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Preface

This volume is mainly the outcome of a series of mini-courses and a conference on
Commutative rings, integer-valued polynomials and polynomial functions at Tech-
nische Universität Graz, Austria, December 16–18 (mini-courses) and December
19–22 (conference), 2012. It also contains a small collection of invited articles by
some of the leading experts in the area, carefully selected for the impact of their
research on the major themes of the conference.

The aim of this meeting was to present recent progress in the area of commutative
algebra, with primary emphasis on commutative ring theory and integer-valued
polynomials along with connections to algebraic number theory, algebraic geometry
and homological algebra. The wide range of topics is reflected in the table of
contents of this volume. Some of the invited speakers who gave mini-courses have
supplied surveys of the state of the art in newly emerging subfields.

At the conference, we had the good fortune to see that our field attracts
excellent young mathematicians (who submitted good work, both individually and
in collaboration with the old guard) and the not so good fortune to see that none of
the young researchers have permanent jobs. May the first trend remain in full force
and the second one be remedied in the near future!

Among the people and organizations who helped to make the conference and
this volume of proceedings possible, our special thanks go to the departmental
secretary Hermine Panzenböck and the doctoral student Roswitha Rissner, who,
between the two of them, shared all the hard work of organizing, from designing
the conference poster and implementing the website to applications for subsidies
and the painstaking work of bookkeeping and balancing the accounts. Without their
efforts, the conference would not have taken place and this volume would not have
seen the light of day.

We thank the sponsors of the conference: the province of Styria, whose subsidy
allowed us to sponsor the travel expenses of some graduate students and conference
participants from low-income countries, and the faculty of mathematics and physics
of Technische Universität Graz and the joint graduate school of natural sciences
“NAWI Graz” of Technische Universität Graz and Karl-Franzens Universität Graz,

v



vi Preface

who together paid the travel expenses of all the invited speakers. Last, but not
least, we thank the editorial staff of Springer, in particular Elizabeth Loew, for their
cooperation, hard work and assistance with the present volume.

Rome, Italy Marco Fontana
Graz, Austria Sophie Frisch
Storrs, Connecticut, USA Sarah Glaz
December 2013
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Weak Global Dimension of Prüfer-Like Rings

Khalid Adarbeh and Salah-Eddine Kabbaj

Abstract In 1969, Osofsky proved that a chained ring (i.e., local arithmetical
ring) with zero divisors has infinite weak global dimension; that is, the weak
global dimension of an arithmetical ring is 0, 1, or 1. In 2007, Bazzoni and Glaz
studied the homological aspects of Prüfer-like rings, with a focus on Gaussian
rings. They proved that Osofsky’s aforementioned result is valid in the context
of coherent Gaussian rings (and, more generally, in coherent Prüfer rings). They
closed their paper with a conjecture sustaining that “the weak global dimension of
a Gaussian ring is 0, 1, or 1.” In 2010, the authors of Bakkari et al. (J. Pure Appl.
Algebra 214:53–60, 2010) provided an example of a Gaussian ring which is neither
arithmetical nor coherent and has an infinite weak global dimension. In 2011, the
authors of Abuihlail et al. (J. Pure Appl. Algebra 215:2504–2511, 2011) introduced
and investigated the new class of fqp-rings which stands strictly between the two
classes of arithmetical rings and Gaussian rings. Then, they proved the Bazzoni-
Glaz conjecture for fqp-rings. This paper surveys a few recent works in the literature
on the weak global dimension of Prüfer-like rings making this topic accessible and
appealing to a broad audience. As a prelude to this, the first section of this paper
provides full details for Osofsky’s proof of the existence of a module with infinite
projective dimension on a chained ring. Numerous examples—arising as trivial ring
extensions—are provided to illustrate the concepts and results involved in this paper.

Keywords Weak global dimension • Arithmetical ring • fqp-ring • Gaussian
ring • Prüfer ring • Semihereditary ring • Quasi-projective module • Trivial
extension
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2 K. Adarbeh and S.-E. Kabbaj

1 Introduction

All rings considered in this paper are commutative with identity element and all
modules are unital. Let R be a ring and M an R-module. The weak (or flat)
dimension (resp., projective dimension) of M , denoted w: dimR.M/ (resp.,
p: dimR.M/), measures how far M is from being a flat (resp., projective) module.
It is defined as follows: Let n be an integer � 0. We have w: dimR.M/ � n (resp.,
p: dimR.M/ � n) if there is a flat (resp., projective) resolution

0 ! En ! En�1 ! : : : ! E1 ! E0 ! M ! 0:

If n is the least such integer, w: dimR.M/ D n (resp., p: dimR.M/ D n). If no
such resolution exists, w: dimR.M/ D 1 (resp., p: dimR.M/ D 1). The weak
global dimension (resp., global dimension) of R, denoted by w: gl: dim.R/ (resp.,
gl: dim.R/), is the supremum of w: dimR.M/ (resp., p: dimR.M/), whereM ranges
over all (finitely generated) R-modules. For more details on all these notions, we
refer the reader to [6, 13, 23].

A ring R is called coherent if every finitely generated ideal of R is finitely
presented, equivalently, if .0 W a/ and I \ J are finitely generated for every a 2 R

and any two finitely generated ideals I and J of R [13]. Examples of coherent
rings are Noetherian rings, Boolean algebras, von Neumann regular rings, and
semihereditary rings.

Gaussian rings belong to the class of Prüfer-like rings which has recently
received much attention from commutative ring theorists. A ring R is called
Gaussian if for every f; g 2 RŒX�, one has the content ideal equation c.fg/ D
c.f /c.g/ where c.f /, the content of f , is the ideal of R generated by the
coefficients of f [25]. The ringR is said to be a chained ring (or valuation ring) if its
lattice of ideals is totally ordered by inclusion; andR is called arithmetical ifRm is a
chained ring for each maximal idealm ofR [11,18]. AlsoR is called semihereditary
if every finitely generated ideal of R is projective [8]; and R is Prüfer if every
finitely generated regular ideal of R is projective [7, 16]. In the domain context, all
these notions coincide with the concept of Prüfer domain. Glaz, in [14], constructs
examples which show that all these notions are distinct in the context of arbitrary
rings. More examples, in this regard, are provided via trivial ring extensions [1, 3].

The following diagram of implications puts the notion of Gaussian ring in
perspective within the family of Prüfer-like rings [1, 4, 5]:

Semihereditary ring
+

Ring with weak global dimension � 1

+
Arithmetical ring

+
fqp-Ring

+



Weak Global Dimension of Prüfer-Like Rings 3

Gaussian ring
+

Prüfer ring

In 1969, Osofsky proved that a local arithmetical ring (i.e., chained ring) with
zero divisors has infinite weak global dimension [22]. In view of [13, Corollary
4.2.6], this result asserts that the weak global dimension of an arithmetical ring is 0,
1, or 1.

In 2007, Bazzoni and Glaz proved that if R is a coherent Prüfer ring (and, a
fortiori, a Gaussian ring), then w: gl: dim.R/ = 0, 1, or 1 [5, Proposition 6.1]. And
also they proved that if R is a Gaussian ring admitting a maximal ideal m such that
the nilradical of the localization Rm is a nonzero nilpotent ideal, then w: gl: dim.R/
= 1 [5, Theorem 6.4]. At the end of the paper, they conjectured that “the weak
global dimension of a Gaussian ring is 0, 1, or 1” [5]. In two preprints [9, 10],
Donadze and Thomas claim to prove this conjecture (see the end of Sect. 3).

In 2010, the authors of [3] proved that if .A;m/ is a local ring, E is a nonzero
A
m

-vector space, and R WD A Ë E is the trivial extension of A by E , then:

• R is a total ring of quotients and hence a Prüfer ring.
• R is Gaussian if and only if A is Gaussian.
• R is arithmetical if and only if A WD K is a field and dimK E D 1.
• w: gl: dim.R/ � 1. If, in addition, m admits a minimal generating set, then

w: gl: dim.R/ D 1.

As an application, they provided an example of a Gaussian ring which is neither
arithmetical nor coherent and has an infinite weak global dimension [3, Example
2.7]; which widened the scope of validity of the above conjecture beyond the class
of coherent Gaussian rings.

In 2011, the authors of [1] investigated the correlation of fqp-rings with well-
known Prüfer conditions; namely, they proved that the class of fqp-rings stands
between the two classes of arithmetical rings and Gaussian rings [1, Theorem 3.1].
They also examined the transfer of the fqp-property to trivial ring extensions in
order to build original examples of fqp-rings. Also they generalized Osofsky’s result
(mentioned above) and extended Bazzoni-Glaz’s result on coherent Gaussian rings
by proving that the weak global dimension of an fqp-ring is equal to 0, 1, or 1 [1,
Theorem 3.11]; and then they provided an example of an fqp-ring that is neither
arithmetical nor coherent [1, Example 3.9].

Recently, several papers have appeared in the literature investigating the weak
global dimension of various settings subject to Prüfer conditions. This survey paper
plans to track and study these works dealing with this topic from the very origin,
that is, 1969 Osofsky’s proof of the existence of a module with infinite projective
dimension on a local arithmetical ring. Precisely, we will examine all main results
published in [1, 3, 5, 15, 22].

Our goal is to make this topic accessible and appealing to a broad audience;
including graduate students. For this purpose, we present complete proofs of all
main results via ample details and simplified arguments along with exact references.
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Further, numerous examples—arising as trivial ring extensions—are provided to
illustrate the concepts and results involved in this paper. We assume familiarity with
the basic tools used in the homological aspects of commutative ring theory, and any
unreferenced material is standard as in [2, 6, 8, 13, 17, 19, 23, 27].

2 Weak Global Dimension of Arithmetical Rings

In this section, we provide a detailed proof for Osofsky’s Theorem that the weak
global dimension of an arithmetical ring with zero divisors is infinite. In fact, this
result enables one to state that the weak global dimension of an arithmetical ring is
0, 1, or 1. We start by recalling some basic definitions.

Definition 2.1. Let R be a ring andM an R-module. Then:

(1) The weak dimension of M , denoted by w: dim.M/, measures how far M is
from being flat. It is defined as follows: Let n be a positive integer. We have
w: dim.M/ � n if there is a flat resolution

0 ! En ! En�1 ! � � � ! E1 ! E0 ! M ! 0:

If no such resolution exists, w: dim.M/ D 1; and if n is the least such integer,
w: dim.M/ D n.

(2) The weak global dimension of R, denoted by w: gl: dim.R/, is the supremum
of w: dim.M/, where M ranges over all (finitely generated)R-modules.

Definition 2.2. Let R be a ring. Then:

(1) R is said to be a chained ring (or valuation ring) if its lattice of ideals is totally
ordered by inclusion.

(2) R is called an arithmetical ring if Rm is a chained ring for each maximal ideal
m of R.

Fields and Z.p/, where Z is the ring of integers and p is a prime number, are
examples of chained rings. Also, Z=n2Z is an arithmetical ring for any positive
integer n. For more examples, see [3]. For a ring R, let Z.R/ denote the set of all
zero divisors of R.

Next we give the main theorem of this section.

Theorem 2.3. Let R be an arithmetical ring. Then w: gl: dim.R/ D 0; 1; or 1.

To prove this theorem we make the following reductions:

(1) We may assume that R is a chained ring since w: gl: dim.R/ is the supremum
of w: gl: dim.Rm/ for all maximal ideal m of R [13, Theorem 1.3.14 (1)].

(2) We may assume that R is a chained ring with zero divisors. Then we prove that
w: gl: dim.R/ D 1 since if R is a valuation domain, then w: gl: dim.R/ � 1 by
[13, Corollary 4.2.6].
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(3) Finally, we may assume that .R;m/ is a chained ring with zero divisors such
that Z.R/ D m, since Z.R/ is a prime ideal, Z.RZ.R// D Z.R/RZ.R/, and
w: gl: dim.RZ.R// � w: gl: dim.R/.

So our task is reduced to prove the following theorem.

Theorem 2.4 ([22, Theorem]). Let .R;m/ be a chained ring with zero divisors
such that Z.R/ D m. Then w: gl: dim.R/ D 1.

To prove this theorem we first prove the following lemmas. Throughout, let
.R;m/ be a chained ring with Z.R/ D m,M an R-module, I D fx 2 R j x2 D 0g,
and for x 2 M , .0 W x/ D fy 2 R j yx D 0g. One can easily check that I is a
nonzero ideal since R is a chained ring with zero divisors.

Lemma 2.5 ([22, Lemma 1]). I 2 D 0, and for all x … R, x … I ) .0 W x/ � I .

Proof. To prove that I 2 D 0, it suffices to prove that ab D 0 for all a; b 2 I . So let
a; b 2 I . Then either a 2 bR or b 2 aR, so that ab 2 a2R D 0 or ab 2 b2R D 0.

Now let x 2 R n I and y 2 .0 W x/. Then either x 2 yR or y 2 xR. But x 2 yR
implies that x2 2 xyR D 0, absurd. Therefore y 2 xR, so that y2 2 xyR D 0.
Hence y 2 I . ut
Lemma 2.6 ([22, Lemma 2]). Let 0 ¤ x 2 Z.R/ such that .0 W x/ D yR. Then
w: gl: dim.R/ D 1.

Proof. We first prove that .0 W y/ D xR. The inclusion .0 W y/ � xR is trivial since
xy D 0. Now to prove the other inclusion let z 2 .0 W y/. Then either z D xr for
some r 2 R and in this case we are done, or x D zj for some j 2 R. We may
assume j 2 m. Otherwise, j is a unit and then we return to the first case. Since
x ¤ 0, j … .0 W z/, so jR ª .0 W z/ which implies .0 W z/ � jR, and hence y D jk

for some k 2 m. But then 0 D zy D zjk D xk, so k 2 .0 W x/ D yR, and hence
k D yr for some r 2 R. Hence y D kj D yrj , and as j 2 m we have the equality
y D y.1 � rj /.1 � rj /�1 D 0, which contradicts the fact that x is a zero divisor.
Hence z 2 xR, and therefore .0 W y/ D xR.

Now letmx (resp.,my) denote the multiplication by x (resp., y). Since .0 W x/ D
yR and .0 W y/ D xR we have the following infinite flat resolution of xR with
syzygies xR and yR:

� � � �! R
my�! R

mx�! R
my�! � � � my�! R

mx�! xR�!0

We claim that xR and yR are not flat. Indeed, recall that a projective module over a
local ring is free [23]. So no projective module is annihilated by x or y. Since xR
is annihilated by y and yR is annihilated by x, both xR and yR are not projective.
Further, xR and yR are finitely presented in view of the exact sequence 0 ! yR !
R ! xR ! 0. It follows that xR and yR are not flat (since a finitely presented flat
module is projective [23, Theorem 3.61]). ut
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Corollary 2.7 ([22, Corollary]). If I D m, then I is cyclic and R has infinite weak
global dimension.

Proof. Assume that I D m. Then m2 D 0. Now let 0 ¤ a 2 m. We claim that
m D aR. Indeed, let b 2 m. Since R is a chained ring, either b D ra for some
r 2 R and in this case we are done, or a D rb for some r 2 R. In the later case,
either r is a unit and then b D r�1a 2 aR, or r 2 m which implies a D rb D 0,
which contradicts the assumption a ¤ 0. Thus m D aR, as claimed. Moreover,
we have .0 W a/ D aR. Indeed, .0 W a/ � aR since a 2 I ; if x 2 .0 W a/, then
x 2 Z.R/ D m D aR. Hence .0 W a/ D aR. It follows thatR satisfies the conditions
of Lemma 2.6 and hence the weak global dimension of R is 1. ut

Throughout, an element x of an R-moduleM is said to be regular if .0 W x/ D 0.

Lemma 2.8 ([22, Lemma 3]). Let F be a free module and x 2 F . Then x is
contained in zR for some regular element z of F .

Proof. Let fy˛g be a basis for F and let x WD
nX

iD1
yi ri 2 F , where ri 2 R. Since

R is a chained ring, there is j 2 f1; 2; : : : ; ng such that
nX

iD1
riR � rjR. So that

for each i 2 f1; 2; : : : ; ng, ri D rj si for some si 2 R with sj D 1. Hence x D
rj .

nX

iD1
.yi si //. We claim that z WD

nX

iD1
yi si is regular. Suppose not and let t 2 R

such that t.
nX

iD1
yi si / D 0. Then tsi D 0 for all i 2 f1; 2; : : : ; ng. In particular

t D tsj D 0, absurd. Therefore z is regular and x D rj z, as desired. ut
Note, for convenience, that in the proof of Theorem 2.4 (below), we will prove

the existence of a moduleM satisfying the conditions (1) and (2) of the next lemma,
which will allow us to construct—via iteration—an infinite flat resolution of M .

Lemma 2.9 ([22, Lemma 4]). Assume that .0 W r/ is infinitely generated for all
0 ¤ r 2 m. Let M be an R-submodule of a free module N such that:

(1) M D M1

S
M2

S
M3, where M1 D

[

x2M
x regular

xR, M2 D
1[

iD0
yuiR, with y

regular in N , uiR ¤ uiC1R, and yui is not in M1, andM3 D
X

vjR.
(2) yu0R \ xR is infinitely generated for some regular x 2 M .

Let F be a free R-module with basis fyx j x regular 2 M g [ fzi j i 2 !g [
fwj g, and let v W F �! N be the map defined by: v.yx/ D x, v.zi / D yui , and
v.wj / D vj . Then K D Ker.v/ has properties .1/; .2/, andM is not flat.
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Proof. First the map v exists by [19, Theorem 4.1]. (1) by (2), there exist r; s 2 R
such that yu0r D xs ¤ 0. Here r 2 m; otherwise, yu0 D xsr�1 2 M1,
contradiction. Since Z.R/ D m, the expression for any regular element in terms
of a basis for N has one coefficient a unit. Indeed, let .n˛/˛2� be a basis for N and

z a regular element in N with z D
iDkX

iD0
cini where ci 2 R. As R is a chained ring,

there exists j 2 f0; : : : ; kg such that for all i 2 f0; : : : ; kg, there exists di 2 R with
ci D cj di and dj D 1. We claim that cj is a unit. Suppose not. Then cj 2 Z.R/.

So there is a nonzero d 2 R with dcj D 0, and hence d z D dcj

iDkX

iD0
dini D 0. This

is absurd since z is regular.
Now, let x D

X

i2I
I finite

aini and y D
X

i2I
I finite

bini . Then biu0r D ai s for all i 2 I .

Let i0 2 I such that ai0 is a unit. So s D u0rt , where t D bi0a
�1
i0

2 R. Note that
bi0 ¤ 0 since xs ¤ 0. Clearly, z0 � yxu0t is regular in F (since z0; yx are part of
the basis of F ) and is not in K [otherwise, v.z0 � yxu0t/ D 0 yields yu0 D xu0t ,
which contradicts .1/] and .z0 � yxu0t/r 2 K . We claim that .z0 � yxu0t/r is not
in K1 WD

[

x02K
x0 regular

x0R. Suppose not and assume that r.z0 � u0tyx/ D r 0x0 with

r 0 2 R and x0 regular in K . Then r 0 ¤ 0 since r ¤ 0 and as x0 2 K � F , there
are a; b; ai 2 R such that x0 D az0 � byx C x00, where x00 D

X

yx¤fi
z0¤fi

ai fi . Thus

r D r 0a, ru0t D r 0b, and r 0x00 D 0. Since x0 is regular in F and r 0x00 D 0, a
or b is unit. We claim that a is always a unit. Indeed, if b is a unit, then r.1 �
ab�1u0t/ D 0, so if a 2 m, then .1 � ab�1u0t/ is a unit which implies r D 0,
absurd. So a�1x0 D z0 � a�1byx C a�1x00, r 0 D a�1r , and ru0t D ra�1b which
implies z0 � u0tyx C .u0t � a�1b/yx C a�1x00 D a�1x0 2 K . By Lemma 2.8
.u0t � a�1b/yx C a�1x00 D pq, fore some q regular in F and p 2 R. But clearly
since r D r 0a, ru0t D r 0b, and r 0x00 D 0, then rpq D 0. Hence rp D 0. It
follows that .z0 � yxu0t C qp/ 2 K , where q is regular in F and p 2 .0 W r/. Thus
by applying v we obtain yu0 � xu0t C pv.q/ D 0. But R is a chained ring, so p
and u0t are comparable and since u0t r ¤ 0, p D u0th for some h 2 R. Hence
yu0 D .x � hv.q//u0t ; we show that .x � hv.q// is regular inM which contradicts
property .1/. First clearly .x � hv.q// 2 M since x; v.q/ 2 M . Now suppose that
a.x � hv.q// D 0 for some a 2 m. Either u0t D a0a for some a0 2 R, this yields
yu0 D .x � hv.q//aa0 D 0 also impossible, or a D u0tm for some m 2 R, and
this yields mu0y D .x � hv.q//a D 0, so mu0 D 0 as y is regular, and hence
a D mu0t D 0. We conclude that .x� hv.q// is regular inM and hence yu0 2 M1,
the desired contradiction.

Last, let yu0R \ xR D hx0; x1; : : : ; xn; : : :i, where

hx0; x1; : : : ; xi i ¤ hx0; x1; : : : ; xi ; xiC1i:
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For any integer i � 0, let xi D yu0ri for some ri 2 R. It is clear that r0R ¤ r1R ¤
. . . ¤ riR ¤ riC1R ¤ . . . . Now, let y0 WD z0 � yxu0t , u0

i WD ri for each i 2 N. Then

K D K1

S
K2

S
K3, where K1 WD

[

x02K
x0 regular

x0R, K2 WD
1S
iD0

y0u0
iR with y0 regular

in F and u0
iR ¤ u0

iC1R, and K3 WD K n .K1

[
K2/. ThusK satisfy Property (1).

(2) Since u0R ¤ u1R, u0 D u1m0 for some m0 2 m. Hence x0 WD z0 � z1m0 is
regular in K since v.x0/ D v.z0 � z1m0/ D yu0 � yu1m0 D 0 and z0; z1 are basis
elements. We claim that .z0 � z1m0/R \ .z0 � yxu0t/r0R D z0.0 W m0/. Indeed,
since z0; z1; yx are basis elements, then .z0 � z1m0/R \ .z0 � yxu0t/r0 � z0R.
Also .z0 � z1m0/R \ z0R D z0.0 W m0/. For, let l 2 .z0 � z1m0/R \ z0R. Then
l D .z0 � z1m0/a D z0a0 for some a; a0 2 R. Hence a D a0 and am0 D 0, whence
l D az0 with am0 D 0. So l 2 z0.0 W m0/. The reverse inclusion is straightforward.
Consequently, .z0 � z1m0/R \ .z0 � yxu0t/r0R � z0.0 W m0/. To prove the reverse
inclusion, let k 2 .0 W m0/. Then either k D r0k

0 or r0 D kk0, for some k0 2 R.
The second case is impossible since r0u0 ¤ 0. Hence z0k D .z0 � yxu0t/r0k0 2
.z0 � yxu0t/r0R. Further, z0k 2 .z0 � z1m0/R. Therefore our claim is true. But z0
is regular, so z0.0 W m0/ Š .0 W m0/ which is infinitely generated by hypothesis.
Therefore y0u0

0R \ x0R is infinitely generated, as desired.
Finally,M is not flat. Suppose not, then by [23, Theorem 3.57], there is anR-map

� W F �! K such that � ..z0 � yxu0t/r0/ D .z0 � yxu0t/r0. Assume that �.z0/ D
az0CbyxCZ1 for some a; b 2 R and �.yx/ D a0z0Cb0yxCZ2 for some a0; b0 2 R.
Then r0a� r0u0ta0 D r0, r0b � r0u0tb0 D �r0u0t , and r0Z1 � r0u0tZ2 D 0. Hence
r0.1�aCu0ta0/ D 0 and since r0 ¤ 0, a or a0 is a unit. Suppose that a is a unit and
without loss of generality we can assume that a D 1. Thus we have the equation
z0 � u0tyx � u0ta0z0 C .u0t � u0tb0 Cb/yx CZ1 � u0tZ2 D �.z0/� u0t�.Z2/ 2 K .
By Lemma 2.8, �u0ta0z0 C .u0t � u0tb0 C b/yx C Z1 � u0tZ2 D pq, where q is
regular in F and, clearly, r0p D 0 since r0u0ta0 D 0. Thus z0 � u0tyx C pq 2 K ,
which is absurd (as seen before in the second paragraph of the proof of Lemma 2.9).

Now we are able to prove Theorem 2.4.

Proof of Theorem 2.4. If .0 W r/ is cyclic for some r 2 m, then R has infinite weak
global dimension by Lemma 2.6. Next suppose that .0 W r/ is not cyclic, for all
0 ¤ r 2 m, which is equivalent to assume that .0 W r/ is infinitely generated for all
0 ¤ r 2 m, since R is a chained ring.

Let 0 ¤ a 2 I and b 2 m nI . Note that b exists since I ¤ m by the proof
of Corollary 2.7. Let N be a free R-module on two generators y; y0 and let M WD
.y � y0b/RC y.0 W a/. Then:

(A) M1 WD
[

x2M
x regular

xR D f.yt � y0b/r j1 � t 2 .0 W a/; r 2 R/. To show this

equality, let c be a regular element in M . Then c D .r1 C r2/y � r1by
0 for

some r1 2 R; r2 2 .0 W a/. We claim that r1 is a unit. Suppose not. So either
r1 2 .r2/ hence ac D 0, or r2 D nr1 for some n 2 R and since r1 2 m D Z.R/,
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there is r 0
1 ¤ 0 such that r1r 0

1 D 0, so r 0
1c D 0. In both cases there is a

contradiction with the fact that c is regular. Thus, r1 is a unit. It follows that
c D .1C r�1

1 r2/yr1 � by0r1 2 f.yt � y0b/r j1 � t 2 .0 W a/; r 2 Rg. Now let
c D yt � y0b, where .1� t/ 2 .0 W a/. Then c is regular. Indeed, if rc D 0 for
some r 2 R, then rt D 0. Moreover, either r D na for some n 2 R, and in
this case r.1 � t/ D na.1 � t/ D 0, so r D rt D 0 as desired, or a D nr for
some n 2 R, so a D at D nrt D 0, absurd.

(B) There exists a countable chain of ideals u0R ¤ u1R ¤ : : : where ui 2 .0 W
a/ n .0 W b/. Since 0 ¤ a 2 I and b 2 m nI , .a/ � .b/. Thus .0 W b/ � .0 W a/.
Moreover .0 W b/ ¤ .0 W a/; otherwise, a 2 .0 W a/ D .0 W b/, and hence
ab D 0. Hence b 2 .0 W a/ D .0 W b/ � I by Lemma 2.5, absurd. Now let
u0 2 .0 W a/ n .0 W b/. Since .0 W a/ is infinitely generated, there are u1; u2; : : :
such that .u0/ ¤ .u0; u1/ ¦ : : : � .0 W a/. So u0R ¦ u1R ¦ : : : and necessarily
ui … .0 W b/ for all i � 1 since u0 … .0 W b/.
Note that yui 2 M [since ui 2 .0 W a/]. Also yui … M1; otherwise, if yui D
ytr � y0br with 1 � t 2 .0 W a/ and r 2 R, then ui D t r and br D 0. Hence
bui D btr D 0 and thus ui 2 .0 W b/, contradiction. Also note that y is regular
in N (part of the basis) and y … M ; if y D .y � y0b/r1 C r2y with r1 2 R and
r2 2 .0 W a/, then r1b D 0 and r1 C r2 D 1. So r1 2 m, ar1 D a, and hence
a D 0, absurd.

(A) and (B) imply that (1) of Lemma 2.9 holds.
Let us show that yu0R \ .y � y0b/R D y.0 W b/. Indeed, if c D yu0r D

.y � y0b/r 0 where r; r 0 2 R, then u0r D r 0 and r 0b D 0. Hence c 2 y.0 W b/.
If c D ry where rb D 0, then r D u0t for some t 2 R as u0 2 .0 W a/ n .0 W b/.
Thus c D r.y � y0b/. Now y.0 W b/ Š .0 W b/ is infinitely generated. Therefore (2)
of Lemma 2.9 holds.

SinceK satisfies the properties ofM we can consider it as a new moduleM , and
then there is a free module F1 and a map v1 W F1 �! F such that K1 D Ker.v1/
satisfies the same conditions of K and K1 is not flat. We can repeat this iteration
above to get the infinite flat resolution of M :

� � � ! Fn ! Fn�1 ! � � � ! F1 ! F0 ! M ! 0:

with none of the syzygies K;K1;K2; : : : is flat. Therefore R has an infinite weak
global dimension. ut

3 Weak Global Dimension of Gaussian Rings

In 2005, Glaz proved that if R is a Gaussian coherent ring, then w: gl: dim.R/ D
0, 1, or 1 [15]. In this section, we will see that the same conclusion holds for the
larger class of Prüfer coherent rings and fore some contexts of Gaussian rings. We
start by recalling the definitions of Gaussian, Prüfer, and coherent rings.
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Definition 3.1. Let R be a ring. Then:

(1) R is called a Gaussian ring if for every f; g 2 RŒX�, one has the content ideal
equation c.fg/ D c.f /c.g/, where c.f /, the content of f , is the ideal of R
generated by the coefficients of f .

(2) R is called a Prüfer ring if every nonzero finitely generated regular ideal is
invertible (or, equivalently, projective)

(3) R is called a coherent ring if every finitely generated ideal of R is finitely
presented, equivalently, if .0 W a/ and I \ J are finitely generated for every
a 2 R and any two finitely generated ideals I and J of R.

Recall that Arithmetical ring ) Gaussian ring ) Prüfer ring. To see the proofs
of the above implications and that they cannot be reversed, in general, we refer the
reader to [5, 14, 15] and Sect. 5 of this paper.

Noetherian rings, valuation domains, and KŒx1; x2; : : :� where K is a field are
examples of coherent rings. For more examples, see [13].

Let Q.R/ denote the total ring of fractions of R and Nil.R/ its nilradical. The
following proposition is the first main result of this section.

Proposition 3.2 ([5, Proposition 6.1]). Let R be a coherent Prüfer ring. Then the
weak global dimension of R is equal to 0, 1, or 1.

The proof of this proposition relies on the following lemmas. Recall that a ring
R is called regular if every finitely generated ideal of R has a finite projective
dimension and von Neumann regular if every R-module is flat.

Lemma 3.3 ([13, Corollary 6.2.4]). Let R be a coherent regular ring. ThenQ.R/
is a von Neumann regular ring.

Lemma 3.4 ([15, Lemma 2.1]). Let R be a local Gaussian ring and I D
.a1; : : : ; an/ be a finitely generated ideal of R. Then I 2 D .a2i /, for some i 2
f1; 2; : : : ; ng.

Proof. We first assume that I D .a; b/. Let f .x/ WD ax C b, g.x/ WD ax � b,
and h.x/ WD bx C a. Since R is Gaussian, c.fg/ D c.f /c.g/, so that .a; b/2 D
.a2; b2/, also c.f h/ D c.f /c.h/ which implies that .a; b/2 D .ab; a2Cb2/. Hence
.a2; b2/ D .ab; a2 C b2/, whence a2 D rab C s.a2 C b2/, for some r and s in R.
That is, .1 � s/a2 C rab C sb2 D 0. Since R is a local ring, either s or 1 � s

is a unit in R. If s is a unit in R, then b2 C rs�1ab C .s�1 � 1/a2 D 0. Next
we show that ab 2 .a2/. Let k.x/ WD .b C ˛a/x � a, where ˛ WD rs�1. Then
c.hk/ D c.h/c.k/ implies that .b.b C ˛a/; ˛a2;�a2/ D .a; b/..b C ˛a/; a/. But
clearly .b.b C ˛a/; ˛a2;�a2/ D ..s�1 � 1/a2; ˛a2;�a2/ D .a2/. Thus .a2/ D
.a; b/..b C ˛a/; a/. In particular, ab 2 .a2/ and so does b2. If 1� s is unit, similar
arguments imply that ab, and hence a2 2 .b2/. Thus for any two elements a and b,
ab 2 .b2/ or .a2/. It follows that I 2 D .a1; : : : ; an/

2 D .a21; : : : ; a
2
n/. An induction

on n leads to the conclusion. ut
Recall that a ring R is called reduced if it has no nonzero nilpotent elements.
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Lemma 3.5 ([15, Theorem 2.2]). Let R be a ring. Then w: gl: dim.R/ � 1 if and
only if R is a Gaussian reduced ring.

Proof. Assume that w: gl: dim.R/ � 1. By [13, Corollary 4.2.6], Rp is a valuation
domain for every prime ideal p of R. As valuation domains are Gaussian, R is
locally Gaussian, and therefore Gaussian. Further,R is reduced. For, let x 2 R such
that x is nilpotent. We claim that x D 0. Suppose not and let n � 2 be an integer
such that xn D 0. Then there exists a prime ideal q in R such that x ¤ 0 in Rq [2,
Proposition 3.8]. It follows that xn D 0 in Rq , a contradiction since Rq is a domain.

Conversely, since R is Gaussian reduced, Rp is a local, reduced, Gaussian ring
for any prime ideal p of R. We claim that Rp is a domain. Indeed, let a and b in Rp
such that ab D 0. By Lemma 3.4, .a; b/2=.b/2 or .a2/. Say .a; b/2 D .b2/. Then
a2 D tb2 for some t 2 Rp . Thus a3 D tb.ab/ D 0. Since Rp is reduced, a D 0,
andRp is a domain. ThereforeRp is a valuation domain for all prime ideals p ofR.
So w: gl: dim.R/ � 1 by [13, Corollary 4.2.6]. ut
Lemma 3.6 ([5, Theorem 3.3]). LetR be a Prüfer ring. ThenR is Gaussian if and
only if Q.R/ is Gaussian.

Lemma 3.7 ([5, Theorem 3.12(ii)]). Let R be a ring. Then w: gl: dim.R/ � 1 if
and only if R is a Prüfer ring and w: gl: dim.Q.R// � 1.

Proof. If w: gl: dim.R/ � 1,R is Prüfer and, by localization, w: gl: dim.Q.R// � 1.
Conversely, assume that R is a Prüfer ring such that w: gl: dim.Q.R// � 1. By
Lemma 3.5,Q.R/ is a Gaussian reduced ring. So R is reduced and, by Lemma 3.6,
R is Gaussian. By Lemma 3.5, w: gl: dim.R/ � 1. ut
Proof of Proposition 3.2. Assume that w: gl: dim.R/ D n < 1 and let I be any
finitely generated ideal of R. Then I has a finite weak dimension. Since R is a
coherent ring, I is finitely presented. Hence the weak dimension of I equals its
projective dimension by [13, Corollary 2.5.5]. Whence, as I is an arbitrary finitely
generated ideal of R, R is a regular ring. So, by [13, Corollary 6.2.4],Q.R/ is von
Neumann regular. By Lemma 3.7, w: gl: dim.R/ � 1. ut

The following is an example of a coherent Prüfer ring with infinite weak global
dimension.

Example 3.8. Let R D R Ë C. Then R is coherent by [20, Theorem 2.6], Prüfer by
Theorem 4.2, and w: gl: dim.R/ D 1 by Lemma 4.1.

In order to study the weak global dimension of an arbitrary Gaussian ring, we
make the following reductions:

(1) We may assume thatR is a local Gaussian ring since w: gl: dim.R/ is the supre-
mum of w: gl: dim.Rm/ for all maximal ideal m of R [13, Theorem 1.3.14 (1)].

(2) We may assume thatR is a non-reduced local Gaussian ring since every reduced
Gaussian ring has weak global dimension at most 1 by Lemma 3.5.
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(3) Finally, we may assume that .R;m/ is a local Gaussian ring with the maximal
ideal m such that m D Nil.R/, since the prime ideals of a local Gaussian ring
R are linearly ordered, so that Nil.R/ is a prime ideal and w: gl: dim.R/ �
w: gl: dim.RNil.R//.

Next we announce the second main result of this section.

Theorem 3.9 ([5, Theorem 6.4]). Let R be a Gaussian ring with a maximal ideal
m such that Nil.Rm/ is a nonzero nilpotent ideal. Then w: gl: dim.R/ D 1.

The proof of this theorem involves the following results:

Lemma 3.10. Consider the following exact sequence of R-modules

0 �! M 0 �! M �! M 00 �! 0

where M is flat. Then either the three modules are flat or w: dim.M 00/ D
w: dim.M 0/C 1.

Proof. This is a classic result. We offer here a proof for the sake of completeness.
Suppose that M 00 is flat. Then by the long exact sequence theorem [23, Theorem
8.3] we get the exact sequence

0 D Tor2.M 00; N / �! Tor1.M 0; N / �! Tor1.M;N / D 0

for any R-moduleN . Hence Tor1.M 0; N / D 0 which implies that M 0 is flat.
Next, assume that M 00 is not flat. In this case, we claim that

w: dim.M 00/ D w: dim.M 0/C 1:

Indeed, let w: dim.M 0/ D n. Then we have the exact sequence

0 D TornC2.M;N / �! TornC2.M 00; N / �! TornC1.M 0; N / D 0

for any R-module N . Hence TornC2.M 00; N / D 0 for any R-module N which
implies

w: dim.M 00/ � nC 1 D w: dim.M 0/C 1:

Now let w: dim.M 00/ D m. Then we have the exact sequence

0 D TormC1.M 00; N / �! Torm.M 0; N / �! Torm.M;N / D 0

for any R-module N . Hence Torm.M 0; N / D 0 for any R-module N which
implies that

w: dim.M 00/ D m � w: dim.M 0/C 1:
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Consequently, w: dim.M 00/ D w: dim.M 0/C 1. ut
Recall that an exact sequence of R-modules

0 �! M 0 �! M �! M 00 �! 0

is pure if it remains exact when tensoring it with any R-module. In this case, we say
that M 0 is a pure submodule of M [23].

Lemma 3.11 ([5, Lemma 6.2]). Let .R;m/ be a local ring which is not a field.
Then w: dim.R=m/ D w: dim.m/C 1.

Proof. Consider the short exact sequence

0 ! m ! R ! R=m ! 0:

Assume that R=m is flat. By [13, Theorem 1.2.15 (1,2,3)], m is pure and .aR/m D
aR\m D aR for all a 2 m. Hence am D aR, for all a 2 m, and so by Nakayama’s
Lemma, a D 0, absurd. By Lemma 3.10, w: dim.R=m/ D w: dimR.m/C 1. ut
Proposition 3.12 ([5, Proposition 6.3]). Let .R;m/ be a local ring with nonzero
nilpotent maximal ideal. Then w: dim.m/ D 1.

Proof. Let n be the minimum integer such that mn D 0. We claim that for all
1 � k < n, w: dim.mn�k/ D w: dim.m/C 1. Indeed, let k D 1. Then mn�1m D 0,
so mn�1 is an .R=m/-vector space; hence 0 ¤ mn�1 Š L

R=m implies that
w: dimR.m

n�1/ D w: dim.R=m/ D w: dim.m/C 1 by Lemma 3.11 . Now let h be
the maximum integer in f1; : : : ; n � 1g such that w: dim.mn�k/ D w: dim.m/ C 1

for all k � h. Assume by way of contradiction that h < n � 1. Then we have the
exact sequence:

0 ! mn�h ! mn�.hC1/ ! mn�.hC1/ =mn�h ! 0; (�)

where mn�.hC1/ =mn�h is a nonzero .R=m/-vector space. So by Lemma 3.11, we
have w: dim.mn�.hC1/ =mn�h/ D w: dim.m/C 1. By hypothesis, w: dim.mn�h/ D
w: dim.m/ C 1. Let us show that w: dim.mn�.hC1// D w: dim.m/ C 1. Indeed, if
l WD w: dim.m/ C 1, then by applying the long exact sequence theorem to .�/,
we get

0 D TorlC1.mn�h; N / �! TorlC1.mn�.hC1/; N / �! TorlC1
�
mn�.hC1/

mn�h ; N

�
D 0

for any R-moduleN . Hence TorlC1.mn�.hC1/; N / D 0 for any R-moduleN which
implies

w: dim.mn�.hC1// � l D w: dim.m/C 1:
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Further, if w: dim.mn�.hC1// ˆ l , then we have

0 D TorlC1
�
mn�.hC1/

mn�h ; N

�
�! Torl .mn�h; N / �! Torl .mn�.hC1/; N / D 0

for any R-module N . Hence Torl .mn�h; N / D 0 for any R-module N which
implies that w: dim.mn�h// � l � 1, absurd. Hence w: dim.mn�.hC1// D
w: dim.m/ C 1, the desired contradiction. Therefore the claim is true and, in
particular, for k D n � 1, we have w: dim.m/ D w: dim.m/ C 1, which yields
w: dim.m/ D 1. ut
Proof of Theorem 3.9. Suppose that R is Gaussian and m is a maximal ideal in
R such that Nil.Rm/ is a nonzero nilpotent ideal. Then Rm is also Gaussian and
Nil.Rm/ is a prime ideal inR. Moreover Nil.Rm/ D pRm ¤ 0 for some prime ideal
p in R. Now, the maximal ideal pRp of Rp is nonzero since 0 ¤ pRm � pRp .
Also by assumption, there is a positive integer n such that .pRm/

n D 0, whence
pn D 0. So .pRp/n D 0 and hence pRp is nilpotent. Therefore Rp is a local
ring with nonzero nilpotent maximal ideal. By Proposition 3.12, w: gl: dim.Rp/ D
1. Since w: gl: dim.R/ � w: gl: dim.RS/ for any localization RS of R, we get
w: gl: dim.R/ D 1. ut

In the previous section, we saw that the weak global dimension of an arithmetical
ring is 0, 1, or 1. In this section, we saw that the same result holds if R is Prüfer
coherent or R is a Gaussian ring with a maximal ideal m such that Nil.Rm/ is a
nonzero nilpotent ideal.

The question of whether this result is true for an arbitrary Gaussian ring was the
object of Bazzoni-Glaz conjecture which sustained that the weak global dimension
of a Gaussian ring is 0, 1, or 1. In a first preprint [9], Donadze and Thomas claim
to prove this conjecture in all cases except when the ring R is a non-reduced local
Gaussian ring with nilradicalN satisfying N2 D 0. Then in a second preprint [10],
they claim to prove the conjecture for all cases.

4 Gaussian Rings via Trivial Ring Extensions

In this section, we will use trivial ring extensions to construct new examples of non-
arithmetical Gaussian rings , non-Gaussian Prüfer rings, and illustrative examples
for Theorems 2.4 and 3.9. Let A be a ring and M an R-module. The trivial ring
extension of A by M (also called the idealization of M over A) is the ring R WD
A ËM whose underlying group is A 	M with multiplication given by

.a; x/.a0; x0/ D .aa0; ax0 C a0x/:
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Recall that if I is an ideal of A and M 0 is a submodule of M such that IM � M 0,
then J WD I ËM 0 is an ideal ofR; ideals ofR need not be of this form [20, Example
2.5]. However, the form of the prime (resp., maximal) ideals ofR is pËM , where p
is a prime (resp., maximal) ideal of A [17, Theorem 25.1(3)]. Suitable background
on trivial extensions is [13, 17, 20].

The following lemma is useful for the construction of rings with infinite weak
global dimension.

Lemma 4.1 ([3, Lemma 2.3]). Let K be a field, E a nonzero K-vector space, and
R WD K ËE . Then w: gl: dim.R/ D 1.

Proof. First note that R.I/ Š A.I/ Ë E.I/. So let us identify R.I/ with A.I/ Ë E.I/

as R-modules. Now let ffigi2I be a basis of E and J WD 0 Ë E . Consider the
R-map u W R.I/ �! J defined by u..ai ; ei /i2I / D .0;

X

i2I
ai fi /. Then we have the

following short exact sequence of R-modules

0 �! Ker.u/ �! R.I/
u�! J �! 0

But Ker.u/ D 0 Ë E.I/. Indeed, clearly 0 Ë E.I/ � Ker.u/. Now suppose
u..ai ; ei // D .0; 0/. Then

P
i2I
ai fi D 0; hence ai D 0 for each i as ffigi2I is a

basis for E and we have the equality. Therefore the above exact sequence becomes

0 �! 0 ËE.I/ �! R.I/
u�! J �! 0 (�)

We claim that J is not flat. Suppose not. Then 0 ËE.I/
T
JR.I/ D .0 ËE.I//J by

[23, Theorem 3.55]. But .0ËE.I//J D 0. We use the above identification to obtain
0 D 0 ËE.I/

T
JR.I/ D .J /.I /

T
J .I/ D J .I/ D 0 ËE.I/, absurd (since E ¤ 0).

Now, by Lemma 3.10, w: dim.J / D w: dim.J .I // C 1 D w: dim.J / C 1. It
follows that w: gl: dim.R/ D w: dim.J / D 1. ut

Next, we announce the main result of this section.

Theorem 4.2 ([3, Theorem 3.1]). Let .A;m/ be a local ring, E a nonzero A
m

-
vector space, and R WD A ËE the trivial ring extension of A by E . Then:

(1) R is a total ring of quotients and hence a Prüfer ring.
(2) R is Gaussian if and only if A is Gaussian.
(3) R is arithmetical if and only if A WD K is a field and dimK.E/ D 1.
(4) w: gl: dim.R/ ‰ 1. If m admits a minimal generating set, then w: gl: dim.R/ is

infinite.

Proof.

(1) Let .a; e/ 2 R. Then either a 2 m in which case we get .a; e/.0; e/ D .0; ae/ D
.0; 0/ or a … m which implies a is a unit and hence .a; e/.a�1;�a�2e/ D .1; 0/,
the unity of R. ThereforeR is a total ring of quotients and hence a Prüfer ring.
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(2) Suppose that R is Gaussian. Then, since A Š R
0ËE and the Gaussian property is

stable under factor rings, A is Gaussian.
Conversely, assume that A is Gaussian and let F WD P

.ai ; ei /X
i be a

polynomial in RŒX�. If ai … m for some i , then .ai ; ei / is invertible since we
have .ai ; ei /.a�1

i ;�a�2ei / D .1; 0/. We claim that F is Gaussian. Indeed, for
any G 2 RŒX�, we have c.F /c.G/ D Rc.G/ D c.G/ � c.FG/. The reverse
inclusion always holds. If ai 2 m for each i , let G WD P

.a0
j ; e

0
j /X

j 2 RŒX�.
We may assume, without loss of generality, that a0

j 2 m for each j (otherwise,
we return to the first case) and let f WD P

aiX
i and g WD P

a0
jX

j in AŒX�.

Then c.FG/ D c.fg/ Ë c.fg/E. But since E is an A
m

-vector space, mE D 0

yields c.FG/ D c.fg/Ë0 D c.f /c.g/Ë0 D c.F /c.G/, since A is Gaussian.
ThereforeR is Gaussian, as desired.

(3) Suppose that R is arithmetical. First we claim that A is a field. On the contrary,
assume that A is not a field. Then m ¤ 0, so there is a ¤ 0 2 m. Let e ¤
0 2 E . Since R is a local arithmetical ring (i.e., chained ring), either .a; 0/ D
.a0; e0/.0; e/ D .0; a0e/ for some .a0; e0/ 2 R which contradicts a ¤ 0 or
.0; e/ D .a00; e00/.a; 0/ D .a0a; 0/ for some .a00; e00/ 2 R which contradicts
e ¤ 0. Hence A is a field. Next, we show that dimK.E/ D 1. Let e; e0 be two
nonzero vectors in E . We claim that they are linearly dependent. Indeed, since
R is a local arithmetical ring, either .0; e/ D .a; e00/.0; e0/ D .0; ae0/ for some
.a; e00/ 2 R, hence e D ae0 or similarly if .0; e0/ 2 .0; e/R. Consequently,
dimK.E/ D 1.
Conversely, let J be a nonzero ideal inKËK and let .a; b/ be a nonzero element
of J . So .0; a�1/.a; b/ D .0; 1/ 2 J . Hence 0ËK � J . But 0ËK is maximal
since 0 is the maximal ideal in K . So the ideals of K Ë K are .0; 0/K Ë K ,
0 Ë K D R.0; 1/, and K Ë K . Therefore K Ë K is a principal ring and hence
arithmetical.

(4) First w: gl: dim.R/ ‰ 1. Let J WD 0 Ë E and ffi gi2I be a basis of the A
m

-
vector space E . Consider the map u W R.I/ �! J defined by u..ai ; ei /i2I / D
.0;
P
i2I
aifi /. Here we are using the same identification that has been used in

Lemma 4.1. Then clearly Ker.u/ D .mËE/.I/. Hence we have the short exact
sequence of R-modules

0 �! .mËE/.I/ �! R.I/
u�! J �! 0: (1)

We claim that J is not flat. Otherwise, by [23, Theorem 3.55], we have

J .I/ D .mËE/.I/ \ JR.I/ D J.mËE.I// D 0:

Hence, by [23, Theorem 2.44], w: gl: dim.R/ ‰ 1.

Next, assume that m admits a minimal generating set. Then mËE admits a
minimal generating set (sinceE is a vector space). Now let .bi ; gi /i2L be a minimal
generating set of mËE . Consider the R-map v W R.L/ �! mËE defined by
v..ai ; ei /i2L/ D P

i2L
.ai ; ei /.bi ; gi /. Then we have the exact sequence
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0 �! Ker.v/ �! R.L/
v�! mËE �! 0 (2)

We claim that Ker.v/ � .mËE/.L/. On the contrary, suppose that there is x D
..ai ; ei /i2L/ 2 Ker.v/ and x … .mËE/.L/. Then

P
i2L
.ai ; ei /.bi ; gi / D 0 and as

x … .mËE/.L/, there is .aj ; ej / with aj … m. So that .aj ; ej / is a unit, which
contradicts the minimality of .bi ; gi /i2L. It follows that

Ker.v/ D V ËE.L/ D .V Ë 0/
M

.0 ËE.L// D .V Ë 0/
M

J .L/

where V WD f.ai /i2L 2 mi j
X

i2L
ai bi D 0g. Indeed, if x 2 Ker.v/, then x D

.ai ; bi /i2L where ai 2 m, bi 2 E , with
X

i2L
ai bi D 0, hence Ker.v/ � V Ë E.L/.

The other inclusion is trivial. Now, by Lemma 3.10 applied to (1), we get

w: dim.J / D w: dim..mËE/I /C 1 D w: dim.mËE/C 1:

On the other hand, from (2) we obtain

w: dim.J / � w: dim.V Ë 0˚ JL/ D w: dim.Ker.v// � w: dim.mËE/:

It follows that

w: dim.J / � w: dim.J / � 1:

Consequently, w: gl: dim.R/ D w: dim.J / D 1. ut
Next, we give examples of non-arithmetical Gaussian rings.

Example 4.3.

(1) Let p be a prime number. Then (Z.p/; pZ.p/) is a non-trivial valuation domain.
Hence Z.p/ Ë Z

pZ
is a non-arithmetical Gaussian total ring of quotients by

Theorem 4.2.
(2) Since dimR.C/ D 2 ‰ 1, R Ë C is a non-arithmetical Gaussian total ring of

quotient. In general, if K is a field and E is a K-vector space with dimK.E/ ‰
1, then R WD K Ë E is a non-arithmetical Gaussian total ring of quotients by
Theorem 4.2.

Next, we provide examples of non-Gaussian total rings of quotients and hence
non-Gaussian Prüfer rings.

Example 4.4. Let .A;m/ be a non-valuation local domain. By Theorem 4.2, R WD
A Ë A

m
is a non-Gaussian total ring of quotients, hence a non-Gaussian Prüfer ring.

The following is an illustrative example for Theorem 2.4.
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Example 4.5. Let R WD RËR. ThenR is a local ring with maximal ideal 0ËR and
Z.R/ D 0 Ë R. Further, R is arithmetical by Theorem 4.2. By Osofsky’s Theorem
(Theorem 2.4) or by Lemma 4.1, w: gl: dim.R/ D 1.

Now we give an example of a non-coherent local Gaussian ring with nilpotent
maximal ideal and infinite weak global dimension (i.e., an illustrative example for
Theorem 3.9).

Example 4.6. Let K be a field and X an indeterminate over K and let R WD K Ë
KŒX�. Then:

(1) R is a non-arithmetical Gaussian ring since K is Gaussian and dimK.KŒX�/ D
1 by Theorem 4.2.

(2) R is not a coherent ring since dimK.KŒX�/ D 1 by [20, Theorem 2.6].
(3) R is local with maximal ideal m D 0 Ë KŒX� by [17, Theorem 25.1(3)]. Also

m is nilpotent since m2 D 0. Therefore, by Theorem 3.9, w: gl: dim.R/ D 1.

5 Weak Global Dimension of fqp-Rings

Recently, Abuhlail, Jarrar, and Kabbaj studied commutative rings in which every
finitely generated ideal is quasi-projective (fqp-rings). They investigated the cor-
relation of fqp-rings with well-known Prüfer conditions; namely, they proved
that fqp-rings stand strictly between the two classes of arithmetical rings and
Gaussian rings [1, Theorem 3.2]. Also they generalized Osofsky’s Theorem on the
weak global dimension of arithmetical rings (and partially resolved Bazzoni-Glaz’s
related conjecture on Gaussian rings) by proving that the weak global dimension of
an fqp-ring is 0, 1, or 1 [1, Theorem 3.11]. In this section, we will give the proofs
of the above mentioned results. Here too, the needed examples in this section will be
constructed by using trivial ring extensions. We start by recalling some definitions.

Definition 5.1.

(1) Let M be an R-module. An R-module M 0 is M -projective if the map  W
HomR.M

0;M / �! HomR.M
0; M
N
/ is surjective for every submoduleN ofM .

(2) M 0 is quasi-projective if it is M 0-projective.

Definition 5.2. A commutative ring R is said to be an fqp-ring if every finitely
generated ideal of R is quasi-projective.

The following theorem establishes the relation between the class of fqp-rings and
the two classes of arithmetical and Gaussian rings.

Theorem 5.3 ([1, Theorem 3.2]). For a ring R, we have

R arithmetical ) R fqp-ring ) R Gaussian

where the implications are irreversible in general.
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The proof of this theorem needs the following results.

Lemma 5.4 ([1, Lemma 2.2]). Let R be a ring and let M be a finitely generated
R-module. Then M is quasi-projective if and only if M is projective over R

Ann.M/
.

Lemma 5.5 ([12, Corollary 1.2]). Let Mi1�i�n be a family of R-modules.
Then

Ln
iD1 Mi is quasi-projective if and only if Mi is Mj -projective 8 i; j 2

f1; 2; : : : ; g.

Lemma 5.6 ([1, Lemma 3.6]). Let R be an fqp-ring. Then S�1R is an fqp-ring,
for any multiplicative closed subsets of R.

Proof. Let J be a finitely generated ideal of S�1R. Then J D S�1I for some
finitely generated ideal I of R. Since R is an fqp-ring, I is quasi-projective and
hence, by Lemma 5.4, I is projective over R

Ann.I / . By [23, Theorem 3.76], J WD
S�1I is projective over S�1R

S�1 Ann.I / . But S�1 Ann.I / D Ann.S�1I / D Ann.J / by

[2, Proposition 3.14]. Therefore J WD S�1I is projective over S�1R
Ann.S�1I /

. Again by

Lemma 5.4, J is quasi-projective. It follows that S�1R is an fqp-ring. ut
Lemma 5.7 ([1, Lemma 3.8]). Let R be a local ring and a; b two nonzero
elements of R such that .a/ and .b/ are incomparable. If .a; b/ is quasi-projective,
then .a/\ .b/ D 0, a2 D b2 D ab D 0, and Ann.a/ D Ann.b/.

Proof. Let I WD .a; b/ be quasi-projective. Then by [26, Lemma 2], there exist
f1; f2 2 EndR.I / such that f1.I / � .a/, f2.I / � .b/, and f1 C f2 D 1I . Now let
x 2 .a/\.b/. Then x D r1a D r2b for some r1; r2 2 R. But x D f1.x/Cf2.x/ D
f1.r1a/ C f2.r2b/ D r1f1.a/ C r2f2.b/ D r1a

0a C r2b
0b D a0x C b0x where

a0; b0 2 R. We claim that a0 is a unit. Suppose not. Since R is local, 1 � a0 is a
unit. But a D f1.a/Cf2.a/ D a0aCf2.a/. Hence .1�a0/a D f2.a/ � .b/ which
implies that a 2 .b/. This is absurd since .a/ and .b/ are incomparable. Similarly,
b0 is a unit. It follows that .a0 � .1 � b0// is a unit. But x D a0x C b0x yields
.a0 � .1 � b0//x D 0. Therefore x D 0 and .a/ \ .b/ D 0.

Next, we prove that a2 D b2 D ab D 0. Obviously, .a/ \ .b/ D 0 implies
that ab D 0. So it remains to prove that a2 D b2 D 0. Since .a/ \ .b/ D 0,
I D .a/˚ .b/. By Lemma 5.5, .b/ is .a/-projective. Let ' W .a/ �! .a/

aAnn.b/ be the

canonical map and g W .b/ �! .a/

aAnn.b/ be defined by g.rb/ D r Na. If r1b D r2b,
then .r1 � r2/b D 0. Hence r1 � r2 2 Ann.b/ which implies that .r1 � r2/ Na D 0.
So g.r1b/ D g.r2b/. Consequently, g is well defined. Clearly g is an R-map. Now,
since .b/ is .a/-projective, there exists an R-map f W .b/ �! .a/ with ' ı f D g.
For b, we have f .b/ 2 .a/; hence f .b/ D ra for some r 2 R. Also .' ı f /.b/ D
g.b/. Hence f .b/ � a 2 aAnn.b/. Whence ra � a D at for some t 2 Ann.b/
which implies that .t C 1/a D ra. By multiplying the last equality by a we obtain,
.t C 1/a2 D ra2. But ab D 0 implies 0 D f .ab/ D af .b/ D ra2. Hence .t C
1/a2 D 0. Since t 2 Ann.b/ and R is local, .t C 1/ is a unit. It follows that a2 D 0.
Likewise b2 D 0.
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Last, let x 2 Ann.b/. Then f .xb/ D xra D 0. The above equality .tC1/a D ra

implies .t C 1 � r/a D 0. But t C 1 is a unit and R is local. So r is a unit (b ¤ 0).
Hence xa D 0. Whence x 2 Ann.a/ and Ann.b/ � Ann.a/. Similarly we can
show that Ann.a/ � Ann.b/. Therefore Ann.a/ D Ann.b/. ut
Proof of Theorem 5.3. R arithmetical ) R fqp-ring.

Let R be an arithmetical ring, I a nonzero finitely generated ideal of R, and p
a prime ideal of R. Then Ip WD IRp is finitely generated. But R is arithmetical;
hence, Rp is a chained ring and Ip is a principal ideal of Rp. By [21], Ip is quasi-
projective. By [29, 19.2] and [28], it suffices to prove that .HomR.I; I //p Š
HomRp .Ip; Ip/. But HomRp .Ip; Ip/ Š HomR.I; Ip/ by the adjoint isomorphisms
theorem [23, Theorem 2.11] (since HomS�1R.S

�1N; S�1M/ Š Hom.N; S�1M/

where S�1N Š N
N

R S
�1R and S�1M Š HomS�1R.S

�1R; S�1M/). So let us
prove that

.HomR.I; I //p Š HomR.I; Ip/:

Let

� W .HomR.I; I //p �! HomR.I; Ip/

be the function defined by f

s
2 .HomR.I; I //p , �.f

s
/ W I �! Ip with

�.
f

s
/.x/ D f .x/

s
, for each x 2 I . Clearly � is a well-defined R-map. Now suppose

that �.f
s
/ D 0. I is finitely generated, so let I D .x1; x2; : : : ; xn/, where n is an

integer. Then for every i 2 f1; 2; : : : ; ng, �.f
s
/.xi / D f .xi /

s
D 0, whence there

exists ti 2 R n p such that ti f .xi / D 0. Let t WD t1t2 : : : tn. Clearly, t 2 R n p
and tf .x/ D 0, for all x 2 I . Hence f

s
D 0. Consequently, � is injective. Next,

let g 2 HomR.I; Ip/. Since Ip is principal in Rp, Ip D aRp for some a 2 I . But
g.a/ 2 Ip . Hence g.a/ D ca

s
for some c 2 R and s 2 R n p. Let x 2 I . Then

x
1

2 Ip D aRp . Hence x
1

D ra
u for some r 2 R and u 2 R n p. So there exists

t 2 R n p such that tux D t ra. Now, let f W I �! I be the multiplication by c.
(i.e., for x 2 I , f .x/ D cx). Then f 2 HomR.I; I / and we have

�

�
f

s

�
.x/Df .x/

s
Dcx

s
Dc

s

x

1
Dcra

su
D r

u
g.a/D 1

tu
g.t ra/D 1

tu
g.txu/Dg.x/:

Therefore � is surjective and hence an isomorphism, as desired.
R fqp-ring ) R Gaussian
Recall that, if .R;m/ is a local ring with maximal ideal m, then R is a Gaussian

ring if and only if for any two elements a, b in R, .a; b/2 D .a2/ or .b2/ and if
.a; b/2 D .a2/ and ab D 0, then b2 D 0 [5, Theorem 2.2 (d)].

Let R be an fqp-ring and let P be any prime ideal of R. Then by Lemma 5.6
Rp is a local fqp-ring. Let a; b 2 RP . We investigate two cases. The first case
is .a; b/ D .a/ or .b/, say .b/. So .a; b/2 D .b2/. Now assume that ab D 0.
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Since a 2 .b/, a D cb for some c 2 R. Therefore a2 D cab D 0. The second
case is I WD .a; b/ with I ¤ .a/ and I ¤ .b/. Necessarily, a ¤ 0 and b ¤ 0.
By Lemma 5.7, a2 D b2 D ab D 0. Both cases satisfy the conditions that were
mentioned at the beginning of this proof (The conditions of [5, Theorem 2.2 (d)]).
Hence Rp is Gaussian. But p being an arbitrary prime ideal of R and the Gaussian
notion being a local property, then R is Gaussian.

To prove that the implications are irreversible in general, we will use the
following theorem to build examples for this purpose. ut
Theorem 5.8 ([1, Theorem 4.4]). Let .A; m/ be a local ring and E a nonzero A

m -
vector space. Let R WD A ËE be the trivial ring extension of A by E . Then R is an
fqp-ring if and only if m2 D 0.

The proof of this theorem depends on the following lemmas.

Lemma 5.9 ([24, Theorem 2]). Let R be a local fqp-ring which is not a chained
ring. Then .Nil.R//2 D 0.

Lemma 5.10 ([1, Lemma 4.5]). Let R be a local fqp-ring which is not a chained
ring. Then Z.R/ D Nil.R/.

Proof. We always have Nil.R/ � Z.R/. Now, let s 2 Z.R/. Then there exists
t ¤ 0 2 R such that st D 0. Since R is not chained, there exist nonzero elements
x; y 2 R such that .x/ and .y/ are incomparable. By Lemma 5.7, x2 D xy D
y2 D 0. Either .x/ and .s/ are incomparable and hence, by Lemma 5.7, s2 D 0,
whence s 2 Nil.R/, or .x/ and .s/ are comparable. In this case, either s D rx

for some r 2 R which implies that s2 D r2x2 D 0 and hence s 2 Nil.R/. Or
x D sx0 for some x0 2 R. Same arguments applied to .s/ and .y/ yield either
s 2 Nil.R/ or y D sy0 for some y0 2 R. Since .x/ and .y/ are incomparable, .x0/
and .y0/ are incomparable. Hence, by Lemma 5.7, .x0/\.y0/ D 0. If .x0/ and .t/ are
incomparable, then by Lemma 5.7 Ann.x0/ D Ann.t/, so that s 2 Ann.x0/ which
implies that x D sx0 D 0, absurd. If .t/ � .x0/, then .t/ \ .y0/ � .x0/\ .y0/ D 0.
So .t/ and .y0/ are incomparable, whence similar arguments as above yield y D 0,
absurd. Last, if .x0/ � .t/, then x0 D r 0t for some r 0 2 R. Hence x D sx0 D
st r 0 D 0, absurd. Therefore all the possible cases lead to s 2 Nil.R/. Consequently,
Z.R/ D Nil.R/. ut
Lemma 5.11 ([1, Lemma 4.6]). Let .R; m/ be a local ring such that m2 D 0.
Then R is an fqp-ring.

Proof. Let I be a nonzero proper finitely generated ideal of R. Then I � m
and m I D 0. Hence m � Ann.I /, whence m D Ann.I / .I ¤ 0/. So that
R

Ann.I / Š A
m

which implies that I is a free R
Ann.I / -module, hence projective over

R
Ann.I / . By Lemma 5.4, I is quasi-projective. Consequently,R is an fqp-ring. ut
Proof of Theorem 5.8. Assume that R is an fqp-ring. We may suppose that A is not
a field. Then R is not a chained ring since ..a; 0/ and ..0; e// are incomparable
where a ¤ 0 2 m and e D .1; 0; 0; : : :/ 2 E . AlsoR is local with maximalmËE .
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By Lemma 5.10, Z.R/ D Nil.R/. But mËE D Z.R/. Let .a; e/ 2 mËE . Since
E is an A

m
-vector space, .a; e/.0; e/ D .0; ae/ D .0; 0/. Hence mËE � Z.R/. The

other inclusion holds since Z.R/ is an ideal. HencemËE D Nil.R/. By Lemma 5.9,
.Nil.R//2 D 0 D .mËE/2. Consequently, m2 D 0.

Conversely, m2 D 0 implies .mËE/2 D 0 and hence by Lemma 5.11, R is an
fqp-ring. ut

Now we can use Theorem 5.8 to construct examples which prove that the
implications in Theorem 5.3 cannot be reversed in general. The following is an
example of an fqp-ring which is not an arithmetical ring

Example 5.12. R WD RŒX�

.X2/
ËR is an fqp-ring by Theorem 5.8, sinceR is local with a

nilpotent maximal ideal .X/

.X2/
ËR. Also, since RŒX�

.X2/
is not a field,R is not arithmetical

by Theorem 4.2.

The following is an example of a Gaussian ring which is not an fqp-ring.

Example 5.13. R WD RŒX�.X/ Ë R is Gaussian by Theorem 4.2. Also, by
Theorem 5.8, R is not an fqp-ring.

Now the natural question is what are the values of the weak global dimension of
an arbitrary fqp-ring‹ The answer is given by the following theorem.

Theorem 5.14 ([1, Theorem 3.11]). Let R be an fqp-ring. Then w: gl: dim.R/ D
0; 1; or1.

Proof. Since w: gl: dim.R/ D supfw: gl: dim.Rp/ j p prime ideal of Rg, one
can assume that R is a local fqp-ring. If R is reduced, then w: gl: dim.R/ � 1

by Lemma 3.5. If R is not reduced, then Nil.R/ ¤ 0. By Lemma 5.9, either
.Nil.R//2 D 0, in this case w: gl: dim.R/ D 1 by Theorem 3.9 (since an fqp-
ring is Gaussian) orR is a chained ring with zero divisors (Nil.R/ ¤ 0), in this case
w: gl: dim.R/ D 1 by Theorem 2.3. Consequently, w: gl: dim.R/ D 0, 1, or 1.

ut
It is clear that Theorem 5.14 generalizes Osofsky’s Theorem on the weak global

dimension of arithmetical rings (Theorem 2.3) and partially resolves Bazzoni-Glaz
conjecture on Gaussian rings.
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Quasi-complete Semilocal Rings and Modules

Daniel D. Anderson

Abstract Let R be a (commutative Noetherian) semilocal ring with Jacobon
radical J . Chevalley has shown that if R is complete, then R satisfies the following
condition: given any descending chain of ideals fAng1

nD1 with
T1
nD1 An D 0, for

each positive integer k there exists an sk with Ask � J k . A finitely generated
R-module M is said to be (weakly) quasi-complete if for any descending chain
fAng1

nD1 of R-submodules of M (with
T1
nD1An D 0) and k � 1, there exists

an sk with Ask � .
T1
nD1An/ C J kM . An easy modification of Chevalley’s proof

shows that a finitely generated R-module over a complete semilocal ring is quasi-
complete. However, the converse is false as any DVR is quasi-complete. In this
paper we survey known results about (weakly) quasi-complete rings and modules
and prove some new results.

Keywords Quasi-complete rings • Quasi-complete modules • Noether lattices

Subject Classifications: 13E05, 13H10, 13A15, 06F10.

1 Introduction

Throughout this paper all rings are commutative with identity and all modules are
unitary. Local rings and semilocal rings carry the Noetherian hypothesis.

The following result is proved by Chevalley [6, Lemma 7].
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Theorem 1. Let R be a complete semilocal ring, and let .bn/ be a sequence of
ideals in R such that bnC1 
 bn (1 � n < 1) and

T1
nD1 bn D f0g. If p1; : : : ; pk

are the maximal prime ideals of R, we have bn 
 .p1 � � �pk/m.n/, where m(n) is an
exponent which increases indefinitely with n.

An equivalent formation may be found in Nagata [17, Theorem 30.1].

Theorem 2. Let R be a semilocal ring with Jacobson radical J . If an (n D
1; 2; 3; : : :) are ideals of R such that anC1 � an for any n and such that

T1
nD1an D

0, then given any natural number n, there exists a natural number m(n) such that
am.n/ � J n.

A proof of the theorem in the local case may also be found in Northcott
[18, Theorem 1, page 86]. All three authors use the theorem to show that if R is
a semilocal ring with Jacobson radical J and R0 is a semilocal extension ring of R
with Jacobson radical J 0, then R is a subspace of R0 if and only if J D J 0 \ R

[6, Proposition 4], [17, Corollary 30.2], [18, Theorem 2, page 88]. By this we mean
that the J -adic topology on R is the subspace topology induced by the J 0-adic
topology on R0. We make the following fundamental definition.

Definition 1. Let R be a semilocal ring with Jacobson radical J and let M be
a finitely generated R-module. Then M is (weakly) J -quasi-complete if for any
descending chain fAng1

nD1 of submodules of M (with
T1
nD1An D 0) and k � 1,

there exists an sk with Ask � �T1
nD1An

�C J kM .

When the context is clear we will often just say (weakly) quasi-complete.
Now an easy modification of any of the three previously mentioned proofs shows
that a finitely generated module over a complete semilocal ring is weakly quasi-
complete and hence is actually quasi-complete as seen by passing to the R-module
M=

T1
nD1An. We state this as a theorem and for completeness give its proof.

Theorem 3. Let M be a finitely generated module over a complete semilocal ring.
Then M is quasi-complete (and hence is weakly quasi-complete).

Proof. Let R be a complete semilocal ring with Jacobson radical J . Let fAng1
nD1 be

a descending chain of submodules of M and put A D T1
nD1An. Then NM D M=A

is again a finitely generated module over the complete semilocal ring R. Put NAn D
An=A; so

˚ NAn
�1
nD1 is a descending chain of submodules of NM with

T1
nD1 NAn D 0.

If we show that NM is weakly quasi-complete, then for each k � 1, there is an
sk with NAsk � J k NM and hence Ask � A C J kM . Thus it suffices to show that
each finitely generated R-module is weakly quasi-complete. So let fAng1

nD1 be a
descending chain of submodules of M with

T1
nD1An D 0. Let k � 1. Put A0

n D
AnCJ kM . So fA0

ng1
nD1 is a descending chain of submodules ofM which stabilizes

since M=J kM is Artinian; say A0
sk

D A0
skC1; D � � � . We may assume that the

sequence fskg1
kD1 is strictly increasing. Put Ck D Ask , so fCkg1

kD1 is a descending
chain of R-submodules with

T1
kD1Ck D 0. Also, Ck C J kM D CkC1 C J kM . We

show that Ck � J kM for each k � 1. Let x 2 Ck. Now x 2 Ck � CkC1 C J kM ,
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so x D ykC1 C ak where ykC1 2 CkC1 and ak 2 J kM . Now ykC1 2 CkC1 �
CkC2 C J kC1M . Continuing we get sequences ykC1; ykC2; : : : and ak; akC1; : : :
where ykCj 2 CkCj and akCj 2 J kCjM with x D ykCnCakCakC1C� � �CakCn�1
for all n. Since limn!1 akCn D 0, the sequence tn D ak C akC1 C � � � C akCn�1
converges, say to a. Hence limn!1 ykCn D x � a. Since tn 2 J kM , a 2 J kM .
Since ykCp, ykCpC1; : : : are all in CkCp, we have x � a 2 CkCp for every p � 0.
Hence x � a D 0, so x D a 2 J kM . ut

Now it turns out that the notion of completeness cannot be given solely in ideal-
theoretic terms. For example,Z.p/ (p a prime) and its completion the p-adic integers
OZ.p/ have isomorphic lattices of ideals, yet OZ.p/ is complete, while Z.p/ is not.
(Throughout the paper we will use OM to denote the completion ofM .) In fact, Z.p/
is quasi-complete but not complete. Actually, any DVR, or more generally any one-
dimensional analytically irreducible local domain is quasi-complete (Corollary 2),
but need not be complete.

As noted in the previous paragraph the notion of completeness cannot be given in
lattice-theoretic terms. Dilworth [7] introduced the Noether lattice as the abstraction
of the lattice of ideals of a Noetherian ring. E.W. Johnson and J.A. Johnson have
developed a theory of completions for lattice modules over semilocal Noether
lattices (see the references). Basically, a lattice module is defined to be complete if it
satisfies Definition 1 stated in lattice-theoretic terms. This is a reasonable definition
as the map LR.M/ ! L OR. OM/ given by N ! OR ˝ N D ORN from the lattice of
R-submodule of M (R is a semilocal ring and M a finitely generated R-module)
to the lattice of OR-submodules of OM is a multiplicative lattice module isomorphism
if and only if M is quasi-complete. This is explained in greater detail later in the
paper (see especially the two paragraphs after the proof of Corollary 2).

In Sect. 2 we consider the case of quasi-complete local rings. Theorem 5 gives
15 additional characterizations of quasi-complete local rings. Many of these are
extended to quasi-complete modules over semilocal rings in Sect. 3. Theorem 6
states that a quasi-complete semilocal ring is a finite direct product of quasi-
complete local rings and thus effectively reduces the semilocal case to the local
case.

2 Quasi-complete Local Rings

In this section we consider the local case of quasi-completeness. As we shall see in
the next section, the general case readily reduces to local case (Theorem 6). For the
reader’s convenience we repeat the definition of (weak) quasi-completeness in the
case of a local ring.

Let .R;M/ be a local ring with maximal ideal M (here local includes the
Noetherian hypothesis). We say R is (weakly) quasi-complete [8] if for each
descending sequence fAng1

nD1 of ideals of R (with
T1
nD1 An D 0) and each k � 1,

there exists an sk � 1 with Ask � .
T1
nD1 An/ C Mk .Ask � Mk/. It is easily

seen that R is quasi-complete if and only if R=A is weakly quasi-complete for
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each proper ideal A of R. Thus a homomorphic image of a quasi-complete local
ring is quasi-complete. It is well known that a complete local ring is weakly quasi-
complete (see, for instance [17, Theorem 30.1]) and hence quasi-complete since a
homomorphic image of a complete local ring is again complete. A module-theoretic
generalization was given in Theorem 3. We next give alternative characterizations
of (weak) quasi-completeness. As usual, OR denotes the M -adic completion of R.

Theorem 4. For a local ring .R;M/, the following conditions are equivalent.

1. R is (weakly) quasi-complete.
2. For each descending sequence fQng1

nD1 of M -primary ideals of R (withT1
nD1 Qn D 0) and each k � 1, there exists an sk � 1 withQsk � .

T1
nD1 Qn/C

Mk .Qsk � Mk/.
3. For ideals A ¨ B of OR (with A D 0), R \A ¨ R \ B .
4. For any decreasing sequence fAng1

nD1 of ideals of R (with
T1
nD1 An D 0) and

any finitely generated R-moduleN ,
T1
nD1 AnN D �T1

nD1 An
�
N .

5. Condition (4) with N cyclic.
6. For any decreasing sequence fAng1

nD1 of ideals of R (with
T1
nD1An D 0), we

have
T1
nD1 ORAn D OR.T1

nD1An/.

Proof. (1))(2) Clear. (2))(3) Suppose that A � B are ideals of OR with R\A D
R \ B . Put Q0

n D B C OMn; so Q0
n is OM -primary and

T1
nD1 Q0

n D B . Let
Qn D R \ Q0

n; so fQng1
nD1 is a descending sequence of M -primary ideals of R

with
T1
nD1 Qn D T1

nD1
�
R \Q0

n

� D R \ .
T1
nD1 Q0

n/ D R \ B D R \ A. Hence
for each k � 1, there exists an sk � 1 with Qsk � .R \A/CMk. We can assume
that sk � k. ThusQ0

sk
D ORQsk � OR.R\ACMk/ D OR .R \ A/C OMk � AC OMk .

So B D T1
kD1 Q0

sk
� T1

kD1.AC OMk/ D A; hence A D B . (3))(1) Let fAng1
nD1

be a decreasing sequence of ideals of R. Then f ORAng1
nD1 is a decreasing sequence

of ideals of OR. Note that R \ .
T1
nD1 ORAn/ D T1

nD1.R \ ORAn/ D T1
nD1 An D

R \ . ORT1
nD1 An/; so

T1
nD1 ORAn D OR.T1

nD1 An/. Now for k � 1, there exists an
sk with ORAsk � .

T1
nD1 ORAn/C OMk D OR.T1

nD1 An/C ORMk D OR.T1
nD1 AnCMk/.

ThusAsk D R\ ORAsk � R\ . OR.T1
nD1 An CMk// D .

T1
nD1 An/CMk . (1))(4)

Let A D T1
nD1 An. First suppose that R is weakly quasi-complete and A D 0. For

k � 1; there is an sk � 1 with Ask � Mk. Hence AskN � MkN . So
T1
nD1 AnN �T1

kD1 AskN � T1
kD1 MkN D 0. Hence

T1
nD1 AnN D �T1

nD1 An
�
N . Next

suppose that R is quasi-complete and A is not necessarily 0. Now R=A is weakly
quasi-complete and N=AN is a finitely generated R=A-module. So by the case
A D 0,

T1
nD1 ..An=A/ .N=AN// D �T1

nD1 An=A
�
.N=AN/. But this translates

to
T1
nD1

�
AnNCAN

AN

� D AN =AN or
T1
nD1 AnN D AN , which is what we needed

to prove. (4))(5) Clear. (5))(1) Let N D R=J where J is an ideal of R.
Let fAng1

nD1 be a decreasing sequence of ideals of R with A D T1
nD1 An. SoT1

nD1 An .R=J / D �T1
nD1 An

�
.R=J / or

T1
nD1 .An C J / D �T1

nD1 An
� C J .

Suppose that J D Mk where k � 1. Since R=Mk is Artinian, there exists an
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sk � 1 with Ask C Mk D A` C Mk for ` � sk . So Ask � Ask C Mk DT1
nD1

�
An CMk

� D �T1
nD1 An

� C Mk. So R is quasi-complete (weakly quasi-
complete if we only assume that A D 0). (3))(6) This is given in the first three
sentences of the proof of (3))(1). (6))(1) This follows from the last two sentences
of the proof of (3))(1). ut
Corollary 1. Let .R;M/ be a local ring and ':L.R/ ! L. OR/ be given by
' .A/ D ORA where L.R/ [resp., L. OR/] is the lattice of ideals of R (resp., OR).
Then the following conditions are equivalent:

1. R is quasi-complete.
2. ' is surjective.
3. ' is a (multiplicative) lattice isomorphism.
4. Every (principal) ideal B of OR has the form B D ORA for some (necessarily

principal) ideal A of R.
5. For each x 2 OR, x D ur for some u 2 U. OR/, the group of units of OR, and r 2 R.
6. L.R/ and L. OR/ are isomorphic as multiplicative lattices.

Proof. (1))(2) Let B be an ideal of OR. Then OR .R \ B/ � B and R \
. OR .R \ B// D R \ B . So by Theorem 4, OR .R \ B/ D B . So ' is surjective.
(2))(3) As ORA \ R D A for each ideal A of R, ' is always injective. Thus
by (2) ' is a bijection. Clearly ' and '�1 are order preserving; so ' is a lattice
isomorphism, even a multiplicative lattice isomorphism since ' .AB/ D ORAB D
ORA ORB D ' .A/ ' .B/. (3))(1) Suppose that A ¨ B for ideals A and B of
OR. Then R \ A D '�1 .A/ ¨ '�1 .B/ D R \ B . By Theorem 4, R is quasi-

complete. (3))(4) Clear. Note that if ORx D ORB for some idealB ofR, then writing
B D ˙Rb˛ gives ORx D ˙ ORb˛. Since ORx is principal and hence completely
join-irreducible, ORx D ORb˛0 for some b˛0 2 R. (4))(2) This is clear since
if each principal ideal of OR is an extension of an ideal of R, then so is every
ideal of OR. (5))(4) Let x 2 OR, so x D ur where u 2 U. OR/ and r 2 R.
Then ORx D ORur D ORr D OR .Rr/. (4))(5) Let x 2 OR, so ORx D ORr for
some r 2 R. Hence x D ur for some u 2 U. OR/. (3))(6) Clear. (6))(1)
Let  :L.R/ ! L. OR/ be a multiplicative lattice isomorphism. First note that
 .M/ D OM and so  .Mn/ D OMn. Let fAng1

nD1 be a decreasing sequence of
ideals ofR. Then f .An/g1

nD1 is a decreasing sequence of ideals of OR. So for k � 1,
there exists an sk with  

�
Ask

� � T1
nD1  .An/ C OMk D  

�T1
nD1 An CMk

�
.

Hence Ask � T1
nD1 An CMk. So R is quasi-complete. ut

Corollary 2. Let R be a local integral domain.

1. Then R is weakly quasi-complete if and only if for each nonzero prime ideal P
of OR, P \R 6D 0.

2. A weakly quasi-complete local domain is analytically irreducible.
3. Suppose further that dimR D 1. Then the following are equivalent.

a. R is quasi-complete.
b. R is weakly quasi-complete.
c. R is analytically irreducible.
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Proof. (1) ()) Suppose that R is weakly quasi-complete. Then for any nonzero
ideal A of OR, prime or not, A \ R 6D 0 by Theorem 4. (() Suppose the R is
not weakly quasi-complete. So by Theorem 4 there is a nonzero ideal A of OR
with A \ R D 0. Since OR is Noetherian, we can suppose that A is maximal
with respect to this property. We claim that A is prime. Suppose that xy 2 A,
but x 62 A and y 62 A. Then A ¨ .A; x/ and A ¨ .A; y/; so .A; x/ \ R 6D 0

and .A; y/\ R 6D 0. Now ..A; x/ \ R/ ..A; y/ \ R/ � ..A; x/ .A; y// \ R �
A\ R D 0. But R is an integral domain, so ..A; x/ \R/ ..A; y/ \R/ 6D 0.

(2) Suppose that R is a weakly quasi-complete integral domain. Suppose that OR is
not a domain. Let P be a minimal prime of OR, so P � Z. OR/. Let 0 6D r 2
P \ R. Now r 62 Z .R/, and hence r 62 Z. OR/ since OR is a flat R-module. But
r 2 P � Z. OR/, a contradiction.

(3) We always have (a))(b) and (b))(c) follows from (2). (c))(a) Now suppose
dimR D 1. For a proper nonzero ideal A of R, dimR=A D 0 and hence R=A
is complete. Thus R=A is (weakly) quasi-complete. Next, suppose that A D 0.
Now R is a one-dimensional analytically irreducible integral domain. So OM is
the only nonzero prime ideal of OR. Certainly OM \ R D M 6D 0. So by (1),
R is weakly quasi-complete. So every homomorphic image of R is (weakly)
quasi-complete and hence R is quasi-complete. ut

Now (1))(4) and (1))(5) of Corollary 1 have been obtained by E.W. Johnson
[8] from a different perspective. We outline his approach.

Let .R;M/ be a local ring. For ideals A and B of R set S.A;B/ D
sup

˚
i jACMi D B CMi

�
; so S.A;B/ � 0 and S.A;B/ D 1 if and only if

A D B . Let d.A;B/ D 1=2S.A;B/; so d is a metric on L.R/. He proved that L.R/
is complete if and only if R is quasi-complete and that the d -completion of L.R/
is isometric to L. OR/. Later, J.A. Johnson [15] gave the equivalence of (1)–(6) of
Corollary 1. Also see [11,12] for the theory of completions of multiplicative lattices
and lattice modules. Note that for a decreasing sequence fAng1

nD1 of ideals of R
with A D T1

nD1 An, A D lim
n!1An if and only if for each k � 1, there exists an sk

with d.A`; A/ � 1=2k for each ` � sk , i.e., A` CMk D ACMk, or equivalently,
A` � ACMk. So R is (weakly) quasi-complete if and only if for each decreasing
sequence fAng1

nD1 of ideals of R with A D T1
nD1 An (with A D 0), lim

n!1An D A

[13].
We next list the various characterizations of quasi-complete local rings already

given and add a few more.

Theorem 5. For a local ring .R;M/ the following conditions are equivalent:

1. R is quasi-complete.
2. For each decreasing sequence fQng1

nD1 of M -primary ideals and each k � 1,
there exits an sk � 1 with Qsk � .

T1
nD1 Qn/CMk.

3. Every homomorphic image of R is weakly quasi-complete.
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4. Every homomorphic image .S;N / of R satisfies the following condition: if
fQng1

nD1 is a decreasing sequence ofN -primary ideals of S with
T1
nD1 Qn D 0

and k � 1, there exists an sk � 1 so that Qsk � Nk .
5. For ideals A ¨ B of OR, R \A ¨ R \ B:

6. The map ':L.R/ ! L. OR/ given by ' .A/ D ORA is surjective, i.e., each ideal
B of OR has the form B D ORA for some ideal A of R.

7. The map ':L.R/ ! L. OR/ is a multiplicative lattice isomorphism.
8. L.R/ and L. OR/ are isomorphic as multiplicative lattices.
9. L.R/ is complete in the d -metric.

10. For each x 2 OR, there exist u 2 U. OR/ and r 2 R with x D ur .
11. Given a decreasing sequence fAng1

nD1 of ideals of R with
T1
nD1 An D A,

lim
n!1An D A.

12. R satisfies AB5� (the dual of AB5), i.e., for any ideal B of R and downward
directed family fB˛g of ideals, we have B C .

T
B˛/ D T

˛ .B C B˛/.
13. R has a dual R-module A, i.e., there is an order-reversing lattice isomorphism

 :L.R/ ! L.A/ satisfying  .JN/ D  .N/:J for all ideals J and
submodulesN of R.

14. E .R=M/, the injective envelope of R=M , is an R-module dual of R.
15. For any decreasing sequence fAng1

nD1 of ideals of R and any finitely generated
(or just cyclic) R-moduleN ,

T1
nD1 AnN D �T1

nD1 An
�
N .

16. For any decreasing sequence fAng1
nD1 of ideals of R, we have

T1
nD1 ORAn D

OR.T1
nD1 An/.

Proof. The equivalence of (1)–(11), (15), and (16) has already been given, while the
equivalence of (1) and (12)–(14) may be found in [2]. ut

We remark that in (12), the condition that fBag is downward directed can be
replaced by fBag is a chain or even by fBng1

nD1 is a countable descending chain, see
[9, Lemma 3] or the proof of (5))(1) of Theorem 4. Also, a “weak” version of any
of these with

T
Ba D 0 characterizes weakly quasi-completeness.

Now for R a local ring we have R complete ) R is quasi-complete ) R is
weakly quasi-complete. Now Z.p/, k ŒX�.X/ (k a field) or more generally any non-
complete DVR (i.e., a one-dimensional regular local ring) is quasi-complete, but
not complete. We do not know of an example of a weakly quasi-complete local
ring that is not quasi-complete. We end this section with two examples. The first
example shows that k ŒX1; : : : ; Xn�.X1;:::;Xn/ need not be quasi-complete for n � 2.
Thus a regular local ring need not be quasi-complete. The second example gives
an example of a two-dimensional regular local ring that is quasi-complete but not
complete.

Example 1. Let k be a countable field. Then Rn D k ŒX1; : : : ; Xn�.X1;:::;Xn/ is
weakly quasi-complete if and only if n D 1. Now R1 D kŒX1�.X1/ is a DVR and
hence is even quasi-complete. Suppose n � 2. By Corollary 2 it suffices to show
there is a nonzero prime ideal P of ORn D kŒŒX1; : : : ; Xn�� with P \ Rn D 0, or
equivalently, P \ kŒX1; : : : ; Xn� D 0. It even suffices to show there is a nonzero
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prime ideal P of OR2 with P \ kŒX1;X2� D 0. Suppose not. Now R2 has countably
infinite many height-one prime ideals while OR2 D kŒŒX1;X2�� has uncountably
many height-one prime ideals. Note that if Q is a height-one prime ideal of OR2,
thenQ\kŒX1;X2� is a height-one prime ideal of kŒX1;X2� (since we are assuming
that Q \ kŒX1;X2� 6D 0). So there is some (necessarily principal) height-one prime
ideal (p) of kŒX1;X2� having an uncountable set of height-one prime ideals fP˛g
of OR2 with P˛ \ kŒX1;X2� D .p/. So there are infinitely many prime ideals of OR2
minimal over ORnp, a contradiction.

Conjecture 1. For any field k, kŒX1; : : : ; Xn�.X1;:::;Xn/ is not weakly quasi-complete
for n � 2.

Example 2. Suppose that .D; .�// is a complete DVR. Then DŒX�.�;X/ is a two-
dimensional regular local ring that is quasi-complete, but not complete. Now
4DŒX�.�;X/ D DŒŒX��, so DŒX�.�;X/ is not complete. We show that DŒX�.�;X/
is quasi-complete using (1), (5) of Corollary 1. Let 0 6D f 2 DŒŒX��. So
f D ��nf 0 where � is a unit of D, n � 0, and f 0 2 DŒŒX�� has some coefficient
a unit. Now by the Preparation Theorem (for example, see [5, Chap. VII, Sect. 3.8,
Proposition 6, page 510]) f 0 D �0f 00 where �0 is a unit of DŒŒX�� and f 00 2 DŒX�.
Then f D .��0/ .�nf 00/ where ��0 is a unit of DŒŒX�� and �nf 00 2 DŒX�.�;X/.
Conjecture 2. For a DVR .D; .�//, DŒX�.�;X/ is quasi-complete if and only ifD is
complete.

