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Abstract In 1969, Osofsky proved that a chained ring (i.e., local arithmetical
ring) with zero divisors has infinite weak global dimension; that is, the weak
global dimension of an arithmetical ring is 0, 1, or 1. In 2007, Bazzoni and Glaz
studied the homological aspects of Prüfer-like rings, with a focus on Gaussian
rings. They proved that Osofsky’s aforementioned result is valid in the context
of coherent Gaussian rings (and, more generally, in coherent Prüfer rings). They
closed their paper with a conjecture sustaining that “the weak global dimension of
a Gaussian ring is 0, 1, or 1.” In 2010, the authors of Bakkari et al. (J. Pure Appl.
Algebra 214:53–60, 2010) provided an example of a Gaussian ring which is neither
arithmetical nor coherent and has an infinite weak global dimension. In 2011, the
authors of Abuihlail et al. (J. Pure Appl. Algebra 215:2504–2511, 2011) introduced
and investigated the new class of fqp-rings which stands strictly between the two
classes of arithmetical rings and Gaussian rings. Then, they proved the Bazzoni-
Glaz conjecture for fqp-rings. This paper surveys a few recent works in the literature
on the weak global dimension of Prüfer-like rings making this topic accessible and
appealing to a broad audience. As a prelude to this, the first section of this paper
provides full details for Osofsky’s proof of the existence of a module with infinite
projective dimension on a chained ring. Numerous examples—arising as trivial ring
extensions—are provided to illustrate the concepts and results involved in this paper.
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1 Introduction

All rings considered in this paper are commutative with identity element and all
modules are unital. Let R be a ring and M an R-module. The weak (or flat)
dimension (resp., projective dimension) of M , denoted w: dimR.M/ (resp.,
p: dimR.M/), measures how far M is from being a flat (resp., projective) module.
It is defined as follows: Let n be an integer � 0. We have w: dimR.M/ � n (resp.,
p: dimR.M/ � n) if there is a flat (resp., projective) resolution

0 ! En ! En�1 ! : : : ! E1 ! E0 ! M ! 0:

If n is the least such integer, w: dimR.M/ D n (resp., p: dimR.M/ D n). If no
such resolution exists, w: dimR.M/ D 1 (resp., p: dimR.M/ D 1). The weak
global dimension (resp., global dimension) of R, denoted by w: gl: dim.R/ (resp.,
gl: dim.R/), is the supremum of w: dimR.M/ (resp., p: dimR.M/), whereM ranges
over all (finitely generated) R-modules. For more details on all these notions, we
refer the reader to [6, 13, 23].

A ring R is called coherent if every finitely generated ideal of R is finitely
presented, equivalently, if .0 W a/ and I \ J are finitely generated for every a 2 R
and any two finitely generated ideals I and J of R [13]. Examples of coherent
rings are Noetherian rings, Boolean algebras, von Neumann regular rings, and
semihereditary rings.

Gaussian rings belong to the class of Prüfer-like rings which has recently
received much attention from commutative ring theorists. A ring R is called
Gaussian if for every f; g 2 RŒX�, one has the content ideal equation c.fg/ D
c.f /c.g/ where c.f /, the content of f , is the ideal of R generated by the
coefficients of f [25]. The ringR is said to be a chained ring (or valuation ring) if its
lattice of ideals is totally ordered by inclusion; andR is called arithmetical ifRm is a
chained ring for each maximal idealm ofR [11,18]. AlsoR is called semihereditary
if every finitely generated ideal of R is projective [8]; and R is Prüfer if every
finitely generated regular ideal of R is projective [7, 16]. In the domain context, all
these notions coincide with the concept of Prüfer domain. Glaz, in [14], constructs
examples which show that all these notions are distinct in the context of arbitrary
rings. More examples, in this regard, are provided via trivial ring extensions [1, 3].

The following diagram of implications puts the notion of Gaussian ring in
perspective within the family of Prüfer-like rings [1, 4, 5]:

Semihereditary ring
+

Ring with weak global dimension � 1

+
Arithmetical ring

+
fqp-Ring

+
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Gaussian ring
+

Prüfer ring

In 1969, Osofsky proved that a local arithmetical ring (i.e., chained ring) with
zero divisors has infinite weak global dimension [22]. In view of [13, Corollary
4.2.6], this result asserts that the weak global dimension of an arithmetical ring is 0,
1, or 1.

In 2007, Bazzoni and Glaz proved that if R is a coherent Prüfer ring (and, a
fortiori, a Gaussian ring), then w: gl: dim.R/ = 0, 1, or 1 [5, Proposition 6.1]. And
also they proved that if R is a Gaussian ring admitting a maximal ideal m such that
the nilradical of the localization Rm is a nonzero nilpotent ideal, then w: gl: dim.R/
= 1 [5, Theorem 6.4]. At the end of the paper, they conjectured that “the weak
global dimension of a Gaussian ring is 0, 1, or 1” [5]. In two preprints [9, 10],
Donadze and Thomas claim to prove this conjecture (see the end of Sect. 3).

In 2010, the authors of [3] proved that if .A;m/ is a local ring, E is a nonzero
A
m

-vector space, and R WD A Ë E is the trivial extension of A by E, then:

• R is a total ring of quotients and hence a Prüfer ring.
• R is Gaussian if and only if A is Gaussian.
• R is arithmetical if and only if A WD K is a field and dimK E D 1.
• w: gl: dim.R/ � 1. If, in addition, m admits a minimal generating set, then

w: gl: dim.R/ D 1.

As an application, they provided an example of a Gaussian ring which is neither
arithmetical nor coherent and has an infinite weak global dimension [3, Example
2.7]; which widened the scope of validity of the above conjecture beyond the class
of coherent Gaussian rings.

In 2011, the authors of [1] investigated the correlation of fqp-rings with well-
known Prüfer conditions; namely, they proved that the class of fqp-rings stands
between the two classes of arithmetical rings and Gaussian rings [1, Theorem 3.1].
They also examined the transfer of the fqp-property to trivial ring extensions in
order to build original examples of fqp-rings. Also they generalized Osofsky’s result
(mentioned above) and extended Bazzoni-Glaz’s result on coherent Gaussian rings
by proving that the weak global dimension of an fqp-ring is equal to 0, 1, or 1 [1,
Theorem 3.11]; and then they provided an example of an fqp-ring that is neither
arithmetical nor coherent [1, Example 3.9].

Recently, several papers have appeared in the literature investigating the weak
global dimension of various settings subject to Prüfer conditions. This survey paper
plans to track and study these works dealing with this topic from the very origin,
that is, 1969 Osofsky’s proof of the existence of a module with infinite projective
dimension on a local arithmetical ring. Precisely, we will examine all main results
published in [1, 3, 5, 15, 22].

Our goal is to make this topic accessible and appealing to a broad audience;
including graduate students. For this purpose, we present complete proofs of all
main results via ample details and simplified arguments along with exact references.
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Further, numerous examples—arising as trivial ring extensions—are provided to
illustrate the concepts and results involved in this paper. We assume familiarity with
the basic tools used in the homological aspects of commutative ring theory, and any
unreferenced material is standard as in [2, 6, 8, 13, 17, 19, 23, 27].

2 Weak Global Dimension of Arithmetical Rings

In this section, we provide a detailed proof for Osofsky’s Theorem that the weak
global dimension of an arithmetical ring with zero divisors is infinite. In fact, this
result enables one to state that the weak global dimension of an arithmetical ring is
0, 1, or 1. We start by recalling some basic definitions.

Definition 2.1. Let R be a ring and M an R-module. Then:

(1) The weak dimension of M , denoted by w: dim.M/, measures how far M is
from being flat. It is defined as follows: Let n be a positive integer. We have
w: dim.M/ � n if there is a flat resolution

0 ! En ! En�1 ! � � � ! E1 ! E0 ! M ! 0:

If no such resolution exists, w: dim.M/ D 1; and if n is the least such integer,
w: dim.M/ D n.

(2) The weak global dimension of R, denoted by w: gl: dim.R/, is the supremum
of w: dim.M/, where M ranges over all (finitely generated) R-modules.

Definition 2.2. Let R be a ring. Then:

(1) R is said to be a chained ring (or valuation ring) if its lattice of ideals is totally
ordered by inclusion.

(2) R is called an arithmetical ring if Rm is a chained ring for each maximal ideal
m of R.

