˛; N˛/, each
between R0 and its quotient field, such that for each ˛, \fN n

˛ j n � 1g D 0.
(iv) R0 is the intersection of a set of DVRs between R0 and its quotient field. (This

case includes Krull domains and so includes the case that R is Noetherian.)

Proof. It will suffice to show that in each case, R0 satisfies the hypothesis of
Proposition 2.

(i) It will suffice to show that if y is a nonzero non-unit in R0, then one of the Q0
in S contains y. If not, then we would have y�1 2 \fR0

Q0 j Q0 2 Sg D R0, a
contradiction.

(ii) This follows from (i), since R equals the intersection of all of its maximal
localizations.

(iii) If N˛ D 0, then .D˛; N˛/ must be the quotient field of R0 and can be ignored.
Thus, we may assume N˛ ¤ 0. Let Q˛ D N˛ \ R0. For some 0 ¤ z 2 N˛,
write z D r=s with r and s nonzero in R0. Thus r D sz 2 N˛ \ R D Q˛,
showing Q˛ ¤ 0. Therefore, Q˛ 6� \fN n

˛ j n � 1g. It follows that Q˛ ¤ Q2
˛.

By (i), it will suffice to show that every nonzero non-unit y of R0 is contained
in some Q˛. Were that false, then y would be a unit in each D˛ and so a unit
in R0, which is a contradiction.

(iv) This follows easily from (iii). ut
Question 2. Modifying our earlier question, we ask if the concepts of H -prime and
K-prime are equivalent for GDM primes?
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