3 The General Case

The notion of quasi-completeness for a local ring can be generalized to finitely
generated modules over semilocal rings. (See [16] for a further generalization.) Let
R be a semilocal ring (this includes the Noetherian hypothesis) with maximal ideals
M1; : : : ;Mn and Jacobson radical J D M1 \ � � � \ Mn D M1 � � �Mn. Let M be a
finitely generatedR-module. Recall thatM is said to be (weakly) J -quasi-complete
if for any descending chain fAng1

nD1 of R-submodules of M (with
T1
nD1 An D 0)

and k � 1, there exists an sk with Ask � .
T1
nD1 An/ C J kM . We next show that

R is J -quasi-complete if and only if R D RM1 	 � � � 	 RMn and each RMi is quasi-
complete.

Theorem 6. Let R be a semilocal ring with maximal ideals M1; : : : ;Mn and let
J D M1\� � �\Mn. ThenR is J -quasi-complete if and only ifR D RM1 	� � �	RMn

and each RMi is MiMi
-quasi-complete.

Proof. (() With a change of notation R D R1 	 � � � 	 Rn where .Ri ;Mi / is a
quasi-complete local ring. Let fAi g1

iD1 be a descending sequence of ideals of R.
So Ai D Ai1 	 � � � 	 Ain and

T1
iD1 Ai D .

T1
iD1 Ai1/ 	 � � � 	 .

T1
iD1 Ain/. Now

each
�
Rj ;Mj

�
is quasi-complete, so for k � 1, there exists a kj � 1 so that
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Akj j � .
T1
iD1 Aij /CMk

j . Let k0 D max fk1; : : : ; kng, so Ak0 � ..
T1
iD1 Ai1/ C

Mk
1 /	� � �	..T1

iD1 Ain/CMk
n / D .

T1
iD1 Ai /CMk

1 	� � �	Mk
n D .

T1
iD1 Ai /CJ k .

So R is J -quasi-complete. ()) Let Qi D T1
kD1 Mk

i . So Q1 \ � � � \Qn � Mk
1 \

� � � \Mk
n D J k for each k � 1; and henceQ1 \ � � � \Qn D 0. Since R is J -quasi-

complete, for k D 1 andMi � M2
i � � � � , there exists ki � 1 withMki

i � Qi C J .

So for i 6D j , R D M
ki
i CM

kj
j � Qi CQj C J . Hence Qi CQj C J D R and

thereforeQi CQj D R. So R � R=Q1 	 � � � 	 R=Qn by the Chinese Remainder
Theorem. Moreover,R=Qi is local with unique maximal idealMi=Qi . For ifQi �
Mj for j 6D i , R D Qi CQj � Mj , a contradiction. So with a change of notation
with R D R1 	 � � � 	 Rn where .Ri ;Mi/ is local and R is J -quasi-complete, it
suffices to show that Ri is quasi-complete. Let A1 � A2 � � � � be a descending
sequence of ideals of Ri and put NAi D R1 	 � � � 	Ri�1 	Ai 	RiC1 	 � � � 	Rn. So
for k � 1, there exists nk with NAnk � .

T1
iD1 NAi/C J k and hence as in the proof of

((), Ank � .
T1
iD1 Ai /CMk. So Ri is quasi-complete. ut

The proof of Theorem 6 can easily be modified to obtain the first part of the
following result. The second part of Theorem 7 is well known.

Theorem 7. Let R1; : : : ; Rn be semilocal rings. Then R1 	 � � � 	 Rn is (weakly)
quasi-complete if and only if each Ri is (weakly) quasi-complete. Moreover, R1 	
� � � 	 Rn is complete if and only if each Ri is complete.

Theorem 7 can be used to give examples of quasi-complete semilocal rings that
are not complete.

Example 3. Let k be a field and n � 1. ThenRn D kŒŒX1; : : : ; Xn��	 kŒX�.X/ is an
n-dimensional regular semilocal ring that is quasi-complete but not complete.

Theorem 6 essentially reduces the study of J -quasi-complete rings to the local
case. Note that if .R;M1; : : : ;Mn/ is J -quasi-complete, then L.R/ D L.RM1/ 	
� � �	L.RMn/ D L.bRM1/	� � �	L.bRMn/ D L. OR/. We leave it to the reader to extend
Theorem 5 to the semilocal case. Here “Q is M -primary” is replaced by “R=Q is
Artinian.” In fact, several of these characterizations already appear in this form in
the literature: (1),(13),(14) [2] and (1),(6),(7),(8),(9),(11) [12]. What
is not entirely obvious in the semilocal case is that if ORb D ORI for some ideal I
of R, then we can take I to be principal and then b D ua for some u 2 U. OR/ and
a 2 R. We next prove this for a finitely generated module over a semilocal ring.

Proposition 1. Let R be a semilocal ring and M a finitely generated R-module.
Let m 2 OM . Suppose that ORm D ORN for some submodule N of M . Then N is
cyclic and hence ORm D ORn for some n 2 N . For any n 2 N with ORm D ORn,
we have m D un for some u 2 U. OR/. Hence if M is J -quasi-complete, for each
Om 2 OM , there exists u 2 U. OR/ andm 2 M with Om D um.

Proof. It suffices to show that N is cyclic. For if R is any semiquasilocal ring and
M any R-module, with m1;m2 2 M , Rm1 D Rm2 implies m2 D um1 for some
u 2 U.R/ [3, Corollary 13]. To show that N is cyclic, it suffices to show that
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N is a multiplication module (i.e., for each submodule K � N; K D .K:N/N )
since a multiplication module over a semiquasilocal ring is cyclic [4]. So suppose
that K is a submodule of N . Now ORN D ORm gives that ORN is cyclic and
hence a multiplication module over OR. So OK � ORN gives OK D . OK: ORN/ ORN ,
so OK D . OK: ORN/ ORN D 2.K:N/ ORN D OR .K:N/N . But then K D OK \ M D
OR ..K:N/N/ \M D .K:N/N . ut

We next give several characterizations of J -quasi-complete modules.

Theorem 8. For a finitely generated module M over a semilocal ring R, the
following conditions are equivalent:

1. M is J -quasi-complete.
2. For each decreasing sequence fNng1

nD1 of R-submodules ofM with eachM=Nn
Artinian and for each k � 1, there exists an sk � 1 with Nsk � .

T1
nD1 Nn/ C

J kM .
3. Let N1 ¨ N2 be OR-submodules of OM . Then N1 \M ¨ N2 \M .
4. For each OR submoduleN of OM , N D ORN 0for some R-submoduleN 0 of M .
5. The map ':LR.M/ ! L OR. OM/ given by '.N / D ORN is a lattice module

isomorphism, i.e., ' is a lattice isomorphism and ' .IN / D I' .N /.
6. For Om 2 OM , there exist u 2 U. OR/ and m 2 M with Om D um.

Proof. The equivalence of (1)–(3) follows from the proof of Theorem 4, mutatis
mutandis. Clearly (6))(4) and (4))(6) follows from Proposition 1. Also, clearly
(5))(4) and (4))(5) since ' is always injective. So (4)–(6) are equivalent. Clearly
(5))(3) and (3))(4) follows as in (1))(2) of Corollary 2. ut

We can abstract condition (6) of Theorem 8. Let f :R ! S be a ring homomor-
phism,M an R-module and QM D S ˝R M . We say that QM is S -unit M -generated
if for Qm 2 NM , there exists u 2 U.S/ and m 2 M with Qm D um. So for R semilocal
andM a finitely generatedR-module with S D OR, QM D OM is OR-unitM -generated
if and only if M is quasi-complete. Two cases where each module QM is S -unit
M -generated are (1) S D RN , N a multiplicatively closed set ( QM D RN ˝R M D
MN , Qm D m=n D .1=n/m,m 2 M , n 2 N ) and S D R=I with f the natural map
( QM D R=I ˝R M D M=IM , Qm D mC IM D .1C I /m). However, for the ring
extension R ! R ŒX� and nonzero R-moduleM , QM D R ŒX�˝R M D M ŒX� is
never R ŒX�-unit M -generated.

There is also a ring abstraction. Let f :A ! B be a ring homomorphism. We
call f a U -homomorphism (or a U -extension if f is the inclusion map) if for each
b 2 B , there exists an a 2 A and u 2 U.B/ with b D f .a/u, or equivalently,
for each b 2 B , there exists a u 2 U.B/ with ub 2 f .A/. Examples include (a)
R � OR where R is quasi-complete, (b) the natural map R ! RS where S is a
multiplicatively closed subset of R, and (c) any surjection. Consider the following
conditions on a ring extension A � B: (1) A � B is a U -extension, (2) for each
principal ideal Bb of B , Bb D BI for some principal ideal I of A, (3) for each
principal ideal Bb of B , Bb D BI for some ideal I of A, i.e., the map ':L.A/ !
L.B/ given by ' .I / D BI is a surjection, and (4) the map ':L.A/ ! L.B/
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given by ' .I / D BI is a bijection and hence a multiplicative lattice isomorphism.
Clearly (1))(2))(3) and (4))(3). Note that taking A D Z and B D Z.2/ shows
that (1) 6)(4) and hence (2) 6)(4) and (3) 6)(4). Also (4) 6)(2) and hence (3) 6)(2).
Let D be Dedekind domain that is not a PID. Then the map ':L.D/ ! L.D .X//

given by ' .I / D D .X/ I is a lattice isomorphism [1, Theorem 8]. Suppose that
I D .a; b/ is a nonprincipal ideal of D and let f D a C bX . So D .X/ I D
D .X/f , but D .X/ f 6D D .X/ c for any c 2 D. Now (2))(1) is true if B is
a strongly associate ring [3]. For if Bb D Ba for a 2 A, then b D ua for some
u 2 U .B/.

Over a complete semilocal ringR all finitely generatedR-modules are complete.
We next show that a finitely generated module over a quasi-complete local ring
(even a DVR) need not be quasi-complete. Also, given a finitely generated module
M over a semilocal ring R and a submodule N of M , M is complete if and only if
N and M=N are complete. We show that only the ()) implication carries over for
quasi-complete modules.

Proposition 2. Let R be a semilocal ring,M a finitely generatedR-module andN
a submodule of M .

1. If M is quasi-complete, then N andM=N are also quasi-complete.
2. R˚M is quasi-complete if and only if R is quasi-complete and M is complete

(as an R-module). Hence R ˚ R is quasi-complete if and only if R is complete.
Thus the converse of (1) is false.

3. If N is a complete R-module and M=N is quasi-complete, then M is quasi-
complete.

Proof. (1) Let On 2 ON ; so M quasi-complete gives On D um for some unit u 2 OR
and m 2 M . But then u�1 On D m 2 M \ ON D N . So N is quasi-complete.
Next let x 2 1M=N D OM= ON ; so x D OmC ON where Om 2 OM . So Om D umwhere
u 2 OR is a unit and m 2 M . So x D um C ON D u.m C ON/ D u .mCN/

where mCN 2 M=N . So M=N is also quasi-complete.
(2) (() This follows from (3). ()) Since R˚M is quasi-complete, its homomor-

phic image R is quasi-complete. Let Om 2 OM . Then for .1; Om/ 2 OR ˚ OM D
2R˚M , .1; Om/ D u .r;m/ where u 2 U. OR/; r 2 R, and m 2 M . Now 1 D ur
implies r 2 U. OR/\R D U.R/. So u D r�1 2 U.R/ � R. Thus Om D um 2 M .
So OM D M .

(3) Let Om 2 OM . So Om C ON D u .mCN/ where u 2 U. OR/ and m 2 M since
M=N is quasi-complete and 1M=N D OM= ON . So Om � um 2 ON . Hence n:D
u�1 . Om � um/ 2 ON D N . So Om D um C un D u .mC n/. Thus M is quasi-
complete. ut

Example 4. Let D be a semilocal PID and M a finitely generated D-module. So
M D Dn ˚ T where n � 0 and T is torsion. (1) Suppose that D has exactly
one maximal ideal, i.e., D is a DVR. If D is complete, then M is complete and
hence quasi-complete. Suppose that D is not complete. Now T is complete, so
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M D Dn ˚ T is quasi-complete for n D 0; 1 by Proposition 2 (since D is quasi-
complete). If n � 2, then Dn ˚ T D D ˚ �

Dn�1 ˚ T
�

is not quasi-complete since
Dn�1 ˚ T is not complete (Proposition 2). (2) Suppose that D has more than one
maximal ideal. So D is not quasi-complete by Theorem 8. But M quasi-complete
and n � 1 gives that D is quasi-complete. Thus n D 0; i.e., M D T is torsion.
Hence M is complete and thus quasi-complete.

The next theorem allows us to construct quasi-complete local rings having many
nilpotent elements.

Theorem 9. Let .R;M / be a one-dimensional analytically irreducible local
domain and letM be a finitely generatedR-module. Then the idealizationR .C/M
is quasi-complete if and only if M is quasi-complete.

Proof. ()) Let Om 2 OM , so .0; Om/ 2 OR.C/ OM D 3R.C/M and hence .0; Om/ D
.Ou; a/.r;m/ where Ou 2 U. OR/, a 2 OM , r 2 R, and m 2 M . Now 0 D Our ) r D 0

so Om D Oum. Hence M is quasi-complete. (() Let .Or; Om/ 2 OR.C/ OM D 3R.C/M .
Case Or D 0. Now M quasi-complete ) Om D um for some u 2 U. OR/ and m 2
M . So .0; Om/ D .u; 0/.0;m/. Case Or 6D 0. First suppose that Or is a unit. Then
.Or; Om/ 2 U.3R.C/M/ and .Or; Om/ D .Or; Om/.1; 0/. So suppose Or is not a unit. Now
Or D Our where Ou 2 U. OR/ and r 2 R where necessarily r 2 M � f0g. Choose n with
M n � Rr . Choose b 2 M with Ou�1 Om � b 2 M n OM � r OM , say Ou�1 Om � b D r Oa.
So Om D r Ou OaC Oub. Then .Or; Om/ D .Ou; Oua/.r; b/. ut

Note that the implication .)/ of Theorem 9 does not use the hypothesis
that R is a one-dimensional analytically irreducible local domain. However, the
implication .(/ uses the fact that R is quasi-complete and a one-dimensional
domain .M n � Rr/ and so R is analytically irreducible by Corollary 2. We end
with the following example.

Example 5. Let R be a one-dimensional analytically irreducible local domain.
Then R ŒX� =.X2/ � R.C/R is quasi-complete. However, R ŒX; Y � =.X; Y /2 �
R.C/.R ˚ R/ is quasi-complete if and only if R is complete in which case
RŒX; Y �=.X; Y /2 is actually complete since R˚R is quasi-complete if and only if
R is complete (Proposition 2).
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On the Total Graph of a Ring and Its Related
Graphs: A Survey

Ayman Badawi

Abstract Let R be a (commutative) ring with nonzero identity and Z.R/ be the
set of all zero divisors of R. The total graph of R is the simple undirected graph
T .� .R// with vertices all elements of R, and two distinct vertices x and y are
adjacent if and only if xCy 2 Z.R/. This type of graphs has been studied by many
authors. In this paper, we state many of the main results on the total graph of a ring
and its related graphs.

Keywords Total graph • Zero divisors • Diameter • Girth • Connected graph
Genus • Generalized total graph • Dominating set • Clique • Chromatic number

MSC(2010) classification: 13A15, 13B99, 05C99.

1 Introduction

Over the past several years, there has been considerable attention in the literature
to associating graphs with commutative rings (and other algebraic structures) and
studying the interplay between ring-theoretic and graph-theoretic properties; see the
recent survey articles [13, 32]. For example, as in [10], the zero-divisor graph of R
is the (simple) graph � .R/ with vertices Z.R/ n f0g, and distinct vertices x and y
are adjacent if and only if xy D 0; see the articles [6,11–12, 15–17, 19, 36]. The
total graph (as in [7]) has been investigated in [2–5, 25, 32, 33, 35, 37]; and several
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variants of the total graph have been studied in [1, 8, 9, 14, 16, 18, 21–24, 26, 27, 31].
The goal of this survey article is to enclose many of the main results on the total
graph of a commutative ring and its related graphs.

Let G be a (simple) graph. We say that G is connected if there is a path between
any two distinct vertices of G. At the other extreme, we say that G is totally
disconnected if no two vertices of G are adjacent. For vertices x and y of G,
we define d.x; y/ to be the length of a shortest path from x to y (d.x; x/ D 0

and d.x; y/ D 1 if there is no such path). The diameter of G is diam.G/ D
supfd.x; y/ j x and y are vertices of G g. The girth of G, denoted by gr.G/, is
the length of a shortest cycle in G (gr.G/ D 1 if G contains no cycles). The
eccentricity of a vertex x in G is the distance between x and the vertex which is at
the greatest distance from x; e.x/ D maxfd.x; y/jy is a vertex in GĄg. The radius
of the graph G, r.G/, is defined by r.G/ D minfe.x/jx is a vertex in Gg, and the
center of the graph is the set of all of its vertices whose eccentricity is minimal, i.e., it
is equal to the radius. So, the radius of the graph is equal to the smallest eccentricity
and diameter to the largest eccentricity of a vertex in this graph. It is well known
that for connected graphs of diameter d and radius r , one has r � d � 2r . Recall
that a clique in a graph is a set of pairwise adjacent vertices. The clique number of a
graphG, denoted by !.G/, is the order of a largest clique in G. Also, 	.G/ denotes
the chromatic number of G and is the minimum number of colors which is needed
for a proper coloring of G, i.e., a coloring of the vertices of G such that adjacent
vertices have distinct colors. We denote the complete graph on n vertices byKn and
the complete bipartite graph on m and n vertices by Km;n (we allow m and n to
be infinite cardinals). We will sometimes call a K1;n a star graph. We say that two
(induced) subgraphs G1 and G2 of G are disjoint if G1 and G2 have no common
vertices and no vertex of G1 (resp., G2) is adjacent (in G) to any vertex not in G1
(resp., G2). By abuse of notation, we will sometimes write G1 � G2 when G1 is a
subgraph of G2. A general reference for graph theory is [20].

Throughout this paper, all rings R are with 1 6D 0. Let R be a commutative
ring with nonzero identity. Then Z.R/ denotes its set of zero divisors, Nil.R/
denotes its ideal of nilpotent elements, Reg.R/ denotes its set of nonzero divisors
(i.e., Reg.R/ D R n Z.R/), and U.R/ denotes its group of units. For A � R,
let A� D A n f0g. We say that R is reduced if Nil.R/ D f0g, and dim.R/
will always mean Krull dimension. As usual, Z, Q, Zn; and Fq will denote the
integers, rational numbers, integers modulo n, and the finite field with q elements,
respectively. General references for ring theory are [29, 30].

2 The Total Graph of a Ring

In [7], Anderson and I defined the total graph of R to be the (undirected) graph
T .� .R// with all elements of R as vertices, and two distinct vertices x and y are
adjacent if and only if xCy 2 Z.R/. Let Reg.T ..� .R/// be the (induced) subgraph
of T .� .R// with vertices Reg.R/.
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Theorem 2.1 ([7, Theorem 2.2]). Let R be a commutative ring such that Z.R/ is
an ideal of R, and let jZ.R/j D ˛ and jR=Z.R/j D ˇ.

1. If 2 2 Z.R/, then Reg.T .� .R// is the union of ˇ � 1 disjointK˛0s.
2. If 2 62 Z.R/, then Reg.T .� .R// is the union of .ˇ � 1/=2 disjoint K˛;˛0s.

Theorem 2.2 ([7, Theorem 2.4]). Let R be a commutative ring such that Z.R/ is
an ideal of R. Then

1. Reg.T .� .R// is complete if and only if either R=Z.R/ Š Z2 or R Š Z3.
2. Reg.T .� .R// is connected if and only if eitherR=Z.R/ Š Z2 orR=Z.R/ŠZ3.
3. Reg.T .� .R// is totally disconnected if and only if R is an integral domain with

char.R/ D 2.

Theorem 2.3 ([7, Theorem 2.9]). Let R be a commutative ring such that Z.R/ is
an ideal of R. Then the following statements are equivalent:

1. Reg.T .� .R// is connected.
2. Either x C y 2 Z.R/ or x � y 2 Z.R/ for all x; y 2 Reg.R/.
3. Either x C y 2 Z.R/ or x C 2y 2 Z.R/ for all x; y 2 Reg.R/. In particular,

either 2x 2 Z.R/ or 3x 2 Z.R/ .but not both/ for all x 2 Reg.R/.
4. Either R=Z.R/ Š Z2 or R=Z.R/ Š Z3.

Theorem 2.4 ([7, Theorems 3.3, 3.4]). Let R be a commutative ring such that
Z.R/ is not an ideal ofR. Then T .� .R// is connected if and only if 1 D z1C� � �Czn
for some z1; : : : ; zn 2 Z.R/. Furthermore, suppose that T .� .R// is connected and
let n be the least integer 1 D z1 C � � � C zn for some z1; : : : ; zn 2 Z.R/. Then
diam.T .� .R/// D n. In particular, if R is a finite commutative ring and Z.R/ is
not an ideal of R, then diam.T .� .R/// D 2.

In the following example, for each integer n � 2, we construct a commutative
ring Rn such that Z.Rn/ is not an ideal of Rn and T .� .Rn// is connected with
diam.T .� .R/// D n.

Example 2.5. Let n � 2 be an integer, D D ZŒX1;X2; : : : ; Xn�1�, K be the
quotient field of D, P0 D .X1 C X2 C Ą � � � C Xn�1/, Pi D .Xi / for each integer
i with 1 � i � n � 2, and Pn�1 D .Xn�1 C 1/. Then P0; P1; : : : ; Pn�1 are distinct
prime ideals ofD. Let F D P0[P1Ą[� � �[Pn�1; then S D D F is a multiplicative
subset of D. Set Rn D D.C/.K=DS/. Then Z.Rn/ D F.C/.K=DS//. Since
.1; 0/ D .�X1 � X2 � � � � � Xn�1; 0/ C .X1; 0/ C .X2; 0/ C .X3; 0/ C Ą � � � C
.Xn�1 C 1; 0/ is the sum of n zero divisors of Rn, by construction we conclude that
n is the least integer m � 2 such that 1 is the sum of m zero divisors of Rn. Hence
T .� .Rn/ is connected with diam.T .� .Rn/// D n by Theorems 2.4 above.

Theorem 2.6 ([7, Theorem 3.1]). If Reg.� .R// is connected, then T .� .R// is
connected.

The converse of Theorem 2.6 is not true. We have the following example.
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Example 2.7. Let R D QŒX�.C/.Q.X/=QŒX�/. Then one can easily show that
Z.R/ D .QŒX� Q�/.C/.Q.X/=QŒX�/ is not an ideal of R and Reg.R/ D U.R/ D
Q

�.C/.Q.X/=QŒX�/. Thus T .� .R// is connected with diam.T .� .R// D 2 (by
Theorems 2.4) since .1; 0/ D .X; 0/.C/.X C 1; 0/ with .X; 0/; .X C 1; 0/ 2 Z.R/.
However, Reg.� .R// is not connected since there is no path from .1; 0/ to .2; 0/ in
Reg.� .R//.

Theorem 2.8. 1. [7, Corollary 3.5] If T .� .R// is connected, then diam
.T .� .R// D d.0; 1/.

2. [7, Corollary 3.5] If T .� .R// is connected and diam.T .� .R// D n, then
diam.Reg.� .R/// � n � 2.

3. [4, Corollary 1] If R is a commutative Noetherian ring and T .� .R// is
connected with diameter n, then n � 2 � diam.Reg.� .R/// � n.

Theorem 2.9 ([8, Theorem 4.4]). Let R be a commutative ring.

(1) If R is either an integral domain or isomorphic to Z4 or Z2ŒX�=.X
2/, then

gr.T .� .R/// D 1.
(2) If R is isomorphic to Z2 	 Z2, then gr.T .� .R/// D 4.
(3) Otherwise, gr.T .� .R/// D 3.

Theorem 2.10 ([35, Theorem 2.1]). LetR be a finite commutative ring with 1 such
that Z.R/ is not an ideal of R. Then r.T .� .R/// D 2.

Theorem 2.11 ([35, Theorem 2.2]). Let R be a commutative ring with 1 such that
Z.R/ is not an ideal ofR, and let n be the smallest integer such that 1 D z1C� � �Czn,
for some z1; : : : ; zn 2 ĄZ.R/. Then r.T .� .R/// D n.

Theorem 2.12 ([35, Theorem 3.2]). LetR be a ring such thatZ.R/ is not an ideal
of R. Then T .� .RŒx�// is connected if and only if T .� .R// is connected. Further-
more if diam.T .� .R///Dn, then diam.T .� .RŒx�///D r.T .� .RŒx�//D n.

Theorem 2.13 ([35, Theorem 3.4]). Let R be a reduced ring such that Z.R/
is not an ideal of R. Then T .� .RŒŒx��// is connected if and only if T .� .R//
is connected. Furthermore if diam.T .� .R/// D n, then diam.T .� .RŒŒx��/// D
r.T .� .RŒŒx��// D n.

Let G be a simple undirected graph. Recall that a Hamiltonian path of G is a
path in G that visits each vertex of G exactly once. A Hamilton cycle (circuit) of G
is a Hamilton path that is a cycle. A graph G is called a Hamilton graph if it has a
Hamilton cycle.

Theorem 2.14 ([4, Theorem 3]). Let R be a finite commutative ring such that
Z.R/ is not an ideal. Then the following statements hold:

1. T .� .R// is a Hamiltonian graph.
2. Reg.� .R// is a Hamiltonian graph if and only if R is isomorphic to none of the

rings: ZnC1
2 ;Zn2 	 Z3;Z

n
2 	 Z4;Z

n
2 	 Z2ŒX�=.X

2/, where n is a natural number.
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Theorem 2.15 ([25, Theorem 5.2]). If R is a commutative ring and diam
.T .� .R/// D 2, then T .� .R// is Hamilton graph.

Theorem 2.16 ([25, Corollary 5.3]). If R is an Artinian ring, then T .� .R// is
Hamilton graph.

Recall that a simple undirected graph is called a planar graph if it can be drawn
on the plane in such way that no edges cross each other. Recall that a commutative
ring R is called a local .quasilocal/ ring if it has exactly one maximal ideal.

Theorem 2.17 ([33, Theorem 1.5]). Let R be a finite commutative ring such that
T .� .R// is planar. Then the following statements hold:

1. If R is a local ring, then R is a field or R is isomorphic to one of the following
rings:
Z4;Z2ŒX�=.X

2/;Z2ŒX�=.X
3/;Z2ŒX; Y �=.X; Y /

2;Z4ŒX�=.2X;X
2/

Z4ŒX�=.2X;X
2 � 2/;Z8;F4ŒX�.X2/;Z4ŒX�=.X

2 C X C 1/, where F4 is a field
with exactly four elements.

2. If R is not a local ring, then R isomorphic to either Z2 	 Z2 or Z6.

A simple undirected nonplanar graphG is called toroidal if the vertices ofG can
be placed on a torus such that no edges cross.

Theorem 2.18 ([33, Theorem 1.6]). Let R be a finite commutative ring such that
T .� .R// is toroidal. Then the following statements hold:

1. If R is a local ring, then R is isomorphic to either Z9 or Z3=.x2/.
2. If R is not a local ring, then R is isomorphic to one of the following rings: Z2 	

F4;Z3 	 Z3;Z2 	 Z4;Z2 	 Z2ŒX�=.X
2/;Z2 	 Z2 	 Z2, where F4 is a field with

exactly four elements.

Let Sk denote the sphere with k handles, where k is a nonnegative integer, that
is, k is an oriented surface with k handles. The genus of a graph G, denoted G.G/,
is the minimal integer n such that the graph can be embedded in Sn. Intuitively, G
is embedded in a surface if it can be drawn in the surface so that its edges intersect
only at their common vertices. Note that a graph G is a planar iff g.G/ D 0 and G
is toroidal iff g.G/ D 1. Note that if x is a real number, then dxe is the least integer
that is greater than or equal to x.

Theorem 2.19 ([24, Theorem 3.2]). Let R be a finite commutative ring with
identity, I be an ideal contained in Z.R/, jI j D n and jR=I j D m. Then the
following statements are true:

1. If 2 2 I , then g.T .� .R/// � md .n�3/.n�4/
12

e.

2. If 2 62 I , then g.T .� .R/// � d .n�3/.n�4/
12

e C .m�1
2
/d .n�2/2

4
e.

Theorem 2.20 ([24, Corollary 3.4]). Let R be a finite commutative ring with
identity such thatZ.R/ is an ideal of R, jZ.R/j D n and jR=Z.R/j D m. Then the
following statements hold:
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1. If 2 2 Z.R/, then g.T .� .R/// D md .n�3/.n�4/
12

e.

2. If 2 62 I , then g.T .� .R/// D d .n�3/.n�4/
12

e C .m�1
2
/d .n�2/2

4
e.

Theorem 2.21 ([24, Theorem 4.3]). Let R be a finite commutative ring. Then
g.T .� .R/// D 2 if and only if R is isomorphic to either Z10 or Z3 	 F4, where
F4 is a field with four elements.

Let v be a vertex of a simple undirected graphG. Then the degree of v is denoted
by deg.v/. We say deg.v/ D k if there are exactly k (distinct) vertices in G where
each vertex is connected to v by an edge. Let G be a simple undirected graph. We
say that G is Eulerian if it is connected and its vertex degrees are all even.

Theorem 2.22. 1. [37, Theorem 3.3] Let R be a finite commutative ring. Then
T .� .R// is Eulerian if and only if R is isomorphic to a direct sum of two or
more finite fields of even orders, i.e., R Š Lk

iD1 F2ti for some k � 2.
2. [25, Lemma 5.1] Suppose that Z.R/ is not an ideal of R. Then T .� .R/ is

Eulerian if and only if 2 2 Z.R/ and jZ.R/j is an odd integer.

Let G be a simple undirected graph with V as its set of vertices. A subset S of
V is called a dominating set of G if for every a 2 V n S , there is a b 2 S such that
a� b is an edge of the graphG. The domination number 
.G/ is the minimum size
of a dominating set of G.

Theorem 2.23 ([37, Theorem 4.1]). Let R be a finite commutative ring and n D
minfjR=M j j M is a maximal ideal of Rg. Then 
.T .� .R/// D n, except when R
is a (finite) field of an odd order, where 
.T .� .R/// D n�1

2
C 1.

Let H D fd j d is a dominating set of T .� .R//g. The intersection graph of
dominating sets denoted by IT .R/ is a simple undirected graph with vertex set H
and two distinct vertices a and b in H are adjacent if an only if a \ b D ; (see
[26, 27]).

Theorem 2.24 ([26, Theorem 3.1]). Let R be a commutative Artinian ring with
jRj � 4 and let I be an annihilator ideal of R such that jR=I j is finite. Then

1. IT .R/ is connected and diam.IT .R// � 2.
2. gr.IT .R/// 2 f3; 4g. In particular, gr.IT .R// D 4 if and only if either R Š Z4

or R Š Z2ŒX�=.X
2/.

Theorem 2.25 ([26, Theorem 3.2]). Let R be a commutative Artinian ring with
jRj � 4 and let I be an annihilator ideal of R such that jR=I j is finite. Then

1. IT .R/ is a regular graph .i.e., all vertices in IT .R/ have the same degree/.
2. IT .R/ is a complete graph if and only if R is an integral domain.
3. IT .R/ is a bipartite graph if and only if either R Š Z4 or R Š Z2ŒX�=.X

2/.
4. IT .R/ is a cycle if and only if either R Š Z4 or R Š Z2ŒX�=.X

2/.

Theorem 2.26 ([26, Theorem 5.4]). Let R be a finite commutative ring. Then

1. IT .R/ is planar if and only if R is isomorphic to either Z3 or Z4 or Z5 or
Z2Œx�=.X

2/ or Z2 	Z2 or F2n .a field with 2n elements/ for some positive integer
n � 1/.
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2. IT .R// is toroidal if and only if R Š Z6.
3. g.IT .R// D 2 if and only if R Š Z7.

Theorem 2.27 ([26, Theorem 5.5]). If R is a finite commutative ring, then
g.IT .R// � g.T .� .R///.

Theorem 2.28 ([27, Theorem 2.1]). Let R be a commutative Artinian ring with
jRj � 4 and assume that I is the unique annihilator ideal of R such that jR=I j is
minimum. Then IT .R/ is Eulerian if and only if R is not a field.

Theorem 2.29 ([27, Theorem 2.2]). Let R be a commutative Artinian ring with
jRj � 4 and assume that I is an annihilator ideal of R such that jR=I j is minimum.
Then IT .R/ is a Hamilton graph.

We recall that a graphG with number of vertices equalsm � 3 is called pancyclic
if G contains cycles of all lengths from 3 to m. Also G is called vertex-pancyclic if
each vertex v of G belongs to every cycle of length l for 3 � l � m.

Theorem 2.30. Let R be a commutative Artinian ring with jRj � 4 and assume
that I is an annihilator ideal of R such that jR=I j is minimum. Then

1. [27, Theorem 2.3] IT .R/ is pancyclic if and only if either R Š Z4 or R Š
Z2ŒX�=.X

2/.
2. [27, Corollary 2.1] IT .R/ is vertex-pancyclic if and only if neither R Š Z4 nor
R Š Z2ŒX�=.X

2/ .i.e., IT .R/ is not pancyclic/.

We recall that a perfect graph is a graph in which the chromatic number of every
induced subgraph equals the size of the largest clique of that subgraph.

Theorem 2.31. Let R be a finite commutative ring. Then:

1. [27, Theorem 4.1] 	.IT .R/ D !.IT .R//.
2. [27, Theorem 4.2] IT .R/ is perfect if and only if either R is an integral domain

or R has a unique annihilator ideal I with jR=I j D 2 or R Š Z2 	 Z2.

Let CT .� .R// denotes the complement of the total graph of a commutative ring
R, i.e., CT .� .R// is a simple undirected graph with R as its vertex set, and two
distinct vertices x; y in CT .� .R// are adjacent if x C y 2 Reg.R/.

Recall that a path graph is a particularly simple example of a tree, namely a tree
with two or more vertices that is not branched at all, that is, contains only vertices of
degree 2 and 1. In particular, it has two terminal vertices (vertices that have degree
1), while all others (if any) have degree 2.

Theorem 2.32 ([25, Theorem 2.16]). Let R be a commutative ring. Then the
following statements are true:

1. CT .� .R// is a path if and only if R Š Z2.
2. CT .� .R// is complete if and only if R is an integral domain and char.R/ D 2.
3. CT .� .R/// is a star if and only if either R Š Z2 or RZ3.
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4. CT .� .R// is a cycle if and only if either R Š Z4 or R Š Z2ŒX�=.X
2/ or

R Š Z6.
5. CT .� .R// is a complete bipartite graph if and only if either R is a local ring
Œwith maximal ideal Z.R/� such that R=Z.R/ Š Z2 or R Š Z3.

Theorem 2.33. Let R be a finite commutative ring. Then

1. [25, Corollary 4.5] gr.CT .� .R// D 3; 4; 6;1.
2. [25, Lemma 5.1] SupposeZ.R/ is not an ideal of R. Then CT .� .R/ is Eulerian

if and only if 2 2 Z.R/ and jReg.R/j is an even integer.

Let C.R/ represent a simple undirected graph with vertex set R and for distinct
x; y 2 R, the vertices x and y are adjacent if and only if x�y 2 Z.R/. It is natural
for one to ask when is T .� .R// isomorphic to C.R/? We have the following result.

Theorem 2.34 ([37, Theorem 5.2]). Let R be a finite commutative ring. Then the
two graphs T .� .R// and C.R/ are isomorphic if and only if at least one of the
following conditions is true:

1. R Š R1 ˚ � � � ˚Rk; k � 1, and each Ri is a local ring of an even order.
2. R Š R1 ˚ � � � ˚ Rk; k � 2, and each Ri is a local ring such that minfjRi=Mi j

where Mi is the maximal ideal of Ri g D 2.

Let R be a noncommutative ring. Then one can define T .� .R// and
Reg.� .R// in the same way as for the commutative case. Let R be a ring. Then
Mn.R/;GLn.R/, and Tn.R/ denote the set of n 	 n matrices over R, the set of
n	 n invertible matrices overR, and the set of n	 n upper triangular matrices over
R, respectively.

Theorem 2.35 ([35, Theorem 3.7]). Let R be a commutative ring. The total graph
T .� .Mn.R/// is connected and diam.T .� .Mn.R/// D 2.

Theorem 2.36 ([3, Theorem 1]). Let F be a field with char.F / 6D 2 and
n be a positive integer. Then !.Reg.� .Mn.F //// < 1, and moreover

!.Reg.� .Mn.F //// � Pn
kD0

.nŠ/2

kŠŒ.n�k/Š�2 .

Theorem 2.37 ([3, Theorem 2]). For every field F with char.F / 6D 2,
!.Reg.� .M2.F //// D 5.

Theorem 2.38 ([3, Theorem 3]). For every division ring D; char.D/ 6D 2,
diag.˙1; : : : ;˙1g : : : ;˙1/ .the set of all diagonal matrices with diagonal entries
in the set f�1; 1g forms a maximal clique for Reg.� .Mn.D////.

Theorem 2.39 ([5, Theorem 1]). If F is a field, char.F / 6D 2 and n is a positive
integer, then 	.Reg.� .Tn.F //// D !.Reg.� .Tn.F //// D 2n.

Theorem 2.40 ([2, Theorem 1, Theorem 3]). Let R be a ring .not necessarily
commutative/. Then gr.Reg.� .R///; gr.T .� .R/// 2 f3; 4;1g.
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Recall that a tree is an undirected graph in which any two vertices are connected
by exactly one simple path. In other words, any connected graph without simple
cycles is a tree. A forest is a disjoint union of trees.

Theorem 2.41 ([2, Theorem 2]). Let R be a left Artinian ring and Reg.� .R// be
a tree. Then R is isomorphic to one of the following rings: Z3;Z4;Z2ŒX�=.X2/;Zr2;

Z3	Z
r
2;Z4 	Z

r
2;Z2ŒX�=.X

2/	Z
r
2; T2.Z2/; T2.Z2/	Z

r
2, where T2.Z2/ denotes the

ring of 2 	 2 upper triangular matrices over Z2 and r is a natural number.

Theorem 2.42 ([2, Theorem 5]). Let R be a finite ring .not necessarily
commutative/. Then Reg.� .R// is regular .i.e., all vertices have the same degree/.

Theorem 2.43. Let R be ring .not necessarily commutative/. Then

1. [2, Theorem 7] If R is a left Artinian ring and Reg.� .R// contains a vertex
adjacent to all other vertices, then Reg.� .R// is complete.

2. [2, Theorem 8] If 2 62 Z.R/ and Reg.� .R// is a complete graph, then J.R/ D 0

.where J.R/ is the Jacobson radical of R/.
3. [2, Theorem 9] If R is a left Artinian ring and 2 62 Z.R/, then Reg.� .R// is a

complete graph, if and only if R Š Z
r
3, for some natural number r .

4. [2, Corollary 4] If R is a reduced left Noetherian ring and 2 62 Z.R/ such that
Reg.� .R// is a complete graph, then R Š Z

r
3, for some natural number r .

3 The Total Graph of a Commutative Ring
Without the Zero Element

In this section, we consider the (induced) subgraph T0.� .R// of T .� .R// obtained
by deleting 0 as a vertex. Specifically, T0.� .R//) has vertices R� D R n f0g), and
two distinct vertices x and y are adjacent if and only if x C y 2 Z.R/.

Let dT .x; y/ (resp., dT0.x; y/) denote the distance from x to y in T .� .R// (resp.,
T0.� .R//).

Theorem 3.1 ([8, Theorem 4.3]). Let R be a commutative ring. Then
diam.T0.� .R///D diam.T .� .R///.

Theorem 3.2 ([8, Theorem 4.5]). Let R be a commutative ring.

(1) If R is either an integral domain or isomorphic to Z4, Z2ŒX�=.X2/, or Z2 	 Z2,
then gr.T0.� .R/// D 1.

(2) If R is isomorphic to Z9 or Z3ŒX�=.X2/, then gr.T0.� .R/// D 4.
(3) Otherwise, gr.T0.� .R/// D 3.

Let x; y 2 R� be distinct. We say that x � a1 � � � � � an � y is a zero-divisor
path from x to y if a1; : : : ; an 2 Z.R/� and ai C aiC1 2 Z.R/ for every 0 � i � n

(let x D a0 and y D anC1). We define dZ.x; y/ to be the length of a shortest
zero-divisor path from x to y (dZ.x; x/ D 0 and dZ.x; y/ D 1 if there is no such
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path) and diamZ.R/ D supf dZ.x; y/ j x; y 2 R� g. In particular, if x; y 2 R�
are distinct and x C y 2 Z.R/, then x � y is a zero-divisor path from x to y with
d.x; y/ D 1.

Let Min.R/ denote the set of all minimal prime ideals of a commutative ring R.
Recall that U.R/ denotes the set of all units of a commutative ring R.

Theorem 3.3 ([8, Theorem 5.1]). Let R be a commutative ring that is not an
integral domain. Then there is a zero-divisor path from x to y for every x; y 2 R�
if and only if one of the following two statements holds.

(1) R is reduced, jMin.R/j � 3, and R D .z1; z2/ for some z1; z2 2 Z.R/�.
(2) R is not reduced and R D .z1; z2/ for some z1; z2 2 Z.R/�.

Moreover, if there is a zero-divisor path from x to y for every x; y 2 R�, then
diamZ.R/ 2 f2; 3g and R is not quasilocal.

Theorem 3.4 ([8, Theorem 5.2]). Let R be a commutative ring. Then diamZ.R/ 2
f0; 1; 2; 3;1g.

Theorem 3.5 ([8, Theorem 5.3]). Let R D R1 	 R2 for commutative local
.quasilocal/ ringsR1,R2 with maximal idealsM1;M2, respectively, and Nil.R2/ 6D
f0g. If there are a1 2 U.R1/ and a2 2 U.R2/ such that .2a1; 2a2/ 2 U.R/ and
.a1; a2/C .2a1; 2a2/ … Z.R/, then diamZ.R/ D 3.

Let x; y 2 R� be distinct. We say that x � a1 � � � � � an � y is a regular path
from x to y if a1; : : : ; an 2 Reg.R/ and ai C aiC1 2 Z.R/ for every 0 � i � n (let
x D a0 and y D anC1). We define dreg.x; y/ to be the length of a shortest regular
path from x to y (dreg.x; x/ D 0 and dreg.x; y/ D 1 if there is no such path), and
diamreg.R/ D supf dreg.x; y/ j x; y 2 R� g. In particular, if x; y 2 R� are distinct
and xCy 2 Z.R/, then x�y is a regular path from x to y with dreg.x; y/ D 1. Note
that diamreg.Z2/ D 0, diamreg.Z3/ D 1, and diamreg.R/ D 1 for any other integral
domain R. We also have maxf diam.T .� .R///, diam.Reg.� .R/// g � diamreg.R/.

Theorem 3.6 ([8, Theorem 5.6]). Let R be a commutative ring with diam
.T0.� ..R/// D n < 1.

(1) Let u 2 U.R/, s 2 R�, and P be a shortest path from s to u of length n � 1 in
T0.� .R//. Then P is a regular path from s to u.

(2) Let u 2 U.R/, s 2 R�, and P W s � a1 � � � � � an D u be a shortest path from
s to u of length n in T0.� .R//. Then either P is a regular path from s to u, or
a1 2 Z.R/� and a1�� � ��an D u is a regular path of length n�1 D dT0.a1; u/.

Theorem 3.7 ([8, Theorem 5.7]). Let R be a commutative ring.

(1) If s 2 Reg.R/ and w 2 Nil.R/�, then there is no regular path from s to w. In
particular, if there is a regular path from x to y for every x; y 2 R�, then R is
reduced.

(2) If R is reduced and quasilocal, then there is no regular path from any unit to
any nonzero nonunit in R.

In particular, if there is a regular path from x to y for every x; y 2 R�, then R
is reduced and not quasilocal.
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Recall from [28] that a commutative ring R is a p.p. ring if every principal
ideal of R is projective. For example, a commutative von Neumann regular ring
is a p.p. ring, and Z 	 Z is a p.p. ring that is not von Neumann regular. It was
shown in [34, Proposition 15] that a commutative ring R is a p.p. ring if and only if
every element of R is the product of an idempotent element and a regular element
of R (thus a commutative p.p. ring that is not an integral domain has nontrivial
idempotents).

Theorem 3.8 ([8, Theorem 5.9, Corollary 5.10]). Let R be a commutative
p.p. ring that is not an integral domain. Then there is a regular path from x

to y for every x; y 2 R�. Moreover, diamreg.R/ D 2. In particular, if R be a
commutative von Neumann regular ring that is not a field, then there is a regular
path from x to y for every x; y 2 R� and diamreg.R/ D 2.

Theorem 3.9 ([8, Theorem 5. 14]). Let R be a commutative ring that is not an
integral domain. Then there is a regular path from x to y for every x; y 2 R� if and
only if R is reduced, Reg.� .R// is connected, and for each a 2 Z.R/� there is a
b 2 Z.R/� such that dz.a; b/ > 1 .it is possible that dz.a; b/ D 1/.

Theorem 3.10 ([8, Corollary 5.15]). Let R be a reduced commutative ring such
that j Min.R/ jD 2. Then there is a regular path from x to y for every x; y 2 R� if
and only if Reg.� .R// is connected.

4 Generalized Total Graph

A subset H of R becomes a multiplicative-prime subset of R if the following two
conditions hold: (i) ab 2 H for every a 2 H and b 2 R, and (ii) if ab 2 H

for a; b 2 R, then either a 2 H or b 2 H . For example, H is multiplicative-
prime subset of R if H is a prime ideal of R, H is a union of prime ideals of R,
H D Z.R/, or H D R n U.R/. In fact, it is easily seen that H is a multiplicative-
prime subset of R if and only if R nH is a saturated multiplicatively closed subset
of R. Thus H is a multiplicative-prime subset of R if and only if H is a union of
prime ideals of R [30, Theorem 2]. Note that if H is a multiplicative-prime subset
of R, then Nil.R/ � H � R n U.R/; and if H is also an ideal of R, then H is
necessarily a prime ideal ofR. In particular, if R D Z.R/[U.R/ (e.g.,R is finite),
then Nil.R/ � H � Z.R/.

LetH be a multiplicative-prime subset of a commutative ringR. the generalized
total graph of R, denoted byGTH.R/, as the (simple) graph with all elements of R
as vertices, and for distinct x; y 2 R, the vertices x and y are adjacent if and only if
x C y 2 H . For A � R, let GTH.A/ be the induced subgraph of GTH.R/ with all
elements of A as the vertices. For example,GTH.RnH/ is the induced subgraph of
GTH.R/ with vertices R nH . When H D Z.R/, we have that GTH.R/ is the so-
called total graph of R as introduced in [7] and denoted there by T .� .R//. As to be
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expected, GTH.R/ and T .� .R// share many properties. However, the concept of
generalized total graph, unlike the earlier concept of total graph, allows us to study
graphs of integral domains.

Theorem 4.1 ([9, Theorem 4.1]). Let H be a prime ideal of a commutative ring
R, and let jH j D ˛ and jR=H j D ˇ.

1. If 2 2 H , then GTH.R nH/ is the union of ˇ � 1 disjointK˛0s.
2. If 2 … H , then GTH.R nH/ is the union of .ˇ � 1/=2 disjoint K˛;˛’s.

Theorem 4.2 ([9, Theorem 4.2]). LetH be a prime ideal of a commutative ringR.

1. GTH.R nH/ is complete if and only if either R=H Š Z2 or R Š Z3.
2. GTH.R nH/ is connected if and only if either R=H Š Z2 or R=H Š Z3.
3. GTH.R nH/ .and hence GTH.H/ and GTH.R// is totally disconnected if and

only if H D f0g .thus R is an integral domain/ and char.R/ D 2.

The next theorem gives a more explicit description of the diameter and girth of
GTH.R nH/ when H is a prime ideal of R.

Theorem 4.3 ([9, Theorem 4.4]). LetH be a prime ideal of a commutative ringR.

1. a. diam.GTH.R nH// D 0 if and only if R Š Z2.
b. diam.GTH.R nH// D 1 if and only if either R=H Š Z2 and R 6Š Z2 .i.e.,
R=H Š Z2 and jH j � 2/, or R Š Z3.

c. diam.GTH.R n H// D 2 if and only if R=H Š Z3 and R 6Š Z3 .i.e.,
R=H Š Z3 and jH j � 2/.

d. Otherwise, diam.GTH.R nH// D 1.
2. a. gr.GTH.R nH// D 3 if and only if 2 2 H and jH j � 3.

b. gr.GTH.R nH// D 4 if and only if 2 … H and jH j � 2.
c. Otherwise, gr.GTH.R nH// D 1.

3. a. gr.GTH.R// D 3 if and only if jH j � 3.
b. gr.GTH.R// D 4 if and only if 2 … H and jH j D 2.
c. Otherwise, gr.GTH.R// D 1.

The following examples illustrate the previous theorem.

Example 4.4 ([9, Example 4.5]). (a) LetR D Z andH be a prime ideal ofR. Then
GTH.RnH/ is complete if and only ifH D 2Z, andGTH.RnH/ is connected
if and only if either H D 2Z or H D 3Z. Moreover, diam.GTH.R n H// D 1

if and only if H D 2Z, and diam.GTH.R n H//D 2 if and only if H D 3Z.
Let p � 5 be a prime integer and H D pZ. Then GTH.R nH/ is the union of
.p�1/=2 disjointK!;!’s; so diam.GTH.RnH// D 1. Finally, diam.GTH.Rn
H// D 1 when H D f0g.
Also, gr.GTH.R nH// D 1 if H D f0g, gr.GTH.R n H// D 3 if H D 2Z,
and gr.GTH.R n H// D 4 otherwise. Moreover, gr.GTf0g.R// D 1 and
gr.GTH.R// D 3 for any nonzero prime ideal H of R.

(b) Let R D Zpm 	R1 	 � � � 	Rn, wherem � 2 is an integer, p is a positive prime
integer, andR1; : : : ; Rn are commutative rings. ThenH D pZpm	R1	� � �	Rn
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is a prime ideal ofR. The graphGTH.R nH/ is complete if and only if p D 2,
and GTH.R n H/ is connected if and only if p D 2 or p D 3. Moreover,
diam.GTH.R nH// D 1 if and only if p D 2, and diam.GTH.R nH// D 2 if
and only if p D 3. Assume that p � 5. ThenGTH.R nH/ is the union of .p�
1/=2 disjoint K˛;˛’s, where ˛ D mjR1j � � � jRnj; so diam.GTH.R nH//D 1.

Also, gr.GTH.R n H// D 3 if p D 2 and gr.GTH.R n H// D 4 otherwise.
Moreover, gr.GTH.R// D 3 for any prime p.

Theorem 4.5 ([9, Theorem 4.7]). LetH be a prime ideal of a commutative ringR.
Then the following statements are equivalent.

1. GTH.R nH/ is connected.
2. Either x C y 2 H or x � y 2 H for every x; y 2 R nH .
3. Either x C y 2 H or x C 2y 2 H for every x; y 2 R nH . In particular, either
2x 2 H or 3x 2 H .but not both/ for every x 2 R nH .

4. Either R=H Š Z2 or R=H Š Z3.

Theorem 4.6 ([9, Theorem 5.1(3)]). Let R be a commutative ring and H a
multiplicative-prime subset of R that is not an ideal of R. If GTH.R n H/ is
connected, then GTH.R/ is connected.

Theorem 4.7 ([9, Theorem 5.2, Theorem 5.3]). Let R be a commutative ring and
H a multiplicative-prime subset of R that is not an ideal of R. Then GTH.R/ is
connected if and only if 1 D z1 C � � � C zn, for some z1; : : : ; zn 2 H . In particular, if
H is not an ideal of R and either dim.R/ D 0 .e.g., R is finite/ or R is an integral
domain with diam.R/ D 1, then GTH.R/ is connected. Furthermore, suppose that
GH.R/ is connected. Let n � 2 be the least integer such that 1 D z1 C � � � C zn
for some z1; : : : ; zn 2 H . Then diam.GTH.R// D n. In particular, if H is not an
ideal of R and either dim.R/ D 0 .e.g., R is finite/ or R is an integral domain with
dim.R/ D 1, then diam(GTH.R// D 2.

Theorem 4.8 ([9, Corollary 5.5]). Let R be a commutative ring and H a
multiplicative-prime subset of R that is not an ideal of R such that GTH.R/ is
connected.

1. diam.GTH.R// D d.0; 1/.
2. If diam.GTH.R// D n, then diam.GTH.R nH// � n � 2.

Theorem 4.9 ([9, Theorem 5.15)]). Let R be a commutative ring and H a
multiplicative-prime subset of R that is not an ideal of R.

1. Either gr.GTH.H// D 3 or gr.GTH.H// D 1. Moreover, if gr.GTH.H// D
1, then R Š Z2 	 Z2 and H D Z.R/; so GTH.H/ is a K1;2 star graph with
center 0.

2. gr.GTH.R// D 3 if and only if gr.GTH.H// D 3.
3. gr.GTH.R// D 4 if and only if gr.GTH.H// D 1 .if and only if R Š Z2 	Z2/.
4. If char.R/ D 2, then gr.GTH.R n H// D 3 or 1. In particular, gr.GTH.R n
H// D 3 if char.R/ D 2 and GTH.R nH/ contains a cycle.
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5. gr.GTH.R nH// D 3; 4, or 1. In particular, gr.GTH.R nH// � 4 if GTH.R n
H/ contains a cycle.

Let R be a commutative ring. Recall that a subset S of R is called a multiplica-
tively closed subset of R if S is closed under multiplication. A multiplicatively
closed subset S of R is called saturated if xy 2 S implies that x 2 S and y 2 S .

Let S be multiplicatively closed subset of a commutative ring R. The graph
�S.R/ is a simple undirected graph with all elements of R as vertices, and two
distinct vertices x and y of R are adjacent if and only if x C y 2 S .

Theorem 4.10 ([18, Corollary 1.6]). Suppose that S is an ideal of R with jS j D n

and jR=S j D m.

1. If 2 2 S , then �S.R/ is the union of m disjoint Kn’s.
2. If 2x … S for each x 2 R, then �S.R/ is the union ofKn with .m� 1/=2 disjoint
Kn;n’s.

Theorem 4.11 ([18, Proposition 2.1]). The graph �S.R/ is complete if and only if
S D R or .charR D 2 and S D R n f0g/.
Theorem 4.12 ([18, Proposition 2.1]). Let S be a saturated multiplicatively closed
subset of R with R S D [n

iD1Pi such that jR=Pi j D 2 for some i . Then �S.R/ is
a bipartite graph. Furthermore, �S.R/ is a complete bipartite graph if and only if
n D 1.

Theorem 4.13 ([18, Theorem 2.15]). Let R be finite commutative ring and S be a
saturated multiplicatively closed subset of R. Then gr.�S.R// 2 f3; 4; 6; Ą1g.

The following is an example of saturated multiplicatively closed sets, to show
that each of the numbers 3; 4; 6, and 1 given in the previous theorem can appear as
the girth of some graphs.

Example 4.14 ([18, Example 2.16]). Let R D Z6. Then gr.�Z.R/.R// D 3,
gr.�U.R/.R// D 6, and gr.�S.R// D 4, where S D f1; 3; 5g. For the saturated
multiplicatively closed subset S D f�1; 1g of Z, we have gr.�S.R// D 1.

Theorem 4.15 ([18, Theorem 2.17]). Let R be finite and S be a saturated
multiplicatively closed subset of R. Then gr.�S.R// D Ą1 if and only if one of
the following statements holds:

1. R D Z3.
2. R D Z2 	 � � � 	 Z2 and jS j D 1.

Theorem 4.16 ([18, Theorem 2.23]). Let R be a finite commutative ring. For
a saturated multiplicatively closed subset S of R, we have diam.�S.R// 2
f1; 2; 3; Ą1g.
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Prime Ideals in Polynomial and Power Series
Rings over Noetherian Domains
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Abstract In this article we survey recent results concerning the set of prime ideals
in two-dimensional Noetherian integral domains of polynomials and power series.
We include a new result that is related to current work of the authors [Celikbas et al.,
Prime Ideals in Quotients of Mixed Polynomial-Power Series Rings; see http://www.
math.unl.edu/$\sim$swiegand1 (preprint)]: Theorem 5.4 gives a general description
of the prime spectra of the rings RŒŒx; y��=P;RŒŒx��Œy�=Q and RŒy�ŒŒx��=Q0 , where
x and y are indeterminates over a one-dimensional Noetherian integral domain R
and P; Q, and Q0 are height-one prime ideals of RŒŒx; y��, RŒŒx��Œy�, and RŒy�ŒŒx��,
respectively. We also include in this survey recent results of Eubanks-Turner,
Luckas, and Saydam describing prime spectra of simple birational extensions
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1 Introduction

Prime ideals play a fundamental role in commutative ring theory, especially in the
theory of ideals and modules. By the primary decomposition theorem, every nonzero
ideal of a Noetherian ring has a unique set of associated prime ideals. Often if
a property can be demonstrated for prime ideals, then it holds for all ideals, for
example, finite generation, by Cohen’s theorem [15, Theorem 3.4]. Murthy uses
prime ideals to show that a regular local ring is a UFD in [18]. For a Noetherian ring
R, the Grothendieck group of all finitely generated R-modules is generated by the
modules of the form R=P , where P is a prime ideal of R (see [2]). The Wiegands
demonstrate many connections between the set of prime ideals of a ring R and the
set of indecomposableR-modules in [28].

For R a commutative ring, we denote by Spec.R/ the prime spectrum of R, that
is, the set of prime ideals of R, considered as a partially ordered set, or poset, under
inclusion. In 1950, Irving Kaplansky asked:

Question 1.1. Which partially ordered sets occur as Spec.R/, for some Noetherian
ring R?

This problem remains open, although there have been many and varied results
related to Question 1.1:

(1) Hochster’s characterization of the prime spectrum of a commutative ring as a
topological space [9],

(2) Lewis’ result that every finite poset is the prime spectrum of a commutative ring
[12],

(3) Some properties of prime spectra of Noetherian rings [16, 27, 29],
(4) Examples of Noetherian rings such as those of Nagata, McAdam, and Heitmann

that do not have other properties that might be expected of Noetherian rings
[8, 17, 19, 21], and

(5) Characterizations of prime spectra of other specific classes of Noetherian rings
or of particular Noetherian rings (see, for example, [6, 13, 24, 26]).

Many of these results are discussed in more detail in [29], along with other results.
In this article we focus on results over the past decade concerning prime spectra

for two-dimensional Noetherian integral domains of polynomials and power series.
We include background information related to this focus. In particular, our results
are related to S. Wiegand’s theorem from the 1980s, Theorem 2.3, proved using
techniques developed by Heitmann and others; see [25]. Theorem 2.3 shows that
any finite amount of “misbehavior” is possible for prime ideals of a Noetherian
ring. Other results such as McAdam’s Theorem 2.4 suggest that the converse is also
true: Perhaps, in some sense, the amount of such misbehavior is finite. Our current
and recent investigations of prime spectra show that certain finite subsets of these
spectra determine the partially ordered sets that are prime spectra for our rings; see
Theorem 5.4 and Definition 5.5.
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The characterization of the prime spectrum of a particular ring requires (1) a
list of axioms that describe the prime spectrum as a poset, and (2) a proof that any
two posets satisfying these axioms are order-isomorphic. In order to characterize
prime spectra for a class of Noetherian rings, the axioms of (1) may contain “genetic
codes” that allow for some variety in the spectra of rings of the class; they depend
upon cardinalities associated to the ring. In this case we require (20). Each “genetic
code” should determine a unique partially ordered set up to order-isomorphism and
(3) examples to show that every poset fitting the axioms can be realized as a prime
spectrum for some ring in the class.

For the remainder of this article, let x and y be indeterminates over a one-
dimensional Noetherian domain R. Wiegand characterizes Spec.ZŒy�/, where Z is
the ring of integers, in [26]; see Theorem 2.9. If R is a countable, semilocal one-
dimensional Noetherian domain, Wiegand and Heinzer characterize Spec.RŒy�/ in
[6]; this characterization of course depends upon the number of maximal ideals
of R. Shah and Wiegand extend this result to Spec.RŒy�/, for R a semilocal one-
dimensional Noetherian domain of any cardinality in [23,29]—this characterization
depends upon the number of maximal ideals of R, the cardinality of R, and the
cardinality of R=m for each maximal ideal m of R; see Theorem 2.13.

Several recent articles describe prime spectra for power series rings. In [7],
Heinzer, Rotthaus, and Wiegand describe Spec.RŒŒx��/; see Theorem 2.15. In [5],
Eubanks-Turner, Luckas, and Saydam describe prime spectra of simple birational
extensions of RŒŒx��, that is, Spec.RŒŒx��Œg=f �/, where g; f 2 RŒŒx��, f ¤ 0, and
either g; f is an RŒŒx��-sequence or .g; f / D RŒŒx��; see Theorem 6.1. In current
work, the present authors describe prime spectra of rings of the formRŒŒx��Œy�=Q or
RŒy�ŒŒx��=Q, whereQ is a height-one prime ideal of the appropriate ring and x … Q;
see Sect. 5 and [4].

In Sect. 2 we give notation and background results on prime spectra, and we
mention some related items, such as the intriguing Conjecture 2.12 of Roger
Wiegand. We give some general properties of mixed power series in Sect. 3.
In Sect. 4 we characterize Spec.RŒŒx��ŒŒy��=Q/, where R is a one-dimensional
Noetherian domain andQ is a height-one prime ideal of RŒŒx; y��; see Theorem 4.1.
In Sect. 5 we give new results related to the characterization of Spec.RŒŒx��Œy�=Q/
and Spec.RŒy�ŒŒx��=Q/ from [4]; see Theorems 5.2 and 5.4. In Sect. 6 we give
results from [5] concerning prime spectra of simple birational extensions of RŒŒx��;
this yields a characterization in the case R is a countable Dedekind domain. In
Sect. 7, we show two prime spectra examples of dimension two: Spec.ZŒy�ŒŒx��=Q/,
where Q is a specified prime ideal of ZŒy�ŒŒx��, and Spec.RŒŒx��Œy�=Q/, where Q is
a specified prime ideal of RŒŒx��Œy� and R is a Henselian domain.

All rings are commutative with identity throughout the paper. Let N denote the
natural numbers, let Z denote the integers, and let R denote the real numbers. Set
N0 WD N [ f0g and @0 WD jNj:
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2 Background

In this section, we give background information related to our focus on recent
work concerning prime spectra of two-dimensional Noetherian integral domains
of polynomials and power series. We refer the reader to [28, 29] for more general
information concerning prime spectra in Noetherian rings.

We first introduce some notation.

Notation 2.1. Let U be a partially ordered set, sometimes abbreviated poset; let S
be a subset of U and let u; v 2 U . We define

u".U / D u" WD fw 2 U j u < wg; u# WD fw 2 U j w < ug; Le.S/ WD fu 2 U j u" D SgI
max.S/ WD fmaximal elements of Sg; and min.S/ WD fminimal elements of Sg:

For u 2 U , the height of u, ht.u/, is the length t 2 N0 of a maximal length chain in
U of form

u0 < u1 < u2 < � � � < ut D u:

Set Hi .U / WD fu 2 U j ht.u/ D ig, for each i 2 N0. The dimension of U , dim.U /,
is the maximum of the heights of all elements of U .

We say v covers u and write u � v if u < v and there are no elements of U
strictly between u and v. The minimal upper bound set of u and v, if u — v and
v 6< u, is the set mub.u; v/ WD min.u" \ v"/ and their maximal lower bound set is
Mlb.u; v/ WD max.u# \ v#/.

Let R be a commutative ring. We use notation similar to that for the partially
ordered set U D Spec.R/. For example, if P 2 Spec.R/, P " D fQ 2
Spec.R/ j P ¨ Qg; min.R/ is the set of minimal prime ideals of R; max.R/ is the
set of maximal ideals of R; and dim.R/ is the supremum of the heights that occur
for maximal ideals of R. We also use V.S/ WD VR.S/ WD fq 2 Spec.R/ j S � qg,
for a subset S of R; for a 2 R; put VR.a/ WD VR.fag/. For each i 2 N0, we set
Hi .R/ WD fq 2 Spec.R/ j ht.q/ D ig.

In Remarks 2.2 we establish that the rings we study are well behaved.

Remarks 2.2. (1) If a ring A is Cohen–Macaulay, n;m 2 N0, and xi and yj
are indeterminates over A, for 1 � i � n, 1 � j � m, then the mixed
polynomial-power series rings,AŒŒfxi gniD1��Œfyj gmjD1� andAŒfyj gmjD1�ŒŒfxi gniD1��,
are Cohen–Macaulay; see [15, Theorem 17.7]. Thus they are catenary: If
P � Q in Spec.R/, then any two maximal chains of prime ideals from P

to Q have the same length [15, Theorem 17.9].
(2) If R is a Noetherian integral domain of dimension one, then R is Cohen–

Macaulay; see [15, Exercise 17.1, p. 139]. Thus every mixed polynomial-power
series ring over a one-dimensional Noetherian domain R that involves a finite
number of variables is catenary by item (1).
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Theorem 2.3 was inspired by many examples of Noetherian prime spectra
with finite amounts of “misbehavior” that were produced by Nagata, McAdam,
Heitmann, and others; they show, for example, that Noetherian rings can be noncate-
nary and that there exist Noetherian rings containing two height-two prime ideals
whose intersection contains no height-one prime ideal; see [8, 17, 20]. The proof
of Theorem 2.3 uses techniques of these and other researchers. The statement of
Theorem 2.3 summarizes the situation: All sorts of finite noncatenary or prescribed
intersecting behavior is possible in the prime spectrum of some Noetherian rings.
This idea is related to the later sections of this article where we show that the
prime spectra that occur for our rings have a similar finite amount of “prescribed”
discrepancy within a general form of the spectra; see Sects. 5 and 6. The difference
here is that our rings are catenary by Remark 2.2.

Theorem 2.3 ([25, Theorem 1]). Let F be an arbitrary finite poset. There exist a
Noetherian ring A and a saturated order-embedding ' W F ! Spec.A/ such that
' preserves minimal upper bound sets and maximal lower bound sets. In detail, for
u; v 2 F , we have

(i) u < v if and only if '.u/ < '.v/;
(ii) v covers u if and only if '.v/ covers '.u/;

(iii) '.mubF .u; v// D mub.'.u/; '.v//; and
(iv) '.MlbF .u; v// D Mlb.'.u/; '.v//.

A related theorem of Steve McAdam, Theorem 2.4, guarantees that noncatenary
misbehavior cannot be too widespread in the prime spectrum of a Noetherian ring:

Theorem 2.4 ([16]). Let P be a prime ideal of height n in a Noetherian ring. Then
all but finitely many covers of P have height nC 1.

Perhaps one might conjecture from Theorem 2.4 that in general prime spectra of
Noetherian rings behave well, like the spectra of excellent rings, if a finite “bad”
subset is removed.1

Corollary 2.5, which follows from Theorem 2.3, relates to our focus for this
article because it describes exactly the countable posets that arise as prime spectra
of two-dimensional semilocal Noetherian domains.

Corollary 2.5 ([25, Theorem 2]). Let U be a countable poset of dimension two.
Assume that U has a unique minimal element and max.U / is finite. Then U Š
Spec.R/ for some countable Noetherian domain R if and only if Le.u/ is infinite
for each element u with ht.u/ D 2.

Lemma 2.6 is useful for counting prime ideals in our rings.

1For the definition of “excellent ring” see [15, p. 260]. Basically “excellence” means the ring is
catenary and has other nice properties that polynomial rings over a field possess.
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Lemma 2.6 ([29, Lemma 4.2] and [5, Lemma 3.6, Remarks 3.7]). Let T be a
Noetherian domain, let y be an indeterminate, and let I be a proper ideal of T . Let
ˇ D jT j and � D jT=I j. Then:

(1) j.T=I /Œy�j D � � @0 � ˇ � @0 D jT Œy�j.
(2) jT ŒŒy��j D ˇ@0 D �@0 .
(3) If ˇ � @0, then j.T=I /Œy�j D @0 D jT Œy�j.
(4) If ˇ D @0 and max.T / is infinite, then ˇ D j max.T /j D jT=I j � @0.
(5) If k is a field, y; y0 are indeterminates, and c is an irreducible element of kŒy�,

then

j.kŒy�=ckŒy�/Œy0 �j D jkj � @0 D j max.kŒy�/j:

2.1 Prime Ideals in Polynomial Rings

This subsection includes basic facts, previous results, and technical lemmas con-
cerning Spec.AŒy�/, where A is a Noetherian domain and y is an indeterminate
over A.

In Remarks 2.7, we give some basic facts.

Remarks 2.7. Let A be a Noetherian domain of dimension d and let y be an
indeterminate over A.

(1) If P is a prime ideal of AŒy�, then ht.P \ A/ � ht.P / � ht.P \ A/C 1; see
[15, Theorem 15.1].

(2) If M is a prime ideal of AŒy� of height d C 1, then M is a maximal ideal of
AŒy�, the prime ideal m D M \ A is a maximal ideal of A of height d , and
M D .m; h.y//AŒy�, where h.y/ is irreducible in AŒy� D AŒy�=.mŒy�/ Š
.A=m/Œy�. This follows from item (1) and [10, Theorem 28, p. 17].

(3) If I is a nonzero ideal ofAŒy� such that I\A D .0/, then I D h.y/KŒy�\AŒy�;
whereK is the field of fractions ofA and h.y/ 2 AŒy�with deg.h.y// � 1. This
follows sinceKŒy� D .Anf0g/�1AŒy� is a principal ideal domain (PID). If P is
a prime ideal of AŒy� such that P \A D .0/, then ht.P / D 1. The set of prime
ideals P of AŒy� such that P \ A D .0/ is in one-to-one correspondence with
the set of height-one prime ideals of KŒy�, via P 7! PKŒy� 7! PKŒy� \AŒy�.

The proof of Lemma 2.8 is straightforward and follows from material in [10] on
G-domains; see [4]. A G-domain is an integral domain A such that AŒy� contains a
maximal ideal that intersects A in .0/.

Lemma 2.8 ([4, 10]). Let A be a Noetherian domain. If Q is a maximal ideal of
AŒy� of height one, then

(1) Q \ A D .0/;
(2) dim.A/ � 1 and j max.A/j < 1; say max.A/ D fm1; : : : ;mt g; and
(3) Q contains an element of form h.y/ D yg.y/ C 1, where 0 ¤ g.y/ 2

.\t
iD1mi /Œy�.
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Moreover, if A is one-dimensional and semilocal with maximal ideals m1; : : : ;mt ,
and Q is a prime ideal of AŒy� that is minimal over an element of form
h.y/ D yg.y/ C 1, where g.y/ 2 .\t

iD1mi /Œy�, then Q is a height-one maximal
ideal of AŒy�.

Theorem 2.9, due to Roger Wiegand, characterizes Spec.ZŒy�/, the spectrum of
the ring of polynomials in the variable y over the integers Z. The most important
distinguishing feature of Spec.ZŒy�/ is Axiom RW.

Theorem 2.9 ([26, Theorem 2]). Let U D Spec.ZŒy�/, the partially ordered set of
prime ideals of the ring of polynomials in one variable over the integers. Then U is
characterized by the following axioms:

(P1) U is countable and has a unique minimal element.
(P2) U has dimension two.
(P3) For each element u of height-one, u" is infinite.
(P4) For each pair u, v of distinct elements of height-one, u" \ v" is finite.

(RW) Every pair .S; T / of finite subsets S and T of U such that ; ¤ S � H1.U /

and T � H2.U / has a “radical element” in U . A “radical element” for such
a pair .S; T / is a height-one element w 2 U such that s" \ w" � T � w",
for every s 2 S .

A partially ordered set U satisfies the axioms of Theorem 2.9 if and only if U is
order-isomorphic to Spec.ZŒy�/.

Theorem 2.9 leads to Question 2.10:

Question 2.10. For which two-dimensional Noetherian domains A is Spec.A/ Š
Spec.ZŒy�/?

Remarks 2.11. (1) The following is known about rings that fit Question 2.10:

(a) Let k be a field and let z be another indeterminate. Then Spec.kŒz; y�/ is order-
isomorphic to Spec.ZŒy�/ ” k is an algebraic extension of a finite field.
The .(/ direction is due to Wiegand in [26, Theorem 2]; for the .)/ direction,
see [29].

(b) Let D be an order in an algebraic number field; that is, D is the ring of
algebraic integers in a field K that is a finite extension of the rational numbers.
Roger Wiegand shows Spec.DŒy�/ is order-isomorphic to Spec.ZŒy�/ in [26,
Theorem 1].

(c) In their 1998 article Li and Wiegand prove that ifB WD ZŒy�Œ
g1
f
; : : : ;

gm
f
�, where

f is nonzero and f; g1; : : : ; gm 2 ZŒy�, then Spec.B/ is order-isomorphic to
Spec.ZŒy�/; see [14].

(d) Saydam and Wiegand extend the result of Li and Wiegand in 2001 to show, for
D an order in an algebraic number field and forB a finitely generated extension
ofDŒy� contained in the field of fractions ofDŒy�, that Spec.B/ Š Spec.ZŒy�/
in [22].
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(2) The prime spectrum of RŒy� is not known in general, for y an indeterminate
over a one-dimensional Noetherian domain R with infinitely many maximal
ideals. In fact Spec.RŒy�/ is barely known beyond the examples of item (1)
above and the rings of Theorem 2.13 below; see [29].

(3) The prime spectrum of QŒz; y�; where Q is the field of rational numbers, is
unknown, but Wiegand shows that it is not order-isomorphic to Spec.ZŒy�/ in
[26]; see also [29, Remark 2.11.3].

In relation to Question 2.10, Wiegand’s 1986 conjecture is still open:

Conjecture 2.12 (Wiegand [26]). For every two-dimensional Noetherian integral
domainD that is finitely generated as a Z-algebra, Spec.D/ Š Spec.ZŒy�/.

The next theorem, Theorem 2.13, was first proved by Heinzer and Wiegand in
case R is countable. Later Shah, Wiegand, and Wiegand proved it for cardinalities;
see also [11]. By Theorem 2.13, the prime spectrum of a polynomial ring over a
semilocal one-dimensional Noetherian domain is dependent upon whether or not
the coefficient ring is Henselian.2 For example, complete local rings, such as power
series rings over a field, are Henselian.

Theorem 2.13 ([6, Theorem 2.7], [23, Theorem 2.4], and [29, Theorem 3.1]).
Let R be a semilocal one-dimensional Noetherian domain, let m1; : : : ;mn be the
maximal ideals of R where n 2 N, let y be an indeterminate, let ˇ D jRŒy�j, and
let 
i D j.R=mi /Œy�j, for each i with 1 � i � n. Then there exist exactly two
possibilities for U D Spec.RŒy�/ up to cardinality, depending upon whether or not
R is Henselian and, ifR is not Henselian, depending upon the number n of maximal
ideals of R.

• In case R is not Henselian, U satisfies these axioms:

.Iˇ/ jU j D ˇ and U has a unique minimal element u0 D .0/.

.IIˇ/ jH1.U / \ max.U /j D ˇ.

.III
 / dim.U / D 2.

.IVn/ There exist exactly n height-one elements u1; : : : ; un 2 U such that u"
i is

infinite. Also:
(i) u"

1 [ � � � [ u"
n D H2.U /.

(ii) u"
i \ u"

j D ; if i ¤ j .

(iii) ju"
i j D 
i , for 1 � i � n.

.Vn/ If v 2 U , v is not maximal, ht.v/ D 1 and v … fu1; : : : ; ung, then v" is finite.

.VIˇ/ For every nonempty finite subset T of H2.U /, we have jLe.T /j D ˇ.

2Essentially a “Henselian” ring is one that satisfies Hensel’s Lemma; see the definition in [20].
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• If R is Henselian, then n D 1 and U satisfies Axioms Iˇ; IIˇ; III
 ; IV1 and the
adjusted axioms V h

1 and VIhˇ below:

.V h
1 / If v 2 U , v is not maximal, ht.v/ D 1 and v ¤ u1, then jv"j D 1.

.VI hˇ / For every nonempty finite subset T of H2.U /, we have jLe.T /j D ˇ ”
jT j D 1, and Le.T / D ; ” jT j > 1.

β P1 β β · · ·

• • • · · · # bullets = γ1

(0)

Diagram 2.13.h: Spec.RŒy�/, R Henselian

β P1 P2 · · · Pn MESS

γ1 γ2 · · · γn

u0

Diagram 2.13.nh: Spec.RŒy�/, R non-Henselian

These diagrams show Spec.RŒy�/ for the two cases of the theorem, where Pi is
the prime ideal of RŒy� corresponding to ui , for each i with 1 � i � n, and each
block ˇ represents ˇ primes in that position.
The relations satisfied by the MESS box in Diagram 2.13 are too complicated to
show. They are described in Axiom VIˇ.

2.2 Prime Ideals in Power Series Rings

In this subsection we describe prime ideals in power series rings over a Noetherian
domain. In the remainder of the paper we use the following straightforward remarks,
particularly Remark 2.14(1).

Remarks 2.14. Let x be an indeterminate over a Noetherian domain A. Then

(1) Every maximal ideal of AŒŒx�� has the form .m; x/AŒŒx��, where m is a maximal
ideal of A; see [20, Theorem 15.1] (Nagata). Thus x is in every maximal ideal
of AŒŒx��.
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(2) If p is a prime ideal of A, then pAŒŒx�� 2 Spec.AŒŒx��/ and ht.pAŒŒx��/ D ht.p/;
see [3, Theorem 4] or [1, Theorem 4].

(3) Thus every maximal ideal of AŒŒx�� of maximal possible height in a Noetherian
catenary domain has the form .m; x/AŒŒx��, where m is a maximal ideal of A
with ht.m/ D dim.A/.

Heinzer, Rotthaus, and Wiegand almost characterized Spec.RŒŒx��/ for R a
one-dimensional Noetherian domain, except for specifying the cardinalities of
the Le.fM g/ sets of height-two maximal ideals M of RŒŒx��. Later Wiegand and
Wiegand showed that jLe.fM g/j D jRŒŒx��j for each M .

Theorem 2.15 ([7, Theorem 3.4] and [29, Theorem 4.3]). Let R be a one-
dimensional Noetherian domain and let x be an indeterminate. Set ˇ WD jRŒŒx��j and
set ˛ WD j max.R/j. Then the partially ordered set U WD Spec.RŒŒx��/ is determined
by axioms similar to those of the Henselian version of Theorem 2.13:

.Iˇ/ jU j D ˇ and U has a unique minimal element u0 D .0/.
.II0/ H1.U /\ max.U / D ;.
.III˛/ dim.U / D 2, jH2.U /j D ˛.
.IV1/ There exists a height-one element u1 2 U such that u"

1 D H2.U / namely,
u1 D xRŒŒx��.

.V h
1 / If v 2 U , v is not maximal, ht.v/ D 1, and v ¤ u1, then jv"j D 1.3

.VI hˇ / For every nonempty finite subset T of H2.U /, we have jLe.T /j D ˇ if and
only if jT j D 1, and Le.T / D ; if and only if jT j > 1:

Thus Spec.RŒŒx��/ is as shown in the following diagram:

(x) β β · · ·

• • • · · ·

(#{bullets} = α)

(0)

Diagram 2.15.0: Spec.RŒŒx��/

In Diagram 2.15.0, the cardinality of the set of bullets equals the cardinality
of max.R/ since the set of height-two maximal ideals of RŒŒx�� is in one-to-
one correspondence with the set of maximal ideals of the coefficient ring R by
Remark 2.14(1). The boxed ˇ beneath each maximal ideal of RŒŒx�� means that
there are exactly ˇ prime ideals in that position (beneath that maximal ideal and

3Since axiom II0 holds, this axiom could be stated here without saying “v is not maximal.”
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no other). For each value of ˛ and ˇ, any two posets described by Diagram 2.15.0
are order-isomorphic.

Remark 2.16. From Diagrams 2.15.0 and 2.13.h, we see that Spec.QŒy�ŒŒx��/ ©
Spec.Q.ŒŒx��Œy�/, where Q is the field of rational numbers. Moreover the difference
between the prime spectrum of a power series ring over a one-dimensional
Noetherian domain, such as QŒy�ŒŒx��, and that of a polynomial ring over a Henselian
ring, such as QŒŒx��Œy�, is that the partially ordered set described in the Henselian case
of Theorem 2.13 has ˇ height-one maximal elements, whereas the other partially
ordered set has no height-one maximal elements.

In our characterizations of prime spectra, we identify those prime ideals that are
an intersection of maximal ideals, such as the prime ideal .x/ in Diagram 2.15.0 and
the prime ideal P1 in Diagram 2.13.h. These are called j -prime ideals.

Definitions 2.17. (1) Let A be a commutative ring.

• A j -prime (ideal) of A is a prime ideal of A that is an intersection of maximal
ideals of A.

• The j -spectrum of A is j -Spec.A/ WD fj -primes 2 Spec.A/g.

(2) For U a partially ordered set, we say that u 2 U is a j -element if u is a maximal
element of U or if min.u"/ is infinite. Then j -set.U / WD fj -elements of U g.

Thus, if A is a two-dimensional integral domain, fj -elements of U D Spec.A/g D
fj -prime ideals of Ag:
Examples 2.18. We show j -Spec.QŒy�ŒŒx��/ and j -Spec.QŒŒx��Œy�/, respectively, in
Diagram 2.18.0; they are parts of Diagrams 2.15.0 and 2.13.h.

(x) (x)|Q[[x]]|

|Q[y]| |Q[y]|

(0) (0)

Diagram 2.18.0: j -Spec.QŒy�ŒŒx��/ and j -Spec.QŒŒx��Œy�/

3 Properties of Mixed Polynomial-Power Series Rings

In this section we give some properties of prime spectra of three-dimensional
Noetherian mixed polynomial-power series rings. We use the following setting:

Setting 3.1. Let x and y be indeterminates over a one-dimensional Noetherian
domain R. Let A be either RŒy�ŒŒx��, RŒŒx��Œy�, or RŒŒx; y��. Let A1 D RŒy� if
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A D RŒy�ŒŒx�� or RŒŒx��Œy�, and let A1 D RŒŒy�� if A D RŒŒx; y��. Then A=xA Š A1
and, depending on which A1 we have, for every m 2 max.R/.

A=.m; x/A Š A1=mA1 Š .R=m/Œy� or A=.m; x/A Š .R=m/ŒŒy��:

Proposition 3.2 gives a description of the maximal ideals of A having maximal
height, that is, height three.

Proposition 3.2 ([4]). Assume Setting 3.1 and let M be a height-three maximal
ideal of A: Then

(1) M D .m; x; h.y//A; for some m 2 max.R/ and some h.y/ 2 A1 with h.y/
irreducible in A1 D A1=.mA1/ Š .R=m/Œy� or h.y/ irreducible in A1 Š
.R=m/ŒŒy��.

(2) Conversely, the ideals .m; x; h.y//A are maximal and have height three, for
every m 2 max.R/ and for every h.y/ 2 A1 such that h.y/ is irreducible in A1.

(3) If A D RŒŒx; y��, then every maximal ideal of RŒŒx; y�� has height 3; there are
j max.R/j maximal ideals in RŒŒx; y��; and max.RŒŒx; y��/ D f.m; x; y/RŒŒx; y��,
where m 2 max.R/g.

(4) For A D RŒŒx��Œy� or A D RŒy�ŒŒx��, there are j.R=m/j �@0 height-three maximal
ideals that contain m, for each fixed m 2 max.R/.

Proof. Item (3) follows from Remark 2.14(1). For the remaining items, see [4,
Proposition 4.2]. ut

Proposition 3.3 is also straightforward to prove using Remark 2.14(1) and
Lemma 2.8; see [4].

Proposition 3.3 ([4, Propostion 4.3]). There are no height-one maximal ideals in
RŒŒx; y��; RŒy�ŒŒx��, or in RŒŒx��Œy�.

Proposition 3.4 is the reason that the prime spectra of RŒŒx��Œy� and RŒy�ŒŒx�� is
much simpler than Spec.RŒx; y�/.

Proposition 3.4 ([5, Proposition 3.11] and [4, Proposition 3.3]). Assume Set-
ting 3.1. Let P be a height-two prime ideal of A such that x … P . Then P is
contained in a unique maximal ideal of A.

In Proposition 3.5, with Setting 3.1, we observe that certain obvious conditions
on a height-one prime ideal Q of A are equivalent to saying that Q is not contained
in any height-three maximal ideal of A. For A D RŒŒx; y��, these conditions never
occur; see Proposition 3.2(3) or Theorem 4.1.

Proposition 3.5 ([4, Proposition 3.8]). Assume Setting 3.1, so that R is a one-
dimensional Noetherian domain and A is RŒŒx��Œy�, RŒy�ŒŒx��, or RŒŒx; y��. Let Q be
a height-one prime ideal of A. Then statements 1–4 are equivalent:

(1) Every prime ideal of A containing .Q; x/A is a maximal ideal.
(2) For every m 2 max.R/, every prime ideal ofA containing .Q;m/A is maximal.
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(3) Q is contained in no height-three maximal ideal of A.
(4) dim.A=Q/ D 1.

Moreover,

• If .Q; x/A D A, then item (1) holds.
• If m 2 max.R/ and .Q;m/A D A, then every prime ideal containing .Q;m/A is

maximal.
• Thus either of the conditions

(i) .Q; x/A D A or
(ii) .Q;m/A D A, for every m 2 max.R/,

implies (4) dim.A=Q/ D 1.

Proposition 3.6 holds for higher-dimensional rings and more variables (one
variable must be a power series variable), but to fit our focus in this article, we
consider prime ideals ofA, whereA D RŒŒx; y��; RŒy�ŒŒx��, orRŒŒx��Œy� has dimension
three. One case of Proposition 3.6 is given in [5, Proposition 3.8].

Proposition 3.6 ([4, Proposition 2.18]). Assume Setting 3.1 and let Q and M be
prime ideals of A with x … Q, ht.Q/ D 1, and ht.M/ D 3. Then Q" \ M#
contains exactly jRŒŒx��j height-two prime ideals.

3.1 j -Spectra of Quotients of Mixed Polynomial-Power
Series Rings

We use Setting and Notation 3.7 in the remainder of this section.

Setting and Notation 3.7. Let R be a one-dimensional Noetherian domain and let
x and y be indeterminates. Let A be RŒŒx��Œy�, RŒy�ŒŒx��, or RŒŒx; y�� and let Q be a
height-one prime ideal of A such that x … Q and .Q; x/A ¤ A. Set B WD A=Q.
By Remarks 2.2, A is catenary and has dimension three, and so B is a Noetherian
integral domain with dim.B/ � 2. Let I be a nonzero ideal of RŒy� such that
.I; x/A D .Q; x/A; that is, I D f all constant terms in RŒy� of power series in Qg.

Note 3.8. If I ¤ RŒy�, then the ideal I from Setting and Notation 3.7 is a nonzero
height-one ideal of RŒy�; that is, every prime ideal P of RŒy� minimal over I has
height one.

Proof. Let P be a prime ideal of RŒy� minimal over I . If I D .0/, then .I; x/ D
.x/ ¤ .Q; x/, since Q ¤ .0/ and x … Q. Thus I ¤ .0/, and so ht.P / � 1. Now
.Q; x/A ¤ A by assumption and 1 D ht.Q/ < ht.Q; x/ since x … Q and A is
catenary by Remarks 2.2. Also ht.Q; x/ � 2 by Krull’s principal ideal theorem.
Thus ht.Q; x/ D 2. Now .P; x/ ¤ A since P 2 Spec.RŒy�/. Also .P; x/ is a
minimal prime ideal of .I; x/ D .Q; x/. Thus ht.P; x/ D 2, and soP 2 Spec.RŒy�/
implies ht.P / D 1. ut
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We show in this subsection that the j -primes of A that containQ also contain x.
It follows that each j -prime of A corresponds to a minimal prime ideal of RŒy�=I .
We begin to demonstrate this correspondence with the following remarks.

Remarks 3.9. With Setting and Notation 3.7, consider the following canonical
surjections:

� W A �! B D A=Q with ker.�/ D Q;

�x W A �! RŒy� D A=xA with ker.�x/ D .x/:

(i) The maps � and �x yield isomorphisms:

Spec.B/ Š Spec

�
A

Q

�
I and Spec.RŒy�/ Š Spec

�
A

xA

�
I

Spec

�
B

xB

�
Š Spec

�
A

.x;Q/A

�
D Spec

�
A

.x; I /A

�
Š Spec

�
RŒy�

I

�
:

(ii) Since A is catenary, the correspondences in Remark 3.9(i) above imply that for
each n � 2, the ht-n prime ideals of B can be identified with the ht-.n C 1/

prime ideals of A containingQ; the ht-n prime ideals of RŒy� can be identified
with the ht-.n C 1/ prime ideals of A containing x; and the ht-n primes of B
containing x can be identified with the ht-n prime ideals of RŒy� containing I .

Proposition 3.10 ([4, Proposition 3.20]). Assume Setting 3.7.

(1) Spec.B=xB/ Š Spec.RŒy�/ \ .VRŒy�.I // Š Spec.RŒy�=I /.
(2) The height-one prime ideals of B that contain x correspond to the height-one

prime ideals of RŒy� that contain I .
(3) Every nonmaximal j -prime ideal of B contains x and thus corresponds to a

j -prime ideal of RŒy� containing I .
(4) j -Spec.B/ n f.0/g n fheight-one maximal elementsg Š j -Spec.B=xB/ Š j -

Spec.RŒy�=I /.
(5) If max.R/ is infinite, then j -Spec.B=xB/ D Spec.B=xB/; that is, every prime

ideal of B containing x is a j -prime, and every prime ideal of RŒy� containing
I is a j -prime.