Fields and Z.p/, where Z is the ring of integers and p is a prime number, are
examples of chained rings. Also, Z=n2Z is an arithmetical ring for any positive
integer n. For more examples, see [3]. For a ring R, let Z.R/ denote the set of all
zero divisors of R.

Next we give the main theorem of this section.

Theorem 2.3. Let R be an arithmetical ring. Then w: gl: dim.R/ D 0; 1; or 1.

To prove this theorem we make the following reductions:

(1) We may assume that R is a chained ring since w: gl: dim.R/ is the supremum
of w: gl: dim.Rm/ for all maximal ideal m of R [13, Theorem 1.3.14 (1)].

(2) We may assume that R is a chained ring with zero divisors. Then we prove that
w: gl: dim.R/ D 1 since if R is a valuation domain, then w: gl: dim.R/ � 1 by
[13, Corollary 4.2.6].
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(3) Finally, we may assume that .R;m/ is a chained ring with zero divisors such
that Z.R/ D m, since Z.R/ is a prime ideal, Z.RZ.R// D Z.R/RZ.R/, and
w: gl: dim.RZ.R// � w: gl: dim.R/.

So our task is reduced to prove the following theorem.

Theorem 2.4 ([22, Theorem]). Let .R;m/ be a chained ring with zero divisors
such that Z.R/ D m. Then w: gl: dim.R/ D 1.

To prove this theorem we first prove the following lemmas. Throughout, let
.R;m/ be a chained ring with Z.R/ D m, M an R-module, I D fx 2 R j x2 D 0g,
and for x 2 M , .0 W x/ D fy 2 R j yx D 0g. One can easily check that I is a
nonzero ideal since R is a chained ring with zero divisors.

Lemma 2.5 ([22, Lemma 1]). I 2 D 0, and for all x … R, x … I ) .0 W x/ � I .

Proof. To prove that I 2 D 0, it suffices to prove that ab D 0 for all a; b 2 I . So let
a; b 2 I . Then either a 2 bR or b 2 aR, so that ab 2 a2R D 0 or ab 2 b2R D 0.

Now let x 2 R n I and y 2 .0 W x/. Then either x 2 yR or y 2 xR. But x 2 yR
implies that x2 2 xyR D 0, absurd. Therefore y 2 xR, so that y2 2 xyR D 0.
Hence y 2 I . ut
Lemma 2.6 ([22, Lemma 2]). Let 0 ¤ x 2 Z.R/ such that .0 W x/ D yR. Then
w: gl: dim.R/ D 1.

Proof. We first prove that .0 W y/ D xR. The inclusion .0 W y/ � xR is trivial since
xy D 0. Now to prove the other inclusion let z 2 .0 W y/. Then either z D xr for
some r 2 R and in this case we are done, or x D zj for some j 2 R. We may
assume j 2 m. Otherwise, j is a unit and then we return to the first case. Since
x ¤ 0, j … .0 W z/, so jR ª .0 W z/ which implies .0 W z/ � jR, and hence y D jk

for some k 2 m. But then 0 D zy D zjk D xk, so k 2 .0 W x/ D yR, and hence
k D yr for some r 2 R. Hence y D kj D yrj , and as j 2 m we have the equality
y D y.1 � rj /.1 � rj /�1 D 0, which contradicts the fact that x is a zero divisor.
Hence z 2 xR, and therefore .0 W y/ D xR.

Now letmx (resp.,my) denote the multiplication by x (resp., y). Since .0 W x/ D
yR and .0 W y/ D xR we have the following infinite flat resolution of xR with
syzygies xR and yR:

� � � �! R
my�! R

mx�! R
my�! � � � my�! R

mx�! xR�!0

We claim that xR and yR are not flat. Indeed, recall that a projective module over a
local ring is free [23]. So no projective module is annihilated by x or y. Since xR
is annihilated by y and yR is annihilated by x, both xR and yR are not projective.
Further, xR and yR are finitely presented in view of the exact sequence 0 ! yR !
R ! xR ! 0. It follows that xR and yR are not flat (since a finitely presented flat
module is projective [23, Theorem 3.61]). ut
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Corollary 2.7 ([22, Corollary]). If I D m, then I is cyclic and R has infinite weak
global dimension.

Proof. Assume that I D m. Then m2 D 0. Now let 0 ¤ a 2 m. We claim that
m D aR. Indeed, let b 2 m. Since R is a chained ring, either b D ra for some
r 2 R and in this case we are done, or a D rb for some r 2 R. In the later case,
either r is a unit and then b D r�1a 2 aR, or r 2 m which implies a D rb D 0,
which contradicts the assumption a ¤ 0. Thus m D aR, as claimed. Moreover,
we have .0 W a/ D aR. Indeed, .0 W a/ � aR since a 2 I ; if x 2 .0 W a/, then
x 2 Z.R/ D m D aR. Hence .0 W a/ D aR. It follows thatR satisfies the conditions
of Lemma 2.6 and hence the weak global dimension of R is 1. ut

Throughout, an element x of an R-moduleM is said to be regular if .0 W x/ D 0.

Lemma 2.8 ([22, Lemma 3]). Let F be a free module and x 2 F . Then x is
contained in zR for some regular element z of F .

Proof. Let fy˛g be a basis for F and let x WD
nX

iD1
yi ri 2 F , where ri 2 R. Since

R is a chained ring, there is j 2 f1; 2; : : : ; ng such that
nX

iD1
riR � rjR. So that

for each i 2 f1; 2; : : : ; ng, ri D rj si for some si 2 R with sj D 1. Hence x D
rj .

nX

iD1
.yi si //. We claim that z WD

nX

iD1
yi si is regular. Suppose not and let t 2 R

such that t .
nX

iD1
yi si / D 0. Then tsi D 0 for all i 2 f1; 2; : : : ; ng. In particular

t D tsj D 0, absurd. Therefore z is regular and x D rj z, as desired. ut
Note, for convenience, that in the proof of Theorem 2.4 (below), we will prove

the existence of a moduleM satisfying the conditions (1) and (2) of the next lemma,
which will allow us to construct—via iteration—an infinite flat resolution of M .

Lemma 2.9 ([22, Lemma 4]). Assume that .0 W r/ is infinitely generated for all
0 ¤ r 2 m. Let M be an R-submodule of a free module N such that:

(1) M D M1

S
M2

S
M3, where M1 D

[

x2M
x regular

xR, M2 D
1[

iD0
yuiR, with y

regular in N , uiR ¤ uiC1R, and yui is not in M1, and M3 D
X

vjR.
(2) yu0R \ xR is infinitely generated for some regular x 2 M .

Let F be a free R-module with basis fyx j x regular 2 M g [ fzi j i 2 !g [
fwj g, and let v W F �! N be the map defined by: v.yx/ D x, v.zi / D yui , and
v.wj / D vj . Then K D Ker.v/ has properties .1/; .2/, and M is not flat.
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Proof. First the map v exists by [19, Theorem 4.1]. (1) by (2), there exist r; s 2 R
such that yu0r D xs ¤ 0. Here r 2 m; otherwise, yu0 D xsr�1 2 M1,
contradiction. Since Z.R/ D m, the expression for any regular element in terms
of a basis for N has one coefficient a unit. Indeed, let .n˛/˛2� be a basis for N and

z a regular element in N with z D
iDkX

iD0
cini where ci 2 R. As R is a chained ring,

there exists j 2 f0; : : : ; kg such that for all i 2 f0; : : : ; kg, there exists di 2 R with
ci D cj di and dj D 1. We claim that cj is a unit. Suppose not. Then cj 2 Z.R/.

So there is a nonzero d 2 R with dcj D 0, and hence d z D dcj

iDkX

iD0
dini D 0. This

is absurd since z is regular.
Now, let x D

X

i2I
I finite

aini and y D
X

i2I
I finite

bini . Then biu0r D ai s for all i 2 I .

Let i0 2 I such that ai0 is a unit. So s D u0rt , where t D bi0a
�1
i0

2 R. Note that
bi0 ¤ 0 since xs ¤ 0. Clearly, z0 � yxu0t is regular in F (since z0; yx are part of
the basis of F ) and is not in K [otherwise, v.z0 � yxu0t/ D 0 yields yu0 D xu0t ,
which contradicts .1/] and .z0 � yxu0t/r 2 K. We claim that .z0 � yxu0t/r is not
in K1 WD

[

x02K
x0 regular

x0R. Suppose not and assume that r.z0 � u0tyx/ D r 0x0 with

r 0 2 R and x0 regular in K. Then r 0 ¤ 0 since r ¤ 0 and as x0 2 K � F , there
are a; b; ai 2 R such that x0 D az0 � byx C x00, where x00 D

X

yx¤fi
z0¤fi

aifi . Thus

r D r 0a, ru0t D r 0b, and r 0x00 D 0. Since x0 is regular in F and r 0x00 D 0, a
or b is unit. We claim that a is always a unit. Indeed, if b is a unit, then r.1 �
ab�1u0t/ D 0, so if a 2 m, then .1 � ab�1u0t/ is a unit which implies r D 0,
absurd. So a�1x0 D z0 � a�1byx C a�1x00, r 0 D a�1r , and ru0t D ra�1b which
implies z0 � u0tyx C .u0t � a�1b/yx C a�1x00 D a�1x0 2 K. By Lemma 2.8
.u0t � a�1b/yx C a�1x00 D pq, fore some q regular in F and p 2 R. But clearly
since r D r 0a, ru0t D r 0b, and r 0x00 D 0, then rpq D 0. Hence rp D 0. It
follows that .z0 � yxu0t C qp/ 2 K, where q is regular in F and p 2 .0 W r/. Thus
by applying v we obtain yu0 � xu0t C pv.q/ D 0. But R is a chained ring, so p
and u0t are comparable and since u0t r ¤ 0, p D u0th for some h 2 R. Hence
yu0 D .x � hv.q//u0t ; we show that .x � hv.q// is regular in M which contradicts
property .1/. First clearly .x � hv.q// 2 M since x; v.q/ 2 M . Now suppose that
a.x � hv.q// D 0 for some a 2 m. Either u0t D a0a for some a0 2 R, this yields
yu0 D .x � hv.q//aa0 D 0 also impossible, or a D u0tm for some m 2 R, and
this yields mu0y D .x � hv.q//a D 0, so mu0 D 0 as y is regular, and hence
a D mu0t D 0. We conclude that .x�hv.q// is regular inM and hence yu0 2 M1,
the desired contradiction.

Last, let yu0R \ xR D hx0; x1; : : : ; xn; : : :i, where

hx0; x1; : : : ; xi i ¤ hx0; x1; : : : ; xi ; xiC1i:
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For any integer i � 0, let xi D yu0ri for some ri 2 R. It is clear that r0R ¤ r1R ¤
. . . ¤ riR ¤ riC1R ¤ . . . . Now, let y0 WD z0 � yxu0t , u0

i WD ri for each i 2 N. Then

K D K1

S
K2

S
K3, where K1 WD

[

x02K
x0 regular

x0R, K2 WD
1S
iD0

y0u0
iR with y0 regular

in F and u0
iR ¤ u0

iC1R, and K3 WD K n .K1

[
K2/. Thus K satisfy Property (1).

(2) Since u0R ¤ u1R, u0 D u1m0 for some m0 2 m. Hence x0 WD z0 � z1m0 is
regular in K since v.x0/ D v.z0 � z1m0/ D yu0 � yu1m0 D 0 and z0; z1 are basis
elements. We claim that .z0 � z1m0/R \ .z0 � yxu0t/r0R D z0.0 W m0/. Indeed,
since z0; z1; yx are basis elements, then .z0 � z1m0/R \ .z0 � yxu0t/r0 � z0R.
Also .z0 � z1m0/R \ z0R D z0.0 W m0/. For, let l 2 .z0 � z1m0/R \ z0R. Then
l D .z0 � z1m0/a D z0a0 for some a; a0 2 R. Hence a D a0 and am0 D 0, whence
l D az0 with am0 D 0. So l 2 z0.0 W m0/. The reverse inclusion is straightforward.
Consequently, .z0 � z1m0/R \ .z0 � yxu0t/r0R � z0.0 W m0/. To prove the reverse
inclusion, let k 2 .0 W m0/. Then either k D r0k

0 or r0 D kk0, for some k0 2 R.
The second case is impossible since r0u0 ¤ 0. Hence z0k D .z0 � yxu0t/r0k0 2
.z0 � yxu0t/r0R. Further, z0k 2 .z0 � z1m0/R. Therefore our claim is true. But z0
is regular, so z0.0 W m0/ Š .0 W m0/ which is infinitely generated by hypothesis.
Therefore y0u0

0R \ x0R is infinitely generated, as desired.
Finally,M is not flat. Suppose not, then by [23, Theorem 3.57], there is anR-map

� W F �! K such that � ..z0 � yxu0t/r0/ D .z0 � yxu0t/r0. Assume that �.z0/ D
az0CbyxCZ1 for some a; b 2 R and �.yx/ D a0z0Cb0yxCZ2 for some a0; b0 2 R.
Then r0a� r0u0ta0 D r0, r0b � r0u0tb0 D �r0u0t , and r0Z1 � r0u0tZ2 D 0. Hence
r0.1�aCu0ta0/ D 0 and since r0 ¤ 0, a or a0 is a unit. Suppose that a is a unit and
without loss of generality we can assume that a D 1. Thus we have the equation
z0 � u0tyx � u0ta0z0 C .u0t � u0tb0 Cb/yx CZ1 � u0tZ2 D �.z0/� u0t�.Z2/ 2 K.
By Lemma 2.8, �u0ta0z0 C .u0t � u0tb0 C b/yx C Z1 � u0tZ2 D pq, where q is
regular in F and, clearly, r0p D 0 since r0u0ta0 D 0. Thus z0 � u0tyx C pq 2 K,
which is absurd (as seen before in the second paragraph of the proof of Lemma 2.9).

Now we are able to prove Theorem 2.4.

Proof of Theorem 2.4. If .0 W r/ is cyclic for some r 2 m, then R has infinite weak
global dimension by Lemma 2.6. Next suppose that .0 W r/ is not cyclic, for all
0 ¤ r 2 m, which is equivalent to assume that .0 W r/ is infinitely generated for all
0 ¤ r 2 m, since R is a chained ring.

Let 0 ¤ a 2 I and b 2 m nI . Note that b exists since I ¤ m by the proof
of Corollary 2.7. Let N be a free R-module on two generators y; y0 and let M WD
.y � y0b/RC y.0 W a/. Then:

(A) M1 WD
[

x2M
x regular

xR D f.yt � y0b/r j1 � t 2 .0 W a/; r 2 R/. To show this

equality, let c be a regular element in M . Then c D .r1 C r2/y � r1by
0 for

some r1 2 R; r2 2 .0 W a/. We claim that r1 is a unit. Suppose not. So either
r1 2 .r2/ hence ac D 0, or r2 D nr1 for some n 2 R and since r1 2 m D Z.R/,
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there is r 0
1 ¤ 0 such that r1r 0

1 D 0, so r 0
1c D 0. In both cases there is a

contradiction with the fact that c is regular. Thus, r1 is a unit. It follows that
c D .1C r�1

1 r2/yr1 � by0r1 2 f.yt � y0b/r j1 � t 2 .0 W a/; r 2 Rg. Now let
c D yt � y0b, where .1� t / 2 .0 W a/. Then c is regular. Indeed, if rc D 0 for
some r 2 R, then rt D 0. Moreover, either r D na for some n 2 R, and in
this case r.1 � t / D na.1 � t / D 0, so r D rt D 0 as desired, or a D nr for
some n 2 R, so a D at D nrt D 0, absurd.

(B) There exists a countable chain of ideals u0R ¤ u1R ¤ : : : where ui 2 .0 W
a/ n .0 W b/. Since 0 ¤ a 2 I and b 2 m nI , .a/ � .b/. Thus .0 W b/ � .0 W a/.
Moreover .0 W b/ ¤ .0 W a/; otherwise, a 2 .0 W a/ D .0 W b/, and hence
ab D 0. Hence b 2 .0 W a/ D .0 W b/ � I by Lemma 2.5, absurd. Now let
u0 2 .0 W a/ n .0 W b/. Since .0 W a/ is infinitely generated, there are u1; u2; : : :
such that .u0/ ¤ .u0; u1/ ¦ : : : � .0 W a/. So u0R ¦ u1R ¦ : : : and necessarily
ui … .0 W b/ for all i � 1 since u0 … .0 W b/.
Note that yui 2 M [since ui 2 .0 W a/]. Also yui … M1; otherwise, if yui D
ytr � y0br with 1 � t 2 .0 W a/ and r 2 R, then ui D t r and br D 0. Hence
bui D btr D 0 and thus ui 2 .0 W b/, contradiction. Also note that y is regular
in N (part of the basis) and y … M ; if y D .y � y0b/r1 C r2y with r1 2 R and
r2 2 .0 W a/, then r1b D 0 and r1 C r2 D 1. So r1 2 m, ar1 D a, and hence
a D 0, absurd.