Proof. Items (1)–(4) follow from Remarks 3.9; see [4, Proposition 3.22]. For
item (5), if P 2 Spec.B/ has height one and contains x, then P corresponds to
a height-one prime ideal P 0 of RŒy� that contains I . Therefore it suffices to show
that every prime ideal P 0 of RŒy� containing I is contained in an infinite number of
height-two maximal ideals. If P 0 D mRŒy�, for some m 2 max.R/, then

j.P 0/".RŒy�/j D j.mRŒy�/".RŒy�/ j D jRŒy�=.mRŒy�/j D j.R=m/Œy�j D jR=mj � @0;
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using Lemma 2.6; thusP 0=I is a j -prime ofRŒy�=I . On the other hand, if P 0\R D
.0/, then every element ofP 0 has positive degree andP 0 D h.y/KŒy�\RŒy�, where
K is the field of fractions of R and h.y/ 2 RŒy�, by Remarks 2.7(3). The leading
coefficient hn of h.y/ is contained in at most finitely many maximal ideals of R.

Claim 3.11. P 0 ¨ .m; P 0/RŒy� ¤ RŒy�, for every maximal ideal m such that
hn … m:

Proof of Claim 3.11. Since mRŒy� contains elements of degree 0, .m; P 0/ is prop-
erly bigger than P 0. For the inequality, write h.y/ D hny

n C hn�1yn�1 C � � � C h0;

where n � 1, each hi 2 R and hn ¤ 0. If hn … m, then hi=hn 2 Rm, for each i
with 0 � i � n. Thus

P 0RmŒy� D h.y/KŒy� \ RmŒy� D
�
yn C hn�1

hn
yn�1 C � � � C h0

hn

�
RmŒy�

H) P 0RmŒy�C mRmŒy�

mRmŒy�
¨ RmŒy�

mRmŒy�
;

and so Claim 3.11 is proved. ut
For item (5), since max.R/ is infinite, there are infinitely many m 2 max.R/

such that hn … m. Each pair .m; P 0/ with m 2 max.R/ is in a distinct maximal
ideal of RŒy�; that is, a maximal ideal containing .m; P 0/ cannot contain .m0; P 0/
if m ¤ m0 and m;m0 2 max.R/. Thus j.P 0/".RŒy�/j D j max.R/j, since removing
finitely many m 2 max.R/ such that hn 2 m from the infinite set max.R/ leaves
the same number. This completes the proof of item (5) and thus Proposition 3.10 is
proved. ut
Remark 3.12. With Setting 3.7, assume that R is semilocal and I � P 0 2
Spec.RŒy�/. If P 0 is mRŒy�, for some m 2 max.R/, or P 0 is a maximal ideal of
RŒy�, then P 0 is a j -prime ideal. However not every prime ideal containing I is
necessarily a j -prime ideal. See Example 3.13 and Theorem 7.2.

Example 3.13. Let R D Z.2/ and I D 2y.2y � 1/.y C 2/. Then Spec.R=I / is
shown below:

(2y−1) (2) (y) (y + 2)

ℵ0
(2, y)

Diagram 3.13.0: Spec.Z.2/Œy�=.2y.2y � 1/.y C 2//

The structure of Spec.Z.2/Œy�=.2y.2y � 1/.y C 2/// is determined by the finite
partially ordered subset

F D f.2y � 1/; .2/; .y/; .y C 2/; .2; y/g:
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We see that Spec.Z.2/Œy�=.2y.2y�1/.yC2/// and its j-spec are not the same, since
.y/ and .y C 2/ are prime ideals that are not j -prime ideals.

4 Two-Dimensional Prime Spectra of Form RŒŒx; y��=Q

In this short section we discuss the prime spectra of homomorphic images by a
height-one prime ideal of the ring of power series in two variables over a one-
dimensional Noetherian domain. These prime spectra are similar to those for images
of mixed polynomial-power series rings. If both variables x and y are power series
variables, however, the analysis is simplified.

Theorem 4.1. Let R be a one-dimensional Noetherian domain, let x and y be
indeterminates, and let Q be a height-one prime ideal of RŒŒx; y��. Set B D
RŒŒx; y��=Q and ˇ D jRŒŒx��j. Then:

(1) If Q ª .x; y/RŒŒx; y��, then there exist n 2 N and m1; : : : ;mn 2 max.R/ such
that Spec.B/ has the form shown below:

β β · · ·

· · ·

β

(m1, x, y) (m2, x, y) (mn, x, y)

Q

(2) If Q � .x; y/RŒŒx; y��, then Spec.B/ is order-isomorphic to Spec.RŒŒx��/; that
is, Spec.B/ has the form shown below:

(x, y) β β · · ·

· · ·

Q

(m2, x, y)(m1, x, y)

where the mi range over all the elements of max.R/ and ˇ D jRŒŒx��j.
As the diagrams show, Spec.B/ is characterized by the description for each case.
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Proof. For both items we use that every maximal ideal of RŒŒx; y�� has the form
.m; x; y/ where m 2 max.R/, by Proposition 3.2(3). For item (1), let Q0 be the
ideal of R generated by all the constant terms of elements of Q. Then 1 … Q0,
since an element with constant term 1 is a unit of RŒŒx; y��—every such element
is outside every maximal ideal. Also Q0 ¤ .0/, since Q ª .x; y/. Therefore Q0

is contained in finitely many maximal ideals of R, say m1; : : : ;mn. It follows that
Q is contained in n maximal ideals of RŒŒx; y��, namely .m1; x; y/; : : : ; .mn; x; y/.
By Proposition 3.6, we have jRŒŒx��j height-two prime ideals between Q and
.mi ; x; y/, for each i . Every height-two prime ideal P between Q and a maximal
ideal .m; x; y/ is missing either x or y, since Q ª .x; y/RŒŒx; y��. Therefore by
Proposition 3.4 each such prime ideal P is contained in a unique maximal ideal,
namely .m; x; y/. Thus Spec.RŒŒx; y��=Q/ has the form given in the first diagram.

For item (2), since Q � .x; y/, we have Q � .m; x; y/, for every m 2 max.R/.
By Proposition 3.6 again the number of primes betweenQ and every maximal ideal
.m; x; y/ is jRŒŒx��j, and so we have jRŒŒx��j height-two prime ideals betweenQ and
each .mi ; x; y/, for each i . As for item (1), every height-two prime ideal P other
than .x; y/ that is betweenQ and a maximal ideal .m; x; y/ is missing either x or y,
since Q ª .x; y/RŒŒx; y��. Therefore every such prime ideal P is in a unique maxi-
mal ideal ofRŒŒx; y��, and so we get the form of the second diagram in this case. ut

5 Spectra of Quotients of Mixed Polynomial-Power
Series Rings

Let x and y be indeterminates over a one-dimensional Noetherian domain R, let
A D RŒŒx��Œy� or RŒy�ŒŒx��, and let Q be a height-one prime ideal of A. In this
section we describe Spec.A=Q/; this is work in progress from [4]. In some cases,
we determine the spectra precisely. We need not consider A D RŒŒx; y��, since
Theorem 4.1 contains a complete description of Spec.RŒŒx; y��=Q/, for Q a height-
one prime ideal of RŒŒx; y��.

First we consider the exceptional cases where the dimension of A=Q is 1. We
need a definition:

Definition 5.1. A fan is a one-dimensional poset with a unique minimal element.

Theorem 5.2 ([4, Theorem 5.2]). Let R be a one-dimensional Noetherian domain
and let x and y be indeterminates over R. Let A D RŒŒx��Œy� or RŒy�ŒŒx��, let Q be a
height-one prime ideal of A, and let B D A=Q. Then Spec.B/ is a fan if one of the
following two cases occur:

(i) Every height-two prime ideal of A containing .Q; x/A is maximal.
(ii) For every m 2 max.R/, every height-two prime ideal of A containing .Q;m/A

is maximal.

Moreover, if A D RŒy�ŒŒx��, then Spec.B/ is a fan with a finite number of elements,
but at least two. If A D RŒŒx��Œy�, then Spec.B/ is a fan with jRŒŒx��j elements.
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Proof. By Proposition 3.5, either of these conditions implies that Spec.B/ is a fan.
For the “Moreover” statement, every maximal ideal ofB is the image of a height-

two maximal ideal of A that contains Q. In case A D RŒy�ŒŒx��, every height-two
maximal ideal has the form .M; x/, whereM is a height-one maximal ideal ofRŒy�,
by Remarks 2.14. There are just finitely many such height-two maximal ideals that
contain .Q; x/A. For both of the rings A D RŒy�ŒŒx�� and A D RŒŒx��Œy�, since A
has no height-one maximal ideals by Proposition 3.3, there must be a maximal ideal
containing Q that is bigger than Q and so the cardinality of the fan is at least two.
For A D RŒŒx��Œy�, j Spec.A=Q/j D jRŒŒx��j; see [4, Theorem 5.2]. ut

Except for the special cases of Theorem 5.2, prime spectra of homomorphic
images of mixed polynomial-power series rings RŒŒx��Œy� and RŒy�ŒŒx�� by height-
one prime ideals are two dimensional. In order to describe the partially ordered sets
that arise, we need a kind of genetic code. Definition 5.5 of this section contains
such a code and a general set of axioms involving the code that are satisfied by two-
dimensional images B D RŒŒx��Œy�=Q and B 0 D RŒy�ŒŒx��=Q0 , where Q and Q0 are
height-one prime ideals of RŒŒx��Œy� and RŒy�ŒŒx��, respectively. Basically the code
tells us, for each two-dimensional partially ordered set, how many elements are at
each level and what relationships hold between elements.

We use the following setting and notation for the rest of this section.

Setting and Notation 5.3. Let x and y be indeterminates over a one-dimensional
Noetherian domain R, let A D RŒŒx��Œy� or RŒy�ŒŒx��, and set ˇ WD ˇ̌

RŒŒx��
ˇ̌
. Let Q

be a height-one prime ideal of A such that x … Q and the domain B WD A=Q has
dimension two. Let I be the height-one ideal of RŒy� such that .I; x/A D .Q; x/A,
and let fq1; : : : ; q`g, for ` 2 N, be the minimal primes of I in RŒy�. Define:

• F WD fq1; : : : ; q`g [ fq"
i \ q"

j g1�i<j�`, a subset of VRŒy�.I /;

• 
i WD jq"
i n .Sj¤i q

"
j /j, for each i with 1 � i � `; that is, each 
i is the number

of height-two maximal ideals of RŒy� that contain qi but none of the other qj s;
and

• " WD jfht 1 maximal ideals of Bgj.
The main theorem of [4] describes Spec.B/ in Setting and Notation 5.3. We

remark that, as might be expected from Proposition 3.10, these prime spectra are
largely determined by Spec.RŒy�=I /.

Main Theorem 5.4 ([4, Theorem 6.5]). Assume Setting and Notation 5.3. Then
there exists an order-monomorphism ' W F ! U such that U and ' have the
following properties:

(1) jU j D ˇ, dim.U / D 2, and U has a unique minimal element u0.
(2) jfH1.U /\ max.U /gj D "; f'.q1/; : : : ; '.q`/g � H1.U /.
(3) H2.U / D S

'.qi /
" D .'.F / n f'.q1/; : : : ; '.q`/g/ [ S`

iD1 Ti , where each
Ti D '.qi /

" n .[j¤i '.qj /"/ and jTi j D 
i .
(4) f'.q1/; : : : ; '.q`/g contains the set fu 2 U j ju"j D 1; ht.u/ D 1g of

nonmaximal nonzero j -elements of U .
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(5) For every u 2 H1.U / n '.F /, there exists a unique maximal element in U that
is greater than or equal to u.

(6) For every 1 � i < j � `, '.qi /" \ '.qj /
" D '.q

"
i \ q"

j / � '.F /.
(7) For every finite nonempty subset T � H2.U / n F , Le.T / D ; if jT j > 1 and

jLe.T /j D ˇ if jT j D 1.4

These properties determine U as a partially ordered set. Moreover " � ˇ. If A D
RŒy�ŒŒx��, then " is finite; if A D RŒy�ŒŒx�� and max.R/ is infinite, then " D 0.

Proof. We give some notes about the proof: The map ' W F ,! U is given by
'.P / D P=I , for every P 2 F , so that ht.'.P // D 1 C ht.P /. Then item (4)
follows from Note 3.8 and Proposition 3.10, and items (5) and (7) follow from
Proposition 3.4. The “Moreover” statement holds since every ideal of A is finitely
generated, and thus the total number of prime ideals of A and of B is at most ˇ.
The remaining statements follow from Remark 2.14(1) and Lemma 2.8; if max.R/
is finite, every height-one maximal ideal of B corresponds to a height-two maximal
ideal of A such that N D .M; x/, where M is a height-one maximal ideal of RŒy�
and .Q; x/ � N . There are just finitely many of these. For more details, see [4]. ut
Definition 5.5. Let ` 2 N0 and let "; ˇ; 
1; : : : ; 
` be cardinal numbers with
"; 
i � ˇ, for each 
i . We say that a partially ordered set U is image polynomial-
power series of type ."IˇIF I `I .
1; : : : ; 
`//, if there exist a finite partially ordered
set F of dimension at most one with ` minimal elements such that every non-
minimal maximal element of F is greater than at least two minimal elements
of F and an order-monomorphism ' such that U satisfies properties (1)–(7) of
Theorem 5.4.

For examples of these prime spectra, see Sects. 6 and 7.

6 Prime Spectra of Simple Birational Extensions of Power
Series Rings

By a simple birational extension of an integral domain A with field of fractions K ,
we mean a ring of form AŒg=f � between A and K , where f; g 2 A with f ¤ 0,
and either f; g is an A-sequence or .f; g/A D A. As noted in Remarks 2.11(c),
the prime spectra of simple birational extensions of ZŒy� are order-isomorphic to
Spec.ZŒy�/; see [14]. In this section, for R a one-dimensional Noetherian domain
and x an indeterminate, we present some recent work of Eubanks-Turner, Luckas,
and Saydam on prime spectra of simple birational extensions of RŒŒx��; see [5].
Generally the prime spectrum of a simple birational extension of RŒŒx�� is rather
more complicated than that of RŒŒx��.

4The term “Le.T /” is defined in Notation 2.1.
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Theorem 6.1 summarizes the possible prime spectra of simple birational exten-
sions of a power series ring RŒŒx�� if R is a one-dimensional Noetherian domain
with infinitely many maximal ideals. The original statement of this theorem is given
incorrectly in [5]. We do not necessarily know that all the 
i are the same, as was
assumed there.

Theorem 6.1 ([5, Theorem 4.1]). Let R be a one-dimensional Noetherian domain
such that ˛ D j max.R/j is infinite, let x and y be indeterminates, and let f and
g be elements of RŒŒx�� with f ¤ 0. Let a and b be the constant terms of f and g
respectively. Set ˇ D ˇ̌

RŒŒx��
ˇ̌
, and v D jVR.a; b/j: Let VR.a; b/ D fm1; : : : ;mvg

be a numbering of the maximal ideals of R that contain a and b. For each i with
1 � i � v, let 
i WD jR=mi j � @0. Let B D RŒŒx��Œg=f �.

(1) Suppose that .f; g/RŒŒx�� D RŒŒx�� and x divides f ; equivalently B D
RŒŒx��Œ1=f �, a D 0, and b is a unit. Then Spec.B/ is a fan of cardinality ˇ.

(2) Suppose that g D 0 or .f; g/RŒŒx�� D RŒŒx�� and x does not divide f , so that
B D RŒŒx�� or B D RŒŒx��Œ1=f �, a ¤ 0, and .a; b/R D R. Then Spec.B/ is
either order-isomorphic to Spec.RŒŒx��/ or to Spec.RŒŒx��/ with jRŒŒx��j height-
one maximal elements adjoined.

(3) (a) If f; g is an RŒŒx��-sequence and x divides f , then a D 0 and b is a nonzero
nonunit.

(b) If a D 0 and b is a nonzero nonunit, then Spec.B/ is D-birational of type
.ˇIˇI .v; 0/I 
1; � � � ; 
v/, as defined in Definition 6.3.

(4) (a) If f; g is an RŒŒx��-sequence and x does not divide f , then a ¤ 0 and
.a; b/R ¤ R.

(b) If a ¤ 0 and .a; b/R ¤ R, then Spec.B/ is N -birational of type .ˇIˇI v C
1I 
1; � � � ; 
v; ˛I t1; � � � ; tv/, for some t1; � � � ; tv in N0; the list m1; : : : ;mv is
to be reordered so that the corresponding list t1; � � � ; tv is in increasing order.
See Definition 6.2.

Proof. See [5, Theorem 4.1]; it is an easy adjustment to put in the 
i instead of 
 .
ut

The “type” referred to in Definitions 6.2 and 6.3 below is like a genetic code
that describes the numbers of prime ideals in various positions of Spec.RŒŒx��Œg=f �/
in general. These definitions are related to Definition 5.5; here we give more details
and restrictions on the partially ordered set F than in that definition.

Definition 6.2. Let `; t1; : : : ; t`�1 2 N0 be such that t1 � t2 � � � � � t`�1, and
let ˇ; 
1; : : : ; 
` be infinite cardinal numbers with each 
i � ˇ. Let " D 0 or ˇ; if
` D 0, there are no ti or 
i and we require " D ˇ ¤ 0. Then a partially ordered set
U is N -birational of type ."IˇI `I 
1; : : : ; 
`I t1; : : : ; t`�1/ if axioms 1–6 hold:

(1) jU j D ˇ, and U has a unique minimal element u0.
(2) jfheight-one maximal elements of U gj D ".
(3) If ` ¤ 0, then dim.U / D 2. If ` D 0 (and so " D ˇ ¤ 0), then dim.U / D 1

and U is a fan; see Definition 5.1.
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(4) U has exactly ` height-one elements u 2 U such that ju"j D 1. Moreover, if
we list these elements as P1; P2; : : : ; P`, then they satisfy:

• jP "
i j D 
i ; for each i with 1 � i � `I

•
[̀

iD1
P

"
i D fheight-two maximal elements of U g; and

• 1 � i; j < `, and i ¤ j H) jP "
i \ P "

` j D ti and jP "
i \ P "

j j D 0.

(5) For every height-one element u 2 U n fP1; P2; : : : ; P`g, there exists a unique
maximal element in U that is greater than or equal to u.

(6) For every height-two element t 2 U , jLe.t/j D ˇ.

If each ti D 0, then every pair .Pi ; Pj / with i ¤ j is comaximal by the condition
of axiom 4; otherwise P` is usually distinguishable from the other Pi because there
are ti maximal elements bigger than both P` and Pi , for each i with 1 � i <

`. Schematically, the condition of axiom 4 yields the following j -sets, where the
unique minimal element below all other elements has been removed:

γi ti γ tj γj γ1 γ2 . . .

. . .

γ

(4) Pi P Pj OR P1 P2 P

Diagram 6.2.0: Parts of N -birational posets; on the right each ti D 0

Abbreviations 6.2.a. If 
1 D � � � D 
` D 
 (as in all of our examples), then we
write the type as ."IˇI `I 
 I t1; : : : ; t`�1/.

Definition 6.3 forD-birational is the case where every ti � 1 of theN -birational
condition. TheD-birational posets correspond to prime spectra for simple birational
extensions of DŒŒx��, for some Dedekind domain D; see Theorem 6.5. In this case,
we group the nonmaximal j -primes into a comaximal subset and a non-comaximal
subset.

Definition 6.3. Let m; n 2 N0 and let ˇ; 
1; : : : ; 
m; ı1; : : : ; ın be infinite car-
dinal numbers with each 
i ; ıj � ˇ. Let " D 0 or ˇ; if m D n D 0,
require " D ˇ ¤ 0. Then a partially ordered set U is D-birational of type
."IˇI .m; n/I 
1; : : : ; 
mI ı1; : : : ; ın/ if axioms (1), (2), (5), (6) of Definition 6.2 hold
as well as axioms (30) and (40) below:

(30) If m ¤ 0 or n ¤ 0, then dim.U / D 2. If m D n D 0 D ˇ, then " D ˇ ¤ 0,
dim.U / D 1, and U is a fan.

(40) U has exactly m C n height-one elements u such that u" is infinite:
P1; P2; : : : ; Pm;Q1; � � � ;Qn, where for i; j; r; i 0; j 0 2 N with 1 � i; j �
m; i ¤ j; 1 � r � n; 1 � i 0; j 0 < n, and i 0 ¤ j 0; we have:

• jP "
i j D 
i ; jQ"

r j D ır ;
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• jP "
i \ P

"
j j D 0 D jP "

i \Q"
r j D jQ"

i 0 \Q"
j 0 j and jQ"

i 0 \Q"
n j D 1;

•
m[

iD1
P

"
i [

n[

rD1
Q"
r D fheight-two maximal elements of U g.

Abbreviations 6.3.a. If 
i D 
j D ıs D ıt D 
 , for every i , j , s, t with 1 � i <

j � m, 1 � s < t � n, we write the type as ."IˇI .m; n/I 
/.
Diagram 6.3.0 shows the j -set of a D-birational poset of type ."IˇI .m; n/I 
1;

: : : ; 
mI ı1; : : : ; ın/, where n > 1. (The complete poset U would have clumps of
size ˇ beneath each height-two maximal element by axiom 6.)

γ1 . . .

. . .

γm δ1 • . . .

. . .

δn−1 • δn

ε P1 Pm Q1 Qn−1 Qn

u0

Diagram 6.3.0: j -set of aD-birational poset of type ."IˇI .m; n/I 
1; : : : ; 
mI ı1; : : : ; ın/, where
n > 1

Remark 6.4. Ambiguity: If U is an N -birational poset of type ."IˇI `I˛I 0; � � � ; 0/
where ` D 1, or where ` > 1 and each ti D 0, then U is D-birational, but
there is some ambiguity about the type. We could take either .m; n/ D .`; 0/

or .m; n/ D .` � 1; 1/. The picture for the spectra is the same in either case.
A D-birational partially ordered set of type ."IˇI .1; 0/I˛/ is order-isomorphic
to one of type ."IˇI .0; 1/I˛/ and a D-birational partially ordered set of type
."IˇI .m; 0/I˛/, form > 1, is order-isomorphic to one of type ."IˇI .m� 1; 1/I˛/,
but not to one of type ."IˇI .m � 2; 2/I˛/. We keep this ambiguity because the
different types arise in different circumstances when the notation is applied to
Spec.RŒŒx��Œg=f �/.

When R is a countable Dedekind domain, the cardinalities in Theorem 6.1 can be
given more explicitly, yielding a true characterization. For R countable, all the 
i
and ıj are equal, by Lemma 2.6, and so we use the abbreviated form of the code in
Abbreviations 6.3.a. Recall that .aR WR b/ D fc 2 R j bc 2 aRg, if a; b 2 R.

Theorem 6.5 ([5, Theorem 4.3]). Let R be a countable Dedekind domain with
quotient fieldK such that max.R/ is infinite, let x be an indeterminate, and let B be
a simple birational extension ofRŒŒx��, as described below for f; g 2 RŒŒx�� anRŒŒx��-
sequence such that f; g have constant terms a, b respectively. Set v D jVR.a; b/j
and w D jfq 2 VR.a; b/ j .aR W b/ ª qgj. Then:

(1) If a D 0 and B WD RŒŒx��Œ1=f �, then Spec.B/ is a fan.
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(2) If a ¤ 0 and B WD RŒŒx��Œ1=f �, then Spec.B/ is order-isomorphic to
Spec.QŒy�ŒŒx��/ or Spec.QŒŒx��Œy�/.

(3) If B D RŒŒx��Œg=f �, a D 0, b ¤ 0, and bR ¤ R, then Spec.B/ is D-birational
of type .jRjI jRjI .v; 0/I @0/:

(4) If B D RŒŒx��Œg=f �, a ¤ 0, and .a; b/R ¤ R, then Spec.B/ is D-birational of
type

.jRjI jRjI .v � w;w C 1/I @0/:

In order to show that Theorem 6.5 is a characterization, we show every D-
birational poset occurs, for some Dedekind domain D. In fact this is true with
D D Z, as we see in Theorem 6.6.

Theorem 6.6 ([5, Theorem 4.8]). Let R be a PID with ˛ maximal ideals, where
˛ is infinite, let x and y be indeterminates, set ˇ D jRŒŒx��j, and suppose that
˛ D jRj �@0 D jR=mj �@0 is constant, for each m 2 max.R/. Then, for eachm; n 2
N0, there exists a simple birational extension of RŒŒx�� that is D-birational of type
.ˇIˇI .m; n/I˛/. In particular, ifR is a PID with jRj D j max.R/j D @0 andm; n 2
N0, then, for everyD-birational partially ordered setU of type .jRjI jRjI .m; n/I @0/
from Definition 6.3, there is a simple birational extension B WD RŒŒx��Œg=f � ofRŒŒx��
so that the prime spectrum of B is order-isomorphic to U .

We give an example adjusted from [5] to illustrate Theorems 6.5 and 6.6.

Example 6.7. Let B be the simple birational extension B WD ZŒŒx��Œg=f � of ZŒŒx��,
where f D x C 2079 and g D x C 4851. Then, in the notation of Theorem 6.5,
a D 2079 D 33 � 7 � 11; b D 4851 D 32 � 72 � 11, .aZ W b/ D 3Z, and so v D
jf3; 7; 11gj D 3, w D 2, and .f; g/ZŒŒx�� ¤ ZŒŒx��, since .f; g/ � .x; 3/. Since
7f � 3g D 4x 2 .f; g/, we have .f; x/ � P or .f; 2/ � P , for every prime ideal
P minimal over .f; g/. Therefore the ideal .f; g/ has height two, and so, by [15,
Theorem 17.4], f; g is a ZŒŒx��-sequence. Also, in ZŒy�, the ideal

.fy � g/ZŒy� D .2079y � 4851/ZŒy� D .32 � 7 � 11.3y � 7//ZŒy�:

The height-one prime ideals in ZŒy� containing this ideal are .3/, .7/, .11/, and
.3y � 7/. By Theorem 6.5, Spec.B/ is D-birational of type .jRjI jRjI .1; 3/I @0/,
since the cardinality of ZŒŒx�� is jRj and the cardinality of max.Z/ is jZj � @0 D @0.
Thus Diagram 6.7.1 shows the partially ordered set Spec.B/, except that we cannot
show the clumps of size jRj beneath every height-two maximal ideal. Here � is the
canonical map from ZŒŒx��Œy� ! B WD ZŒŒx��Œg=f �; and �.x; 3/ denotes the image
in B under � of the ideal .x; 3/ZŒŒx��. There is one j -prime ideal, namely �.x; 3/,
that is unrelated to the others; the other three are connected by height-two maximal
ideals that contain the last j -prime ideal, �.x; 3y � 7/.

Diagram 6.7.2 is a close-up picture showing relations for elements of the set
labeled C@0 , to show, for everyM 2 C@0 , that jLe.M/j D jRj.
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Cℵ0 ℵ0 π(x,7, y) ℵ0 π(x,11,3y + 4) ℵ0

|R| π(x,3) π(x,7) π(x,11)|R| π(x,3y − 7)|R|

(0)

Diagram 6.7.1: Spec.B/ for Example 6.7

• • . . . •

|R| π(x,3) |R| |R|

(0)

Diagram 6.7.2: Relations in C@0 from Diagram 6.7.1

Remark 6.8. If R is a countable one-dimensional Noetherian domain R such that
Spec.RŒy�=.ay�b// is know then one can also find Spec.B/; see [5]. WhenR is not
Dedekind, however, the relations among the minimal elements of Spec.RŒy�=.ay�
b//may be more complex than they are for Dedekind domains, and we do not know
what posets are realizable as Spec.RŒy�=.ay � b//. It is not clear that every form of
the axioms for that situation can be realized.

The following example from [5] gives a simple birational extension B of
ZŒ5i �ŒŒx�� that has two distinct maximal ideals containing two distinct nonmaximal
height-one j -primes. Thus Spec.B/ is notD-birational.

Example 6.9. For R D ZŒ5i �, a non-Dedekind ring, let B D ZŒ5i �ŒŒx��Œg=f �, f D
x C 5; g D 5i . Then the two nonmaximal height-one j -primes of B correspond in
ZŒ5i �Œy� to .5; 5i/ZŒ5i �Œy� and to

p WD .y � i/ZŒi �Œy� \ ZŒ5i �Œy� D .y2 � 1; 5y � 5i; 5iy C 5/ZŒ5i �Œy�:

Therefore .5; 5i/C p D .y2 � 1; 5; 5i/ D .y2 � 4; 5; 5i/ � .y � 2; 5; 5i/ \ .y C
2; 5; 5i/: If we let M1 D .y � 2; 5; 5i/ZŒ5i �Œy�;M2 D .y C 2; 5; 5i/ZŒ5i �Œy�, and

denotes the image in B of the map Spec.ZŒ5i �Œy�=.5y � 5i// ! VB.x/ from
Remarks 3.9.1, we have j -Spec.B/ in Diagram 6.9.1:

To make Diagram 6.9.1 show all of Spec.B/, we would add clumps of size
jRj beneath every height-two prime ideal but beneath no other height-two prime
ideal. This partially ordered set is N -birational of type .jRjI jRjI 2I @0I 2/, since the
number of height-one maximal ideals is jRj and jLe.P /j D jRj for every height-two
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ℵ0

|R| (5,5i) p

ℵ0

(0)

M1 M2
Diagram 6.9.1: j -Spec.B/,
for B WD ZŒ5i �ŒŒx��Œg=f �,
f D x C 5; g D 5i

P 2 Spec.B/; also `, the number of nonmaximal j -prime ideals, is 2. Since the
number t1 of maximal ideals containing both of them is 2, we have that j -Spec.B/
is not D-birational.

The following question raised in [5] is still unknown:

Question 6.10. Does everyN -birational poset of type .jRjI jRjI `I @0I t1; � � � ; t`�1/,
for all values of `; and t1 � � � � � t`, occur as Spec.RŒŒx��Œg=f �/, where g; f are as
described in Theorem 6.1?

7 Examples of Two-Dimensional Polynomial-Power Series
Prime Spectra

To illustrate Theorem 5.4, we give an example withR D Z; this partially ordered set
is the prime spectrum of ZŒy�ŒŒx��=Q, for an appropriately chosen height-one prime
ideal Q of ZŒy�ŒŒx��:

Example 7.1. For ˛ D .2y � 1/ � 3 � .y C 1/ � y � .y.y C 1/ C 6/ � 2 � .3y C 1/,
we describe Spec.ZŒy�ŒŒx��=.x�˛//, by displaying j -Spec.ZŒy�ŒŒx��=.x�˛// in this
diagram:

(x,2y−1) (x,3) (x, y)(x, y+1)

(0) = (x − α)

(x, y(y+1)+6) (x,2) (x,3y+1)

{(p, x,2y− 1)} {(3, x, h(y))} |N| |N| |N| |N| |N|
(3, x, y+1) (2, x, y)(3, x, y) (2, x, y+1)(5, x, y+2)

Diagram 7.1.1: j -Spec.ZŒy�ŒŒx��=.x � ˛//
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The partially ordered set in Diagram 7.1.1 is image polynomial-power series
of type .0I jRjI 7I @0IF / from Definition 5.5, where F is the part of the poset
shown that includes only the ideals at the second and third levels and their
connections; that is, F corresponds to the twelve ideals .x; 2y � 1/; .x; 3/; : : : and
.3; x; y C 1/; .3; x; y/; : : : and with the relations (lines) connecting them.

We close with a description of the two-dimensional partially ordered sets that
arise as Spec.A=Q/, where A D RŒŒx��Œy� or RŒy�ŒŒx�� and R is a one-dimensional
Henselian integral domain with unique maximal ideal m. As with Example 7.1,
Spec.A=Q/ is largely determined by Spec.RŒy�=I /, where I is a height-one prime
ideal of RŒy� such that .I; x/A D .Q; x/A.

Theorem 7.2 ([4, Theorem 7.2]). Let .R;m/ be a Henselian integral domain. Let
x and y be indeterminates; let A D RŒŒx��Œy� or RŒy�ŒŒx��. Let Q be a height-one
prime ideal of A and let B D A=Q. Then Spec.B/ n fthe set of height-one maximal
ideals} is determined by Spec.RŒy�=I /, where I is a height-one prime ideal ofRŒy�
such that .I; x/A D .Q; x/A. If I is contained in mRŒy�, then Spec.B/ is given in
Diagram 7.2.0.

ε

|(R/m)[y]|

•
(m, Q) |R[[x]]| |R[[x]]| · · · |R[[x]]|

•
Q

M1•
M2• · · · Mt•

Diagram 7.2.0: Spec.B/ if I � mRŒy�

Notes

• M1;M2; � � � ;Mt are the height-two ideals of RŒy� that contain m and another
height-one prime ideal of RŒy� that contains I .

• M1; � � � ;Mt denote the image of .Mi ; x/A in A=Q.
• If A D RŒy�ŒŒx��, " is 0; for A D RŒŒx��Œy�, " is sometimes finite and sometimes

jRŒŒx��j.
• The sets Le.M/, for elements M of the block of size j.R=m/Œy�j, are not shown.
• The partially ordered set in Diagram 7.2.0 is image polynomial-power series of

type ."I jRŒŒx��jIF I 1I jR=mj � @0/, where F corresponds to f.m;Q/g in Spec.B/.
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Integer-Valued Polynomials: Looking
for Regular Bases (A Survey)

Jean-Luc Chabert

Abstract This paper reviews recent results about the additive structure of algebras
of integer-valued polynomials and, particularly, the question of the existence and
the construction of regular bases. Doing this, we will be led to consider questions of
combinatorial, arithmetical, algebraic, ultrametric, or dynamical nature.

Keywords Integer-valued polynomials • Generalized factorials • v-Orderings •
Kempner’s formula • Regular basis • Pólya fields • Divided differences •
Mahler’s theorem
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1 Introduction

The Z-algebra

Int.Z/ D ff .X/ 2 QŒX� j f .Z/ � Zg

is a paradigmatic example because several of its properties still hold for some
general algebras of integer-valued polynomials. As a ring, Int.Z/ has a lot of
interesting properties, but here we focus our survey on its additive structure since it
is a cornerstone for the study of quite all other properties. The Z-module Int.Z/ is
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free: it admits a basis formed by the binomial polynomials, and this basis turns out to
be also an orthonormal basis of the ultrametric Banach space C .Zp;Qp/ whatever
the prime p.

Now replace Z by the ring of integers of a number field as Pólya [43] and
Ostrowski [41] did, or more generally, on the one hand, replace Z by any Dedekind
domain D with quotient field K and, on the other hand, consider a subset S of D
and the D-algebra of polynomials whose values on S are in D:

Int.S;D/ D ff 2 KŒX� j f .S/ � Dg:

During the last decades of the last century, there were many works about this D-
algebra from the point of view of commutative algebra. As said above, our aim here
is to characterize the cases where the D-module Int.S;D/ admits bases and, more
precisely, regular bases, that is, with one and only one polynomial of each degree
and, when there are such bases, we want to describe them. This was already the
subject of [17, Chap. II] but, during the last 15 years, a lot of new results were
obtained, especially thanks to several notions of v-ordering introduced by Bhargava
from 1998 to 2009 [9–12].

In Sect. 2, we recall a few properties of Int.Z/ that will be generalized, in
particular those concerning factorials. Then, in Sect. 3, we consider the factorial
ideals and, in Sect. 4, the notion of v-ordering and its links with integer-valued
polynomials. In Sect. 5 we study the existence and the construction of regular bases
while Sect. 6 is devoted to effective computations. Then, in Sect. 7, we consider
some particular sub-algebras of Int.S;D/ and, in Sect. 8, we apply our knowledge
of regular bases to obtain orthonormal bases of ultrametric Banach spaces. We end
in Sect. 9 with the case of several indeterminates.

2 The Paradigmatic Example: Int.Z/

In the ring of integer-valued polynomial Int.Z/ D ff .X/ 2 QŒX� j f .Z/ � Zg;
there are polynomials without any integral coefficients, for instance,

 
X

n

!
D X.X � 1/ � � � .X � nC 1/

nŠ
.n � 2/ or Fp.X/ D Xp �X

p
.p 2 P/:

2.1 Some Algebraic Structures

As a subset of QŒX�, Int.Z/ is stable by addition, multiplication, and composition.

Proposition 1. The binomial polynomials form a basis of the Z-module Int.Z/:
every g.X/ 2 Int.Z/ may be uniquely written as
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g.X/ D
deg.g/X

kD0
ck

 
X

k

!
with ck 2 Z .Pólya [42], 1915/: (1)

Proposition 2 ([17, Sect. 2.2]). The set f1;Xg [ f.Xp �X/=p j p 2 Pg is a min-
imal system of polynomials with which every element of Int.Z/ may be constructed
by means of sums, products, and composition (see Example 3 below).

Proposition 3 ([17]). Int.Z/ is a two-dimensional non-Noetherian Prüfer domain.

For instance, the ideal I D ff .X/ 2 Int.Z/ j f .0/ is eveng is not finitely generated.

2.2 A Polynomial Approximation in Ultrametric Analysis

Let p be a fixed prime number. Recall that jxj D e�vp.x/ is an absolute value on Qp

where vp denotes the p-adic valuation. For every compact subset S , the norm of a
continuous function ' W S ! Qp is then k'kS D supx2S j'.x/j:
Proposition 4 (Mahler [39], 1958). Every function ' 2 C .Zp;Qp/may be written

'.x/ D
1X

nD0
cn

 
x

n

!
with cn 2 Qp and lim

n!C1 vp.cn/ D C1: (2)

Moreover, k'kZp D kfcngn2Nk; that is, infx2Zp vp.'.x// D infn2N vp.cn/:

One says that the binomial functions
�
x
n

�
form an orthonormal basis of the Banach

space C .Zp;Qp/. The coefficients cn are unique and may be computed recursively:

cn D '.n/�
n�1X

kD0
ck

 
n

k

!
:

2.3 Some Properties of the Factorials

As denominators of the binomial polynomials, the factorials and their general-
izations will play an important rôle in the description of bases. We recall some
properties which will be preserved in a more general context.

Property A. For all k; l 2 N,
�
kCl
k

� D .kCl/Š
kŠ�lŠ 2 N:

Equivalently, the product of l consecutive integers is divisible by lŠ:

.k C 1/.k C 2/ � � � .k C l/

lŠ
2 N: (3)
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When considering integers which are not consecutive, we still have the following:

Property B. For every sequence x0; x1; : : : ; xn of nC 1 integers, the product

Y

0�i<j�n
.xj � xi / is divisible by 1Š 	 2Š 	 � � � 	 nŠ: (4)

We now consider links between factorials and polynomials.

Property C. For every monic polynomial f 2 ZŒX� of degree n,

d.f / D gcdff .k/ j k 2 Zg divides nŠ (Pólya [42], 1915): (5)

Property D. For every integer-valued polynomial g of degree n

nŠ 	 g.X/ 2 ZŒX� : (6)

Property E. The subset formed by the leading coefficients of the integer-valued
polynomials of degree � n is 1

nŠ
Z.

Property F. The number of polynomial functions from Z=nZ to Z=nZ is

n�1Y

kD0

n

gcd.n; kŠ/
.Kempner [36], 1921/; (7)

where functions are induced by polynomials of ZŒX�:

Finally, recall Legendre’s formula:

nŠ D
Y

p2P
pwp.n/; where wp.n/ D

X

k�1

�
n

pk

�
.Legendre, 1808/: (8)

3 General Integer-Valued Polynomials and Generalized
Factorials

Notation. In the sequel, D always denotes a Dedekind domain with quotient field
K and S a subset of D.

The D-algebra of integer-valued polynomials on D is

Int.D/ D ff .X/ 2 KŒX� j f .D/ � Dg (9)

and the D-algebra of integer-valued polynomials on S (with respect to D) is
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Int.S;D/ D ff .X/ 2 KŒX� j f .S/ � Dg: (10)

As S � D, we have DŒX� � Int.D/ � Int.S;D/ � KŒX�: Let us consider a
more general situation by introducing a D-algebra B such that DŒX� � B � KŒX�:

Definition 1 (Pólya [43]). A basis of the D-module B is said to be a regular basis
if it is formed by one and only one polynomial of each degree.

3.1 Characteristic Ideals and Regular Bases

Definition 2. The characteristic ideal of index n of theD-algebraB is the set In.B/
formed by 0 and the leading coefficients of the polynomials in B of degree n.

If B D Int.S;D/, we write In.S; B/ instead of In.Int.S;D//.
Clearly, fIn.B/gn2N is an increasing sequence of D-modules such that

8k; l 2 N D � Ik.B/ � K and Ik.B/ � Il .B/ � IkCl .B/: (11)

Recall that a fractional ideal of D is a sub-D-module J of K for which there exists
a nonzero element d 2 D such that dJ D fdj j j 2 Jg � D. A very simple
argument using Vandermonde’s determinant leads to:

Lemma 1 ([17, Proposition I.3.1]). Let f be a polynomial of KŒX� with degree
n. Assume that x0; x1; : : : ; xn are distinct elements of K such that f .xi / 2 D for
0 � i � n, then df belongs to DŒX� where d D Q

0�i<j�n.xj � xi /.
As a consequence,

– if n < Card.S/, then In.S;D/ is a fractional ideal of D,
– if n � Card.S/, then In.S;D/ D K because

�Q
s2S .X � s/

�
KŒX� � Int.S;D/:

In particular, if Card.S/ is infinite, all the In.S;D/’s are fractional ideals and, more
generally, so are all the In.B/’s if B � Int.S;D/:

Clearly, by definition of the characteristic ideals, we have:

Proposition 5 ([17, Proposition II.1.4]). A sequence of polynomials ffngn�0
where deg.fn/ D n is a regular basis of B if and only if, for every n � 0, the
leading coefficient of fn generates the ideal In.B/. In particular, the D-algebra
Int.B/ admits a regular basis as a D-module if and only if all the In.B/’s are
principal.

Thus, if S is finite, the D-module Int.S;D/ cannot admit any regular basis since
In.S;D/ D K for n � Card.S/.
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3.2 The Factorial Ideals of a Subset S

When S D D D Z ; In.Z;Z/ D 1
nŠ
Z: Thus, it is natural to define new factorials as

the inverses of the characteristic ideals. In general,D is not a principal ideal domain
and we cannot define these new factorials as numbers, but as ideals.

Recall that the inverse of a nonzero fractional ideal I of D is the fractional ideal
I�1 D fx 2 K j xI � Dg: If I contains 1, then I�1 is an integral ideal. Since
D is assumed to be a Dedekind domain, the nonzero fractional ideals of D form a
multiplicative group (and I � I�1 D D) and an ideal a divides an ideal b if and only
if b � a. By convention, we write K�1 D .0/ and .0/�1 D K:

Definition 3. The factorial ideal .nŠ/DS of index n of the subset S with respect to
the domainD is the inverse of the fractional ideal In.S;D/:

nŠDS D In.S;D/
�1: (12)

The sequence fnŠDS gn2N is a decreasing sequence of integral ideals of D and

8n nŠDS j.nC 1/ŠDS ; 0Š
D
S D D; Œ nŠDS D .0/ , n � Card.S/ �; (13)

3.3 First Generalized Properties of the Factorial Ideals

Proposition 6 (Generalized Property A). Let k; l 2 N be any integers then

kŠDS 	 lŠDS divides .k C l/ŠDS : (14)

This is a straightforward consequence of (11).

Proposition 7 (Generalized Property D [17, Proposition II.1.7]). For every
polynomial g.X/ 2 Int.S;D/ of degree n, we have

nŠDS 	 g.X/ � DŒX�: (15)

Recall that for every polynomial f 2 KŒX�:
– the content of f is the ideal c.f / of D generated by the coefficients of f ,
– the fixed divisor of f over S is the ideal d.S; f / ofD generated by the values of
f on S .

Proposition 8 (Generalized Property C [10, Theorem 2]). With the previous
notation, for every f 2 KŒX� of degree n;

d.S; f / divides c.f / 	 nŠDS : (16)
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Proof. By definition, d.S; f /�1 	 f � Int.S;D/: Then, nŠDS 	 d.S; f /�1 	 f �
DŒX� by Proposition 7. Finally, nŠDS 	 d.S; f /�1 	 c.f / � D: ut
Proposition 9. 1. For every b 2 D n f0g and every c 2 D; nŠDbSCc D bnnŠDS :

2. For every T � S; nŠDS divides nŠDT . In particular, nŠ divides nŠZS .

Proof. 1. The equality follows from the isomorphism of D-algebras:

f .X/ 2 Int.S;D/ 7! f

�
X � c

b

�
2 Int.bS C c;D/:

2. The divisibility relation follows from the containment Int.S;D/ � Int.T;D/:
ut

We generalized Properties A, C, and D and, by definition, Property E is satisfied
by the ideals nŠDS : We will study Properties B and F in the next section by means of
localization.

3.4 Localization

Clearly,

Int.S;D/ D \m2Max.D/ Int.S;Dm/ and 8p 2 Spec.D/ Int.S;D/p � Int.S;Dp/:

Since D is Noetherian, we have the reverse containment [17, Proposition I.2.7]:

8p 2 Spec.D/ Int.S;D/p D Int.S;Dp/: (17)

We deduce localization formulas for the characteristic ideals and the factorial ideals:

In.S;D/ D \m2Max.D/ In.S;Dm/; nŠ
D
S D \m2Max.D/ nŠ

Dm
S ; (18)

In.S;D/m D In.S;Dm/ and .nŠDS /m D nŠ
Dm
S : (19)

4 Local Studies (Bhargava’s v-Orderings) and Globalizations

Is there an easy way to compute these factorials? Yes, by means of the notion of
v-ordering introduced by Bhargava [9]. This is a local notion; thus, we consider
localizations, which are discrete valuation domains.
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Notation for Sects. 4.1 and 4.2. We denote by v a discrete valuation on K; by V
the corresponding valuation domain and by S any subset of V .

4.1 Definitions and Examples

Before v-orderings, we used sequences introduced by Helsmoortel to study the case
where S D V: The sequences called VWDWO sequences are the sequences which
satisfy the equivalent statements of the following proposition.

Proposition 10 ([17, Sect. II.2]). Assume that the residue field of V is finite with
cardinality q and denote by m the maximal ideal. For a sequence fangn�0 of
elements of V , the three following assertions are equivalent:

1. Denoting by vq.x/ the largest exponent k such that qk divides x;

8m; n 2 N v.an � am/ D vq.m � n/:

2. For all r; s 2 N; farC1; arC2; : : : ; arCqs g is a complete system of representatives
of V .mod ms/:

3. For all n > m � 0; v
	Qn�1

kDm.an � ak/



D P
k�1

h
n�m
qk

i
:

Example 1. The following sequence fangn�0 is a VWDWO sequence of V: Choose
a generator � of m and a system of representatives fa0 D 0; a1; : : : ; aq�1g of V
modulo m:

For n D n0 C n1q C n2q
2 C � � � C nrq

r with 0 � ai < q; (20)

let an D an0 C an1� C an2�
2 C � � � C anr �

r : (21)

We also had the VWD sequences introduced by Amice [8] for her regular compact
subsets of local fields. But Bhargava’s v-orderings are more general.

Definition 4. A v-ordering of a subset S of V is a sequence fangn�0 of elements of
S such that, for every n � 1,

v

 
n�1Y

kD0
.an � ak/

!
D min

x2S v

 
n�1Y

kD0
.x � ak/

!
: (22)

Since v is discrete, there always exist v-orderings. Such sequences may be con-
structed inductively on n choosing any element of S for a0.

Example 2. 1. For every prime p, the sequence fngn�0 is a p-ordering of Z:

2. For every integer q � 2 and every prime p, the sequence fqngn�0 is a p-ordering
of the set Sq D fqn j n 2 Ng (cf. [17, Exercise II.15]).
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3. If Card.S/ D s < C1 and fangn�0 is a v-ordering, then S D fai j 0 � i < sg.
4. If fangn�0 is a VWDWO sequence of V as defined in Proposition 10 then, for

every k � 0, the sequence fangn�k is a v-ordering of V .

4.2 v-Orderings and Integer-Valued Polynomials

There are strong links between v-orderings and integer-valued polynomials:

Proposition 11 ([9]). Let fangn�0 be a sequence of distinct elements of S . Consider
the associated sequence of polynomials:

f0.X/ D 1 and fn.X/ D
n�1Y

kD0

X � ak
an � ak

.for n � 1/: (23)

Then the following assertions are equivalent:

1. The sequence fangn�0 is a v-ordering of S .
2. For every n � 0, fn.S/ � V .
3. The sequence ffn j n 2 Ng is a basis of the V -module Int.S; V /:
4. For every d 2 N, for every g 2 KŒX� with degree d; one has

g.a0/; g.a1/; : : : ; g.ad / 2 V , g.S/ � V: (24)

Corollary 1. If fangn2N is a v-ordering of S; then the following numbers do not
depend on the choice of the v-ordering fangn2N of S :

wS .n/ D v

 
n�1Y

kD0
.an � ak/

!
: (25)

Proof.

wS .n/ D
� �v.In.S; V // for 0 � n < Card.S/;

C1 for n � Card.S/:
(26)

ut
For instance, by Proposition 10 (Pólya [43]),

wV .n/ D
(

wq.n/ D P
k�1

h
n
qk

i
if q D Card.V=m/ < C1;

wq.n/ D 0 if q D Card.V=m/ D C1:
(27)
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4.3 Globalization: v-Orderings and Factorials

Notations. Consider again a Dedekind domain D. For every maximal ideal m of
D; we denote by vm the corresponding valuation of K and by wS;m.n/ the integers
defined in Formula (25) (for the valuation v D vm); finally we speak of m-orderings
instead of vm-orderings.

Proposition 12. For every n 2 N such that n < Card.S/, we have

nŠS D
Y

m2Max.D/

mwS;m.n/ : (28)

Proof. It follows from (19) and (26) that
�
nŠDS

�
m

D nŠ
Dm
S D mwS;m.n/Dm: ut

Proposition 13 ([40, Lemma 8]). Whatever the infinite subset S of Z, there are no
three equal consecutive terms in the sequence fnŠZS gn�0:

Question 1 ([40]). Does there exist an infinite subset S of Z such that there are
infinitely many two equal consecutive terms in the sequence fnŠZSgn�0‹

Proposition 14 (Generalized Property B). For all x0; x1; : : : ; xn 2 S :

Y

0�i<j�n
.xj � xi /D is divisible by 1ŠDS 	 2ŠDS 	 � � � 	 nŠDS : (29)

Bhargava’s proof [11] is given for Z, but it also works for D and it really deserves
to be read because it shows how powerful is the notion of v-ordering. There are
many generalizations of Kempner’s formula (7) (see for instance [29]), but Bhargava
seems to be the first who considered functions defined on subsets.

Proposition 15 (Property F [9, Theorem 5]). Let D be a Dedekind domain, let I
be a proper ideal of D with finite norm N D Card.D=I/, and let S be a subset
of D whose elements are noncongruent modulo I. Then, the number of polynomial
functions from S to D=I .induced by a polynomial of DŒX�/ is equal to

N�1Y

kD0

N

Card.D=.I; kŠS //
; (30)

where .I; kŠS / denotes the ideal of D generated by I and kŠS .

Note that kŠS D .0/ for k greater than the number of classes of S modulo I, and
then, .I; kŠS / D I.
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5 Regular Bases

From now on, S is suppose to be infinite. Recall that a regular basis is a basis with
one and only one polynomial of each degree and that Int.S;D/ admits a regular
basis if and only if the factorial ideals nŠDS are (nonzero) principal ideals. Yet, even
when this is the case, it may be difficult to describe a regular basis.

5.1 The Local Case

In the local case, that is, inDm, there always exist regular bases (as we suppose S to
be infinite) constructed by means of an m-ordering of S as shown by Proposition 11.
We recall here an example of regular basis constructed in a different way.

Example 3 ([17, Sect. II.2]). Given a polynomial g.X/, we denote by g�k the
kth iterate of g by composition and we let g�0.X/ D X . In particular, for a
fixed prime number p, starting with Fp.X/ D Xp�X

p
, F �0

p .X/ D X;F �
p .X/ D

Fp.X/; F
�2
p .X/ D Fp.Fp.X//; and by iteration, F �k

p .X/ D Fp.F
�k�1
p .X//:

Finally, for every integer n D n0 C n1p C � � � C nsp
s where 0 � nj < p, we

let Fp;n D Qs
kD0.F �k

p /nk : Note that Fp;0 D 1; Fp;1 D X , and Fp;pk D F �k
p .

Then, the polynomials fFp;n.X/gn�0 form a basis of the Z.p/-module Int.Z.p//.

Moreover, as a Z.p/-algebra, Int.Z.p// is generated by the set
n
F ık
p .X/ j k � 0

o
and

this is a minimal set of generators. Finally, every polynomial of Int.Z.p// is obtained
from 1;X and Xp�X

p
by means of sums, products, and composition.

Remark 1. Analogously to Example 3, we may obtain in the local case minimal
sets of generators of the V -algebra Int.S; V / by means of the sequence fwS.n/ D
�v.In.S; V //gn�0. If gn is a regular basis, we obtain a set of generators by
considering only the gn’s where n satisfies the following:

wS .n/ > wS .i/C wS .j / for all i; j > 0 such that i C j D n [33]:

5.2 Simultaneous Orderings

Computation of factorials and description of bases of the ring of integer-valued
polynomials is easy when there exist simultaneous orderings as for Z.

Definition 5. A sequence fangn2N of elements of S which is an m-ordering of S
for every maximal ideal m of D is called a simultaneous ordering of S .

The following proposition is the global version of Proposition 11.
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Proposition 16. Let fangn�0 be a sequence of distinct elements of S . Consider the
associated sequence of polynomials fn.X/ D Qn�1

kD0
X�ak
an�ak .n � 0/: Then the

following assertions are equivalent:

1. The sequence fangn�0 is a simultaneous ordering of S .
2. For every n � 0, fn.S/ � D.
3. The polynomials ffn j n 2 Ng form a basis of the D-module Int.S;D/:
4. For each g 2 KŒX�with deg.g/ D d; g.S/ � D if and only if g.a0/; g.a1/; : : : ;
g.ad / 2 D:

5. For every n � 1; we have nŠDS D Qn�1
kD0.an � ak/D:

Are there simultaneous orderings? In particular, which Dedekind domains admit
simultaneous orderings [9, Question 3]?

Example 4. 1. Z admits the simultaneous ordering fngn�0.
2. Every semi-local Dedekind domain admits simultaneous orderings (obtained by

the Chinese remainder theorem, see Proposition 18 below).
3. FqŒT �; the analog of Z for function fields, admits a simultaneous ordering

fangn�0; given by Formulas (20) and (21) where F
�
q D fa1; : : : ; aq�1g and �

is replaced by T [11, Sect. 10], leading to Carlitz factorials [20].
4. Let K be a number field with ring of integers OK and T be a multiplicative

subset of OK . Then fngn�0 is a simultaneous ordering of D D T �1OK if
and only if every prime p is either invertible or completely split in D [17,
Theorem IV.3.1].

Conjecture. If K is a number field distinct from Q, then its ring of integers OK

does not admit any simultaneous ordering.

In 2003, Wood [46] proved this conjecture for imaginary quadratic number fields,
while Adam [1] did an analogous study for “imaginary” quadratic function fields in
2005. Adam and Cahen [5] proved in 2010 that there are at most finitely many real
quadratic number fields whose ring of integers admits a simultaneous ordering.

Let us restrict our question on the existence of simultaneous orderings of subsets
of Z [11, Question 30]. Let us say that a sequence fangn�0 is self-simultaneously
ordered if it is a simultaneous ordering of the subset S D fan j n 2 Ng (formed by
its own terms). We then have the following examples:

Example 5 ([7, 11]). 1. The sequence fqngn�0 where jqj � 2 is self-
simultaneously ordered. Denoting by Sq the subset Sq D fqn j n 2 Ng, it follows
that

nŠSq D q
n.n�1/
2 .qn � 1/.qn�1 � 1/ � � � .q � 1/ (Jackson’s factorials):

2. The sequence fn2gn�0 is self-simultaneously ordered. Denoting by N
.2/ the

subset N.2/ D fn2 j n 2 Ng, it follows that nŠN.2/ D .2n/Š

2
: Moreover, the subset
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N
.k/ D fnk j n 2 Ng admits a simultaneous ordering if and only if k D 1 or

2 (recall that the sequence fngn�0 of natural numbers is a simultaneous ordering
of N).

3. The sequence
n
n.nC1/
2

o

n�0 of triangular numbers is self-simultaneously ordered.

Denoting by S the subset S D
n
n.nC1/
2

j n � 0
o
; it follows that nŠS D .2n/Š

2n
:

Noticing that if S admits a simultaneous ordering fangn�0, then T D bS C c where
b; c 2 Z; b 6D 0; admits also a simultaneous ordering, namely fban C cgn�0, we
thus have many other simultaneously ordered subsets of Z.

We also have the following for discrete dynamical systems.

Proposition 17 ([7, Proposition 18]). Consider the dynamical system .Z; f /

formed by the set Z and a nonconstant polynomial f 2 ZŒX� distinct from ˙X .
Then, for every x 2 Z, the sequence ff n.x/gn�0; where f n denotes the nth
iterate of f; is self-simultaneously ordered. In other words, each orbit admits a
simultaneous ordering.

Equivalently, for every x 2 Z and for allm; n 2 N with m � n � 1:

n�1Y

jD0
.f n.x/ � f j .x// divides

n�1Y

jD0
.f m.x/ � f j .x//:

Note that the sequence fqngn�0 in Example 5(1) stems from a dynamical system
with f .X/ D qX and x D 1. By considering the orbit of 3 under the iteration of
X2 � 2X C 2; we obtain:

Corollary 2. The sequence formed by the Fermat numbers fFn D 22
n C 1gn�0 is

self-simultaneously ordered.

Question 2. Are there other natural examples of subsets of Z admitting simultane-
ous orderings?

5.3 The General Case

To obtain regular bases, if any, we use the Chinese remainder theorem. Analogously
to [17, Lemma II.3.4] or following [9, Theorem 11], we have:

Proposition 18. For each m 2 Max.D/; let fam;ngn�0 be an m-ordering of S . For
n > 0, let fbn;kg0�k<n be elements ofD such that

vm.bn;k � am;k/ > wS;m.n/ for all m such that wS;m.n/ 6D 0: (31)

Finally, let gn.X/ D Qn�1
kD0.X � bn;k/: Then, the fixed divisor d.gn; S/ of g on

S .as defined before Proposition 8/ is equal to the nth factorial nŠDS .
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We derive a few corollaries with the gn’s as defined in Proposition 18.

Corollary 3. We have the following isomorphism of D-modules:

Int.S;D/ D ˚n�0In.S;D/ gn.X/: (32)

We just have to verify that c0g0.X/Cc1g1.X/C� � �Ccngn.X/ with cj 2 K belongs
to Int.S;D/ if and only if for 0 � j � n; cj 2 Ij .S;D/:

Corollary 4. If the factorial ideals are principal, writing nŠDS D dnD, the
polynomials 1

dn
gn.X/ then form a regular basis of the D-module Int.S;D/:

But at any rate, since a nonfinitely generated projective module over a Dedekind
domain is free:

Corollary 5. The D-module Int.S;D/ is free.

Yet, if there is no regular basis, that is, if the factorial ideals are not principal, it may
be difficult to describe a basis.

5.4 Pólya Groups and Pólya Fields

In this paragraph,K denotes an algebraic number field and OK its ring of integers.
We restrict here our study to the case where S D D D OK . The following group is
a measure of the obstruction for Int.OK/ to have a regular basis.

Definition 6 ([17, Definition II.3.8]). The Pólya group of K is the subgroup
Po.K/ of the class group of K generated by the classes of the factorial ideals
of OK .

One knows [17, II.3.9] that Po.D/ is also generated by the classes of the ideals:

˘q.D/ D
Y

m2Max.D/;N.m/Dq
m .q � 2/:

Proposition 19. A Pólya field is a number field K which satisfies the following
equivalent assertionsW
1. Int.OK/ admits a regular basis.
2. The fractional ideals In.OK/ are principal.
3. The integral ideals .nŠ/OK are principal.
4. The ideals˘q.OK/ are principal.
5. Po.K/ ' f1g.

If K=Q is a galoisian extension, for every prime p, one has pOK D ˘pf .OK/
e ,

and hence, to know whether K is a Pólya field, we just have to consider the ideals
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˘q.OK/ such that the maximal ideals m with N.m/ D q lye over the primes p that
are ramified in K [41]. We also have:

Proposition 20 ([22, Proposition 3.6]). If K1=Q and K2=Q are two galoisian
extensions whose degrees are relatively prime, then

Po.K1K2/ ' Po.K1/ 	 Po.K2/: (33)

For quadratic fields, the Pólya group corresponds to the group of ambiguous
classes whose description was done by Hilbert (see [17, Proposition II.4.4]) and
the characterization of the quadratic Pólya fields was done by Zantema [47]. Every
cyclotomic field is a Pólya field [47]. A systematic study of the galoisian Pólya fields
of degree � 6 was recently undertaken by Leriche. For instance,

Proposition 21 ([37, Proposition 3.2]). The cyclic cubic Pólya fields are the fields
QŒt � where t is a root of X3 � 3X C 1 or of X3 � 3pX � pu where p is a prime of
the form 1

4
.u2 C 27w2/; u  2 .mod 3/ and w 6D 0.

She also characterized the galoisian Pólya fields in the cases of cyclic quartic or
sextic fields (the latter, compositum of a cyclic cubic Pólya field and a quadratic
Pólya field) as well as in the cases of cyclic fields of the form QŒj; 3

p
m�; and of

biquadratic fields [37].
Adam [3] undertook a similar study for functions fields. He proved analogously

that every cyclotomic function field in the sense of Carlitz is a Pólya field and
characterized the Kummer extensions and the “totally imaginary” Artin-Schreier
extensions of Fq.T / which are Pólya function fields.

Another interesting notion is the notion of Pólya extension: L=K is a Pólya
extension if the OL-module Int.OK;OL/ admits a regular basis. By the capitulation
theorem, the Hilbert class field HK of every number field K is a Pólya extension
of K . Moreover, HK gives an answer to the following embedding problem: is
every number field contained in a Pólya number field? The answer is yes because it
turns out that every Hilbert class field is a Pólya field [38, Corollary 3.2]. An open
question is to determine the minimal degree of a Pólya field containingK .

6 Computation and Explicit Formulas

In this section, we restrict our study to the local case and consider a slightly more
general situation because the notion of v-ordering may be defined for rank-one
valuations v of K , that is, valuations v such that v.K�/ � R. But since there do
not always exist v-orderings, we have to assume conditions on S , for instance, that
S is precompact, that is, that its completion is compact (cf. [19, Corollary 1.6]).

Notation for Sect. 6. K is a valued field endowed with a rank-one valuation v;
the valuation domain is denoted by V , its maximal ideal by m, and S is an infinite
precompact subset of V .
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In this general framework, all results of Sect. 4.2 hold.
For a 2 V and 
 2 R, we denote by B.a; 
/ the ball of center a and radius e�
 :

B.a; 
/ D fx 2 V j v.a � x/ � 
g:

6.1 How Can We Compute the Function wS .n/‹

We are interested here in the function wS .n/ D �v.In.S;D// D v.nŠDS /: The
sequence fwS.n/gn�0 is called the characteristic sequence of S .

Lemma 2. If fangn�0 is an m-ordering of S , then, for every nonzero b 2 V and
every c 2 V , fban C cgn�0 is an m-ordering of bS C c D fbs C c j s 2 Sg: Thus,

8b; c 2 V wbSCc.n/ D nv.b/C wS .n/:

Lemma 3 ([16, Lemma 3.4]). If fangn�0 is a v-ordering of S , then the subsequence
formed by the an’s which are in a ball B.a; 
/ is a v-ordering of S \ B.a; 
/.

Proposition 22 ([31, Lemma 2]). Let fsi j 1 � i � rg be a system of
representatives of S modulo m, that is, S D [r

iD1.S \ .si C m// . where si 6 sj
.mod m/ 8i 6D j /: If, for each i , fai;ngn�0 is a v-ordering of S\.siCm/, we obtain
a v-ordering of S by shuffling these v-orderings in such a way that the shuffling of
the corresponding characteristic sequences leads to a nondecreasing sequence of
integers.

In particular, the characteristic sequence of S is the disjoint union of the character-
istic sequences of the S \ .si C m/ sorted into a nondecreasing order.

Example 6. Assume that m D �V and Card.V=m/ D q < C1. Consider

S D V n m D [q�1
iD1.ai C m/: (34)

Let fangn�0 be the v-ordering of V given by (21). For 1 � i � q�1, fai C�angn�0
is a v-ordering of ai Cm, and waiCm.n/ D w�V .n/ D nC wV .n/ D nC wq.n/:We
construct a v-ordering of S by taking successively one element of each of the q � 1
partial orderings since the characteristic sequences of the sets ai C m are equal, we
obtain the subsequence formed by the an’s such that v.an/ D 0; and we have

wV nm D
�

n

q � 1
�

C wq

��
n

q � 1
��

D
X

k�0

�
n

.q � 1/qk

�
: (35)
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6.2 Toward Symmetry: Homogeneous Subsets

As seen in Example 6, symmetry may help for the shuffling. We have a kind of
symmetry when we consider homogeneous subsets, that is, subsets S for which
there exists some 
 2 R such that S D [s2S B.s; 
/:

Proposition 23 ([16, Theorem 3.6]). Assume that

S D [r
iD1 B.bi ; 
/ where v.bi � bj / < 
.1 � i 6D j � r/: Then,

wS .n/ D max
ı1C���CırDn

�
min
1�i�r wiS .ı1; : : : ; ır /

�
.ı1; : : : ; ır 2 N/ where

wiS .ı1; : : : ; ır / D wq.ıi /C 
ıi C
X

j 6Di
v.bj � bi /ıj and wq.m/ D

X

k�1

�
m

qk

�
:

We may introduce more symmetry by assuming that q D C1 (wq.ıi / D 0/ W
Proposition 24 ([15, Theorem 4.4]). Assume that Card.V=m/ D C1 and that

S D [r
iD1 B.bi ; 
/ where v.bi � bj / < 
 .1 � i 6D j � r/: (36)

Consider the symmetric matrix B D .ˇi;j / 2 Mr .R/ defined by

ˇi;j D v.bi � bj / for 1 � i 6D j � r; and ˇi;i D 
 for 1 � i � r: (37)

Denote by Bi the matrix deduced from B by replacing every coefficients in i th
column by 1 and let �.B/ D Pr

iD1 det.Bi /. If n D m�.B/C n0 where 0 � n0 <

�.B/; then wS .n/ D m det.B/C wS .n0/:

6.3 Preregular Subsets: Generalized Legendre’s Formula

The best way to obtain symmetry is by considering the notion of preregular subset
which extends Amice’s notion of regular compact subset of a local field [8].

To explain this notion, we introduce the following equivalence relations on V W

8
 2 R 8x; y 2 V x  y .mod 
/ WD v.x � y/ � 
:

We denote by S mod 
 the set of equivalence classes of the elements of S; and let

q
 D Card.S mod 
/
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The fact that S is an infinite precompact subset of V is equivalent to

all the q
 ’s are finite and lim

!C1 q
 D C1:

Definition 7. The precompact subset S is preregular if, for all 
 < ı; for every
x 2 S , S \B.x; 
/ contains exactly qı

q

nonempty subsets of the form S \B.y; ı/:

This notion will allow us to generalize the following well-known formulas obtained
for v discrete, Card.V=m/ D q, and S regular:

vp.nŠ/ D
X

k�1

�
n

pk

�
Legendre
1808

v.nŠV / D
X

k�1

�
n

qk

�
Pólya
1909

v.nŠS / D
X

k�1

�
n

qk

�
Amice
1964

:

Proposition 25 ([26, Theorem 1.5]). The precompact subset S is preregular if and
only if, denoting by 
k the critical valuations of S;

v.nŠS / D n
0 C
X

k�1

�
n

q
k

�
.
k � 
k�1/

[26]
2013:

(38)

Recall that the sequence f
kgk�0 of critical valuation of S is characterized by [23,
Proposition 5.1] 
0 D infx2S v.x/ and for k � 1 W 
k�1 < 
 � 
k , q
 D q
k :

Let us mention an application of regularity to dynamical systems:

Proposition 26 ([25, Corollary 4]). Assume that S is a regular compact subset of
V and let ' W S ! S be an isometry. Then, the discrete dynamical system .S; '/ is
minimal .i.e., for every x 2 S , the orbit ˝.x/ D f'n.x/ j n 2 Ng is dense in S/ if
and only if, for every x 2 S , the sequence f'n.x/gn�0 is a v-ordering of S .

6.4 Valuative Capacity

Since the function wS is super-additive (i.e., wS .n C m/ � wS .n/ C wS .m/ /; the
following limit, finite or infinite, called the valuative capacity of S; exists:

ıS D lim
n!C1

wS .n/

n
: (39)

The larger S , the smaller is ıS . It is also equal to the limit [21, Theorem 4.2]:

lim
n!C1

2

n.nC 1/
min

x0;:::;xn2S v

 
Y

0�i<j�n
.xj � xi /

!
D ıS : (40)
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In some sense its generalizes the notion of transfinite diameter in archimedean
metric. For instance, ıZ.p/ D 1

p�1 ; ıpZ.p/ D p

p�1 ; ıZ.p/npZ.p/ D p

.p�1/2 :

Proposition 27 ([31, Corollary 10]). Assume that S D [r
iD1.S \ .si C

m// . where si 6 sj .mod m/ 8i 6D j /: If, for i D 1; : : : ; r , ıS\.siCm/ 6D 0, then
1
ıS

D Pr
iD1 1

ıS\.siCm/
:

This last result allows to compute easily some valuative capacities. For instance,

Corollary 6 ([31, Proposition 11]). Assume v is discrete and Card.V=m/ D q <

C1 W

ıV nmk D 1

.q � 1/2

�
q � q2k � q2

q2k � 1

�
:

More generally, in the spirit of Proposition 24:

Proposition 28 ([15, Theorem 5.3]). Without particular hypothesis, denote by q
the cardinality, finite or infinite, of the residue field. Assume that

S D [r
iD1 B.bi ; 
/ where v.bi � bj / < 
 .1 � i 6D j � r/:

Consider the matrix B� D B C 1
q�1Ir and the number �.B�/ with B and �.B�/ as

defined in Proposition 24. Then, ıS D det.B�/

�.B�/
:

6.5 A Generalized Exponential Function

Returning to Z, by analogy with the classical factorials and following [11, Ques-
tion 33], we introduce an exponential function associated to any subset S of Z W

expS.x/ D
X

n�0

xn

nŠS
; (41)

where nŠS denotes here the positive generator of the corresponding factorial ideal.
By Proposition 9, nŠ divides nŠS , and hence, the power series converges for all x.

We have the obvious formula

expbSCc.x/ D
X

n�0

xn

bnnŠS
D expS

	x
b



: (42)

When there exists a simultaneous ordering, it is sometimes easy to compute this
exponential function. For instance, Example 4 leads to

exp
N.2/ .x/D

X

n�0

xn

.2n/Š

2

D2 cosh
p

jxj; expn n.nC1/
2 jn�0

o.x/D
X

n�0

xn

.2n/Š

2n

D cosh
p
2jxj:
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In particular, let us consider the value for x D 1 and introduce the number

eS D
X

n�0

1

nŠS
: (43)

For instance, for S D N
.2/; eN.2/ D e C 1

e :

Proposition 29 (Mingarelli [40, Theorem 28]). The number eS is irrational.

Question 3 ([40]). For which subsets S is eS a transcendental number?

7 Sub-algebras of Int.S; D/

7.1 Derivatives and Finite Differences

Among the interesting sub-D-algebras of Int.S;D/, one may consider the algebras
Int.k/.S;D/ formed by the polynomials that are integer valued on S together with
their derivatives up to the order k W

Int.k/.S;D/ D ff .X/ 2 KŒX� j f .h/ 2 Int.S;D/ 0 � h � rg; (44)

and the algebras IntŒk�.D/ formed by the polynomials that are integer valued on
D together with their finite differences up to the order k defined inductively by
IntŒ0�.D/ D Int.D/ and, for k � 1,

IntŒk�.D/ D ˚
f 2 KŒX� j 8h 2 D;h 6D 0 .f .X C h/� f .X//=h 2 IntŒk�1�.D/

�
:

A review on these algebras is given in [17, Chap. IX]. Yet, new results appeared in
characteristic p > 0: For instance:

Proposition 30 ([4, Theorem 2.11]). Let Int.1/.S;D/ D \k�0Int.k/.S;D/: If
char.D/ D p > 0, then

In.Int.1/.S;D//�1 D
Y

m2Max.D/

mwS;m.Œ
n
p �/:

Moreover, if ffn.X/gn�0 is a regular basis of Int.S;D/, then the polynomials
Fm;j D fm.X/

pXj .m 2 N; j 2 f0; : : : ; p � 1g/ form a regular basis of
Int.1/.S;D/:

In particular, we have an explicit basis for Int.1/.FqŒT �/; thanks to Example 4(3).
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Proposition 31 ([2, Theorem 16]). If char.D/ D p > 0, then

In.IntŒk�.D//�1 D
Y

q�n

 
Y

m2Max.D/;N.m/Dq
m

!ıŒk�q .n/

where ıŒk�q .n/ D wq.n/ � �Œk�q .n/ and

�
Œk�
q .n/D sup

n
vq.j1/C � � � Cvq.jr / j r � k; j1C � � � Cjr � n; ji � 1; p 6 j� n

j1;:::;jr

�o
:

There are also results about a multiplicative analog of finite differences, namely,
the Euler-Jackson differences (see [6]): let Sq D fqn j n � 0g where q denotes a
nonzero element of D which is not a root of unity, and, for h 2 N

�, let

ıqhf .X/ D f .qhX/� f .X/

.qh � 1/X
: (45)

Then, IntŒk�J .Sq;D/ is defined inductively by

IntŒk�J .Sq;D/ D ff .X/ 2 KŒX� j 8h 2 N
� ıqhf .X/ 2 IntŒk�1�

J .S;D/g: (46)

7.2 Divided Differences

Contrarily to finite differences, divided differences make sense on subsets.

Definition 8. The divided difference of order k of a function f W S ! K of one
variable is defined inductively on k by ˚0.f / D f and for k � 1,

˚k.f /.x0; : : : ; xk�1; xk/ 7! ˚k�1.f /.: : : ; xk�2; xk�1/�˚k�1.f /.: : : ; xk�2; xk/
xk�1 � xk ;

defined on SkC1 n �k where �k D f.x0; : : : ; xk/ 2 SkC1 j xi D xj for some
i 6D j g:
The function ˚k.f / is symmetric with respect to the k C 1 variables x0; : : : ; xk .

Definition 9. The ring Intfkg.S;D/ of polynomials integer valued on S together
with their divided differences up to the order k is

Intfkg.S;D/ D ff 2 KŒX� j ˚h.f /.ShC1/ � D 0 � h � kg: (47)

The algebraic properties of this ring are studied in [14]. One has the containments:

Intfkg.D/ � IntŒk�.D/ � Int.k/.D/ (48)
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with the equality Intf1g.D/ D IntŒ1�.D/ and, for every subset S , Intfkg.S;D/ �
Int.k/.S;D/: The construction of bases of Intfkg.S;D/ is described in [12].

Let us focus on the local case. As in Sect. 6, V denotes a rank-one valuation
domain and S a precompact subset of V .

Definition 10 (Bhargava [12]). A r-removed v-ordering of S is a sequence
fangn�0 of elements of S where a0; a1; : : : ; ar are chosen arbitrarily and, for
n > r , there exist r distinct integers i1; : : : ; ir 2 f0; 1; : : : ; n � 1g such that

v

0

BBBBBB@

Y

0 � k < n

k 6D i1; : : : ; ir

.an � ak/

1

CCCCCCA
D inf

x 2 S
0 � j1< � � �<jr<n

v

0

BBBBBB@

Y

0 � k < n

k 6D j1; : : : ; jr

.x�ak/

1

CCCCCCA
:

Let ˛n D f1; : : : ; ng n fi1; : : : ; irg be the set formed by the remaining indices.

Proposition 32 (Bhargava [12]). If fangn2N is a r-removed v-ordering of S , then
the following polynomials form a basis of the V -module Intfrg.S; V /:

 
x

n

!frg

fakg
D .x � a0/.x � a1/ � � � .x � an�1/Q

k2˛n.an � ak/
: (49)

In general, it is not so easy to construct a r-removed v-ordering of S; nor to compute
the valuation of the denominator, that is, the number:

wfrg
S .n/ D v

0

@
Y

k2˛n
.an � ak/

1

A : (50)

Johnson [32] was the first one to give an explicit formula for wfrg
S .n/ in case S D

V D Z.p/: Given n, there is a unique integer l such that rpl � n < rplC1; and with
this l , one has the formula

wfrg
Z.p/
.n/ D

lX

kD1

�
n

pk

�
� r 	 l: (51)

This formula can be generalized to preregular precompact subsets as defined in
Sect. 6.3. For such a subset, the q
 ’s (for 
 2 R) and the critical valuations 
k’s
are also defined in Sect. 6.3. Note that, given n, there is a unique integer l such that
rq
l � n < rq
lC1

and one has:



Integer-Valued Polynomials: Looking for Regular Bases (A Survey) 105

Proposition 33 ([26]). If S is a preregular precompact subset of a rank-one
valuation domain, then, with the previous notation, for r q
l � n < r q
lC1

we
have

wfrg
S .n/ D n
0 C

lX

kD1

�
n

q
k

�
.
k � 
k�1/� r 	 
l : (52)

Proposition 34 ([26]). If S is a preregular precompact subset, then every VWDWO
sequence of S is a r-removed v-ordering of S whatever r .

Recall that a VWDWO sequence of a preregular subset generalizes the VWDWO
sequences defined in Proposition 10 and is characterized by

8n 6D m Œ v.an � am/ > 
 , q
 jn�m �: (53)

Such sequences are easy to describe: they are the “most regular sequences” in SŠ

7.3 Integer-Valued Polynomials of a Given Modulus

Definition 11. For every nonzero element a of D, the ring of integer-valued
polynomials on S of modulus a is the ring

Inta.S;D/ D ff .X/ 2 KŒX� j 8s 2 S f .aX C s/ 2 DŒX�g: (54)

The algebraic properties of this ring are studied in [14]. We have the following
containments: for all a, Inta.S;D/ � Int.S;D/, and if a divides b in D; then
Inta.S;D/ � Intb.S;D/. On the other hand, Int.S;D/ D [a2Dnf0g Inta.S;D/:

Once more, let us focus on a local study:D is assumed to be a rank-one valuation
domain V .

Definition 12 (Bhargava [12]). Let ˛ 2 RC. A v-ordering of order ˛ of S is a
sequence fangn�0 of elements of S where a0 is arbitrarily chosen and, for n � 1, an
is chosen such that

n�1X

kD0
inf.˛; v.an � ak// D inf

s2S

 
n�1X

kD0
inf.˛; v.s � ak//

!
: (55)

For such a v-ordering of order ˛, let

w.˛/S .n/ D
n�1X

kD0
inf.˛; v.an � ak//: (56)
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Proposition 35 (Bhargava [12]). If v.a/ D ˛, if fangn2N is a v-ordering of order
˛ of S , and if v.tn/ D w.˛/S .n/, then the following polynomials form a basis of the
V -module Inta.S; V /:

 
x

n

!.˛/

fakg
D .x � a0/.x � a1/ � � � .x � an�1/

tn
: (57)

For instance, for Intph.Z.p//, we have w.h/
Z.p/
.n/ D Ph

kD1
h
n

pk

i
(Johnson [32]):

This formula may generalized:

Proposition 36. If S is a preregular precompact subset, then

w.˛/S .n/ D n
0 C
lX

kD1

�
n

q
k

�
.
k � 
k�1/ where 
l � ˛ < 
lC1; (58)

where the q
 ’s and the 
k’s are defined in Sect. 6.3.

As for r-removed v-orderings [Proposition 34], we still have:

Proposition 37. If S is a preregular precompact subset, then every VWDWO
sequence of S is a v-ordering of S of order ˛ whatever ˛.

8 Ultrametric Analysis: Extensions of Mahler’s Theorem

Mahler’s approximation theorem for the Banach ultrametric space C .Zp;Qp/

(Proposition 4 above) may be generalized by replacing Qp by a complete valued
field and Zp by a precompact subset.

Hypotheses: K is a valued field endowed with a rank-one valuation v .V denotes
the valuation domain/ and S an infinite precompact subset of K .

8.1 Polynomial Approximation in C . OS ; OK/

We denote by C . OS; OK/ the ultrametric Banach space of continuous functions from
the completion OS of S to the completion OK of K endowed with the uniform
convergence topology.

Proposition 38 ([13] and [18, Theorem 2.4]). Let K be a valued field and S be
a precompact subset of K . Let fangn�n be a v-ordering of S . Then, every function
' 2 C . OS; OK/ can be developed in series as follows:
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'.x/ D
1X

nD0
cn

n�1Y

kD0

X � ak

an � ak
with cn 2 OK and lim

n!C1 v.cn/ D C1: (59)

Moreover, infx2S v.'.x// D infn2N v.cn/:

The generalized binomial polynomials
Qn�1
kD0

X�ak
an�ak (n � 0) form an orthonormal

basis of the Banach space C . OS; OK/. The coefficients cn are unique and may be
obtained inductively by

cn D '.an/�
n�1X

kD0
ck

k�1Y

hD0

an � ah

ak � ah
: (60)

Once one knows Formula (59), it is easy to prove that:

Proposition 39 ([18, Theorem 2.7]). Every basis of the V -module Int.S; V /
D C . OS; OV / \KŒX� is an orthonormal basis of the Banach space C . OS; OK/.

8.2 Polynomial Approximation in C r. OS ; OK/ and LA˛. OS ; OK/

Recall that, in ultrametric analysis, the Banach space C r . OS; OK/ of functions of class
C r is formed by the function f W OS ! OK such that ˚k.f / may be extended
continuously to OSkC1. Proposition 38 may be generalized in the following way:

Proposition 40 ([12, Theorem 21]). Assume that the precompact subset S has no
isolated points. Then, every basis of the V -module Intfrg.S; V / D C r . OS; OV /\KŒX�
is an orthonormal basis of the Banach space C r . OS; OK/.
Example 7. 1. The following polynomials form a basis of the Z-module Intf1g.Z/

and thus an orthonormal basis of C 1.Zp;Qp/ for all p W Qp2P p
h

lnn
lnp

i �
x
n

�

(Johnson [32]).
2. The following polynomials are the first terms of a basis of Intf1g.P;Z/:

1; X � 1; .X � 1/.X � 2/; 1
2
.X � 1/.X � 2/.X � 3/;

1

4
.X�1/.X�2/.X�3/.X�5/; 1

48
.X�1/.X�2/.X�3/.X�5/.X�7/; : : : [24].

Let ˛ 2 R
C. The Banach space LA˛. OS; OK/ of locally analytic functions of order ˛

from OS to OK is formed by the function f W OS ! OK such that, for each s 2 S , the
restriction of f to S \ B.s; ˛/ is extendable to an analytic function on the whole
ball B.s; ˛/. Note that if a 2 V is such that v.a/ D ˛, the polynomials of KŒX�
which are in LA˛. OS; OV / are the elements of Inta.S; V /.
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Proposition 41 ([12, Theorem 28]). Assume that the precompact subset S has no
isolated points and let a 2 V and ˛ D v.a/. Then, every basis of the V -module
Inta.S; V / is an orthonormal basis of the Banach space LA˛. OS; OK/.

9 Generalizations

Let againD be a Dedekind domain with quotient field K .

9.1 Integer-Valued Polynomials in Several Indeterminates

Let m be a positive integer, let S be a subset ofDm, and consider the D-algebra

Int.S;D/ D ff .X1; : : : ; Xm/ 2 KŒX1; : : : ; Xm� j f .S/ � Dg: (61)

Most of the results about Int.S;D/ which are gathered in [17, Chap. XI] concern
subsets S of the form S D Qm

iD1 Si . In 2000, Bhargava [11, Sect. 12] suggested
some ways to define generalized factorials for all subsets S and, only recently,
several interesting results were published (Evrard [27]).

Following [27], let In.S;D/ be the D-module generated by all the coefficients
of the polynomials of total degree n in Int.S;D/ and let

nŠDS D In.S;D/
�1 D fx 2 D j xf 2 DŒX1; : : : ; Xm� 8f 2 Int.S;D/; deg.f / � ng:

One may compute these factorials by means of a generalized notion of v-ordering.
For this, we must first assume that no nonzero polynomial f 2 KŒX1; : : : ; Xm� is
such that f .S/ D 0 (the analog of Card.S/ D 1 for one variable).

Then, write all the monomials in a sequence .ml/l�0 in a way compatible with
the total degree, that is, such that deg.ml/ < deg.ml 0/ ) l < l 0.

Finally, for l � 1 and any sequence .x0; : : : ; xl�1/ of elements of Dm, let

�.x0; : : : ; xl�1/ D det
�
mj .xi /

�
0�i;j<l : (62)

Definition 13. A v-ordering of S is a sequence fakgk�0 of elements of S such that
for every k � 1 W v.�.a0; : : : ; ak// D infx2S v .�.a0; : : : ; ak�1; x// :

Proposition 42 ([27]). Let fakgk�0 be a sequence of elements of S such that,
for every k � 0, �.a0; : : : ; ak/ 6D 0 and consider the associated sequence of
polynomials:

Fk.X/ D �.a0; : : : ; ak�1; X/
�.a0; : : : ; ak/

:
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Then the following assertions are equivalent:

1. fakgk�0 is a v-ordering of S:
2. For every k � 0, Fk 2 Int.S;D/.
3. fFk.X/gk�0 is a basis of the V -module Int.S; V /.
4. For every f .X/ 2 KŒX�, if the indices of the monomials of f are < k, then

f 2 Int.S; V / , f .a0/; : : : ; f .ak�1/ 2 V:

Then, we can compute the factorials of S by globalization. Properties A, B, C, and
D still hold for these factorials [27]. We do not know whether Property E is still true
and if we have a generalized Property F (Kempner’s formula).

9.2 Other Generalizations

9.2.1 Homogeneous Integer-Valued Polynomials

Johnson and Patterson [34] introduced a notion of projective v-ordering to construct
bases of homogeneous polynomials in (only) two variables. For instance, they
considered the Z2-module:

ff 2 Q2ŒX; Y � j f homogeneous, deg.f / D 3; f .Z2 	 Z2/ � Z2g

and obtained the following basis:

Y 3;XY 2;X2.X � Y /;XY.X � Y /=2:

9.2.2 Integer-Valued Polynomials on Noncommutative Algebras

There are several works about algebras of integer-valued polynomials on quater-
nions (Werner [44], Johnson and Pavlovski [35]) but only partial results about the
additive structure.

There are also several works about algebras of integer-valued polynomials on
matrices (Frisch [30], Werner [45]). Let us recall the only case where we know a
basis, that is, the case of integer-valued polynomials on triangular matrices.

Let Mn.D/ denote the ring of n 	 n matrices with coefficients in D and, for
every subset S of Mn.D/; let

Int.S;Mn.D// D ff .X/ 2 KŒX� j f .S/ � Mn.D/g: (63)

Denoting by Tn.D/ the subring of Mn.D/ formed by triangular matrices, Evrard,
Fares, and Johnson [28] obtained the equality:
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Int.Tn.D/;Mn.D// D ff 2 KŒX� j f .Tn.D/ � Mn.D/g D Intfn�1g.D/: (64)

It seems that today there is no other published construction of bases of such integer-
valued polynomials on noncommutative algebras: : :.

Acknowledgements The author thanks the anonymous referee for many valuable suggestions.
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It is well known (and easy to prove) that every finite ring (in fact, even every finite
semigroup) satisfies an identity

xpCk D xp for some integers p; k � 1: (*)

This motivates us to study not necessarily finite rings satisfying such an identity and
to check which of them are Boolean. A ring is Boolean (see [1]) if it satisfies the
identity x2 D x. In fact every Boolean ring is commutative and of characteristic 2,
i.e., it satisfies x C x D 0.

It was already proved in [2] that every unitary ring satisfying an identity xpC1 D
xp is Boolean. In [3], results are given for rings satisfying an identity of the form
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The aim of this paper is to describe the largest Boolean subring for some
particular values of k. The set of all positive integers is denoted by N. For a ring
R we put

B.R/ D fx 2 R j x2 D x and x C x D 0g:

Since x2 D x implies xk D x, we have

B.R/ � fxk j x 2 Rg for all k 2 N: (**)

Note that for any ring R D .RI C; �; 0/ we have 0 2 B.R/. In case that R D
.RI C; �; 0; 1/ is a unitary ring, we have 1 2 B.R/ if and only if charR D 2.

Proposition 1. Let R be a ring, then the following are equivalent:

(i) B.R/ is a subring of R.
(ii) B.R/ is the largest Boolean subring of R.

(iii) There exists a largest Boolean subring of R.
(iv) xy D yx for all x; y 2 B.R/.
Proof. (i) ) (ii): Clearly, B.R/ is a Boolean subring of R, and any Boolean

subring of R is contained in B.R/.
(ii) ) (iii): Obvious.
(iii) ) (iv): Suppose that there exist elements x; y 2 B.R/ with xy ¤ yx. f0; xg

and f0; yg are Boolean subrings of R. Since every Boolean ring is commutative,
there does not exist a Boolean subring of R containing f0; xg and f0; yg. Hence
there does not exist a largest Boolean subring of R.

(iv) ) (i): Note that 0 2 B.R/. Suppose that x; y 2 B.R/. Then we have .xy/2 D
.xy/.xy/ D x2y2 D xy and xy C xy D x.y C y/ D x � 0 D 0; thus
xy 2 B.R/. Furthermore, .xCy/2 D x2 CxyCxyCy2 D x2 Cy2 D xCy

and .xCy/C.xCy/ D .xCx/C.yCy/ D 0C0 D 0; thus also xCy 2 B.R/.
Therefore, B.R/ is a subring of R. ut

Corollary 1. If R is a commutative ring, then B.R/ is the largest Boolean subring
of R.

Example 1. Let R be an integral domain, then B.R/ D f0; 1g if R is of
characteristic 2, otherwise B.R/ D f0g.