(A) and (B) imply that (1) of Lemma 2.9 holds.
Let us show that yu0R \ .y � y0b/R D y.0 W b/. Indeed, if c D yu0r D

.y � y0b/r 0 where r; r 0 2 R, then u0r D r 0 and r 0b D 0. Hence c 2 y.0 W b/.
If c D ry where rb D 0, then r D u0t for some t 2 R as u0 2 .0 W a/ n .0 W b/.
Thus c D r.y � y0b/. Now y.0 W b/ Š .0 W b/ is infinitely generated. Therefore (2)
of Lemma 2.9 holds.

SinceK satisfies the properties ofM we can consider it as a new moduleM , and
then there is a free module F1 and a map v1 W F1 �! F such that K1 D Ker.v1/
satisfies the same conditions of K and K1 is not flat. We can repeat this iteration
above to get the infinite flat resolution of M :

� � � ! Fn ! Fn�1 ! � � � ! F1 ! F0 ! M ! 0:

with none of the syzygies K;K1;K2; : : : is flat. Therefore R has an infinite weak
global dimension. ut

3 Weak Global Dimension of Gaussian Rings

In 2005, Glaz proved that if R is a Gaussian coherent ring, then w: gl: dim.R/ D
0, 1, or 1 [15]. In this section, we will see that the same conclusion holds for the
larger class of Prüfer coherent rings and fore some contexts of Gaussian rings. We
start by recalling the definitions of Gaussian, Prüfer, and coherent rings.
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Definition 3.1. Let R be a ring. Then:

(1) R is called a Gaussian ring if for every f; g 2 RŒX�, one has the content ideal
equation c.fg/ D c.f /c.g/, where c.f /, the content of f , is the ideal of R
generated by the coefficients of f .

(2) R is called a Prüfer ring if every nonzero finitely generated regular ideal is
invertible (or, equivalently, projective)

(3) R is called a coherent ring if every finitely generated ideal of R is finitely
presented, equivalently, if .0 W a/ and I \ J are finitely generated for every
a 2 R and any two finitely generated ideals I and J of R.

Recall that Arithmetical ring ) Gaussian ring ) Prüfer ring. To see the proofs
of the above implications and that they cannot be reversed, in general, we refer the
reader to [5, 14, 15] and Sect. 5 of this paper.

Noetherian rings, valuation domains, and KŒx1; x2; : : :� where K is a field are
examples of coherent rings. For more examples, see [13].

Let Q.R/ denote the total ring of fractions of R and Nil.R/ its nilradical. The
following proposition is the first main result of this section.

Proposition 3.2 ([5, Proposition 6.1]). Let R be a coherent Prüfer ring. Then the
weak global dimension of R is equal to 0, 1, or 1.

The proof of this proposition relies on the following lemmas. Recall that a ring
R is called regular if every finitely generated ideal of R has a finite projective
dimension and von Neumann regular if every R-module is flat.

Lemma 3.3 ([13, Corollary 6.2.4]). Let R be a coherent regular ring. Then Q.R/
is a von Neumann regular ring.

Lemma 3.4 ([15, Lemma 2.1]). Let R be a local Gaussian ring and I D
.a1; : : : ; an/ be a finitely generated ideal of R. Then I 2 D .a2i /, for some i 2
f1; 2; : : : ; ng.

Proof. We first assume that I D .a; b/. Let f .x/ WD ax C b, g.x/ WD ax � b,
and h.x/ WD bx C a. Since R is Gaussian, c.fg/ D c.f /c.g/, so that .a; b/2 D
.a2; b2/, also c.f h/ D c.f /c.h/which implies that .a; b/2 D .ab; a2Cb2/. Hence
.a2; b2/ D .ab; a2 C b2/, whence a2 D rab C s.a2 C b2/, for some r and s in R.
That is, .1 � s/a2 C rab C sb2 D 0. Since R is a local ring, either s or 1 � s

is a unit in R. If s is a unit in R, then b2 C rs�1ab C .s�1 � 1/a2 D 0. Next
we show that ab 2 .a2/. Let k.x/ WD .b C ˛a/x � a, where ˛ WD rs�1. Then
c.hk/ D c.h/c.k/ implies that .b.b C ˛a/; ˛a2;�a2/ D .a; b/..b C ˛a/; a/. But
clearly .b.b C ˛a/; ˛a2;�a2/ D ..s�1 � 1/a2; ˛a2;�a2/ D .a2/. Thus .a2/ D
.a; b/..b C ˛a/; a/. In particular, ab 2 .a2/ and so does b2. If 1 � s is unit, similar
arguments imply that ab, and hence a2 2 .b2/. Thus for any two elements a and b,
ab 2 .b2/ or .a2/. It follows that I 2 D .a1; : : : ; an/

2 D .a21; : : : ; a
2
n/. An induction

on n leads to the conclusion. ut
Recall that a ring R is called reduced if it has no nonzero nilpotent elements.
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Lemma 3.5 ([15, Theorem 2.2]). Let R be a ring. Then w: gl: dim.R/ � 1 if and
only if R is a Gaussian reduced ring.

Proof. Assume that w: gl: dim.R/ � 1. By [13, Corollary 4.2.6], Rp is a valuation
domain for every prime ideal p of R. As valuation domains are Gaussian, R is
locally Gaussian, and therefore Gaussian. Further, R is reduced. For, let x 2 R such
that x is nilpotent. We claim that x D 0. Suppose not and let n � 2 be an integer
such that xn D 0. Then there exists a prime ideal q in R such that x ¤ 0 in Rq [2,
Proposition 3.8]. It follows that xn D 0 in Rq , a contradiction since Rq is a domain.

Conversely, since R is Gaussian reduced, Rp is a local, reduced, Gaussian ring
for any prime ideal p of R. We claim that Rp is a domain. Indeed, let a and b in Rp
such that ab D 0. By Lemma 3.4, .a; b/2=.b/2 or .a2/. Say .a; b/2 D .b2/. Then
a2 D tb2 for some t 2 Rp . Thus a3 D tb.ab/ D 0. Since Rp is reduced, a D 0,
and Rp is a domain. Therefore Rp is a valuation domain for all prime ideals p of R.
So w: gl: dim.R/ � 1 by [13, Corollary 4.2.6]. ut
Lemma 3.6 ([5, Theorem 3.3]). LetR be a Prüfer ring. ThenR is Gaussian if and
only if Q.R/ is Gaussian.

Lemma 3.7 ([5, Theorem 3.12(ii)]). Let R be a ring. Then w: gl: dim.R/ � 1 if
and only if R is a Prüfer ring and w: gl: dim.Q.R// � 1.

Proof. If w: gl: dim.R/ � 1,R is Prüfer and, by localization, w: gl: dim.Q.R// � 1.
Conversely, assume that R is a Prüfer ring such that w: gl: dim.Q.R// � 1. By
Lemma 3.5, Q.R/ is a Gaussian reduced ring. So R is reduced and, by Lemma 3.6,
R is Gaussian. By Lemma 3.5, w: gl: dim.R/ � 1. ut
Proof of Proposition 3.2. Assume that w: gl: dim.R/ D n < 1 and let I be any
finitely generated ideal of R. Then I has a finite weak dimension. Since R is a
coherent ring, I is finitely presented. Hence the weak dimension of I equals its
projective dimension by [13, Corollary 2.5.5]. Whence, as I is an arbitrary finitely
generated ideal of R, R is a regular ring. So, by [13, Corollary 6.2.4], Q.R/ is von
Neumann regular. By Lemma 3.7, w: gl: dim.R/ � 1. ut

The following is an example of a coherent Prüfer ring with infinite weak global
dimension.

Example 3.8. Let R D R Ë C. Then R is coherent by [20, Theorem 2.6], Prüfer by
Theorem 4.2, and w: gl: dim.R/ D 1 by Lemma 4.1.

In order to study the weak global dimension of an arbitrary Gaussian ring, we
make the following reductions:

(1) We may assume that R is a local Gaussian ring since w: gl: dim.R/ is the supre-
mum of w: gl: dim.Rm/ for all maximal ideal m of R [13, Theorem 1.3.14 (1)].

(2) We may assume thatR is a non-reduced local Gaussian ring since every reduced
Gaussian ring has weak global dimension at most 1 by Lemma 3.5.
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(3) Finally, we may assume that .R;m/ is a local Gaussian ring with the maximal
ideal m such that m D Nil.R/, since the prime ideals of a local Gaussian ring
R are linearly ordered, so that Nil.R/ is a prime ideal and w: gl: dim.R/ �
w: gl: dim.RNil.R//.

Next we announce the second main result of this section.

Theorem 3.9 ([5, Theorem 6.4]). Let R be a Gaussian ring with a maximal ideal
m such that Nil.Rm/ is a nonzero nilpotent ideal. Then w: gl: dim.R/ D 1.

The proof of this theorem involves the following results:

Lemma 3.10. Consider the following exact sequence of R-modules

0 �! M 0 �! M �! M 00 �! 0

where M is flat. Then either the three modules are flat or w: dim.M 00/ D
w: dim.M 0/C 1.

Proof. This is a classic result. We offer here a proof for the sake of completeness.
Suppose that M 00 is flat. Then by the long exact sequence theorem [23, Theorem
8.3] we get the exact sequence

0 D Tor2.M
00; N / �! Tor1.M

0; N / �! Tor1.M;N / D 0

for any R-module N . Hence Tor1.M 0; N / D 0 which implies that M 0 is flat.
Next, assume that M 00 is not flat. In this case, we claim that

w: dim.M 00/ D w: dim.M 0/C 1:

Indeed, let w: dim.M 0/ D n. Then we have the exact sequence

0 D TornC2.M;N / �! TornC2.M 00; N / �! TornC1.M 0; N / D 0

for any R-module N . Hence TornC2.M 00; N / D 0 for any R-module N which
implies

w: dim.M 00/ � nC 1 D w: dim.M 0/C 1:

Now let w: dim.M 00/ D m. Then we have the exact sequence

0 D TormC1.M 00; N / �! Torm.M
0; N / �! Torm.M;N/ D 0

for any R-module N . Hence Torm.M 0; N / D 0 for any R-module N which
implies that

w: dim.M 00/ D m � w: dim.M 0/C 1:
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Consequently, w: dim.M 00/ D w: dim.M 0/C 1. ut
Recall that an exact sequence of R-modules

0 �! M 0 �! M �! M 00 �! 0

is pure if it remains exact when tensoring it with any R-module. In this case, we say
that M 0 is a pure submodule of M [23].

Lemma 3.11 ([5, Lemma 6.2]). Let .R;m/ be a local ring which is not a field.
Then w: dim.R=m/ D w: dim.m/C 1.

Proof. Consider the short exact sequence

0 ! m ! R ! R=m ! 0:

Assume that R=m is flat. By [13, Theorem 1.2.15 (1,2,3)], m is pure and .aR/m D
aR\m D aR for all a 2 m. Hence am D aR, for all a 2 m, and so by Nakayama’s
Lemma, a D 0, absurd. By Lemma 3.10, w: dim.R=m/ D w: dimR.m/C 1. ut
Proposition 3.12 ([5, Proposition 6.3]). Let .R;m/ be a local ring with nonzero
nilpotent maximal ideal. Then w: dim.m/ D 1.

Proof. Let n be the minimum integer such that mn D 0. We claim that for all
1 � k < n, w: dim.mn�k/ D w: dim.m/C 1. Indeed, let k D 1. Then mn�1m D 0,
so mn�1 is an .R=m/-vector space; hence 0 ¤ mn�1 Š L

R=m implies that
w: dimR.m

n�1/ D w: dim.R=m/ D w: dim.m/C 1 by Lemma 3.11 . Now let h be
the maximum integer in f1; : : : ; n � 1g such that w: dim.mn�k/ D w: dim.m/ C 1

for all k � h. Assume by way of contradiction that h < n � 1. Then we have the
exact sequence:

0 ! mn�h ! mn�.hC1/ ! mn�.hC1/ =mn�h ! 0; (�)

where mn�.hC1/ =mn�h is a nonzero .R=m/-vector space. So by Lemma 3.11, we
have w: dim.mn�.hC1/ =mn�h/ D w: dim.m/C 1. By hypothesis, w: dim.mn�h/ D
w: dim.m/ C 1. Let us show that w: dim.mn�.hC1// D w: dim.m/ C 1. Indeed, if
l WD w: dim.m/ C 1, then by applying the long exact sequence theorem to .�/,
we get

0 D TorlC1.mn�h; N / �! TorlC1.mn�.hC1/; N / �! TorlC1
�
mn�.hC1/

mn�h ; N

�
D 0

for any R-module N . Hence TorlC1.mn�.hC1/; N / D 0 for any R-module N which
implies

w: dim.mn�.hC1// � l D w: dim.m/C 1:
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Further, if w: dim.mn�.hC1// ˆ l , then we have

0 D TorlC1
�
mn�.hC1/

mn�h ; N

�
�! Torl .m

n�h; N / �! Torl .m
n�.hC1/; N / D 0

for any R-module N . Hence Torl .mn�h; N / D 0 for any R-module N which
implies that w: dim.mn�h// � l � 1, absurd. Hence w: dim.mn�.hC1// D
w: dim.m/ C 1, the desired contradiction. Therefore the claim is true and, in
particular, for k D n � 1, we have w: dim.m/ D w: dim.m/ C 1, which yields
w: dim.m/ D 1. ut
Proof of Theorem 3.9. Suppose that R is Gaussian and m is a maximal ideal in
R such that Nil.Rm/ is a nonzero nilpotent ideal. Then Rm is also Gaussian and
Nil.Rm/ is a prime ideal inR. Moreover Nil.Rm/ D pRm ¤ 0 for some prime ideal
p in R. Now, the maximal ideal pRp of Rp is nonzero since 0 ¤ pRm � pRp .
Also by assumption, there is a positive integer n such that .pRm/

n D 0, whence
pn D 0. So .pRp/n D 0 and hence pRp is nilpotent. Therefore Rp is a local
ring with nonzero nilpotent maximal ideal. By Proposition 3.12, w: gl: dim.Rp/ D
1. Since w: gl: dim.R/ � w: gl: dim.RS/ for any localization RS of R, we get
w: gl: dim.R/ D 1. ut

In the previous section, we saw that the weak global dimension of an arithmetical
ring is 0, 1, or 1. In this section, we saw that the same result holds if R is Prüfer
coherent or R is a Gaussian ring with a maximal ideal m such that Nil.Rm/ is a
nonzero nilpotent ideal.

The question of whether this result is true for an arbitrary Gaussian ring was the
object of Bazzoni-Glaz conjecture which sustained that the weak global dimension
of a Gaussian ring is 0, 1, or 1. In a first preprint [9], Donadze and Thomas claim
to prove this conjecture in all cases except when the ring R is a non-reduced local
Gaussian ring with nilradical N satisfying N2 D 0. Then in a second preprint [10],
they claim to prove the conjecture for all cases.

4 Gaussian Rings via Trivial Ring Extensions

In this section, we will use trivial ring extensions to construct new examples of non-
arithmetical Gaussian rings , non-Gaussian Prüfer rings, and illustrative examples
for Theorems 2.4 and 3.9. Let A be a ring and M an R-module. The trivial ring
extension of A by M (also called the idealization of M over A) is the ring R WD
A ËM whose underlying group is A 	M with multiplication given by

.a; x/.a0; x0/ D .aa0; ax0 C a0x/:
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Recall that if I is an ideal of A and M 0 is a submodule of M such that IM � M 0,
then J WD I ËM 0 is an ideal ofR; ideals ofR need not be of this form [20, Example
2.5]. However, the form of the prime (resp., maximal) ideals ofR is pËM , where p
is a prime (resp., maximal) ideal of A [17, Theorem 25.1(3)]. Suitable background
on trivial extensions is [13, 17, 20].