Example 2. Let R be the factor ring Z=I , where Z is the ring of integers and I D
.n/ is the ideal generated by n 2 N. Then B.R/ D fI;m C I g in the case that
n D 2m where m is odd, and B.R/ D fI g in all other cases. The proof is an easy
exercise.
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Example 3. Let R be the ring of .2 	 2/-matrices over the 2-element field

GF.2/. Then B.R/ D
��

0 0

0 0

�
;

�
0 0

0 1

�
;

�
1 0

0 0

�
;

�
0 0

1 1

�
;

�
0 1

0 1

�
;

�
1 1

0 0

�
;

�
1 0

1 0

�
;

�
1 0

0 1

��
which is not a subring of R.

Example 4. Let R be a direct product, say R D Q
˛2AR˛ . Then B.R/ DQ

˛2A B.R˛/.

Theorem 1. Let R D .RI C; �; 0; 1/ be a unitary ring of characteristic 2 satisfy-
ing (*) with k D 2s; s 2 N. Then B.R/ D fxk j x 2 Rg.

Proof. First recall that for c D 2n we have .xC 1/c D xc C 1 and every element of
R is of the form y D x C 1 due to the fact that y D .y C 1/C 1. Moreover, if R
satisfies (*) then it satisfies also xqCk D xq for every integer q � p.

Choose m 2 N such that p � q D 2m. Then

.x C 1/qCk D .xC1/q � .x C 1/kD.xq C 1/.xk C 1/DxqCk C xq C xk C 1

D xq C xq C xk C 1 D xk C 1 D .x C 1/k;

thus R satisfies the identity

xqCk D xk

and, as xqCk D xq , also

xq D xk:

Therefore,

xk � xk D xq � xk D xqCk D xq D xk:

Since charR D 2, we have fxk j x 2 Rg � B.R/ and (**) implies that B.R/ D
fxk j x 2 Rg. ut

In case that R is commutative, using Corollary 1, we obtain

Corollary 2. If R D .RI C; �; 0; 1/ is a commutative unitary ring of characteris-
tic 2 satisfying (*) with k D 2s; s 2 N, then fxk j x 2 Rg is the largest Boolean
subring of R. In particular, if R satisfies xpC2 D xp , then fx2 j x 2 Rg is the
largest Boolean subring of R.

Example 5. Let GF.2/ŒX� be the polynomial ring in X over the field GF.2/ and
I D .X2/ the ideal of GF.2/ŒX� generated by the polynomialX2. We consider the
factor ring R D GF.2/ŒX�=I . Its elements are 0 C I D I , 1 C I , X C I , and
.1 C X/ C I . It is easily seen that char R D 2 and R is a commutative unitary
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ring satisfying xpC2 D xp for each integer p � 2. However, R is not Boolean. Its
largest Boolean subring is fI; 1C I g.

We turn to studying rings satisfying (*) with k D 2s � 1, but first introduce a more
general result which will be useful in the case where k D 2s � 1.

Lemma 1. Let R D .RI C; �; 0; 1/ be a unitary ring satisfying (*) with an odd
k 2 N. Then charR D 2.

Proof. Since R is unitary, it contains 1 and hence also �1. Since k is odd, we have
.�1/k D �1. The identity xpCk D xp yields xp.xk � 1/ D 0. For x D �1 we get
.�1/p.�1 � 1/ D 0 whence 1C 1 D 0. Thus charR D 2. ut
Theorem 2. Let R D .RI C; �; 0; 1/ be a unitary ring satisfying (*) with k D 2s �
1; s 2 N. Then R satisfies the identity x1Ck D x. In particular, R is Boolean in
case that k D 1. (Cf. [2], Theorem 4.)

Proof. Since k D 2s � 1 is odd, we have charR D 2. Pick m 2 N such that
p � q D 2m C 1, and let us note that (as in the proof of Theorem 1) xpCk D xp

implies xqCk D xq: Then q � 1 D 2m; k C 1 D 2s and hence

.x C 1/q D .x C 1/qCk D .x C 1/q�1 � .x C 1/kC1 D .xq�1 C 1/.xkC1 C 1/

D x.q�1/C.kC1/ C xq�1 C xkC1 C 1 D xqCk C xq�1 C xkC1 C 1

D xq�1.x C 1/C .x C 1/kC1:

For y D x C 1 we obtain

yq D .y C 1/q�1 � y C ykC1 D .yq�1 C 1/ � y C ykC1 D yq C y C ykC1

and hence 0 D y C ykC1. This yields ykC1 D y for each y 2 R. ut
Since x1Ck D x evidently implies xpCk D xp for all p 2 N, we have the

following:

Corollary 3. Let R D .RI C; �; 0; 1/ be a unitary ring, p 2 N, and k D 2s � 1,
s 2 N. Then R satisfies

x1Ck D x

if and only if it satisfies

xpCk D xp:

The following result was proved by Jedlička [4]:

Lemma 2. Let k 2 N. There exists a non-Boolean unitary ring of characteristic 2
satisfying x1Ck D x if and only if k D l � .2s � 1/ for some l 2 N and some integer
s � 2.
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The rings of Theorem 2 satisfy x1Ck D x for k D 2s � 1, thus, by Lemma 2, we
cannot expect those rings to be Boolean if s � 2. However, we can describe—even
for arbitrary odd k—their largest Boolean subrings similarly as in Theorem 1.

Theorem 3. Let R D .RI C; �; 0/ be a unitary ring satisfying x1Ck D x for some
odd k 2 N, then B.R/ D fxk j x 2 Rg.

Proof. We have xk � xk D xkCk D xkC1 � xk�1 D x � xk�1 D xk for each x 2 R.
By Lemma 1, charR D 2 and therefore fxk j x 2 Rg � B.R/, thus (**) implies
that B.R/ D fxk j x 2 Rg. ut

Using Corollary 1 and Corollary 3 we obtain

Corollary 4. If R D .RI C; �; 0; 1/ is a commutative unitary ring satisfying (*)
with k D 2s � 1; s 2 N, then fxk j x 2 Rg is the largest Boolean subring of R.
In particular, if R satisfies xpC3 D xp , then fx3 j x 2 Rg is the largest Boolean
subring of R.

Example 6. The finite field GF.2s/ satisfies (*) with k D 2s � 1 and any p 2 N,
and B.GF.2s// D f0; 1g. Using Example 4, we have B..GF.2s//m/ D f0; 1gm for
all m 2 N.

Remark. As Martin Goldstern pointed out, the following generalization of Theo-
rem 3 holds:

Let R be a ring of characteristic 2 satisfying (*), and let r be any multiple of k with
r � p. Then B.R/ D fxr j x 2 Rg.

Proof. By (*), xaCpClk D xaCp for all integers a � 0; l � 1. Let a D r�p; l D r
k

,
then xr � xr D xrCr D xr . Hence xr 2 B.R/, and (**) implies that

B.R/ D fxr j x 2 Rg:

ut
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1 Introduction and Notation

We assume throughout that R denotes a (commutative integral) domain with
quotient field K and integral closure R0 (in K). As usual, if D is a domain, then
Spec.D/ denotes the set of prime ideals ofD; Max.D/ the set of maximal ideals of
D; and

p
I the radical of an ideal I of D.

One purpose of the present work is to contribute to the list of the classes of
domains with the portable property. If P is a property of (some) domains, then as in
[16] (cf. also [19]), we say that P is a portable property (of domains) if the following
three conditions hold:

(�) If A 
 B are domains such that Spec.A/ D Spec.B/ (as sets), then A has P if
and only if B has P.

(��) If A is a domain and P 2 Spec.A/, then AC PAP has P if and only if both
AP and A=P have P.

(� � �) P is a local property (i.e., a domain A has P if and only if AM has P for all
M 2 Max.A/).

The main known benefit of portability is the following pullback transfer result. Let
P be a portable property, T a domain, Q 2 Max.T /, � W T ! T=Q the canonical
surjection, D a subring of T=Q, and S the pullback S WD ��1.D/ D T 	T=Q D;
then S has P if and only if both T andD have P [16, Theorem 2.4]. In fact, if P is
only known to satisfy parts (�) and (��) in the definition of a portable property, then
“locally P” is a portable property and so the above conclusion holds with “locally
P” replacing “P” [19, Corollary 2]. (Note that in this paper, if P is a property of
some domains, then a domain A is said to satisfy locally P if AM satisfies P for
each M 2 Max.A/.)

In [16, Lemma 2.1], it was shown that “locally divided domain” and “going-down
domain” (as defined in [9,10]) are examples of portable properties. Subsequently, it
was shown in [19, Theorem 2] that “locally almost-divided domain” and (for each n)
“locally n-divided domain” are also examples of portable properties. For motivation,
it may be helpful to recall the following implications: divided domain , 1-divided
domain ) n-divided domain ) almost-divided domain ) quasi-divided domain
) quasi-local going-down domain (cf. [18, Proposition 5.2]).

In Sect. 3, we introduce and investigate a property of domains called “pseudo-
almost divided.” In Sect. 4, we show that this property satisfies enough of the
definition of a portable property that it supports the above kind of pullback transfer
result in case .T;Q/ is quasi-local: see Corollary 6. In addition, we show that
“locally pseudo-almost divided” is a portable property and, hence, supports exactly
the above kind of pullback transfer result: see Corollary 7. Let us note here that all
quasi-divided domains and all PAVDs (as defined by Badawi [6]) are examples of
pseudo-almost divided domains.

Another purpose of this paper is to show that some known classes of domains
support pullback transfer results with some of the above flavor, even though these
classes are not known to have (or, indeed, may not have) the portable property.
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We do this, in particular, for the class of straight domains (which was defined in
[17] and studied further in [18]): see Theorem 1. In the same vein, Theorem 2
and Corollary 5 involve almost Prüfer domains (or AP-domains, in the sense of
[2]) and locally PAVDs. It may be helpful to note that AV-domain (in the sense
of [2]) ) PAVD ) pseudo-almost divided domain and APVD (as defined by
Badawi and Houston in [8]) ) divided domain and PAVD. The abovementioned
kinds of domains are relevant to the above hierarchy in part because locally divided
domain ) straight domain ) going-down domain [17, Corollary 3.8 and p. 764]
and because all PAVDs are quasi-local going-down domains [15, Theorem 1].

The definitions and relevant background for all the various kinds of domains
being considered will be given below as needed.

2 Some Straight Domains Obtained as Pullbacks Issuing
from Prüfer Domains

It is convenient to begin by recalling the following material from [2]. A domain R
is called an almost valuation domain (or AV-domain) if, for all nonzero elements
a; b of R, there exists a positive integer n such that either an j bn or bn j an;
R is called an almost Prüfer domain (or AP-domain) if, for all nonzero elements
a; b of R, there exists a positive integer n such that .an; bn/ is an invertible ideal.
Each AV-domain is a quasi-local AP-domain. Moreover, R is an AP-domain if and
only if RM is an AV-domain for each M 2 Max.R/ [2, Theorem 5.8]. Now, for
motivation, we can state the following result of Mimouni [25, Theorem 2.2]. Let T
be a domain withQ 2 Max.T /, let ' W T ! T=Q be the canonical surjection, letD
be a domain with quotient field k subfield of T=Q and consider the pullback S WD
'�1.D/ D T 	T=Q D; then S is an AV-domain (resp., an AP-domain) if and only
if T and D are each AV-domains (resp., each AP-domains) and k � T=Q is a root
extension. It seems natural to ask if some other properties (besides “AV-domain” and
“AP-domain”) admit similar pullback results, possibly without a need for the above
“root extension” condition. We will give such a result for the “straight domain”
property in Theorem 1. First, we recall some material from [17] (specialized from
rings to domains to fit our current context).

If D � E are domains, then D is said to be straight in E if the inclusion map
D ,! S is a prime morphism for each ring S such that D � S � E (in the sense
that S=PS is torsion-free over D=P for each P 2 Spec.D/). The ambient domain
R is called a straight domain if R is straight in K . In [17, Corollary 4.13], we gave
a pullback result for the “straight domain” property which was somewhat in the
spirit of the abovementioned result of Mimouni but which lacked generality, in part
because its pullback issued from a valuation domain which is not a field. Theorem 1
will improve this situation by generalizing [17, Corollary 4.13] to pullbacks that
issue from a Prüfer domain which is not a field.
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Theorem 1. Let T be a Prüfer domain with Q a nonzero maximal ideal of T , let
' W T ! T=Q be the canonical surjection, letD be a subring of T=Q, and consider
the pullback S WD '�1.D/ D T 	T=Q D. Then S is a straight domain if and only if
D is straight in T=Q. In particular, if D is a field, then S is a straight domain.

Proof. We first explain why the “In particular” assertion is a consequence of the
main assertion. Suppose that D is a field. Then D is straight in T=Q, for if A is
a ring such that D � A � T=Q, then D ,! A is a prime morphism since A
is torsion-free over (the field) D (or, alternately, by [24, Proposition 2] since A is
D-flat.)

We turn now to the main assertion. Note that [17, Corollary 4.13] handles the case
where T is quasi-local (i.e., where T is a valuation domain which is not a field). For
the general case, note that the proof of [17, Proposition 3.5(b)] shows that “straight
domain” satisfies part .� � �/ in the definition of a portable property. In particular, S
is a straight domain if and only if SN is a straight domain for eachN 2 Max.S/. For
the moment, fix such an ideal N . If N 6� Q, then there exists a unique prime ideal
N of T such that N\S D N and SN D TN (cf. [22, Theorem 1.4(c)]). In this case,
SN is a valuation domain and hence, by [17, p. 764], a straight domain. Therefore,
S is a straight domain if and only if SN is a straight domain for each maximal
ideal N of S such that N � Q. Now, fix this kind of N . Identifying D with S=Q,
we can consider N WD N=Q 2 Max.D/. Then, by reasoning as in the penultimate
paragraph of the proof of [16, Theorem 2.4], we get that SN D TQ	T=QDN . As we
already know the result for a pullback issuing from a valuation domain which is not
a field, we can conclude that SN is a straight domain (for the specificN that has been
fixed) if and only if DN is straight in T=Q. Hence, S is a straight domain if and
only if DN=Q is straight in T=Q for all maximal ideals N of S such that N � Q.
However, the latter condition is, as an easy consequence of [17, Proposition 2.3],
equivalent to D being straight in T=Q. The proof is complete. ut

Perhaps the analogy between Theorem 1 and [25, Theorem 2.2] becomes clearer
by noting the following special case of Theorem 1.

Corollary 1. Let T be a Prüfer domain with Q a nonzero maximal ideal of T , let
' W T ! T=Q be the canonical surjection, let D be a domain with quotient field
T=Q, and consider the pullback S WD '�1.D/ D T 	T=Q D. Then S is a straight
domain if and only if D is a straight domain.

We observed in the proof of Theorem 1 that “straight domain” satisfies part .���/
in the definition of a portable property. The next result pursues this theme.

Proposition 1. Let A 
 B be domains such that Spec.A/ D Spec.B/ .as sets/.
Then A is a straight domain if and only if B is a straight domain. In other words,
“straight domain” satisfies part .�/ in the definition of a portable property of
domains.

Proof. Since any field is trivially a straight domain, we may assume, without loss of
generality, that neither A nor B is a field. Hence, by [3, Propositions 3.3 and 3.5],A
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and B are quasi-local domains that have the same maximal ideal (say, M ) and also
have the same quotient field. Suppose first that A is straight. We must show that if
D is an overring of B and P 2 Spec.B/, then D=PD is torsion-free over B=P .
Without loss of generality, P ¤ M , since all modules over fields are torsion-free.
Pick c 2 M n P . If the assertion fails, we have b 2 B n P and d 2 D n PD such
that bd 2 PD. But then bcd 2 PD and bc 2 M n P � A n P , a contradiction
since D=PD is torsion-free over A=P .

For the converse, suppose that B is straight. We must show that if E is an
overring of A and Q 2 Spec.A/, then E=QE is torsion-free over A=Q. Suppose
the assertion fails, so that ˛ı 2 QE for some ˛ 2 AnQ and ı 2 E nQE . But since
BE is an overring of B and BE=QE (D BE=QBE) is torsion-free over B=Q, we
obtain the desired contradiction because ˛ 2 B nQ and ı 2 BE . ut

In view of the above material, one cannot resist asking if “straight domain”
is a portable property. The answer is affirmative if and only if “straight domain”
satisfies part .��/ in the definition of a portable property. An affirmative answer
may seem desirable because, in tandem with [16, Theorem 2.4], it would lead to
a generalization of Theorem 1 (where the “Prüfer” hypothesis could be deleted).
Some evidence for an affirmative answer is available, as the class of straight
domains is closed under localization and homomorphic images [17, Proposition
3.5(b), Theorem 4.6]. However, we do not know the answer, as it is an open question
whether RP and R=P being straight domains implies that R C PRP is a straight
domain. In view of [14, 16], we note that a negative answer may shed light on a
question that was left open in [17, Corollary 3.8, Example 4.5]: does there exist a
straight domain which is not locally divided?

3 Pseudo-Almost Divided Domains

We begin with some background on some relevant classes of domains. As in [6], we
say that (the ambient domain) R is a pseudo-almost valuation domain (in short, a
PAVD) if eachP 2 Spec.R/ is a pseudo-strongly prime ideal ofR; that is, whenever
u; v 2 K with uvP � P , then there exists a positive integer n such that either un 2 R
or vnP � P . (By [6, Theorem 2.8], it is equivalent to require that for all u 2 K ,
either there exists a positive integer n such that un 2 R or there exists a positive
integer m such that vu�m 2 R for each nonunit v of R.) It is easy to see that each
almost valuation domain (in the sense of [2, Definition 5.5]) is a PAVD. Note that
any such domain is quasi-local and treed. In that regard, recall from [8] that R is
an almost-pseudo-valuation domain (in short, an APVD) if each P 2 Spec.R/ is
a strongly primary ideal of R; that is, u; v 2 K with uv 2 P implies that either
un 2 P for some positive integer n or v 2 P . Note that each PVD (i.e., each
pseudo-valuation domain, in the sense of [23]) is an APVD and each APVD is a
PAVD. Note that any such domain is quasi-local and treed. In fact, recall from [8,
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Proposition 3.2] that each APVD is a divided domain. Since the APVDs form a
natural family of PAVDs which are divided domains, this leads us to the following
definition.

We say that a prime ideal P of the ambient domain R is pseudo-almost divided
(in R) if for each u 2 PRP , there exists a positive integer n such that un 2 P

(equivalently, un 2 R); also R is said to be (a) pseudo-almost divided (domain) if
each prime ideal of R is pseudo-almost divided in R. Examples of pseudo-almost
divided domains are easily at hand. For instance, by [6, Proposition 2.3], each PAVD
is pseudo-almost divided. Also, it is also easy to check that all almost-divided
domains and all quasi-divided domains (in the sense of [18, Definition 5.1]) are
pseudo-almost divided domains.

Next, recall from [11, Proposition 2.1] that quasi-local going-down domains are
characterized as the domains R for which R C PRP is integral over R for each
P 2 Spec.R/ (cf. also [10, Lemma 2.4(a)]). We will see that this property also
holds if R is a PAVD.

Proposition 2. The following three conditions are equivalent for a domain R:

(1) R is a quasi-local going-down domain.
(2) PRP � p

PR0 for each P 2 Spec.R/.
(3) R � RC PRP is an integral extension for each P 2 Spec.R/.

Moreover, if any of the above equivalent conditions holds and P 2 Spec.R/, then
PRP � \fQ 2 Spec.R0/ j Q \R D P g.

Proof. (1) , (3) by [11, Proposition 2.1], and it is clear that (2) ) (3) since
integrality is transitive. It therefore suffices to show that (1) ) (2). Assume (1) and
let P 2 Spec.R/. Our task is to show that if u 2 PRP , then there exists a positive
integer n such that un 2 PR0. In fact, [10, Corollary 2.6] shows more, namely, that
there exists a positive integer n such that um 2 P (� PR0) for all integers m � n.
This reasoning also establishes the “Moreover” assertion, since any Q 2 Spec.R0/
that lies over P must contain PR0. ut

ForP 2 Spec.R/, we letP 0 denote one of the notions of the integral closure ofP
that can be found in the literature, as follows: P 0 D fx 2 K j there exists p.X/ D
a0 C � � � C an�1Xn�1 C Xn 2 RŒX�with each ai 2 P such that p.x/ D 0g. It is
instructive to compareP 0 with the notion of the integral closure NP of P with respect
to an overring of R, as defined in [5, p. 63]; it follows immediately that by taking
K as the overring in question, we get NP WD fx 2 K j p.x/ D 0 for some p.X/ 2
P ŒX�g D p

PR0 by [5, Lemma 5.14]. We can now observe, by Proposition 2, that
if R is such that PRP � P 0 or PRP � NP for each P 2 Spec.R/, thenR is a quasi-
local going-down domain, since each prime ideal P satisfies P 0 � NP � p

PR0.
The next result follows from (the implication (2) ) (1) in) Proposition 2 and the

earlier comments.

Corollary 2. A pseudo-almost divided domain is a quasi-local going-down
domain. Hence all PAVDs, all almost-divided domains, and all quasi-divided
domains are quasi-local going-down domains.
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Recall that a ring extension A � B is called a root extension if for each b 2 B ,
there exists a positive integer n such that bn 2 A.

Corollary 3. Let R be a domain such that R � R0 is a root extension. Then
R � R C PRP is an integral extension for each P 2 Spec.R/ , R is a pseudo-
almost divided domain ,R is a quasi-local going-down domain. If these equivalent
conditions hold .and R � R0 is a root extension/, then PRP � p

PR0 for each
P 2 Spec.R/.

Proof. The first implication follows easily from the “root extension” hypothesis; the
rest of the first assertion follows from Proposition 2 and Corollary 2. The second
assertion follows by combining the first assertion with Proposition 2. ut

Proposition 3(b) will get a partial converse of the final assertion in Corollary 3
by using the root closure cR � R0 of a domain R, which is defined as follows. The
root closure cR of a domain R (with quotient field K) is the smallest R-subalgebra
S of K such that S is root closed in K . It is clear that cR D \fS j S is root closed
in Kg. An easy inductive argument shows that cR is the directed union of all the
(finite-type) R-subalgebras RŒx1; : : : ; xn� of K such that for each i , some power of
xi belongs to RŒx1; : : : ; xi�1�.

Proposition 3. (a) IfR is a pseudo-almost divided domain andP 2 Spec.R/, then
RC PRP � cR.

(b) Let R be a root-closed domain. Then R is a divided domain if (and only if) R is
a pseudo-almost divided domain.

Proof. (a) If x 2 PRP , then some power of x is in R (since R is pseudo-almost
divided), and so x 2 cR. Hence, RC PRP � [x RŒx� � cR.

(b) The “only if” assertion is trivial because any divided domain is pseudo-almost
divided. For the converse, combine (a) with the fact that a domain D is root
closed only if cD D D. ut

Remark 1. Let R be a quasi-local going-down domain and S an overring ofR such
thatR is integrally closed in S . Then, by condition (3) in Proposition 2, PRP \S D
P for each P 2 Spec.R/. It follows, under the given hypotheses on R and S , that
if a prime ideal P of R satisfies RP � S , then P is divided (in R, in the sense that
PRP D P ).

Corollary 4 will give a result in the spirit of Proposition 3(b). First, recall from
[20] that a domainR is said to be almost integrally closed ifR is integrally closed in
RP for each nonzero prime ideal P of R. Corollary 4 generalizes [20, Proposition
2.8].

Corollary 4. Let R be an almost integrally closed domain. Then R is a divided
domain , R is a pseudo-almost divided domain , R is a quasi-local going-down
domain.
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Proof. In view of the above material, the only nontrivial implication involves
showing that a quasi-local almost integrally closed going-down domain must be
divided. For this, apply Remark 1, with S WD RP . ut

Recall that any locally divided domain is a straight domain, and it is not known
if the converse holds. The new two propositions will establish special cases of that
converse for certain kinds of domains related to the pseudo-almost divided domains.
For additional motivation, recall that divided domains can be characterized as the
straight domains that are also quasi-divided domains [18, Proposition 5.3].

Let P be a prime ideal of a domainR and let n be a positive integer. Consider the
ideal Pn WD P

a2P Ran. Clearly PnRP D .PRP /n, the R-submodule of RP that is
generated by fbn j b 2 PRP g. We say that a domain R is spectrally pseudo-almost
divided if, for each P 2 Spec.R/, there exists a positive integer nP such that xnP 2
P for each x 2 PRP . (Note that in that case, we have PnP RP � P .) Moreover, we
say that R is n-pseudo-almost divided if R is spectrally pseudo-almost divided and
the above integer(s) nP can be chosen independently of P 2 Spec.R/. Clearly, each
n-pseudo-almost divided domain is a spectrally pseudo-almost divided domain.

Proposition 4. Let R be a spectrally pseudo-almost divided domain (for instance,
an n-pseudo-almost divided domain). Then R is a divided domain if and only if R
is a straight domain.

Proof. Only the “if” assertion needs attention. Let R be a straight domain. By the
proof of [18, Corollary 5.6], if P 2 Spec.R/ and n is a positive integer, thenPRP �
P C PnRP . Taking n WD nP , we see from the above comments that PRP D P for
each P 2 Spec.R/; that is, R is divided. ut

Note that the above proposition generalizes [18, Corollary 5.6], where we
have now weakened the earlier “n-AVD” hypothesis to “spectrally pseudo-almost
divided.” We may also define n-PAVDs as follows. We say that a domain R (with
quotient field K) is an n-PAVD if there exists some positive integer n such that, for
each u 2 K , either un 2 R or vu�n 2 R for each nonunit v of R. Of course, each
n-PAVD is a PAVD.

Proposition 5. .a/ Each n-PAVD is an n-pseudo-almost divided domain.
.b/ Let n be a positive integer and R an n-PAVD. Then R is a divided domain if

and only if R is a straight domain.

Proof. (a) Suppose that .R;M/ is an n-PAVD. Our task is to show that if P 2
Spec.R/ and x 2 PRP , then xn 2 P . If P is M (namely, the maximal ideal of
R), then x 2 MRM D M D P � R and the assertion is clear. Thus, without
loss of generality, P ¤ M . Then either xn 2 R or a WD vx�n 2 R for each
nonunit v 2 R. If xn 2 R, then xn 2 P , as desired. In the remaining case,
pick u 2 M n P , write x WD p=s where p 2 P and s 2 R n P , and get
usn D apn 2 P , the desired contradiction.

(b) Combine (a) with Proposition 4. ut
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The next main goal of this section is Proposition 7, which will give a class of
PAVDs that are divided domains. This paragraph will identify another such class.
Let .R;M/ be a quasi-local domain and consider the conductor V D .M WK M/.
By reworking a proof of Badawi [6, Theorem 2.15], we get that R is an n-PAVD if
and only if V is an n-AVD (i.e., for each nonzero x 2 K , either xn 2 V or x�n 2 V )
whose maximal ideal is

p
MV . Suppose that R is an n-PAVD such that Q � R.

Then V is a valuation domain by [18, Proposition 5.8], and so it follows from [8,
Theorem 3.4(4)] that R is an APVD and hence, by [8, Proposition 3.2], a divided
domain.

We recall two more definitions. As in [1, p. 4], an ideal I of a domainR is said to
be strongly radical if x 2 K with xn 2 I for some positive integer n implies x 2 I .
Also (cf. [4]), a rooty domain is a domain each of whose radical ideals is strongly
radical.

Proposition 6. The following conditions are equivalent for a domain R:

.1/ Each maximal ideal of R is strongly radical.

.2/ Each prime ideal of R is strongly radical.

.3/ Each proper radical ideal of R is strongly radical.

.4/ If M 2 Max.R/, then .M WK M/ is root closed and M is a radical ideal of
.M WK M/.

.5/ If M 2 Max.R/, then M is a radical ideal of some root-closed overring of R.

.6/ R is a rooty domain.

Proof. It is clear that (1), (2), and (3) are equivalent. Then (1) is equivalent to each
of (4) and (5), by [1, Proposition 1.4]. Now, (2) is equivalent to (6), by [4, Theorem
1.8]. ut
Proposition 7. .a/ Let R be a pseudo-almost divided domain. If R is rooty, thenR

is a divided domain.
.b/ Each root-closed pseudo-almost divided domain is a divided domain.
.c/ A PAVD which is either rooty or root closed must be a divided domain.

Proof. (a) We must show that if P 2 Spec.R/ and x 2 PRP , then x 2 P . Since R
is pseudo-almost divided, there exists a positive integer n such that xn 2 P . Since
P is a strongly radical ideal of R, it follows that x 2 P .

Finally, (b) follows from (a), since any root-closed domain is rooty by [4, Remark
1.9], and (c) follows at once by combining (a) and (b). ut

We close the section by sketching a path to other pullback results, this time
combining the notions of “AV-domain,” “AP-domain,” and “PAVD.” Because of
space limitations, some routine details are left to the reader in our sketch. For the
following results, we say that a domain D is a locally PAVD if DM is a PAVD for
each M 2 Max.D/.

Lemma 1. .a/ Let R be a PAVD and P 2 Spec.R/. Then R=P is a PAVD; and if
also PRP D P , then RP is a PAVD.

.b/ Let R be a locally PAVD and P 2 Spec.R/. Then R=P is a locally PAVD.
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.c/ Let R be an AP-domain .hence, a locally PAVD/ and P 2 Spec.R/. Then
RC PRP is an AP-domain.

.d/ Let A 
 B be domains such that Spec.A/ D Spec.B/ .as sets/. Then A is a
PAVD if and only if B is a PAVD.

Proof. (a) For the first assertion, see [6, Proposition 2.14]. The second assertion
can be proved by a straightforward computation that uses [6, Theorem 2.5].

(b) If P � M 2 Max.R/, then RM is a PAVD, and hence by (a), so is RM=PRM
(Š .R=P /M=P ).

(c) By [12, Lemma 2.2(b)], if P � M 2 Max.R/, then .R C PRP /MCPRP D
RM C PRP , which is an AV-domain since it is an overring of the AV-domain
RM .

(d) We can assume that A and B are quasi-local non-fields with the same quotient
field and the same unique maximal ideal. The “if” assertion is easily proved,
and the “only if” assertion follows from two uses of [6, Corollary 2.21] and a
suitable juxtaposition of pullback diagrams. ut

Theorem 2. Let T be an AV-domain with .unique/ maximal ideal Q, let ' W T !
T=Q be the canonical surjection, let D be a subring of T=Q, and consider the
pullback S WD '�1.D/ D T 	T=Q D. Then S is a PAVD .resp., a locally PAVD/ if
and only if D is a PAVD .resp., a locally PAVD/.

Proof. As T is quasi-local, we have T D SQ (cf. [21, Lemma 2.5 (iv)]). It then
follows from Lemma 1 (a) that if S is a PAVD, then so is D. For the converse,
suppose thatD is a PAVD. By [6, Theorem 2.5 and Lemma 2.1], we need only show
that if a nonzero element z of the quotient field of S is such that none of z; z2; z3; : : :
is in S , then z�nQ � Q for some positive integer n. As T is an AV-domain, some
n satisfies zn 2 T or z�n 2 T . The assertion is clear if z�n 2 T and so, without loss
of generality, zn is a nonunit of T , whence zn 2 Q � S , a contradiction.

We turn now to the corresponding “locally PAVD” assertions. In view of
Lemma 1 (b), we need only show that if D is a locally PAVD, then so is S , that
is, SN is a PAVD for eachN 2 Max.S/. Without loss of generality,N � Q (for we
see, as in the proof of [16, Theorem 2.4], that if N 6� Q, then SN is isomorphic to
a ring of fractions of T and thus is an AP-domain, hence a locally PAVD). Then, by
combining the fourth paragraph of the proof of [16, Theorem 2.4] with the above
“PAVD” assertion, we obtain the “locally PAVD” assertions. ut
Corollary 5. Let T be an AP-domain with Q 2 Max.T /, let ' W T ! T=Q be
the canonical surjection, let D be a subring of T=Q, and consider the pullback
S WD '�1.D/ D T 	T=Q D. Then S is a locally PAVD if and only if D is a locally
PAVD.

Proof. The “only if” assertion is immediate from Lemma 1(b). As for the “if”
assertion, one can reduce to the case where T is quasi-local by reasoning as in
the proof of [16, Theorem 2.4], and that case is then handled by Theorem 2. ut
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4 A New Class of Domains with the Portable Property

In view of Propositions 4 and 5, it seems natural to ask if pseudo-almost divided
domains admit an analogue of the main result of Sect. 2. In this section, we answer
that question in the affirmative, also obtaining an affirmative answer to the analogous
question about locally pseudo-almost divided domains. (Of course, a domain D is
said to be locally pseudo-almost divided if DM is pseudo-almost divided for each
M 2 Max.D/.) These answers are obtained by means of the machinery from [16],
which will show that “locally pseudo-almost divided” is a portable property. The
path to those facts begins with the following lemma.

Lemma 2. Let R be a pseudo-almost divided domain. If P 2 Spec.R/, then both
RP and R=P are pseudo-almost divided domains.

Proof. To prove that RP is pseudo-almost divided, we must show that if Q � P in
Spec.R/ and x 2 QP.RP /QP (D QRPRQ D QRQ), then there exists a positive
integer n such that xn 2 QRQ. Since Q is pseudo-almost divided in R, we have a
positive integer n such that xn 2 Q (� QRQ).

Next, to show that R=P is pseudo-almost divided, consider P � Q in Spec.R/
and an element x of .Q=P /.R=P /Q=P , canonically identified with QRQ=PRQ.
Our task is to find a positive integer n such that xn is in R=P (whenR=P is viewed
canonically inside RQ=PRQ). Write x D r=s C PRQ with r 2 Q and s 2 R nQ.
Since u WD r=s 2 QRQ and Q is pseudo-almost divided in R, we have a positive
integer n such that un 2 Q, whence xn is canonically identified with un C P 2
Q=P � R=P , to complete the proof. ut

The next result is an analogue of [7, Theorem 2.7].

Proposition 8. Let R be a domain and P 2 Spec.R/. Then RCPRP is a pseudo-
almost divided domain if and only if both RP and R=P are pseudo-almost divided.
In other words, “pseudo-almost divided domain” satisfies part .��/ in the definition
of a portable property of domains.

Proof. We use some facts about the CPI-extension T WD R C PRP from [12,
Lemmas 2.1 and 2.2]. There is an isomorphism of partially ordered sets between
Spec.T / (under inclusion) and fQ 2 Spec.R/ j Q is comparable to P under
inclusiong. Under this isomorphism, if Q � P in Spec.R/, then Q corresponds
to QRP in Spec.T /, with TQRP D RQ; on the other hand, if P � Q in Spec.R/,
then Q corresponds to the Q C PRP 2 Spec.T /, with TQCPRP D RQ C PRP .
As RP D TPRP , it follows from the first assertion in Lemma 2 that if T is pseudo-
almost divided, then so is RP . Also, since T=PRP Š R=P , it follows from the
second assertion in Lemma 2 that if T is pseudo-almost divided, then so is R=P .
This completes the proof of the “only if” assertion.

Conversely, assume that both RP (D TPRP ) and R=P (Š T=PRP ) are pseudo-
almost divided. Our task is to prove that T is pseudo-almost divided. Since PRP is a
divided prime ideal of T , there is no harm in replacingR with T (andP with PRP ).
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Thus, we can assume that P is a divided prime ideal of R and that each prime ideal
of R is comparable to P , with our task now being to show that R is pseudo-almost
divided. Fix Q 2 Spec.R/ and u 2 QRQ. We will show that there exists a positive
integer n such that un 2 Q (equivalently, un 2 R). We will need to consider two
cases.

Suppose first that Q � P . We have u 2 QRQ D .QRP /.RP /QRP . As RP
is pseudo-almost divided, it follows that there exists a positive integer n such that
un 2 QRP . As P is a divided prime ideal of R, we get un 2 PRP D P � R, as
required.

In the remaining case, P 
 Q. As in the proof of Lemma 2, identify
.Q=P /.R=P /Q=P with QRQ=PRQ. Consider v WD u C PRQ. Since Q=P is
pseudo-almost divided in R=P by hypothesis, there exists a positive integer n such
that vn is in the canonical image of Q=P . Hence, there exists y 2 Q such that
un C PRQ D y C PRQ. Then un � y 2 PRQ � PRP D P � Q, and so un 2 Q,
as required. ut

The above proof somewhat mimics that of [14, Proposition 2.12]. By reasoning in
the cited proof, we see that Proposition 8 carries over if we replace “pseudo-almost
divided” with “locally pseudo-almost divided.” Also, by mimicking the proof of [13,
Theorem 2.2], we can see that if R is a strong (in the sense of [13]) locally pseudo-
almost divided domain, then so is R=P for each P 2 Spec.R/. It is clear that the
analogous assertion holds for RP .

We next take another step toward showing that “locally pseudo-almost divided
domain” is a portable property.

Proposition 9. Let A 
 B be an extension of domains such that Spec.A/ D
Spec.B/ as sets. Then A is a pseudo-almost divided domain if and only if B is a
pseudo-almost divided domain. In other words, “pseudo-almost divided domain”
satisfies part .�/ in the definition of a portable property of domains.

Proof. Since any field is trivially a pseudo-almost divided domain, we may assume,
without loss of generality, that neither A nor B is a field. Hence, by [3, Propositions
3.3 and 3.5],A andB are quasi-local domains that have the same maximal ideal (say,
M ), have the same quotient field, and satisfy AP D BBnP for each nonmaximal
prime ideal P of A. It follows easily that each nonmaximal prime ideal of A is
pseudo-almost divided in A if and only if each nonmaximal prime ideal of B is
pseudo-almost divided in B . Since the unique maximal ideal M is divided (hence
pseudo-almost divided) in both A and B , the proof is complete. ut

We can now close by giving the two promised pullback results that are in the
spirit of Theorem 1.

Corollary 6. Let .T;Q/ be a quasi-local domain, � W T ! T=Q the canonical
surjection, D a subring of T=Q, and R WD ��1.D/. Then R D T 	T=Q D is
a pseudo-almost divided domain if and only if both T and D are pseudo-almost
divided domains.
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Proof. Combine Propositions 8 and 9 with [16, Lemma 2.3]. ut
Corollary 7. .a/ “Locally pseudo-almost divided domain” is a portable property

of domains.
.b/ Let T be a domain with maximal ideal Q, � W T ! T=Q the canonical

surjection, D a subring of T=Q, and R WD ��1.D/. Then R D T 	T=Q D

is a locally pseudo-almost divided domain if and only if both T and D are
locally pseudo-almost divided domains.

Proof. (a) Combine Propositions 8 and 9 with [19, Corollary 2].
(b) Combine (a) and [16, Theorem 2.4].
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The Probability That Intn.D/ Is Free

Jesse Elliott

Abstract Let D be a Dedekind domain with quotient field K . The ring of integer-
valued polynomials on D is the subring Int.D/ D ff 2 KŒX� W f .D/ � Dg of the
polynomial ringKŒX�. The Pólya-Ostrowski group PO.D/ ofD is a subgroup of the
class group of D generated by the well-known factorial ideals nŠD of D. A regular
basis of Int.D/ is a D-module basis consisting of one polynomial of each degree.
It is well known that Int.D/ has a regular basis if and only if the group PO.D/ is
trivial, if and only if theD-module Intn.D/ D ff 2 Int.D/ W degf � ng is free for
all n. In this paper we provide evidence for and prove special cases of the conjecture
that, if PO.D/ is finite, then the natural density of the set of nonnegative integers
n such that Intn.D/ is free exists, is rational, and is at least 1=jPO.D/j. Moreover,
we compute this density or determine a conjectural value for several examples of
Galois number fields of degrees 2, 3, 4, 5, and 6 over Q.

Keywords Integer-valued polynomial • Integral domain • Pólya-Ostrowski
group • Class group • Number field
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1 Introduction

Let D be an integral domain with quotient field K . The ring of integer-valued
polynomials on D is the subring

Int.D/ D ff 2 KŒX� W f .D/ � Dg
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of the polynomial ring KŒX�. The study of integer-valued polynomial rings began
with Pólya and Ostrowski circa 1919 [1, p. xiv]. They showed that, for any number
ring D, the D-module Int.D/ has a regular basis, that is, a D-module basis
consisting of exactly one polynomial of each degree, if and only if the product
…q of the prime ideals of D of norm q is a principal ideal for every q. In fact
this equivalence holds for any Dedekind domainD. More generally, if D is a Krull
domain, then Int.D/ has a regular basis if and only if the product …q of the height
one prime ideals of norm q is principal for every q [2, Corollary 2.5]. In particular,
if D is a unique factorization domain, then Int.D/ has a regular basis.

If Int.D/ has a regular basis, then the D-module

Intn.D/ D ff 2 Intn.D/ W degf � ng

is free of rank nC1 for any nonnegative integer n, having as a basis the polynomials
of degree at most n in any regular basis of Int.D/. The converse is true if D is
Dedekind, and in that case there is an explicit algorithm to construct a basis of
Intn.D/ for any n [1, Proposition II.3.14]. Although Int.D/ is free as a D-module
for any Dedekind domainD [1, Remark II.3.7(iii)], it is more common than not for
Int.D/ to lack a regular basis.

For any Dedekind domainD, the Pólya-Ostrowski group of D, denoted PO.D/,
is the subgroup of the class group Cl.D/ of D generated by the images in Cl.D/
of the ideals …q . This group can be considered as a “measure of the obstruction for
Int.D/ to have a regular basis” [2, p. 37]. In particular, Int.D/ has a regular basis
if and only if the group PO.D/ is trivial. More generally, for any n the D-module

Intn.D/ is free if and only if
Q
q …

uq.n/
q has trivial image in PO.D/ (or equivalently

is principal), where the uq.n/ are nonnegative integers depending only on q and n.
If the uq.n/ are “uniformly distributed” relative to PO.D/, in an appropriate sense,
then one might expect that the “probability” that Intn.D/ is free is 1=jPO.D/j. In
this paper we provide some evidence for and prove special cases of the conjecture
that the density of the set of all n 2 Z�0 for which the D-module Intn.D/ is free
exists, is rational, and is at least 1=jPO.D/j if D is a Dedekind domain. We also
explore further connections between the ring Int.D/ and the group PO.D/.

For any T � Z�0, one defines the (natural) density ı.T / of T to be

ı.T / D lim
n!1

jT \ f0; 1; 2; : : : ; n � 1gj
n

:

One also defines the upper density of T by

ı.T / D lim sup
n!1

jT \ f0; 1; 2; : : : ; n � 1gj
n

;

and the lower density ı.T / of T as the corresponding lim inf. Both exist and satisfy
0 � ı.T / � ı.T / � 1. Moreover, ı.T / exists if and only if ı.T / D ı.T /, in
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which case ı.T / equals that common value. Informally one can think of ı.T / as the
probability that a random nonnegative integer n lies in T .

We are interested for any integral domainD in the density

ı.Int.D// D ı.fn 2 Z�0 W the D-module Intn.D/ is freeg/:

One can think of ı.Int.D// as the probability that the D-module Intn.D/ is free for
a random nonnegative integer n. Our main conjecture is as follows.

Conjecture 1.1. Let D be a Dedekind domain such that PO.D/ is finite. Then
ı.Int.D// exists, is rational, and is at least 1=jPO.D/j.

A result of this type would be a first step towards an arithmetical interpretation
of the group PO.D/ when it is not trivial. We also consider the following weaker
version of the conjecture.

Conjecture 1.2. Let K be finite Galois extension of Q. Then ı.Int.OK// exists, is
rational, and is at least 1=jPO.OK/j.

A primary focus in literature on the Pólya-Ostrowski group has been on
determining or characterizing number fieldsK such that Int.OK/ has a regular basis.
For example, [2, Corollary 3.11] provides a characterization of all cyclic number
fields K such that Int.OK/ has a regular basis, and [1, Corollary II.4.5] and [7,
Propositions 3.4, 3.6, and 3.19] explicitly construct all such K of degrees 2, 3, 4,
and 6 over Q. The number field K D Q.

p�5/ is an example where PO.OK/ has
order 2, and in this case we show that ı.Int.OK// D 3=4. The group PO.OK/

also has order two for K D Q.
p�6/, but in this case numerical data suggests that

ı.Int.OK// D 1=2. For certain Galois number fieldsK of degree at most 6, we find
alternative expressions for, and in some cases compute, ı.Int.OK//.

This paper is organized as follows. In Sect. 2 we state several density conjectures
for certain arithmetic functions and explain how these conjectures were obtained
from numerical data. These conjectures form the basis for our conjectures regarding
ı.Int.D//. In Sect. 3 we prove some simple special cases of these conjectures. Then
in Sects. 4 and 5 we reduce Conjectures 1.1 and 1.2 above to the density conjectures
stated in Sect. 2. Corollary 5.4 of Sect. 5 provides a verification of a very special
case of Conjecture 1.2.

In Sects. 6 and 7 we characterize the quadratic number fields K such that
PO.OK/ has order 2, along with the cyclic cubic number fieldsK such that PO.OK/

has order 3, and we determine all n such that Intn.OK/ is free for several examples
of such K . Finally in Sects. 8 and 9 we provide similar computations for several
cyclic quartic and quintic number fields and for two noncyclic number fields of
degree six. All examples in Sects. 7 through 9 were computed using the computer
algebra systems Sage and/or Magma. For each of our examples of number fields
K in Sects. 6 through 9 we show that the value of ı.Int.OK// is determined by our
conjectures stated in Sect. 2.

I would like to acknowledge the work of two of my undergraduate research
assistants, Benjamin Sergent and Anthony Brice, who helped with Sect. 2 of this



136 J. Elliott

paper for a semester-long research project. Benjamin wrote a computer program to
estimate densities, and both used the program to collect data, the analysis of which
ultimately led to the conjectures in Sect. 2.

2 Arithmetic Conjectures

For a Dedekind domain D such that PO.D/ is finite, the set of all nonnegative
integers n such that the D-module Intn.D/ is free can be expressed in terms of
certain arithmetic functions uS for multisets S W Z>1 �! Z�0. In this section
we discuss various density properties of these functions uS that are relevant for
computing ı.Int.D//.

Following [1, Chap. II], for any nonnegative integer n and any integer k > 1, we
let

wk.n/ D
1X

iD1

j n
ki

k
:

Alternatively, by [1, Exercise II.8 and Lemma II.2.4], one has

wk.n/ D
nX

iD1
vk.i/ D n � sk.n/

k � 1 ;

where vk.i/ for any positive integer i is the largest nonnegative integer t such that
kt divides i and where sk.n/ is the sum of the digits in the base k expansion of n.
Define

uk.n/ D
nX

iD1
wk.i/ D

nX

iD1
.n � i C 1/vk.i/;

and define

uS.n/ D
X

k2S
uk.n/

for any subset S of Z>1. More generally, to allow for repetition, for any multiset
S W Z>1 �! Z�0 (in which each k 2 Z>1 appears a finite number S.k/ times), we
may define

uS .n/ D
1X

kD2
S.k/uk.n/:

Note that wk.n/ D uk.n/ D 0 if k > n, so uS.n/ is well defined even if S is infinite.
We begin with the following problem.
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Problem 2.1. Let d be a positive integer and S W Z>1 �! Z�0 a multiset. Compute
the density ı.d; S/ of the subset fn 2 Z�0 W d j uS .n/g of Z�0.

One of our initial approaches to the problem was to write a program (in C#) that
can compute ıN .d; S/ D jfn < N W d j uS.n/gj=N for any sufficiently small d ,
S , and N . The program is efficient enough that on our computers the program can
easily handle N � 1010 for small d and S in a reasonable amount of time. After
collecting data on many triples d , S , and N , we first observed that ıN .d; S/ for
sufficiently large N is close to a rational number. Thus we conjectured that

ı.d; S/ D lim
n�!1 ıN .d; S/ D ı .fn 2 Z�0 W d j uS.n/g/

exists and is rational. Then, after collecting and analyzing further data and proving
some special cases, we made following conjectures.

Conjecture 2.2. Let d be a positive integer and S W Z>1 �! Z�0 a multiset, and let
g D gcd.d; S.2/; S.3/; S.4/; : : :/ and l D gcd.d; 2S.2/; 3S.3/; 4S.4/; : : :/.

(1) ı.d; S/ exists, is rational, and is at least 1=d .
(2) ı.d; S/ D ı.a; S/ı.b; S/ if d D ab and gcd.a; b/ D 1.
(3) ı.d; S/ D 1=d if and only if l D 1.
(4) If g D 1, then

1

d
� ı.d; S/ � 1

d2

dX

iD1
gcd.i; d /:

(5) Let gcd.S/ D gcdfk W S.k/ ¤ 0g. If g D 1 D gcd.gcd.S/; d= gcd.d; gcd.S//,
then

ı.d; S/ D 1

dl

lX

aD1
gcd.a; l/:

The following conjecture generalizes statements (1)–(3) of Conjecture 2.2.

Conjecture 2.3. For i D 1; 2; : : : ; r , let di be a positive integer and Si W Z>1 �!
Z�0 a multiset. Let  denote the density of the set of nonnegative integers n such
that uSi .n/ is divisible by di for i D 1; 2; : : : ; r .

(1)  exists, is rational, and is at least 1=.d1d2 � � �dr/.
(2)  � ı.d1; S1/ı.d2; S2/ � � � ı.dr ; Sr/, and equality holds if the di are pairwise

relatively prime.
(3)  D 1=.d1d2 � � �dr/ if and only if, for each prime divisor p of d1d2 � � �dr , the

characteristic functions Si jZ>1npZ W Z>1npZ �! Z�0 of the multisets SinpZ
for those i such that p j di are linearly independent over Fp.

The following proposition provides a restatement of Conjecture 2.3(1).
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Proposition 2.4. Conjecture 2.3(1) is equivalent to the following. Let G be a finite
abelian group of order d , and for each g 2 G let Sg be a subset of Z>1. Suppose
that the sets Sg are pairwise disjoint. Then the density of the set of all n 2 Z�0 such
that

P
g2G uSg.n/g D 0 in G exists, is rational, and is at least 1=d .

The following is a weaker version of Conjecture 2.3(1) that is sufficient for
studying Galois number fields.

Conjecture 2.5. Let G be a finite abelian group of order d , and for each g 2 G let
Sg be a finite set of prime powers. Suppose that the sets Sg are pairwise disjoint and
that no two elements of

S
g2G Sg are powers of the same prime. Then the density of

the set of all n 2 Z�0 such that
P

g2G uSg.n/g D 0 in G exists, is rational, and is at
least 1=d .

3 Some Special Cases of the Conjectures

In this section we prove some simple special cases of the conjectures provided in
the previous section. First, we have the following.

Proposition 3.1. Let S W Z>1 �! Z�0 be a multiset and d a positive integer such
that d j k for all k 2 S . Then d j uS.n/ for all n 2 Z�0 such that n  �1 .modd/.
In particular,

ı.fn 2 Z�0 W d j uS.n/g/ � 1=d:

Proof. We may assume without loss of generality that S D fkg. Now, since vk.i/ D
0 if k − i , hence if d − i , one has

uk.n/ D
nX

iD1
.nC 1� i/vk.i/ D

X

d ji�n
.nC 1� i/vk.i/ 

X

d ji�n
0 � vk.i/  0 .modd/

for all n  �1 .modd/. The proposition follows. ut
Next, as our main result on the density conjectures, we compute the density of n

such that d divides ud .n/. Let sd .n/ denote the sum of the base d digits of n.

Lemma 3.2. One has nC wd .n/  sd .n/ .modd/ for all d and n.

Proof. The lemma follows easily from the equation wd .n/ D .n � sd .n//=.d � 1/.
ut

Proposition 3.3. Let d 2 Z>1, and let n 2 Z�0. Let n D qd C r with 0 � r <

d . Then ud .n/  .r C 1/sd .q/ .modd/. In particular, d j ud .n/ if and only if
d= gcd.d; r C 1/ j sd .q/, if and only if sd .n/  n .modd= gcd.d; nC 1//.
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Proof. One has

ud .n/ D nvd .1/C .n � 1/vd .2/C � � � C vd .n/

 .r C 1/vd .d/C .r C 1/vd .2d/C � � � C .r C 1/vd .qd/

 .r C 1/.q C vd .1/C vd .2/C � � � C vd .q//

 .r C 1/.q C wd .q//

 .r C 1/sd .q/ .modd/;

where the last congruence holds by Lemma 3.2. The first statement of the lemma fol-
lows. Finally, modulo d= gcd.d; r C 1/, the integer sd .qd/ D sd .q/ is congruent to
0 if and only if sd .n/ D sd .qd C r/ D sd .q/C r is congruent to r , or equivalently,
n. This completes the proof. ut
Proposition 3.4. Let d 2 Z>1. Then ı.d; fd g/ is equal to

1

d2

dX

iD1
gcd.i; d / D 1

d2

X

ejd
e�.d=e/ D 1

d2

X

ejd
e�.e/�.d=e/

D 1

d

Y

pjd

.1C vp.d//p � vp.d/

p
;

where � is Euler’s phi function, � is the number of divisors function, and � is the
Möbius function. More generally, ı.fn 2 Z�0 W ud .n/  a .modd/g/ is equal to

1

d2

X

gcd.i;d/ja
gcd.i; d / D 1

d2

X

ejgcd.a;d/

e�.d=e/

for any 1 � a � d .

Proof. Choose i with 1 � i � d and consider the nonnegative integers n D qd C
i � 1 congruent to i � 1 mod n. By Proposition 3.3 one has ud .n/  a .modd/
if and only if isd .q/  a .modd/. Thus if the density is nonzero we must have
gcd.i; d / j a. For each such i there are gcd.i; d / possibilities modulo d for sd .q/.
Since the sd .q/ are uniformly distributed among the d congruence classes modulo
d , it follows that

ı.fn 2 Z�0 W ud .n/  a .modd/g/ D 1

d

X

gcd.i;d/ja

gcd.i; d /

d
:

The rest of the proposition follows from this equality and from well-known proper-
ties of Dirichlet convolution and of the multiplicative functions �, � , and �. ut



140 J. Elliott

Corollary 3.5. Let p be a prime and n a nonnegative integer. Then p j up.n/ if
and only if (1) n  �1 .modp/, or (2) n 6 �1 .modp/ and sp.n/  n .modp/.
Moreover, ı.p; fpg/ exists and is equal to 2p�1

p2
.

Finally we investigate ı.2; fkg/ for odd k.

Proposition 3.6. Let k 2 Z>1 be odd. If ı.2; fkg/ exists, then it is equal to 1=2.

Proof. One has

uk.n/ D nvk.1/C .n � 1/vk.2/C � � � C 1vk.n/

 vk.2/C vk.4/C � � � C vk.n/

D vk.1/C vk.2/C � � � C vk.n=2/ D wk.n=2/ .mod 2/

if n is even, and similarly

uk.n/  tk.n/ WD vk.1/C vk.3/C � � � C vk.n/ .mod 2/

if n is odd. We show that the set S D fn 2 Z�0 W uk.n/ is eveng has density 1=2 in
both the set of even integers and the set of odd integers.

Suppose that n D 2.2ks � 1/, where s is an odd integer, and let m D ks � 1.
Note that vk.ks C r/ D vk.ks � r/ for all r � m. Therefore, by induction on r ,

wk.k
s C r/  vk.k

s/C wk.k
s � r � 1/  1C wk.k

s � r � 1/ .mod 2/;

that is, wk.ks C r/ and wk.ks � r �1/ have opposite parity, for all r � m. Therefore
the probability that wk.i/ is even for i � ks C m D n=2 is exactly 1=2. It follows
that the probability that uk.i/  wk.i=2/ .mod2/ is even for even i � n is exactly
1=2. Now take a limit as s ! 1.

Now instead suppose that n D 2m � 1, where m D ks � 1 for some odd integer
s. Note that vk.ks C 2r/ D vk.ks � 2r/ if 2r � m. Therefore

tk.k
s C 2r � 2/  vk.k

s/C tk.k
s � 2r/  1C tk.k

s � 2r/ .mod 2/

if 2r � m, so the probability that uk.i/  tk.i/ .mod 2/ is even for odd i � ks C
m � 2 D n is exactly 1=2. Now take a limit as s ! 1. ut

4 Dedekind Domains

Let D be an integral domain with quotient field K . For any n 2 Z�0, let

In.D/ D fa 2 K W a is the leading coefficient of some f 2 Intn.D/g:



The Probability That Intn.D/ Is Free 141

Then In.D/ is a fractional ideal of D containing D. Therefore nŠD D .D WK
In.D// is an ideal of D. If D is a Dedekind domain, then …q.D/ D Q

N.p/Dq p
denotes the product of prime ideals p of D of norm q for any (prime power) q. We
write In D In.D/ and …q D …q.D/ when the domainD is understood.

Proposition 4.1 ([1, Proposition II.3.1 and Corollary II.3.6]). Let D be a
Dedekind domain. For all n 2 Z�0 one has

nŠD D
Y

p

pwN.p/.n/ D
Y

q

…
wq.n/
q :

Moreover, the following conditions are equivalent for any n 2 Z�0:

(1) The D-module Intn.D/ is free.
(2) The fractional ideal

Qn
kD0 Ik of D is principal.

(3) The ideal
Q
q …

uq.n/
q D Qn

kD0 kŠD of D is principal.

Proposition 4.2 ([1, 4]). Let D be a Dedekind domain. The group PO.D/
is the subgroup of Cl.D/ generated by any of the following sets: f…q W
q is a prime powerg; fnŠD W n is a positive integerg; fqŠD W q is a prime powerg;
fIn W n is a positive integerg; and fIq W q is a prime powerg. Moreover, the
following conditions are equivalent:

(1) Int.D/ has a regular basis.
(2) The D-module Intn.D/ is free for all n.
(3) PO.D/ is trivial.
(4) …q is principal for all prime powers q.
(5) nŠD is principal for all n.
(6) qŠD is principal for all prime powers q.
(7) In is principal for all n.
(8) Iq is principal for all prime powers q.

Proposition 4.3. Let D be a Dedekind domain such that PO.D/ is cyclic of order
d with generator g; for each i with 0 < i < d let Si denote the set of all prime
powers q such that …q D gi in PO.D/, and let S denote the multiset

Pd�1
iD1 iSi .

Then theD-module Intn.D/ is free if and only if uS.n/ D P
i<d iuSi .n/ is divisible

by d . In particular, one has ı.Int.D// D ı.d; S/.

Proof. One has

Y

q

…
uq.n/
q D

Y

i<d

Y

q2Si
…

uq.n/
q ;

which reduces in PO.D/ to

Y

i<d

Y

q

giuq .n/ D g
P
i<d iuSi .n/:
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Since g is a generator of PO.D/, this element is equal to the identity if and only if
uS.n/ D P

i<d iuSi .n/ is divisible by d . ut
Corollary 4.4. Conjecture 2.2(1) implies that Conjecture 1.1 holds for all
Dedekind domainsD such that PO.D/ is finite and cyclic.

We generalize to the case where PO.D/ is not necessarily cyclic as follows.

Proposition 4.5. Let D be a Dedekind domain such that PO.D/ is finite. Choose
an isomorphism ' W PO.D/ �! Z=m1Z 	 � � � 	 Z=mkZ D G: For each I 2 G, let
SI denote the set of all prime powers q such that '.…q/ D I . Then Intn.D/ is free
if and only if

P
I2G uSI .n/I D 0 in G.

Proof. The proof is similar to that of Proposition 4.3. ut
Corollary 4.6. Conjecture 2.3(1) implies Conjecture 1.1.

Proof. This follows from Propositions 2.4 and 4.5. ut

5 Galois Number Fields

In this section we examine the consequences of the conjectures of Sect. 2 for
computing ı.Int.OK// for finite Galois extensions K of Q. We denote the radical
of an ideal I of a ring R by

p
I . If p is a prime, then fp and ep denote the

inertial degree and ramification index, respectively, of p in K over Q, and K the
discriminant.

Proposition 5.1 ([1, Proposition II.4.2]). Let K be a finite Galois extension of Q
and let D D OK . Then for any power q D pr of a prime p, one has the following:

(1) …q D p
pD if p is ramified in K and r D fp .

(2) …q D pD is principal if p is unramified in K and r D fp .
(3) …q D D if r ¤ fp .

In particular, PO.D/ is generated by
p
pD for the set of primes p dividingK , and

Int.D/ has a regular basis if and only if
p
pD is principal for all such p.

As a consequence of this result, if K is a finite Galois extension of Q and D D
OK , then (1) the set of all prime powers q such that…q is not principal is finite, and
(2) if …q1 and …q2 are two distinct nonprincipal generators of PO.D/, then q1 and
q2 are powers of distinct primes. Thus, we have the following corollary.

Corollary 5.2. Conjecture 2.5 implies Conjecture 1.2.

Moreover, Propositions 4.1, 5.1, and 3.4 immediately yield the following.

Proposition 5.3. Let K be a finite Galois extension of Q and D D OK . Then the

D-module Intn.D/ is free if and only if
Q
pjK

p
pD

u
p
fp .n/ is principal.
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Corollary 5.4. Let K be a finite Galois extension of Q and D D OK , and suppose
that K=Q has a unique ramified prime p such that

p
pD is not principal. Then

PO.D/ is cyclic, generated by
p
pD, and Intn.D/ is free if and only if upfp .n/

is divisible by jPO.D/j. Suppose, moreover, that q D pfp D jPO.D/j. Then
ı.Int.D// D ı.q; fqg/ D 1

q2

Pq
iD1 gcd.i; q/ D .fpC1/p�fp

qp
> 1

q
D 1

jPO.D/j .

The following theorem provides a useful tool for studying the Pólya-Ostrowski
group of cyclic and Galois number fields.

Theorem 5.5 ([9]). LetK be a finite Galois extension of Q of degree n with Galois
group G. Then PO.OK/ is isomorphic to a quotient of H D Q

pjK Z=epZ by
a subgroup isomorphic to H1.G;O�

K/, and the generators …pfp of PO.OK/ for
p j K correspond respectively to the elementary unit vectors in H . Moreover,
if K is a cyclic extension of Q, then H1.G;O�

K/ has order 2n if K is real and
N.O�

K/ D f1g, and it has order n otherwise.

Corollary 5.6. Let K be a finite Galois extension of Q of degree n. Let S be the
set of all integer primes p ramified in K such that…pfp D p

pOK is not principal.
Then PO.OK/ is isomorphic to a quotient group of H D Q

p2S Z=epZ and in
particular has exponent dividing n. Moreover, the generators …pfp of PO.OK/ for
p 2 S correspond respectively to the elementary unit vectors in H .

Proof. If …pfp is principal, then …pf is trivial in PO.OK/, and therefore the
corresponding elementary unit vector in

Q
pjK Z=epZ lies in the image of the

subgroupH1.G;O�
K/, whence the factor Z=epZ vanishes in the quotient ring. ut

Corollary 5.7 ([2, Corollary 3.11]). Let K be a cyclic extension of Q of degree n,
let D D OK , and let e D Q

pjK ep.

(1) If K is real and NK=Q.D�/ D f1g, then jPO.D/j D e=2n.
(2) Otherwise, jPO.D/j D e=n.

If n D q ¤ 2 is prime, then PO.D/ Š .Z=qZ/s�1, where s is the number of distinct
primes dividingK . If n is a power of a prime q, then PO.D/ is a q-group.

Proposition 5.8. Let K be a cyclic extension of Q of prime degree q ¤ 2. Let
p1; p2; : : : ; ps denote the prime divisors of K . For some rearrangement of the
primes pi , there exist 0 � c1; c2; : : : ; cs�1 < q such that …ps D Qs�1

iD1 …ci
pi

in
Cl.OK/. Then Intn.OK/ is free if and only if q divides upi .n/ C ciups .n/ for all
i < s.

Proof. By Corollary 5.7 the group PO.D/ is isomorphic to a quotient of .Z=qZ/s

by a subgroup of order q. By rearranging the factors we may assume that the
subgroup is generated by an element of the form .c1; c2; : : : ; cs�1;�1/, where 0 �
c1; c2; : : : ; cs�1 < q for all i . The proposition then follows from Proposition 4.5. ut
Proposition 5.9. Let K be a finite Galois extension of Q. Choose an isomorphism
PO.OK/ Š G D Qr

iD1 Z=diZ. For each prime p j K let Ip D .ip;1; ip;2; : : : ; ip;r /,
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denote the image of…pfp in G. Then Intn.OK/ is free if and only if
P

p upfp Ip D 0

in G. Moreover, if Conjecture 2.3(3) holds, then ı.Int.OK// D 1=jGj if and only
if for each prime divisor p of jGj the vectors

P
q¤p iq;j eq 2 Q

q¤p Fp for j with
p j dj are linearly independent over Fp , where the eq are the elementary coordinate
vectors.

Corollary 5.10. Suppose that Conjecture 2.3(3) holds. Let K be a cyclic extension
of Q of prime degree q. Then ı.Int.OK// D 1=jPO.OK/j if and only if either q is
unramified inK (i.e.,K=Q is tamely ramified) or q is ramified inK and

Q
pjK …

cp
p

is principal for some integers cp for p j K prime with q − cq .

The following result, if Conjecture 2.2(5) holds, computes ı.Int.OK// for “most”
Galois number fields such that PO.OK/ is cyclic.

Proposition 5.11. Let K be a finite Galois extension of Q such that PO.OK/ is
cyclic of order d . Let p1; p2; : : : ; ps be the primes dividingK such that…qi is not

principal, where qi D p
fpi
i . Let

l D gcd

�
d;

dq1

j…q1 j
;
dq2

j…q2 j
; : : : ;

dqs

j…qs j
�
:

Then l D l1l2 : : : ls; where li D gcd
	
qi ;

d
lcmj¤i j…qj j



for all i � s, and one has the

following:

(1) If Conjecture 2.2(5) holds, then

ı.Int.OK// D 1

dl

lX

iD1
gcd.i; l/ D 1

dl1 � � � ls
l1X

iD1
gcd.i; l1/ � � �

lsX

iD1
gcd.i; ls/

provided that either s ¤ 1 or s D 1 and vp1.d/ � vp1.q1/.D fp1/.
(2) If Conjecture 2.2(4) holds, then

1

d
� ı.Int.OK// � 1

d2

dX

iD1
gcd.i; d /:

(3) If Conjecture 2.2(3) holds, then ı.Int.OK// D 1=d if and only if l D 1, if and
only if l1 D l2 D � � � D ls D 1, if and only if for every prime p j d there exists
a prime q ¤ p such that vp.j…qfq j/ D vp.d/ (which holds, in particular, if
vp.j…pfp j/ < vp.d/ for all p j d ).

Proof. Let d be a generator ofG D PO.OK/, and for each i , let ti denote the unique
nonnegative integer less than jGj such that …qi D gti in G. By Proposition 4.3,
Intn.OK/ is free if and only if uS.n/ D Ps

iD1 tiuqi .n/ is divisible by d , where S is
the multiset with S.n/ D ti if n D qi for some i and S.n/ D 0 otherwise. Moreover,
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gcd.d; 2S.2/; 3S.3/; : : :/ D gcd.d; t1q1; t2q2; : : : ; tsqs/

D gcd.d; gcd.d; t1/q1; gcd.d; t2/q2; : : : ; gcd.d; ts/qs/

D l D l1l2 : : : łs:

Therefore, if Conjecture 2.2(5) holds, then ı.Int.OK// D 1
dl

Pl
iD1 gcd.i; l/

provided that gcd.gcd.S/; d= gcd.d; gcd.S/// D 1, that is, provided that s ¤ 1

or s D 1 and vp1.d/ � vp1.q1/.D fp1/. Moreover, the arithmetic function
f .l/ D Pl

iD0 gcd.i; l/ is multiplicative and the li are pairwise relatively prime,
so f .l/ D f .l1/f .l2/ � � �f .ls/. This proves statement (1) of the proposition, and
(2) and (3) follow easily. ut

6 Quadratic Number Fields K with jPO.OK /j D 2

Cahen and Chabert [1, Corollary II.4.5] characterize all quadratic number fields K
such that PO.OK/ is trivial. In a similar vein, the following result characterizes all
quadratic number fields K such that PO.OK/ has order 2.

Proposition 6.1. Let K D Q.
p
d/ be a quadratic extension of Q, where d is a

squarefree integer, let D D OK , and let N D NK=Q. Then PO.D/ has order two if
and only if (1) exactly two prime numbers are ramified in K and K is imaginary or
N.D�/ ¤ f1g or (2) exactly three prime numbers are ramified in K and K is real
and N.D�/ D f1g. The following subcases are exhaustive:

(1) d D �p, where p  1 .mod 4/ is prime.
(2) d D �2p, where p is an odd prime.
(3) d D �pq, where p  1 .mod 4/ and q  3 .mod 4/ are prime.
(4) d D 2p, where p is an odd prime and N.D�/ ¤ f1g.
(5) d D pq, where p; q  1 .mod 4/ are prime and N.D�/ ¤ f1g.
(6) d D pq, where p  1 .mod 4/ and q  3 .mod 4/ are prime.
(7) d D 2pq, where p; q are distinct odd primes and N.D�/ D f1g (which holds,

for example, if p  3 .mod 4/ or q  3 .mod 4/).
(8) d D pqr , where pqr  1 .mod 4/ and p; q; r are distinct primes and

N.D�/ D f1g.

Proof. The first statement of the proposition follows from Corollary 5.7. Thus
PO.D/ has order two if and only if K has two distinct prime factors or else K is
real,N.D�/ D f1g, andK has three distinct prime factors. Moreover,K is equal
to d if d  1 .mod 4/, and 4d otherwise. The eight cases of the proposition follow
from these two facts. ut

For each of the cases in the proposition above, the following result determines
necessary and sufficient conditions on n for Intn.OK/ to be free.
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Proposition 6.2. Let K D Q.
p
d/ be a quadratic extension of Q, where d is a

squarefree integer, and let D D OK . Then
Q
pjd …p D p

dD is principal. Suppose
that jPO.D/j D 2. Let S be the set of prime numbers p that are ramified in K
such that …p D p

pD is not principal. Then Intn.D/ is free if and only if the ideal
Q
p2S …

up.n/
p is principal, if and only if uS .n/ is even. Moreover,K and S , in cases

(1) through (8), respectively, of Proposition 6.1 are given as follows:

(1) K D �4p and S D f2g.
(2) K D �8p and S D f2; pg.
(3) K D �pq and S D fp; qg.
(4) K D 8p and S D f2; pg.
(5) K D pq and S D fp; qg.
(6) K D 4pq, and S D f2g, S D fp; qg, or S D f2; p; qg. Each of these three

cases is possible and holds, respectively, if and only if:

(a) There exist integers a; b such that pa2 � qb2 D ˙1. For example, if d D
5 � 11, then …5 D .15 C 2

p
55/ is principal, and therefore …3 is also

principal, and S D f2g.
(b) There exist integers a; b such that a2�db2 D ˙2. For example, if d D 7�17,

then …2 D .11C p
119/ is principal, and S D f7; 17g.

(c) There exist integers a; b such that pa2 � qb2 D ˙2. For example, if d D
3 � 5, then …2…3 D .3C p

15/ is principal, and S D f2; 3; 5g.

(7) K D 8pq and S � f2; p; qg, where jS j D 2. The following examples show
that one may or may not have 2 2 S , and S may contain 0, 1, or 2 primes
congruent to 1 mod 4, and likewise S may contain 0, 1, or 2 primes congruent
to 3 mod 4:

(a) If d D 2 � 3 � 5, then…5 D .5C p
30/ is principal and S D f2; 3g.

(b) If d D 2 � 5 � 11, then …11 D .11C p
110/ is principal and S D f2; 5g.

(c) If d D 2 � 3 � 11, then …2 D .8C p
66/ is principal and S D f3; 11g.

(d) If d D 2 � 11 � 17, then…2 D .58C 3
p
264/ is principal and S D f11; 17g.

(e) If d D 2 �17 �41, then…2 D .112C3p1394/ is principal and S D f17; 41g
(and N.D�/ D f1g since the continued fraction of

p
d has (even) period

length 6).

(8) K D pqr and S � fp; q; rg, where jS j D 2. The following examples show
that S may contain 0, 1, or 2 primes congruent to 1 mod 4:

(a) If d D 3 � 5 � 7, then…5 D .10C p
105/ is principal and S D f3; 7g.

(b) If d D 3 � 5 � 11, then …11 D .77C 6
p
165/ is principal and S D f3; 5g.

(c) If d D 5 � 13 � 29, then…29 D .87C 2
p
1885/ is principal and S D f5; 13g

(and N.D�/ D f1g since the continued fraction of
p
d has (even) period

length 4).

Proof. The computation of S in each case follows readily from the fact thatQ
pjd …p D p

dD is principal. The examples in cases (6) through (8) are easily
verified by showing that the ideal…p is principal for the relevant prime p j K . ut
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Corollary 6.3. Let K D Q.
p
d/, where either (1) d D �p, where p  1 .mod 4/

is prime, or (2) d D pq, where p  1 .mod 4/ and q  3 .mod 4/ are prime,
and there exist integers a; b such that pa2 � qb2 D ˙1. Then PO.OK/ D 2

and ı.Int.OK// D 3=4. Moreover, if Conjecture 2.2(3) holds, then one has
ı.Int.OK// D 1=2 for any other quadratic extension K of Q with PO.OK/ D 2.

7 Cyclic Cubic Number Fields

Recall by Corollary 5.7 that if K is a cyclic extension of Q of prime degree q ¤ 2,
then PO.OK/ has order qs�1, where s is the number of prime integers ramified inK .
Using this fact, together with the following theorem, one can characterize all cyclic
cubic extensionsK for which PO.OK/ has a given order.

Proposition 7.1 ([3, Lemma 6.4.5 and Theorem 6.4.11]). For every cyclic cubic
number fieldK , there exist unique integers e; u; v such that e is a product of distinct
primes congruent to 1 mod 3, u is congruent to 2 mod 3, 4e D u2 C 3v2, v > 0, and
K D Q.�/, where � is a root of the polynomial f D X3 � 3eX � eu. Conversely,
every field of this type is a cyclic cubic number field. Moreover, the discriminant of
f is .9ev/2; if 3 − v then K D .9e/2; and if 3 j v thenK D e2.

Using these results, [7] characterizes all cyclic cubic extensions K of Q such
that PO.OK/ is trivial (or equivalently s D 1): clearly s D 1 if and only if either
e D 1, u D �1, v D 1, or e is prime and 3 j v. In a similar vein, the following
result characterizes all cyclic cubic extensions K of Q such that PO.OK/ has order
3 (or equivalently s D 2). In this case, as in the quadratic case, we are also able to
characterize all n such that Intn.OK/ is free.

Proposition 7.2. The cyclic cubic number fields K such that jPO.OK/j D 3 are
precisely those of the form K D Q.�/, where � is a root of the polynomial X3 �
3eX � eu and e; u; v are integers such that u is congruent to 2 mod 3 and 4e D
u2 C 3v2 and either (1) 3 − v and e is a prime congruent to 1 mod 3 or (2) 3 j v and
e is a product of two distinct primes congruent to 1 mod 3. Choose a prime p j K

such that …p D p
pD is not principal. For the other ramified prime q, set � to be

0 if …q is principal, 1 if …q is in the same ideal class as …p , and �1 otherwise.

Then Intn.D/ is free if and only if the ideal …
up.n/
p …

uq.n/
q is principal, if and only if

up.n/C �uq.n/ is divisible by 3.

The following series of examples were computed with the computer algebra and
number theory system Sage. We follow the notation of Proposition 7.2.

Example 7.3. In the following examples of cyclic cubic number fields K , one has
p D 3 and � D 0 (i.e., …q is principal). Thus Intn.OK/ is free as an OK -module
if and only if u3.n/ is divisible by 3, if and only if either (1) n  2 .mod 3/ or
(2) n 6 2 .mod3/ and s3.n/  n .mod 3/. In particular, Corollary 5.4 implies that
ı.Int.OK// D 5=9.
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(1) e D 19, u D �1, v D 5. ThenK D .9 � 19/2.
(2) e D 109, u D �19, v D 5. ThenK D .9 � 109/2.
(3) e D 181, u D 26, v D 4. Then K D .9 � 181/2.
Example 7.4. In the following examples of cyclic cubic number fields K , one has
p ¤ 3 and � D 0 (i.e., …q is principal). Thus Intn.OK/ is free as an OK -module
if and only if up.n/ is divisible by 3, and therefore Conjecture 2.2(3) implies that
ı.Int.OK// D 1=3.

(1) e D 61, u D 14, v D 4. ThenK D .9 � 61/2 and p D 61.
(2) e D 67, u D �16, v D 2. ThenK D .9 � 67/2 and p D 67.
(3) e D 7 � 13, u D �16, v D 6. ThenK D .7 � 13/2 and p D 7.
(4) e D 19 � 37, u D �42, v D 6. Then K D .19 � 37/2 and p D 19.

Example 7.5. In the following examples of cyclic cubic number fields K , one has
p D 3 and � D 1 (i.e., there is a prime q ¤ 3 such that…3 and…q are not principal
but …2

3…q is). Thus Intn.OK/ is free as an OK -module if and only if u3.n/C uq.n/
is divisible by 3, and Conjecture 2.2(3) implies that ı.Int.OK// D 1=3.

(1) e D 7, u D 5, v D 1. ThenK D .9 � 7/2 and q D 7.
(2) e D 31, u D 11, v D 1. ThenK D .9 � 31/2 and q D 31.
(3) e D 43, u D �13, v D 1. ThenK D .9 � 43/2 and q D 43.
(4) e D 73, u D 17, v D 1. ThenK D .9 � 73/2 and q D 73.

Example 7.6. In the following examples of cyclic cubic number fields K , one has
p ¤ 3, q ¤ 3, and � D �1 (i.e., there are primes p; q ¤ 3 such that …p and …q

are not principal but…p…q is). Thus Intn.OK/ is free as an OK-module if and only
if up.n/ � uq.n/ is divisible by 3, and Conjecture 2.2(3) implies that ı.Int.OK// D
1=3.

(1) e D 13 � 19, u D �31, v D 3. Then K D .13 � 19/2 and p D 13, q D 19.
(2) e D 7 � 31, u D 29, v D 3. ThenK D .7 � 31/2 and p D 7, q D 31.

Next we provide some examples of cyclic cubic number fields where the Pólya-
Ostrowski group is not cyclic.

Example 7.7. In the following examples of cyclic cubic number fields K , there are
exactly three prime integers that are ramified in K , and therefore, PO.OK/ Š G D
.Z=3Z/2. Moreover, Conjecture 2.3(3) implies that ı.Int.OK// D 1=9.

(1) e D 7 � 19, u D 23, v D 1. Then K D .32 � 7 � 19/3. Moreover, …2
3…7…19

is principal. Thus if …7 and …19 are represented in G by .1; 0/ and .0; 1/,
respectively, then…3 is represented by .1; 1/. Therefore Intn.OK/ is free if and
only if 3 divides both u3.n/C u7.n/ and u3.n/C u19.n/.

(2) e D 7 � 13 � 19, u D 83, v D 3. ThenK D .7 � 13 � 19/3. Moreover,…7…13…19

is principal. Thus if …7 and …13 are represented in G by .1; 0/ and .0; 1/,
respectively, then …3 is represented by .�1;�1/. Therefore Intn.OK/ is free
if and only if 3 divides both u7.n/ � u19.n/ and u13.n/� u19.n/.

(3) e D 7 � 19 � 31, u D 128, v D 6. Then K D .7 � 19 � 31/3. Moreover,
…2
7…31 is principal. Thus if …7 and …19 are represented in G by .1; 0/ and
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.0; 1/, respectively, then …31 is represented by .1; 0/. Therefore Intn.OK/ is
free if and only if 3 divides both u7.n/C u31.n/ and u19.n/.

Example 7.8. Let e D 7 � 13 � 31, u D �106, v D 4. Then K D .32 � 7 � 13 � 31/3,
so PO.OK/ Š G D .Z=3Z/3. Moreover, …3…7…

2
13 is principal. Thus if …3, …7,

and …31 are represented in G by .1; 0; 0/, .0; 1; 0/, and .0; 0; 1/, respectively, then
…13 is represented by .1; 1; 0/. Therefore Intn.OK/ is free if and only if 3 divides
u3.n/ C u13.n/, u7.n/ C u13.n/, and u31.n/. Moreover, Conjecture 2.3(3) implies
that ı.Int.OK// D 1=27.

8 Cyclic Quartic and Quintic Examples

In this section we study several cyclic quartic and quintic number fields.
The cyclic quartic number fields in the following proposition are called the

simplest quartic fields.

Proposition 8.1 ([6]). Let m ¤ 3 be a positive integer. Let �m 2 C be a root of
x4 �mx3 � 6x2 Cmx C 1. Then Km D Q.�m/ is a cyclic quartic extension of Q.

Example 8.2. Using Sage, we investigatedK D Km form � 30 and m D 52.

(1) If m D 1; 2; 4; 5; 6; 8; 9; 10; 11; 14; 15; 16; 21; 22; 24; 25; 26; 29; 30, then
PO.OK/ is trivial: …pfp is principal for all p j K .

(2) If m D 7; 12; 13; 17; 19; 20; 23; 27; 28, then K has two prime factors p and q,
and …2

pfp
and …pfp…qfq are principal but …pfp and …qfq are not. In this case

PO.OK/ Š Z=2Z and Intn.OK/ is free if and only if upfp .n/C uqfq .n/ is even.
In particular, if Conjecture 2.2(3) holds then ı.Int.OKm// D 1=2. Moreover,
one has fp D fq D 1 and ep D eq D 4 for all such m except for m D 28,
where one has K D 211 � 52, e5 D f5 D 2, e2 D 4, and f2 D 1.

(3) If m D 18, then K D 24 � 53 � 173 and e2 D f2 D 2. Moreover, …4

and …5…17 are principal, but …2
5 is not. Therefore PO.OK/ Š Z=4Z, and

Intn.D/ is principal if and only if 4 divides u5.n/ � u17.n/. In particular, if
Conjecture 2.2(3) holds then ı.Int.OKm// D 1=4.

(4) Ifm D 52, thenK D 211 �53 �173, and…2…5…17 and…2
5…

2
17 are principal, but

…5…17, …2
5, and …2

17 are not. Therefore PO.OK/ Š Z=2Z 	 Z=4Z, with …2,
…5, and …17 represented by .1; 0/, .0; 1/, and .1;�1/, respectively. Therefore
Intn.D/ is principal if and only if 2 divides u2.n/Cu17.n/ and 4 divides u5.n/�
u17.n/. In particular, if Conjecture 2.3(3) holds then ı.Int.OKm// D 1=8.

Now we turn to a well-known family of cyclic quintic number fields.

Proposition 8.3 ([5, 8]). Let m 2 Z. Let �m 2 C be a root of

x5 Cm2x4 � .2m3 C 6m2 C 10mC 10/x3 C .m4 C 5m3 C 11m2 C 15mC 5/x2

C.m3 C 4m2 C 10mC 10/x C 1:
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Then Km D Q.�m/ is a cyclic quintic extension of Q with discriminant f 4, where
f D 5b

Q
p2S p is the conductor of K=Q, where b D 2 if 5 j m and b D 0

otherwise, and where S is the set of all primes p  1 .mod 5/ such that 5 − vp.m4C
5m3 C 15m2 C 25mC 25/.

Proposition 8.4. Assume the notation of Proposition 8.3. Suppose that
…b
5

Q
p2S …p is principal.

(1) Suppose that 5 − m (hence b D 0), and choose p0 2 S . Then PO.OK/ Š
.Z=5Z/jS j�1, and Intn.D/ is free if and only if 5 divides up.n/ � up0.n/ for all
p 2 Snfp0g, if and only if 5 divides up � uq.n/ for all p; q 2 S .

(2) Suppose that 5 j m (hence b D 2). Then PO.OK/ Š .Z=5Z/jS j, and Intn.D/ is
free if and only if 5 divides up.n/C2u5.n/ for all p 2 S , if and only if 5 divides
u5.n/C 3up.n/ for all p 2 S .

In particular, Conjecture 2.3(3) implies that ı.Int.OKm// D 1=jPO.OKm/j.
Proof. This follows easily from Propositions 5.7 and 5.8. ut
Example 8.5. Using Sage, we investigated K D Km for jnj � 10. In all of these
cases, …b

5

Q
p2S …p is principal (though we were unable to prove it generally), so

Proposition 8.4 applies.

(1) Ifm D 0;˙1;˙2;�3;˙4;�6; 7; 8;�9, thenK has a unique prime factor and
therefore PO.OK/ is trivial.

(2) Ifm D 3;˙5; 6;�7;�8; 9;�10, thenK has exactly two distinct prime factors
and therefore PO.OK/ Š Z=5Z.

(3) If m D 10, thenK D .52 � 11 � 61/4, and therefore PO.OK/ Š .Z=5Z/2.

Problem 8.6. Assuming the notation of Proposition 8.3, is…b
5

Q
p2S …p necessar-

ily principal in OKm , for all m 2 Z?

9 Noncyclic Examples

Finally, we present two examples of noncyclic Galois number fieldsK . In the second
example, PO.OK/ is also noncyclic.

Example 9.1. Let K denote the Galois closure of Q.�/, where � is a root of x3 �
3x C 8. Then K D �26 � 38 � 53. Moreover, …2

2, …
3
3, and …5 are principal (and

f2 D f3 D f5 D 1), while…2 and…3 are not. Therefore, PO.OK/ Š Z2	Z3 Š Z6,
and Intn.OK/ is free if and only if 2 j u2.n/ and 3 j u3.n/, if and only if 6 j 3u2.n/C
2u3.n/. In particular, if Conjecture 2.2(5) or 2.3(2) holds, then ı.Int.OK// D 5=12.

Example 9.2. Let K denote the Galois closure of Q.�/, where � is a root of x3 �
210. Then K D �24 � 311 � 54 � 74. Moreover, …3

4, …
3
25, …4…

2
3, and …25…7 are

principal (and f2 D f5 D 2 and f3 D f7 D 1), while …4 and …25 are not.
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Therefore PO.OK/ Š Z3 	 Z3, and Intn.OK/ is free if and only if 3 divides both
u4.n/ C u3.n/ and u25.n/ � u7.n/. In particular, if Conjecture 2.3(3) holds, then
ı.Int.OK// D 1=9.
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1 Spaces of Valuation Domains

The motivations for studying from a topological point of view spaces of valuation
domains come from various directions and, historically, mainly from Zariski’s work
on the reduction of singularities of an algebraic surface and a three-dimensional
variety and, more generally, for establishing new foundations of algebraic geometry
by algebraic means (see [44–46] and [47]). Other important applications with
algebraic geometric flavor are due to Nagata [32, 33], Temkin [42], and Temkin
and Tyomkin [43]. Further motivations come from rigid algebraic geometry started
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by J. Tate [41] (see also the papers by Fresnel and van der Put [18], Huber and
Knebusch [26], Fujiwara and Kato [19]) and from real algebraic geometry (see
for instance Schwartz [38] and Huber [25]). For a deeper insight on these topics
see [26].

In the following, we want to present some recent results in the literature
concerning various topologies on collections of valuation domains.

Let K be a field, let A be an arbitrary subring of K , and let qf.A/ denote the
quotient field of A. Set

Zar.KjA/ WD fV j V is a valuation domain and A � V � K D qf.V /g :

When A is the prime subring of K , we will simply denote by Zar.K/ the space
Zar.KjA/. Recall that O. Zariski in [44] introduced a topological structure on the
set Z WD Zar.KjA/ by taking, as a basis for the open sets, the subsets BF WD
BZ
F WD fV 2 Z j V � F g, for F varying in the family of all finite subsets of K

(see also [47, Chapter VI, §17, page 110]). When no confusion can arise, we will
simply denote by Bx the basic open set Bfxg ofZ. This topology is what that is now
called the Zariski topology onZ and the setZ, equipped with this topology, denoted
also by Zzar, is usually called the Zariski-Riemann space of K over A (sometimes
called abstract Riemann surface or generalized Riemann manifold).

In 1944, Zariski [44] proved the quasi-compactness of Zzar and later it was
proven and rediscovered by several authors, with a variety of different techniques,
that if A is an integral domain and K is the quotient field of A, then Zzar is a
spectral space, in the sense of M. Hochster [24]. More precisely, in 1986–1987,
Dobbs, Fedder, and Fontana in [4, Theorem 4.1] gave a purely topological proof of
this fact and Dobbs and Fontana presented a more complete version of this result
in [5, Theorem 2] by exhibiting a ring R (namely, the Kronecker function ring of
the integral closure of A with respect to the b-operation) such that Z is canonically
homeomorphic to Spec.R/ (both endowed with the Zariski topology). Later, using
a general construction of the Kronecker function ring developed by F. Halter-Koch
[22], it was proved that the Zariski-Riemann space Z is a still a spectral space
when K is not necessarily the quotient field of A (see [23, Proposition 2.7] or
[9, Corollary 3.6]). In 2004, in the appendix of [28], Kuhlmann gave a model-
theoretic proof of the fact that Z is a spectral space. Note also that a purely
topological approach for proving that Z is spectral was presented by Finocchiaro in
[8, Corollary 3.3]. Very recently, N. Schwartz [39], using the inverse spectrum of a
lattice-ordered abelian group and its structure sheaf (see also Rump and Yang [37]),
obtained, as an application of his main theorem (via the Jaffard-Ohm theorem), a
new proof of the fact that Z is spectral.

Since Z is a spectral space, Z also possesses the constructible (or patch), the
ultrafilter and the inverse topologies (definitions will be recalled later) and these
other topologies turn out to be more useful than the Zariski topology in several
contexts as we will see in the present survey paper.
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2 The Constructible Topology

Let A be a ring and let X WD Spec.A/ denote the collection of all prime ideals
of A. The set X can be endowed with the Zariski topology which has several
attractive properties related to the “geometric aspects” of the set of prime ideals.
As is well known, Xzar (i.e., the set X with the Zariski topology) is always quasi-
compact, but almost never Hausdorff. More precisely,Xzar is Hausdorff if and only
if dim.A/ D 0. Thus, many authors have considered a finer topology on the prime
spectrum of a ring, known as the constructible topology (see [3,21]) or as the patch
topology [24].