The following lemma is useful for the construction of rings with infinite weak
global dimension.

Lemma 4.1 ([3, Lemma 2.3]). Let K be a field, E a nonzero K-vector space, and
R WD K ËE. Then w: gl: dim.R/ D 1.

Proof. First note that R.I/ Š A.I/ Ë E.I/. So let us identify R.I/ with A.I/ Ë E.I/

as R-modules. Now let ffigi2I be a basis of E and J WD 0 Ë E. Consider the
R-map u W R.I/ �! J defined by u..ai ; ei /i2I / D .0;

X

i2I
aifi /. Then we have the

following short exact sequence of R-modules

0 �! Ker.u/ �! R.I/
u�! J �! 0

But Ker.u/ D 0 Ë E.I/. Indeed, clearly 0 Ë E.I/ � Ker.u/. Now suppose
u..ai ; ei // D .0; 0/. Then

P
i2I
aifi D 0; hence ai D 0 for each i as ffigi2I is a

basis for E and we have the equality. Therefore the above exact sequence becomes

0 �! 0 ËE.I/ �! R.I/
u�! J �! 0 (�)

We claim that J is not flat. Suppose not. Then 0 Ë E.I/
T
JR.I/ D .0 Ë E.I//J by

[23, Theorem 3.55]. But .0ËE.I//J D 0. We use the above identification to obtain
0 D 0 ËE.I/

T
JR.I/ D .J /.I /

T
J .I/ D J .I/ D 0 ËE.I/, absurd (since E ¤ 0).

Now, by Lemma 3.10, w: dim.J / D w: dim.J .I // C 1 D w: dim.J / C 1. It
follows that w: gl: dim.R/ D w: dim.J / D 1. ut

Next, we announce the main result of this section.

Theorem 4.2 ([3, Theorem 3.1]). Let .A;m/ be a local ring, E a nonzero A
m

-
vector space, and R WD A ËE the trivial ring extension of A by E. Then:

(1) R is a total ring of quotients and hence a Prüfer ring.
(2) R is Gaussian if and only if A is Gaussian.
(3) R is arithmetical if and only if A WD K is a field and dimK.E/ D 1.
(4) w: gl: dim.R/ ‰ 1. If m admits a minimal generating set, then w: gl: dim.R/ is

infinite.

Proof.

(1) Let .a; e/ 2 R. Then either a 2 m in which case we get .a; e/.0; e/ D .0; ae/ D
.0; 0/ or a … m which implies a is a unit and hence .a; e/.a�1;�a�2e/ D .1; 0/,
the unity of R. Therefore R is a total ring of quotients and hence a Prüfer ring.
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(2) Suppose that R is Gaussian. Then, since A Š R
0ËE and the Gaussian property is

stable under factor rings, A is Gaussian.
Conversely, assume that A is Gaussian and let F WD P

.ai ; ei /X
i be a

polynomial in RŒX�. If ai … m for some i , then .ai ; ei / is invertible since we
have .ai ; ei /.a�1

i ;�a�2ei / D .1; 0/. We claim that F is Gaussian. Indeed, for
any G 2 RŒX�, we have c.F /c.G/ D Rc.G/ D c.G/ � c.FG/. The reverse
inclusion always holds. If ai 2 m for each i , let G WD P

.a0
j ; e

0
j /X

j 2 RŒX�.
We may assume, without loss of generality, that a0

j 2 m for each j (otherwise,
we return to the first case) and let f WD P

aiX
i and g WD P

a0
jX

j in AŒX�.

Then c.FG/ D c.fg/ Ë c.fg/E. But since E is an A
m

-vector space, mE D 0

yields c.FG/ D c.fg/Ë0 D c.f /c.g/Ë0 D c.F /c.G/, since A is Gaussian.
Therefore R is Gaussian, as desired.

(3) Suppose that R is arithmetical. First we claim that A is a field. On the contrary,
assume that A is not a field. Then m ¤ 0, so there is a ¤ 0 2 m. Let e ¤
0 2 E. Since R is a local arithmetical ring (i.e., chained ring), either .a; 0/ D
.a0; e0/.0; e/ D .0; a0e/ for some .a0; e0/ 2 R which contradicts a ¤ 0 or
.0; e/ D .a00; e00/.a; 0/ D .a0a; 0/ for some .a00; e00/ 2 R which contradicts
e ¤ 0. Hence A is a field. Next, we show that dimK.E/ D 1. Let e; e0 be two
nonzero vectors in E. We claim that they are linearly dependent. Indeed, since
R is a local arithmetical ring, either .0; e/ D .a; e00/.0; e0/ D .0; ae0/ for some
.a; e00/ 2 R, hence e D ae0 or similarly if .0; e0/ 2 .0; e/R. Consequently,
dimK.E/ D 1.
Conversely, let J be a nonzero ideal inKËK and let .a; b/ be a nonzero element
of J . So .0; a�1/.a; b/ D .0; 1/ 2 J . Hence 0ËK � J . But 0ËK is maximal
since 0 is the maximal ideal in K. So the ideals of K Ë K are .0; 0/K Ë K,
0 Ë K D R.0; 1/, and K Ë K. Therefore K Ë K is a principal ring and hence
arithmetical.

(4) First w: gl: dim.R/ ‰ 1. Let J WD 0 Ë E and ffigi2I be a basis of the A
m

-
vector space E. Consider the map u W R.I/ �! J defined by u..ai ; ei /i2I / D
.0;

P
i2I
aifi /. Here we are using the same identification that has been used in

Lemma 4.1. Then clearly Ker.u/ D .mËE/.I/. Hence we have the short exact
sequence of R-modules

0 �! .mËE/.I/ �! R.I/
u�! J �! 0: (1)

We claim that J is not flat. Otherwise, by [23, Theorem 3.55], we have

J .I/ D .mËE/.I/ \ JR.I/ D J.mËE.I// D 0:

Hence, by [23, Theorem 2.44], w: gl: dim.R/ ‰ 1.

Next, assume that m admits a minimal generating set. Then mËE admits a
minimal generating set (since E is a vector space). Now let .bi ; gi /i2L be a minimal
generating set of mËE. Consider the R-map v W R.L/ �! mËE defined by
v..ai ; ei /i2L/ D P

i2L
.ai ; ei /.bi ; gi /. Then we have the exact sequence
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0 �! Ker.v/ �! R.L/
v�! mËE �! 0 (2)

We claim that Ker.v/ � .mËE/.L/. On the contrary, suppose that there is x D
..ai ; ei /i2L/ 2 Ker.v/ and x … .mËE/.L/. Then

P
i2L
.ai ; ei /.bi ; gi / D 0 and as

x … .mËE/.L/, there is .aj ; ej / with aj … m. So that .aj ; ej / is a unit, which
contradicts the minimality of .bi ; gi /i2L. It follows that

Ker.v/ D V ËE.L/ D .V Ë 0/
M

.0 ËE.L// D .V Ë 0/
M

J .L/

where V WD f.ai /i2L 2 mi j
X

i2L
aibi D 0g. Indeed, if x 2 Ker.v/, then x D

.ai ; bi /i2L where ai 2 m, bi 2 E, with
X

i2L
aibi D 0, hence Ker.v/ � V Ë E.L/.

The other inclusion is trivial. Now, by Lemma 3.10 applied to (1), we get

w: dim.J / D w: dim..mËE/I /C 1 D w: dim.mËE/C 1:

On the other hand, from (2) we obtain

w: dim.J / � w: dim.V Ë 0˚ JL/ D w: dim.Ker.v// � w: dim.mËE/:

It follows that

w: dim.J / � w: dim.J / � 1:

Consequently, w: gl: dim.R/ D w: dim.J / D 1. ut
Next, we give examples of non-arithmetical Gaussian rings.

Example 4.3.

(1) Let p be a prime number. Then (Z.p/; pZ.p/) is a non-trivial valuation domain.
Hence Z.p/ Ë Z

pZ
is a non-arithmetical Gaussian total ring of quotients by

Theorem 4.2.
(2) Since dimR.C/ D 2 ‰ 1, R Ë C is a non-arithmetical Gaussian total ring of

quotient. In general, if K is a field and E is a K-vector space with dimK.E/ ‰
1, then R WD K Ë E is a non-arithmetical Gaussian total ring of quotients by
Theorem 4.2.