In order to introduce this kind of topology in a more general setting, with a
simple set-theoretic approach, we need some notation and terminology. Let X be a
topological space. Following [40], we set

VK .X / WDfU j U � X ; U open and quasi-compact in X g;
K .X / WDfX n U j U 2 VK .X /g;
K .X / WD the Boolean algebra of the subsets of X generated by VK .X /:

As in [40], we call the constructible topology on X the topology on X whose
basis of open sets is K .X /. We denote by X cons the set X , equipped with the
constructible topology. In particular, when X is a spectral space, the closure of a
subset Y of X under the constructible topology is given by

Clcons.Y /DTfU[.X nV / jU and V open and quasi-compact in X ;

U [.X nV / � Y g :

Note that, for Noetherian topological spaces, this definition of constructible topol-
ogy coincides with the classical one given in [3].

When X WD Spec.A/, for some ring A, then the set VK .Xzar/ is a basis of open
sets for Xzar, and thus the constructible topology on X is finer than the Zariski
topology. Moreover, Xcons is a compact Hausdorff space and the constructible

topology onX is the coarsest topology for which VK .Xzar/ is a collection of clopen
sets (see [21, I.7.2]).

3 The Ultrafilter Topology

In 2008, the authors of [16] considered “another” natural topology on X WD
Spec.A/, by using the notion of an ultrafilter and the following lemma.

Lemma 3.1 (Cahen-Loper-Tartarone [2, Lemma 2.4]). Let Y be a subset of
X WD Spec.A/ and let U be an ultrafilter on Y . Then pU WD ff 2 A j
V.f / \ Y 2 U g is a prime ideal of A called the ultrafilter limit point of Y , with
respect to U .
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The notion of ultrafilter limit points of sets of prime ideals has been used to great
effect in several recent papers [2,30,31]. If U is a trivial (or principal) ultrafilter on
the subset Y of X , i.e., U D fS � Y j p 2 Sg, for some p 2 Y , then pU D p. On
the other hand, when U is a nontrivial ultrafilter on Y , then it may happen that pU

does not belong to Y . This fact motivates the following definition.

Definition 3.2. Let A be a ring and Y be a subset of X WD Spec.A/. We say that
Y is ultrafilter closed if pU 2 Y , for each ultrafilter U on Y .

It is not hard to see that, for each Y � X ,

Clultra.Y / WD fpU j U ultrafilter on Y g

satisfies the Kuratowski closure axioms and the set of all ultrafilter closed sets of
X is the family of closed sets for a topology on X , called the ultrafilter topology
on X . We denote the set X endowed with the ultrafilter topology by Xultra. The
main result of [16] is the following.

Theorem 3.3 (Fontana-Loper [16, Theorem 8]). Let A be a ring. The ultrafilter
topology coincides with the constructible topology on the prime spectrum Spec.A/.

Taking as starting point the situation described above for the prime spectrum of
a ring, the next goal is to define an ultrafilter topology on the set Z WD Zar.KjA/
(where K is a field and A is a subring of K) that is finer than the Zariski topology.
We start by recalling the following useful fact.

Lemma 3.4 (Cahen-Loper-Tartarone [2, Lemma 2.9]). Let K be a field and A
be a subring of K . If Y is a nonempty subset of Z WD Zar.KjA/ and U is an
ultrafilter on Y , then

AU ;Y WD AU WD fx 2 K j Bx \ Y 2 U g

is a valuation domain of K containing A as a subring (i.e., AU 2 Z), called the
ultrafilter limit point of Y in Z, with respect to U .

As before let Y be a nonempty subset of Z WD Zar.KjA/, when V 2 Y and
U WD fS � Y j V 2 Sg is the trivial ultrafilter of Y generated by V , thenAU D V .
But, in general, it is possible to construct nontrivial ultrafilters on Y whose ultrafilter
limit point are not elements of Y . This leads to the following definition.

Definition 3.5. Let K be a field and A be a subring of K . A subset Y of Z WD
Zar.KjA/ is ultrafilter closed if AU 2 Y , for any ultrafilter U on Y .

For every Y � Z, we set

Clultra.Y / WD fAU j U ultrafilter on Y g :
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Theorem 3.6 (Finocchiaro-Fontana-Loper [10, Proposition 3.3, Theorems 3.4
and 3.9]). Let K be a field, A be a subring of K , and Z WD Zar.KjA/. The
following statements hold.

(1) Clultra satisfies the Kuratowski closure axioms and so the ultrafilter closed
sets ofZ are the closed sets for a topology, called the ultrafilter topology on Z.

(2) Denote byZultra the setZ equipped with the ultrafilter topology. Then,Zultra

is a compact Hausdorff topological space.
(3) The ultrafilter topology is the coarsest topology for which the basic open sets

BF of the Zariski topology ofZ are clopen. In particular, the ultrafilter topology
on Z is finer than the Zariski topology and coincides with the constructible
topology.

(4) The surjective map 
 W Zar.KjA/ultra ! Spec.A/ultra, mapping a
valuation domain to its center on A, is continuous and closed.

(5) If A is a Prüfer domain, the map 
 W Zar.KjA/ultra ! Spec.A/ultra is a
homeomorphism.

Remark 3.7. (a) From Theorem 3.3 and the last statement in point (3) of the
previous theorem it is obvious that points (4) and (5) of Theorem 3.6 hold when
one replaces everywhere “ultra” with “cons.”

(b) It is well known that points (4) and (5) of Theorem 3.6 hold when both spaces
are endowed with the Zariski topology ([4, Theorem 2.5 and 4.1] and [5,
Theorem 2 and Remark 3]).

We recall now another important notion introduced by Halter-Koch in [22] as a
generalization of the classical construction of the Kronecker function ring.

Definition 3.8. Let T be an indeterminate over the field K . A subring S of K.T /
is called a K-function ring if (a) T and T �1 belong to S , and (b) f .0/ 2 f .T /S ,
for each nonzero polynomial f .T / 2 KŒT �.

We collect in the following proposition the basic algebraic properties of
K�function rings [22, Remarks at page 47 and Theorem (2.2)].

Proposition 3.9 (Halter-Koch [22, Section 2, Remark (1, 2 and 3), Theorem 2.2,
and Corollary 2.7]). Let K be a field, let T be an indeterminate overK , and let S
be a subring of K.T /. Assume that S is a K-function ring.

(1) If S 0 is a subring of K.T / containing S , then S 0 is also a K-function ring.
(2) If S is a nonempty collection of K-function rings (inK.T /), then

Tf˙ j ˙ 2
S g is a K-function ring.

(3) S is a Bézout domain with quotient field K.T /.
(4) If f WD f0 C f1T C : : :C frT

r 2 KŒT �, then .f0; f1; : : : ; fr /S D fS .
(5) For every valuation domain V ofK , the trivial extension or Gaussian extension

V.T / inK.T / (i.e., V.T / WD V ŒT �MŒT �, where M is the maximal ideal of V ) is
a K-function ring.
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Given a subring S of K.T /, we will denote by Zar0.K.T /jS/ the subset of
Zar.K.T /jS/ consisting of all the valuation domains of K.T / that are trivial
extensions of some valuation domain of K .

The following characterization of K-function rings provides a slight gene-
ralization of [23, Theorem 2.3], and its proof is similar to that given by O. Kwegna
Heubo, which is based on the work by Halter-Koch [22].

Proposition 3.10 (Finocchiaro-Fontana-Loper [10, Propositions 3.2 and 3.3]).
Let K be a field, T an indeterminate over K , and S a subring of K.T /. Then, the
following conditions are equivalent:

(i) S is a K�function ring.
(ii) S is integrally closed and Zar.K.T /jS/ D Zar0.K.T /jS/.

(iii) S is the intersection of a nonempty subcollection of Zar0.K.T //.

We give next one of the main results in [10] which, for the case of the Zariski to-
pology, was already proved in [23, Corollary 2.2, Proposition 2.7 and Corollary 2.9].
More precisely,

Theorem 3.11 (Finocchiaro-Fontana-Loper [10, Corollary 3.6, Proposition 3.9,
Corollary 3.11]). Let K be a field and T an indeterminate over K . The following
statements hold.

(1) The natural map ' W Zar.K.T // ! Zar.K/, W 7! W \ K , is continuous
and closed with respect to both the Zariski topology and the ultrafilter topology
(on both spaces).

(2) If S � K.T / is a K-function ring, then the restriction of ' to the subspace
Zar.K.T /jS/ of Zar.K.T // is a topological embedding, with respect to both
the Zariski topology and the ultrafilter topology.

(3) Let A be any subring of K , and let

Kr.KjA/ WD
\

fV.T / j V 2 Zar.KjA/g:

Then Kr.KjA/ is a K-function ring. Moreover, the restriction of the map ' to
Zar.K.T /jKr.KjA// establishes a homeomorphism of Zar.K.T /jKr.KjA//
with Zar.KjA/, with respect to both the Zariski topology and the ultrafilter
topology.

(4) Let A be a subring of K , SA WD Kr.KjA/, and let 
 W Zar.K.T /jSA/ !
Spec.SA/ be the map sending a valuation overring of SA into its center on SA.
Then 
 establishes a homeomorphism, with respect to both the Zariski topology
and the ultrafilter topology; thus, the map

� WD 
 ı '�1 W Zar.KjA/ ! Zar.K.T /jSA/ ! Spec.SA/

is also a homeomorphism. In other words, Zar.KjA/ is a spectral space when
endowed with either the Zariski topology or the ultrafilter topology.
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Note that statement (4) of the previous theorem extends [5, Theorem 2] to the
general case where A is an arbitrary subring of the field K .

4 The Inverse Topology

Let X be any topological space. Then, it is well known that the topology induces a
natural preorder on X by setting

x � y W, y 2 Cl.fxg/:

Therefore,

x" WD fy 2 X j x � yg D Cl.fxg/I

in particular, if F is a closed subspace of X and x 2 F , then x" � F .
The set x" is called the set of specializations of x in X ; on the other hand, the set

x# WD fy 2 X j y � xg

is called the set of generizations of x. Since the closed subspaces are closed under
specializations, it follows easily that if U is an open subspace of X and x 2 U ,
then x# � U .

For a subset Y of X we denote by Y " (respectively, Y #) the set of all
specializations (respectively, generizations) of elements in Y .

If X is a T0-space, then the preorder is a partial order on X , and, for x; y 2 X ,
x" D y" if and only if x D y.

Given a preordered set .X;�/, we say that a topology T onX is compatible with
the order � if, for each pair of elements x and y in X , y 2 ClT .x/ implies that
x � y. Obviously, in general, several different topologies on X may be compatible
with the given order on X .

The following properties are easy consequences of the definitions (see, for
instance, [6, Lemma 2.1, Proposition 2.3(b)]).

Lemma 4.1. Let .X;�/ be a preordered set and let Y � X .

(1) ClL.Y / WD Y " (respectively, ClR.Y / WD Y #) satisfies the Kuratowski closure
axioms and so it defines a topological structure onX , called the L(eft)-topology
(respectively, the R(ight)-topology) on X .

(2) The L-topology (respectively, R-topology) on X is the finest topology on X
compatible with the given order (respectively, with the opposite order of the
given order) on X .

(3) A subset U of X is open in the L-topology (respectively, R-topology) if and
only if U D U # .D ClR.U /; i.e., it is closed in the R-topology/ (respectively,
U D U " .D ClL.U /; i.e., it is closed in the L-topology/.
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(4) Let U � X be a nonempty open subspace of X endowed with the L-topology
(respectively, R-topology). Then U is quasi-compact if and only if there exist
x1; x2; : : : xn in U , with n � 1, such that U D x

#
1 [x#

2 [ � � � [x#
n (respectively,

U D x
"
1 [ x"

2 [ � � � [ x
"
n ).

Remark 4.2. In relation with Lemma 4.1(2), note that the COP (or closure of points)
topology [29] is the coarsest topology on X compatible with a given order on X .

Recall that a topological space X is an Alexandroff-discrete space if it is T0 and
for each subset Y of X the closure of Y coincides with the union of the closures
of its points [1, page 28]. Therefore, if .X;�/ is a partially ordered set, then the
L-topology (or the R-topology) determines on X the structure of an Alexandroff-
discrete space.

If X is a T0 topological space, then the L-topology on X , associated to the
partial order defined by the given topology on X , is finer than the original topology
of X , since for each Y � X , ClL.Y / � Cl.Y /. Moreover, even if X is a spectral
space, X L (i.e., X equipped with the L-topology) is not spectral in general. For
example, a spectral space having infinitely many closed points may not be quasi-
compact with respect to the L-topology by Lemma 4.1(4) (e.g., X WD Spec.Z/ DSf.p/# j .p/ is a nonzero prime ideal of Zg is an open cover of X endowed with
the L-topology without a finite open subcover).

Before stating a result providing a complete answer to the question of when
the L-topology determines a spectral space (see Theorem 4.5), we recall a useful
application of the L-topology showing that the constructible closure and the closure
by specializations (or, L-closure) determine the structural closure in a spectral
space (see, for instance, [24, Corollary to Theorem 1], [11, Lemma 1.1], or
[6, Proposition 3.1(a)]).

Lemma 4.3. Let X be a spectral space. For each subset Y of X ,

Cl.Y / D ClL.Clcons.Y // :

Let .X;�/ be a preordered set and denote by Max.X/ (respectively, Min.X/)
the set of all maximal (respectively, minimal) elements of X . In particular, if X is
a topological space, we denote by Max.X / (respectively, Min.X / the set of all
maximal (respectively, minimal) points of a topological space X , with respect to
the preorder � induced by the topology of X . It follows immediately by definition
that

x 2 Max.X / , fxg is closed in X , fxg is closed in X L :

From the order-theoretic point of view, we have the following.

Lemma 4.4. Let .X;�/ be a partially ordered set.

(1) The following conditions are equivalent:

(i) x is a closed point in XL.
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(ii) x 2 Max.X/.
(iii) x is an open point in XR.

(2) The following conditions are equivalent:

(i) x is an open point in XL.
(ii) x 2 Min.X/.

(iii) x is a closed point in XR.

(3) XL (respectively, XR) is a T1 topological space if and only if XL (respectively,
XR) is a discrete space.

Theorem 4.5 (Dobbs-Fontana-Papick [6, Theorem 2.4]). Let X be a partially
ordered set. Then X with the L-topology is a spectral space if and only if the
following four properties hold:

(˛) Each nonempty totally ordered subset Y of X has a sup.
(ˇ) X satisfies the following condition:

(filtrL) each nonempty lower-directed subset Y of X has a greatest lower bound
y WD inf.Y / such that y" D Y ".

(
 ) Card.Max.X// is finite.
(ı) For each pair of distinct elements x and y of X , there exist at most finitely many

elements ofX which are maximal in the set of common lower bounds of x and y.

The necessity of condition (˛) follows from [27, Theorem 9], that of condition
(ˇ) uses [24, Proposition 5], and the necessity of condition (ı) is related to
Lemma 4.1(4); condition (
 ) holds in any Alexandroff-discrete space. The suffi-
ciency of (˛)–(ı) results by verifying the conditions of Hochster’s characterization
theorem [24].

Using the opposite order, from Theorem 4.5 we can easily deduce a characteri-
zation of when a partially ordered set with the R-topology is a spectral space.

Given a spectral space X , the following proposition gives a complete answer
to the question of when the continuous map X L ! X (where X L denotes the
topological space X equipped with the L-topology, associated to the partial order
defined by the given topology on X ) is a homeomorphism. In particular, in this
situation, X L is a spectral space.

Proposition 4.6 (Picavet [35, V, Proposition 1], Dobbs-Fontana-Papick [6, The-
orem 3.3]). Let X be a spectral space. The following are equivalent.

(i) X L D X .
(ii) For each x 2 X , x# is a quasi-compact open subset of X .

(iii) For each family fU� j � 2 �g of quasi-compact open subsets of X , the setTfU� j � 2 �g is still a quasi-compact open subset of X .
(iv) Each increasing sequence of irreducible closed subsets of X stabilizes, and,

for each family fU� j � 2 �g of quasi-compact open subsets of the space X ,
Card.Max.

TfU� j � 2 �g// is finite.
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The previous proposition gives the motivation for studying the rings A such that,
for each P 2 Spec.A/, the canonical map Spec.AP / ,! Spec.A/ is open. This
class of rings was introduced by G. Picavet in 1975 ([35] and [36]) under the name
of g-ring and it can be shown that a spectral space X is such that X L D X if and
only if X is homeomorphic to the prime spectrum of a g-ring [35, V, Proposition 1].

When X is a spectral space, Hochster [24] introduced a new topology on X ,
called the inverse topology. If we denote by X inv the set X equipped with the
inverse topology, Hochster proved that X inv is still a spectral space and the partial
order on X induced by the inverse topology is the opposite order of that induced
by the given topology on X . More precisely:

Proposition 4.7 (Hochster [24, Proposition 8]). Let X be a spectral space. For
each subset Y of X , set

Clinv.Y / WD
\

fU j U open and quasi-compact in X ; U � Y g :

(1) Clinv satisfies the Kuratowski closure axioms and so it defines a topological
structure on X , called the inverse topology; denote by X inv the set X
equipped with the inverse topology.

(2) The partial order on X induced by the inverse topology is the opposite order
of that induced by the given topology on X .

(3) X inv is a spectral space.

Let X be a spectral space. For each subset Y of X , set

Max.Clinv.Y // WD fx 2 Clinv.Y / j x" \ Clinv.Y / D fxgg :

B. Olberding in [34, Proposition 2.1(2)] has observed that

Max.Clinv.Y // � Clcons.Y / :

From the previous observation and from Lemmas 4.1, 4.3, and 4.4 and from
Proposition 4.7, it is not very hard to prove the following (see also [6, Section 3], [40,
Remark 2.2 and Proposition 2.3], [34, Proposition 2.3], and [9, Proposition 2.6]).

Corollary 4.8. Let X be a spectral space.

(1) The constructible topology on X inv coincides with the constructible topology
on X , i.e., .X inv/cons D X cons.

(2) For each subset Y of X ,

Clinv.Y / D ClR.Max.Clinv.Y /// D ClR.Clcons.Y //g :

(3) .X inv/L D X R and .X inv/R D X L.
(4) .X inv/inv D X .
(5) For each x 2 X , Clinv.x/ D ClR.x/ is an irreducible closed set of X inv

(and, obviously, Cl.x/ D ClL.x/ is an irreducible closed set of X ).
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(6) The topological space X is irreducible if and only if X inv has a unique closed
point.

(7) The topological space X has a unique closed point if and only if X inv is
irreducible.

(8) The following are equivalent.

(i) Y is quasi-compact in X .
(ii) ClR.Y / is quasi-compact in X .

(iii) Clinv.Y / D ClR.Y /.
(iv) Clcons.ClR.Y // D ClR.Y /.
(v) Max.Clinv.Y // � Y .

By using the inverse topology, we can state an easy corollary of Proposition 4.6
and Corollary 4.8 (see also [6, Theorem 3.3, Corollaries 3.4 and 3.5]), which
provides in part (1) further characterizations of when X L D X .

Corollary 4.9. Let X be a spectral space.

(1) The following are equivalent.

(i) X L D X (i.e., X is an Alexandroff-discrete topological space).
(ii) Each open subset of X inv is the complement of a quasi-compact open

subset of X .
(iii) X inv is a Noetherian space.

(2) The following are equivalent.

(i) X R D X inv (i.e., X inv is an Alexandroff-discrete topological space).
(ii) Each open subset of X is the complement of a quasi-compact open subset

of X inv (or, equivalently, each open subset of X is quasi-compact).
(iii) X is a Noetherian topological space.

(3) The following are equivalent.

(i) X is a Noetherian Alexandroff-discrete space.
(ii) X inv is a Noetherian Alexandroff-discrete space.

(iii) Card.X / is finite.

Recall that a spectral map of spectral spaces f W X ! Y is a continuous map
such that the preimage of every open and quasi-compact subset of Y under f is
again quasi-compact. We say that a spectral map of spectral spaces f W X ! Y is
a going-down map (respectively, a going-up map) if for any pair of distinct elements
y0; y 2 Y such that y0 2 fyg# (respectively, y0 2 fyg") and for any x 2 X such
that f .x/ D y there exists a point x0 2 fxg# (respectively, x0 2 fxg") such that
f .x0/ D y0.

Lemma 4.10. Let f W X ! Y be a spectral map of spectral spaces.

(1) f W X cons ! Y cons is a closed spectral map.
(2) The following are equivalent:
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(i) f is a going-down (respectively, going-up) map.
(ii) f .x#/ D f .x/# (respectively, f .x"/ D f .x/"), for each x 2 X

(iii) f .X 0#/ D f .X 0/# (respectively, f .X 0"/ D f .X 0/") for each X 0 �
X .

(iv) The continuous map f W X R ! Y R (respectively, f W X L ! Y L) is
closed.

(3) f W X R ! Y R is closed (respectively, open) if and only if f W X L ! Y L is
open (respectively, closed).

(4) If f W X ! Y is an open (respectively, closed) spectral map of spectral
spaces, then f is a going-down (respectively, going-up) map.

(5) If f W X ! Y is an open spectral map of spectral spaces, then f W X inv !
Y inv is a closed spectral map.

Proof. (1) is an obvious consequence of the definitions. (2) Since a spectral map f
is continuous then it is straightforward that x0 � x in X implies that f .x0/ �
f .x/ and so f .x#/ � f .x/#. Moreover, for each y 2 Y , f �1.y#/ D Sfx# j
x 2 X and f .x/ � yg and so f W X R ! Y R is also continuous. The various
equivalences are now straightforward consequences of the definitions.

(3) is an easy consequence of (2).
(4) Let x 2 X . It is easy to see that x# D TfU j U open and quasi-compact and

x 2 U � X g. Therefore, for any spectral map of spectral spaces f W X ! Y
and any x 2 X , the following holds

f .x#/D f .
TfU j U open and quasi-compact and x 2 U � X g/

� Tff .U / j U open and quasi-compact and x 2 U � X g :

Conversely, assume that f is an open spectral map and take a point y 2 f .U /,
for any open and quasi-compact neighborhood U of x 2 X . Consider the
following collection of subsets of X :

F WD F .y/ WD ff �1.fyg/ \ U j U open and quasi-compact and x 2 U � X g :

Note now that F is obviously closed under finite intersections, since the
quasi-compact open sets of X are closed under finite intersections and, by
assumption, each set belonging to F is nonempty. On the other hand, the
set f �1.fyg/ is closed with respect to the constructible topology on X and
thus is compact in X cons. Keeping in mind that each open and quasi-compact
subspace of the given spectral topology on X is clopen in X cons, it follows
immediately that F is a collection of closed subsets of the compact space
f �1.fyg/ .� X cons/, satisfying the finite intersection property. Therefore,
by compactness, there exists a point x0 2 f �1.fyg/ \ U , for any open and
quasi-compact neighborhood U of x 2 X . In particular, x0 2 TfU j
U open and quasi-compact and x 2 U � X g D fxg# and so x0 � x.
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Therefore, f .x0/ D y � f .x/. We conclude that f .x#/ D Tff .U / j
U open and quasi-compact and x 2 U � X g.
On the other hand, since f is open, we have

f .x/# D TfV j V open and quasi-compact and f .x/ 2 V � Y g
� Tff .U / j U open and quasi-compact and x 2 U � X g
D f .x#/ :

Since the opposite inclusion holds in general, we have f .x#/ D f .x/# and
so f is a going-down spectral map.

The parenthetical statement is easier to prove. Indeed, suppose that f is a
closed spectral map, let y0; y 2 Y be such that y0 2 fyg" and let x 2 X be
such that f .x/ D y. By assumption, we have f .Cl.fxg// D Cl.f .fxg// D
Cl.fyg/ and thus, since y0 2 Cl.fyg/, there is a point x0 2 Cl.fxg/ such that
f .x0/ D y0. This shows that f is a going-up map.

(5) If f is an open spectral map, then, by (3), f is going down and thus, by
(2), f W X R ! Y R is closed. Therefore, by using (1), for each X 0 �
X , we have Clinv.X 0/ D ClR.Clcons.X 0// and so f .Clinv.X 0// D
ClR.f .Clcons.X 0/// D ClR.Clcons.f .X 0/// D Clinv.f .X 0//.

Example 4.11. We now show that it is not true that if f W X ! Y is a closed
spectral map of spectral spaces, then f W X inv ! Y inv is an open spectral map.
As a matter of fact, let K be a field and let T WD fTi j i 2 Ng be an infinite
and countable collection of indeterminates over K . Let A WD KŒT �, let M be the
maximal ideal of A generated by all the indeterminates, and let B WD A=M . Set
X WD Spec.B/ and Y WD Spec.A/. Of course, the inclusion f W X ! Y
(associated to the canonical projectionA ! B) is a closed embedding, with respect
to the Zariski topology. We claim that f is not open, if X and Y are endowed with
the inverse topology. By contradiction, assume that f W X inv ! Y inv is open.
In this situation, X should be open in Y inv, (since X is trivially open in X inv).
This implies that Z WD Y n f .X / D Spec.A/ n fM g is closed in Y inv, i.e., Z
is an intersection of a family of open and quasi-compact subspaces of Y . Since Z
differs from Y for exactly one point, it has to be quasi-compact, with respect to the
Zariski topology of Y . On the other hand, it is immediately verified that the open
cover

ffP 2 Y j Ti … P g j i 2 Ng
of Z has no finite subcovers, a contradiction.

5 Some Applications

The first application that we give is a topological interpretation of when two given
collections of valuation domains are representations of the same integral domain.
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Proposition 5.1 (Finocchiaro-Fontana-Loper [9, Proposition 4.1]). Let K be a
field. If Y1; Y2 are nonempty subsets of Zar.K/ having the same closure in Zar.K/,
with respect to the ultrafilter topology, then

\
fV j V 2 Y1g D

\
fV j V 2 Y2g:

In particular,

\
fV j V 2 Y g D

\
fV j V 2 Clultra.Y /g:

The converse of the first statement in Proposition 5.1 is false (for an explicit
example see Example 4.4 in [9]). More precisely, we will show that equality of
the closures of the subsets Y1; Y2, with respect to the ultrafilter topology, implies
a statement that, in general, is stronger than the equality of the (integrally closed)
domains obtained by intersections. To see this, recall some background material
about semistar operations.

Let A be an integral domain, and let K be the quotient field of A. As usual,
denote by F .A/ the set of all nonzero A�submodules of K and by f .A/ the set of
all nonzero finitely generated A�submodules of K . As is well known, a nonempty
subset Y of Zar.KjA/ induces the valuative semistar operation ^Y , defined by
F ^Y WD TfFV j V 2 Y g, for each F 2 F .A/. A valuative semistar operation
? is always e.a.b., that is, for all F;G;H 2 f .A/, .FG/? � .FH/? implies
G? � H? (for more details, see, e.g., [15]). Recall that we can associate to any
semistar operation ? on A a semistar operation ?f of finite type (on A), by setting
F ?f WD SfG? j G 2 f .A/; G � F g, for each F 2 F .A/; ?f is called the
semistar operation of finite type associated to ?.

Since, for each V 2 Zar.KjA/ (equipped with the classical Zariski topology),
Cl.fV g/ D fW 2 Zar.KjA/ j W � V g [47, Ch. VI, Theorem 38], the partial
order associated to the Zariski topology of Zar.KjA/ is defined as follows:

W � V W, V � W :

For any subset Y � Zar.KjA/, denote by Y � the Zariski-generic closure of Y , that
is, Y � WD fW 2 Zar.KjA/ j V � W; for some V 2 Y g D ClR.Y /. It is obvious
that ^Y D ^Y � . From Proposition 5.1 we also have ^Y D ^Clultra .Y /.

Theorem 5.2 (Finocchiaro-Fontana-Loper [9, Theorem 4.9]). Let A be an inte-
gral domain, K its quotient field, and Y1; Y2 two nonempty subsets of Zar.KjA/.
Then, the following conditions are equivalent:

(i) The semistar operations of finite type associated to ^Y1 and ^Y2 are the same,
that is, .^Y1/f D .^Y2 /f .

(ii) The subsets Clultra.Y1/; Clultra.Y2/ of Zar.KjA/ have the same Zariski–
generic closure, that is, Clultra.Y1/� D Clultra.Y2/�.
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Let A be an integral domain,K its quotient field, and Z WD Zar.KjA/. For any
nonempty subset Y � Z, consider the K�function ring

Kr.Y / WD
\

fV.T / j V 2 Y g :

Note that, if we consider on the integral domain A the valuative (e.a.b.) semistar
operation ^Y defined above, then the Kronecker function ring associated to ^Y ,
Kr.A;^Y /, coincides with Kr.Y / [13, Corollary 3.8].

We say that A is a vacant domain if it is integrally closed and, for any
representation Y of A (i.e., A D TfV j V 2 Y g), we have Kr.Y / D Kr.Z/;
for instance, a Prüfer domain is vacant (see [7]).

Corollary 5.3. Let A be an integrally closed domain and K its quotient field. The
following conditions are equivalent:

(i) A is a vacant domain.
(ii) For any representation Y of A, Clultra.Y /� D Zar.KjA/.

Keeping in mind that it is known that the ultrafilter topology and the constructible
topology on Zar.KjA/ coincide (Theorem 3.6(3)), the following result follows
easily from Corollary 4.8(2).

Proposition 5.4. Let K be a field and A be a subring of K . For any subset Y of
Zar.KjA/, Clinv.Y / D ClR.Clultra.Y //.

From the previous proposition, we can restate Corollary 5.3 as follows: A is a
vacant domain if and only if for any representationY ofA, Clinv.Y / D Zar.KjA/.

Recall that a semistar operation is complete if it is e.a.b. and of finite type. In
order to state some characterizations of the complete semistar operations, we need
some terminology.

For a domain A and a semistar operation ? on A, we say that a valuation
overring V of A is a ?-valuation overring of A provided F ? � FV , for each
finitely generated A-module F contained in the quotient field K of A. Set V .?/ WD
fV j V is a ?-valuation overring of Ag and let b.?/ WD ^V .?/. Finally, if ? is an
e.a.b. semistar operation on A, we can consider the Kronecker function ring
Kr.A; ?/ WD TfV.T / j V 2 V .?/g D Kr.V .?// [14, Theorem 14(3)] and we can
define a semistar operation Kr.?/ on A by setting EKr.?/ WD EKr.A; ?/ \ K for
each nonzero A-moduleE contained in K (see, for instance, [17]). Then,

Proposition 5.5 (Fontana-Loper [12, Proposition 3.4], [13, Corollary 5.2], [15,
Proposition 6.3], [17]). Given a semistar operation ?, the following are equiva-
lent:

(i) ? is complete.
(ii) ? D b.?/.

(iii) ? D Kr.?/.

The following result provides a topological characterization of when a semistar
operation is complete.



168 C.A. Finocchiaro et al.

Theorem 5.6 (Finocchiaro-Fontana-Loper [9, Theorem 4.13]). Let A be an
integral domain, K its quotient field, and ? a semistar operation on A. Then, the
following conditions are equivalent:

(i) ? is complete.
(ii) There exists a closed subset Y of Zar.KjA/cons such that Y D Y � and

? D ^Y .
(iii) There exists a compact subspace Y 0 in Zar.KjA/cons such that ? D ^Y 0 .
(iv) There exists a quasi-compact subspace of Y 00 of Zar.KjA/zar such that

? D ^Y 00 .

From Theorems 5.2 and 5.6 we easily deduce the following:

Corollary 5.7. LetA be an integral domain,K its quotient field, and Y a nonempty
subset of Zar.KjA/. Then, .^Y /f D ^Clcons.Y /.

Finally, we can formulate some of the previous results in terms of Hochster’s
inverse topology [9, Theorem 4.9, Corollary 4.10].

Corollary 5.8. Let A be an integral domain and K be its quotient field. The
following statements hold.

(a) If Y1; Y2 are nonempty subsets of Zar.KjA/, then the following are equivalent.

(i) .^Y1 /f D .^Y2/f .
(ii) Kr.Y1/ D Kr.Y2/.

(iii) Clinv.Y1/ D Clinv.Y2/.

(b) A is a vacant domain if and only if it is integrally closed and any representation
Y of A is dense in Zar.KjA/ with respect to the inverse topology.

(c) For any nonempty subset Y of Zar.KjA/, .^Y /f D ^Clinv.Y /.

B. Olberding in [34] calls a subset Y of Zar.KjA/ an affine subset of Zar.KjA/
if A^Y WD TfV j V 2 Y g is a Prüfer domain with quotient field equal to K . Note
that Z WD Zar.KjA/, equipped with the Zariski topology, can be viewed as a
locally ringed space with the structure sheaf defined by

OZ.U / WD A^U D
\

fV j V 2 U g ; for each nonempty open subset U of Z ;

(for more details, see [34]). With this structure of locally ringed space, an affine
subset Y ofZ is not necessarily itself an affine scheme, that is, Y (endowed with the
Zariski topology induced byZ) is not necessarily homeomorphic to Spec.OZ.Y //,
however, by Corollary 5.8(a), is an inverse-dense subspace of the affine scheme
.Clinv.Y /;OZ j

Clinv .Y /
/.

If T is an indeterminate overK and A.T / is the Nagata ring associated to A [20,
Section 33], for each Y � Z, we can consider

Y.T / WD fV.T / j V 2 Y g � Zar0.K.T /jA.T // WD fV.T / j V 2 Zg ;

and, as above, Kr.Y / D TfV.T / j V 2 Y g.
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The following statements were proved by Olberding [34, Propositions 5.6
and 5.10 and Corollaries 5.7 and 5.8]. We give next a proof based on some of the
results contained in [9] and recalled above.

Proposition 5.9. Let Y be a subset of Z WD Zar.KjA/. Then,

(1) Assume that A is a Prüfer domain with quotient field K . Then, Y D Clinv.Y /
if and only if Y D Zar.KjR/ for some overring R of A.

(2) Y D Clinv.Y / if and only if Y.T / D fW.T / j W 2 Z andW.T / � Kr.Y /g.
(3) Clinv.Y / D fW 2 Z j W.T / � Kr.Y /g, hence .Clinv.Y //.T / D

Zar.K.T /jKr.Y //.
(4) A^Y D TfW 2 Clinv.Y /g.
(5) If Y is an affine subset of Z, then

Clinv.Y / D fW 2 Z j W � A^Y g D Zar.KjA^Y / :

(6) Assume that Y1 and Y2 are two affine subsets of Z, then

\
fV j V 2 Y1g D

\
fV j V 2 Y2g , Clinv.Y1/ D Clinv.Y2/ :

(7) .Clinv.Y //.T / D Clinv.Y.T //.
(8) Each ring of fractions of A^Y can be represented as an intersection of

valuation domains contained in a subset of Clinv.Y /; in other words, if S
is a multiplicatively closed subset of A^Y , then .A^Y /S D A^˙ for some
˙ � Clinv.Y /.

(9) The canonical homeomorphism of topological spaces (all endowed with the
Zariski topology)

� W Spec.Kr.KjA// ! Zar.KjA/ ; Q 7! Kr.KjA/Q \K

(where � D ��1, see Theorem 3.11(4)) determines a continuous injective
map Spec.Kr.Y // ! Zar.KjA/ which restricts to a homeomorphism
of Spec.Kr.Y // (respectively, Max.Kr.Y //) onto Clinv.Y / (respectively,
Max.Clinv.Y //).

Proof. (1) Let Y be a nonempty, closed set with respect to the inverse topology,
and let R WD A^Y WD TfV j V 2 Y g. Since R is an overring of the Prüfer
domainA,R is also a Prüfer domain; thus it is vacant. By Corollary 5.8(b), Y is
a dense subspace of Zar.KjR/, with the inverse topology, i.e., Clinv.Y / \
Zar.KjR/ D Zar.KjR/. Thus Zar.KjR/ � Clinv.Y /. On the other
hand, the inclusion Y � Zar.KjR/ implies Clinv.Y / � Zar.KjR/, since
Zar.KjR/ is clearly inverse-closed. Therefore, Y D Clinv.Y / D Zar.KjR/.
The converse holds for any integral domain.
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(2) Let A.T / be Nagata ring associated to A. By Theorem 3.11(3), the natural
map ' W Zar.K.T /jKr.KjA// � Zar.K.T /jA.T // ! Zar.KjA/, W 7!
W \ K , is a homeomorphism with respect to the Zariski topology and to the
constructible topology and thus also with respect to the inverse topology. By
the previous homeomorphism Y is inverse-closed in Zar.KjA/ if and only if
Y.T / is inverse-closed in Zar.K.T /jA.T //. Therefore, if Y is inverse-closed,
then Y.T / is inverse-closed in Zar.K.T /jA.T // and thus by (1), Y.T / D
Zar.K.T /jKr.Y //. Finally, by Proposition 3.10, Zar0.K.T /jKr.Y // D
Zar.K.T /jKr.Y //.

Conversely, if Y.T / D Zar0.K.T /jKr.Y //, then Y.T / D Zar.K.T /j
Kr.Y // (Proposition 3.10); hence by (1) Y.T / is inverse-closed.

(3) By (1), Zar.K.T /jKr.Y // D Y.T / is an inverse-closed subspace of the space
Zar.K.T /jA.T //; then fW 2 Z j W.T / � Kr.Y /g is an inverse-closed
subspace of Zar.KjA/ (Theorem 3.11(3)) and it obviously contains Y . Let
Y 0 be an inverse-closed subspace of Zar.KjA/ containing Y ; then clearly
Y.T / � Y 0.T / D Zar.K.T /jKr.Y 0// and so fW 2 Z j W.T / � Kr.Y /g �
fW 0 2 Z j W 0.T / � Kr.Y 0/g D Clinv.Y 0/ D Y 0. The last part of the
statement follows from Theorem 3.11(3).

(4) is a straightforward consequence of Corollary 5.8(c).
(5) Since Y is an affine set, A^Y is a Prüfer domain with quotient field K .

Therefore, by (1), Clinv.Y / D Zar.KjR/ for some overring R of A that,
without loss of generality, we can assume integrally closed. Hence, A^Y D
A^Clinv .Y / D TfV 2 Zar.KjR/g D R and so Clinv.Y / D Zar.KjA^Y /.

(6) The implication .(/ holds in general and is a straightforward consequence of
Corollary 5.8(a). For .)/, assume more generally thatR WD TfV j V 2 Y1g DTfV j V 2 Y2g is a vacant domain with quotient field K then, by Corollary 5.3
(or Corollary 5.8(b)), Clinv.Y1/ D Zar.KjR/ D Clinv.Y2/.

(7) Since Clinv.Y / D Clinv.Clinv.Y //, then, by (2), we have .Clinv.Y //.T / D
Zar.K.T /jKr.Y //. The conclusion follows from (3).

(8) Note that A^Y D Kr.Y / \ K and so .A^Y /S D Kr.Y /S \ K . Since
each overring of Kr.Y / is a K-function ring, there exists ˙ � Y such
that Kr.Y /S D Kr.˙/ (Proposition 3.9(1)). We conclude that .A^Y /S D
Kr.˙/ \K D A^˙ .

(9) Observe that Kr.Y / is an overring of the Prüfer domain Kr.KjA/. Thus
Spec.Kr.Y // is canonically embedded in Spec.Kr.KjA//. If P 2
Spec.Kr.Y //, then, by (3), Kr.Y /P \K 2 Clinv.Y /. The conclusion follows
from Theorem 3.11(4).

Remark 5.10. Another proof of Proposition 5.9(1) is based on the fact that when A
is a Prüfer domain, it is easy to see that Zar.KjS \T / D Zar.KjS/[Zar.KjT /
for each pair of overrings S and T of A. Now, suppose Y D Clinv.Y /. When A
is Prüfer, Clinv.Y / D TfZar.KjA�/ j � 2 �g, where A� is a finitely generated
overring of A. Moreover,

TfZar.KjA�/ j � 2 �g D Zar.KjR/, where R is
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the ring generated by
SfA� j � 2 �g. Conversely, if Y D Zar.KjR/ for some

overring R of A, then Y D TfZar.KjAŒr�/ j r 2 Rg and thus is inverse-closed
since it is the intersection of a family of inverse-closed subsets, Zar.KjAŒr�/, of
Zar.KjA/.
Theorem 5.11 (Olberding [34, Proposition 5.10]). Let K be a field and A a
subring ofK . LetR be an integrally closed domain with quotient fieldK , containing
as subring A. Given a subset Y � Zar.KjA/ such that R D TfV j V 2 Y g
and Y D Clinv.Y /, then ˚.Y / WD Kr.Y / is a K–function ring such that
˚.Y / \K D R. Conversely, given a K–function ring � , A.T / � � � K.T / such
that�\K D R, then F.�/ WD fW \K j W 2 Zar.K.T /j�/g is an inverse-closed
subspace of Zar.KjA/ and R D TfV j V 2 F.�/g. Furthermore, F.˚.Y // D Y

for each inverse-closed subspace Y of Zar.KjA/ and ˚.F.�// D � , for each
K–function ring � , A.T / � � � K.T /.

From the previous theorem, it follows that if Y1 and Y2 are two different subsets
of Z WD Zar.KjA/ such that Clinv.Y1/ D Clinv.Y2/, then Kr.Y1/ and Kr.Y2/
are two different K–function rings such that Kr.Y1/ \ K D TfV j V 2 Y1g DTfV j V 2 Y2g D Kr.Y2/ \ K . Furthermore, if R is an integrally closed domain
with quotient field K , then Zar.KjR/ is an inverse-closed subspace of Zar.KjA/,
R D TfV j V 2 Zar.KjR/g, and Kr.Zar.KjR// is the smallest K–function ring
such that Kr.Zar.KjR//\ K D R. If we assume that R is a Prüfer domain, then
Kr.Zar.KjR// is the uniqueK–function ring such that Kr.Zar.KjR//\K D R

[20, Theorem 32.15 and Proposition 32.18].
We have already observed that Z WD Zar.KjA/ (endowed with the Zariski

topology) is always a spectral space, being canonically homeomorphic to
Spec.Kr.KjA//. It is natural to investigate when the ringed space .Z;OZ/ is
an affine scheme.

Theorem 5.12 (Olberding [34, Theorem 6.1 and Corollaries 6.2 and 6.3]). Let
K be a field, A a subring of K and Y a subspace of Z WD Zar.KjA/ (endowed
with the Zariski topology). Then,

(1) .Y;OY / is an affine scheme if and only if OY .Y / is a Prüfer domain and Y D
Clinv.Y / or, equivalently, if and only if Y is an inverse-closed affine subset
of Z.

(2) .Z;OZ/ is an affine scheme if and only if the integral closure of A in K is a
Prüfer domain with quotient field K .

(3) Y D Clinv.Y / if and only if .Y.T /;OY.T // is an affine scheme.
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regularity of domains and illustrate some open problems.
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Introduction

Stability of ideals was explicitly introduced by J. Lipman in 1971 in order to study
Arf rings [30]. However, this notion was already known and widely used in the
context of one-dimensional Noetherian rings, in particular in relation with reflexive
rings and decomposition of torsion-free modules [5, 31].

A stable ideal of a Noetherian ring is defined as an ideal that is projective over
its ring of endomorphisms [51, 52]; extending this definition to arbitrary integral
domains, one says that a nonzero ideal I of a domainR is stable if I is invertible in
the overring E.I / WD .I W I / of R [1]. If each nonzero ideal (respectively, finitely
generated ideal) of R is stable, one says that R itself is stable (respectively, finitely
stable).

Since 1998, stability of domains has been thoroughly investigated by B. Olberd-
ing. In [39] he illustrated several ideal-theoretic and module-theoretic applications
of this concept and announced some new results, then published in [40–42].
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Invertible ideals are clearly stable, thus stability finds interesting applications in
the setting of Prüfer domains (i.e., domains in which nonzero finitely generated ide-
als are invertible). Stable Noetherian domains are one-dimensional [52]. However,
as showed by Olberding, a stable domain need not be coherent, nor one-dimensional,
nor integrally closed [41, Sect. 3].

Weakening the notion of stability, in more recent years, other classes of domains
were introduced, like Rutliff-Rush domains [33], quasi-stable domains [46], and
Clifford regular domains [6]. All these notions coincide with stability in the
Noetherian case, but not in general.

In this short survey, leaving aside the module-theoretic point of view, we focus
on some ideal-theoretic aspects of stability and discuss some unresolved problems.

All the rings considered are commutative rings with unity that are not fields. A
local ring is a ring with a unique maximal ideal and a semilocal ring is a ring with
finitely many maximal ideals, not necessarily Noetherian.

If R is a ring with total quotient ring K , an overring of R is a ring between R
and K . If I , J are R-submodules of K , we set .I W J / WD fx 2 K I xJ � I g and
.I WR J / WD fx 2 R I xJ � I g.

1 Stable Notherian Rings

Stable ideals were introduced in 1971 by J. Lipman, in his paper [30] on Arf rings,
which are local Noetherian rings satisfying certain conditions studied by Arf in [3].

Lipman worked in the setting of semilocal one-dimensional Macaulay rings, that
is, semilocal one-dimensional Noetherian rings whose Jacobson radical contains a
regular element. If R is such a ring, Lipman defined a regular ideal I � R to be
stable if IRI D I or, equivalently, RI D .I W I / [30, Definition 1.3], where
RI WD S

n�1.I n W I n/ is the ring obtained by blowing up I .
The main motivation for introducing this notion is that it furnishes a useful

characterization of Arf rings.
Recall that if I is an ideal of the ring R, an element x 2 R is said to be integral

over I if there exist a positive integer n and elements ak 2 I k , k D 1; : : : ; n, such
that

xn C a1x
n�1 C a2x

n�2 C � � � C an�1x C an D 0:

The ideal I is called integrally closed if all the elements of R which are integral
over I belong to I .

Theorem 1.1 ([30, Theorem 2.2]). A local one-dimensional Macaulay ring is an
Arf ring if and only if each integrally closed regular ideal of R is stable.

To the extent of proving this result, Lipman gave several characterizations of
stable ideals. In particular, he proved the following:
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Proposition 1.2 ([30, Lemma 1.11]). Let R be a semilocal one-dimensional
Macaulay ring and I � R a regular ideal. The following conditions are equivalent:

(i) I is stable (i.e., IRI D I ).
(ii) There exists an element x 2 I such that I 2 D xI .

(iii) There exists a regular element x 2 I such that I D xRI .
(iv) There exists a regular element x 2 I such that I D x.I W I /.

In order to solve a problem posed by Bass, the notion of stability was then
extended to Noetherian rings by J. Sally and W. Vasconcelos in a paper that was
published in 1973. They called an ideal I of a Noetherian ring R stable if I is
projective over its endomorphism ring EndR.I / and called R stable if each ideal is
stable [51, Sect. 1], [52, Sect. 2].

Note that when I is a regular ideal of the ring R, EndR.I / is isomorphic to the
overring E.I / WD .I W I / of R, and so I is stable if and only if it is an invertible
ideal of E.I /. In particular, when R is a semilocal Noetherian ring, I is stable if
and only if I is principal in E.I /. It follows from Proposition 1.2 that this more
general notion of stability coincides with the one introduced by Lipman for regular
ideals of semilocal one-dimensional Macaulay ring [52, Proposition 2.2].

Nevertheless, a local one-dimensional Noetherian ring which is stable according
to Sally-Vasconcelos need not be a Macaulay ring. For example, one can take R WD
kŒŒX; Y ��=hX2;XY i, where k is a field and X , Y are indeterminates over k [52,
page 324].

Proposition 1.3 ([52, Proposition 2.1]). Let R be a Noetherian ring. If R is stable
(i.e., each ideal is projective over its endomorphism ring), then R has dimension at
most equal to one.

Stability is related to the 2-generator property. An ideal of R is 2-generated if it
is generated by 2 elements, andR is 2-generated, or it has the 2-generator property,
if each finitely generated ideal is 2-generated. The 2-generator property plays an
important part in the decomposition of torsion-free modules [32].

Bass proved that if R is a one-dimensional reduced Noetherian ring whose
integral closure is a finitely generated R-module, the 2-generator property implies
stability [5, Proposition 7.1 and Corollary 7.3]. Sally and Vasconcelos showed that,
as conjectured by Bass, also the converse holds.

Theorem 1.4. Let R be a Noetherian ring.

(1) [52, Theorem 3.4] Assume that R is a one-dimensional Macaulay ring whose
maximal ideals are not minimal primes. If each regular ideal is 2-generated,
then R is stable.

(2) [51, Theorem 2.4] Assume that R is one-dimensional reduced and that its
integral closure is a finitely generated R-module. If R is stable, then R is
2-generated.

However, even for Noetherian domains, the 2-generator property is strictly
stronger than stability. The first example of a local Noetherian domain that is stable
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and not 2-generated was given in [52, Example 5.4]; several other examples are
collected in [44, Sect. 3].

The relationships among the 2-generator property, stability of finitely generated
regular ideals, and decomposition of finitely generated torsion-free modules were
further investigated by D. Rush in two papers published in 1991 and 1995 [49, 50].
In particular he extended Bass’ result to local rings.

Theorem 1.5 ([50, Proposition 2.5]). Let R be a local ring. If R is 2-generated,
each finitely generated regular ideal is stable.

Rush gave also the following characterization of stability for Noetherian rings.

Theorem 1.6 ([49, Theorem 2.4]). Let R be a one-dimensional Noetherian ring
with integral closure R0. Then each regular ideal of R is stable if and only if the
following conditions hold:

(a) Each (or each finitely generated) R-submodule of R0 containingR is a ring.
(b) Each maximal ideal of R has at most two maximal ideals of R0 lying over it.

Together with other results of Rush, the last two theorems were later extended
to general integral domains by B. Olberding in [40]. For an extension to rings, see
Olberding’s paper in this volume.

A notion weaker than stability, still useful to bound the number of generators of
ideals, was introduced by P. Eakin and P. Sathaye in 1976. They observed that part
of the Lipman’s result given in Proposition 1.2 can be extended in the following
way:

Proposition 1.7 ([15, Lemma, page 447]). Let R be a local ring and I a finitely
generated regular ideal of R. The following conditions are equivalent:

(i) There exists an element x 2 I such that I 2 D xI .
(ii) There exists a regular element x 2 I such that I D x.I W I /.

Thus Eakin and Sathaye defined an ideal I of a semilocal ring to be stable if
there is an element x 2 I such that I 2 D xI and say that I is prestable if some
power of I is stable, that is, for some k � 1 there is an x 2 I such that I 2k D xI k

[15, Sect. 3].

Proposition 1.8 ([15, Corollary 1, page 446]). Let R be a local ring and I a
finitely generated ideal. The following conditions are equivalent:

(i) I is prestable (i.e., I 2k D xI k , for some k � 1).
(ii) There is a positive integer b WD b.I / such that I n has b generators, for each

n � 1.
(iii) There is a positive integer n such that I n has n generators, for some n � 1.

Moreover, if I is regular and I n has n generators, then I 2.n�1/ D xIn�1, for some
x 2 I .
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2 Stable Domains

In a note of 1987, D.D. Anderson, J. Huckaba, and I. Papick considered the notion
of stability for arbitrary integral domains [1]. Given a nonzero ideal I of a domain
R, they say that I is Lipman-stable (for short, L-stable), if RI D .I W I / and say
that I is stable according to Sally-Vasconcelos, or is SV-stable, if I is invertible
in the overring E.I / WD .I W I /. The domain R is called L-stable (respectively,
SV-stable) if each nonzero ideal of R is L-stable (respectively, SV-stable).

As in [14, Sect. 7.4], one can also say that I is stable according to Eakin-Sathaye,
or that I is ES-stable, if I 2 D JI for some invertible ideal J contained in I . The
ideal I is called ES-prestable (respectively, SV-prestable) if some power of I is
ES -stable (respectively, SV-stable).

Proposition 2.1 ([1, Lemmas 2.1 and 2.2]). Let R be a domain and I a nonzero
ideal. Then

I ES-stable ) I SV-stable ) I L-stable:

If I is finitely generated, often all these notions coincide.

Proposition 2.2 ([14, Corollary 7.4.2 and Proposition 7.4.3]). LetR be a domain
and I a nonzero finitely generated ideal. The following conditions are equivalent:

(i) I is SV-stable.
(ii) IRM is SV-stable, for each maximal idealM � R.

(iii) IRM is ES-stable, for each maximal idealM � R.

In particular, if R is local, I is SV-stable if and only if I is ES-stable.

A domain R is integrally closed if and only if R D .I W I / for each nonzero
finitely generated ideal I . If R D .I W I / for each nonzero ideal I , R is called
completely integrally closed. Hence, if R is completely integrally closed, R D .I W
I / D RI , for each nonzero ideal; similarly, if R is integrally closed, R D .I W
I / D RI , for each nonzero finitely generated ideal. This shows that for completely
integrally closed domains L-stability is a trivial concept.

Proposition 2.3. (1) Let R be a completely integrally closed domain and I a
nonzero ideal of R. Then I is L-stable; in addition,

I is invertible , I is SV-stable:

(2) [14, Proposition 7.4.4] Let R be an integrally closed domain and I a nonzero
finitely generated ideal of R. Then I is L-stable; in addition,

I is invertible , I is ES-(pre)stable , I is SV-(pre)stable:
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SV-stability implies L-stability (Proposition 2.1). The converse is not true, even
in the Noetherian case. In fact, by the proposition above, any Noetherian integrally
closed domain is L-stable, but is SV-stable only if it is Dedekind. More generally,
we have :

Proposition 2.4 ([1, Proposition 2.4]). A Noetherian domain is SV-stable if and
only if it is L-stable and one-dimensional.

Proposition 2.3(2) furnishes also a characterization of Prüfer domains in terms of
SV-stability. Recall that a domain R is called a Prüfer domain if RP is a valuation
domain, for each nonzero prime ideal P ; this is equivalent to say that each nonzero
finitely generated ideal is invertible. A Prüfer domain such that PRP is a principal
ideal, for each nonzero prime ideal P , is called strongly discrete.

Proposition 2.5. (1) R is a Prüfer domain if and only if R is integrally closed and
each finitely generated nonzero ideal ofR is SV-stable (equivalently, ES-stable).

(2) [1, Lemma 2.7] Each Prüfer domain is L-stable.
(3) [1, Proposition 2.10] A semilocal Prüfer domain (in particular, a valuation

domain) is SV-stable if and only it is strongly discrete.

If the integral closure of R is a Prüfer domain, R is called quasi-Prüfer [14,
Corollary 6.5.14]. Quasi-Prüfer domains can be characterized by the property that
each nonzero finitely generated ideal is locally ES-prestable.

Theorem 2.6 ([15, Theorem 2]). LetR be a local domain with integral closureR0.
The following conditions are equivalent:

(i) R0 is a Prüfer domain.
(ii) Each nonzero finitely generated ideal of R is ES-prestable.

A global version of Theorem 2.6 is the following.

Theorem 2.7 ([14, Theorem 7.4.6]). Let R be a domain with integral closure R0.
The following conditions are equivalent:

(i) R0 is a Prüfer domain.
(ii) Each nonzero finitely generated ideal of R is SV-prestable.

(iii) Each nonzero 2-generated ideal of R is SV-prestable.

Since 1998, SV-stable domains have been thoroughly investigated by B. Olberd-
ing in a series of papers [38,40–42]. Olberding calls an SV-stable ideal of a domain
R simply a stable ideal and he says that R is stable (respectively, finitely stable) if
each nonzero ideal (respectively, finitely generated ideal) of R is stable. We keep
this notation; thus from now on “stable” means “SV-stable.”

Stability and finite stability transfer to overrings. In addition, their study can be
reduced to the local case.

Proposition 2.8 ([42, Lemma 2.4 and Theorem 5.1]). Let S be an overring of the
domain R. If R is (finitely) stable, then S is (finitely) stable.
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By the result above and Proposition 2.5, we get that finitely stable domains are
quasi-Prüfer.

Corollary 2.9 ([50, Proposition 2.1]). If the domain R is finitely stable (respec-
tively, stable), its integral closure is a Prüfer domain (respectively, a strongly
discrete Prüfer domain).

Theorem 2.10. Let R be a domain.

(1) [42, Theorem 3.3] R is stable if and only if RM is stable, for each maximal
ideal M , and R has finite character (i.e., each nonzero element is contained at
most in finitely many maximal ideals).

(2) [14, Proposition 7.3.4]R is finitely stable if and only if RM is finitely stable.

Since any Prüfer domain is finitely stable, finitely stable domains need not have
finite character. Also, finitely stable domains with finite character need not be stable.
For example, any valuation domain with nonprincipal maximal ideal is finitely
stable but not stable (Proposition 2.5).

Theorem 2.11 ([41, Theorem 2.3]). A domain R is stable if and only if the
following conditions hold: (a) R is finitely stable. (b) PRP is a stable ideal of
RP , for each nonzero prime P . (c) RP is a valuation domain for each nonzero
nonmaximal prime P . (d) R has finite character.

Thus the semilocal case given in [1] (Proposition 2.5(3)) can be generalized in
the following:

Proposition 2.12 ([38, Theorem 4.6]). LetR be an integrally closed domain. Then
R is stable if and only if it is a strongly discrete Prüfer domain with finite character.

A strongly discrete Prüfer domain such that each noninvertible element has
finitely many minimal primes is called a generalized Dedekind domain. These
domains were introduced by N. Popescu in [47] and have very good ring-theoretic
and ideal-theoretic properties; an overview is given in [18].

By the previous proposition, integrally closed stable domains are generalized
Dedekind. More precisely, we have:

Corollary 2.13. The following conditions are equivalent for a domain R:

(i) R is a generalized Dedekind domain with finite character.
(ii) R is integrally closed and stable.

It is also interesting to observe that stability of nonzero prime ideals forces a
Prüfer domain to be generalized Dedekind.

Theorem 2.14 ([17, Theorem 5], [38, Theorem 4.7]). The following conditions
are equivalent for a domain R:

(i) R is a generalized Dedekind domain.
(ii) R is a Prüfer domain and each nonzero prime ideal of R is stable.
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However, a domain whose nonzero prime ideals are all stable need not be stable,
as [41, Example 3.4] shows. An example of generalized Dedekind domain that is
not stable is R WD Z CXQŒŒX��; in fact R does not have finite character.

Olberding gave a complete characterization of stable domains [41]. In particular,
he proved that each local stable domain is a suitable pullback of a local stable ring
of dimension at most one.

Theorem 2.15 ([41, Corollary 2.7], [43]). A local domain R is stable if and only
if one of the following conditions is satisfied: (a) R is one-dimensional stable. (b)
R is a strongly discrete valuation domain. (c) R arises from a pullback diagram of
type:

R

j

−−−−→ D
⏐
⏐
�

⏐
⏐
�

V −−−−→ V
I

where V is a strongly discrete valuation domain, I is an ideal of V , D is a local
stable ring of dimension at most one having a prime ideal P such that P contains
all the zero-divisors ofD and P2 D .0/, and V=I is isomorphic to the total quotient
ring of D.

For example, letW be a one-dimensional discrete valuation domain with quotient
field F and X be an indeterminate over F . With the notations of Theorem 2.15(c),
setting V WD F ŒŒX��, I WD X2V , and D WD W ŒŒX��=X2W ŒŒX��, we get that R D
W CXW CX2F ŒŒX�� is a stable domain [43].

A stable Noetherian ring is one-dimensional (Proposition 1.3). An example of a
local one-dimensional domain which is stable and not Noetherian was constructed
by Olberding in [41, Proposition 5.2]. Generalizing this construction, Olberding
then exhibited a whole class of examples, as a particular class of one-dimensional
domains whose integral closure is not a finitely generated module [45, Theorems 4.1
and 4.4] (see also [44, Theorem 3.10]). In fact Theorem 1.4(2) can be extended in
the following way:

Theorem 2.16. Let R be a stable domain with integral closure R0.

(1) [41, Proposition 4.5] If R is one-dimensional and .R W R0/ ¤ .0/, R is
Noetherian 2-generated and R0 is a finitely generated R-module.

(2) [42, Corollary 4.17] If R is local and .R W R0/ D .0/, R0 is a one-dimensional
discrete valuation ring (in particular R is one-dimensional).

On the other hand, it is also possible for stable Noetherian domains, even
Noetherian 2-generated domains, to have .R W R0/ D .0/ [44, Sect. 3].
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By using Theorem 2.16, M. Roitman and the author of this paper recently proved
that a stable one-dimensional domain is Mori and is precisely a Mori finitely stable
domain.

Recall that if I is a nonzero ideal of the domain R, the divisorial closure of I
is the ideal Iv WD .R W .R W I // and that I is called divisorial if I D Iv. A Mori
domain is a domain satisfying the ascending chain condition on divisorial ideals.
Clearly Noetherian domains are Mori. For the main properties of Mori domains, the
reader is referred to [4].

Theorem 2.17 ([24], Theorem 2.34). The following conditions are equivalent for
a domain R:

(i) R is stable and one-dimensional.
(ii) R is Mori and stable.

(iii) R is Mori and finitely stable.

In addition, under the previous conditions, for each nonzero ideal I of R, Iv D
hx; yiv, for some x; y 2 I .

This result shows that the local one-dimensional domains that are stable and not
Noetherian constructed by Olberding in [45] are new examples of Mori domains.

It also shows that a one-dimensional stable domain R cannot arise a pullback
like in Theorem 2.15, unless R D V is a discrete valuation domain. In fact, in
a pullback of that type, R is Mori if and only if V is a one-dimensional discrete
valuation domain and D is a field [35, Theorem 9].

3 Divisorial Domains

The class of domains in which each ideal is divisorial has been investigated in the
sixties of the last century by several authors and with different methods. Following
S. Bazzoni and L. Salce, these domains are now called divisorial domains. If each
overring of R is divisorial, R is called totally divisorial [12].

As for (finite) stability, the study of divisorial domains can be reduced to the
local case. We recall that, with a terminology introduced by Matlis, a domain is
called h-local if it has finite character and each nonzero prime ideal is contained in
a unique maximal ideal.

Proposition 3.1 ([12, Proposition 5.4]). A domain R is divisorial if and only if it
is h-local and RM is divisorial, for each maximal ideal M .

The local Noetherian case was independently studied by H. Bass [5] and
E. Matlis [31].

Theorem 3.2 ([5, Theorems 6.2, 6.3], [31, Theorem 3.8]). Let R be a local
Noetherian domain, with maximal ideal M . Then R is divisorial if and only if R
is one-dimensional and .R W M/ is a 2-generated R-module.
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It was already known to W. Krull that an integrally closed domain such
that each nonzero finitely generated ideal is divisorial is Prüfer. The following
characterization of integrally closed divisorial domains was given by W. Heinzer
in [25].

Theorem 3.3 ([25, Theorem 5.1]). Let R be an integrally closed domain. Then R
is divisorial if and only if R is an h-local Prüfer domain with invertible maximal
ideals.

In the general case, local divisorial domains were studied in [12, Sect. 5], [7,
Sect. 2], [20, Sect. 1]. Recall that a nonzero ideal I of a domain R is called
m-canonical if .I W .I W J // D J , for each nonzero ideal J of R. With this
terminology, the domain R is divisorial if and only if R itself is an m-canonical
ideal.

Theorem 3.4. Let R be a local domain, with maximal idealM . Then

(1) [12, Lemma 5.5] IfM is principal,R is divisorial if and only if it is a valuation
domain.

(2) [20, Theorem 1.2] If M is not principal and R is not a valuation domain, R is
divisorial if and only if .R W M/ D .M W M/ is a 2-generated R-module and
M is an m-canonical ideal of .M W M/.

Divisoriality and stability are strictly related.

Theorem 3.5 ([40, Theorem 3.12 and Corollary 3.13]). The following conditions
are equivalent for a domain R:

(i) R is stable and divisorial.
(ii) R is totally divisorial.

(iii) R is h-local and RM is totally divisorial, for each maximal ideal M .

As always, the Noetherian case and the integrally closed case are of particular
interest.

Theorem 3.6 ([12, Proposition 7.1 and Theorem 7.3]). Let R be a Noetherian
domain. The following conditions are equivalent:

(i) R is stable and divisorial.
(ii) R is totally divisorial and one-dimensional.

(iii) R is 2-generated.

Thus a Noetherian stable domain is divisorial if and only if it is 2-generated. It
follows from Theorem 2.16 that

Corollary 3.7. Assume that R is a one-dimensional stable domain whose integral
closure is a finitely generated R-module. Then R is (totally) divisorial.

By Proposition 2.5(3) and Theorem 3.3, a stable valuation domain is (totally)
divisorial. Globalizing we obtain:

Theorem 3.8 ([40, Theorem 3.1], [12, Proposition 7.6]). Let R be an integrally
closed domain. The following conditions are equivalent:
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(i) R is stable and divisorial.
(ii) R is an h-local strongly discrete Prüfer domain.

(iii) R is a divisorial generalized Dedekind domain.

In the local case, totally divisorial domains can be completely classified by using
Theorem 2.15: they are either Noetherian 2-generated domains or strongly discrete
valuation domains or arise from a suitable pullback diagram [40, Corollary 3.16].

4 Ratliff-Rush Domains

In a paper published in 1978, L. Ratliff and D. Rush associated to a regular ideal
I of a Noetherian ring, the ideal QI WD S

n�0.I nC1 WR I n/ [48]. W. Heinzer, D.

Lantz, and K. Shah called QI the Ratliff-Rush ideal associated to I [27]. If I D QI ,
I is called a Ratliff-Rush ideal and we can say that R is a Ratliff-Rush ring if each
regular ideal is Ratliff-Rush.

Among other results, Ratliff and Rush proved that, for any regular ideal I of a
Noetherian ring, there is a positive integer n such that, for k � n, eI k D I k , so that
all sufficiently high powers of I are Rutliff-Rush. Indeed, ifR is local with maximal
idealM and I is anM -primary ideal, QI is the unique largest ideal containing I and
having the same Hilbert polynomial as I [48]. Stable ideals and integrally closed
ideals of Noetherian rings are Ratliff-Rush [27].

An early survey on Ratliff-Rush ideals is [28]. In the setting of integral domains,
Ratliff-Rush ideals were studied by A. Mimouni in 2009 [33, 34].

Proposition 4.1 ([33, Proposition 2.3 and Theorem 2.5]). Let R be a domain.
Then

R stable ) R Ratliff-Rush ) R L-stable:

In addition

Proposition 4.2 ([27, Proposition 3.1 and Theorem 2.9], [33, Corollary 2.8]).
A Noetherian domain is Ratliff-Rush if and only if it is stable.

Ratliff-Rush domains are quasi-Prüfer.

Proposition 4.3 ([33, Lemma 2.4]). Let R be a domain. If each nonzero finitely
generated ideal of R is Rutliff-Rush, R0 is a Prüfer domain.

Theorem 4.4 ([33, Theorem 2.6]). Let R be an integrally closed domain. The
following conditions are equivalent:

(i) I D QI for each finitely generated nonzero ideal (respectively, each nonzero
ideal) I of R.

(ii) R is a Prüfer domain (respectively, a strongly discrete Prüfer domain).
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Since any Prüfer domain is L-stable (Proposition 2.5(2)), an L-stable domain
need not be Ratliff-Rush. Also, by Theorems 2.12 and 4.4, we get

Proposition 4.5. An integrally closed Rutliff-Rush domain is stable if and only if it
has finite character.

5 Quasi-stable Domains

G. Picozza and F. Tartarone weakened the notion of stability in the following way.
Observing that an invertible ideal of a domain is flat, they define a nonzero ideal I of
a domain R to be quasi-stable if I is flat in its endomorphism ring E.I / WD .I W I /
and they say thatR is quasi-stable if each nonzero ideal is quasi-stable [46, Sect. 2].

A stable domain is clearly quasi-stable. In addition, quasi-stable domains are
finitely stable. More precisely

Proposition 5.1 ([46, Proposition 2.4]). A domain R is finitely stable if and only
if each nonzero finitely generated ideal of R is quasi-stable.

Thus (finite) stability and quasi-stability coincide for Mori domains
(Theorem 2.17). The next result says that if R is integrally closed, quasi-stability
is equivalent to R being Prüfer, so that a quasi-stable domain need not be stable
(Proposition 2.5(3)).

Proposition 5.2 ([46, Proposition 2.7]). The following conditions are equivalent
for an integrally closed domain R.

(i) R is quasi-stable.
(ii) R is finitely stable.

(iii) R is Prüfer.

A very tricky example of a finitely stable domain that is not quasi-stable is
given in [46, Example 2.8]. Examples of local quasi-stable domains that are not
integrally closed nor stable are constructed as pseudo-valuation domains in [46,
Example 2.6(2)]. Precisely, let R be a pseudo-valuation domain with maximal ideal
M and associated valuation domain V WD .M W M/ D .R W M/ and assume that
R ¤ V . If V is a 2-generated R-module, then R is quasi-stable and not integrally
closed. If, in addition,M is not principal in V , then R is not stable.

By Theorem 2.16, a one-dimensional stable domain such that .R W R0/ ¤ .0/ is
Noetherian. This result cannot be extended to quasi-stable domains. Indeed, let R
be a one-dimensional pseudo-valuation domain that is quasi-stable and not stable,
as above. Then R is necessarily not Noetherian (nor Mori), but V D R0 and .R W
V / D M ¤ .0/.

It is not clear whether quasi-stability passes to overrings. However this happens
in several cases, for example, quasi-stability transfers to localizations and fractional,
flat, and Noetherian overrings. More generally
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Proposition 5.3 ([46, Corollary 3.7]). Let S be an overring of R and assume that
each ideal of S is extended from a fractional ideal of R. If R is quasi-stable, then S
is quasi-stable.

Proposition 5.4 ([46, Corollary 3.8]). Let R be a quasi-stable domain with inte-
gral closure R0. If .R W R0/ ¤ .0/, each overring of R is quasi-stable.

6 Clifford Regular Domains

Let S be a multiplicative commutative semigroup. An element x 2 S is called von
Neumann regular (for short, vN-regular), if there exists an element a 2 S such
that x D x2a. Idempotent and invertible elements are vN-regular. By a well-known
theorem of Clifford, S is a disjoint union of groups if and only if all its elements are
vN-regular: in this case, S is called a Clifford semigroup.

The set F .R/ of nonzero fractional ideals of a domain R form a multiplicative
semigroup, with unity R. The class semigroup of R is defined as the quotient
semigroup of F .R/ by the subgroup of nonzero principal ideals. A domain R is
called a Clifford regular domain if its class semigroup is Clifford regular; this is
equivalent to say that each nonzero fractional ideal is vN-regular in the semigroup
F .R/.

Dedekind domains are trivial examples of Clifford regular domains. S. Bazzoni
and L. Salce showed that all valuation domains are Clifford regular and gave a com-
plete description of the structure of the class semigroup in that case [11]. P. Zanardo
and U. Zannier investigated the class semigroups of orders in number fields and
showed that all orders in quadratic fields are Clifford regular domains [55]. The
study of Clifford regular domains was then carried on by S. Bazzoni [6, 8–10].

Clifford regular domains are between stable and finitely stable domains.

Proposition 6.1 ([9, Proposition 2.3]). A stable domain is Clifford regular and a
Clifford regular domain is finitely stable.

Hence, Clifford regularity and (finite) stability are equivalent for Mori domains
(Theorem 2.17). Also, an integrally closed Clifford regular domain is Prüfer
(Proposition 2.5(1)).

S. Bazzoni proved that a Clifford regular domain has finite character [10,
Theorem 4.7]. This property characterizes Clifford regularity inside Prüfer domains
and allows to show that the integral closure of a Clifford regular domain is still
Clifford regular.

Theorem 6.2 ([9, Theorem 4.5]). An integrally closed domain is Clifford regular
if and only if it is a Prüfer domain with finite character.

Proposition 6.3 ([10, Corollary 4.8]). If R is a Clifford regular domain, its
integral closure is Clifford regular.
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Even in the local case, Clifford regularity may not coincide with stability or finite
stability. In fact, any valuation domain is Clifford regular [11, Theorem 3] but need
not be stable (Proposition 2.5(3)). A local finitely stable domain that is not Clifford
regular is exhibited in [9, Example 6.6].

The following result puts in relation stability and Clifford regularity.

Proposition 6.4 ([53, Theorem 2.6]). LetR be a domain. The following conditions
are equivalent:

(i) R is stable.
(ii) R is Clifford regular and each nonzero idempotent fractional ideal of R is a

ring.

Clifford regularity of overrings was investigated by L. Sega in [53]. Since ideals
extended from vN-regular ideals are still vN-regular, the situation is similar to the
one of quasi-stability.

Proposition 6.5 ([53, Proposition 4.1]). Let S be an overring of R and assume
that each ideal of S is extended from a fractional ideal of R. If R is Clifford regular,
then S is Clifford regular.

Proposition 6.6 ([53, Theorem 4.6]). Let R be a Clifford regular domain with
integral closure R0. If .R W R0/ ¤ .0/, each overring of R is Clifford regular.

7 Problems

As we summarize in the two tables below, all the stability conditions introduced in
this paper are well understood when R is integrally closed or Noetherian. But in
general there are several questions still unanswered; in this last section we illustrate
some of them (Table 1).

Problem 7.1. A domain R is Archimedean, if
T
n�0 rnR D .0/, for each nonunit

r 2 R. Since Mori domains satisfy the ascending chain condition on principal
ideals, they are Archimedean. The class of Archimedean domains includes also
completely integrally closed domains and one-dimensional domains.

Question. Is a stable Archimedean domain one-dimensional?

This question has a negative answer. An example of a stable Archimedean
domain of dimension 2 has been given in [24, Example 3.9].

The answer is positive in the semilocal case [24], so that a semilocal
stable Archimedean domain is Mori (Theorem 2.17). However, in general the
Archimedean property does not pass to localizations. For example, the ring of
entire functions is an infinite-dimensional completely integrally closed (hence
Archimedean) Bezout domain [14, Sect. 8.1] which is not locally Archimedean,
because an Archimedean valuation domain is one-dimensional. Hence, a way of
approaching this problem is trying to understand if the Archimedean property
localizes under the hypothesis of stability (Table 2).
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Table 1 The integrally closed case

Stable , Prüfer strongly discrete with finite character
+ +
Clifford regular , Prüfer with finite character
+ +
Quasi-stable , Prüfer
m m
Finitely stable , Prüfer

Stable , Prüfer strongly discrete with finite character
+ +
Ratliff-Rush , Prüfer strongly discrete
+ +
Finitely stable , Prüfer
+
L-stable

Table 2 The Noetherian case

Stable , Clifford regular , Quasi-stable , Finitely stable
, Ratliff-Rush , L-stable one-dimensional

Problem 7.2. A (one-dimensional) Mori domain whose nonzero finitely generated
ideals are L-stable is not necessarily (finitely) stable. In fact if R is a local one-
dimensional integrally closed Mori domain, each nonzero finitely generated ideal I
ofR is L-stable (Proposition 2.3(2)); but ifR is (finitely) stable it must be a discrete
valuation domain (Proposition 2.5(1)). Example of local one-dimensional integrally
closed Mori domains that are not valuation domains can be constructed by means of
pullbacks [4, Theorem 2.2]. Does Proposition 2.4 extend to Mori domains? That is

Question. Is a one-dimensional L-stable Mori domain stable?

Problem 7.3. For Noetherian domains, the Ratliff-Rush property is equivalent to
(finite) stability and in the one-dimensional case also to L-stability (Propositions 2.4
and 4.2). Since stable domains are Ratliff-Rush, a Mori Ratliff-Rush domain need
not be Noetherian (Sect. 2).

Question. Is a Mori Ratliff-Rush domain one-dimensional?

Apart from the Noetherian case, the answer is positive if either .R W R0/ ¤ .0/

or R is seminormal [33, Corollary 2.10].

Problem 7.4. If R is a Mori stable domain (equivalently, a one-dimensional stable
domain) and I is a nonzero ideal of R, we have Iv D hx; yiv, for some x; y 2 I

(Theorem 2.17); thus we can say that in a stable Mori domain each divisorial ideal is
2-v-generated. Since a divisorial Mori domain is Noetherian, this result generalizes
(i) ) (iii) of Theorem 3.6.
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Question. Assume that R is a one-dimensional Mori domain such that each
divisorial ideal is 2-v-generated. Is it true that each divisorial ideal is stable?

Note that the answer to this question is negative if R has dimension greater
than one. For example, let R be a Krull domain. Then each divisorial ideal of
R is 2-v-generated [37, Proposition 1.2] and stability coincides with invertibility
(Proposition 2.3(1)). Hence each divisorial ideal of R is stable (i.e., invertible) if
and only if R is locally factorial [13, Lemma 1.1].

Recall that a nonzero ideal I of a domainR is v-invertible if .I.R W I //v D R and
that I is called v-stable if Iv is v-invertible as an ideal of E.Iv/, that is, .Iv.E.Iv/ W
Iv//v D E.Iv/. Clearly, v-invertibility implies v-stability. If each nonzero ideal of R
is v-stable, we say that R is v-stable [21].

Each nonzero ideal of a Krull domain is v-invertible, thus a Krull domain is
v-stable. However, a Krull domain is stable if and only if it is a Dedekind domain,
that is, it has dimension one (Proposition 2.3(1)). An example of a one-dimensional
Mori domain that is v-stable but not stable is given in [22, Example 2.6].

Question. Assume that R is a Mori domain such that each divisorial ideal is
2-v-generated. Is it true that R is v-stable?

Problem 7.5. The t-closure of a nonzero ideal I is defined by setting

It WD
[

fJvI J finitely generated and J � I g;

for each nonzero ideal I of R. If I D It , I is called a t-ideal. Invertible ideals are
divisorial and divisorial ideals are t-ideals.

Olberding proved that R is a stable domain if and only if each nonzero ideal
I is divisorial in E.I / [42, Theorem 3.5]. When R is finitely stable, each finitely
generated nonzero ideal I is a t-ideal of E.I /, being invertible. Does the converse
hold?

Question ([46, Question 2.5]). Assume that each (finitely generated) nonzero ideal
I is a t-ideal of E.I /. Is it true that R is finitely stable?

The answer is positive when, for each finitely generated nonzero ideal I , the ideal
.E.I / W I / is finitely generated in E.I / [46, Proposition 2.4].

Problem 7.6. It is well known that ifR has finite character, a locally invertible ideal
is invertible. Conversely, if each locally invertible ideal is invertibleR need not have
finite character (e.g., a Noetherian domain need not have finite character). However,
a Prüfer domain such that each locally invertible ideal is invertible does have finite
character. This fact was conjectured by S. Bazzoni [6, p. 630] and proved by W.
Holland, J. Martinez, W. McGovern and M. Tesemma in [29]. (A simplified proof
is in [36]). F. Halter-Koch gave independently another proof, in the more general
context of ideal systems [26]. Other contributions were given by M. Zafrullah in
[54] and by C.A. Finocchiaro, G. Picozza and F. Tartarone in [16].

Following D.D. Anderson and M. Zafrullah, for short we call R an LPI-domain
if each locally principal nonzero ideal of R is invertible [2].
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Since a Prüfer domain is precisely a finitely stable integrally closed domain, one
is lead to ask the following more general question.

Question ([10, Question 4.6]). Assume that R is a finitely stable LPI-domain. Is it
true that R has finite character?

The answer is positive if and only if the LPI-property extends to fractional
overrings [19, Corollary 15], in particular when R is Mori or integrally closed. For
an exhaustive discussion of this problem see [19].

Problem 7.7. By Proposition 5.3, a quasi-stable domain is locally quasi-stable.
What about the converse? Note that a locally quasi-stable domain, being locally
finitely stable, is finitely stable.

Question ([46, Sect. 3]). Is it true that a domain which is locally quasi-stable is
quasi-stable?

The answer is positive for integrally closed or Mori domains. Other than that,
also when R is h-local [46, Corollary 3.13].

Problem 7.8. A similar question can be addressed for Clifford regular domains.
Bazzoni proved that any localization of a Clifford regular domain is Clifford regular
[9, Proposition 2.8] (Proposition 6.5) and that a Clifford regular domain has finite
character [10, Theorem 4.7]. But it is not known if the converse is true in general.

Question ([9, Question 6.8]). Is it true that a domain which is locally Clifford
regular and has finite character is Clifford regular?

We know that the answer is positive in the following cases: (a) When R is
integrally closed. (This follows from Theorem 6.2.) (b) When R is Mori. In this
case, each localization of R is Mori and Clifford regular, hence (finitely) stable.
Thus R is locally stable and the finite character implies that R is stable. (c) When
each nonzero prime ideal of R is contained in a unique maximal ideal, for example,
if R is one-dimensional [23, Proposition 5.5].

Problem 7.9. A quasi-stable domain need not have finite character; thus a quasi-
stable domain need not be Clifford regular.

Question. Is a Clifford regular domain quasi-stable?

The answer is positive when R is integrally closed or Mori.

Problem 7.10. It is easy to see that a vN-regular ideal is L-stable [9, Lemma 2.6],
so that Clifford regular domains are L-stable. However, an L-stable domain need
not be finitely stable; thus neither quasi-stable nor Clifford regular. For example, a
Noetherian integrally closed domain is always L-stable, but it is stable if and only if
it is a Dedekind domain (Proposition 2.3(2)).

Question. Is a finitely stable domain, or a quasi-stable domain, L-stable?

Again, the answer is positive when R is integrally closed or Mori.
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The Development of Non-Noetherian Grade
and Its Applications

Livia Hummel

Abstract Hochster and Barger were the first to introduce notions of grade for
non-Noetherian rings. Their work laid the foundation for Alfonsi’s work which
unified and generalized these earlier definitions. The various notions of grade have
played an important role in the development of the theory of coherent rings. This
paper looks at the historical development of non-Noetherian grade, as well as its
applications.

Keywords Non-Noetherian ring • Coherent ring • Grade • Depth • Polynomial
grade
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1 Introduction

The question of how to define grade in the context of non-Noetherian rings centers
around the poor behavior of the classical notion of grade in the non-Noetherian
context. Using Hochster’s terminology [8], given a ring R and an R-module M , a
sequence x1; : : : ; xn forms a possibly improper M -sequence if for each i , 0 � i �
n � 1, xiC1 is a non-zero-divisor on M=.x1; : : : xi /M . If .x1; : : : xn/M ¤ M , then
x1; : : : ; xn forms an M -sequence. Given an ideal I of R such that IM ¤ M , the
classical grade of I on M is defined

gradeR.I;M/ D supfnjthere exists a regularM -sequence x1; : : : ; xn 2 I g:
If .R;m/ is a local ring, we denote gradeR.m;M/ by depthR M .

L. Hummel (�)
University of Indianapolis, 1400 East Hanna Avenue, Indianapolis, IN 46227, USA
e-mail: hummell@uindy.edu

M. Fontana et al. (eds.), Commutative Algebra: Recent Advances in Commutative Rings,
Integer-Valued Polynomials, and Polynomial Functions, DOI 10.1007/978-1-4939-0925-4__11,
© Springer Science+Business Media New York 2014

195

mailto:hummell@uindy.edu


196 L. Hummel

For a Noetherian ring R, an ideal I , and a finitely generated R-module M with
IM ¤ M , gradeR.I;M/ > 0 if and only if .0 WM I/ D 0. However, the following
example presents a non-Noetherian ring with an ideal P that contain only zero-
divisors such that .0 WR P / D 0. As indicated in [16], Hochster appears to be the
first to notice this pathological behavior of classical grade in the coherent case.

Example 1 ([24]). Let R D kŒŒx; y�� be the power series ring in x and y over a
field k. LetM be theR-moduleM D ˚P

heightPD1;

P prime

k.P / where k.P / is the quotient field

of R=P . Let A D R ˚M , where addition is component-wise and multiplication is
given by

.r;m/ � .s; n/ D .rs; rnC sm/:

M is an ideal of A, M2 D .0/, and A is a local ring with maximal ideal P D
A.x; 0/ C A.0; y/. As shown in [24] and [16] (page 117), .0 WR P / D 0 and P
contains only zero-divisors.

Hamilton and Marley [7] provide another example of a ring demonstrating this
pathological behavior (see Example 3).

This observation led Hochster [8] to define the notion of polynomial grade,
sometimes known as true grade, in the early 1970s. In his work, Barger [4]
also investigated several different definitions of grade, seeking to understand the
conditions and limitations under which these definitions were equivalent. McDowell
[13] used homological definitions of grade, referred to in this paper asM: depth and
PN: depth, in his exploration of a class of coherent rings called pseudo-Noetherian
rings. (In his paper, McDowell attributes this definition of depth to Auslander and
Bridger [2].) In 1981, Alfonsi [1] generalized and unified these notions of non-
Noetherian grade.

Since the development and refinements of the notion of grade in the non-
Noetherian context, the work of Alfonsi, Barger, and Hochster has played an
important role in the development of the theory of coherent rings. Recall that an
R-moduleM admits a finite n-presentation if there is an exact sequence

Fn ! Fn�1 ! � � � ! F0 ! M ! 0

of finitely generated free R-modules. Finitely presented modules are those modules
that admit a finite 1-presentation. A ring R is called coherent if every finitely
generated ideal is finitely presented. A ring is called stably coherent if every
polynomial ring in a finite number of variables over R is a coherent ring. Alfonsi
was able to prove the most general version of the Buchsbaum-Eisenbud Exactness
Criteria for complexes over rings that aren’t necessarily Noetherian. He also was
able to simplify results in stable coherence [6]. Iroz and Rush [10] used grade
in the context of associated prime ideals. More recently, Hamilton and Marley
[7] have used polynomial grade in the theory of non-Noetherian Cohen-Macaulay
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rings. Hummel and Marley [9] generalized the Auslander-Bridger formula to the not
necessarily Noetherian context, which provided the foundation for non-Noetherian
Gorenstein rings.

In this paper we will look at the variety of definitions of grade within the
non-Noetherian context, summarize their connections in the context of Alfonsi’s
unification, and present the applications of grade in non-Noetherian rings. In
what follows all rings are commutative and not assumed to be Noetherian unless
otherwise stated. In the naming of the various definitions of grade presented here,
usually either the original notations or those used widely in the literature are chosen.
In some cases (as in the notation for A: depth) we use the naming convention of
[15] and mimic this convention in notating other definitions (such as PN: depth)
that previously were notated no differently than from classical grade or depth.

2 Polynomial, Rees, and Koszul Grades

Hochster’s original definition of polynomial grade relies upon the notion of
admissible ideals.

Definition 1 ([8]). Let R be a ring, let be I an ideal, and let M be an R-module.
The pair .I;M/ is admissible if for each faithfully flat R-algebra S , and each
possibly improper .M ˝R S/-sequence x1; : : : ; xn 2 I ˝R S , it follows that
x1; : : : xn is an .M ˝R S/-sequence.

Hochster shows that forM finitely generated, .I;M/ is admissible if and only if
IM ¤ M [8].

Definition 2 ([8]). Let R be a ring, let I be an ideal, and let M be an R-module
such that .I;M/ is admissible. Then

p: gradeR.I;M/ D supfgradeS .I ˝R S;M ˝R S/jS is a faithfully flat R-algebrag:

However, in recent literature ([7, 9, 15, 16]) the notion of polynomial grade is
commonly defined using the following equivalent characterization.

Proposition 1 ([8]). Let R be a ring, let I be an ideal, and let M be an R-module.
Then

p: gradeR.I;M/ D lim
t!1 grade.IRŒx1; : : : ; xt �; RŒx1; : : : ; xt �˝R M/:

As a consequence of Definition 2 and Proposition 1, polynomial grade has the
following properties.

Proposition 2 ([8, 16]). Let R be a ring, let I be an ideal, and let M be an
R-module. Polynomial grade has the following properties:
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1. gradeR.I;M/ � p: gradeR.I;M/:

2. p: gradeR.IRŒx1; : : : ; xn�;MRŒx1; : : : ; xn�/ D p: gradeR.I;M/ for all n > 0:
3. If J 
 I , then p: gradeR.J;M/ � p: gradeR.I;M/:

4. If R is Noetherian, M is finitely generated, and IM ¤ M , then
gradeR.I;M/ D p: gradeR.I;M/:

5. Given a faithfully flat R-algebra S , p: gradeS .I ˝R S;M ˝R S/ D
p: gradeR.I;M/.

6. p: gradeR.I;M/ D 0 if and only if every finitely generated subideal I0 of I has
an element x 2 M such that Ix D 0.

7. p: gradeR.I;M/ D supfp: gradeR.J;M/jJ 
 I is finitely generatedg:
8. If x is a regular sequence onM contained in I of length `.x/, then

p: gradeR.I;M/ D p: gradeR.I;M=xM/C `.x/:

9. p: gradeR.I;M/ D p: gradeR.P;M/ for some prime ideal P containing I . In
particular, p: gradeR.I;M/ D p: gradeR.

p
I ;M/.

10. If I is generated by n elements, and IM ¤ M , then p: gradeR.I;R/ � n.
Furthermore,

p: gradeR.I;M/ D grade.IRŒt1; : : : ; tn�; RŒt1; : : : ; tn�˝R M/:

Note that in light of Proposition 2(6), in Example 1, we now see that
p: gradeR.P;M/ > 0 even though gradeR.P;M/ D 0.

When .R;m/ is a local ring with R-module M , p: gradeR.m;M/ is denoted by
p: depthM . In Northcott [16] we see a generalization of the Auslander-Buchsbaum
formula to the non-Noetherian setting. First we recall the original formula.

Theorem 1 ([3](Auslander-Buchsbaum Formula)). Let .R;m/ be a local
Noetherian ring, and let M be an R-module with pdR M < 1. Then
pdR M C depthR M D depthR R:

Northcott [16] retains projective dimension, but replaces classical grade with
polynomial grade.

Theorem 2 ([16]). Let .R;m/ be a local ring and let M be an R-module with
a finite length resolution of finitely generated free modules. Then pdR M C
p: depthR M D p: depthR R:

Hochster’s primary concern was grade sensitivity in the non-Noetherian case.
Let R be a ring, let I D .r1; : : : ; rn/; and let M be a finitely generated R-
module with IM ¤ M . When R is Noetherian and K is the Koszul complex
of M with respect to the generators of I; “grade sensitivity” corresponds to being
able to recover the classical grade by counting the number of vanishing homology
groups of the Koszul complex from the left [8]. Let A D ZŒx1; : : : xn�; where
x1; : : : ; xn are indeterminants over Z, and let K0 be the Koszul complex of A with
respect to x1; : : : ; xn. Define K D K0 ˝A M , treating M as an A-module via
the homomorphism A ! R that takes xi to ri . Since K0 is a free resolution of
N D A=.x1; : : : ; xn/,
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gradeR.I;M/ D n � dimA.N;M/ D Tor dimA N � dimA.N;M/;

where dimA.N;M/ is the greatest integer i such that TorAi .N;M/ ¤ 0 (or �1 if
there is no such integer). Define Tor dimA N D supE dimA.N;E/ for E finitely
generated.