Next, we provide examples of non-Gaussian total rings of quotients and hence
non-Gaussian Prüfer rings.

Example 4.4. Let .A;m/ be a non-valuation local domain. By Theorem 4.2, R WD
A Ë A

m
is a non-Gaussian total ring of quotients, hence a non-Gaussian Prüfer ring.

The following is an illustrative example for Theorem 2.4.
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Example 4.5. Let R WD RËR. Then R is a local ring with maximal ideal 0ËR and
Z.R/ D 0 Ë R. Further, R is arithmetical by Theorem 4.2. By Osofsky’s Theorem
(Theorem 2.4) or by Lemma 4.1, w: gl: dim.R/ D 1.

Now we give an example of a non-coherent local Gaussian ring with nilpotent
maximal ideal and infinite weak global dimension (i.e., an illustrative example for
Theorem 3.9).

Example 4.6. Let K be a field and X an indeterminate over K and let R WD K Ë
KŒX�. Then:

(1) R is a non-arithmetical Gaussian ring since K is Gaussian and dimK.KŒX�/ D
1 by Theorem 4.2.

(2) R is not a coherent ring since dimK.KŒX�/ D 1 by [20, Theorem 2.6].
(3) R is local with maximal ideal m D 0 Ë KŒX� by [17, Theorem 25.1(3)]. Also

m is nilpotent since m2 D 0. Therefore, by Theorem 3.9, w: gl: dim.R/ D 1.

5 Weak Global Dimension of fqp-Rings

Recently, Abuhlail, Jarrar, and Kabbaj studied commutative rings in which every
finitely generated ideal is quasi-projective (fqp-rings). They investigated the cor-
relation of fqp-rings with well-known Prüfer conditions; namely, they proved
that fqp-rings stand strictly between the two classes of arithmetical rings and
Gaussian rings [1, Theorem 3.2]. Also they generalized Osofsky’s Theorem on the
weak global dimension of arithmetical rings (and partially resolved Bazzoni-Glaz’s
related conjecture on Gaussian rings) by proving that the weak global dimension of
an fqp-ring is 0, 1, or 1 [1, Theorem 3.11]. In this section, we will give the proofs
of the above mentioned results. Here too, the needed examples in this section will be
constructed by using trivial ring extensions. We start by recalling some definitions.

Definition 5.1.

(1) Let M be an R-module. An R-module M 0 is M -projective if the map  W
HomR.M

0;M/ �! HomR.M
0; M
N
/ is surjective for every submoduleN ofM .

(2) M 0 is quasi-projective if it is M 0-projective.

Definition 5.2. A commutative ring R is said to be an fqp-ring if every finitely
generated ideal of R is quasi-projective.

The following theorem establishes the relation between the class of fqp-rings and
the two classes of arithmetical and Gaussian rings.

Theorem 5.3 ([1, Theorem 3.2]). For a ring R, we have

R arithmetical ) R fqp-ring ) R Gaussian

where the implications are irreversible in general.
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The proof of this theorem needs the following results.

Lemma 5.4 ([1, Lemma 2.2]). Let R be a ring and let M be a finitely generated
R-module. Then M is quasi-projective if and only if M is projective over R

Ann.M/
.

Lemma 5.5 ([12, Corollary 1.2]). Let Mi1�i�n be a family of R-modules.
Then

Ln
iD1 Mi is quasi-projective if and only if Mi is Mj -projective 8 i; j 2

f1; 2; : : : ; g.

Lemma 5.6 ([1, Lemma 3.6]). Let R be an fqp-ring. Then S�1R is an fqp-ring,
for any multiplicative closed subsets of R.

Proof. Let J be a finitely generated ideal of S�1R. Then J D S�1I for some
finitely generated ideal I of R. Since R is an fqp-ring, I is quasi-projective and
hence, by Lemma 5.4, I is projective over R

Ann.I / . By [23, Theorem 3.76], J WD
S�1I is projective over S�1R

S�1 Ann.I / . But S�1 Ann.I / D Ann.S�1I / D Ann.J / by

[2, Proposition 3.14]. Therefore J WD S�1I is projective over S�1R
Ann.S�1I /

. Again by

Lemma 5.4, J is quasi-projective. It follows that S�1R is an fqp-ring. ut
Lemma 5.7 ([1, Lemma 3.8]). Let R be a local ring and a; b two nonzero
elements of R such that .a/ and .b/ are incomparable. If .a; b/ is quasi-projective,
then .a/ \ .b/ D 0, a2 D b2 D ab D 0, and Ann.a/ D Ann.b/.

Proof. Let I WD .a; b/ be quasi-projective. Then by [26, Lemma 2], there exist
f1; f2 2 EndR.I / such that f1.I / � .a/, f2.I / � .b/, and f1 C f2 D 1I . Now let
x 2 .a/\.b/. Then x D r1a D r2b for some r1; r2 2 R. But x D f1.x/Cf2.x/ D
f1.r1a/ C f2.r2b/ D r1f1.a/ C r2f2.b/ D r1a

0a C r2b
0b D a0x C b0x where

a0; b0 2 R. We claim that a0 is a unit. Suppose not. Since R is local, 1 � a0 is a
unit. But a D f1.a/Cf2.a/ D a0aCf2.a/. Hence .1�a0/a D f2.a/ � .b/ which
implies that a 2 .b/. This is absurd since .a/ and .b/ are incomparable. Similarly,
b0 is a unit. It follows that .a0 � .1 � b0// is a unit. But x D a0x C b0x yields
.a0 � .1 � b0//x D 0. Therefore x D 0 and .a/ \ .b/ D 0.

Next, we prove that a2 D b2 D ab D 0. Obviously, .a/ \ .b/ D 0 implies
that ab D 0. So it remains to prove that a2 D b2 D 0. Since .a/ \ .b/ D 0,
I D .a/˚ .b/. By Lemma 5.5, .b/ is .a/-projective. Let ' W .a/ �! .a/

aAnn.b/ be the

canonical map and g W .b/ �! .a/

aAnn.b/ be defined by g.rb/ D r Na. If r1b D r2b,
then .r1 � r2/b D 0. Hence r1 � r2 2 Ann.b/ which implies that .r1 � r2/ Na D 0.
So g.r1b/ D g.r2b/. Consequently, g is well defined. Clearly g is an R-map. Now,
since .b/ is .a/-projective, there exists an R-map f W .b/ �! .a/ with ' ı f D g.
For b, we have f .b/ 2 .a/; hence f .b/ D ra for some r 2 R. Also .' ı f /.b/ D
g.b/. Hence f .b/ � a 2 aAnn.b/. Whence ra � a D at for some t 2 Ann.b/
which implies that .t C 1/a D ra. By multiplying the last equality by a we obtain,
.t C 1/a2 D ra2. But ab D 0 implies 0 D f .ab/ D af .b/ D ra2. Hence .t C
1/a2 D 0. Since t 2 Ann.b/ and R is local, .t C 1/ is a unit. It follows that a2 D 0.
Likewise b2 D 0.
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Last, let x 2 Ann.b/. Then f .xb/ D xra D 0. The above equality .tC1/a D ra

implies .t C 1 � r/a D 0. But t C 1 is a unit and R is local. So r is a unit (b ¤ 0).
Hence xa D 0. Whence x 2 Ann.a/ and Ann.b/ � Ann.a/. Similarly we can
show that Ann.a/ � Ann.b/. Therefore Ann.a/ D Ann.b/. ut
Proof of Theorem 5.3. R arithmetical ) R fqp-ring.