To investigate grade sensitivity in the non-Noetherian case, termed “G-
sensitivity” in [8], Hochster proves the following results. In the following, given
a ring R and an R-module M , define a.M/ D fr 2 RjMr D 0g where
Mr D Rr ˝M .

Theorem 3 ([8](Tor Inequality)). Let R be a ring, let M be an R-module, and let
I D a.M/. Let A be anyR-algebra, and letN be anyA-module. If dimR.M;N / �
0, then .IA;N / is admissible and

p: gradeA.IA;N /C dimR.M;N / � Tor dimR M:

Corollary 1 ([8](Extended Rees Inequality)). Let R be a ring, let M ¤ 0 be an
R-module, and let I D a.M/. Then p: gradeR.I / � Tor dimR M .

Theorem 4 ([8](Characterization of G-sensitivity)). Let R be a ring and let
M ¤ 0 be an R-module such that 1 � n D Tor dimR M < 1. Then M is G-
sensitive if and only if the following conditions hold:

1. M is perfect, that is, p: grade.a.M// D n:

2. a.M/ is the radical of a finitely generated ideal.
3. For every prime ideal P of R containing a.M/; and each ideal J of AP withp

J D PRP , TorRn .M;RP =J / ¤ 0.

Proposition 2 (7) is a consequence of Hochster’s G-sensitivity results.
According to [8], Hochster advised Barger to implicitly use the notion of

polynomial grade to relate what are known as the classical, Koszul, and Rees grades.
Barger’s definitions follow below:

Definition 3 ([4]). Let R be a ring, let I be an ideal, and let M be an R-module
with IM ¤ M . For x1; : : : ; xn 2 I , define g.x1; : : : ; xnjM/ D n � t , where t is
the largest integer such that the t-th homology module of the Koszul complex over
M determined by x1; : : : ; xn is not zero. The Koszul grade of I overM is defined

K: gradeR.I;M/ D supfg.x1; : : : ; xnjM/jx1; : : : ; xn 2 I g:

Barger proves the following properties of Koszul grade:

Proposition 3 ([4]). Let R be a ring, let I and J be ideals, and let M be an R-
module with JM ¤ M .

1. If I 
 J , then K: gradeR.I;M/ � K: gradeR.J;M/:

2. If x is a non-zero-divisor, K: gradeR.J;M/ D K: gradeR.J;M=xM/C 1:

3. If .x1; : : : ; xn/ D J , then K: grade.J;M/ � n.
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4. If S is a faithfully flat extension of R, then

a. .J ˝R S/.M ˝R S/ ¤ .M ˝R S/:

b. gradeR.J;M/ D K: gradeR.J ˝R S;M ˝R S/:

c. If I 
 J 
 p
I , then K: gradeR.I;M/ D K: gradeR.J;M/.

The following properties of Koszul grade appear in [15]:

Proposition 4 ([15]). LetR be a ring, let I be an ideal, and letM be anR-module.

1. Let f W R ! S be a flat ring homomorphism; then

K: grade.I;M/ � K: grade.IS;M ˝R S/:

2. Let f W R ! S be a ring homomorphism and let N be an S -module. Then

K: gradeR.I;N / D K: gradeS .IS;N /:

The classical and Koszul grades are related in the following ways:

Proposition 5 ([4]). Let R be a ring, let I be an ideal, and let M be an R-module.

1. gradeR.I;M/ � K: gradeR.I;M/:

2. If gradeR.I;M/ < K: gradeR.I;M/ D n, then there is a positive integer t such
that for S D RŒx1; : : : ; xt �,

gradeS.I ˝R S;M ˝R S/ D K: gradeS .I ˝R S;M ˝R S/ D n:

Barger’s definition of Rees grade is based upon Rees’ ([18, 19]) characterization
of Noetherian classical grade by the vanishing of Ext.

Definition 4 ([4]). Let R be a ring, let I be an ideal, and let M be an R-module.
Then the Rees grade is given by

r: gradeR.I;M/ D inffnj ExtnR.R=I;M/ ¤ 0g:

The following properties of Rees grade were first proved by Rees in [18]:

Proposition 6 ([4]). Let R be a ring, let I be an ideal, and let M be an R-module.

1. gradeR.I;M/ � r: gradeR.I;M/:

2. If x 2 I is a non-zero-divisor, then r: gradeR.I;M/ D 1C r: gradeR.I;M=xM/.

A proof of the following characterization of r: grade can be found in [23].
(Azgharzadeh and Tousi [15] refer to this cohomological characterization as
H: grade.) Let x D x1; : : : xn be a finite sequence of elements in R. Given an R-
moduleM and an ideal I , let Hi

I .M/ be the i-th local cohomology of M .

Proposition 7 ([23]). Let R be a ring, let I be an ideal of R, and let M be an R-
module. Then r: gradeR.I;M/ D inffi � 0jHi

I .M/ D lim!
n

ExtiR.R=I
n;M/ ¤ 0g:
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The following properties characterize the relationship between Rees and Koszul
grades:

Proposition 8 ([4]). Let R be a ring, let I be a finitely generated ideal, and let M
be an R-module.

1. The following statements are equivalent:

a. r: gradeR.I;M/ D 0:

b. K: gradeR.I;M/ D 0:

c. there exists a nonzero element m 2 M such that Im D 0:

2. If M1 is the direct sum of countably many copies of M , then

K: gradeR.I;M/ D inffnj ExtnR.R=I;M
1/

and K: gradeR.I;M/ � r: gradeR.I;M/:

3. If K: gradeR.I;M/ D 1, then r: gradeR.I;M/ D 1 as well.
4. If R is coherent and K: gradeR.I;M/ D n, then r: gradeR.I;M/ D n.

Barger provides an example for when the first property fails when I is not finitely
generated.

Example 2 ([4]). Let k be a field, let R D kŒx1; : : : ; xn; : : : �=.x
1
1; x

2
2 ; : : : ; x

n
n ; : : : /,

and let I D .x1; : : : ; xn; : : : /. Then gradeR.I;R/ D K: gradeR.I;R/ D 0, but
r: gradeR.I;R/ > 0.

3 Grade and Pseudo-Noetherian Rings

While attempting to extend Noetherian algebraic and homological results to the
non-Noetherian context, McDowell [13] defined pseudo-Noetherian rings in 1976.

Definition 5 ([13]). A ring R is called pseudo-Noetherian if

1. R is coherent.
2. If M ¤ 0 is a finitely presented R-module and I is a finitely generated ideal of
R contained in the zero-divisors of M , then there exists m 2 M , m ¤ 0 such
that Im D 0.

Note that by Proposition 8 (1), if R is pseudo-Noetherian, I is a finitely
generated ideal, and M is a finitely presented R-module, r: gradeR.I;M/ D
K: gradeR.I;M/ D 0. Hence, McDowell uses the following definition ofM: depth,
as defined by [2].

Definition 6 ([2]). Let R be a ring and let M and N be R-modules. Define
M: depthN D inffnj ExtnR.M;N / ¤ 0g. If there is no such integer such that
ExtnR.M;N / ¤ 0, then M: depthR N D 1.

McDowell connectsM: depth to the length of M -sequences.
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Lemma 1 ([13]). Let R be a pseudo-Noetherian ring, let I be a finitely generated
ideal, and let M be a finitely presented R-module with IM ¤ M . Then the length
of any maximalM -sequence in I is equal to .R=I /: depthR M .

In fact, this result provides a characterization for local coherent rings that are
also pseudo Noetherian: a local coherent ring is pseudo-Noetherian if and only if
the above lemma holds [13].

In addition, if I 
 J are finitely generated proper ideals of a local pseudo-
Noetherian ring, .R=I /: depthR M � .R=J /: depthR M for any finitely presented
R-moduleM .

This leads to the definition of depth for pseudo-Noetherian rings.

Definition 7 ([13]). Let .R;m/ be a local pseudo-Noetherian ring and let M ¤ 0

be a finitely presented R-module. Define

PN: depthM D supf.R=I /: depthR M jI a proper finitely generated idealg:

If R is Noetherian, PN: depthR M D .R=m/: depthM .
Consequently, McDowell generalizes Lemma 1.

Theorem 5 ([13]). Let .R;m/ be a local pseudo-Noetherian ring and let M ¤ 0

be a finitely presentedR-module. Then the lengths of maximalM sequences are the
same and equal to PN: depth.

If R is pseudo-Noetherian and I is a finitely generated ideal, then it follows that
R=I is pseudo-Noetherian. Hence PN: depth also has the following properties:

Proposition 9 ([13]). Let .R;m/ be a local pseudo-Noetherian ring, let M ¤ 0

be a finitely presented module, and let x 2 m be a non-zero-divisor of M . Then
PN: depthR=.x/.M=xM/ D PN: depthR M � 1:
Theorem 6 ([13]). Let .R;m/ be a local pseudo-Noetherian ring. The following
integers are equivalent:

1. PN: depthR R
2. The length of any maximal R-sequence
3. supfpdR M jM a finitely presented R-module with pdR M < 1g

4 Early Applications of Polynomial Grade

Sakaguchi [20] connected polynomial grade to the valuative dimension introduced
by Jaffard [11]. We begin with the definition of valuative dimension.

Definition 8 ([11]). If R is an integral domain, then the valuative dimension of R
is defined

dimvR D supfdimV jV is a valuation overring of Rg:
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In general, if R is a commutative ring,

dimvR D supfdimv.R=p/jp 2 Spec.R/g:

If R is a ring and M ¤ 0 is an R-module, the valuative dimension of M is
defined by

dimvM D dimvR=.0 WR M/:

If R is Noetherian, then it can be shown that dimvM D dimM [20].
With these definitions, along with the notion of polynomial height (see [20] for

details), Sakaguchi proves the following result:

Theorem 7 ([20]). Let .R;m/ be a local ring and letM ¤ 0 be a finitely generated
R-module. Then p: gradeR.m;M/ D p: depthR R � dimvM .

Iroz and Rush [10] made connections between associated primes and polynomial
grade. First, we start with some definitions.

Definition 9 ([10]). Let R be a ring, let P be a prime ideal of R, and let M be an
R-module.

1. IfP is minimal over .0 WR m/ for somem 2 M , thenP is called a weak Bourbaki
prime of M . The set of weak Bourbaki primes of M is denoted Assf .M/.

2. P is called a strong Krull prime of M if for every finitely generated ideal I
contained in P , there exists an m 2 M such that I � .0 WR m/ � P . Denote the
set of strong Krull primes of M by sK.M/.

Iroz and Rush use the following result as a basis to connect polynomial grade to
weak Bourbaki and strong Krull primes.

Proposition 10 ([8, 12]). Let R be a ring, let I be an ideal, and let M be an R-
module. The following statements are equivalent:

1. p: gradeR.I;M/ D 0:

2. Each finitely generated ideal J � I is contained in a member of Assf .M/.
3. Each finitely generated ideal J � I is contained in a member of sK.M/.

The following result of Northcott [17] also connects polynomial grade and strong
Krull primes.

Theorem 8 ([17]). Let R be a ring, and let I be an ideal with p: gradeR.I;R/ > 0.
Then I is projective if and only if

1. I has a finite length resolution by finitely generated projective modules.
2. Every P 2 sK.R=A/ has p: gradeR.P;R/ D 1.

By means of the following lemma, Iroz and Rush prove that Northcott’s
theorem remains true if Assf .R=I / is replaced by sK.R=I /:
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Lemma 2 ([10]). Let R be a ring, let I ¤ R be an ideal, and let M be an R-
module. Then

p: gradeR.I;M/ D inffp: gradeR.P;M/jP 2 Assf .R=I /g
D inffp: gradeR.P;M/jP is minimal over Ag:

Finally, Iroz and Rush connect polynomial grade to projective ideals.

Theorem 9 ([10]). Let R be a ring and let I be an ideal of R with
p: gradeR.I;R/ > 0. Then I is projective if and only if the following conditions
hold:

1. p: gradeR.P;R/ D 1 for all P 2 Assf .R=I /:
2. I has a finite length resolution by finitely generated projective R-modules.

5 Alfonsi’s Generalization of Grade

This section will look at Alfonsi’s [1] definition of grade and its connection to the
previously presented definitions of grade and depth.

Definition 10 ([1]). Let R be a ring, let M be a finitely presented R-module, and
let N be an R-module. Define A: gradeR.M;N / � n if for every finite complex

P	 D Pn ! Pn�1 ! � � � ! P0 ! M ! 0

of finitely generated projective modulesPi (0 � i � n), there exists a finite complex

Q	 D Qn ! Qn�1 ! � � � ! Q0 ! M ! 0

of finitely generated projective modules Qj (0 � j � n) and a chain map
P	 ! Q	 of complexes overM such that the induced mapsHi.HomR.Q	; N // !
Hi.HomR.P	; N // are zero for 0 � i < n.

Define A: gradeR.M;N / as the largest integer satisfying the above conditions;
let A: gradeR.M;N / D 1 if no such integer exists.

If M admits a finite n-presentation (for instance, if R is coherent), then [1]

A: gradeR.M;N / D supfnj ExtiR.M;N / D 0; 0 � i < ng:

Hence we immediately have the following connection between McDowell’s notion
of grade, Rees grade, and the grade of Alfonsi.

Proposition 11. Let R be a ring, let I be a finitely generated ideal, let M be
an R-module admitting a finite n-presentation, and let N be an R-module. Then
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M: depthR N D A: gradeR.M;N /. If M D R=I , then r: gradeR.M;N / D
A: gradeR.M;N /.

Alfonsi’s definition of grade has the following properties:

Proposition 12 ([1]). Let R be a ring, letM be a finitely presented R-module, and
let N be an R-module.

1. If x1; : : : ; xn are finitely many variables over R, then

A: gradeRŒx1;:::;xn�.M ˝R RŒx1; : : : ; xn�; N ˝R RŒx1; : : : ; xn�/ D A: gradeR.M;N/:

2. If x D x1; : : : ; xn is a regular N -sequence contained in .0 WR M/, then
A: gradeR.M;N / D nC A: gradeR.M;N=.x/N /:

Proposition 13 ([1]). Let R be a ring, let M be a finitely presented R-module, let
N be an R-module, and let n � 0 be an integer. The following are equivalent:

1. A: gradeR.M;N / � n:

2. There exists a faithfully flat R-algebra S , and a sequence v1; : : : ; vn 2 .0 WS
M ˝R S/ which forms an N ˝R S -regular sequence.

3. There exists a faithfully flatR-algebraS , and a sequence of elements v1; : : : ; vt 2
.0 WS M ˝R S/ satisfying Hi.K	.v1; : : : ; vt ; N ˝R S// D 0 for i > t � n.

4. For every sequence of elements v1; : : : ; vt of R satisfying .0 WR .0 WR M// D
.0 WR .v1; : : : ; vt //, we have Hi.K	.v1; : : : ; vt ; N // D 0 for i > t � n.

5. ExtiRŒx1;:::;xr �.M ˝R RŒx1; : : : ; xr �; N ˝R RŒx1; : : : ; xr �/ D 0 for i < n and an
integer r � n.

Corollary 2 ([1]). Let R be a ring, let M be a finitely presented R-module, let N
be anR-module, and let S be a flat extension of R. Then A: gradeS .M ˝R S;N ˝R

S/ � A: gradeR.M;N /. If S is faithfully flat overR, then A: gradeS.M˝RS;N˝R

S/ D A: gradeR.M;N /.

Proposition 14 ([1]). Let R be a ring, let N be an R-module, and let I and J be
two finitely generated ideals of R.

1. If I 
 J and A: gradeR.R=I;N / � n, then A: gradeR.R=J;N / � n.
2. If A: gradeR.R=I;N / � n and A: gradeR.R=J;N / � n, then A: gradeR
.R=IJ;N / � n.

Proposition 15 ([1]). Let R be a ring, let I be an ideal, and let M and
N be R-modules. If M is finitely presented, then A: gradeR.M;N / D
inffA: gradeRP .MP ;NP /jP 2 SuppM g:

Thus Proposition 14 leads to an extension of Alfonsi’s definition of grade that
does not requireM to be a finitely presented module.

Definition 11 ([1]). Let R be a ring, and let M and N be R-modules. Then
A: gradeR.M;N / � n if for every x 2 M , .0 WR x/ contains a finitely generated
ideal Ix satisfying A: gradeR.R=Ix;N / � n.
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Alfonsi also shows that the two different definitions of grade he has presented
are equivalent over finitely presented modules.

Theorem 10 ([1]). Let R be a ring, letM be a finitely presentedR-module, and let
N be an R-module. Then Definitions 10 and 11 agree.

Finally, we have the following connections between most of the notions of grade
previously presented.

Proposition 16 ([15]). Let R be a ring, let I be an ideal, and let M be an R-
module. The following relations hold:

grade.I;M/ � p: grade.I;M/ D K: grade.I;M/ D A: grade.I;M/:

In addition to the Buchsbaum-Eisenbud Exactness Criteria (stated in Theorem 13
below), Alfonsi [1] also made connections between small finitistic projective
dimension and A: grade. We begin with the definition of small finitistic projective
dimension and its relevant properties.

Definition 12. Let R be a ring, let M be an R-module, and let n be an integer. The
small finitistic projective dimension of M is at most n, denoted fPdimR M � n; if
for every complex

P	 D 0 ! PnC1
�! Pn ! � � � ! P0

of finitely generated projective R-modules Pi such that the sequence

0 ! PnC1 ˝R M
�˝1M! Pn ˝R M ! � � � ! P0 ˝R M

is exact, then the map PnC1 ! Pn is left invertible (i.e., there exists a homomor-
phism � W Pn ! PnC1 such that �� D 1PnC1

).
fPdimR M is the smallest integer satisfying the above conditions; if no such

integer exists, fPdimR M D 1.

Theorem 11 ([1]). Let R be a ring, let M and N be R-modules, and let n be an
integer. The following are equivalent:

1. A: gradeR.M;N / > n:
2. For every flat R-algebra S with fPdimS.N ˝R S/ � n, M ˝R S D 0.

It follows that

A: gradeR.M;N/ D infffPdimS .N ˝R S/jS is a ring that is a flat R-module and M ˝R S ¤ 0g:

This last characterization of A: grade can be further generalized.

Theorem 12 ([1]). Let R be a ring, letM be a finitely presentedR-module, and let
N be an R-module. Then A: gradeR.M;N / D inf

p2Supp.M/
ffPdimRp Npg.
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Alfonsi defines the depth of a module in the following manner:

Definition 13 ([1]). Let .R;m/ be a local ring, and let M be an R-module. We
define the A.depth of M as A: depthR M D A: gradeR.R=m;M/.

Alfonsi [1] proves several results analogous to their Noetherian depth counter-
part. The first such result is similar to the result of Auslander.

Proposition 17 ([1]). Let .R;m/ be a local ring, let N be an R-module, let

L	 D 0 ! Ln
dn! � � � d1! L0 be a complex of finite free R-modules, and let

Q D Coker.d1/. Suppose that the coefficient ideal of dn is contained in m and
that the complex L	 ˝R N is exact. Then we have the equality A: depthR.N / D
A: depthR.N ˝R Q/C n:

The following results, several which are well known in the Noetherian case,
follow:

Corollary 3 ([1]). Let .R;m/ be a local ring, and letM be anR-module. Then the
following statements hold:

1. A: depthR M D fPdimR M .
2. LetA be a finitely presentedR-algebra, letN be an A-module that is also a finite
R-flat module, letQ be a prime ideal ofA, and let P be its image in SpecR. Then
we have the equality

A: depthAQ..N ˝R M/Q/ D A: depthRP .MP /C A: depthAQ˝Rk.P /
.NQ ˝R k.P //:

Alfonsi [1] uses his notion of grade to further generalize the Buchsbaum-
Eisenbud Exactness Criterion first proved in the Noetherian case in [5] and
generalized to non-Noetherian rings by Northcott [16].

Theorem 13 ([1](Buchsbaum-Eisenbud Exactness Criterion)). Let R be a ring

and let F	 D 0 ! Fn
un! Fn�1 ! � � � u1! F0 be a complex of finitely generated free

R-modules. Let ri D rankFi � rank.FiC1 C � � � C .�1/n�1 rankFn/, and denote the
ideal generated by all the ri 	 ri minors of the matrix ui by c.^ri ui /. Then the com-
plex F	 is exact if and only if for every 1 � i � n; A: gradeR.R=c.^ri ui /; R/ � i .

The Buchsbaum-Eisenbud Exactness Criterion allowed Alfonsi to prove the
following result, which simplified the proofs of many results in stable coherence (see
[6]). Recall that anR-module has weak dimension n if n is the smallest nonnegative
integer such that there is an exact sequence 0 ! Fn ! � � � ! F1 ! F0 ! M ! 0

of flat R-modules. The weak dimension of a ring is the supremum of the weak
dimensions of the modules of R.

Theorem 14 ([1]). Let R be a coherent ring of finite weak dimension. Then the
polynomial ringRŒx1; : : : ; xn� is coherent if and only ifRP Œx1; : : : ; xn� is a coherent
ring for every prime ideal P of R.
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6 Grade and Coherent Cohen-Macaulay and Gorenstein
Rings

The results of this section arose out of the work of Hamilton and Marley [7] to
define Cohen-Macaulay rings in the non-Noetherian context as well as the work
of Hummel and Marley [9] to define the non-Noetherian Gorenstein counterpart.
While Proposition 16 showed the equality of Alfonsi’s grade and polynomial grade,
in a nod to historical precedence, the following section will use the notation of
polynomial grade. However, Alfonsi’s characterization of grade was used to prove
several of the following results.

We begin with additional characterizations of polynomial grade. Let x D
x1; : : : xn be a finite sequence of elements inR. Given anR-module (M), let MHi

x .M/

be the i-th C̆ech cohomology of M with respect to x.

Proposition 18 ([7]). Let R be a ring, let x be a finite sequence of elements of R
with length ` D `.x/, let I D .x/R, and let M be an R-module. The following
integers are equivalent:

1. p: gradeR.I;M/

2. K: gradeR.I;M/

3. supfk � 0j MHi
x.M/ D 0 for all i < kg

Moreover, IM ¤ M if and only if any one of the above integers is finite.

Asgharzadeh and Tousi [15] refer to part (3) of Proposition 18 as C̆ech grade,
denoted MC: gradeR.I;M/. Hamilton and Marley prove an additional connection of
polynomial depth and weak Bourbaki primes.

Lemma 3 ([7]). LetM be anR-module andp2 Assf .M/. Then p: depthRp MpD0.

Hamilton and Marley [7] show that a ring may contain ideals of polynomial grade
j > 1 but no ideals of polynomial grade i , where 0 < i < j . This is one of the
distinctions between classical and polynomial grades.

Proposition 19 ([7]). Let .R;m/ be a local ring of dimension d . For a fixed integer
i � 0, letMi D ˚

p2SpecR
heightp�i

k.p/, where k.p/ is the residue field ofRp . Let S D R	Mi

be the trivial extension of R byMi , let j W S ! R be the natural projection, and let
I be a finitely generated ideal of S . Then height I D height j.I / and

p: gradeR.I;R/ D
(
0 if height I � i

p: gradeR.j.I /; R/ if height I > i:

In fact, applying this proposition provides an additional example of a ring
displaying the pathological grade behavior first noticed by Hochster, as mentioned
in the Introduction.
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Example 3 ([7], Example 2.10). Let .R;m/ be a Cohen-Macaulay local ring of
dimension d > 0. Using the notation of Proposition 19, let S D R˝Md�1. Then S
is a local ring of dimension d with maximal ideal n D m	Md�1 with the following
properties:

1. p: depthS D dimS:
2. p: grade I D 0 for all ideals I of S such that

p
I ¤ n; in particular, n consists

entirely of zero-divisors.
3. p: depthSp D 0 for all P 2 SpecS n fng:

Polynomial depth also plays an important role in the characterization of not
necessarily Noetherian Cohen-Macaulay rings. To define Cohen-Macaulay rings,
Hamilton and Marley use the definition of strong parameter sequences introduced
by Schenzel (see [21] or [7] for details), which play the role of systems of parameters
in the non-Noetherian context. Hamilton and Marley thus define Cohen-Macaulay
rings in the following manner:

Definition 14 ([7]). A local ring is Cohen-Macaulay if every strong parameter
sequence of R is a regular sequence.

Both classical and polynomial grade correspond to the length of strong parameter
sequences in Cohen-Macaulay rings.

Proposition 20 ([7]). Let R be a ring; the following statements are equivalent:

1. R is Cohen-Macaulay.
2. grade..x/R;R/ D `.x/ for every strong parameter sequence x:
3. p: gradeR..x/R;R/ D `.x/ for every strong parameter sequence x:

Hummel and Marley [9] use the notion of Gorenstein dimension as the foun-
dation for the theory of not necessarily Noetherian Gorenstein rings. Let M � D
HomR.M;R/.

Definition 15 ([2]). Let R be a ring and let M be a finitely generatedR-module.

1. M is in the class G.R/ if

a. ExtiR.M;R/ D ExtiR.M
�; R/ D 0 for all i � 0.

b. The canonical map M ! M �� is an isomorphism.

2. M has Gorenstein dimension n, denoted GdimM D n, if there exists a minimal
length exact resolution 0 ! Gn ! � � � ! G0 ! M ! 0 such that Gi 2 G.R/

for each i . If no finite resolution exists, then GdimM D 1.

Gorenstein rings are defined in the following manner:

Definition 16 ([9]). A local ring R is Gorenstein if GdimR=I < 1 for every
finitely generated ideal I .

The proof connecting Gorenstein and Cohen-Macaulay rings requires a gen-
eralization of the Auslander-Bridger formula to non-Noetherian rings. In the
Noetherian context, the Auslander-Bridger formula provides a link between depth
and Gorenstein dimension.
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Theorem 15 ([2]). Let R be a local Noetherian ring and let M be an R-module
with GdimM < 1. Then GdimM C depthM D depthR:

The Auslander-Bridger formula was first extended to pseudo-coherent rings by
McDowell [14].

Theorem 16 ([14]). Let R be a local pseudo-Noetherian ring, and let M be
a nonzero finitely presented R-module with GdimM < 1. Then GdimM C
PN: depthM D PN: depthR:

Hummel and Marley [9] provided the final generalization of the Auslander-
Bridger formula in the coherent case. There is a version of this formula that doesn’t
require the ring to be coherent, but rather assumes additional conditions on the
R-module (see [9] for details).

Theorem 17 ([9]). Let R be a local coherent ring and letM be a finitely presented
R-module with GdimM < 1. Then GdimM C p: depthM D p: depthR:

Using the Auslander-Bridger formula, Hummel and Marley [9] were able to show
that coherent local Gorenstein rings are Cohen-Macaulay.

With this definition of Gorenstein rings, Hummel and Marley [9] provide a one-
directional analogy of a well-known Noetherian characterization of Gorenstein rings
in the coherent context.

Proposition 21 ([9]). If R is a local coherent Gorenstein ring with p: depthR D
n < 1, then every n-generated ideal generated by a regular sequence is irreducible.

Polynomial grade also provides another characterization of coherent Gorenstein
rings involving the FP -injective dimension introduced by Stenström.

Definition 17 ([22]). Let R be a ring and let M be an R-module.

1. M is called FP -injective if Ext1R.F;M/ D 0 for all finitely presented
modules F .

2. The FP -injective dimension of M is defined as

FP-idR M D inffn � 0j ExtnC1
R .F;M/ D 0; for every finitely presented R-module F g:

The following relation between polynomial depth and Gorenstein dimension seen
in [9],

p: depthR � supfGdim.R=I /jI a finitely generated idealg
D supfnj ExtiR.R=I;R/ D 0;8i � n;8 finitely generated ideal I g;

leads to the following characterization of Gorenstein rings.

Theorem 18 ([9]). Let R be a local coherent ring. The following conditions are
equivalent for n � 0:

1. FP-idR R � n:

2. R is Gorenstein with depthR D n.
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Stable Homotopy Theory, Formal Group Laws,
and Integer-Valued Polynomials

Keith Johnson

Abstract In this survey we describe some ways in which algebras of integer-valued
polynomials arise in stable homotopy theory and in the study of formal group
laws. For several generalized homology theories certain values of the theories
have a natural description as such algebras and since these values are the ones
arising in the construction of the Adams-Novikov spectral sequence for computing
stable homotopy groups these algebras and their homological properties are of
considerable interest.

Keywords Integer-valued polynomial • Stable homotopy theory • Formal group
law • Hopf algebroid • Adams-Novikov spectral sequence
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1 Introduction

The study of algebras of integer-valued polynomials is usually thought of in ring
theory primarily as a source of examples and counterexamples of algebras with
unusual properties ([11]). Such algebras do arise naturally in other branches of
mathematics, however, and in this survey we will describe two related examples of
this. The first is algebraic topology where values of certain generalized homology
theories sometimes carry this structure. In the examples we will describe these
algebras are the algebras of natural transformations of the homology theory to itself.
These play an important role in computations in stable homotopy theory. The other
area in which we will describe examples is the study of formal group laws which
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are 2-variable power series with certain group-like properties. Here the algebra of
self-isomorphisms of such series sometimes carries the structure of an algebra of
integer-valued polynomials.

The survey is organized as follows. We begin with a sketch of some background
and terminology from algebraic topology, followed by a description of how the
algebra Int.Z/ of rational integer-valued polynomials on Z arises naturally in
complex K-theory. This is followed by two sections giving some of the facts
about formal group laws and stable homotopy theory which we will need. We then
describe some of the algebras of integer-valued polynomials arising in these two
areas.

2 Some Algebraic Topology

In broadest generality algebraic topology can be described as the study of
topological spaces by algebraic means, and it proceeds by finding correspondences
(functors in modern categorical language) from topological spaces and continuous
maps to algebraic structures such as groups and homomorphisms. A familiar
example of this is the fundamental group �1 W Top ! Grp which associates to a
space the equivalence class of loops in the space beginning and ending at a fixed base
point, the equivalence relation being continuous deformation (homotopy) and the
group product being concatenation. In complex analysis, for example, this is useful
when you need the winding number in Cauchy’s integral formula (which is really
an isomorphism between �1.Cnpt/ and Z), and there is an efficient algorithm for
its computation for most spaces of interest using Van Kampen’s theorem. One can
generalize this to define higher homotopy groups �n.X; x0/ which are equivalence
classes of maps of the n-dimensional sphere, Sn, into the space X . These are
important in that many problems of fundamental interest, in differential geometry
in the large, for example, reduce to their calculation; however, these groups are not
computable in the same way as �1. Heinz Hopf showed, in the 1930s ([21]), that
these groups are more complicated than you expect even for a space as simple as the
2-dimensional sphere, S2. In fact computing �n.Sm/ for all n and a givenm > 1 is
one of the central unsolved problems in algebraic topology.

To try and get around this problem of non-computability topologists formulated
the definition of homology groups Hn.X/ and Hn.X;A/ for A � X . There
is a geometric and combinatorial construction of these objects and its essential
feature is that for tractable spaces such as simplicial or cell complexes these are
efficiently computable. Under the influence of Emmy Noether during the 1930s
this was recast in an algebraic form and the computability was described in terms
of a long exact sequence relating Hn.X/, Hn.X;A/, and Hn.A/. This algebraic
approach also prompted the construction of a dual version, cohomology, denoted
Hn. /, which had the virtue of having the structure of a ring rather than just
an abelian group, making it capable of detecting more topological phenomena.
This was studied during the 1930s and 1940s and was axiomatized by Eilenberg
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and Steenrod ([18, 19]) with a set of 7 axioms, one of which was a “normalization”
condition which asserted that for the one point space, pt , the group Hn.pt/ was Z
if n D 0 and 0 for n ¤ 0. These became quite powerful tools, leading, for example,
to J.P. Serre’s 1951 thesis in which he showed that �n.Sm/ is finite unless n D m or
n D 2nC 1.

A significant advance in the 1960s was the discovery that there were other
homology and cohomology theories besides Hn. / and Hn. / satisfying all of
the axioms of Eilenberg and Steenrod except the “normalization” axiom. This means
in particular that they have long exact sequences connectingEn.X/, En.X;A/, and
En.A/ if A � X . In fact there are lots of these theories. A theorem of E.H. Brown
([9]) says that any one of these arises as En.X/ D ŒX;En�, i.e., homotopy classes
of maps from X to a representing space En and if you pick a collection of spaces
En and maps En ! ˝EnC1 from En to the space of loops in EnC1 which are all
homotopy equivalences, then you always get one. In spite of this there are only a
few families of such theories which are used in practice, all of which originate with
specific geometric constructions.

One family is the various sorts of K-theory defined using equivalence classes
of vector bundles on the space X . This was originally constructed for algebraic
varieties by A. Grothendieck and extended to general topological spaces by Atiyah
and Hirzebruch ([5]). Since the only variant of this we will be interested in uses
complex vector bundles, we will denote it and the associated homology theory by
K�. / and K�. /. Some specific values of this theory are, first, for the one point
space

K�.pt/ D K�.pt/ D
�
Z if � D 2n

0 if� D 2nC 1

(note here that n may be negative) and, next, for the infinite projective space, CP1,
which is the direct limit limn!1 CP

n of the finite-dimensional complex projective
spaces with respect to the usual inclusion maps:

K�.CP1/ D K�.pt/ŒŒx�� D
�
ZŒŒx�� if � D 2n

0 if � D 2nC 1

(the computation of the ordinary cohomology of complex projective space as a
truncated polynomial algebra is a standard exercise in algebraic topology. Passing
to the direct limit gives H�.CP1/ D ZŒŒx�� and there is a spectral sequence,
due to Atiyah and Hirzebruch ([6]), which computes the generalized cohomology
of a space in terms of its ordinary cohomology and the value of the generalized
cohomology theory at the one point space. In this case it has no nontrivial
differentials and so reduces to a tensor product).

The second family of homology and cohomology theories is constructed by
taking equivalence classes of manifolds with the equivalence relation of cobordism,
i.e., two manifolds are equivalent if their disjoint union is the boundary of a manifold
of one dimension higher. These equivalence classes form the elements of E�.pt/
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and for En.X/ one takes equivalence classes of maps from n-manifolds into X
modulo a pair of these being equivalent if the map the pair defines over the disjoint
union of the manifolds can be extended to n C 1-manifold with this disjoint union
as boundary. That this defines a homology theory is due to Rene Thom ([33]),
as are many of the early calculations in this area. A general reference for this
area is [31]. One gets a variety of different homology theories in this way by
imposing restrictions on the sort of manifolds considered (oriented, unoriented,
complex, symplectic, framed, etc.). The one we will be interested in future is
“almost complex,” i.e., manifolds with a stably complex structure on their tangent
spaces. The resulting homology theory is denoted MU�.X/ and called complex
cobordism. Two values of interest to us are:

MU�.pt/ D ZŒmi W i D 1; 2; : : : �

(The degrees of the generators are deg.mi/ D 2i .)

MU �.CP1/ D MU�.pt/ŒŒx��

3 Formal Group Laws

In fact the construction of the previous section works for any generalized cohomol-
ogy theory,E�. /, for which E�.CP1/ D E�.pt/ŒŒx�� and this is fairly common
(such cohomology theories are called complex oriented). For such theories the map
� induces a map

E�.pt/ŒŒx�� D E�.CP1/ ! E�.CP1 	 CP
1/

D E�.pt/ŒŒx�� ˝ E�.pt/ŒŒx�� D E�.pt/ŒŒx; y��

and so ��.x/ is a power series in two variables with coefficients in E�.pt/:

��.x/ D
X

i;j�0
ai;j x

i yj D F.x; y/:

Because � is a classifying map for the tensor product of line bundles this power
series has certain group-like properties reflecting those of the tensor product:

F.x; y/ D
X

ai;j x
i yj D x C y C

X

i;j�1
ai;j x

iyj

F.x; 1/ D x

F.1; y/ D y
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F.x; y/ D F.y; x/

F.x; F.y; z// D F.F.x; y/; z/

A power series with coefficients in a commutative ring R with these properties
is called a (one-dimensional, commutative) formal group law over R and the study
of these predates their occurrence in algebraic topology. The original definition is
due to Bochner ([8]). A general reference for this topic is [20]. For the cohomology
theories we have encountered so far these can be calculated:

ForH�. / the associated formal group law isFH.x; y/ D xCy, called the additive
formal group law, defined overH�.pt/ D Z.

ForK�. / the associated formal group law is Fk.x; y/ D x C y C txy, called the
multiplicative formal group law, defined overK�.pt/ D ZŒt; t�1� ([4]).

For MU �. / the associated formal group law is denoted FL.x; y/ and is the
universal formal group law, defined over the ring L D MU�.pt/ D ZŒmi W
i D 1; 2; : : : �. This formal group law is universal in the sense that if F.x; y/
is a formal group law over a ring R, then there is a unique ring homomorphism
L ! R such that F D ��.FL/ D P

�.ai;j /x
iyj . That such a universal formal

group exists, and the computation of the structure of the ring L, is due to Lazard
([29]). That the formal group law associated toMU is this universal formal group
law is a theorem of Quillen ([30]).

Bochner’s original definition of a formal group arose from the study of Lie
groups and they arise naturally in many other areas besides cohomology theory, in
particular in the study of elliptic curves. An elliptic curve over C, being in particular
a 1-dimensional Lie group, has both a group product and a differentiable structure,
meaning that the group product can be developed as a power series in 2 variables.
The fact that this power series comes from a group product implies that it satisfies
the axioms of a formal group. Thus an elliptic curve has associated to a formal group
for which there is an explicit formula. If the elliptic curve is given in Jacobi form as
y2 D 1 � 2ıx2 C �x4 D Sı;�.x/, then the associated formal group law is given by

Fı;�.x; y/ D .x
p
Sı;�.y/C y

p
Sı;�.x//=.1C �x2y2/:

For any formal group law, F , defined over a torsion-free ring R with quotient
field K , there is a power series f .x/ 2 KŒx�, called the logarithm of F , with the
property that

F.x; y/ D f �1.f .x/C f .y//

The name comes from the special case of the multiplicative formal group law,
FK.x; y/, for which

fK.x/ D 1

t
log.1C tx/ 2 QŒt; t�1�ŒŒx��
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and so

f �1
K .x/ D 1

t
.etx � 1/:

More generally, an isomorphism between formal groups F.x; y/ and G.x; y/ is
a power series f .x/ with the property that f .F.x; y// D G.f .x/; f .y// and
in this language a logarithm is an isomorphism between F.x; y/ and the additive
formal group. The multiplicative formal group FK.x; y/ depends on a unit, t , and
different choices for this unit will give different, isomorphic, formal groups. The
isomorphism is the power series f �1

K;v ı fK;u.x/ which we may compute explicitly:

f �1
K;v ı fK;u.x/ D 1

v
exp.vfk;u.x/ � 1/

D 1

v
exp

	 v

u
log.1C ux/ � 1




D 1

v
exp.log..1C ux/v=u/ � 1/

D 1

v
..1C ux/v=u � 1/

D 1

v

1X

nD1

 
v=u

n

!
unxn

The occurrence of binomial polynomials in the coefficients of this general isomor-
phism between different multiplicative formal groups suggests a connection with
integer-valued polynomials. In fact these coefficients generate an algebra of Laurent
polynomials determined by an integrality condition that is of considerable interest
to topologists. We describe this and its generalizations in the next section.

4 Some Stable Homotopy Theory

The coefficients of the power series f �1
K;v ı fK;u.x/ generate a subalgebra of

QŒu; v; u�1; v�1� over the ringZŒu; v; u�1; v�1�which plays a critical role in the study
of the homology theoryK�. /. This algebra is usually denotedK�K and is called
the Hopf algebra of stable cooperations forK-theory. (Actually this is more properly
called a bilateral Hopf algebra or a Hopf algebroid since the left and right counits
don’t coincide.) Before discussing the topological significance of this algebra let us
note two different descriptions of it. First

K�K D ff .u; v/ 2QŒu; u�1; v; v�1 W f .kt; `t/ 2 Z

�
1

k
;
1

`

� 
t; t�1

�

for all k; ` 2 Zg
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This description is due to J.F. Adams, R.M. Switzer, and A.S. Harris [3]. Also,
letting w D v=u, there is the description

K�K D ZŒt; t�1�˝ ff .w/ 2 QŒw� W wnf .w/ 2 Int.Z/ for some ng

also due to Adams et al. although published later in [1]. Further details about its
structure are given in [2,7,12,13,17] and [23]. It is because of this second description
that elements ofK�K of degree 0 are sometimes referred to as stably integer-valued
polynomials.

The topological significance of the Hopf algebra K�K stems from a general
result of J.F. Adams giving a method for using generalized homology or cohomol-
ogy theories to compute homotopy groups in a certain range. It has been known
since the 1930s, by a theorem of H. Freudenthal, that the homotopy groups of
spheres, �m.Sn/, had the stability property that if m < 2n � 1, then �m.Sn/ is
isomorphic to �mC1.SnC1/. Therefore the limit group limk!1 �nCk.Sk/ D �Sn .S/

always exists and is called the nth stable homotopy group of spheres (or, more
properly, of the sphere spectrum). Adams constructed a spectral sequence that
begins with E2 term depending on the Hopf algebra E�E for E�. / a generalized
homology theory, and converges to a certain localization (also dependent on E)
of �S� .S/. The E2 term is the (bigraded) Ext group

Ext
i;j
E�E

.E�.pt/; E�.pt//:

Here these extension groups are computed with respect to the coalgebra structure
of E�E over which E�.pt/ is a comodule. Almost all of our current knowledge
of the stable homotopy groups of spheres derives from this spectral sequence for
various choices of E�. /. Usually things are arranged so that most of the work is
in computing the Ext groups and the higher differentials in the spectral sequence
vanish for dimensional reasons.

How is the description of K�K in terms of integer-valued polynomials useful
here? The aim is to compute ExtK�K.K�.pt/;K�.pt// and this is an Ext group
with respect to the comodule structure. The action of the coproduct in K�K on the
elements u and v is very simple:�.u/ D u˝1 and�.v/ D 1˝v and this determines
� completely when the elements of K�K are expressed as Laurent polynomials in
u and v. (If K�K is described in terms of generator and relations the expression
is much more unwieldy.) This allows a complete resolution of K�.pt/ as a K�K
comodule to be constructed. For example, if one uses the cobar resolution, then the
nth stage is ˝n

iD1K�K � QŒu1; u�1
1 ; v1; v

�1
1 ; : : : ; vn; v

�1
n �, which can be described

as Laurent polynomials in 2n variables satisfying an integrality condition, and the
differentials can be given explicitly so that one obtains results such as the following:

Ext1;n D fc 2 Q W c.wn � 1/ 2 Int.ZnpZ/ for all primes pg=Z
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and

Ext2;n D ff 2 QŒw� W f .w1w2/� f .w1/� wn1f .w2/ 2 Int..ZnpZ/ 	 .ZnpZ//
for all primes pg=Int.Z/

The first of these is of the form Z=m.n/Z and the condition concerning
membership in Int.ZnpZ/ determines the integer m.n/. If p is an odd prime then
the largest integer, `, for which .wp

k.p�1/ � 1/=p` 2 Int.ZnpZ/, is ` D k C 1 and
this gives the p-component of m.n/ if pk.p � 1/ divides n exactly. The Clausen–
von Staudt theorem implies that m.n/ is also related to the denominator of the nth
Bernoulli number. The second group is 0 if n ¤ 0 and is Q=Z if n D 0. It is
generated by the polynomials .wp

k.p�1/ � 1/=p2.kC1/, which are not integer valued
but lie in the numerator of the quotient. Details and further information about the
structure of K0K are contained in [2, 14, 26] and [32].

To proceed further with this we need a bit more stable homotopy theory. We have
so far the cohomology theories H�. /, K�. /, and MU �. /, each represented
by homotopy classes of maps into a sequence of spaces (a spectrum) H D fHn W
n D 0; 1; 2 : : : g, K D fKn W n D 0; 1; 2; : : : g, and MU D fMUn W n D 0; 1; 2; : : : g.
Using this representation topologists have constructed other cohomology theories
by making geometric constructions on these representing spaces. For example
there is a geometric construction whose effect on ordinary homology groups is
localization at a prime number p. If this construction is applied to each of the
spaces in the spectrum MU, then these spaces each decompose as one-point unions
of simpler spaces, all of which are similar. Taking one of these in each dimension
yields a spectrum which represents a new cohomology theory called Brown-
Peterson cohomology and denoted BP �. / with BP�.pt/ D Z.p/Œv1; v2; : : : � and
degree.vi / D 2.pi � 1/. (This theory was originally built by Brown and Peterson
([10]) using a direct construction; however, part of Quillen’s work connecting
MU�. / with formal group laws gives an algebraic construction of this theory and
identifies BP�.pt/ with the representing Z.p/-algebra for p-typical formal group
laws.) An advantage of this theory is that since the degrees of the generators grow
exponentially the nonzero groups in the E2 term of the Adams spectral sequence
based on this theory are much more sparsely distributed making computations easier
in many cases.

One may also perform constructions on the spaces of the spectrum BP to make
some of the classes of the generators vi homotopically trivial or to make others
homotopically invertible. There are conditions restricting when such operations will
result in a useful homology theory, called the Landweber exact functor theorem
([27]). One case of interest for us to which this theorem applies is that of making one
of the generators, vn, invertible and making all of the vi ’s for i > n trivial. The result,
originally constructed by D. Johnson and W.S. Wilson ([22]), is denotedE.n/�. /.
By construction E.n/�.pt/ D Z.p/Œv1; v2; : : : ; vn; v�1

n �. For small values of n
this is related to theories we have already seen: E.0/�. / is ordinary homology
localized at the prime p, and E.1/�. / is related to K theory. When localized
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at the prime p the theory K�. / decomposes as a direct sum of p � 1 copies of
E.1/�. /. These theories all are complex oriented and so have formal group laws
associated to them. The conditions of the exact functor theorem may also be used
to construct a complex-oriented cohomology theory, denoted El l�. / and called
elliptic cohomology, whose associated formal group is that of the Jacobi elliptic
curve described in the previous section. Its coefficient ring is given by

El l�.pt/ D Z

�
1

2

� 
ı; �; .ı2 � �/�1�

5 More Algebras of Integer-Valued Polynomials

The occurrence of integer-valued polynomials in the description of K�K carries
over to some of these new homology theories [15, 16, 24, 28]. Let A denote the ring
of integers in a degree n unramified extension of Q. The Hopf algebra E.n/�E.n/
is torsion-free and the polynomials in its image under the natural map

E.n/�E.n/ ! E.n/�E.n/˝ Q D E.n/�.pt/˝E.n/�.pt/˝ Q

D QŒu1; : : : ; un; u
�1
n ; v1; : : : ; vn; v

�1
n �

satisfy the integrality condition ([24]) f .a1; : : : ; an; b1; : : : ; bn/ 2 A if ai ; bi 2 A,
an; bn  1 .mod p/, and ai ; bi  0 .mod p/ for i < n.

In the case of elliptic cohomology there are two related occurrences of integer-
valued polynomials in the description of El l�El l . To see these first note that the
logarithm of the Jacobi elliptic formal group law, which is given by

logı;�.x/ D
Z x

0

dt
p
Sı;�.t/

D
X

n�0
Pn

�
ıp
�

�
�n=2

x2nC1

2nC 1

where Pn. / is the nth Legendre polynomial, contains the parameters ı and � and
that, as in the case of the multiplicative formal group law, different choices for these
parameters give different, isomorphic formal groups with the isomorphism given by

log�1
ıL;�L

.logıR;�R .x// D
1X

iD1
mi.ıL; ıR; �L; �R/x

i

The coefficients mi.ıL; ıR; �L; �R/ are polynomials in 4 variables and give a set
of generators for El l�El l as a module over ZŒ1=2�ŒıL; ıR; �L; �R�. They can be
computed recursively using the formula for logı;�.x/. The first few are:
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�ıL C ıR

3

ı2L C 10ıLıR C 10ı2R C 3�L � 3�R

30

�ı3L C 35ı2Lı
�
R259ıLı

2
R C 45ı3R � 33ıL�L C 105�LıR C 63ıL�R � 135ıR�R

630

As in the case of K-theory the fact that these polynomials are coefficients of an
isomorphism of formal group laws implies that they satisfy an integrality condition.
In this case it is that the polynomials mi.ku2; kv2; `u4; `v4/ 2 QŒu; v� are stably
ZŒ1=2�-integer valued for any integers k and `. Since these polynomials arise as
coefficients of isomorphisms associated to elliptic curves they satisfy in addition a
stronger integrality condition for certain values of k, `, namely those for which the
Jacobi elliptic curve y2 D 1 � 2kx2 C `x4 has complex multiplication. For those
values the polynomials are stably integer valued for a ring which is an order in a
quadratic number field, namely the endomorphism ring of the elliptic curve. Values
for which this occurs are given in [25].

In addition to this type of integrality condition for these polynomials there is
another which stems from their relation to elliptic curves and to the fact that the
coefficient ring El l�.pt/ D ZŒ1=2�Œı; �; .ı2 � �/�1� can be identified with a ring
of modular forms, namely the ring of modular forms with respect to the congruence
subgroup �0.2/ of SL2.Z/ whose q-series lie in ZŒ1=2�ŒŒq��). This identification
is made by identifying ı and � with two specific q-series. When the polynomials
mi.ıL; ıR; �L; �R/ are evaluated at these q-series the resulting series in QŒŒqL; qR��

in fact lie in the subring ZŒ1=2�ŒŒqL; qR�� and this condition characterizes elements
of El l�El l ([15, 28]).
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Abstract Let R be a commutative ring with identity. It is well known that if each
chain of prime ideals in R has length at most n, then each chain of prime ideals in
the polynomial ringRŒX� has length at most 2nC1. For the power series ringRŒŒX��,
there is however no similar upper bound on lengths of chains of its prime ideals. In
fact, in some special cases, there may exist chains of prime ideals in RŒŒX�� with
huge lengths (e.g., 2@1) even if each chain of prime ideals in R has length at most
one. The purpose of this work is to give a brief review on known constructions of
chains of prime ideals inRŒŒX�� in those cases. By taking into account the techniques
which are used in the constructions and possibly by applying some new tools, we
hope to construct huge chains of prime ideals in RŒŒX�� in more general cases.
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1 Countably Infinite Ascending Chains of Prime Ideals
in Power Series Rings over Non-SFT Rings

1.1 Krull Dimension

In this paper, a ring R always means a commutative ring with identity and Spec.R/
denotes the spectrum ofR (the set of all prime ideals ofR). A chain of prime ideals
in R is a nonempty subset C of Spec.R/ such that for any two prime ideals P;Q in
C either P � Q or Q � P . The length of a chain C of prime ideals is defined by
jC j � 1, where jC j denotes the cardinality of C . The Krull dimension of a ring R,
denoted by dimR, is a “measure” of the lengths of chains of its prime ideals. It is
the largest cardinal number ˛ (if any) such that there exists a chain of prime ideals in
R whose length is equal to ˛. We write dimR � ˛ if there is a chain of prime ideals
in R with length � ˛. We also write dimR D 1 if there is no finite upper bound
on lengths of chains of prime ideals in R. Note that dimR D 1 does not imply
dimR D @0 or dimR � @0. This happens when every chain of prime ideals in R
has finite length and there is no finite upper bound for the lengths of those chains.

1.2 Krull Dimension of Polynomial Rings

In 1953, Seidenberg showed in [14] that if R is a ring with dimR D n, then

nC 1 � dimRŒX� � 2nC 1: (1)

He also showed that all intermediate values can be obtained by appropriately
choosing R. More precisely, if m and n are nonnegative integers with n C 1 �
m � 2n C 1, then there exists a ring R such that dimR D n and dimRŒX� D m

[15]. Therefore, the possibilities for dimRŒX� were completely determined.

1.3 Krull Dimension of Power Series Rings
over Non-SFT Rings

In the late 1960s, Gilmer and some of his students started to work on Krull
dimension of the power series ring RŒŒX��. While it is easy to show that n C 1 �
dimRŒŒX�� if dimR D n, dimRŒŒX�� can be infinite even if dimR is finite. This
result was shown by Arnold (one of Gilmer’s students) in 1973 [1]. In his paper,
Arnold proved that dimRŒŒX�� D 1 when the ring R is not an SFT ring (the term
SFT stands for “strong finite type”). He defined a ring R to be an SFT ring if for
each ideal I of R, there exist a finitely generated ideal J of R with J � I and
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a positive integer k such that ak 2 J for each a 2 I . In fact, he constructed a
countably infinite ascending chain of prime ideals in RŒŒX��, i.e., dimRŒŒX�� � @0,
when R is a ring which is not an SFT ring. Note that R being an SFT ring does not
imply the finiteness of dimRŒŒX��. In 2002, Coykendall gave an example of an SFT
domain V1 with dimV1 D 1 such that dimV1ŒŒX�� D 1 [3].

1.3.1 Arnold’s Construction

A ring R is called a non-SFT ring if R is not an SFT ring. We outline Arnold’s
construction of an infinite ascending chain of prime ideals in RŒŒX�� when R is a
non-SFT ring. For more details, see [1].

If R is a non-SFT ring, then we can choose a sequence fai g1
iD0 such that

akC1
kC1 62 .a0; a1; : : : ; ak/; (2)

for each integer k � 0. For each positive integer m, choose a sequence fam;ig1
iD0 as

follows. Form D 1, take a1;i D ai . Inductively, take an;i D an�1;i2C1. Letm; n;�; r
be integers such that m � n � 1 and r � 0. For f D P1

iD0 biXi 2 RŒŒX��, the
tuple .f;m;�; r/ has property .n/ if for i � r there exists an integer ti such that the
following hold (where am;i D an;ki D a1;si ):

1. bti  a
�
m;i (mod Asi�1).

2. ti � �ki .
3. bj 2 Asi�1 for 0 � j < ti .

Set Sn D ff 2 RŒŒX�� j .f;m;�; r/ has property .n/ for some m;�; and rg.
Then Sn is a multiplicatively closed subset of RŒŒX��. Furthermore, if n > n1, then
Sn 
 Sn1 . Hence, there exists a chain of multiplicatively closed subsets of RŒŒX��,

S1 � S2 � � � � � Sn � � � � : (3)

Let A D .a0; a1; : : : ; an; : : :/. Then ARŒŒX�� \ S1 D ;. Hence, there exists a prime
ideal P1 in RŒŒX�� such that ARŒŒX�� � P1 and P1 \ S1 D ;. Suppose that exists
a chain P1 
 P2 
 � � � 
 Pn of prime ideals in RŒŒX�� such that Pi \ Si D ;
for i D 1; 2; : : : ; n. Let Cn D Pn C .f.n//, where f.n/ D P1

iD0 an;iXi . Then
Cn \ SnC1 D ;. Therefore, there exists a prime ideal PnC1 such that Pn 
 Cn �
PnC1 and PnC1 \ SnC1 D ;. By induction, there is an infinite ascending chain of
prime ideals in RŒŒX��,

P1 
 P2 
 � � � 
 Pn 
 � � � : (4)

Therefore, we have the following theorem.

Theorem 1. If R is a non-SFT ring, then dimRŒŒX�� D 1. In fact, in this
case, there exists an infinite ascending chain of prime ideals in RŒŒX�� and hence
dimRŒŒX�� � @0.
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1.3.2 Coykendall’s Example

Note that the converse of Theorem 1 does not hold. Coykendall gave an example of
an SFT domain V1 such that dimV1ŒŒX�� � @0. The construction of V1 is as follows.
Let V be a one-dimensional nondiscrete valuation domain with value group Q and
residue field F2 (the choice of the value group and the residue field is in fact not
important). Then V can be written as

V D F2Œx
˛�M ; (5)

where F2Œx
˛� D fPn

iD0 �ix˛i j �i 2 F2; ˛i 2 .QC [ f0g/g and M � F2Œx
˛� is the

maximal ideal of F2Œx˛� generated by the monomials. Let

V1 D F2 C xV: (6)

Then V1 is a one-dimensional SFT domain. An infinite chain of prime ideals in
V1ŒŒX�� is obtained from an infinite chain of prime ideals in V ŒŒX��. Consider an
infinite descending chain of prime ideals lying over .0/ in V ŒŒX��,

P1 � P2 � � � � � Pn � � � � : (7)

For the existence of the chain of prime ideals, see Theorem 4 below. The choice of
V1 ensures that Pn \ V1ŒŒX�� 6D PnC1 \ V1ŒŒX�� for all n. Hence, we get an infinite
descending chain of prime ideals in V1ŒŒX��,

P1 \ V1ŒŒX�� � P2 \ V1ŒŒX�� � � � � � Pn \ V1ŒŒX�� � � � � : (8)

Thus, we have the following theorem.

Theorem 2. There exists an SFT domain V1 such that dimV1ŒŒX�� � @0, i.e., the
converse of Theorem 1 does not hold.

1.4 The Finite Case

Theorems 1 and 2 say that dimRŒŒX�� is generally large. This still holds when it is
finite (comparing to the polynomial ring case). Indeed, even when dimRŒŒX�� < 1,
it is not always true that dimRŒŒX�� � 2nC 1. In 2009, Kang and Park showed that
there exists a ring R with dimR D n such that 2n C 1 < dimRŒŒX�� < 1 [9].
Note that R must be an SFT ring. The construction of R is from mixed extensions.
A mixed extension is an extension of the form

RŒX1��ŒX2�� � � � ŒXn��; (9)
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where ŒXi �� can be either ŒXi � or ŒŒXi ��. Kang and Park showed the following formula
for Krull dimension of mixed extensions.

Theorem 3. If R is an m-dimensional SFT Prüfer domain, then

dim.RŒX1��ŒX2�� � � � ŒXn��/ D
�
mnC 1 if ŒXi �� D ŒŒXi �� for some 1 � i � n

mC n otherwise.
(10)

Corollary 1. LetR be a commutative ring with identity. Then dimRŒŒX�� < 1 does
not imply that dimRŒŒX�� � 2 dimRC 1.

Proof. For an integer n > 2, let V be a discrete valuation domain with dimV D
d > 2.n� 1/=.n� 2/. Put R D V ŒX1; : : : ; Xn�1�. Then dimR D d C .n� 1/ since
V is an SFT Prüfer domain. We have dimRŒŒXn�� D dimV ŒX1� � � � ŒXn�1�ŒŒXn�� D
dnC 1 D 2d C .n � 2/d C 1 > 2d C 2.n� 1/C 1 D 2 dimRC 1. ut

2 Countably Infinite Descending Chains of Prime Ideals
in Power Series Rings over Valuation Domains

A valuation domain V is called a discrete valuation domain if every primary ideal
of V is a power of its radical. Suppose that V is a one-dimensional valuation
domain. Let V � D V n f0g. If V is discrete, then it is a Noetherian ring (in fact
a PID) and hence dimV ŒŒX�� D 2. By the result of Arnold [1], dimV ŒŒX�� D 1
if V is nondiscrete (note that a finite-dimensional valuation domain is nondiscrete
if and only if it is non-SFT [2]). Note that Krull dimension of the ring of entire
functions is uncountable (in fact 2@1 under the continuum hypothesis [7]) and
there are similarities between V ŒŒX��V � and the ring of entire functions. For example,
one can define zeros and multiplicities for elements in V ŒŒX��V � (or V ŒŒX��) if V
is a one-dimensional nondiscrete valuation domain. Indeed, in 1999, using these
concepts and introducing the concept of infinite product of power series, Kang and
Park showed that dimV ŒŒX��V � D 1 for a one-dimensional nondiscrete valuation
domain V [8]. In fact, they constructed a countably infinite descending chain of
prime ideals in V ŒŒX�� which do not contain any nonzero elements of V . In their
paper, the chain of prime ideals P1 � P2 � � � � � Pn � � � � comes from a chain
I1 � I2 � � � � � In � � � � of ideals in V ŒŒX��, where each In is a collection of
all power series that have the prescribed zeros and multiplicities. By induction, the
existence of the chain of prime ideals follows from the fact that a prime ideal Pn
minimal over In is never minimal over InC1, which allows them to get a smaller
prime ideal PnC1. We now show the construction the ideals In and the existence of
the prime ideals Pn.

In the remaining of this section, V always denotes a one-dimensional nondiscrete
valuation domain with maximal ideal M .
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Definition 1 (Zeros). Let f be a power series in V ŒŒX��, an element b 2 M is
called a zero of f provided that X � b divides f in V ŒŒX��.

For each f 2 V ŒŒX��, let Z.f / be the set of zeros of f . By definition, Z.f / is a
subset of the maximal ideal M of V .

Definition 2 (Multiplicities). Let f be a nonzero power series in V ŒŒX�� and b be
an element in M . The multiplicity of f at b, denoted by m.f; b/, is the largest
nonnegative integer n such that .X � b/n divides f . If f D 0, then we set
m.f; b/ D 1 for all b 2 M .

For a power series f D P1
iD0 aiXi in V ŒŒX��, we denote by ı.f / the smallest

index n � 1 such that an 6D 0 (if f is just a constant in V , then we set ı.f / D 1),
and we say ı.f / is the initial degree of f . We say that a sequence of power series
ffi D P1

jD0 aijXj g1
iD1 is upper triangular (resp. echelon) if ı.fn/ � n for all n

(resp. limn!1 ı.fn/ D 1).

Definition 3 (Infinite product of power series). Let ffi D P1
jD0 aij Xj g1

iD1 be
an upper triangular sequence of power series in V ŒŒX�� such that

P1
iD1 v.ai0/ �

v.a/ < 1 for some a 2 V . Define an infinite product f D P1
iD0 aiXi of all fi by

a0 D a;

a1 D a11
a

a10
;

a2 D a12
a

a10
C a22

a

a20
;

a3 D a13
a

a10
C a23

a

a20
C a33

a

a30
C a22a11

a

a10a20
;

:::

an D .f1f2 � � �fn/n a

a10a20 � � �an0 ;
:::

where .f1f2 � � �fn/n means the coefficient of Xn in the product f1f2 � � �fn. The
resulting product f is denoted by .

Q1
iD1 fi I a/.

For an echelon sequence, we can define f similarly. For more information about
infinite product of power series, we refer the readers to [8].

Let v be the valuation associated with V . Using infinite product of power
series, Kang and Park showed that there exist g1; g2; : : : ; gk; : : : in V ŒŒX�� and
b1; b2; : : : ; bn; : : : in M such that

1. v.b1/ > v.b2/ > � � � > v.bn/ > � � � ;
2. fb1; b2; : : : ; bn; : : :g � Z.gi / for each i ,
3. m.gi ; bn/ D ni for each n and i .
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Let

Ak D f.bj ; j k/ j j 2 Ng: (11)

Write f ..bj ; j k// D 0 or .bj ; j k/ 2 Z.f / if bj is a zero of f with multiplicity
� j k . Let

Ik D ff 2 V ŒŒX�� j f  0 almost everywhere on Akg: (12)

Then we get a chain of ideals

I1 � I2 � � � � � In � � � � : (13)

Take a prime ideal P1 minimal over I1. Then P1 \ V D .0/. By the construction
of the ideals Ik , P1 is never minimal over I2. Hence, there exists a prime ideal
P2 properly contained in P1 and minimal over I2. By induction, suppose we can
chose prime ideals P1 � P2 � � � � � Pn such that Pi is minimal over Ii for
i D 1; 2; : : : ; n. Then Pn is not minimal over InC1. Thus, we can find a prime
ideal PnC1 minimal over InC1 such that Pn � PnC1. Therefore, we get an infinite
descending chain of prime ideals

P1 � P2 � � � � � Pn � � � � : (14)

Note that I1 � MŒŒX��. By shrinking MŒŒX�� to a prime ideal minimal over I1, we
can choose from the beginning that P1 � MŒŒX��. This completes the proof of the
following theorem.

Theorem 4. Let V be a one-dimensional nondiscrete valuation domain with max-
imal ideal M . Then dimV ŒŒX��V � D 1. In fact, there exists an infinite descending
chain of prime ideals insideMŒŒX�� which do not contain any nonzero elements of V .

3 Uncountable Chains of Prime Ideals in Power Series
Rings over Valuation Domains

In 1982, Eakin and Sathaye posed the question whether dimV ŒŒX��V � is uncountable
for a one-dimensional nondiscrete complete valuation domain V [5]. In 2013, Kang
and Park gave an affirmative answer to this question without using the assumption
that V is complete [10]. They showed that if V is a one-dimensional nondiscrete
valuation domain, then there exists a chain fQ˛g˛2RC of prime ideals in V ŒŒX�� such
thatQ˛ \V D .0/ for each ˛ 2 R

C, and hence dimV ŒŒX��V � � @1 [10]. This result
also gives an answer to the conjecture posed by Coykendall that there is a chain of
prime ideals in V ŒŒX�� that is order-isomorphic to the positive half-line [4].
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While prime ideals in [8] are obtained by picking ones among prime ideals
minimal over some given ideals, prime ideals in [10] are in a different way. The
fact that was used in [10] is [6, Theorem 19.6], which says that if P is a prime
ideal of a domainD, then there exists a valuation domainW containingD such that
M \D D P , whereM is the maximal ideal ofW . Note that in a valuation domain
W , the radical of any proper ideal is a prime ideal. Hence, instead of constructing
a chain of prime ideals in V ŒŒX��, one can construct a chain of prime ideals (by
taking the radical of any chain of ideals) in a valuation domainW containing V ŒŒX��
and then take contractions of them to V ŒŒX��. The chain fQ˛g˛2RC of prime ideals
exactly comes in this way. Of course, some technical things needed to be done to
guarantee that the prime ideals obtained from taking contractions are all distinct.
Even though their main interest was in the one-dimensional case, Kang and Park
were able to show that dimW ŒŒX�� is uncountable for any nondiscrete valuation
domainW [10].

Let V be a one-dimensional nondiscrete valuation domain with maximal ideal
M and let v be the valuation associated with V . Since the value group of V is a
dense subgroup of R, we can choose bn 2 M so that v.bn/ � n�n2�1e�n. For each
˛ 2 R

C, define

I˛ D ff 2 V ŒŒX�� j there exists a constant c 2 R
C such that m.f; bn/ � cnbn˛cg:

(15)

Let 0 6D d˛ 2 V such that
P1

nD1 nbn˛cC1v.bn/ � v.d˛/. Let

f˛ D
 1Y

iD1
.Xn � bnn/n

bn˛c I d˛
!
: (16)

Then m.f˛; bn/ D nbn˛c for each n � 1. Thus f˛ 2 I˛ and hence I˛ is nonempty.
In fact, I˛ is a proper ideal of V ŒŒX��. We have a chain fI˛g˛2RC of proper ideals of
V ŒŒX��. We now want a valuation domain W containing V ŒŒX�� such that

p
I˛W \

V ŒŒX�� 6D p
IˇW \V ŒŒX�� whenever ˛ 6D ˇ. For this purpose let D D V ŒŒX�� and let

S D ˚
g=h j g; h 2 D; there exists ˛ 2 R

C such that g 2 I˛ and

h 62 Pˇ for any ˇ � ˛ and any prime ideal Pˇ minimal over Iˇ
�
: (17)

An important fact is that SDŒS� is a proper ideal of DŒS�. Hence, we can
choose a prime ideal P of DŒS� containing SDŒS�. By [6, Theorem 19.6], there
exists a valuation domain W containing DŒS� with maximal ideal Q such that
Q \DŒS� D P . For each ˛ 2 R

C, put

Q˛ D
p
I˛W \D: (18)
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Then fQ˛g˛2RC is chain of prime ideals in D D V ŒŒX��. Suppose that ˛ < ˇ. We
have f˛ 2 Q˛. We show that f˛ 62 Qˇ. Suppose on the contrary that f˛ 2 Qˇ Dp
IˇW \D. Then f l

˛ 2 IˇW for some l � 1. Then f l
˛ 2 gˇW for some gˇ 2 Iˇ .

So f l
˛ =gˇ 2 W . However, gˇ=f l

˛ 2 S � P � Q, a contradiction. Therefore,
fQ˛g˛2RC is chain of prime ideals in V ŒŒX�� with length jRCj. Thus we have the
following.

Theorem 5. If V is a one-dimensional nondiscrete valuation domain, then
dimV ŒŒX�� � the cardinality of the continuum. Hence, dimV ŒŒX�� � @1.

By changing I˛ to ff 2 V ŒŒX�� j there exists a constant c 2 R
C such that

m.f; bn/ � cnbn˛c for n � 1g. Kang and Park could manage to show that the
obtainingQ˛ satisfies Q˛ � MŒŒX�� and Q˛ \ V D .0/.

Theorem 6. Let V be a one-dimensional nondiscrete valuation domain with
maximal idealM . Then there exists an uncountable chain fQ˛g˛2RC of prime ideals
insideMŒŒX�� such thatQ˛\V D .0/ for each ˛ 2 R

C. Hence, dimV ŒŒX��V � � @1.
For arbitrary nondiscrete valuation domain W , Kang and Park showed that

dimW ŒŒX�� is still uncountable.

Theorem 7. If W is a nondiscrete valuation domain, then dimW ŒŒX�� is
uncountable.

4 Uncountable Chains of Prime Ideals in Power Series Rings
over Non-SFT Rings

In 2013, Kang, Loper, Lucas, Park, and Toan showed that dimRŒŒX�� is uncountable
if R is a non-SFT ring [11], i.e., dimRŒŒX�� � @1, a one-step improvement
of Arnold’s result in the sense that @1 is the very next cardinal number to @0.
To construct an infinite ascending chain of prime ideals inRŒŒX��, Arnold first started
with a chain of multiplicatively closed subsets S1 � S2 � � � � � Sn � � � � in RŒŒX��:
Then, using induction, he constructed a chain of prime ideals P1 
 P2 
 � � � 

Pn 
 � � � in RŒŒX�� such that Pn \ Sn D ; for each n. Here prime ideals Pn are
obtained by extending ideals, missing the mutiplicatively closed subsets Sn using
Zorn’s Lemma. In this construction, the chain of multiplicatively closed subsets is
indexed over N (and hence is countable). The authors of [11] generalized this result
by showing that there exists an uncountably infinite chain of prime ideals in RŒŒX��
when R is a non-SFT ring. They constructed a chain of multiplicatively closed
subsets fTsgs2A in RŒŒX�� (where A is an uncountable set). Then they showed that
there exist an uncountable subset fTsgs2B of fTsgs2A and an uncountable chain of
prime ideals fPsgs2B in RŒŒX�� such that Ps \ Ts D ; for each s 2 B. Since the
chain of prime ideals is uncountable, the mathematical induction does not work. The
existence of the chain of prime ideals was proved by using a nice property of the set
A (which was called the fathomless property).
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We first give the construction (without proof) of the fathomless set A . Let N D
f1; 2; : : :g be the set of positive integers, and let U be the set of all subsets U of N
such that U D fn; nC1; : : :g for some n 2 N: For two strictly increasing sequences
s D fsng and t D ftng of positive integers, we set s � t (we also write t � s) if for
each positive integer k, there is a set U 2 U (depending on k) such that sn > ktn
for each n 2 U , i.e., sn > ktn for all large n. Let S be the collection of all A such
that A has the following properties:

1. A is a nonempty collection of strictly increasing sequences s D fsng of positive
integers.

2. If s 2 A , then s � b, where b is the sequence defined by bn WD n for all n.
3. If s; t 2 A and s 6D t , then s � t or t � s.

If u is the sequence defined by un WD b2n for each n, then it is easy to see that u is a
strictly increasing sequence of positive integers and that u � b. It follows that the
set S is nonempty. We order S by set-theoretic inclusion. By Zorn’s Lemma, there
exists a maximal element in S .

Definition 4. A totally ordered set .Y ;�/ is called a fathomless set if for every
countable nonempty subset C of Y , there exists an element y 2 Y such that y � c

for all c 2 C .

Theorem 8. The set .A ;�/ is a fathomless set.

Let R be a non-SFT ring. There exists a sequence fai g1
iD0 of elements of R such

that amm 62 .a0; a1; : : : ; am�1/ for each m � 1. For each m, let

Im WD .a0; a1; : : : ; am/: (19)

For each s D fsng 2 A , define a power series a.s/ in RŒŒX�� by

a.s/ D a0 C a1x
s1 C � � � C anx

sn C � � � : (20)

Definition 5. For s 2 A , we say that a power series g D P1
jD0 gjXj has the

property .s/ if there exist a sequence fqmg of positive integers, a positive integer �,
and a set U 2 U such that the following hold for each m 2 U .

1. qm � �sm.
2. gqm  akm.mod Im�1/ for some 1 � k � �.
3. gj 2 Im�1 for all j < qm.

For s 2 A , let Ts denote the set of power series in RŒŒX�� having the property .s/.
It is easy to see that a.s/ 2 Ts (with fqmg D s, � D 1, and U D N). Hence, Ts
is nonempty. In fact, Ts is a multiplicatively closed subset and fTsgs2A is a chain
of multiplicatively closed subsets since if s � v, then Ts 
 Tv (see [11]). For a
multiplicatively closed set T in RŒŒX��, let Q.T / be the set of prime ideals P in
RŒŒX�� that are maximal with respect to missing T (i.e., P \ T D ;). In particular,
for s 2 A , Q.Ts/ is the set of prime ideals in RŒŒX�� that are maximal with respect
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to missing Ts . It was shown that Q.Ts/ is nonempty and if v � s, then each prime
ideal inQ.Ts/ is properly contained in some prime ideal inQ.Tv/. Let P be the set
of elements E D f.Pi ; si /gi2I (for some nonempty set I ) satisfying the following:

1. si 2 A and Pi 2 Q.Tsi / for each i 2 I .
2. fPi g is a strict chain of prime ideals, i.e., fPi g is a chain of prime ideals and
Pi D Pj if and only if i D j .

Order P by set-theoretic inclusion. By Zorn’s Lemma, there exists a maximal
element in P . Let E D f.Pi ; si /gi2I be a maximal element in P . We show that the
chain of prime ideals fPi gi2I is uncountable. Suppose on the contrary that fPigi2I is
countable. Hence, the set fsi gi2I is countable. Since the set .A ;�/ is a fathomless
set, there is a sequence v 2 A such that si � v for each i . By Zorn’s Lemma,
one can find a prime ideal N 0 2 Q.Tv/ such that N 0 � Pi for all i 2 I . The set
f.Pi ; si /gi2I[f.N 0; v/g properly contains the set f.Pi ; si /gi2I in P , a contradiction.
This proves the following theorem.

Theorem 9. If R is a non-SFT ring, then there exists an uncountably infinite chain
of prime ideals in RŒŒX��, i.e., dimRŒŒX�� � @1.

5 Huge Chains of Prime Ideals in Power Series Rings
over Almost Dedekind Domains

Another technique of constructing chains of prime ideals in power series rings
appeared in Loper and Lucas’s papers [12, 13]. Their constructions are great
applications of (nonprincipal) ultrafilters. With the aid of some set theory, it was
shown that dimRŒŒX�� � 2@1 ifR is a one-dimensional nondiscrete valuation domain
or a non-Noetherian almost Dedekind domain. In each paper, a totally order � on
RŒŒX��was given and a prime ideal inRŒŒX�� is obtained by collecting all power series
f such that f � g for all g 2 S (where S is given). For an ultrafilter U over a
set X, if A [ B D X, then either A 2 U or B 2 U . This property of ultrafilters is
extremely important in showing that the constructed ideals are prime (if ab belongs
to the constructed ideal, then either a or b belongs to that ideal).

Because of the same approach of the two constructions, we are not going to
elaborate one-dimensional nondiscrete valuation domain case [13]. We however
note that in [13], for a one-dimensional nondiscrete valuation domain V (with
maximal ideal M ), each prime ideal in the constructed chain is between MV ŒŒX��

and MŒŒX��, which contrasts to the result of Kang and Park, where the prime ideals
in the chain all contract to zero.

Let D be an almost Dedekind domain. If D is Dedekind, then D is Noetherian
and hence dimDŒŒX�� D 2. So in this section we always assume that D is an almost
Dedekind domain that is not Dedekind. The construction of chains of prime ideals
inDŒŒX�� is based on two countably infinite set fMng1

nD1 and f�ng1
nD1, satisfying the

following conditions:
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1. EachMn is a maximal ideal of D and each �n is an element ofD.
2. For each n, �n belongs to everyMm except Mn.

For a power series f D P1
nD0 fnXn 2 DŒŒX��, let �f be the function defined by

�f .n/ D minfi j fi 62 Mng: (21)

If f 2 MnŒŒX��, then define �f .n/ D 1. Let U be a nonprincipal ultrafilter on N.
For two power series f and g in DŒŒX��, define

1. f �U g if �f �U �g, i.e., there exist a positive integer m and a set W 2 U
such that m�f .n/ � �g.n/ andm�g.n/ � �f .n/ for each n 2 W .

2. f �U g if �f �U �g , i.e., for each positive integer m, there exists a set
U 2 U such that �f .n/ > m�g.n/ for each n 2 U .

Let J � D ff 2 DŒŒX�� j 0 �U f �U Xg. For each nonempty subset S of
J �, let

PS WD ff 2 DŒŒX�� j f �U s for each s 2 Sg: (22)

Using the fact that �fg.n/ D �f .n/ C �g.n/ and �fCg.n/ � minf�f .n/; �g.n/g,
we can show that PS is a prime ideal of DŒŒX��. Let P.J �/ be the set of all prime
ideals of the form PS . Then P.J �/ is a chain of prime ideals in DŒŒX��. The
following Sierpiński restrictions hold:

1. For each f 2 J �, there are power series k; h 2 J � such that
k �U f �U h.

2. For f; h 2 J � with f �U h and g 2 DŒŒX��, if either f �U g or f �U

g �U h, then g 2 J �.
3. If ffng and fgmg are countable subsets of J � with fn �U gm for all fn and
gm, then there is a power series b 2 J � such that fn �U b �U gm for all
fn and gm. In particular, for f; g 2 J � with f �U g, there is a power series
b 2 DŒŒX�� such that f �U b �U g.

4. If ffng � J � is a countably infinite sequence such that fnC1 �U fn for all n,
then there is a power series k 2 J � such that k �U fn for all n.

5. If ffng � J � is a countably infinite sequence such that fn �U fnC1 for all n,
then there is a power series h 2 J � such that fn �U h for all n.

These Sierpiński restrictions play an important role in showing that the cardinality
of P.J �/ is at least 2@1 .

Theorem 10. If D is almost Dedekind domain that is not Dedekind, then
dimDŒŒX�� � 2@1 , i.e., there exists a chain of prime ideals in DŒŒX�� with
length � 2@1 .

Note that 2@1 is the best lower bound for dimDŒŒX�� that one can get (under the
continuum hypothesis 2@0 D @1) since if D is countable, then DŒŒX�� has the size
2@0 D @1 and hence the power set of DŒŒX�� has cardinality 2@1 , which implies that
every chain of prime ideals in DŒŒX�� has length at most 2@1 .
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6 Problems

Two typical examples of non-SFT rings R are finite-dimensional nondiscrete
valuation domains and non-Noetherian almost Dedekind domains. For these classes
of rings R, dimRŒŒX�� � 2@1 . We conjecture that this still holds for the larger class
of rings, the class of non-SFT rings.

Conjecture 1. If R is a non-SFT ring, then dimRŒŒX�� � 2@1 .

If R is a non-SFT ring, then dimRŒŒX�� D 1. However, the converse does not
hold. At this moment, it seems to be very difficult to answer the following question.

Question 1. If dimRŒŒX�� D 1, then is it true that dimRŒŒX�� � 2@1?

7 Conclusion

While the possibilities for the Krull dimension of polynomial rings are completely
determined, those for power series rings have not yet been answered in general.
The Krull dimension of a power series ring RŒŒX�� is generally large (when it is
either finite or infinite). For the finite case, this was shown by Kang and Park
in [9]. For the infinite case, after the work of Arnold [1], a lot of constructions
have been made ranging from using the famous Zorn’s Lemma (to extend an ideal
disjoint from a multiplicatively closed subset to a prime ideal) to picking up a prime
ideal minimal over a given ideal or inventing nice tools that make use of zeros,
multiplicities, infinite products of power series, ultrafilters, etc. We hope that these
skillful techniques could be used in construction of (large chains of) prime ideals in
RŒŒX�� in more general cases (e.g., when R is a non-SFT ring).
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Localizing Global Properties to Individual
Maximal Ideals

Thomas G. Lucas

Abstract We consider three related questions. Q1: Given a global property G of a
domainR, what does a particular maximal idealM ofR “know” about the property
with regard to the ideals I � M and elements t 2 M ? Suppose P is such a property
corresponding to G.Q2: If each maximal ideal knows it has property P, doesR have
the corresponding global property G?Q3: If at least one maximal ideal knows it has
property P, does R have the global property G? We assume that if I � M , then M
can tell when a particular element t 2 M is contained in I and when it isn’t. Thus
for a pair of ideals I and J contained in M , M knows when I � J . In addition,
this allows M to understand the intersection of ideals it contains. In some cases, if
a single maximal ideal knows P, then R will satisfy G. For example, there are such
Ps for G2 fPIDs, Noetherian domains, Domains with ACCP, Domains with finite
characterg.

Keywords Integral domain • Maximal ideal
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1 Introduction

Throughout this paper,R represents an integral domain that is properly contained in
its quotient fieldK . We let Max.R/ denote the set of maximal ideals of R. For each
nonzero ideal I we let Max.R; I / denote the set of maximal ideals that contain I
and let �.I/ WD TfRN j N 2 Max.R/nMax.R; I /g with �.M/ D K when I is
contained in the Jacobson radical of R.
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The original inspiration for this work was from the papers “Overrings of
Prüfer domains. II” by Robert Gilmer and Bill Heinzer [6] and “Globalizing local
properties of Prüfer domains” by Bruce Olberding [8]. In [4], Gilmer introduced
the notion of an integral domain R being a #-domain meaning that for each pair
of distinct sets of maximal ideals M and N ,

TfRM j M 2 M g ¤ TfRN j
N 2 N g, the sets M and N are not required to be disjoint. Gilmer and Heinzer
declared R to be a ##-domain if each overring of R is #. If R is a Prüfer domain,
they showed that R is a ##-domain if and only if each nonzero prime P contains
an invertible ideal I such that each maximal ideal that contains I also contains P .
They also showed that for an individual prime Q of R, again with R Prüfer, RQ
does not contain �.Q/ if and only if Q contains an invertible ideal I such that
each maximal ideal that contains I also contains Q. A nonzero prime ideal P is
(now) said to be sharp if RP does not contain �.P / (see, for example, [2]). If P
is sharp, then necessarily, �.P / properly contains R and for each t 2 �.P /nRP ,
P contains .R WR t/ but no maximal ideal that is comaximal with P contains this
ideal. Conversely, if there is an element s 2 KnR such that P contains .R WR s/ but
no maximal ideal that is comaximal with P contains this ideal, then s 2 �.P /nRP .
In the Prüfer case, each ideal of the form .R WR b/ is an invertible (two-generated)
ideal ofR. In Theorems 3.13 and 3.14, we show that a maximal idealM can “know”
when it is sharp.

One of the main topics considered in [8] is characterizing when a Prüfer domain
is h-local (each nonzero prime is contained in a unique maximal ideal and each
nonzero nonunit is contained in only finitely many maximal ideals). Matlis proved
that a domainR is h-local if and only if�.M/ �RM D K for each maximal idealM
of R (see [7, Theorem 8.5]). We define a maximal ideal M to be h-local if �.M/ �
RM D K (see [3, Sect. 6.1]) and proceed to characterize when M is h-local based
solely on what M can know about the nonzero ideals it contains [Theorem 3.12].

A more recent inspiration comes from the craft of writing fiction. Authors
of fiction employ various types of narrators. Most common are some type of
third person narrator (almost always singular) with some degree of omniscience.
A somewhat distant second is a first person singular narrator. On rare occasions,
an author makes use of a first person plural narrator. Rarer still is a second person
narrator. A common exercise in a creative writing class is to rewrite a short story
using a different narrator and then analyze the changes this makes to how the
characters and story are perceived.

So what happens if we change the “narrator” of the story about a particular
integral domain? Specifically, imagine we have found a collection of books, each
written about a single domain where the narrator of each chapter is a single maximal
ideal M of the domain, each maximal ideal writing one chapter. All that M can
write about is what it knows about the ideals (of that particular domain) and the
elements it contains, with absolutely no knowledge of the ideals and elements it
does not contain (not even of the existence of such things). Our job is to read one
of the books and deduce as many global properties for that particular domain from
what its maximal ideals have written. An underlying idea is that we, the readers,
can deduce more about the domain than the authors/narrators D Max.R/ (at least
individually) seem to know.
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A basic assumption is that each maximal ideal M of R not only knows (in some
way) what it means for a nonempty subset X � M to be an ideal of R (and can
write about it). In addition, we make a pair of related assumptions with regard to
what a particular maximal ideal can know about containment properties among the
ideals and elements it contains. Also, we assume M has at least some ability to
factor products.

(A1) If t 2 M and I � M is an ideal ofR, thenM knows when t is in I and when
t is not in I .

(A2) If I and J are ideals contained in M , then M knows when I is contained in
J and when I is not contained in J .

(A3) M can “factor” nonzero products of principal ideals provided each factor is
contained in M : if .0/ ¤ tR � aR � M , then M knows if there is a b 2 M
such that tR D aRbR or that no such b exists.

Later we add the assumption that each M 2 Max.R/ can distinguish between
finitely many elements (ideals) and infinitely many elements (ideals).

(A4) M can tell the difference between “finitely many things” and “infinitely many
things.”

Using only (A1) and (A2), it is possible to discover when R is a PID
[Theorem 2.2]. Also, each maximal ideal M can understand what is meant by
intersecting a family of ideals contained inM – such an intersection

T
J˛ is simply

the ideal J that is both contained in each J˛ and contains each ideal I that is
contained in each J˛ [Theorem 2.1]. When we add (A3), it is possible to discover
that the domain in question is a Prüfer domain [Theorem 2.8]. We can also discover
when R is local [Theorem 2.9]. Perhaps somewhat surprisingly, it is possible for us
to determine when a given nonzero idealQ is primary (or not) [prime, or not] based
solely on what a single maximal ideal that contains Q knows about Q (and some
related ideals) [see Theorems 3.8 and 3.9]. With all four, we can discover whenR is
Noetherian, when it satisfies ACCP (ascending chain condition on principal ideals),
when it has finite character, and even when it is h-local [Theorems 3.1, 3.2, 3.6
and 3.10, respectively].

2 Using (A1), (A2) and (A3)

For this section we assume only (A1), (A2) and (A3) for each maximal ideal
M 2 Max.R/.

(A1) If t 2 M and I � M is an ideal ofR, thenM knows when t is in I and when
t is not in I .

(A2) If I and J are ideals contained in M , then M knows when I is contained in
J and when I is not contained in J .

(A3) If .0/ ¤ tR � aR � M , then M knows if there is a b 2 M such that
tR D aRbR or that no such b exists.
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For a nonzero ideal I � M , M recognizes a generating set for I as a nonempty
set X � I such that each ideal J � M that containsX also contains I .

Theorem 2.1. Let M be a maximal ideal of R.

1. If I is a nonzero ideal contained in M , then I is principal if and only if there is
an element t 2 I such that each ideal J � M that contains t also contains I .

2. If fJ˛g is a family of ideals with each J˛ � M , then M knows
T
J˛ as the

only ideal that is both contained in each J˛ and contains every ideal I that is
contained in each J˛ .

Proof. Let I be a nonzero ideal that is contained in M . If t 2 I is such that each
ideal J � M that contains t also contains I , then we know that I D tR.

For the second statement, let J D T
J˛ . Since J is an ideal and each J˛ is

contained in M , M would know that each J˛ contains J by (A2). Also by (A2), if
I � J˛ for each ˛, then certainly I � M and so M would know I � J by (A2). ut
Theorem 2.2. The following are equivalent for the domain R.

1. R is a PID.
2. For each maximal ideal M 2 Max.R/, M knows that each ideal I � M

contains an element t such that each ideal J � M that contains t also
contains I .

3. There is a maximal ideal M 2 Max.R/ that knows that for each ideal I � M ,
there is an element t 2 I such that each ideal J � M that contains t also
contains I .

Proof. It is clear that (1) implies (2) and that (2) implies (3).
Suppose there is a maximal ideal M 2 Max.R/ such that for each ideal I � M ,

there is an element t 2 I such that each ideal J � M that contains t also contains I .
We know that tR is one such ideal. Hence I D tR and at least each ideal that is
contained in M is principal. For a generic ideal A of R, simply multiply A by a
nonzero s 2 M to obtain an ideal sA � M . We have sA D xR for some x 2 M

and from this we see that A D .x=s/R is principal. Hence R is a PID when at least
one maximal ideal satisfies (3). ut

Using the factoring property (A3), it is also possible for M to know enough that
we can interpret this knowledge asR is integrally closed. The key is that for nonzero
nonunits a; b 2 R, a=b is integral over R if and only if there is a positive integer n
such that .a=b/an 2 I where I D anRC an�1bRC � � � C bnR.

Theorem 2.3. Let M be a fixed maximal ideal of R and let a; b 2 Mnf0g.

1. a=b 2 R if and only if M knows a 2 bR.
2. a=b 2 KnR is integral over R if and only if M knows a … bR and there is a

positive integer n such that anC1 2 I where I D anbRCan�1b2RC� � �CbnC1R.

Proof. It is clear that a is in bR if and only if a=b 2 R.
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Suppose a=b 2 KnR. Then a is not in bR. For each positive integer n, let In D
anbR C an�1b2R C � � � C bnC1R and An D anR C an�1bR C � � � C bnR. For M ,
In is the ideal that contains the set Xn WD fanb; an�1b2; : : : ; bnC1g and each ideal
J � M that contains Xn contains In.

It is trivial that .a=b/aibj D aiC1bj�1 2 An for 1 � j � n and iCj D n. Also
anC1 2 In if and only if .a=b/an 2 An. Thus for integrality, all we need to consider
is whether there is an n such that anC1 2 In. Hence the following are equivalent.

(i) a=b integral over R.
(ii) There is a positive integer n such that .a=b/An � An.

(iii) There is a positive integer n such that anC1 2 In. ut
We have two corollaries. In the first we give necessary and sufficient conditions

for R to fail to be integrally closed and in the second, necessary and sufficient
conditions for R to be integrally closed.

Corollary 2.4. The following are equivalent for an integral domain R that is not
a field.

1. R is not integrally closed.
2. For each maximal ideal M , there is a pair of nonzero elements a; b 2 M such

that aR is not contained in bR, and there is a positive integer n such that anC1 2
In where In D anbRC an�1b2RC � � � C bnC1R.

3. There is a maximal ideal M and a pair of nonzero elements a; b 2 M such that
aR is not contained in bR, and there is a positive integer n such that anC1 2 In
where In D anbRC an�1b2RC � � � C bnC1R.

Corollary 2.5. The following are equivalent for an integral domain R that is not
a field.

1. R is integrally closed.
2. For each maximal ideal M , if a; b 2 Mnf0g are such that anC1 is in the ideal
In D anbRCan�1b2RC � � � C bnC1R for some positive integer n, then a 2 bR.

3. The statement in (2) holds for at least one maximal idealM of R.

For each nonzero nonunit x of R, let P.x/ D fyR j .0/ ¨ yR � xRg be the set
of nonzero principal ideals that are contained in xR. For each maximal idealM that
contains x, the set P.x/ can be split into two disjoint sets, FM.x/ D fzR j zR D
xRwR for some w 2 M g and NM.x/ D ftR j tR � xR and there is no b 2 M

such that tR D xRbRg. By (A3), M knows which ideals are of the type in FM .x/

and which are of the type in NM.x/. In particular, it knows that x2R 2 FM.x/ and
xR 2 NM .x/.

Theorem 2.6. LetM be a maximal ideal ofR and let I D xRCyR where x and y
are nonzero elements of M . Then M does not contain II�1 if and only if M knows
at least one of NM.x/

T
P.y/ and NM.y/

T
P.x/ is nonempty.

Proof. Suppose M does not contain II�1. Then without loss of generality we may
assume there is an element f 2 I�1 such that f x … M . Let a D f x and b D fy;
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both of these elements are in R. Hence the ideal bxR D ayR is contained in both
P.x/ and P.y/. Since a 2 RnM , ayR 2 NM.y/

T
P.x/.

Suppose NM.x/
T

P.y/ is nonempty, equivalently,M knows there is an ideal
that is in both NM.x/ and P.y/. Each ideal in NM.x/ has the form wR D dxR

for some d 2 RnM . If wR is also in P.y/, then wR D fyR for some f 2 R.
It follows that dx D gy for some g 2 R. Since dx=y D g 2 R, we see that
d=y 2 I�1 is such that .d=y/y D d 2 II�1nM . ut
Corollary 2.7. Let M be a maximal ideal of the domain R. If I D xR C yR is a
nonzero ideal such that M is the only maximal that contains I , then I is invertible
if and only if M knows at least one of P.x/

T
NM.y/ and P.y/

T
NM.x/ is

nonempty.

Recall that if each nonzero two-generated ideal of a domain is invertible, then the
domain is Prüfer. From the previous theorem we have a way for the maximal ideals
ofR to provide us enough information to conclude thatR is a Prüfer domain. We say
thatM knows Pru1 if for x; y 2 Mnf0g,M knows at least one of P.x/

T
NM.y/

and P.y/
T

NM.x/ is nonempty. An alternate characterization of a Prüfer domain
is an integrally closed domain such that for each pair of elements a; b 2 Rnf0g,
ab 2 a2R C b2R [5, Theorem 24.3]. We say that M knows Pru2 if for each pair
of elements a; b 2 Mnf0g, ab 2 a2R C b2R and whenever there is a positive
integer n such that anC1 2 anbRC an�1b2RC � � � C bnC1R, then it is also the case
that a 2 bR.

Theorem 2.8. The following are equivalent for an integral domainR.

1. R is Prüfer domain.
2. Each maximal ideal of R knows Pru1 holds.
3. Each maximal ideal of R knows Pru2 holds.
4. There is a maximal ideal of R that knows Pru2 holds.

Proof. If R is a Prüfer domain, then each two-generated ideal is invertible. Thus
by Theorem 2.6 each maximal ideal of R knows Pru1. Conversely if each maximal
ideal knows Pru1, then no maximal ideal contains II�1 when I is a nonzero two-
generated ideal. It follows that each such ideal I is invertible and thus R is a Prüfer
domain.

By Corollary 2.5, if at least one maximal ideal knows Pru2, then R is integrally
closed. If R is integrally closed, then a two-generated ideal rRC sR is invertible if
and only if rs 2 r2R C s2R [5, Proposition 24.2]. Thus if M knows Pru2, then R
is integrally closed and each two-generated ideal contained in M is invertible. For
a two-generated ideal rRC sR, simply multiply by a nonzero c 2 M and note that
we will then have cr; cs 2 M with .cr/.cs/ 2 .cr/2RC .cs/2R. Simply cancel c2

to obtain rs 2 r2R C s2R. ut
The factoring property can also be used to establish that a particular domain has

a unique maximal ideal.
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Theorem 2.9. For an integral domain R, R is local if and only if at least oneM 2
Max.R/ knows that for all (some) x 2 Mnf0g, xR is the only ideal of the type
in NM.x/.

Proof. Suppose R is local. Then it has a unique maximal ideal M . In this case if
x; y 2 Mnf0g with yR ¨ xR, then y D xz for some nonunit z which must be
in M . Hence xR is the only ideal of the type in NM.x/.

For the converse, suppose M is a maximal ideal and there is an element z 2
Mnf0g such that zR is the only ideal of the type in NM.z/. If w 2 RnM , the
principal ideal wzR is in NM.z/ and thus wzR D zR. Since z ¤ 0, w is a unit of R
and we have R is local. ut

3 Finiteness

In this final section we add the “finite” assumption to the other three. We do not
assume M can count, only that it can distinguish between finitely many things and
infinitely many things where the “things” are either elements or ideals.

(A4) If X is a set of elements that are contained in M , then M knows when the
set is finite and when it is not finite. It can make a similar distinction for any
collection of ideals it contains.

Property (A4) gives us a way to see when R is Noetherian based on the
knowledge of a single maximal ideal.

Theorem 3.1. The following are equivalent for a domain R that is not a field.

1. R is Noetherian.
2. For each maximal ideal M , M knows that for each ideal I contained in M ,

there is a finite set of elementsX � I such that each ideal J � M that contains
X contains I .

3. For each maximal idealM , if I1 � I2 � I3 � � � � is a chain of ideals contained
in M , then M knows the chain is finite.

4. There is a maximal ideal M such that M knows that for each ideal I contained
in M , there is a finite set of elements X � I such that each ideal J � M that
containsX contains I .

5. There is a maximal ideal M such that if I1 � I2 � I3 � � � � is a chain of ideals
contained in M , then M knows the chain is finite.

Proof. The equivalence of (1), (2) and (3) is clear. Also, (2) implies (4), and (3)
implies (5). The implications (4) ) (2) and (5) ) (3) follow from cancellation.
For an ideal J that is comaximal with M , choose any nonzero t 2 M . Then tJ �
M is a nonzero ideal. If tJ is finitely generated, say by ta1; ta2; : : : ; tan, then by
cancellation, J is generated by a1; a2; : : : ; an. Similarly for a chain of ideals not
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necessarily contained in M , multiplying each ideal by t gives a chain of ideals
contained inM . The original chain stabilizes inR if and only if the new chain inM
stabilizes. ut

A similar characterization can be given for ACCP (ascending chain condition on
principal ideals). For nonzero principal ideals xR � yR, xR D yR if and only
if txR D tyR for each nonzero t 2 R. Thus, if each ascending chain of principal
ideals contained in a particular maximal idealM stabilizes, each ascending chain of
principal ideals stabilizes in R.

Theorem 3.2. The following are equivalent for an integral domain R that is not
a field.

1. R satisfies ACCP.
2. Each maximal ideal M knows that if x1R � x2R � x3R � � � � is an ascending

chain of principal ideals contained in M , then the chain is finite.
3. There is a maximal idealM that knows each ascending chain of principal ideals

contained in M is finite.

We next consider finite character. The goal is to describe how a given maximal
ideal can recognize what we know as finite character without mentioning any other
maximal ideals.

First we introduce the idea of a “M -closed set” and then an “.I;M/-complete
set.” The latter will allow us to provide a way for M to know a property for a
particular nonzero ideal I � M that we can interpret as I being in only finitely
many maximal ideals.

For a given maximal idealM , let X be a finite list (set) of ideals each contained
in M . We say that X is M -closed if M knows the following about X .

1. M is included in the list X .
2. The ideal J that is contained in each ideal in X and contains each ideal that is

contained in each ideal in X , is an ideal in X .
3. Each ideal that contains J and is contained in M is in the list X .
4. For comparable ideals A ¨ B where both A and B are in X , if d 2 BnA, then

no power of d is in A.

Theorem 3.3. Let M be a maximal ideal of a domain R. If X D fJ1; : : : Jng
is M -closed with M D Jn and J1 D TfJi j 1 � i � ng, then there is an
integer k � 0 such that n D 2k and there is a finite set of k maximal ideals Y D
fN1;N2; : : : ; Nkg such that (i) M is not in Y , (ii) J1 D TfNi j 0 � i � kg where
N0 D M , (iii) each ideal in X is the intersection of M and finitely many maximal
ideals in the set Y , and (iv) each finite intersection of maximal ideals in the set Y
with M is an ideal in X .

Proof. Suppose X D fJ1; : : : Jng is an M -closed set with M D Jn and J1 DTfJi j 1 � i � ng. We first show that each minimal prime of J1 is a maximal ideal
of R. For this suppose P is a prime ideal that is properly contained in M , then for
each t 2 MnP , the family ft jR C P j j � 1g is an infinite set of distinct ideals



Localizing Global Properties to Individual Maximal Ideals 247

such that each properly contains P . As each ideal that contains J1 is listed in X
(and X is finite), M is minimal over J1. If N ¤ M is another maximal ideal that
contains J1 and P 0 is a prime ideal that is properly contained in N , then for each
s 2 NnP 0, the family fsjR C P 0 j j � 1g is an infinite set of distinct ideals such
that each properly contains P 0. If P 0 � M , then P 0 does not contain J1. In the case
P 0 ª M , the family fM T

.sjR C P 0/ j j � 1g is an infinite set of distinct ideals
each properly containing M

T
P 0. Hence P 0 does not contain J1. Therefore each

minimal prime of J1 is a maximal ideal of R.
If Q1;Q2; : : : ;Qm are maximals ideal that contain J1, then J1 � Q WD TfQi j

1 � i � mg. Hence J1 � M
T
Q and we have M

T
Q 2 X . As X is finite and

each such Q is a finite intersection of maximal ideals, only finitely many maximal
ideals contain J1. Thus we have a finite set Y 0 D fN0;N1; : : : ; Nkg which consists
of all maximal ideals that contain J1. Without loss of generality we may assume
N0 D M , in which case Y D fN1;N2; : : : ; Nkg. The set f0; 1; 2; : : : ; kg has 2k

subsets that contain 0. Each such subset A gives rise to a distinct radical ideal JA DTfNi j i 2 Ag that is in X (since each of these ideals contains J1 and is contained
in M ). In particular the intersection of all the Nis is in X . This ideal is simply the
radical of J1. Note that if A � B , then the only ideals between JA and JB are the
ideals of the form JC whereA � C � B . Moreover JB ¨ JA if and only if A ¨ B .

To complete the proof we show that J1 D TfNi j 0 � i � kg. From above, we
have that Y 0 is the complete set of minimal primes of J1. So for each b 2 TfNi j
0 � i � kg, there is a positive integer j such that bj 2 J1. But this implies b 2 J1
since X is M -closed. Therefore J1 D TfNi j 0 � i � kg and X contains 2k

ideals, each an ideal of the type JA for some (unique) subset A of f0; 1; : : : ; kg that
contains 0. ut

For a nonzero ideal I � M we say that a finite list X is .I;M/-complete if M
knows the following about X :

1. X is M -closed,
2. I � A for each A in the list X , and
3. if I � H � M , there is a (unique)A in the list X such thatH � A andH � B

for some B in the list X implies A � B .

The notion of an .I;M/-complete list provides a way forM to know enough for
us to conclude that I is contained in only finitely many maximal ideals.

Theorem 3.4. Let I � M be nonzero ideals with M maximal. Then I is
contained in only finitely many maximal ideals if and only if M knows there is
an .I;M/-complete list X such that for each .I;M/-complete list Y , each ideal
in the list Y is also in the list X .

Proof. If N0 D M;N1; : : : ; Nk is the complete list of maximal ideals that contain
I , then the list X of ideals fJA D TfNi j i 2 Ag j A � f0; 1; : : : ; kg with 0 2 Ag
is .I;M/-complete and no .I;M/-complete list contains an ideal not in the list X .



248 T.G. Lucas

For the converse, if X is an .I;M/-complete list, then there is a finite set of
maximal ideals N D fN0 D M;N1; : : : ; Nkg such that X D fJA D TfNi j i 2
Ag j A � f0; 1; : : : ; kg with 0 2 Ag. If Y is an .I;M/-complete list for which each
ideal in Y is in X , then the underlying set of maximal ideals corresponding to Y
is a subset of N . It follows that if each .I;M/-complete list is a sublist of X , then
N consists of the complete set of maximal ideals that contains I . ut

While we have not assumed M can count, at least it can recognize when there is
only one of something.

Corollary 3.5. For a nonzero ideal I contained in a maximal ideal M , M is the
only maximal ideal that contains I if and only if M knows that fM g is the only
.I;M/-complete set.

Recall that a domain R is h-local if it has finite character and each nonzero
prime ideal is contained in a unique maximal ideal. By the previous theorem, it
is possible for use to deduce that R has finite character based on the knowledge of
single maximal ideal.

Theorem 3.6. The following are equivalent for a domain R.

1. R has finite character.
2. For each maximal ideal M , M knows that for each nonzero ideal I it contains,

there is an .I;M/-complete list X such that each .I;M/-complete list is a
sublist of X .

3. There is a maximal ideal M that knows that for each nonzero ideal I � M ,
there is an .I;M/-complete list X such that each .I;M/-complete list is a
sublist of X .

Proof. The implications (1) ) (2), and (2) ) (3) follow easily from Theorem 3.4.
To see that (3) implies (1), simply start with a nonzero ideal B of R. Then for each
nonzero t 2 M , tB is a nonzero ideal contained in M . By Theorem 3.4, tB and
thus B are each contained in only finitely many maximal ideals. Hence R has finite
character. ut

By Corollary 3.5, if we know thatP is a prime ideal, then we can determine when
it is contained in a unique maximal ideal. The challenge in getting a characterization
for h-local domains based solely on what the maximal ideals know about the ideals
of R is to find a way for a given maximal ideal to know enough about a particular
nonzero ideal that we can tell exactly when the ideal is prime.

We say that a nonzero subideal Q of a maximal ideal M is an M -prime if for
elements x; y 2 M , xy 2 Q implies at least one of x and y is in Q. Certainly a
prime ideal that is contained in M is M -prime, but so is M

T
N for any maximal

ideal N ¤ M . We define MP -primary ideals in a similar manner. A nonzero ideal
J � M is an MP -primary ideal if there is an M -prime P such that (i) J � P �
M , (ii) for each t 2 P , there is a positive integer n such that tn 2 J , and (iii) for
elements a; b 2 M , if ab 2 J and a … P , then b 2 J . As with M -primes, it
is possible to have an MP -primary ideal that is neither a primary ideal of R nor
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an M -prime. For example, if I is a proper N -primary ideal where N ¤ M is a
maximal ideal, then J D M

T
I is a proper MP -primary ideal for the M -prime

P D M
T
N . Clearly J is neither a primary ideal of R nor an M -prime. Note that

both definitions are such that M can know when an ideal is an M -prime and when
an ideal is an MP -primary ideal.

For a nonzero ideal I � M , we let I.M/ D fx 2 M j yR 2 NM.x/ for some
y 2 I g and M

p
I D fx 2 M j yR 2 NM.x

n/ for some y 2 I and positive
integer ng. The first set is the same as IRM

T
R and the second is the same asp

IRM
T
R D p

IRM
T
R. The advantage in using these definitions is that M

can understand both ideals (without needing to know what “localization” is).

Theorem 3.7. Let I be a nonzero ideal that is contained in the maximal ideal M .
Then I.M/ D IRM

T
R and M

p
I D p

IRM
T
R.

Proof. Suppose x 2 I.M/ and let y 2 I be such that yR 2 NM.x/. Then yR D
xRaR for some a 2 RnM . Without loss of generality we may assume y D xa. It
follows that x D y=a 2 IRM TR.

The argument is reversible. If z 2 IRM
T
R, then we have z D w=b for some

w 2 I and b 2 RnM . It follows that wR D zRbR 2 NM.z/. Hence z 2 I.M/.
For each element s of M

p
I , there is a positive integer n such that sn 2 I.M/. Thus

sn 2 IRM and we have s 2 p
IRM

T
R. Conversely, if t 2 p

IRM
T
R, then

tn 2 IRM for some n and we have tn 2 I.M/. It follows that t 2 M
p
I . ut

Theorem 3.8. Let M be a maximal ideal of a domain R. Then the following are
equivalent for a nonzero ideal Q � M .

1. Q is a prime ideal of R.
2. (M knows) Q D Q.M/ is an M -prime.
3. (M knows) Q D M

p
Q is an M -prime.

Proof. In general we have Q � Q.M/ � M
p
Q. Thus Q D M

p
Q implies

Q D Q.M/. Also, ifQ is a prime ideal, then
p
QRM D QRM andQRM

T
R D Q.

Thus it suffices to show that (1) and (2) are equivalent.
If Q is a prime ideal of R, then QRM

T
R D Q and certainly Q is M -prime.

For the converse assume Q is an M -prime and Q D Q.M/. To see that Q is a
prime ideal of R, suppose x; y 2 R are such that xy 2 Q. Since M is a maximal
ideal, at least one of x and y is contained in M . If both are, we simply use that Q
is an M -prime to get that at least one of x and y is contained in Q. Thus we may
assume x 2 M and y 2 RnM . Since w D xy 2 Q, wR 2 NM.x/ and so we have
x 2 Q.M/ D Q. ThereforeQ is a prime ideal of R. ut

Theorem 3.9. Let M be a maximal ideal of a domain R. Then the following are
equivalent for a nonzero ideal Q � M .

1. Q is a primary ideal of R.
2. M knows there is anM -prime P such that Q is MP -primary andQ D Q.M/.
3. M knows there is an M -prime P � M such that Q is MP -primary and
P D P.M/.
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Proof. It is clear that (1) implies both (2) and (3).
To see that (2) implies (1), assume there is an M -prime P such that Q D Q.M/

is MP -primary. To see that Q is a primary ideal of R, let x; y 2 R be such that
xy 2 Q. If x … M , then we have y 2 Q.M/ D Q. Similarly x 2 Q if y … M . Thus
we may assume both x and y are in M . Since P is an M -prime, at least one of x
and y is in P . If both are, then a power of each is inQ since Q isMP -primary. On
the other hand, if x 2 P and y 2 MnP , then x 2 Q. Thus Q is a primary ideal
of R.

To finish the proof we show (3) implies (1). For this, we again assumeQ isMP -
primary, but replace the assumption thatQ D Q.M/ byP D P.M/. By Theorem 3.8,
P is a prime ideal of R. We also have

p
Q D P . If P D M , then Q is M -primary

as its radical is a maximal ideal.
On the other hand, if P is properly contained in M , then there is an element

m 2 MnP . Let x; y 2 R be such that xy 2 Q. Then xy 2 P . If x … M , then
y 2 P . We also have mx 2 MnP with mx … P and .mx/y 2 Q. Thus y 2 Q.
Similarly, x 2 Q if y … M .

Finally if both x; y 2 M , then we use the definition ofMP -primary to conclude
that either some power of both x and y is in Q or at least one of the two is in Q.
ThereforeQ is a primary ideal of R (with

p
Q D P ). ut

We now have enough to characterize when R is h-local based entirely on what
its maximal ideals know.

Theorem 3.10. Let R be a domain. Then R is h-local if and only if each maximal
ideal M knows the following:

1. for each nonzero ideal I � M , there is an .I;M/-complete list X such that
each .I;M/-complete list is a sublist of X , and

2. if P � M is a nonzero ideal such that P D P.M/ and P is an M -prime, then
fM g is the only .P;M/-complete list.

Proof. IfR is h-local andM is a maximal ideal, thenM knows (1) for each nonzero
ideal it contains. If P � M is a nonzero prime ideal of R, then P D P.M/ is an
M -prime (Theorem 3.8) and fM g is the only .P;M/-complete set (since M is the
only maximal ideal that contains P ).

Next assume each maximal ideal knows that both (1) and (2) hold for the ideals
it contains.

Let Q be a nonzero prime ideal of R and let M be a maximal ideal that
contains Q. Then Q D Q.M/ and Q is an M -prime. Hence M knows that fM g
is the only .Q;M/-complete set. We deduce that M is the only maximal ideal that
containsQ.

For finite character, we simply apply Theorem 3.6. Thus R is h-local. ut
We will make use of the following lemma in the proof of the next theorem.

Lemma 3.11. Let I be a nonzero ideal of a domainR. Then for each maximal ideal
M containing I , each minimal prime of I.M/ is contained in M .
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Proof. Let M be a maximal ideal that contains I and let P be a minimal prime
of I.M/. Then for each q 2 P , there is a positive integer n and an element a 2 RnP
such that aqn 2 I.M/. If q is not in M , then we have a 2 IRM

T
R D I.M/, a

contradiction. ut
Recall from above that R is h-local if and only if �.M/ � RM D K for each

maximal ideal M of R [7]. Based on this characterization, the notion of an h-local
maximal ideal was introduced in [3] as a maximal ideal M of R such that �.M/ �
RM D K . Next we show thatM can know enough that we can deduce exactly when
it is h-local. The characterization below is related to the fact that R is h-local if and
only if each nonzero prime ideal contains an invertible ideal that is contained in a
unique maximal ideal (see [1, Corollary 3.4]).

Theorem 3.12. LetM be a maximal ideal of a domainR. ThenM is h-local if and
only if M knows the following:

(a) for each nonzero ideal I � M , fM g is the only .I.M/;M/-complete set, and
(b) if P is a nonzeroM -prime such that P D P.M/, then there is a pair of nonzero

elements x; y 2 P such that fM g is the only .J;M/-complete set of the ideal
J D xR C yR and at least one of P.x/

T
NM.y/ and P.y/

T
NM.x/ is

nonempty.

Proof. AssumeM knows both (a) and (b). If P � M is a nonzero prime, then P D
P.M/ is anM -prime (Theorem 3.8), soM is the only maximal ideal that containsP .
For the ideal J D xRC yR, the fact that fM g is the only .J;M/ complete set tells
us that M is the only maximal ideal that contains J . By Corollary 2.7, we see that
J is invertible.

By way of contradiction, suppose S D �.M/ � RM is properly contained in K
and letQ be a nonzero prime ideal of S . ThenQ

T
RM is a nonzero prime ideal of

RM , necessarily contained in M . Hence P D Q
T
R is a nonzero prime ideal

of R that is contained in M . By the above, there is a two-generated invertible
ideal B D aR C bR that is contained in P such that M is the only maximal
ideal that contains B . Hence B�1 is contained in RN for each maximal ideal
N 2 Max.R/nfM g. It follows that B�1 � �.M/, but this implies 1 2 B�.M/ �
BS � Q, a contradiction. HenceM is h-local.

For the converse assume M is h-local. There is nothing to prove if M is the
only maximal ideal of R so we may assume R is not local. We first show that if
P is a nonzero prime ideal that is contained in M , then M is the only maximal
ideal that contains P . By way of contradiction assume N ¤ M is another maximal
ideal that contains P . Then RP � RN and RP � RM implies RP � RN � RM �
�.M/ � RM D K , which is impossible since P is not zero. Thus M is the only
maximal ideal that contains P .

Next we show thatP�.M/ D �.M/. By way of contradiction, assumeP�.M/

is a proper ideal of �.M/ and let Q0 be a prime of �.M/ that contains P�.M/.
Then Q D Q0TR is a prime ideal of R that contains P . It follows that M is the
only maximal ideal of R that contains Q and thus RM � RQ � �.M/Q0 ¨ K

which implies RM ��.M/Q0 ¨ K D RM ��.M/, a contradiction.
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By Lemma 3.11, if I is a nonzero ideal that is contained inM , then each minimal
prime of I.M/ is contained in M . It follows that M is the only maximal ideal
that contains I.M/. In addition we have that I.M/�.M/ D �.M/ for otherwise a
minimal prime of I.M/�.M/ will contract to prime ideal of R that is not contained
in M .

Continuing with P a nonzero prime contained in M , let x be a nonzero
element contained in P . Then from above, the ideal J D xR.M/ blows up
�.M/ and M is the only maximal ideal that contains J . Thus there is a finite
subset fx; a1; a2; : : : ; ang of J and elements s; s1; s2; : : : ; sn 2 �.M/ such that
sx C s1a1 C s2a2 C � � � C snan D 1. We have JRM D xRM and JRN D RN
is generated by fx; a1; a2; : : : ; ang for each maximal ideal N ¤ M . Hence J D
xRCa1RC� � �CanR is invertible. To complete the proof we show that J D xRCyR
for some y.

For each 1 � i � n, there are elements bi 2 R and ti 2 RnM such that ai D
bix=ti 2 RM . Since there are only finitely many ai s, we may assume ti D tj D t

for all i and j . As in the proof of Theorem 2.6, t=x 2 J�1. Since t … M and M is
the only maximal ideal that contains J , there is an element y 2 J and an element
w 2 R such that wtCy D 1. For each ai we have ai D aiwtCaiy D bixwCai y 2
xR C yR � J . Hence J D xR C yR. ut

The next two results provide ways for a given maximal ideal to know enough
that we can characterize it as being sharp. We start with the general case and then
provide a simpler characterization for the case R is a Prüfer domain.

Theorem 3.13. Let M be a maximal ideal of a domain R. Then M is sharp if and
only if M knows there is a pair of nonzero elements a; b 2 M and a corresponding
ideal J � M where a is not in bR, aRcR � bR for each c 2 J and fM g is the
only .J;M/-complete set.

Proof. AssumeM is sharp and let t 2 �.M/nRM . Then t 2 RN for each maximal
ideal N ¤ M and thus M is the only ideal that contains J D .R WR t/ D .R W
RCtR/. It follows that t D a=b for some b 2 M and a 2 R. We may further assume
a 2 M since ba=b2 D t . We have J D .R W R C tR/ D .bR W bR C aR/ with
fM g the only .J;M/-complete set. Also, (by definition) J is the set of elements
ff 2 R j aRfR � bRg D ff 2 M j arfR � bRg.

For the converse, supposeM knows there is a pair of nonzero elements a; b 2 M
and a corresponding ideal J � M where a is not in bR, aRcR � bR for each c 2 J
and fM g is the only .J;M/-complete set. For the element t D a=b we have that
J � .R WR t/ � M . It follows that t 2 RN for each maximal ideal N ¤ M , but t
is not in R. Thus t 2 �.M/nRM and thereforeM is sharp. ut

As noted in the Introduction, ifR is a Prüfer domain and s 2 KnR, then the ideal
.R WR s/ is a two-generated invertible ideal of R.

Theorem 3.14. Let M be a maximal ideal of a Prüfer domainR. ThenM is sharp
if and only if M knows it contains a pair of nonzero elements x and y such that
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fM g is the only .I;M/-complete set where I � M is the ideal that contains both
x and y and is contained in each ideal J � M that contains both x and y.

For a nonzero ideal I , if I ¨ Iv ¤ R, there may be a maximal ideal M that
contains I but not Iv. To investigate divisorial ideals and divisorial closure from
the perspective of the maximal ideals, we first need a way to provide an internal
description of .R W I /. For this, start with a maximal idealM and let I be a nonzero
ideal that is contained in M . Next let XM be the set of ordered pairs .a; b/ where
a; b 2 Mnf0g are such that a … bR and aI � bR. Routine calculations show that
.a; b/ 2 XM.I / if and only if there is a t 2 .R W I /nR such that t D a=b. Note
that for t 2 .R W I /, we can always write t D c=d D mc=md for some d 2 I ,
c 2 R and arbitrary m 2 Mnf0g. Clearly, the set XM.I / is empty if and only if
.R W I / D R. If J � M and XM.J / D XM.I /, then XM.I C J / D XM.I /.
It follows that there is a largest ideal B � M such that XM.B/ D XM.I /. We
refer to this ideal as the M -divisorial closure of I . While M relies on its ability
to determine containment relations between the ideals and elements it contains to
obtainB , we see that B D Iv

T
M . In the case XM.I / is empty,B D M . Note that

we also have B D M in the case Iv D M .

Lemma 3.15. Let I be a nonzero ideal of a domainR.

1. If I is not maximal, then it is divisorial if and only if it is M -divisorial for each
maximal ideal M 2 Max.R; I /.

2. If I is maximal, then it is divisorial if and only XI .I / is nonempty.

Proof. If I is maximal, then either XI .I / is empty in which case Iv D R or
XI .I / is nonempty in which case I D Iv. For the nonmaximal case, it is clear
that I is M -divisorial for each M 2 Max.R; I / when I is divisorial. For the
converse in the nonmaximal case, suppose I isM -divisorial for each maximal ideal
M 2 Max.R; I /. Then from the discussion above, I D Iv

T
M for each maximal

ideal M 2 Max.R; I /. Since I is not a maximal ideal, having I D Iv
T
M tells

us that Iv is properly contained in at least one maximal ideal N . It follows that
I D Iv

T
N D Iv. ut

Recall that a domain is a Mori domain if ACC holds for divisorial ideals. We say
that M 2 Max.R/ is Mori maximal if ACC holds for M -divisorial ideals.

Theorem 3.16. The following are equivalent for a domain R.

1. R is a Mori domain.
2. Each maximal ideal of R is Mori maximal.
3. At least one maximal ideal of R is Mori maximal.

Proof. Obviously, (2) implies (3). To see that (1) implies (2), assume R is a Mori
domain. LetM be a maximal ideal ofR and let I1 � I2 � I3 � � � � be an ascending
chain of M -divisorial ideals. Then we have .I1/v � .I2/v � .I3/v � � � � . Since R
is a Mori domain, there is an n such that .In/v D .Ik/v for all k � n. We also have
Ij D .Ij /v

T
M for each j . It follows that In D Ik for all k � n.
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Finally, supposeM 2 Max.R/ is Mori maximal and let A1 � A2 � A3 � � � � be
an ascending chain of divisorial ideals of R. Let t 2 Mnf0g and consider the chain
tA1 � tA2 � tA3 � � � � . Each tAj is a divisorial ideal that is contained inM and so
each isM -divisorial. Hence there is an integer n such that tAn D tAk for all k � n.
By cancellation, we have An D Ak for all k � n. Hence R is a Mori domain. ut
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Prime Ideals That Satisfy Hensel’s Lemma

Stephen McAdam

Abstract Nagata proved that .R; P / is a Henselian domain if and only if every
integral extension domain ofR is quasi-local. We explore, with partial success, how
to generalize that result.

Keywords Henselian • Prime ideals • Integral extensions • Integral domains

Subject Classifications: 13A15, 13B22, 13G05, 13J15

1 Introduction

Notation. Throughout, R will be a commutative domain with integral closure R0
and Jacobson radical J.R). P will be a nonzero prime ideal of R.

Definition 1. We call P an H -prime if the following holds. For any non-constant
monic polynomial f .X/ 2 RŒX�, if there exist non-constant monic polynomials
g.X/ and h.X/ in RŒX� such that f .X/ D g.X/h.X/modP and such that g.X/
and h.X/ are comaximal (i.e., g.X/RŒX� C h.X/RŒX� D RŒX�/, then f .X/ is
reducible in RŒX�.

The following crucial result is proven in [1, (2.2)].
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Theorem 1. Let P � J.R/. The following are equivalent.

(i) P is an H -prime.
(ii) For all non-constant monic polynomials f .X/ 2 RŒX�, if there exist non-

constant monic polynomials g.X/ and h.X/ in RŒX� such that f .X/ 
g.X/h.X/modP and such that g.X/ and h.X/ are comaximal, then there are
monic polynomials g0.X/ and h0.X/ in RŒX� such that f .X/ D g0.X/h0.X/
and g.X/  g0.X/modP and h.X/  h0.X/modP .

Remark 1. 1. We do not know whether some version of Theorem 1 (i) ) (ii)
holds when P is not contained in J.R/, although (ii) ) (i) is trivially true.

2. Hensel’s lemma says that if R is complete in the P -adic topology, then P
satisfies condition (ii) of Theorem 1 and so is an H -prime. (Hence, H -primes
do exist.)

3. We will see that when P is not contained in J.R/, it is in some sense unlikely
for P to be an H -prime. In particular, we will see that if R is Noetherian, and
P is an H -prime, then P � J.R/.

4. In the above, when we wrote g.X/ and h.X/, we assumed they were comax-
imal. In some references, that is modified to say, PRŒX� C g.X/RŒX� C
h.X/RŒX� D RŒX�. However, the bulk of our interest here will be in the case
that P � J.R/, and when that is true, the two conditions are equivalent. This
is easily seen, using the fact that if M is a maximal ideal of RŒX� and M
contains a monic polynomial k.X/, thenM \R is maximal in R. That fact, [5,
Lemma 1.1(v)], is an easy consequence of the fact that the integral extension
R � RŒX�=k.X/RŒX� satisfies going up.

Lemma 1. Let P � Q be prime ideals of R. If Q is an H -prime, then so is P .

Proof. Suppose P is not an H -prime. Then there is an irreducible non-constant
monic f .X/ 2 RŒX� and non-constant monic polynomials g.X/ and h.X/ in RŒX�
such that f .X/  g.X/h.X/modP and such that g.X/ and h.X/ are comaximal.
However, we also have f .X/  g.X/h.X/modQ, and that implies Q is not an
H -prime. ut

The inspiration for this paper is the following well-known result of Nagata
[6, (43.12)].

Theorem 2. Let .R; P / be a quasi-local domain. Then, P satisfies condition (ii) of
Theorem 1 (i.e., an H -prime) if and only if every integral extension domain of R is
quasi-local. (When those equivalent conditions hold, .R; P / is called a Henselian
domain.)

The goal of this paper is to try to globalize that and to see if some similar result
holds for H -primes that are not the sole maximal ideal their ring R. The first guess
might be that P is an H -prime if and only if for every integral extension domain T
of R, there is a unique prime of T lying over P . However, when R is Noetherian,
that guess is hopelessly wrong, as we now show.
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By [2, Theorem 1.1(ii)], if R is Noetherian and if in every integral extension
domain of R only one prime ideal lies over P , then R is local and P is its
maximal ideal. Hence, if our above guess were correct, it would imply that if P
is anH -prime (withR Noetherian), then P would be maximal. However, Lemma 1
shows that is not always the case forH -primes. As our first guess is wrong, we need
a more appropriate (possible) extension of Nagata’s result. That leads us to our next
definition.

Definition 2. We call P a K-prime if there does not exist an integral extension
domain T of R such that exactly two primes of T lie over P and those two primes
are comaximal in T .

Question 1. How closely related are H -primes and K-primes? Specifically, if
P � J.R/, are the concepts of H -prime andK-prime equivalent?

We will prove the following two propositions.

Proposition 1. If R is integrally closed, then P is an H -prime if and only if it is a
K-prime.

Proposition 2. Suppose that for all nonzero non-units y 2 R0, there is a prime
ideal Q0 of R0 containing y such that either Q0 ¤ Q02, or R0=Q0 is not integrally
closed, or the quotient field of R0=Q0 is not algebraically closed. If P is a K-prime
of R, then P � J.R/ and P is an H -prime.

Proposition 2 shows that in a very large class of domains, K-primes are
H -primes, considerably strengthening the work in [5], in which R0 was the
integral closure of Noetherian domain. Much less is known about the converse of
Proposition 2, Proposition 1 being the most significant case in which it is known
to hold.

Example 1. If P is a prime in a Henselian domain .R;Q/, then P is both an
H -prime and aK-prime. Since every integral extension ofR is quasi-local, P must
be a K-prime. Since Q is an H -prime, Lemma 1 shows P is an H -prime.

Example 2 (Heitmann). Let T is Noetherian integrally closed non-Henselian
domain, and (with Y an indeterminate) let R D T ŒŒY �� and P D YR. Hensel’s
lemma shows that P is an H -prime. Also, Proposition 1 shows that since R is
integrally closed, P is also aK-prime. Finally, [6, (43.4)] showsR is not Henselian.

The present paper constitutes a streamlining and extension of Sects. 2 and 3
of [5]. The improvement of this work over the earlier work is due to the availability
of Theorems 1 (above) and 4 (below), both proved in [1] (as well as a new
construction given in Sect. 5 below). Section 1 of [5] contains some related facts
of interest. Specifically, [5, (1.5(i) , (ii)] shows that if R is Noetherian and if P is
not a K-prime, then for any m � 1, there is an integral extension domain T of R
in which there are exactly m primes lying over P and those m primes are pairwise
comaximal.



258 S. McAdam

2 Proposition 1

Definition 3. Recall that if Q is a prime ideal in a ring R, then a prime q in the
polynomial ring RŒX� is called an upper to Q if q \ R D Q, but q ¤ QRŒX�.
Furthermore, if q is an upper to Q and q contains a monic polynomial, then q is
called an integral upper to Q. (All of the facts we use about uppers and integral
uppers are easily proven and can be found in [5, Lemma 1.1].)

Lemma 2. Let R � T be rings, and let P be a prime ideal of R. Let Q be a prime
ideal of T with Q \ R D P , and let t 2 Q. Then Q \ RŒt� D .P; t/RŒt�.

Proof. One inclusion is obvious. For the other, assume that f .t/ 2 Q \ RŒt� (with
f a polynomial with coefficients in R). Since t 2 Q, we must have the constant
coefficient of f in Q \R D P . Hence f .t/ 2 .P; t/RŒt�. ut
Lemma 3. Let P be a prime ideal in a domain R. The following are equivalent.

(a) P is not a K-prime.
(b) There is an integral extension domain T of R in which the set V of prime ideals

lying over P can be partitioned into two nonempty subsets, say V D V1 [ V2,
such that \fp j p 2 V1g and \fq j q 2 V2g are comaximal in T .

(c) There is an integral upperK to 0 inRŒX� such thatK is contained in the uppers
.P;X/RŒX� and .P;XC1/RŒX�, but in no other uppers to P except those two.

(d) There is an integral extension domainRŒt� of R such that the only prime ideals
of RŒt� that lie over P are .P; t/RŒt� and .P; t C 1/RŒt�.

Proof. (d) ) (a) ) (b): These are obvious from the definition of a K-prime.
(b) ) (d): Assuming (b) and using comaximality, pick t 2 T with t  0mod \

fp j p 2 V1g and t  �1mod \ fq j q 2 V2g. As t is contained in each prime
in V1, Lemma 2 shows that every prime ideal in V1 intersects RŒt� at .P; t/RŒt�.
Similarly, since t C 1 2 \fq j q 2 V2g, we see that every prime in V2 intersects
RŒtC1� D RŒt� at .P; tC1/RŒtC1� D .P; tC1/RŒt�. Finally, since all primes
in V contract to one of these two primes, lying over inRŒt� � T shows they are
the only primes of RŒt� lying over P .

(c) , (d): For an integral extension of domainsR � RŒt�, letK be the kernel of the
mapRŒX� ! RŒt�. ThusK is an integral upper to 0 andRŒX�=K is isomorphic
to RŒt�. The prime ideals of RŒX�=K that lie over P all have the form L=K

where L is an upper to P in RŒX� with L containingK . The equivalence of (c)
and (d) follows easily. ut

Lemma 4. (a) Let R0 be an integrally closed domain, and let L be an ideal
of R0ŒX�. Then L is an integral upper to 0 if and only if L D f .X/R0ŒX�
for some non-constant monic irreducible polynomial f .X/ 2 R0ŒX�.

(b) Let R be an arbitrary domain. If f .X/ is a non-constant monic polynomial in
RŒX� which is irreducible in R0ŒX�, then f .X/RŒX� is an integral upper to 0
in RŒX�.

(c) Let R be an arbitrary domain. If g.X/ is a non-constant polynomial, then some
upper to 0 in RŒX� contains g.X/.
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Proof. (a) This is well known. (A proof is recorded in [5, Lemma 2.4].)
(b) Suppose R and f .X/ are as in (b). By part (a), f .X/R0ŒX� is an integral upper

to 0 in R0ŒX�, and so f .X/R0ŒX� \ RŒX� is an integral upper to 0 in RŒX�.
However, since f .X/ is monic in RŒX�, an easy exercise shows f .X/R0ŒX� \
RŒX� D f .X/RŒX�.

(c) LetF be the quotient field ofR. Since g.X/ is not a unit of F ŒX�, it is contained
in some prime ideal H of F ŒX�. Let L D H \ RŒX�. We have L \ R D
.H \RŒX�/\ .F \R/ D .H \ F /\R D 0\R D 0. Thus, L is an upper to
0 in RŒX�, and g.X/ 2 L. ut

Proposition 1. Let R be integrally closed. Then P is an H -prime if and only if it
is a K-prime.

Proof. Suppose P is not an H -prime. Then there exists a non-constant monic
irreducible f .X/ 2 RŒX� and comaximal non-constant monic polynomials g.X/
and h.X/ in RŒX� such that f .X/  g.X/h.X/modP . By part (a) of the previous
lemma, R � RŒX�=f .X/RŒX� is an integral extension of domains. The primes of
the larger domain that lie over P in R all have the form L=f .X/RŒX�, with L
an upper to P in RŒX� that contains f .X/. In other words, they are the images
in RŒX�=f .X/RŒX� of those uppers L to P that contain f .X/. As f .X/ 
g.X/h.X/modP with g.X/ and h.X/ comaximal, that set of L can be partitioned
into those L that contain g.X/ and those L that contain h.X/. Thus, the set of
primes lying over P is V D V1 [ V2, with V1 D fL=f .X/RŒX� j L is an upper
to P containing f .X/ and g.X/g and V2 D fL=f .X/RŒX� j L is an upper to
P containing f .X/ and h.X/g. The comaximality of g.X/ and h.X/ shows that
union is disjoint and also shows that the comaximality of \fq j q 2 V1g and
\fq j q 2 V2g. We claim that neither set in that union is empty. For that, it will
suffice (by symmetry) to show that there does exist an upper L to P in RŒX� with
f .X/ 2 L, such that g.X/ 2 L. Letting g0 represent g.X/modP , part (c) of the
previous lemma shows there is an upperL0 to 0 in .R=P /ŒX� with g0.X/ 2 L0. Now
it is easily seen thatL0 has the formL=PRŒX� for some upperL to P inRŒX�, with
g.X/ 2 L. Since f .X/�g.X/h.X/ 2 PRŒX� � L, we also have f .X/ 2 L. That
proves the claim. Finally, using Lemma 3((b) ) (a)), P is not a K-prime.

Conversely, suppose P is not a K-prime. By Lemma 3((a) ) (c)), there
is an integral upper K to 0 in RŒX� such that K is contained in the uppers
.P;X/RŒX� and .P;X C 1/RŒX�, but in no other uppers to P except those
two. By Lemma 4(a), K D f .X/RŒX� for some non-constant monic irre-
ducible polynomial f .X/ 2 RŒX�. Thus, the only uppers to P in RŒX� that
contain f .X/ are .P;X/ and .P;X C 1/. It easily follows that the factorization
of f .X/modP has the form Xn.X C 1/m (since if there was another factor,
Lemma 4(c) applied to R=P would show that a third upper to P also contains
f .X/). That shows P is not an H -prime. ut
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3 Concerning K -Primes P Not Contained in J.R/

Lemma 5. Let D be a domain between R and its quotient field, and let C D fr 2
R j rd 2 R for all d 2 Dg (the conductor of D to R). Suppose Q is a prime
ideal in R comaximal to C , and let q be a prime ideal of D lying over Q. Then the
following are true.

(a) For all n � 1, qn \ R D Qn.
(b) For all n � 1, the following are equivalent:

(i) Qn ¤ QnC1;
(ii) qn ¤ qnC1;

(iii) Qn 6
 qnC1.

(c) R=Q D D=q.

Proof. (a) Suppose qn \ R properly contains Qn. Then there exist sij 2 q with
r D Pm

jD1
Qn
iD1 sij 2 .qn \ R/�Qn. Now .Qn W r/ D fx 2 R j xr 2 Qng is

a proper ideal of R and consists of zero divisors moduloQn. By Zorn’s lemma,
it can be enlarged to an ideal N maximal with respect to consisting of zero
divisors modulo Qn, and by a standard argument [3, Theorem 1], N is a prime
ideal of R. As Qn � .Qn W r/ � N , we have Q � N , so that C is not
contained in N . Pick c 2 C � N . Now cnr D Pm

jD1
Q
iD1.csij / 2 Qn, since

each csij 2 q \ R D Q. Thus cn 2 .Qn W r/ � N . That contradicts that c is
not in N . Thus qn \R D Qn.

(b) Obviously (iii) implies (ii). Suppose (ii) holds, and let y 2 qn�qnC1. As C and
Q are comaximal, write 1 D cC z with c 2 C and z 2 Q. Raising both sides to
the nth power, we can write 1 D cn C w with w 2 Q. We have y D cny C wy.
Now wy 2 Qqn � qnC1, and since y is not in qnC1 we must have cny … qnC1.
Thus, cny … QnC1. However, since y 2 qn and Cq � Q, we have cny 2 Qn.
Thus (i) holds. Finally, suppose (i) holds. Then (iii) follows, since part (a) shows
qnC1 \R D QnC1.

(c) We have the natural embedding R=Q � D=q. In order to show equality, it
will suffice to show that for all y 2 D, there is a t 2 R with t � y 2 q. By
comaximality, there is a c 2 C with c � 1 2 Q � q. We have yc � y 2 q, and
so we let t D yc, which is in R. ut

Lemma 6. The following are equivalent for a domainD.

(i) D is integrally closed, and its quotient field is algebraically closed.
(ii) Every non-constant monic polynomial in DŒX� can be factored into a product

of monic linear polynomials in DŒX�.

Proof. Suppose (i) is true, and let f .X/ be a non-constant monic polynomial in
DŒX�. With ˝ the algebraically closed quotient field of D, in ˝ŒX� we see that
f .X/ factors into a product of linear polynomials. Let X � b be one of them. Since
f .b/ D 0, b is integral overD, and so X � b is in DŒX�. Thus (ii) holds.
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Now suppose (ii) holds. Let˝ be an algebraic closure of the quotient field ofD,
and let T be the integral closure of D in ˝ . Since ˝ is algebraic over the quotient
field of D, a standard argument shows ˝ is the quotient field of T . Therefore, it
will suffice to show D D T . Pick any t 2 T . There is a monic polynomial in DŒX�
having t as a root. By (ii), that monic polynomial factors into a product of monic
linear factors in DŒX�. Clearly one of those factors must be X � t , showing t 2 D.
ThusD D T . ut

We come to the main result of this section.

Theorem 3. Suppose P is not contained in the Jacobson radical of R, and let Q
be a prime of R comaximal to P . Consider the following three statements.

(i) Q ¤ Q2;
(ii) R=Q is not integrally closed;

(iii) the quotient field of R=Q is not algebraically closed.

(a) If any of (i), (ii), or (iii) is true, then P is not an H -prime.
(b) If the conductor C of R0 to R is comaximal to Q, and if any of (i), (ii), or

(iii) is true, then P is not a K-prime.

Proof. (a) Suppose first that Q ¤ Q2. Pick d 2 Q � Q2. Since P is comaximal
to Q and also to Q2, by the Chinese remainder theorem, pick b 2 R with
b  d modQ and b  1modP , and pick c 2 R with c  d modQ2 and
c  0modP . Let f .X/ D X2 C bX C c. Clearly f .X/  X.X C 1/modP .
Thus, to show P is not an H -prime, it will suffice to show f .X/ is irreducible
in RŒX�. That follows from Eisenstein’s criterion, since d 2 Q �Q2, implies
b 2 Q and c 2 Q �Q2.
Next, suppose either (ii) or (iii) is true. Then Lemma 6 shows there is some
monic irreducible polynomial ˛.X/ 2 .R=Q/ŒX� of degree n � 2. Let k.X/
be a monic pre-image of ˛.X/ in RŒX�. As P and Q are comaximal, by
the Chinese remainder theorem, there is a monic polynomial f .X/ 2 RŒX�

with f .X/  k.X/modQ and f .X/  Xn�1.X C 1/modP . The image of
f .X/ in .R=Q/ŒX� is ˛.X/ which is irreducible in .R=Q/ŒX�, and so f .X/ is
irreducible in RŒX�. The factorization of f .X/modP therefore shows that P
is not an H -prime.

(b) The proof is similar to that of (a), except we must move matters from R up
to R0, since the f .X/ 2 RŒX� mentioned in the proof of (a) will now need to
be irreducible in R0ŒX�.
First suppose that Q ¤ Q2. Let Q0 be a prime ideal of R0 lying over Q.
Using Lemma 5(b)((i) ) (iii)), we see that Q is not contained in Q02. Pick
d 2 Q �Q02, and pick b and c as in the proof of (a). Let f .X/ D X2CbXCc.
We have b 2 Q � Q0 and (since c � d 2 Q2 � Q02/c 2 Q0 � Q02.
Eisenstein’s criterion shows f .X/ is irreducible in R0ŒX�. By Lemma 4(b),
K D f .X/RŒX� is an integral upper to 0 in RŒX�. However, we also have
f .X/  X.X C 1/modP , showing that K is contained in .P;X/RŒX� and
.P;XC1/RŒX�, but in no other uppers to P in RŒX�. By Lemma 3((c) ) (a)),
P is not a K-prime.
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Now suppose that either R=Q is not integrally closed or its quotient field is not
algebraically closed. Let ˛.X/, k.X/, and f .X/ be as in the second half of the
proof of part (a). LetQ0 be a prime ideal ofR0 lying overQ. Using Lemma 5(c),
the image of f .X/ in .R=Q/ŒX� D .R0=Q0/ŒX� is ˛.X/, which is irreducible,
and so f .X/ is irreducible in R0ŒX�. ThusK D f .X/RŒX� is an integral upper
to 0 in RŒX�. Since f .X/  Xn�1.X C 1/modP , Lemma 3((c) ) (a)) shows
P is not a K-prime. ut

Heuristic Remark: If P is an H -prime not contained in J.R/, then for every
ideal Q comaximal to P , we must have (i), (ii), and (iii) of Theorem 3 all be false.
We feel that justifies saying that H -primes not contained in the Jacobson radical
are rather rare. In particular, since the Krull intersection theorem shows that for any
primeQ ¤ 0 in a Noetherian domain we haveQ ¤ Q2, we see that in a Noetherian
domain,P can only be anH -prime ifP � J.R/. Similarly,K-primes not contained
in the Jacobson radical are somewhat rare. However, Example 3 below shows both
H -primes and K-primes not contained in J.R/ do exist.

The next corollary is the first of three key pieces in the proof of Proposition 2.

Corollary 1. SupposeP is not contained in the Jacobson radical ofR, and suppose
P is also an ideal of R0. Let Q be a prime of R comaximal to P , and let Q0 be a
prime ideal of R0 lying over Q. If any one of the following three conditions holds,
then P is neither an H -prime nor a K-prime.

(i) Q0 ¤ Q02;
(ii) R0=Q0 is not integrally closed;

(iii) the quotient field of R0=Q0 is not algebraically closed.

Proof. Since P is an ideal in R0, we have PR0 � P � R, so that P � C , the
conductor of R0 to R. Therefore, Q is also comaximal to C . Using Lemma 5, we
see that Q0 ¤ Q02 if and only if Q ¤ Q2, and also R=Q D R0=Q0. The corollary
now follows from the theorem.

The hitch in the corollary is the need to have P be an ideal in R0. In Sect. 5, we
deal with that problem by mimicking P with a prime we will call P #. ut
Example 3. SupposeR is the integral closure of the integers in the algebraic closure
of the rationals. If P ¤ 0 is a prime ideal of R, then P is an H -prime and a
K-prime.

Proof. Suppose P is not an H -prime. Then there is a monic irreducible f .X/ 2
RŒX� such that f .X/ is reducible modulo P . That last implies the degree of f .X/
is at least 2. However, as f .X/ is irreducible, Lemma 6 shows the degree of f .X/
is 1, a contradiction. Thus P is an H -prime, and so by Proposition 1, it is also a
K-prime. ut
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4 Going Down from Maximals

We begin with another crucial result proven in [1, (2.3)]. (As in Theorem 1, we do
not know if the assumption P � J.R/ is required.)

Theorem 4. Let P � J.R/. The following are equivalent.

(i) P is an H -prime.
(ii) For all non-constant monic polynomials f .X/ 2 RŒX�, if there exist non-

constant monic polynomials g.X/ and h.X/ in RŒX� such that f .X/ 
g.X/h.X/modP and such that g.X/ and h.X/ are comaximal, then for any
upper K to 0 in RŒX� with f .X/ 2 K , either K and g.X/ are comaximal or
K and h.X/ are comaximal.

Definition 4. We say that P is a GDM prime if for all integral extension domains
T of R and all maximal ideals N of T , there is a prime ideal Q of T such that
Q � N and Q \ R D P . (By letting T D R, we see that a GDM prime must be
contained in J.R/.)

Remark 2. GDM stands for “going down from maximals.” In [5], GDM was defined
in terms of finitely generated integral extensions. However, by Lemma 8, it is easily
seen that it does not matter if we allow T to be arbitrary, or insist that it be finitely
generated, or even insist that it be generated by a single element over R. All are
equivalent.

In this section, we will show that if P is both aK-prime and a GDM prime, then
P is an H -prime. (Later, we will see that in many domains, K-primes are GDM
primes and so areH -primes.) The next result is the second key piece in the proof of
Proposition 2.

Theorem 5. If P is a K-prime and a GDM prime, then P is anH -prime.

Proof. It will suffice for us to assume that P is a GDM prime but not an H -prime
and to prove that P is not aK-prime. Since we know GDM primes are contained in
the Jacobson radical, Theorem 4 shows there are non-constant monic polynomials
f .X/, g.X/, and h.X/ in RŒX� and an upper, K , to 0 in RŒX� such that f .X/ 
g.X/h.X/modP , with g.X/ and h.X/ comaximal and with f .X/ 2 K , such that
K is not comaximal to either g.X/ or h.X/.

Let V D fp 2 Spec RŒX� j p is an upper to P and K � pg. If p 2 V ,
then f .X/ 2 K � p, and since f .X/  g.X/h.X/modP (and P � p), we
see that either g.X/ 2 p or h.X/ 2 p. Thus if Vg D fp 2 V j g.X/ 2 pg
and Vh D fp 2 V j h.X/ 2 pg, then V D Vg [ Vh. Since g.X/ and h.X/ are
comaximal in RŒX�, clearly Vg and Vh partition V .

We claim neither Vg nor Vh is empty. (The argument used in the analogous claim
in the proof of Proposition 1 will not work here, since we only have f .X/ 2 K

instead ofK D f .X/RŒX�.) SinceK is not comaximal to g.X/, there is a maximal
ideal N of RŒX� that contains both K and g.X/. Now N=K is a maximal ideal
in RŒX�=K , and this last ring is an integral extension domain of R. Since P is
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assumed to be a GDM prime, there must be a prime ideal p0=K of RŒX�=K with
p0=K � N=K and with .p0=K/\R D P . We easily see that p0 is an upper to P in
RŒX� such that K � p0 � N . Thus p0 2 V D Vg [ Vh. Suppose p0 2 Vh. Then by
definition, h.X/ 2 p0 � N . However,N also contains g.X/, which contradicts that
g.X/ and h.X/ are comaximal. Therefore, p0 is not contained in Vh and so must be
contained in Vg, which is therefore not empty. Similarly, Vh is not empty.

We easily see that in the integral extension domain RŒX�=K of R, the set of
primes lying over P is fp=K j p 2 V g D fp=K j p 2 Vgg [ fp=K j p 2 Vhg.
Neither subset in this partition is empty (by the preceding paragraph). Also, if g0
and h0 represent g.X/ and h.X/ taken modulo K , then since g.X/ and h.X/ are
comaximal in RŒX�, g0 and h0 are comaximal in RŒX�=K . It follows that \fp=K j
p 2 Vgg and \fp=K j p 2 Vhg are comaximal. It now follows from Lemma 3((b)
) (a)) that P is not a K-prime. ut

Although we do not need it, the following is perhaps worth recording.

Lemma 7. Let R � T be an integral extension of domains. Let Q be prime in T
with Q � J.T /, and let P D Q \R. If Q is an H -prime, then P is an H -prime.

Proof. Since Q � J.T /, we have P � J.R/. Assuming Q is an H -prime, we
will use Theorem 4 to show P is an H -prime. Let f .X/, g.X/, and h.X/ be non-
constant monic polynomials in RŒX� with f  g.X/h.X/modP and with g.X/
and h.X/ comaximal. Let K be an upper to 0 in RŒX� with f .X/ 2 K . (We must
show K is comaximal to either g.X/ or h.X/.) There is an upper L to 0 in T ŒX�
withL\RŒX� D K . In T ŒX�, we have f .X/  g.X/h.X/modQ, and f .X/ 2 L.
SinceQ is anH -prime contained in J.T /, Theorem 4 showsL is comaximal to one
of g.X/ or h.X/. We may suppose L and g.X/ are comaximal in T ŒX�. An easy
exercise (using going up) showsK and g.X/ are comaximal in RŒX�. ut

5 A Useful Construction

Lemma 8. Let R � T be rings, and let P be a prime ideal of R andM be a prime
ideal of T . Let W be the set of all prime ideals of T that lie over P . If W is not
empty, then there is a p 2 W such that p � M if and only if \fp0 j p0 2 W g � M .

Proof. One direction is trivial. For the other, assume \fp0 j p0 2 W g � M .
We will show there is some p 2 W with p � M . (This task is simple if W
happens to be finite.) Let p be a prime of T contained in M and minimal over
\fp0 j p0 2 W g. It is well known that p consists of zero divisors modulo that
intersection [3, Theorem 84]. That is, if x 2 p, then there is a y not contained
in \fp0 j p0 2 W g such that xy 2 \fp0 j p0 2 W g. Therefore, for some
p0 2 W , we have y … p0 but xy 2 p0. It follows that x 2 p0. This shows that
p � [fp0 j p0 2 W g. Now consider any x 2 p \ R. For some p0 2 W we have
x 2 p0 \R D P . Thus, p \ R � P , and obviously P � \fp0 j p0 2 W �g � p, so
that P � p \ R. We now have p \ R D P , showing p 2 W . Since p � M , that
completes the argument. ut
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Remark 3. Let R � T be an integral extension of rings. In [4, Proposition 2], it
is shown that R � T satisfies going down if and only if R � RŒt� satisfies going
down for all t 2 T . We leave to the reader the exercise of giving a second proof of
that fact, using Lemma 8. Although the two approaches have much in common, we
feel that Lemma 8 throws a bit more light on the subject.

Notation. Let P # D \fp0 2 Spec R0 j p0 \ R D P g. Also let R# D R C P # D
fr C x j r 2 R and x 2 P #g.

Lemma 9. R# is a domain between R and R0. P # is a prime ideal in R# (and an
ideal in R0) and is the only prime ideal of R# lying over P in R.

Proof. ObviouslyR � R# � R0, and using that P # is obviously an ideal in R0, it is
easily verified thatR# is a domain. The definition of P # easily impliesP # \R D P .
Suppose rCx and sCy are two elements ofR#, with r; s 2 R and x; y 2 P #, such
that .r C x/.s C y/ 2 P #. Since sx C ry C xy 2 P #, we see rs 2 P # \ R D P ,
and so we may assume r 2 P � P #, showing rCx 2 P #. Thus P # is a prime ideal
of R#. Finally, supposeQ is any prime ideal of R# lying over P in R. Then there is
a prime ideal p0 in R0 with p0 \ R# D Q, so that p0 \ R D P . By definition, we
have P # � p0, and so P # � p0 \ R# D Q. As P # and Q are both in R# and both
lie over P , incomparability shows thatQ D P #. Thus P # is the unique prime ofR#

lying over P . ut
We come to the third and final key piece in our puzzle.

Lemma 10. (a) P a K-prime if and only if P # is a K-prime.
(b) The following are equivalent.

(i) P is a GDM prime.
(ii) P # is a GDM prime.

(iii) P # � J.R#/.
(iv) P # � J.R0/.

Proof. (a) Suppose P # not a K-prime, so that there is an integral extension T of
R# in which exactly two primes, say p1 and p2, lie over P #, and p1 and p2 are
comaximal. Obviously p1 and p2 lie over P , and since P # is the unique prime
of R# lying over P , there are no other primes of T lying over P . Thus we see
P is not a K-prime.
Conversely, if P is not a K-prime, then by Lemma 3((a) ) (c)) there is
an integral upper K to 0 in RŒX� with K contained in .P;X/RŒX� and in
.P;X C 1/RŒX�, but in no other uppers to P . K can be lifted to an integral
upper L to 0 in R#ŒX�. Since K � .P;X/RŒX� and L lies over K , by
going up there is a prime ideal q of R#ŒX� containing L and lying over
.P;X/RŒX�. It is easy to verify that q must be an upper to some prime of
R# lying over P . The only such prime is P #, and so q is an upper to P #.
Since X 2 .P;X/RŒX� � q, we see that q must equal .P #; X/R#ŒX�. Thus
L � .P #; X/R#ŒX�. Similarly, L � .P #; X C 1/R#ŒX�. Now any upper q0 to
P # containing L contracts to an upper to P containing K . Thus q0 \ RŒX� is
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either .P;X/RŒX� or .P;X C 1/RŒX�. Since q0 contains either X or X C 1, it
equals either .P #; X/R#ŒX� or .P #; X C 1/R#ŒX�. Now Lemma 3((c) ) (a))
shows P # is not a K-prime.

(b) (i) ) (iii): Suppose (i) holds. Let M be a maximal ideal of R#. As R � R#

is an integral extension, the definition of GDM prime shows that M contains
a prime of R# lying over P . The only possibility is that M contains P #. Thus
P # � J.R#/, and so (i) ) (iii).
(iii) ) (iv): Use that maximal ideals of R0 contract to maximal ideals of R#.
(iv) ) (i): SupposeP # � J.R0/. We will show P is a GDM prime. Let T be an
integral extension domain of R, and let M be a maximal ideal of T . (We must
show some prime of T contained inM lies overP .) Let S be the domain gotten
by adjoining all the elements of R0 to T . Thus T � S is an integral extension,
and so we can lift M to a maximal ideal N of S . As R0 � S , N \ R0 is a
maximal ideal of R0.
Since (iv) shows \fp0 2 Spec R0 j p0 \ R D P g D P # � N \ R0, Lemma 8
shows there is a p 2 Spec R0 lying over P , with p � N \ R0. Since R0 (being
integrally closed) satisfies the famous going down theorem, there is a prime q
of S with q \ R0 D p and q � N . Contracting to T , we see that q \ T is
contained in N \ T D M and lies over P , showing P is a GDM prime.
(ii) , (iii): We iterate, now finding .R#/# and .P #/#. Since P # is the unique
prime ideal of R# lying over P in R, we see that a prime ideal p0 in R0 lies
over P # in R# if and only if it lies over P in R. Therefore, the definition shows
P ## D P #. Also, R## D R# C P ## D R# C P # D R#. Using the equivalence
of (i) and (iii) applied to P #, we now see P # is a GDM prime if and only if
P ## � J.R##/ if and only if P # � J.R#/. ut

Corollary 2. Suppose P is a K-prime. If P # � J.R#/, then P is an H -prime and
a GDM prime (so that P � J.R/).

Proof. If P # � J.R#/, by Lemma 10(b), P is a GDM prime. By Theorem 5, P is
an H -prime. ut

6 Proposition 2 (Slightly Augmented)

Proposition 2. Suppose that for all nonzero non-units y 2 R0, there is a prime ideal
Q0 of R0 containing y such that at least one of the following is true: Q0 ¤ Q02, or
R0=Q0 is not integrally closed, or the quotient field of R0=Q0 is not algebraically
closed. If P is a K-prime of R, then P � J.R/, and P is an H -prime and a GDM
prime.

Proof. Assume P is a K-prime of R. By Corollary 2, it will suffice to show that
P # � J.R#/. If not, let M be a maximal ideal of R# not containing P #, and write
x C y D 1 with x 2 P # and y 2 M . Obviously y is a nonzero non-unit in R# and
so also in the integral extension R0. By hypothesis, there is a prime ideal Q0 of R0
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containing y such that either Q0 ¤ Q02, or R0=Q0 is not integrally closed, or the
quotient field ofR0=Q0 is not algebraically closed. LetQ D Q0 \R#. Since y 2 Q,
we see that P # and Q are comaximal. By Corollary 1 applied to R#, and its primes
P # and Q, we see that P # is not a K-prime. That contradicts Lemma 10(a). ut

The next corollary shows that Proposition 2 applies to a large class of domains.

Corollary 3. SupposeR0 satisfies any one of conditions (i) through (iv) below. If P
is a K-prime of R, then P � J.R/, and P is an H -prime and a GDM prime.

(i) There is a subset S of SpecR0 such that R0 D \fR0
Q0 j Q0 2 Sg and such that

for each Q0 2 S , at least one of the following holds: (i) Q02 ¤ Q0; (ii) R0=Q0
is not integrally closed; or (iii) the quotient field of R0=Q0 is not algebraically
closed.

(ii) For every maximal ideal M of R0, either M ¤ M2 or R=M is not
algebraically closed.

(iii) R0 is an intersection of some set W of quasi-local domains .D˛;N˛/, each
between R0 and its quotient field, such that for each ˛, \fNn

˛ j n � 1g D 0.
(iv) R0 is the intersection of a set of DVRs between R0 and its quotient field. (This

case includes Krull domains and so includes the case that R is Noetherian.)

Proof. It will suffice to show that in each case, R0 satisfies the hypothesis of
Proposition 2.

(i) It will suffice to show that if y is a nonzero non-unit in R0, then one of the Q0
in S contains y. If not, then we would have y�1 2 \fR0

Q0 j Q0 2 Sg D R0, a
contradiction.

(ii) This follows from (i), since R equals the intersection of all of its maximal
localizations.

(iii) If N˛ D 0, then .D˛;N˛/ must be the quotient field of R0 and can be ignored.
Thus, we may assume N˛ ¤ 0. Let Q˛ D N˛ \ R0. For some 0 ¤ z 2 N˛,
write z D r=s with r and s nonzero in R0. Thus r D sz 2 N˛ \ R D Q˛,
showingQ˛ ¤ 0. Therefore,Q˛ 6
 \fNn

˛ j n � 1g. It follows that Q˛ ¤ Q2
˛.

By (i), it will suffice to show that every nonzero non-unit y of R0 is contained
in some Q˛. Were that false, then y would be a unit in each D˛ and so a unit
in R0, which is a contradiction.

(iv) This follows easily from (iii). ut
Question 2. Modifying our earlier question, we ask if the concepts ofH -prime and
K-prime are equivalent for GDM primes?
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Finitely Stable Rings

Bruce Olberding

Abstract A commutative ring R is finitely stable provided every finitely generated
regular ideal of R is projective as a module over its ring of endomorphisms. This
class of rings includes the Prüfer rings, as well as the one-dimensional local Cohen-
Macaulay rings of multiplicity at most 2. Building on work of Rush, we show
that R is finitely stable if and only if its integral closure R is a Prüfer ring, every
R-submodule of R containingR is a ring and every regular maximal ideal of R has
at most 2 maximal ideals in R lying over it. This characterization is deduced from a
more general theorem regarding what, motivated by work of Knebusch and Zhang,
we term a finitely stable subring R of a ring between R and its complete ring of
quotients.

Keywords Stable ideal • Finitely stable ring • Prüfer ring • Prüfer extension

Mathematics Subject Classification (2011): 13F05; 13B22; 13C10

1 Introduction

Following Sally and Vasconcelos [24, 25], an ideal I of a commutative ring R is
stable if I is projective as a module over its ring of endomorphisms End.I /. This
terminology originates with Lipman [13], who gave a different definition of stable
ideals (one that reflects the stabilization of a certain chain of blow-up algebras) that
Sally and Vasconcelos later observed was equivalent to the one given here when R
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is a one-dimensional local Cohen-Macaulay ring. When I is regular (meaning that
I contains a nonzerodivisor), the ring End.I / can be identified with a subring of
the total quotient ring Quot.R/ of R, and hence, using a standard characterization
of projective regular ideals, a regular ideal is stable if and only if it is an invertible
ideal of a ring betweenR and Quot.R/. Thus stability generalizes the multiplicative
notion of invertibility and has been studied from this point of view by many authors;
see [15] and its references for older background, and for some recent examples of
papers involving stable ideals in integral domains, see [2, 4, 6, 7, 9, 14, 21, 26–28].

A ring R is finitely stable if every finitely generated regular ideal of R is stable.
Thus a Prüfer ring, a ring in which every finitely generated regular ideal is invertible,
is finitely stable. However, the class of finitely stable rings is broader than the class
of Prüfer rings. For example, Bass [1, Corollary 7.3] showed that a reduced ring
for which every ideal can be generated by two elements has the property that every
ideal is stable. In particular, with k a field and X an indeterminate for k, the ring
kŒX2;X3� is a finitely stable ring. More generally, Rush [23, Proposition 2.5] has
shown that a ring for which every finitely generated ideal can be generated by
two elements is finitely stable. The quasilocal reduced group rings with the two-
generator property (and hence the property of being finitely stable) are characterized
in [23]. We give several other sources of examples of finitely stable rings in Sect. 6.

The main goal of this article is to characterize a finitely stable ring R in terms of
its integral closure R. We show in Corollary 5.11 that a ring R is finitely stable if
and only if R is a Prüfer ring; everyR-module between R and R is a ring; and each
regular maximal ideal of R has at most 2 maximal ideals in R lying over it. In fact,
much of this characterization was proved already by Rush [23, Proposition 2.1],
who showed that if R is a finitely stable ring, then R is a Prüfer ring and every
R-module between R and R is a ring. (What we term a finitely stable ring, Rush
calls “stable.” We reserve stable ring for the case in which every regular ideal of
R is stable.) Rush also proved that the converse holds whenever R is a quasilocal
ring having at most 2 maximal ideals in R lying over it. Thus to combine these two
results into a characterization of finitely stable rings two gaps remain: to remove the
quasilocal hypothesis and prove that the integral closure of a finitely stable ring can
have at most 2 maximal ideals lying over a maximal ideal ofR. In Theorem 5.4, we
fill in this gap, and in subsequent corollaries we draw a number of conclusions from
this result.

Moving beyond the classical setting, we develop this theorem from a more
general point of view based on that of the treatment of Prüfer subrings given by
Knebusch and Zhang in [10]. This allows us to relativize the notion of a finitely
stable ring: regular ideals are replaced by dense ideals, and rather than requiring all
finitely generated regular (or dense) ideals to be invertible, we require only certain
filters of them to have this property, those that blow up in a fixed ring between R
and its complete ring of quotients. In Sect. 2, we recast the notion of stability in this
more general setting, and in Sect. 5 we define finitely stable subrings. The idea is to
consider a ringR and a ring S betweenR and its complete ring of quotientsQ.R/ (a
notion we review in Sect. 2); then R is finitely stable in S if every finitely generated
ideal I of S such that IS D S is stable. As in the theory of Prüfer subrings, a
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technical assumption—thatR is “tight” in S—is also needed here; tight extensions,
which are a special class of flat extensions, are reviewed in Sect. 4. In any case,
it follows that a ring R is finitely stable (in the traditional sense) if and only if
R is finitely stable in its total ring of quotients (in this new sense). Corollary 6.5
gives one application which the flexibility of this approach affords over the classical
approach. Other motivations for this approach to multiplicative ideal theory can be
found in [10].

In a future paper we will carry these ideas through for the class of stable rings,
those rings for which every regular ideal is stable. We generalize this to the setting of
stable subrings, and we classify such rings using pullback decompositions of their
localizations at maximal ideals. In doing so, we correct also an error from [16],
where it is asserted that every quasilocal stable domain is the pullback of a strongly
discrete valuation domain V and a one-dimensional stable domain whose quotient
field is the residue field of V . (The error is in Lemma 4.10 of [16], in the assertion
that P is a primary ideal.) While it is the case that every such pullback is a stable
domain, not every quasilocal stable domain can be decomposed as a pullback of a
strongly discrete valuation domain and a one-dimensional stable domainD; instead,
zerodivisors and other subtleties

Conventions. The total ring of quotients of a ring R is denoted Quot.R/, while
the complete ring of quotients of R is denoted Q.R/. Integral closure is denoted
R but depends on the ambient ring, in the sense that when we work within a ring
extension R � S , then R denotes the integral closure of R in S .

2 Preliminaries on Stable Ideals

In this section we recast some basic properties of stable ideals in the more general
setting of dense ideals, and we show that as with regular ideals, dense stable ideals
can be characterized by multiplicative properties. We recall first some terminology
and notation.

(2.1) An ideal I of the ring R is dense if the only element r in R for which rI D 0

is r D 0. In particular, regular ideals are dense.
(2.2) When A and B are R-modules, we define .B WR A/ D fr 2 R W rA � Bg,

and when R is clear from context, we write .B W A/ for .B WR A/.
(2.3) The ring S is a ring of quotients ofR if for all x 2 S , .R W x/S is a dense ideal

of S . There exists a ring of quotients Q.R/, the complete ring of quotients
of R, such that for every ring of quotients S of R, there is a unique ring
homomorphism S ! Q.R/, and every such homomorphism is injective [11,
Sect. 2.3]. Thus we may view a ring of quotients of R as a subring of Q.R/.
In turn, every ring between R andQ.R/ is a ring of quotients of R.

(2.4) The classical ring of quotients is the localization of R at the multiplicatively
closed set of nonzerodivisors of R. We denote this ring by Quot.R/, and in
line with the above convention we assume Quot.R/ � Q.R/.
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(2.5) When A and B are R-modules, we let ŒB W A� D fq 2 Q.R/ W qA � Bg,
and when S is a ring between R and Q.R/, we set ŒB WS A� D S \ ŒB W A�.
In particular, .B W A/ D R \ ŒB W A�.

(2.6) Let R � S � Q.R/ be rings, and let A be an R-submodule of Q.R/.
Then A is invertible if there exists an R-submodule B of Q.R/ such that
AB D R; equivalently, AŒR W A� D R. If also A and B are R-submodules
of S , then A is an S -invertible R-module. An ideal I of R is invertible if
and only if I is a dense ideal and a finitely generated projective R-module
[10, Proposition 2.4, p. 99].

(2.7) We say that an R-submodule I of Q.R/ is a fractional ideal of R if there
exists an invertible ideal J of R such that IJ � R. The fractional ideal I is
dense if the only element r of R for which rI D 0 is r D 0. With J as above,
then I is dense if and only if IJ is dense. Every invertible R-submodule of
Q.R/ is a dense fractional ideal of R.

(2.8) For a fractional ideal I of R, let E.I / D ŒI W I �. When I is dense, then the
canonical mapping � W E.I / ! EndR.I / W q 7! fq , where fq.x/ D qx

for all x 2 I , is an isomorphism of R-algebras. When I is an ideal, this is a
consequence of [11, Corollary, p. 99]. To see that it is also true when I is a
dense fractional ideal, note first that since I is not annihilated by any nonzero
element inQ.R/ [11, Corollary, p. 41], then theR-algebra homomorphism �

is injective. Thus we need only to verify that � is surjective. Let f 2 EndR.I /,
and let J be an invertible ideal such that IJ � R. Then since IJ is dense
in R and f .IJ / � IJ , there exists by [11, Corollary, p. 99] an element q of
Q.R/ such that f .x/ D qx for all x 2 IJ . Since J is invertible, there exist
x1; : : : ; xn 2 J and y1; : : : ; yn 2 ŒR W J � with 1 D P

i xiyi . Let x 2 I . Then,
multiplying by f .x/, we have f .x/ D P

i xi yif .x/ D P
i yif .xix/ DP

i yi qxix D qx
P

i xi yi D qx, which proves that f D �.q/ and hence �
is an isomorphism.

(2.9) A dense fractional ideal I of R is stable if it is projective over its ring of
endomorphisms. Thus by (2.8), I is stable if and only if I is projective as an
E.I /-module. We show in Proposition 2.11 that a dense fractional ideal I is
stable if and only if I is an invertibleE.I /-module.

Lemma 2.10 (Knebusch–Zhang [10]). Let R � S � Q.R/ be rings. The
following statements are equivalent for an R-submodule I of S :

(1) I is an S -invertible R-module.
(2) IS D S and ŒJ W I �I D J for all R-submodules J of S .
(3) IS D S and I is an invertible R-module.
(4) IS D S and I is a projective R-module.

Proof. Since the proposition is not explicitly stated in [10], we indicate how it
follows from standard arguments and results in [10].

(1) ) (2). That ŒJ W I �I D J for all R-submodules J of S is given by [10,
Lemma 1.11, p. 90]. To see that IS D S , let J be an R-submodule of S such
that IJ D R. Then ŒR W I � D J � S . Since ŒS W I �I D S , multiplying
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both sides by ŒR W I � gives ŒS W I � D ŒR W I �S . Thus since S � ŒS W I � and
ŒR W I � � S , we have ŒR W I �S D S . Multiplication by I then gives S D IS .

(2) ) (3). With J D R, (2) implies that ŒR W I �I D R, and hence I is invertible.
(3) ) (1). Since I is invertible, multiplying IS D S by ŒR W I � gives

S D ŒR W I �S . Hence ŒR W I � � S , which proves that I is S -invertible.
(1) , (4). This follows from [10, Proposition 2.3, p. 97]. ut

From the lemma, we deduce a useful multiplicative characterization of stable
fractional ideals.

Proposition 2.11. A dense fractional ideal I of the ring R is stable if and only if I
is an invertible E.I /-module; if and only if 1 2 ŒI W I 2�I .

Proof. By (2.8), I is stable if and only if I is projective as an E.I /-module. Thus
by Lemma 2.10 (applied to the case where S D Q.R/), I is stable if and only if I
is an invertibleE.I /-module; if and only if 1 2 ŒE.I / W I �I D ŒI W I 2�. ut

One consequence of the criterion in Proposition 2.11 is that stability of ideals
transfers to localizations and ring extensions. More generally, we have the following
corollary.

Corollary 2.12. Let R1 � S1 � Q.R1/ and R2 � S2 � Q.R2/ be ring extensions
such that there exists a homomorphism of rings � W Q.R1/ ! Q.R2/ with �.R1/ �
R2 and �.S1/ � S2. If I is a stable fractional ideal of R1 such that IS1 D S1, then
�.I /R2 is a stable fractional ideal of R2 with �.I /S2 D S2.

Proof. Since IS1 D S1, then I is dense and �.I /S2 D S2. Since I is a fractional
ideal, there exists an invertible ideal J of R such that IJ � R. Then �.J /R2 is
an invertible ideal of R2 (with inverse �.J�1/R2) and �.I /�.J /R2 � R2. Hence
�.I /R2 is a fractional ideal of R2 that is also dense since �.I /S2 D S2. Now since
I is a stable dense fractional ideal of R, Proposition 2.11 implies that there exist
x1; : : : ; xn 2 I and y1; : : : ; yn 2 ŒI W I 2� with 1 D P

xiyi . Thus

1 D �.1/ D
X

�.xi /�.yi / 2 Œ�.I /R2 W �.I /2R2��.I /R2;

and hence by Proposition 2.11, �.I /R2 is a stable fractional ideal of R2. ut
The next proposition, which is well known for the case where I is a regular ideal,

is a simple application of Proposition 2.11.

Proposition 2.13. Suppose that I is a dense fractional ideal of the ring R:

(1) If I 2 D AI for some invertible fractional ideal A of R with A � I , then
I D AE.I / and I is stable.

(2) If I is stable and J is also a stable dense fractional ideal, then IJ is stable.
(3) If J is a stable dense fractional ideal of R such that E.J / � E.I / and IJ is

stable, then I is stable.
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Proof. (1) Since A � I , then AE.I / � I . To verify the reverse inclusion, let
x 2 I . Then xI � I 2 D AI , so xŒR W A�I � I , which shows that xŒR W A� �
E.I / and hence x 2 AE.I /. Therefore, I D AE.I /. Since A is an invertible
ideal of R, we have by Corollary 2.12 that I D AE.I / is stable.

(2) By Lemma 2.10(2),

ŒE.IJ / W IJ �IJ D ŒŒE.IJ / W J � W I �IJ D ŒE.IJ / W J �J D E.IJ /:

Thus IJ is an invertible E.IJ /-module, and since IJ is a dense fractional
ideal, Proposition 2.11 implies that IJ is stable.

(3) We may assume without loss of generality that E.J / D R. Then by Proposi-
tion 2.11, J is an invertible R-module. Since IJ is stable and J is invertible,
Lemma 2.10 and Proposition 2.11 imply that

1 2 ŒIJ W .IJ /2�IJ D ŒŒIJ W I 2J � W J �IJ D ŒIJ W I 2J �I D ŒI W I 2�I;

so that again by Proposition 2.11, I is stable. ut

3 Stable Ideals in Quadratic Extensions

Handelman [8, p. 147] shows that if R is a one-dimensional Noetherian domain
having module-finite integral closure R in its quotient field, then R is a stable
domain if and only if every ring between R and R is a Gorenstein ring. In proving
this, Handelman showed that when R is a stable domain, every R-module B with
R � B � R is a ring. We single out this last property and say that an extension of
rings R � S is quadratic if every R-submodule of S containing R is a ring. Thus
R � S is a quadratic extension if and only if for all x; y 2 S , xy 2 xRC yRCR;
if and only if every finitely generated R-submodule A of S containing R satisfies
A2 D A. The terminology here is motivated by the fact that when R � S is a
quadratic extension, then x2 2 xR C R for all x 2 S . In particular, quadratic
extensions are also integral extensions. Moreover, if two is a unit in R, then R � S

is a quadratic extension if and only if every t 2 S is the root of a monic degree 2
polynomial with coefficients in R. Quadratic extensions are also studied in [18–20],
where they play a key role in analyzing some classes of analytically ramified local
Noetherian rings.

Lemma 3.1. The following are equivalent for an extension of rings R � S :

(1) R � S is a quadratic extension.
(2) For each multiplicatively closed subset X of R, RX � SX is a quadratic

extension.
(3) For each maximal idealM of R, RM � SM is a quadratic extension.
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Proof. To prove that (1) implies (2), let X be a multiplicatively closed subset of
R, and let A be a finitely generated RX -submodule of SX containing RX . Write
A D .a1; : : : ; an/RX for some a1; : : : ; ax 2 A. Then for each i , ai D bi=xi for
some bi 2 S and xi 2 X . Define B D .1; b1; : : : ; bn/R. Then A � BX . Also, if
x 2 X , then 1=x 2 A since RX � A, and bi=x D ai .xi=x/ 2 A. Thus BX � A,
and hence BX D A. Moreover, R � B � S , so since R � S is quadratic,
B2 D B . Hence A2 D B2

X D BX D A, proving that A is a ring. This shows
that (1) implies (2). That (2) implies (3) is clear. To see that (3) implies (1), let C be
a finitely generated R-submodule of S containing R. Then for each maximal ideal
M ofR,RM � CM � SM , so by (3), C2

M D CM . ThusC2 D C , since this equality
holds locally, and this proves that C is a ring and R � S is a quadratic extension.ut

We recall next Handelman’s classification of quadratic extensions of finite-
dimensional algebras in order to apply it in Proposition 3.3 and Theorem 5.4 to
quadratic extensions of the residue field of a quasilocal ring. We denote by F2 the
field Z=2Z.

Lemma 3.2 (Handelman [8, Lemma 5]). Let F be a field and let S be a finite-
dimensional F -algebra such that F � S is a quadratic extension. Then S is
isomorphic as an F -algebra to one of the following: F ; a quadratic extension field
of F ; a quasilocal ring with square zero maximal ideal and residue field isomorphic
to F ; F 	 F ; or F 	 F 	 F . In the last case, F D F2.

Proposition 3.3. LetR � S be a quadratic extension of rings. If P is a prime ideal
of R, then S has at most 3 prime ideals lying over P .

Proof. By Lemma 3.1, RP � SP is a quadratic extension, so to simplify notation,
we assume that R is a quasilocal ring with maximal ideal M , and we show that
there are at most 3 prime ideals of S lying over M . In fact, since R � S is an
integral extension, it suffices to show that S has at most 3 maximal ideals. Suppose
by way of contradiction that S has at least 4 maximal ideals, say M1;M2;M3;M4.
Since R � S is an integral, extension, these must lie over M . For each i D
1; 2; 3; 4, choose xi in Mi but in no other maximal ideal Mj , j ¤ i . Define
T D R C .x1; x2; x3; x4/R. Since R � S is a quadratic extension, T is a ring,
so T=MT is a finite-dimensional R=M -algebra. Also, since T � S is an integral
extension, the contracted ideals Mi \ T are maximal in T , and the choice of the
xi implies that these ideals are distinct. Therefore, T=MT has at least 4 maximal
ideals. But since .R C MT /=MT � T=MT is also a quadratic extension and
.R C MT /=MT Š R=M is a field, T=MT must satisfy one of the conditions of
Lemma 3.2, an impossibility since T has 4 maximal ideals. Thus S has no more
than 3 maximal ideals. ut

The next proposition, which is based on an argument from Rush [22,
Lemma 2.1], provides a first example of the connection between quadratic
extensions and stability.
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Proposition 3.4. Let R � S � Q.R/ be rings. Then R � S is a quadratic
extension if and only if R � S is an integral extension for which every finitely
generated R-submodule I of S containingR is an invertible E.I /-module.

Proof. If R � S is a quadratic extension, then R � S is an integral extension and
every R-submodule of S containing R is a ring, hence is invertible as a module
over itself. Conversely, suppose that every finitely generated R-submodule I of
S containing R is an invertible E.I /-module, and let A be a finitely generated
R-submodule of S containing R. We claim that A is a ring. More precisely, we
claim that A D E.A/. Since 1 2 A, it follows that E.A/ � A, so we need
only to show that A � E.A/. Since A is an invertible E.A/-module, we have
1 2 ŒE.A/ W A�A � ŒE.A/ W A�S . Also, since AS D S , it follows that
ŒE.A/ W A� � S . Thus S D ŒE.A/ W A�S , and since 1 2 A, ŒE.A/ W A� is an
ideal of E.A/ that does not survive in S . Yet E.A/ � S , and since S is integral
over R, then S is integral over E.A/. Therefore, since ŒE.A/ W A� does not survive
in S , it must be that 1 2 ŒE.A/ W A�, Hence A � E.A/. This proves A D E.A/,
and hence R � S is a quadratic extension. ut

Although not needed in later sections, we note in the next proposition that in
the special case where S D E.M/ for a maximal ideal M , the condition in
Proposition 3.4 that R � S is integral is redundant.

Proposition 3.5. Let R be a ring, and suppose that M is a maximal ideal of R.
Then R � E.M/ is a quadratic extension if and only if every finitely generated
R-submodule I of E.M/ containingR is an invertible E.I /-module.

Proof. Suppose that every finitely generated R-submodule I of E.M/ containing
R is E.I /-invertible. By Proposition 3.4, to prove that R � E.M/ is quadratic,
it suffices to prove that R � E.M/ is an integral extension. If R D E.M/, there
is nothing to prove, so we assume that R ¨ E.M/. Let x 2 E.M/ n R, and
set A D xR C R. We show that A is a ring (in particular, E.A/ D A), so that
x2 2 xR C R, thus proving the claim. Since 1 2 A, we have E.A/ � A � E.M/.
Also, R=M � E.A/=M � A=M . Since A=M has dimension at most 2 as an
R=M -vector space, this forces R D E.A/ or E.A/ D A. Suppose that R D E.A/.
Since AM � R, we haveM � ŒR W A�. On the other hand, since 1 2 A andR ¨ A,
it must be that ŒR W A� ¨ R. Hence M D ŒR W A�. Now since A is an invertible
E.A/-module and we have assumed that E.A/ D R, it is the case that ŒR W A� is an
invertible ideal ofR. ThusM is an invertible ideal ofR. But this forcesE.M/ D R,
contrary to assumption. Thus it must be that A D E.A/, and hence R � E.M/ is a
quadratic extension. The converse is clear in light of Proposition 3.4. ut

The following proposition can be viewed as a kind of converse to Propositions 3.4
and 3.5. The argument is due to Rush and is adapted from the proof of Theorem 2.3
in [23].

Proposition 3.6 (cf. Rush [23, Theorem 2.3]). Let R � S � Q.R/ be rings such
that R � S is a quadratic extension and S has at most 2 maximal ideals. If I is an
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R-submodule of S such that IS is a principal regular ideal of S , then I D yE.I /

for some nonzerodivisor y 2 S and hence I is an invertible E.I /-module.

Proof. By assumption there exists a nonzerodivisor x 2 S such that IS D xS .
We first show that x can be replaced by an element of I . To do this, it suffices
to prove that there exists y 2 I such that y is not in any ideal of the form IN ,
N a maximal ideal of S . For then, since IS=IN is a one-dimensional S=N -vector
space, we have xS D IS D ySCIN D ySCxN , and since x is a nonzerodivisor
and this equality holds for each maximal ideal N of S , it follows that xS D yS .
Thus we show such a choice of y exists. LetN1 be a maximal ideal of S , and observe
that I 6� N1I . For otherwise IS � IN1, so that x 2 IN1 D xN1, a contradiction
to the fact that x is a nonzerodivisor in S . (Since x is a nonzerodivisor in R, it is a
nonzerodivisor inQ.R/ also [11, Corollary, p. 41].) If N1 is the only maximal ideal
ofR1, then we choose y 2 I nIN1. Otherwise, by assumption, S has only one other
maximal idealN2. As above, I 6� IN2. Furthermore, I 6D .IN1\R/[ .IN2 \R/,
since an abelian group is not the union of two proper subgroups, so there exists
y 2 In.IN1[IN2/. Therefore, in either case, we have y 2 I with IS D xS D yS .
Finally, y is a nonzerodivisor of S and R � y�1I � S . Hence, since R � S is a
quadratic extension, y�1I is a ring, which implies that I D yE.I /. ut

4 Prüfer Subrings

In this section we review the notion of a Prüfer subring from [10], and we make a
few observations regarding these rings that are needed in the next section:

(4.1) An extension of rings R � S is weakly surjective if for every prime ideal
P of R with PS ¤ S , the canonical mapping RP ! SP is surjective;
equivalently, the inclusion map R ! S is flat and an epimorphism in the
category of rings [10, Theorem 4.4, p. 42]. We rely on the following ideal-
theoretic characterization: An extension R � S is weakly surjective if and
only if .R W x/S D S for all x 2 S [10, Theorem 3.13, p. 37]. Thus when
R � S is weakly surjective, then S is a ring of quotients of R and we may
assume that R � S � Q.R/.