Let R be an arithmetical ring, I a nonzero finitely generated ideal of R, and p
a prime ideal of R. Then Ip WD IRp is finitely generated. But R is arithmetical;
hence, Rp is a chained ring and Ip is a principal ideal of Rp . By [21], Ip is quasi-
projective. By [29, 19.2] and [28], it suffices to prove that .HomR.I; I //p Š
HomRp .Ip; Ip/. But HomRp .Ip; Ip/ Š HomR.I; Ip/ by the adjoint isomorphisms
theorem [23, Theorem 2.11] (since HomS�1R.S

�1N; S�1M/ Š Hom.N; S�1M/

where S�1N Š N
N

R S
�1R and S�1M Š HomS�1R.S

�1R; S�1M/). So let us
prove that

.HomR.I; I //p Š HomR.I; Ip/:

Let

� W .HomR.I; I //p �! HomR.I; Ip/

be the function defined by f

s
2 .HomR.I; I //p , �.f

s
/ W I �! Ip with

�.
f

s
/.x/ D f .x/

s
, for each x 2 I . Clearly � is a well-defined R-map. Now suppose

that �.f
s
/ D 0. I is finitely generated, so let I D .x1; x2; : : : ; xn/, where n is an

integer. Then for every i 2 f1; 2; : : : ; ng, �.f
s
/.xi / D f .xi /

s
D 0, whence there

exists ti 2 R n p such that tif .xi / D 0. Let t WD t1t2 : : : tn. Clearly, t 2 R n p
and tf .x/ D 0, for all x 2 I . Hence f

s
D 0. Consequently, � is injective. Next,

let g 2 HomR.I; Ip/. Since Ip is principal in Rp , Ip D aRp for some a 2 I . But
g.a/ 2 Ip . Hence g.a/ D ca

s
for some c 2 R and s 2 R n p. Let x 2 I . Then

x
1

2 Ip D aRp . Hence x
1

D ra
u for some r 2 R and u 2 R n p. So there exists

t 2 R n p such that tux D t ra. Now, let f W I �! I be the multiplication by c.
(i.e., for x 2 I , f .x/ D cx). Then f 2 HomR.I; I / and we have

�

�
f

s

�
.x/Df .x/

s
Dcx

s
Dc

s

x

1
Dcra

su
D r

u
g.a/D 1

tu
g.t ra/D 1

tu
g.txu/Dg.x/:

Therefore � is surjective and hence an isomorphism, as desired.
R fqp-ring ) R Gaussian
Recall that, if .R;m/ is a local ring with maximal ideal m, then R is a Gaussian

ring if and only if for any two elements a, b in R, .a; b/2 D .a2/ or .b2/ and if
.a; b/2 D .a2/ and ab D 0, then b2 D 0 [5, Theorem 2.2 (d)].

Let R be an fqp-ring and let P be any prime ideal of R. Then by Lemma 5.6
Rp is a local fqp-ring. Let a; b 2 RP . We investigate two cases. The first case
is .a; b/ D .a/ or .b/, say .b/. So .a; b/2 D .b2/. Now assume that ab D 0.
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Since a 2 .b/, a D cb for some c 2 R. Therefore a2 D cab D 0. The second
case is I WD .a; b/ with I ¤ .a/ and I ¤ .b/. Necessarily, a ¤ 0 and b ¤ 0.
By Lemma 5.7, a2 D b2 D ab D 0. Both cases satisfy the conditions that were
mentioned at the beginning of this proof (The conditions of [5, Theorem 2.2 (d)]).
Hence Rp is Gaussian. But p being an arbitrary prime ideal of R and the Gaussian
notion being a local property, then R is Gaussian.

To prove that the implications are irreversible in general, we will use the
following theorem to build examples for this purpose. ut
Theorem 5.8 ([1, Theorem 4.4]). Let .A; m/ be a local ring and E a nonzero A

m
-

vector space. Let R WD A ËE be the trivial ring extension of A by E. Then R is an
fqp-ring if and only if m2 D 0.

The proof of this theorem depends on the following lemmas.

Lemma 5.9 ([24, Theorem 2]). Let R be a local fqp-ring which is not a chained
ring. Then .Nil.R//2 D 0.

Lemma 5.10 ([1, Lemma 4.5]). Let R be a local fqp-ring which is not a chained
ring. Then Z.R/ D Nil.R/.

Proof. We always have Nil.R/ � Z.R/. Now, let s 2 Z.R/. Then there exists
t ¤ 0 2 R such that st D 0. Since R is not chained, there exist nonzero elements
x; y 2 R such that .x/ and .y/ are incomparable. By Lemma 5.7, x2 D xy D
y2 D 0. Either .x/ and .s/ are incomparable and hence, by Lemma 5.7, s2 D 0,
whence s 2 Nil.R/, or .x/ and .s/ are comparable. In this case, either s D rx

for some r 2 R which implies that s2 D r2x2 D 0 and hence s 2 Nil.R/. Or
x D sx0 for some x0 2 R. Same arguments applied to .s/ and .y/ yield either
s 2 Nil.R/ or y D sy0 for some y0 2 R. Since .x/ and .y/ are incomparable, .x0/
and .y0/ are incomparable. Hence, by Lemma 5.7, .x0/\.y0/ D 0. If .x0/ and .t/ are
incomparable, then by Lemma 5.7 Ann.x0/ D Ann.t/, so that s 2 Ann.x0/ which
implies that x D sx0 D 0, absurd. If .t/ � .x0/, then .t/ \ .y0/ � .x0/ \ .y0/ D 0.
So .t/ and .y0/ are incomparable, whence similar arguments as above yield y D 0,
absurd. Last, if .x0/ � .t/, then x0 D r 0t for some r 0 2 R. Hence x D sx0 D
st r 0 D 0, absurd. Therefore all the possible cases lead to s 2 Nil.R/. Consequently,
Z.R/ D Nil.R/. ut
Lemma 5.11 ([1, Lemma 4.6]). Let .R; m/ be a local ring such that m2 D 0.
Then R is an fqp-ring.

Proof. Let I be a nonzero proper finitely generated ideal of R. Then I � m
and m I D 0. Hence m � Ann.I /, whence m D Ann.I / .I ¤ 0/. So that
R

Ann.I / Š A
m

which implies that I is a free R
Ann.I / -module, hence projective over

R
Ann.I / . By Lemma 5.4, I is quasi-projective. Consequently, R is an fqp-ring. ut
Proof of Theorem 5.8. Assume that R is an fqp-ring. We may suppose that A is not
a field. Then R is not a chained ring since ..a; 0/ and ..0; e// are incomparable
where a ¤ 0 2 m and e D .1; 0; 0; : : :/ 2 E. AlsoR is local with maximal mËE.
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By Lemma 5.10, Z.R/ D Nil.R/. But mËE D Z.R/. Let .a; e/ 2 mËE. Since
E is an A

m
-vector space, .a; e/.0; e/ D .0; ae/ D .0; 0/. Hence mËE � Z.R/. The

other inclusion holds since Z.R/ is an ideal. Hence mËE D Nil.R/. By Lemma 5.9,
.Nil.R//2 D 0 D .mËE/2. Consequently, m2 D 0.

Conversely, m2 D 0 implies .mËE/2 D 0 and hence by Lemma 5.11, R is an
fqp-ring. ut

Now we can use Theorem 5.8 to construct examples which prove that the
implications in Theorem 5.3 cannot be reversed in general. The following is an
example of an fqp-ring which is not an arithmetical ring

Example 5.12. R WD RŒX�

.X2/
ËR is an fqp-ring by Theorem 5.8, sinceR is local with a

nilpotent maximal ideal .X/

.X2/
ËR. Also, since RŒX�

.X2/
is not a field,R is not arithmetical

by Theorem 4.2.

The following is an example of a Gaussian ring which is not an fqp-ring.

Example 5.13. R WD RŒX�.X/ Ë R is Gaussian by Theorem 4.2. Also, by
Theorem 5.8, R is not an fqp-ring.

Now the natural question is what are the values of the weak global dimension of
an arbitrary fqp-ring‹ The answer is given by the following theorem.

Theorem 5.14 ([1, Theorem 3.11]). Let R be an fqp-ring. Then w: gl: dim.R/ D
0; 1; or1.

Proof. Since w: gl: dim.R/ D supfw: gl: dim.Rp/ j p prime ideal of Rg, one
can assume that R is a local fqp-ring. If R is reduced, then w: gl: dim.R/ � 1

by Lemma 3.5. If R is not reduced, then Nil.R/ ¤ 0. By Lemma 5.9, either
.Nil.R//2 D 0, in this case w: gl: dim.R/ D 1 by Theorem 3.9 (since an fqp-
ring is Gaussian) or R is a chained ring with zero divisors (Nil.R/ ¤ 0), in this case
w: gl: dim.R/ D 1 by Theorem 2.3. Consequently, w: gl: dim.R/ D 0, 1, or 1.

ut
It is clear that Theorem 5.14 generalizes Osofsky’s Theorem on the weak global

dimension of arithmetical rings (Theorem 2.3) and partially resolves Bazzoni-Glaz
conjecture on Gaussian rings.
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