(4.2) A tight extensions is a special case of a weakly surjective extension. Follow-
ing [10], the subring R of S is tight in S if for each s 2 S , there exists
an S -invertible ideal I of R such that I � .R W s/; equivalently, for every
finitely generated R-submodule I of S , there exists an S -invertible ideal J
of R such that IJ � R. By contrast, R � S is weakly surjective if and
only if the ideal I here is only asserted to be finitely generated and S -regular.
Colloquially, “fractions” in a weakly surjective extension can be cleared by
finitely generated S -regular ideals, while those in a tight extension can be
cleared by S -invertible ideals. In any case, since a tight extension R � S is
weakly surjective, and hence is a ring of quotients, we can view S as a subring
of Q.R/.
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(4.3) When R has only finitely many maximal ideals, then R is tight in S if and
only if S D RX for some multiplicatively closed subsetX of nonzerodivisors
ofR [10, Proposition 4.16, p. 116]. In particular, whenR is tight in S and has
only finitely many maximal ideals, then R � S � Quot.R/.

(4.4) In [10], a Prüfer subring is defined in terms of Manis pairs. For our purposes
we take a multiplicative characterization of Prüfer subrings [10, Theorem 2.1,
p. 94] as our definition: The subring R of S is Prüfer in S if R � S is a tight
extension and every finitely generated S -regular ideal of R is S -invertible,
where an R-submodule I of S is S -regular if IS D S . This notion
encompasses the traditional concept of a Prüfer ring as one in which every
finitely generated regular ideal of R is invertible: A ring R is a Prüfer ring if
and only if R is a Prüfer subring of Quot.R/.

We collect in the next proposition two characterizations of Prüfer subrings
from [10], and we add two more that are needed later. Many other interesting
characterizations, examples, and consequences can be found in [10].

Lemma 4.5. The following statements are equivalent:

(1) R is Prüfer in S .
(2) R � S is weakly surjective and every finitely generated S -regular ideal I of R

is invertible.
(3) R is integrally closed in S and RŒs� D RŒs2� for all s 2 S .
(4) RX is Prüfer in SX for each multiplicatively closed subset X of R.
(5) RM is Prüfer in SM for each maximal idealM of R.

Proof. The equivalence of (1) and (3) can be found in [10, Theorem 5.2, p. 47], and
the equivalence of (1) and (2) is in [10, Theorem 2.1, p. 94].

(3) ) (4). Since (3) is equivalent to (1), to verify (4) we need only to show that the
extensionRX � SX satisfies the criterion in (3). Let s 2 S and b 2 X . Then by
(3), s D P

i ri s
2i for some ri 2 R. Thus

s

b
D
X

i

b2i ri

b

s2i

b2i
2 RXŒs2=b2�;

which shows thatRXŒs=b� D RXŒs
2=b2�. SinceR is integrally closed in S , then

RX is integrally closed in SX , and hence RX is Prüfer in SX .
(4) ) (5). This is clear.
(5) ) (3). Since (1) is equivalent to (3), then RM is integrally closed in SM for

each maximal ideal M of R. Thus R is integrally closed in S . Moreover, the
equivalence of (1) and (3) implies that for each s 2 S , s=1 2 RMŒs

2=1� for all
maximal ideals M of R, and hence s 2 RŒs2�. Thus (3) is verified. ut

The next proposition, which is needed in the next section, generalizes to the
setting of Prüfer subrings a few well-known facts about prime ideals in overrings of
Prüfer domains.



Finitely Stable Rings 279

Proposition 4.6. SupposeR is Prüfer in S and A is a ring between R and S . Then
the following statements hold for A:

(1) If I is an ideal of A, then I D .I \R/A; if I is S -regular, then so is I \ R.
(2) The set of S -regular prime ideals of A is a tree with respect to set inclusion.
(3) IfR has at most n S -regular maximal ideals, thenA has at most n incomparable

S -regular prime ideals.

Proof. (1) Since R is Prüfer in S , the extension R � A is weakly surjective
[10, Theorem 5.2, p. 47], and so every ideal I of A satisfies I D .I \ R/A

[10, Proposition 4.6, p. 43], from which it follows that if I is S -regular, then so
is I \R.

(2) Since R is Prüfer in S , A is also Prüfer in S [10, Corollary 5.3, p. 50]. Suppose
that P and Q are S -regular prime ideals of A contained in a maximal ideal
M of A. Since PQS D S , there exists a finitely generated S -regular ideal
I � PQ. Thus since A is Prüfer in S and I is S -regular,A=I is an arithmetical
ring [10, Theorem 2.8, p. 101], and hence PM � QM or QM � PM
[12, Example 18(b), p. 151]. Since P and Q are prime ideals, it follows that
P and Q are comparable, and this verifies (2).

(3) Suppose that P1; : : : ; PnC1 are n C 1 incomparable S -regular prime ideals of
A. Then by (1), P1 \R; : : : ; PnC1 \R are nC 1 incomparable S -regular prime
ideals of R with Pi D .Pi \ R/A. Yet by (2), the S -regular prime ideals of R
form a tree with respect to inclusion, so since there are at most nmaximal ideals
of R, it is necessary that Pi \ R D Pj \ R for some i ¤ j , a contradiction to
the fact that P1 \R; : : : ; PnC1 \R are incomparable. Therefore,A has at most
n incomparable prime ideals. ut

Sega [26, Proposition 3.10] uses Peskine’s version of Zariski’s Main Theorem to
prove that if a domain R has a Prüfer integral closure R in its quotient field, then
every overringA of R is flat over A\R. In Proposition 4.7 we give a more general
version of Sega’s theorem, one that is adjusted to the generality of our setting and
one whose relevance is that finitely stable rings have Prüfer integral closures (see
Theorem 5.4). To do so, we use Evans’ version of Zariski’s Main Theorem [5, p. 45],
since it permits zerodivisors: Let R � S be rings with R integrally closed in S .
Suppose that there exist s1; : : : ; sn 2 S with S integral over RŒs1; : : : ; sn�. If there
exists a prime ideal P of S that is maximal and minimal with respect to the prime
ideals of S lying over P \R, then there exists b 2 R nP such that Rb D Sb , where
the subscript denotes localization at the set f1; b; b2; : : :g.

Proposition 4.7. Let R be a subring of S . When the integral closure R of R in S is
Prüfer in S , then every ring T between R and S is a weakly surjective extension of
T \ R.

Proof. Define A D R\T , and let B be a ring between A and T . We first show that
no two distinct comparable prime ideals of B lie over the same prime ideal in A.
Suppose that there exist distinct prime ideals P 
 Q ofB such that P\A D Q\A.
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Let B denote the integral closure of B in S . By Going Up, there exist distinct prime
ideals P1 
 Q1 of B such that P1 \ B D P and Q1 \ B D Q. Now A D R is a
Prüfer subring of S , so since A � B � S , B is a weakly surjective extension of A
[10, Theorem 5.2, p. 47]. Therefore, ideals ofB are extended from their contractions
to A [10, Proposition 4.6, p. 43], so that P1 D .P1 \ A/B and Q1 D .Q1 \ A/B .
Since P1 ¤ Q1, it follows that P1 \ A 
 Q1 \ A are distinct comparable prime
ideals of A lying over the same prime ideal of A. Since this contradicts the fact that
A is an integral extension of R, we conclude that no two distinct comparable prime
ideals of B lie over the same prime ideal of A.

To prove next that A � T is a weakly surjective extension, it suffices by [10,
Theorem 3.13, p. 37] to show that for every prime ideal P of T , when TŒP � D fx 2
S W tx 2 T for some t 2 T n P g and AŒP\A� D fx 2 S W ax 2 A for some
a 2 A n P g, then TŒP � � AŒP\A�. Let P be a prime ideal of T , and let x 2 TŒP �.
Then there exists t 2 T n P such that tx 2 T . Now AŒt; tx� is a finitely generated
A-subalgebra of T , and we have established above that no two distinct comparable
prime ideals of AŒt; tx� lie over the same prime ideal of A. Hence we may apply
Zariski’s Main Theorem to obtain b 2 A n P such that Ab D AŒt; tx�b . Thus
there exists k > 0 such that bkt; bktx 2 A. Since bkt 2 A n P , it follows that
x 2 AŒP\A�. Therefore, TŒP � � AŒP\A�, and we conclude that A � T is a weakly
surjective extension. ut
Corollary 4.8. SupposeR � A � S are rings and the integral closureR of R in S
is Prüfer in S . If P � Q are prime ideals of A with P \R D Q\R, then P D Q.

Proof. Let P and Q be prime ideals of A such that P � Q and P \ R D Q \ R.
Since B WD A \ R is the integral closure of R in A, this forces P \ B D Q \ B .
By Proposition 4.7, B � A is a weakly surjective extension, so P D .P \ B/A D
.Q \ B/A D Q [10, Proposition 4.6, p. 43]. ut

5 Finitely Stable Rings

When R is a subring of the ring S , we say that R is finitely stable in S if R is tight
in S and every finitely generated S -regular ideal of R is stable. It follows that R is
a finitely stable ring if and only if R is finitely stable in Quot.R/. The main goal of
this section is to prove in Theorem 5.4 a characterization of finitely stable subrings
and draw some consequences.

We observe first that the property of being a finitely stable subring is inherited by
each intermediate ring.

Proposition 5.1. If R is finitely stable in S , then every ring between R and S is
finitely stable in S .

Proof. LetA be a ring withR � A � S , and let I be an S -regular finitely generated
ideal of A. Then there exist y1; : : : ; ym 2 I such that I D .y1; : : : ; ym/A. Since
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R � S is a tight extension, there exists an S -invertible ideal L of R such that
J WD .y1; : : : ; ym/L � R. Since J is an S -regular finitely generated ideal ofR, J is
stable. Moreover, sinceL is an invertible ideal ofR, Proposition 2.13(3) implies that
the dense fractional ideal .y1; : : : ; ym/R is stable. Consequently, by Corollary 2.12,
I is a stable ideal of A.

Finally, since R is tight in S , so is A. Indeed, let x 2 S . Then there exists an
S -invertible ideal H of R such that xH � R, and hence xHA � A. Since H is
invertible in R, then HA is invertible in A. By Lemma 2.10, HS D S , and hence
.HA/S D S . Thus by Lemma 2.10,HA is S -invertible, and henceA is tight in S .ut

The next lemma is a technical consequence of Handelman’s lemma (Lemma 3.2)
that is needed in the proof of Theorem 5.4 to reduce from an arbitrary algebra over
a field to a finite-dimensional one.

Lemma 5.2. Let F be a field and let S be an F -algebra such that F � S is a
quadratic extension. If there is an F -subalgebra S 0 of S such that S 0 and S have
the same number k of maximal ideals with k > 1, then S 0 D S and S is isomorphic
as an F -algebra to

Qk
iD1 F . If also k D 3, then F Š F2.

Proof. By Proposition 3.3, k is either 2 or 3. Let N1; : : : ; Nk denote the maximal
ideals of S 0, and let x1; : : : ; xk be elements of S 0 such that each xi is contained
in Ni but in no other maximal ideal of S 0. Define a subspace T of S 0 by T D
x1F C � � � C xkF C F , and observe that F � T � S 0 � S . We claim that T D S

and hence that S 0 D S . Since F � S is a quadratic extension, T is a ring and S is
an integral extension of F . Thus T \N1; : : : ; T \Nk are the maximal ideals of the
ring T . Moreover, the choice of the xi forces these maximal ideals to be distinct.
Since F � T is a quadratic extension with T finite-dimensional over F and k > 1,
we apply Lemma 3.2 to obtain that if k D 2, then T is isomorphic to F 	 F ,
or, if k D 3, then T is isomorphic to F 	 F 	 F , where in the latter case F is
isomorphic to F2.

Now let y 2 S , and define T 0 D yF C T . We show that T D T 0, since this
will show that every element of S is in T ; i.e., T D S . By assumption, F � S

is quadratic, so T 0 is a ring, and thus T � T 0 � S is an integral extension of
rings. Hence, since T and S each have exactly k maximal ideals, then so does
T 0. Moreover, T 0 is a finite dimensional F -algebra and F � T 0 is a quadratic
extension. Thus if k D 2, then by Lemma 3.2, T 0 is isomorphic to F 	F and hence
isomorphic also to T ; while if k D 3, then T 0 is isomorphic to F 	 F 	 F , and
hence T 0 is isomorphic to T . In either case, the finite-dimensional F -vector space
T 0 is isomorphic to its F -subspace T , and hence T D T 0, which forces y 2 T . The
choice of y 2 S was arbitrary, so we conclude that S D T , and hence S 0 D S . The
other claims in the lemma now follow from the fact that T D S . ut

For lack of a reference, we state a standard observation that is needed in the
proofs of Theorem 5.4 and Corollary 5.10.
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Lemma 5.3. Let R � S be rings, let A and B be R-submodules of S , where A is
a finitely generated R-module, and let X be a multiplicatively closed subset of R.
Then ŒB WS A�RX D ŒBX WSX AX�.
Proof. Clearly, ŒB WS A�RX � ŒBX WSX AX�. To prove the reverse inclusion, let
q 2 ŒBX WSX AX�. Then q D s=y, for some s 2 S and y 2 X , and .s=y/AX �
BX . Since y is a unit in RX , this implies that .sA/X � BX , and since sA is a
finitely generated R-submodule of S , there exists x 2 X such that xsA � B .
Hence q D s=y D .xs=1/.1=xy/ 2 ŒB WS A�RX , which proves that ŒB WS A�RX D
ŒBX WSX RX�. ut
Theorem 5.4. Let R be a subring of S , and let R denote the integral closure of R
in S . The ring R is finitely stable in S if and only if

(a) R is tight in S ,
(b) R is Prüfer in S ,
(c) R � R is a quadratic extension, and
(d) each S -regular maximal ideal of R has at most 2 maximal ideals of R lying

over it.

Proof. Suppose that R is finitely stable in S . That R is tight in S is clear. To prove
(c), that R � R is a quadratic extension, it suffices by Proposition 3.4 to show
that every finitely generated R-submodule I of R containing R is an invertible
E.I /-module. Let I be a finitely generatedR-submodule of R containingR. Since
R is tight in S , there exists an S -invertible ideal J of R such that IJ � R;
in particular, I is a dense fractional ideal of R. Since IJ is a finitely generated
S -regular ideal of R, IJ is stable, and hence by Proposition 2.13(3), I is stable.
Thus by Proposition 2.11, I is an invertibleE.I /-module, which proves thatR � R

is a quadratic extension.
Next we verify thatR is a Prüfer subring of S . SinceR � S is weakly surjective,

R � S is also weakly surjective [10, Proposition 3.7, p. 35]. Thus by Lemma 4.5,R
is a Prüfer subring of S if and only if every finitely generated S -regular ideal ofR is
S -invertible. Let I be an S -regular finitely generated ideal ofR. By Proposition 5.1,
R is finitely stable in S , so I is projective as an E.I /-module. The fact that I is a
finitely generated ideal of the integrally closed subringR of S with IS D S implies
that E.I / D R [3, Example 4, page 305]. Therefore, I is a projective R-module,
so that by Lemma 2.10, I an invertible ideal of R. This shows that every finitely
generated S -regular ideal of R is invertible, which proves that R is a Prüfer subring
of S , hence verifying (b).

Now we prove that (d) holds. Let M be an S -regular maximal ideal of R. We
claim that R has at most 2 maximal ideals lying over M . By way of contradiction,
suppose that R has more than two maximal ideals lying over M . Then by
Proposition 3.3,R has exactly three maximals ideals lying overM . We show this is
impossible by exhibiting a finitely generated S -regular ideal ofR that is not a stable
ideal, contrary to assumption.



Finitely Stable Rings 283

Denote the three distinct maximal ideals of R lying over M by N1;N2, and N3.
Let J D N1 \ N2 \ N3. Then since J \ R D M , it follows that J is a maximal
ideal of RC J . By Proposition 5.1, the ring RC J is finitely stable in S . Also, the
integral closure of R C J in S is R, and R has three maximal ideals lying over the
maximal ideal J of R C J . Thus R C J inherits all the assumptions on R and M ,
and we may assume without loss of generality that J � R; that is, we assume
throughout the rest of the verification of (d) that R is finitely stable in S , M is a
maximal ideal ofR having three distinct maximal idealsN1;N2;N3 ofR lying over
it, and M D N1 \N2 \N3.
Claim 1. Each maximal ideal Ni of R lying overM has residue field F2.

Since M D N1 \N2 \N3 is an ideal of R and R � R is a quadratic extension,
we have that R=M � R=M is a quadratic extension, with R=M a field, such that
R=M has three maximal ideals. Thus by Lemma 5.2, R=M is isomorphic as an
R=M -algebra to F2 	 F2 	 F2. In particular, each of the maximal ideals Ni of R
lying overM has residue field F2.

Claim 2. If I is a finitely generated S -regularR-submodule of S , then there exists
x 2 I such that I 2M D xIM .

Since R � S is tight and I is a finitely generatedR-submodule of S , there exists
an invertible S -regular ideal B of R such that B � R W I , and hence I is a dense
fractional ideal of R and BI is a finitely generated S -regular ideal of R, so that by
assumption BI is stable. Since B is an S -invertible ideal of R, Proposition 2.13(3)
implies that I is a stable fractional ideal of R. Therefore, by Corollary 2.12, IM
is a stable fractional ideal of RM . Moreover, since BIM is a finitely generated
SM -regular ideal of RM , then E.IBM / � RM , and since RM has only finitely
many maximal ideals (namely, those extended from N1;N2, and N3), it follows that
E.BIM / has only finitely many maximal ideals. Since B is an invertible ideal of
R, E.IM / D E.BIM/, and hence since E.IM / has only finitely many maximal
ideals and IM is an invertible E.IM /-submodule of SM , there exists x in I such
that IM D xE.IM /. Thus I 2M D xIM .

Claim 3. For each i , there exists ni inNi , but not in either of the other two maximal
ideals of R, such that niSM D SM .

Since M is S -regular, there exists a finitely generated S -regular ideal A of R
contained in M . Let ai be an element of Ni that is not in either of the other two
maximal ideals of R lying over M . Then Ai WD A C aiR is a finitely generated
S -regular R-submodule of Ni . Therefore, by Claim 2, there exists ni 2 Ai such
that .A2i /M D ni .Ai/M . Since AS D S , we have AiS D S , and hence from
.A2i /M D ni .Ai/M , we deduce that niSM D SM . Moreover, a2i RM � niRM , so ni
is in Ni but not in either of the other two maximal ideals of R lying overM .

Claim 4. With x D n1n
2
2n3, y D n1n2n

2
3, and A as in Claim 3, then I WD A8 C

.x; y/R is a finitely generated S -regular ideal of R that is not stable.
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Since AS D S , it follows that IS D S , and hence I is a finitely generated
S -regular ideal of R. Therefore, by Claim 2, there exists z 2 IM such that
I 2M D zIM . Now since for each i D 1; 2; 3, A2RM � niRM , we have A8M �
n1n

2
2n3RM D xRM , and hence IM D .x; y/RM . In fact, IM is an SM -regular

ideal, since by Claim 3, niSM D SM for each i . Thus by Lemma 4.5(4), IRM D
.x; y/RM is an invertible ideal of the Prüfer subring RM of SM . Therefore, since
I 2RM D zIRM and IRM is invertible, we have .x; y/RM D IRM D zRM .

Since zRM � .x; y/RM , we have bz D xr C ys for some b 2 R n M and
r; s 2 R. Now since the images of b; n2, and n3 in RN1 are units,

n1.n2r C n3s/RN1 D n1.n2r C n3s/n2n3RN1

D .n1n
2
2n3r C n1n2n

2
3s/RN1

D .xr C ys/RN1 D bzRN1 D zRN1

D .x; y/RN1 D n1.n
2
2n3; n2n

2
3/RN1

D n1RN1 :

Thus since the image of n1 inRN1 is a nonzerodivisor (for by Claim 3, niSM D SM )
we have .n2r C n3s/RN1 D RN1 . Suppose that neither r nor s is in M . Then since
N1 lies over M , neither r nor s is in N1, and hence neither n2r nor n3s are in N1.
Thus the images of n2r and n3s in R=N1 are both nonzero. But by Claim 3, R=N1
has only two elements, so the sum of two nonzero elements is zero. Consequently,
n2r C n3s 2 N1, so that RN1 D .n2r C n3s/RN1 � N1RN1 , a contradiction that
implies that at least one of r and s is a member ofM . Thus, if r 2 M , then sinceN3
lies over M , n2r C n3s 2 N3. On the other hand, if s 2 M , then n2r C n3s 2 N2.
Therefore, since at least one of r; s is inM , we conclude that n2rCn3s 2 N2 [N3.
We argue next that this conclusion prevents the ideal .x; y/R from being stable,
which in turn will contradict the assumption that R is finitely stable in S .

Using the fact that the images of n1 and n3 in RN2 are units, we obtain with an
argument similar to the one above:

.n22r C n2n3s/RN2 D .n22r C n2n3s/n1n3RN2

D .n1n
2
2n3r C n1n2n

2
3s/RN2 D zRN2

D .x; y/RN2 D .n1n
2
2n3; n1n2n

2
3/RN2

D n2RN2:

Thus, since the image in RN2 of n2 is a nonzerodivisor, we have .n2r C n3s/RN2 D
RN2 . Hence n2r C n3s 62 N2. Similarly, we see that n2r C n3s 62 N3. Indeed,

.n2n3r C n23s/RN3 D .n2n3r C n23s/n1n2RN3

D .n1n
2
2n3r C n1n2n

2
3s/RN3 D zRN3
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D .x; y/RN3 D .n1n
2
2n3; n1n2n

2
3/RN3

D n3RN3:

Thus .n2n3r C n23s/RN3 D n3RN3 , and since the image of n3 in RN3 is a
nonzerodivisor, the image of n2rCn3s inRN3 is a unit. Therefore, n2rCn3s 62 N3,
which forces us to conclude that n2rCn3s is not in N2 orN3, a contradiction to our
prior conclusion that this element is in one of these two maximal ideals. Therefore,
it cannot be that both .x; y/R is a stable ideal of R and N1;N2;N3 are distinct
maximal ideals of R lying over M . Since R is finitely stable in S , this forces the
conclusion that R has at most 2 maximal ideals lying overM , which verifies (d).

Conversely, suppose that (a)–(d) hold. Then by assumption R is tight in S , so it
remains to prove that every finitely generated S -regular ideal ofR is stable. Let I be
a finitely generatedS -regular ideal ofR, and letM be a maximal ideal containing I .
Then necessarilyM is S -regular and IM is a finitely generated SM -regular ideal of
RM . By Lemma 4.5(4),RM is Prüfer in SM , and by (c), RM has at most 2 maximal
ideals. Thus, as an invertible ideal in a ring with only finitely many maximal ideals,
IRM is a principal regular ideal of RM . Moreover, by (b), R � R is a quadratic
extension, so by (d) and Proposition 3.6, IM is a stable ideal of RM . Thus by
Proposition 2.11 and Lemma 5.3, 1 2 ŒIM WSM I 2M �IM D ŒI WS I 2�IM . This shows
that for all maximal ideals M of R containing I , 1 2 ŒI WS I 2�IM . On the other
hand, if N is a maximal ideal not containing I , then clearly 1 2 ŒI WS I 2�IN . We
conclude that 1 2 ŒI WS I 2�I since this containment holds locally, and hence by
Proposition 2.11, I is a stable ideal of R. Therefore,R is finitely stable in S . ut
Corollary 5.5. Suppose R is a quasilocal ring that is finitely stable in S . If the
integral closure R of R in S is quasilocal, then every ring between R and S is
quasilocal. Otherwise, every ring between R and S has at most 2 maximal ideals.

Proof. Let A be a ring with R � A � S . By Theorem 5.4, there are at most 2
maximal ideals of R and R is a Prüfer subring of S . Thus by Proposition 4.6(3),
the integral closure of A in S has at most 2 maximal ideals; hence A has at most
2 maximal ideals. Moreover, if R is quasilocal, then by Proposition 4.6(3), so is A,
and hence so is A. ut

To motivate the next corollary, we give an example which shows that although an
invertible ideal of a quasilocal ring is principal, a dense stable ideal I of a quasilocal
ring need not be principal over E.I /.

Example 5.6. It is possible for a quasilocal domain R to have a stable maximal
ideal M that is not principal as an ideal of E.M/. Let D be a Dedekind domain
containing a field k and having an ideal I that is not principal, let F be the quotient
field ofD and letX be indeterminate for F . DefineR D kCXICX2F ŒŒX��. Then
R is a quasilocal domain with maximal ideal M WD XI C X2F ŒŒX��. Moreover,
M2 D X2I 2 C X3F ŒŒX�� D XIM , so that since XIR is an invertible ideal of
R, then M is by Proposition 2.13(1) a stable ideal of R with endomorphism ring
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E.M/ D D C XF ŒŒX��. If M is a principal ideal of E.M/, say M D .aX C
zX2/E.M/, where a 2 I and z 2 F ŒŒX��, thenM D .aXCzX2/.DCXF ŒŒX��/ D
.aD/X CX2F ŒŒX��, which forces aD D I , contrary to the choice of I . Therefore,
M is not principal as an ideal of E.M/.

In the example, E.M/ has infinitely many maximal ideals. When R is finitely
stable in S and quasilocal, then Corollary 5.5 shows such an example cannot occur,
and hence we have the following corollary.

Corollary 5.7. Suppose R is a quasilocal ring that is finitely stable in S . If I is a
stable S -regular ideal of R, then I is a principal ideal of E.I /. ut

Along the same lines as Corollary 5.5, there are at most 2 prime ideals lying over
an S -regular prime ideal.

Corollary 5.8. If R is finitely stable in S and A is a ring with R � A � S , then
each prime ideal of R has at most 2 prime ideals in A lying over it.

Proof. Let P be a prime ideal of R. Suppose first that P is not S -regular. We claim
that RP D AP D SP . Let x 2 S . Then since R � S is tight, there exists an
S -regular ideal I of R such that xI � R. Since I is S -regular and P is not, there
exists b 2 I n P . Thus bx 2 R, and hence x=1 2 RP . It follows that RP D AP D
SP , and hence P has only prime ideal in A lying over it.

Next, suppose that P is an S -regular prime ideal of R. First we claim that there
are at most 2 prime ideals of R lying over P . Suppose that P1; P2; P3 are distinct
prime ideals of R lying over P . LetM be a maximal ideal ofR containingP . Then
by Going Up, there exist maximal ideals M1;M2;M3 of R lying over M such that
for each i , Pi � Mi . Since P is S -regular, so is M , and hence by Theorem 5.4
there are at most 2 maximal ideals of R lying over M . Therefore, we may assume
after relabeling thatM1 D M2 and hence that P1 andP2 are incomparableS -regular
prime ideals ofR that are contained in the same maximal ideal. But by Theorem 5.4,
R is a Prüfer subring of S , and hence by Proposition 4.6(2) the S -regular prime
ideals of R form a tree with respect to inclusion. This contradiction implies that
there are at most 2 prime ideals of R lying over P .

Now, with A as in the corollary, suppose by way of contradiction that there exist
three distinct prime ideals P1; P2; P3 of A lying over P . By Theorem 5.4, R is
Prüfer in S , so by Corollary 4.8, the prime ideals P1; P2; P3 are incomparable. Let
A denote the integral closure of A in S , and for each i , let Qi be a prime ideal of A
lying over Pi . Then Q1;Q2;Q3 are incomparable prime ideals of A, and hence by
Proposition 4.6(1), Q1 \ R;Q2 \ R;Q3 \ R are incomparable prime ideals of R
lying over P , in contradiction to what we have proved earlier. Therefore, there are
at most 2 prime ideals of A lying over P . ut

The next corollary shows that the property of being finitely stable localizes at
prime ideals.

Corollary 5.9. If R is finitely stable in S and P is a prime ideal of R, then RP is
finitely stable in SP .
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Proof. Suppose that R is finitely stable in S , and let P be a prime ideal of R. The
proof is via Theorem 5.4. We claim first thatRP is tight in SP . Let s=b 2 SP , where
s 2 S and b 2 R n P . Then since R is tight in S , there exists an S -invertible ideal
I of R such that sI � R. Therefore, .s=b/IP � RP , so that the SP -invertible ideal
IP is in .RP WRP s=b/. Thus RP is tight in SP . Next, by Lemma 3.1, RP � SP is
a quadratic extension, and by Lemma 4.5, RP � SP is a Prüfer extension. Finally,
by Corollary 5.8, there are at most two prime ideals of R lying over P , so PRP
has at most 2 maximal ideals in RP lying over it. Therefore, by Theorem 5.4, RP is
finitely stable in SP . ut

The next corollary shows that the converse is also true: A tight subring is finitely
stable if and only if it is locally finitely stable.

Corollary 5.10. The ring R is finitely stable in S if and only if R is tight in S and
RM is finitely stable in SM for each S -regular maximal ideal M of R.

Proof. If R is finitely stable in S , then Corollary 5.9 shows that RM is finitely
stable in SM for each maximal ideal M of R. Conversely, suppose that R is tight
in S and RM is finitely stable in SM for all S -regular maximal ideals M of R. Let
I be a finitely generated S -regular ideal of R, and let M be a maximal ideal of R
containing I . Then M is S -regular, so by assumption, IM is a stable ideal of RM .
Hence by Proposition 2.11 and Lemma 5.3, 1 2 ŒIM WSM I 2M �IM D ŒI WS I 2�IM .
On the other hand, if M is a maximal ideal not containing I , then it is clear that
1 2 ŒI WS I 2�IM . Therefore, 1 2 ŒI WS I 2�I , since this containment holds locally,
and hence by Proposition 2.11, I is a stable ideal ofR. This proves thatR is finitely
stable in S . ut

Restricting to the case in which S D Quot.R/, we obtain a characterization of
finitely stable rings.

Corollary 5.11. Let R be a ring, and let R denote its integral closure in Quot.R/.
The ring R is finitely stable if and only if R � R is a quadratic extension, R is a
Prüfer ring, and each regular maximal ideal of R has at most 2 maximal ideals of
R lying over it.

Proof. The ringR is finitely stable if and only ifR is finitely stable in Quot.R/, and
an ideal of R is regular if and only if it is Quot.R/-regular. Thus the corollary is a
consequence of Theorem 5.4. ut

Restricting further to domains, we obtain a stronger localization result than
Corollary 5.10. If R is not a domain, then since it need not be the case that
Quot.R/M D Quot.RM /, we cannot assert something similar for finitely stable
rings with zerodivisors; in that case, the best we can assert is that R is finitely stable
if and only if RM is finitely stable in Quot.R/M for each maximal ideal M .

Corollary 5.12. A domain R is a finitely stable ring if and only if RM is a finitely
stable ring for each maximal idealM of R.
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Proof. Since R is a domain, Quot.R/M D Quot.RM/ for each maximal ideal M
of R. Moreover, the domain R is a finitely stable ring if and only if R is finitely
stable in Quot.R/, so the claim follows from Corollary 5.10. ut

6 Existence and Examples of Finitely Stable Rings

In this section we briefly discuss some constructions and examples of finitely stable
rings. Where arguments can be easily adapted, we also prove similar results for
stable subrings, where by a stable subringR of S we mean a tight subring of S such
that every S -regular ideal of R is stable. Stable subrings will be treated in more
detail in a future article.

By Theorem 5.4, if R is a finitely stable domain, then R is a Prüfer domain
and R � R is a quadratic extension. The following proposition shows that every
uncountable Prüfer domain S occurs as the integral closure of a finitely stable
domain that is properly contained in S .

Proposition 6.1. If S is an uncountable Prüfer domain with quotient field F , then
there exists a finitely stable domain R with quotient field F and integral closure S
such that R ¨ S .

Proof. Let K be a nonzero free S -module of at most countable rank. By
[17, Lemmas 3.3 and 3.4], there exists a subring A of S such that S=A is a torsion-
free divisible A-module, and there exists an A-linear derivationD W F ! FK such
that D.S/ D FK: (Here, FK is the divisible hull of K .) Set R D S \ D�1.K/.
In the terminology of [17], R is a subring of S twisted along the set of nonzero
elements of A, and hence by [17, Theorem 7.1], R is a finitely stable domain with
quotient field F and integral closure S . By [17, Lemma 4.4], with Q the quotient
field of A, we have S=R Š QK=K as R-modules. Since K is a nonzero free
S -module, then QK ¤ K , so R ¨ S . ut
Remark 6.2. If in the theorem S has positive characteristic and F is separable of
infinite transcendence degree over a countable subfield, then the cited references
show that S=R Š FK=K . (Specifically, S is “strongly twisted” by K .) Moreover,
the S -moduleK need not be chosen to be free; we only assumed this in the proof to
guarantee that QK ¤ K . In any case, if K ¤ FK , then S is not a fractional ideal
of R, and the “distance” from S can be prescribed by the choice of K .

When R � S is a ring extension and I is an ideal of R that is also an ideal of S ,
thenR is Prüfer in S if and only ifR=I is Prüfer in S=I [10, Proposition 5.8, p. 52].
In Proposition 6.4 we prove the analogous statements for stable and finitely stable
rings.

Lemma 6.3. Let R � S � Q.R/ be rings, and suppose that I is an ideal of R that
is also an ideal of S . Then an ideal J of R is an S -regular stable ideal if and only
if I � J and J=I is an S=I -regular stable ideal of R=I .
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Proof. Let J be an S -regular stable ideal of R. If I 6� J , then there exists x 2
I n J , and since JS D S , there exist y1; : : : ; yn 2 J and s1; : : : ; sn 2 S such that
1 D y1s1 C � � � C ynsn. But then x D y1.s1x/C � � � C yn.snx/ 2 J , contrary to the
choice of x. Therefore, I � J . Since also J 2S D S , this same argument shows that
I � J 2. Now since J is an S -regular stable ideal of R, then by Proposition 2.11,
1 2 ŒJ WS J 2�J , and hence 1C I 2 ŒJ=I WS=I J 2=I �.J=I /. Therefore, since J=I
is an S=I -regular ideal of R=I , Proposition 2.11 implies that J=I is a stable ideal
of R=I .

Conversely, suppose that I � J and J=I is an S=I -regular stable ideal of R=I .
Then JS D S , and by Proposition 2.11, 1 C I 2 ŒJ=I WS=I J 2=I �.J=I /, and
hence there exist x1; : : : ; xn 2 J , y1; : : : ; yn 2 ŒJ WS J 2� and x 2 I such that
1 D y1x1 C � � � C ynxn C x. Now x 2 I � J � ŒJ WS J 2�J , so 1 2 ŒJ WS J 2�J ,
and hence, since JS D S implies that J is dense, Proposition 2.11 implies that J
is a stable ideal of R. ut
Proposition 6.4. Let R � S be an extension of rings, and suppose I is an ideal of
R that is also an ideal of S . Then R is stable (resp., finitely stable) in S if and only
if R=I is stable (resp., finitely stable) in S=I .

Proof. First we claim thatR is tight in S if and only ifR=I is tight in S=I . Suppose
that R is tight in S , and let x 2 S . Then there exists an S -invertible ideal J such
that xJ � R. Since J is S -invertible, there exists an R-submodule K of S with
JK D R. Now ..J CI /=I /..KCI /=I / D R=I , so J=I is an S=I -invertible ideal
of R=I . Moreover, J=I � .R=I W x C I /, which proves that R=I is tight in S=I .
Conversely, suppose that R=I is tight in S=I , and let x 2 S . Then there exists an
S=I -invertible ideal J=I of R=I such that xJ 2 R. Since J=I is S=I -invertible,
there exists an R-submodule K of S with JK C I D R. But since I � J , this
implies that J.K CR/ D JK C J D R, and hence J is an S -invertible ideal of R.

Now suppose that R is finitely stable in S , and let J be an ideal of R such that
J=I is a finitely generated S=I -regular ideal of R. Since J=I is finitely generated,
there exist x1; : : : ; xn 2 J such that J D .x1; : : : ; xn/R C I , and since JS D S ,
there exists x 2 I such that .x1; : : : ; xn; x/S D S . As in the proof of Lemma 6.3,
this implies that I � .x1; : : : ; xn; x/R, and hence J D .x1; : : : ; xn; x/R. As a
finitely generated S -regular ideal of R, J is stable, so Lemma 6.3 implies that J=I
is a stable ideal of R=I . Therefore, R=I is finitely stable in S=I . The converse
follows also from Lemma 6.3 and the fact that JS D S implies I � J , as does the
claim that R is stable in S if and only if R=I is stable in S=I . ut
Corollary 6.5. Suppose that the ring R occurs in a commutative diagram of the
form below, where A and S are rings. Then R is a stable (resp., finitely stable)
subring of S if and only if A is a stable (resp., finitely stable) ring.

Proof. The diagram allows us to identify R with a subring of S and A with R=I
for some ideal I . Necessarily, I is an ideal of S also and we may identify Quot.A/
with S=I . Therefore, the corollary follows from Proposition 6.4. ut
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R �� A

S
�

∩

�� Quot(A),
�

∩

Example 6.6. (1) Let A be a domain with quotient field F , let X be an indetermi-
nate for F , and let R D ACXF ŒX�. Then by Corollary 6.5, R is stable (resp.,
finitely stable) in F ŒX� if and only ifA is a stable (resp., finitely stable) domain.

(2) Let A be a ring, let L be a Quot.A/-module, and let A ? L denote the Nagata
idealization of L; that is, as an A-module,A?L is A˚L, and multiplication is
given by .a1; `1/ � .a2; `2/ D .a1a2; a1`2 C a2`1/ for all a1; a2 2 A, `1; `2 2 L.
Then Corollary 6.5 implies that A ? L is a stable (resp., finitely stable) ring if
and only if A is a stable (resp., finitely stable) ring.

Remark 6.7. Nagata idealization can also be used to produce finitely stable rings
with a more flexible choice of theA-moduleL but a narrower choice ofA. It follows
from [18, Lemma 3.3] that when A is a Bézout domain and L is an A-module, then
A ? L is a finitely stable ring.
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A we consider its minimal polynomial �a.X/ 2 DŒX�, i.e. the monic polynomial
of least degree such that �a.a/ D 0. The ring IntK.A/ consists of polynomials in
KŒX� that send elements of A back to A under evaluation. If D has finite residue
rings, we show that the integral closure of IntK.A/ is the ring of polynomials in
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into elements that are integral over D. The result is obtained by identifying A with
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1 Introduction

Let D be a (commutative) integral domain with quotient field K . The ring Int.D/
of integer-valued polynomials on D consists of polynomials in KŒX� that map
elements of D back to D. More generally, if E � K , then one may define the
ring Int.E;D/ of polynomials that map elements of E into D.

One focus of recent research ([4–6, 9–11]) has been to generalize the notion of
integer-valued polynomial to D-algebras. When A � D is a torsion-free module
finite D-algebra we define IntK.A/ WD ff 2 KŒX� j f .A/ � Ag. The set
IntK.A/ forms a commutative ring. If we assume that K \ A D D, then IntK.A/ is
contained in Int.D/ (these two facts are indeed equivalent), and often IntK.A/ shares
properties similar to those of Int.D/ (see the references above, especially [6]).

When A D Mn.D/, the ring of n 	 n matrices with entries in D, IntK.A/ has
proven to be particularly amenable to investigation. For instance, [9, Thm. 4.6]
shows that the integral closure of IntQ.Mn.Z// is IntQ.An/, where An is the set of
algebraic integers of degree at most n, and IntQ.An/ D ff 2 QŒX� j f .An/ � Ang.
In this paper, we will generalize this theorem and describe the integral closure
of IntK.A/ when D is an integrally closed domain with finite residue rings. Our
description (Theorem 13) may be considered an extension of both [9, Thm. 4.6] and
[2, Thm. IV.4.7] (the latter originally proved in [7, Prop. 2.2]), which states that ifD
is Noetherian andD0 is its integral closure in K , then the integral closure of Int.D/
equals Int.D;D0/ D ff 2 KŒX� j f .D/ 
 D0g.

Key to our work will be rings of polynomials that we dub integral-valued poly-
nomials and which act on certain subsets of Mn.K/. Let K be an algebraic closure
of K . We will establish a close connection between integral-valued polynomials
and polynomials that act on elements of K that are integral over D. We will also
investigate polynomially dense subsets of rings of integral-valued polynomials.

In Sect. 2, we define what we mean by integral-valued polynomials, discuss
when sets of such polynomials form a ring, and connect them to the integral
elements of K. In Sect. 3, we apply the results of Sect. 2 to IntK.A/ and prove the
aforementioned theorem about its integral closure. Section 4 covers polynomially
dense subsets of rings of integral-valued polynomials. We close by posing several
problems for further research.

2 Integral-Valued Polynomials

Throughout, we assume thatD is an integrally closed domain with quotient fieldK .
We denote by K a fixed algebraic closure of K . When working in Mn.K/, we
associate K with the scalar matrices, so that we may consider K (and D) to be
subsets of Mn.K/.

For each matrix M 2 Mn.K/, we let �M.X/ 2 KŒX� denote the minimal
polynomial of M , which is the monic generator of NKŒX�.M/ D ff 2 KŒX� j
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f .M/ D 0g, called the null ideal of M . We define ˝M to be the set of eigenvalues
ofM considered as a matrix inMn.K/, which are the roots of�M inK. For a subset
S � Mn.K/, we define ˝S WD S

M2S ˝M . Note that a matrix in Mn.K/ may
have minimal polynomial in DŒX� even though the matrix itself is not in Mn.D/.
A simple example is given by

�
0 q
0 0

� 2 M2.K/, where q 2 K nD.

Definition 1. We say that M 2 Mn.K/ is integral over D (or just integral, or is an
integral matrix) if M solves a monic polynomial in DŒX�. A subset S of Mn.K/ is
said to be integral if each M 2 S is integral overD.

Our first lemma gives equivalent definitions for a matrix to be integral.

Lemma 2. Let M 2 Mn.K/. The following are equivalent:

(i) M is integral overD
(ii) �M 2 DŒX�

(iii) Each ˛ 2 ˝M is integral overD

Proof. .i/ ) .i i i/ SupposeM solves a monic polynomial f .X/ with coefficients
in D. As �M.X/ divides f .X/, its roots are then also roots of f .X/. Hence,
the elements of ˝M are integral overD.

.i i i/ ) .i i/ The coefficients of �M 2 KŒX� are the elementary symmetric
functions of its roots. Assuming .i i i/ holds, these roots are integral over D;
hence, the coefficients of �M are integral overD. Since D is integrally closed,
we must have �M 2 DŒX�.

.i i/ ) .i/ Obvious. ut
For the rest of this section, we will study polynomials in KŒX� that take values

on sets of integral matrices. These are the integral-valued polynomials mentioned in
the introduction.

Definition 3. Let S � Mn.K/. Let KŒS� denote the K-subalgebra of Mn.K/

generated by K and the elements of S . Define S 0 WD fM 2 KŒS� j M is integralg
and IntK.S; S 0/ WD ff 2 KŒX� j f .S/ � S 0g. We call IntK.S; S 0/ a set of integral-
valued polynomials.

Remark 4. In the next lemma, we will prove that forming the set S 0 is a closure
operation in the sense that .S 0/0 D S 0. We point out that this construction differs
from the usual notion of integral closure in several ways. First, if S itself is not
integral, then S 6� S 0. Second, S 0 need not have a ring structure. Indeed, if D D Z

and S D M2.Z/, then both
�
1 0
0 0

�
and

� 1=2 1=2
1=2 1=2

�
are in S 0, but neither their sum nor

their product is integral. Lastly, if S is a commutative ring, then S 0 need not be the
same as the integral closure of S in KŒS�, because we insist that the elements of S
satisfy a monic polynomial in DŒX� rather than SŒX�.

However, if S is a commutativeD-algebra and it is an integral subset ofMn.K/,
then S 0 is equal to the integral closure of S inKŒS� (see Corollary 1 to Proposition 2
and Proposition 6 of [1, Chapt. V]).
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Lemma 5. Let S � Mn.K/. Then, .S 0/0 D S 0.

Proof. We just need to show that KŒS 0� D KŒS�. By definition, S 0 � KŒS�, so
KŒS 0� � KŒS�. For the other containment, let M 2 KŒS�. Let d 2 D be a common
multiple for all the denominators of the entries in M . Then, dM 2 S 0 � KŒS 0�.
Since 1=d 2 K , we get M 2 KŒS 0�. ut

An integral subset ofMn.K/ need not be closed under addition or multiplication,
so at first glance it may not be clear that IntK.S; S 0/ is closed under these operations.
As we now show, IntK.S; S 0/ is in fact a ring.

Proposition 6. Let S � Mn.K/. Then, IntK.S; S 0/ is a ring, and if D � S , then
IntK.S; S 0/ � Int.D/.

Proof. LetM 2 S and f; g 2 IntK.S; S 0/. Then, f .M/; g.M/ are integral overD.
By Corollary 2 after Proposition 4 of [1, Chap. V], the D-algebra generated by
f .M/ and g.M/ is integral over D. So, f .M/C g.M/ and f .M/g.M/ are both
integral overD and are both in KŒS�. Thus, f .M/C g.M/; f .M/g.M/ 2 S 0 and
f Cg; fg 2 IntK.S; S 0/. AssumingD � S , let f 2 IntK.S; S 0/ and d 2 D. Then,
f .d/ is an integral element of K . Since D is integrally closed, f .d/ 2 D. Thus,
IntK.S; S 0/ � Int.D/. ut

We now begin to connect our rings of integral-valued polynomials to rings of
polynomials that act on elements of K that are integral overD. For each n > 0, let

�n WD f˛ 2 K j ˛ solves a monic polynomial in DŒX� of degree ng:

In the special case D D Z, we let An WD �n D f algebraic integers of degreeg
fat most n g 
 Q.

For any subset E of �n, define

IntK.E ; �n/ WD ff 2 KŒX� j f .E / � �ng:

to be the set of polynomials in KŒX� mapping elements of E into �n. If E D �n,
then we write simply IntK.�n/. As with IntK.S; S 0/, IntK.E ; �n/ is a ring despite
the fact that �n is not.

Proposition 7. For any E � �n, IntK.E ; �n/ is a ring and is integrally closed.

Proof. Let �1 be the integral closure of D in K. We set IntK.E ; �1/ D ff 2
KŒX� j f .E / � �1g. Then, IntK.E ; �1/ is a ring, and by [2, Prop. IV.4.1] it is
integrally closed.

Let IntK.E ; �1/ D ff 2 KŒX� j f .E / � �1g. Clearly, IntK.E ; �n/ �
IntK.E ; �1/. However, if ˛ 2 E and f 2 KŒX�, then ŒK.f .˛// W K� � ŒK.˛/ W
K� � n, so in fact IntK.E ; �n/ D IntK.E ; �1/. Finally, since IntK.E ; �1/ D
IntK.E ; �1/\KŒX� is the contraction of IntK.E ; �1/ to KŒX�, it is an integrally
closed ring, proving the proposition. ut
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Theorem 4.6 in [9] shows that the integral closure of IntQ.Mn.Z// equals
the ring IntQ.An/. As we shall see (Theorem 9), this is evidence of a broader
connection between the rings of integral-valued polynomials IntK.S; S 0/ and rings
of polynomials that act on elements of �n. The key to this connection is the
observation contained in Lemma 2 that the eigenvalues of an integral matrix in
Mn.K/ lie in �n and also the well-known fact that if M 2 Mn.K/ and f 2 KŒX�,
then the eigenvalues of f .M/ are exactly f .˛/, where ˛ is an eigenvalue of M .
More precisely, if 	M .X/ D Q

iD1;:::;n.X � ˛i / is the characteristic polynomial

of M (the roots ˛i are in K and there may be repetitions), then the characteristic
polynomial of f .M/ is 	f.M/.X/ D Q

iD1;:::;n.X �f .˛i //. Phrased in terms of our
˝-notation, we have

if M 2 Mn.K/ and f 2 KŒX�, then ˝f.M/ D f .˝M/ D ff .˛/ j ˛ 2 ˝M g: (8)

Using this fact and our previous work, we can equate IntK.S; S 0/ with a ring of
the form IntK.E ; �n/.

Theorem 9. Let S � Mn.K/. Then, IntK.S; S 0/ D IntK.˝S;�n/, and in
particular IntK.S; S 0/ is integrally closed.

Proof. We first prove this for S D fM g. Using Lemma 2 and (8), for each f 2
KŒX� we have

f .M/ 2 S 0 ” f .M/ is integral ” ˝f.M/ � �n ” f .˝M/ � �n:

This proves that IntK.fM g; fM g0/ D IntK.˝M ;�n/. For a general subset S of
Mn.K/, we have

IntK.S; S 0/ D
\

M2S
IntK.fM g; S 0/ D

\

M2S
IntK.˝M ;�n/ D IntK.˝S ;�n/:

ut
The above proof shows that if a polynomial is integral-valued on a matrix, then

it is also integral-valued on any other matrix with the same set of eigenvalues. Note
that for a single integral matrixM we have these inclusions:

D 
 DŒM� � fM g0 
 KŒM�:

Moreover, fM g0 is equal to the integral closure of DŒM� in KŒM� (because DŒM�

is a commutative algebra).

3 The Case of a D-Algebra

We now use the results from Sect. 2 to gain information about IntK.A/, where A
is a D-algebra. In Theorem 13 below, we shall obtain a description of the integral
closure of IntK.A/.
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As mentioned in the introduction, we assume that A is a torsion-free D-algebra
that is finitely generated as a D-module. Let B D A ˝D K be the extension of A
to a K-algebra. Since A is a faithfulD-module, B contains copies of D, A, and K .
Furthermore,K is contained in the center of B , so we can evaluate polynomials in
KŒX� at elements of B and define

IntK.A/ WD ff 2 KŒX� j f .A/ � Ag:

Letting n be the vector space dimension ofB overK , we also have an embedding
B ,! Mn.K/, b 7! Mb . More precisely, we may embed B into the ring ofK-linear
endomorphisms of B (which is isomorphic to Mn.K/) via the map B ,! EndK.B/
sending b 2 B to the endomorphism x 7! b � x. Consequently, starting with just D
and A, we obtain a representation of A as a D-subalgebra of Mn.K/. Note that n
may be less than the minimum number of generators of A as a D-module.

In light of the aforementioned matrix representation of B , several of the
definitions and notations we defined in Sect. 2 will carry over to B . Since the con-
cepts of minimal polynomial and eigenvalue are independent of the representation
B ,! Mn.K/, the following are well defined:

• For all b 2 B , �b.X/ 2 KŒX� is the minimal polynomial of b. So, �b.X/
is the monic polynomial of minimal degree in KŒX� that kills b. Equivalently,
�b is the monic generator of the null ideal NKŒX�.b/ of b. This is the same
as the minimal polynomial of Mb 2 Mn.K/, since for all f 2 KŒX� we have
f .Mb/ D Mf.b/. To ease the notation, from now on we will identify b withMb .

• By the Cayley-Hamilton Theorem, deg.�b/ � n, for all b 2 B .
• For all b 2 B , ˝b D froots of �b in Kg. The elements of ˝b are nothing

else than the eigenvalues of b under any matrix representation B ,! Mn.K/.
If S � B , then ˝S D S

b2S ˝b .
• b 2 B is integral over D (or just integral) if b solves a monic polynomial

in DŒX�.
• B D KŒA�, since B is formed by extension of scalars fromD to K .
• A0 D fb 2 B j b is integralg. By [1, Theorem 1, Chapt. V] A � A0. In

particular, this implies A \ K D D (because D is integrally closed), so that
IntK.A/ � Int.D/ (see the remarks in the introduction).

• IntK.A;A0/ D ff 2 KŒX� j f .A/ � A0g.

Working exactly as in Proposition 6, we find that IntK.A;A0/ is another ring of
integral-valued polynomials. Additionally, Lemma 2 and (8) hold for elements ofB .
Consequently, we have

Theorem 10. IntK.A;A0/ is an integrally closed ring and is equal to IntK.˝A;�n/.

By generalizing results from [9], we will show that if D has finite residue rings,
then IntK.A;A0/ is the integral closure of IntK.A/. This establishes the analogue of
[2, Thm. IV.4.7] (originally proved in [7, Prop. 2.2]) mentioned in the introduction.
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We will actually prove a slightly stronger statement and give a description of
IntK.A;A0/ as the integral closure of an intersection of pullbacks. Notice that

\

a2A
.DŒX�C �a.X/ �KŒX�/ � IntK.A/

because if f 2 DŒX� C �a.X/ � KŒX�, then f .a/ 2 DŒa� � A. We thus have a
chain of inclusions:

\

a2A
.DŒX�C �a.X/ �KŒX�/ � IntK.A/ � IntK.A;A0/ (11)

and our work below will show that this is actually a chain of integral ring extensions.

Lemma 12. Let f 2 IntK.A;A0/, and write f .X/ D g.X/=d for some g 2
DŒX� and some nonzero d 2 D. Then, for each h 2 DŒX�, dn�1h.f .X// 2T
a2A.DŒX�C �a.X/ �KŒX�/.

Proof. Let a 2 A. Since f 2 IntK.A;A0/, m WD �f.a/ 2 DŒX�, and deg.m/ � n.
Now, m is monic, so we can divide h by m to get h.X/ D q.X/m.X/C r.X/,

where q; r 2 DŒX�, and either r D 0 or deg.r/ < n. Then,

dn�1h.f .X// D dn�1q.f .X//m.f .X//C dn�1r.f .X//

The polynomial dn�1q.f .X//m.f .X// 2 KŒX� is divisible by �a.X/ because
m.f .a// D 0. Since deg.r/ < n, dn�1r.f .X// 2 DŒX�. Thus, dn�1h.f .X// 2
DŒX�C �a.X/ �KŒX�, and since a was arbitrary the lemma is true. ut

For the next result, we need an additional assumption. Recall that a ring D has
finite residue rings if for all proper nonzero ideal I 
 D, the residue ring D=I is
finite. Clearly, this condition is equivalent to asking that for all nonzero d 2 D, the
residue ring D=dD is finite.

Theorem 13. Assume that D has finite residue rings. Then, IntK.A;A0/ D
IntK.˝A;�n/ is the integral closure of both

T
a2A.DŒX� C �a.X/ � KŒX�/ and

IntK.A/.

Proof. Let R D T
a2A.DŒX� C �a.X/ � KŒX�/. By (11), it suffices to prove that

IntK.A;A0/ is the integral closure of R. Let f .X/ D g.X/=d 2 IntK.A;A0/.
By Theorem 10, IntK.A;A0/ is integrally closed, so it is enough to find a monic
polynomial � 2 DŒX� such that �.f .X// 2 R.

Let P � DŒX� be a set of monic residue representatives for f�f.a/.X/ga2A
modulo .dn�1/2. Since D has finite residue rings, P is finite. Let �.X/ be the
product of all the polynomials in P . Then, � is monic and is in DŒX�.

Fix a 2 A and let m D �f.a/. There exists p.X/ 2 P such that p.X/ is
equivalent to m mod .dn�1/2, so p.X/ D m.X/ C .dn�1/2r.X/ for some r 2
DŒX�. Furthermore, p.X/ divides �.X/, so there exists q.X/ 2 DŒX� such that
�.X/ D p.X/q.X/. Thus,
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�.f .X// D p.f .X//q.f .X//

D m.f .X//q.f .X//C .dn�1/2r.f .X//q.f .X//

D m.f .X//q.f .X//C dn�1r.f .X// � dn�1q.f .X//

As in Lemma 12, m.f .X//q.f .X// 2 �a.X/ � KŒX� because m.f .a// D 0.
By Lemma 12, dn�1r.f .X// and dn�1q.f .X// are in DŒX� C �a.X/ � KŒX�.
Hence, �.f .X// 2 DŒX�C�a.X/ �KŒX�, and since a was arbitrary, �.f .X// 2 R.
ut

Theorem 13 says that the integral closure of IntK.A/ is equal to the ring of
polynomials in KŒX� which map the eigenvalues of all the elements a 2 A to
integral elements over D.

Remark 14. By following essentially the same steps as in Lemma 12 and
Theorem 13, one may prove that IntK.A;A0/ is the integral closure of IntK.A/
without the use of the pullbacks DŒX� C �a.X/ � KŒX�. However, employing the
pullbacks gives a slightly stronger theorem without any additional difficulty.

In the case A D Mn.D/, IntK.Mn.D// is equal to the intersection of the
pullbacksDŒX�C�M.X/ �KŒX�, forM 2 Mn.D/. Indeed, let f 2 IntK.Mn.D//

and M 2 Mn.D/. By [11, Remark 2.1 & (3)], IntK.Mn.D// is equal to the
intersection of the pullbacksDŒX�C	M .X/KŒX�, forM 2 Mn.D/, where 	M .X/
is the characteristic polynomial of M . By the Cayley-Hamilton Theorem, �M.X/
divides 	M .X/ so that f 2 DŒX�C	M .X/KŒX� � DŒX�C�M.X/KŒX� and we
are done.

Remark 15. The assumption that D has finite residue rings implies that D is
Noetherian (and in fact that D is a Dedekind domain, because D is integrally
closed). Given that [2, Thm. IV.4.7] (or [7, Prop. 2.2]) requires only the assumption
thatD is Noetherian, it is fair to ask if Theorem 13 holds under the weaker condition
that D is Noetherian.

Note that ˝Mn.D/ D �n (and in particular,˝Mn.Z/ D An). Hence, we obtain the
following (which generalizes [9, Thm. 4.6]):

Corollary 16. If D has finite residue rings, then the integral closure of
IntK.Mn.D// is IntK.�n/.

The algebra of upper triangular matrices yields another interesting example.

Corollary 17. Assume that D has finite residue rings. For each n > 0, let Tn.D/
be the ring of n 	 n upper triangular matrices with entries in D. Then, the integral
closure of IntK.Tn.D// equals Int.D/.

Proof. For each a 2 Tn.D/, �a splits completely and has roots in D, so
˝Tn.D/ D D. Hence, the integral closure of IntK.Tn.D// is IntK.˝Tn.D/;�n/ D
IntK.D;�n/. But, polynomials inKŒX� that moveD into�n actually moveD into
�n \K D D. Thus, IntK.D;�n/ D Int.D/. ut
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Since IntK.Tn.D// � IntK.Tn�1.D// for all n > 0, the previous proposition
proves that

� � � � IntK.Tn.D// � IntK.Tn�1.D// � � � � � Int.D/

is a chain of integral ring extensions.

4 Matrix Rings and Polynomially Dense Subsets

For any D-algebra A, we have .A0/0 D A0, so IntK.A0/ is integrally closed by
Theorem 10. Furthermore, IntK.A0/ is always contained in IntK.A;A0/. One may
then ask: when does IntK.A0/ equal IntK.A;A0/? In this section, we investigate this
question and attempt to identify polynomially dense subsets of rings of integral-
valued polynomials. The theory presented here is far from complete, so we raise
several related questions worthy of future research.

Definition 18. Let S � T � Mn.K/. Define IntK.S; T / WD ff 2 KŒX�

j f .S/ � T g and IntK.T / WD IntK.T; T /. To say that S is polynomially dense
in T means that IntK.S; T / D IntK.T /.

Thus, the question posed at the start of this section can be phrased as: is A
polynomially dense in A0?

In general, it is not clear how to produce polynomially dense subsets of A0, but
we can describe some polynomially dense subsets of Mn.D/

0.

Proposition 19. For each ˝ 
 �n of cardinality at most n, choose M 2 Mn.D/
0

such that ˝M D ˝ . Let S be the set formed by such matrices. Then, S is
polynomially dense in Mn.D/

0. In particular, the set of companion matrices in
Mn.D/ is polynomially dense in Mn.D/

0.

Proof. We know that IntK.Mn.D/
0/ � IntK.S;Mn.D/

0/, so we must show that the
other containment holds. Let f 2 IntK.S;Mn.D/

0/ and N 2 Mn.D/
0. Let M 2 S

such that˝M D ˝N . Then, f .M/ is integral, so by Lemma 2 and (8), f .N / is also
integral.

The proposition holds for the set of companion matrices because for any
˝ 
 �n, we can find a companion matrix in Mn.D/ whose eigenvalues are the
elements of ˝ . ut

By the proposition, any subset of Mn.D/ containing the set of companion
matrices is polynomially dense in Mn.D/

0. In particular, Mn.D/ is polynomially
dense in Mn.D/

0.
When D D Z, we can say more. In [10] it is shown that IntQ.An/ D

IntQ.An;An/, where An is the set of algebraic integers of degree equal to n. Letting
I be the set of companion matrices in Mn.Z/ of irreducible polynomials, we have
˝I D An. Hence, by Corollary 16 and Theorem 9, I is polynomially dense
in Mn.Z/

0.
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Returning to the case of a general D-algebra A, the following diagram
summarizes the relationships among the various polynomial rings we have
considered:

IntK.A/ � IntK.A;A0/ D IntK.˝A;�n/

� �

IntK.A0/ D IntK.˝A0 ; �n/

� �

IntK.Mn.D/
0/ D IntK.�n/

(20)

From this diagram, we deduce that A is polynomially dense in A0 if and only if ˝A

is polynomially dense in ˝A0 .
It is fair to ask what other relationships hold among these rings. We present

several examples and a proposition concerning possible equalities in the diagram.
Again, we point out that such equalities can be phrased in terms of polynomially
dense subsets. First, we show that IntK.A/ need not equal IntK.A;A0/ (i.e., A need
not be polynomially dense in A0).

Example 21. TakeD D Z andA D ZŒ
p�3�. Then,A0 D ZŒ��, where � D 1Cp�3

2
.

The ring IntK.A;A0/ contains both IntK.A/ and IntK.A0/.
If IntK.A;A0/ equaled IntK.A0/, then we would have IntK.A/ � IntK.A0/.

However, this is not the case. Indeed, working mod 2, we see that for all ˛ D
a C b

p�3 2 A, ˛2  a2 � 3b2  a2 C b2. So, ˛2.˛2 C 1/ is always divisible

by 2, and hence x2.x2C1/
2

2 IntK.A/. On the other hand, �2.�2C1/
2

D � 1
2
, so

x2.x2C1/
2

… IntK.A0/. Thus, we conclude that IntK.A0/ ¤ IntK.A;A0/.

The work in the previous example suggests the following proposition.

Proposition 22. Assume that D has finite residue rings. Then, A is polynomially
dense in A0 if and only if IntK.A/ � IntK.A0/.

Proof. This is similar to [2, Thm. IV.4.9]. If A is polynomially dense in
A0, then IntK.A0/ D IntK.A;A0/, and we are done because IntK.A;A0/
always contains IntK.A/. Conversely, assume that IntK.A/ � IntK.A0/. Then,
IntK.A/ � IntK.A0/ � IntK.A;A0/. Since IntK.A0/ is integrally closed by
Theorem 10 and IntK.A;A0/ is integral over IntK.A/ by Theorem 13, we must
have IntK.A0/ D IntK.A;A0/. ut

By Proposition 19, IntK.Mn.D/
0/ D IntK.Mn.D/;Mn.D/

0/. There exist alge-
bras other than matrix rings for which IntK.A0/ D IntK.A;A0/. We now present two
such examples.

Example 23. Let A D Tn.D/, the ring of n 	 n upper triangular matrices with
entries in D. Define Tn.K/ similarly. Then, A0 consists of the integral matrices in
Tn.K/, and since D is integrally closed, such matrices must have diagonal entries
inD. Thus,˝A0 D D D ˝A. It follows that IntK.Tn.D/; Tn.D/0/ D IntK.Tn.D/0/.
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Example 24. Let i, j, and k be the standard quaternion units satisfying i2 D j2 D
k2 D �1 and ij D k D �ji (see, e.g., [8, Ex. 1.1, 1.13] or [3] for basic material on
quaternions).

Let A be the Z-algebra consisting of Hurwitz quaternions:

A D fa0 C a1i C a2j C a3k j a` 2 Z for all ` or a` 2 Z C 1
2

for all `g

Then, for B we have

B D fq0 C q1i C q2j C q3k j q` 2 Qg

It is well known that the minimal polynomial of the element q D q0 C q1i C q2j C
q3k 2 B n Q is �q.X/ D X2 � 2q0X C .q20 C q21 C q22 C q23/, so A0 is the set

A0 D fq0 C q1i C q2j C q3k 2 B j 2q0; q20 C q21 C q22 C q23 2 Zg

As with the previous example, by (20), it is enough to prove that ˝A0 D ˝A.
Let q D q0 C q1i C q2j C q3k 2 A0 and N D q20 C q21 C q22 C q23 2 Z. Then,

2q0 2 Z, so q0 is either an integer or a half-integer. If q0 2 Z, then q21 C q22 C q23 D
N �q20 2 Z. It is known (see for instance [12, Lem. B p. 46]) that an integer which is
the sum of three rational squares is a sum of three integer squares. Thus, there exist
a1; a2; a3 2 Z such that a21 C a22 C a23 D N � q20 . Then, q0 D q0 C a1i C a2j C a3k
is an element of A such that ˝q0 D ˝q .

If q0 is a half-integer, then q0 D t
2

for some odd t 2 Z. In this case, q21Cq22Cq23 D
4N�t 2
4

D u
4
, where u  3 mod 4. Clearing denominators, we get .2q1/2 C .2q2/

2 C
.2q3/

2 D u. As before, there exist integers a1; a2, and a3 such that a21Ca22Ca23 D u.
But since u  3 mod 4, each of the a` must be odd. So, q0 D .t C a1i C a2j C
a3k/=2 2 A is such that ˝q0 D ˝q .

It follows that ˝A0 D ˝A and thus that IntK.A;A0/ D IntK.A0/.

Example 25. In contrast to the last example, the Lipschitz quaternions A1 D Z ˚
Zi˚Zj ˚Zk (where we only allow a` 2 Z) are not polynomially dense in A0

1. With
A as in Example 24, we haveA1 
 A, and both rings have the same B , so A0

1 D A0.
Our proof is identical to Example 21. Working mod 2, the only possible minimal
polynomials for elements of A1 n Z are X2 and X2 C 1. It follows that f .X/ D
x2.x2C1/

2
2 IntK.A1/. Let ˛ D 1CiCjCk

2
2 A0. Then, the minimal polynomial of

˛ is X2 � X C 1 (note that this minimal polynomial is shared by � D 1Cp�3
2

in Example 21). Just as in Example 21, f .˛/ D � 1
2
, which is not in A0. Thus,

IntK.A1/ 6� Int.A0/, so A1 is not polynomially dense in A0
1 D A0 by Proposition 22.
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5 Further Questions

Here, we list more questions for further investigation.

Question 26. Under what conditions do we have equalities in (20)? In particular,
what are necessary and sufficient conditions on A for A to be polynomially
dense in A0? In Examples 23 and 24, we exploited the fact that if ˝A D ˝A0 ,
then IntK.A;A0/ D IntK.A0/. It is natural to ask whether the converse holds.
If IntK.A;A0/ D IntK.A0/, does it follow that ˝A D ˝A0? In other words, if A
is polynomially dense in A0, then is ˝A equal to ˝A0?

Question 27. By [2, Proposition IV.4.1] it follows that Int.D/ is integrally closed
if and only if D is integrally closed. By Theorem 10 we know that if A D A0,
then IntK.A/ is integrally closed. Do we have a converse? Namely, if IntK.A/ is
integrally closed, can we deduce that A D A0?

Question 28. In our proof (Theorem 13) that IntK.A;A0/ is the integral closure of
IntK.A/, we needed the assumption that D has finite residue rings. Is the theorem
true without this assumption? In particular, is it true wheneverD is Noetherian?

Question 29. When is IntK.A;A0/ D IntK.˝A;�n/ a Prüfer domain? When
D D Z, IntQ.A;A0/ is always Prüfer by [9, Cor. 4.7]. On the other hand, even when
A D D is a Prüfer domain, Int.D/ need not be Prüfer (see [2, Sec. IV.4]).

Question 30. In Remark 14, we proved that IntK.Mn.D// equals an intersection of
pullbacks:

\

M2Mn.D/

.DŒX�C �M.X/ �KŒX�/ D IntK.Mn.D//

Does such an equality hold for other algebras?
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On Monoids and Domains Whose Monadic
Submonoids Are Krull

Andreas Reinhart

Abstract A submonoid S of a given monoid H is called monadic if it is a
divisor-closed submonoid of H generated by one element (i.e., there is some (non-
zero) b 2 H such that S is the smallest divisor-closed submonoid of H such that
b 2 S ). In this paper we study monoids and domains whose monadic submonoids
are Krull monoids. These monoids resp. domains are called monadically Krull.
Every Krull monoid is a monadically Krull monoid, but the converse is not true.
We provide several types of counterexamples and present a few characterizations
for monadically Krull monoids. Furthermore, we show that rings of integer-
valued polynomials over factorial domains are monadically Krull. Finally, we
investigate the connections between monadically Krull monoids and generalizations
of SP-domains.

Keywords Monadically • Integer-valued • Krull monoid • Mori set
• SP-domain

2000 Mathematics Subject Classification. 13A15, 13F05, 20M11, 20M12

1 Introduction

The main goal of this paper is to study the so-called monadically Krull monoids
(i.e., monoids where every divisor-closed submonoid generated by one element
is a Krull monoid). Studying monoids “monadically” (i.e., investigating properties
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that are satisfied by all divisor-closed submonoids generated by one element)
is reasonable, since some types of monoids are better situated in the “local” than
in the “global” situation. On the other hand it turns out that there are a lot of
monoid theoretical properties that are satisfied by the monoid if and only if they are
satisfied “monadically” (e.g., being atomic, completely integrally closed, factorial).
However, the Krull property does not behave like this (as pointed out in this work),
and thus monadically Krull monoids are of special interest. Being monadically
Krull is related to “weak factorization properties” that have been studied in a series
of papers (see [9, 10, 24–26]). Moreover, some recent work in studying monoids
“monadically” has been done in [16, 23]. Investigating monadically Krull monoids
was also motivated by a problem that we want to discuss in more detail. Let R
be a (possibly noncommutative) ring and let C be a class of finitely generated
(right) R-modules which is closed under finite direct sums, direct summands,
and isomorphisms. Then the set V.C/ of isomorphism classes of modules is a
commutative semigroup with operation induced by the direct sum. This semigroup
encodes all possible information about direct sum decompositions of modules in
C (see [6, 12]). If the endomorphism ring of each module in C is semilocal, then
V.C/ is a Krull monoid [11, Theorem 3.4]. Moreover, every reduced Krull monoid
can be realized by such a monoid of modules [13]. Thus the (global) property that
V.C/ is Krull follows from a family of local data, namely that all EndR.M/ are
semilocal. Furthermore, the assumption that EndR.M/ is semilocal implies that the
smallest divisor-closed submonoid of V.C/ generated by the class of M [denoted
by add.M/] is a Krull monoid [4–6].

In the second section we will discuss the most important terminology. We give
a brief introduction to finitary ideal systems to simplify and unify the terminology
about various types of ideals (e.g., ring ideals and t-ideals).

In the third section we will prove that several interesting properties (like
being completely integrally closed, being atomic or being an FF-monoid) can be
characterized by using the divisor-closed submonoids generated by one element.
Moreover, we provide another characterization of Krull monoids. The main result in
this section is a characterization of monadically Krull monoids. It turns out that the
monadically Krull monoids are precisely the atomic, completely integrally closed
monoids where special sets of atoms are finite up to associates.

In the fourth section we deal with the question whether every monadically
Krull monoid is already a Krull monoid. We provide several counterexamples.
First we present a ring theoretical counterexample and later we will introduce a
counterexample in the monoid setting that is substantially stronger. The second
example will show that radical factorial FF-monoids (they are always monadically
Krull) also need not be Krull. By the way we answer some questions that have been
raised in the literature in the negative. In [10] it has been shown that every atomic
IDPF-domain that contains a field of characteristics zero is already completely
integrally closed. We will point out that such a domain is not necessarily a Krull
domain. Furthermore, we deal with the problem whether the t-dimension of a t-
SP-monoid (which is some sort of generalized Krull monoid) is bounded by one
and show that t-SP-monoids whose height-one prime t-ideals are divisorial are not
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necessarily Krull. Moreover, it is well known that an integral domain is a Prüfer
domain that does not have non-zero idempotent prime ideals if and only if each of
its primary ideals is a power of its radical and its set of prime ideals satisfies the
ACC (e.g., see [29, Corollary 5.5]). We show that the “t-analogue” of this statement
is not true in the monoid setting.

In the fifth section we investigate rings of integer-valued polynomials. We prove
that rings of integer-valued polynomials over factorial domains are monadically
Krull. Using this result we are able to provide a large class of monadically Krull
domains that are t-Prüfer domains and that fail to be Krull.

In the last section we deal with the question whether every radical factorial
FF-domain of Krull dimension one is already a Krull domain. Although we could
not solve this problem so far, we will present partial solutions. For example, we
will construct a BF-domain that is an SP-domain but not a Krull domain (note
that every radical factorial domain of Krull dimension one is an SP-domain;
see [29, Proposition 3.11]). The counterexamples in this section are based on a
construction used in [20]. Furthermore, we investigate how far SP-domains (and
their generalizations) are from being monadically Krull by studying a special
necessary property that pops up in the characterization of monadically Krull (in [24]
this special property is called pseudo-IDPF).

2 Preliminaries

In the following, a monoid is a commutative semigroup (multiplicatively written if
not stated otherwise) that possesses an identity and (if not stated otherwise) a zero
element different from the identity such that every non-zero element is cancellative.
A quotient monoid of a monoidH is a monoid containingH as a submonoid where
every non-zero element is invertible and that is minimal with respect to this property.

Let H be a monoid,K a quotient monoid ofH , and X � H . Set H 	 D Hnf0g.

• For A;B � K let .A WK B/ D fz 2 K j zB � Ag, A�1 D .H WK A/ and
Av D .A�1/�1.

• X is called (H -)divisor-closed if for all x 2 H and y 2 H 	 such that xy 2 X it
follows that x 2 X .

• By ŒX�H (resp. ŒŒX��H ) we denote the smallest (divisor-closed) submonoid of H
that containsX .

• If a 2 H , set ŒŒa��H D ŒŒfag��H .
• X is called an (H -)Mori set if for every F � X there exists some finite E � F

such that E�1 D F �1.

Note that ŒŒa��H D fb 2 H j b jH an for some n 2 Ng [ f0g for all a 2 H 	.
Since we will use a slightly different version of ideal systems than those dealt

within [22], we will recall the definition. The ideal systems in this work will always
be ideal systems in the sense of [22] (but not conversely). Let P.H/ be the power
set of H and r W P.H/ ! P.H/ be a map. The map r is called a (finitary) ideal
system on H if the following properties are satisfied for all X; Y � H and c 2 H .
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• XH [ f0g � r.X/.
• r.cX/ D cr.X/.
• If X � r.Y /, then r.X/ � r.Y /.
• (r.X/ D S

E�X;jEj<1 r.E/.)

Note that if H 	 6D H�, then v W P.H/ ! P.H/ defined by v.X/ D Xv for all
X � H is an ideal system on H and t W P.H/ ! P.H/ defined by t.X/ DS
E�X;jEj<1 Ev for all X � H is a finitary ideal system on H . If R is an integral

domain, then d W P.R/ ! P.R/ defined by d.X/ D .X/R for all X � R is a
finitary ideal system onR. Furthermore, s W P.H/ ! P.H/ defined by s.X/ D XH

if ; 6D X � H and s.;/ D f0g is a finitary ideal system on H .
In the following we will use most of the definitions and notations in [15, 22]

without further reference. Especially, we will freely use the following terms:
“BF-monoid”, “FF-monoid”, “ACCP”, “atomic”, “factorial”, “Krull”, “completely
integrally closed”, “valuation monoid”, “v-closed”, “root-closed”, and “GCD-
monoid”. A monoid is called a Mori monoid if it is v-noetherian in the terminology
of [15].

Observe that Mori sets defined in this work differ from those introduced in [30].
Note that if S � H is a divisor-closed submonoid andH is a Krull monoid (a Mori
monoid, a completely integrally closed monoid), then S has the same property by
[15, Proposition 2.4.4.2].

3 Monadic Properties and Mori Sets

First we present a simple characterization of being a Mori set. Using this result it is
straightforward to prove that H is a Mori monoid if and only if H is a Mori set.

Lemma 3.1. Let H be a monoid and X � H . Then X is not a Mori set if and only
if there is some .ai /i2N 2 XN such that fai j i 2 Œ1; nC 1�g�1 ¤ fai j i 2 Œ1; n�g�1
for all n 2 N.

Proof. “)”: Let X be not a Mori set. Then there is some F � X such that for
every finite E � F it follows that F�1 ¤ E�1. There exists some a1 2 F . Now
let n 2 N and .ai /niD1 2 F Œ1;n�. Then F�1 ¤ fai j i 2 Œ1; n�g�1, and thus F ª
fai j i 2 Œ1; n�gv. Consequently, there exists some anC1 2 F nfai j i 2 Œ1; n�gv,
and thus fai j i 2 Œ1; n C 1�g�1 ¤ fai j i 2 Œ1; n�g�1. Hence there is some
.ai /i2N 2 F N such that fai j i 2 Œ1; nC 1�g�1 ¤ fai j i 2 Œ1; n�g�1 for all n 2 N.
“(”: Let F D fai j i 2 Ng. Assume that there is some finite E � F such that
E�1 D F �1. Then there exists some n 2 N such that E � fai j i 2 Œ1; n�g. This
implies that F�1 � fai j i 2 Œ1; n C 1�g�1 ¤ fai j i 2 Œ1; n�g�1 � E�1 D F�1,
a contradiction. ut

Next we specify Krull monoids by using Mori sets. Note that the equivalence of
1 and 4 is well known.
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Proposition 3.2. Let H be a monoid. The following conditions are equivalent:

1. H is a Krull monoid.
2. H is atomic, completely integrally closed, and A.H/ is a Mori set.
3. H is completely integrally closed and there is some Mori set F � H such that
H D ŒF [H��H .

4. H is completely integrally closed and every t-maximal t-ideal ofH is divisorial.

Proof. 1 ) 2: Clear. 2 ) 3: Set F D A.H/. Since H is atomic we have H D
ŒF [ H��. 3 ) 4: Let F � H be a Mori set such that H D ŒF [ H��H , P a t-
maximal t-ideal ofH and x 2 P 	. Then there are some " 2 H� and .˛e/e2F 2 N

.F /
0

such that x D "
Q
e2F e˛e . Therefore, there exists some e 2 F such that e 2 P and

x 2 eH . It follows that x 2 fegt � .P \ F /t . Consequently, P � .P \ F /t .
There is some finite E � P \ F such that E�1 D .P \ F /�1. This implies that
P � .P \ F /t � .P \ F /v D Ev D Et � .P \ F /t � P ; hence P D Ev,
and thus P is divisorial. 4 ) 1: Let I be a non-zero t-ideal of H . It is sufficient
to show that I is t-invertible. Since H is completely integrally closed, it follows
that .II�1/v D H . Assume that .II�1/t ¤ H . Then there exists some t-maximal
t-ideal P of H such that .II�1/t � P . We have H D .II�1/v � ..II�1/t /v �
Pv D P , a contradiction. Consequently, .II�1/t D H . ut

Now we provide a few minor results about Mori sets and divisor-closed
submonoids to prepare for the main result in this section.

Lemma 3.3. Let H be a monoid, S � H a divisor-closed submonoid, and X � S

a subset. If X is an H -Mori set, then X is an S -Mori set.

Proof. Let K be a quotient monoid of H and L � K the quotient monoid of S .
First we show that for every Y � S it follows that .H WL Y / D .S WL Y /. Let
Y � S . “�”: Let x 2 .H WL Y /, then xY � H . Since S � H is divisor closed,
it follows that xY � H \ L D S , hence x 2 .S WL Y /. “�”: trivial. Now let
X be an H -Mori set and F � X . Then there exists some finite E � F such that
.H WK F / D .H WK E/. This implies that .S WL F / D .H WL F / D .H WK
F / \L D .H WK E/\ L D .H WL E/ D .S WL E/, hence X is an S -Mori set. ut

Let H be a monoid, x 2 H , and n 2 N and let A be some property that can be
stated in the language of monoids (e.g., atomic, Krull, Mori).

• Set Dn.x/ D fu 2 A.H/ j u jH xng.
• A submonoid S � H is called monadic if S D ŒŒa�� for some a 2 H 	.
• We say that H is monadically A (or H is a monadically A monoid) if every

monadic submonoid of H satisfies A.
• The property A is said to be monadic (for H ) if H has property A if and only if

every monadic submonoid of H has property A.
• If H is an integral domain, we say that H is a A domain if H satisfies A as a

monoid.

Note that H is monadically A if and only if ŒŒE�� satisfies A for all non-empty finite
E � H 	.
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Proposition 3.4. Let H be a monoid andK a quotient monoid of H :

1. H� D ŒŒa��� and A.ŒŒa��/ D A.H/ \ ŒŒa�� D S
n2N Dn.a/ for all a 2 H 	.

2. H is atomic if and only if H is monadically atomic.
3. H is completely integrally closed if and only if H is monadically completely

integrally closed.
4. H is an FF-monoid if and only if H is a monadically FF-monoid.

Proof. 1. Let a 2 H 	. Clearly, ŒŒa��� � H�. If " 2 H�, then ""�1 D 1 2 ŒŒa��;
hence "; "�1 2 ŒŒa��, and thus " 2 ŒŒa��� . If x 2 A.ŒŒa��/ and b; c 2 H are such that
x D bc, then b; c 2 ŒŒa��; hence b 2 ŒŒa��� D H� or c 2 ŒŒa��� D H�. Finally,
if x 2 A.H/ \ ŒŒa�� and b; c 2 ŒŒa�� are such that x D bc, then b 2 H� D ŒŒa���
or c 2 H� D ŒŒa��� . Obviously, A.H/ \ ŒŒa�� D S

n2Nfu 2 A.H/ j u jH ang DS
n2NDn.a/.

2. This is an immediate consequence of 1.
3. “)”: trivial “(”: Let x 2 K	 be almost integral over H . There exists some
c 2 H 	 such that cxn 2 H for all n 2 N and there are some a; b 2 H 	 such
that x D a

b
. Let L � K be the quotient monoid of ŒŒabc��. Then c 2 ŒŒabc��	 ,

x 2 L and cxn 2 H \ L D ŒŒabc�� for all n 2 N. Since ŒŒabc�� is completely
integrally closed, we have x 2 ŒŒabc�� � H .

4. “)”: This follows from 1 and [15, Theorem 1.5.6.2]. “(”: Let x 2 H 	. It is
an easy consequence of 1 that f W fyŒŒx�� j y 2 ŒŒx��; y jŒŒx�� xg ! fyH j y 2
ŒŒx��; y jŒŒx�� xg defined by f .I / D IH is a bijective map. Since fyŒŒx�� j y 2
ŒŒx��; y jŒŒx�� xg is finite, we have fyH j y 2 H;y jH xg D fyH j y 2 ŒŒx��; y jŒŒx��
xg is finite. ut

Let H be a monoid and K a quotient monoid ofH .

• H is called seminormal if for all x 2 K such that x2; x3 2 H we have x 2 H .
• H is called a weakly factorial if every x 2 H 	nH� is a finite product of primary

elements of H (i.e., of elements x 2 H 	 such that xH is primary).
• H is called radical factorial if every x 2 H 	 is a finite product of radical elements

ofH (i.e., of elements x 2 H 	 such that
p
xH D xH ).

We leave to the reader to prove that “satisfying the ACCP”, “seminormal”, “root-
closed”, “atomic and weakly factorial”, “atomic and radical factorial”, “being a BF-
monoid”, “being a valuation monoid”, “being a GCD-monoid”, and “factorial” are
also monadic properties forH . We do not know whether “weakly factorial”, “radical
factorial”, and “v-closed” are monadic properties. If H is weakly factorial (resp.
radical factorial), thenH is monadically weakly factorial (resp. monadically radical
factorial) and the following holds.

Remark 3.5. Let H be a monoid that is monadically v-closed. Then H is v-closed.

Proof. LetK be a quotient monoid ofH , ; 6D E � H 	 finite, and x 2 K	 such that
xE � Ev. There are some y; z 2 H 	 such that x D y

z . Set S D ŒŒE [ xE [ fy; zg��.
Observe that S is a monadic submonoid of H , and thus S is vS -closed. Let L � K
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be the quotient monoid of S . Clearly, x 2 L and it follows by [15, Proposition
2.4.2.3] that xE � Ev \ S � .EvS /v \ S D EvS ; hence x 2 S . Consequently,
x 2 H . ut

Now we present the main result in this section. It connects monadically Krull
monoids with concepts that are well known in the literature.

Theorem 3.6. Let H be a monoid. The following conditions are equivalent:

1. H is a monadically Krull monoid.
2. H is atomic and completely integrally closed and fuH j u 2 A.ŒŒa��/g is finite

for all a 2 H 	.
3. H is a completely integrally closed FF-monoid and for all a 2 H 	, A.ŒŒa��/ �

Dk.a/ for some k 2 N.
4. H is atomic and completely integrally closed and A.ŒŒa��/ is an H -Mori set for

all a 2 H 	.

Proof. 1 ) 2: By Propositions 3.4(2) and 3.4(3) we have H is atomic and
completely integrally closed. Let a 2 H 	. If P 2 X.ŒŒa��/, then there is some
b 2 P 	; hence there are some c 2 H and n 2 N such that bc D an.
It follows that c 2 ŒŒa��; hence an 2 P , and thus a 2 P . Therefore, a 2 P

for all P 2 X.ŒŒa��/. It follows by [15, Proposition 2.2.4.2] and [15, Theorem
2.2.5.2] that X.ŒŒa��/ is finite. It can be easily deduced from [15, Theorem
2.7.14] that fuŒŒa�� j u 2 A.ŒŒa��/g is finite. It follows by Proposition 3.4(1)
that f W fuŒŒa�� j u 2 A.ŒŒa��/g ! fuH j u 2 A.ŒŒa��/g defined by f .I / D IH is
bijective; hence fuH j u 2 A.ŒŒa��/g is finite.

2 ) 3: Let a 2 H 	. It follows that fuH j u 2 D1.a/g � fuH j u 2 A.ŒŒa��/g
is finite which implies (together with the fact that H is atomic) that H is an
FF-monoid. On the other hand there is some finite E � A.ŒŒa��/ such that fuH j
u 2 A.ŒŒa��/g D fuH j u 2 Eg. There is some k 2 N such that E � Dk.a/. Let
u 2 A.ŒŒa��/. Then some " 2 H� and some v 2 E exist such that u D "v. Since
v 2 Dk.a/, we immediately obtain that u 2 Dk.a/.

3 ) 4: Let a 2 H 	 and F � A.ŒŒa��/. There is some k 2 N such that F � Dk.a/

and since H is an FF-monoid we have fuH j u 2 F g � fuH j u 2 Dk.a/g
is finite. Consequently, there is some finite E � F such that fuH j u 2 F g D
fuH j u 2 Eg. If x 2 K , then x 2 E�1 if and only if xuH � H for all u 2 E
if and only if xuH � H for all u 2 F if and only if x 2 F�1. Therefore,
E�1 D F�1.

4 ) 1: Let a 2 H 	. By Propositions 3.4(2) and 3.4(3) it follows that ŒŒa�� is atomic
and completely integrally closed. Lemma 3.3 implies that A.ŒŒa��/ is an ŒŒa��-Mori
set. By Proposition 3.2 we obtain that ŒŒa�� is a Krull monoid. ut

Using the terminology in [24] we obtain by Theorem 3.6 thatH is a monadically
Krull monoid if and only if it is an atomic, completely integrally closed IDPF-
monoid if and only if it is a completely integrally closed FF-monoid that is a
pseudo-IDPF monoid. We will see later that monadically Krull monoids are not
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necessarily Krull monoids. Especially, we have that monadically Mori monoids are
not necessarily Mori monoids. The next result shows that if the Mori property is
satisfied by a bigger class of divisor-closed submonoids, then the monoid itself
satisfies the Mori property.

Proposition 3.7. Let H be a monoid. Then H is a Mori monoid if and only if ŒŒX��
is a Mori monoid for every denumerable subset X � H 	.

Proof. Let K be a quotient monoid of H . “)”: Trivial. “(”: Assume that H is
not a Mori monoid. Then H is not a Mori set. By Lemma 3.1 there exists some
.ai /i2N 2 HN such that .H WK fai j i 2 Œ1; n C 1�g/ ¤ .H WK fai j i 2 Œ1; n�g/
for all n 2 N. Therefore, there exist some .xi /i2N 2 HN and .yi /i2N 2 .H 	/N
such that for all n 2 N we have anC1 xnyn 2 KnH and ai

xn
yn

2 H for all i 2 Œ1; n�.
Let S D ŒŒfanxnyn j n 2 Ng�� and let L � K be the quotient monoid of S . Then
.ai /i2N 2 SN and . xi

yi
/i2N 2 LN. Moreover, we have for all n 2 N that anC1 xnyn 2

LnS and ai
xn
yn

2 H \ L D S for all i 2 Œ1; n�. This implies that .S WL fai j i 2
Œ1; nC 1�g/ ¤ .S WL fai j i 2 Œ1; n�g/ for all n 2 N. It follows by Lemma 3.1 that S
is not an S -Mori set, and thus S is not a Mori monoid, a contradiction. ut

4 Counterexamples

It is of interest to know whether every monadically Krull monoid is already a Krull
monoid. In this section we prove that this is not necessarily true and show that even
strong improvements of monadically Krull can fail to be Krull. For technical reasons
we will consider (multiplicatively written) monoids that do not possess a zero
element in this section. Moreover, we will use monoids that are additively written
(the zero element is their identity and they do not possess an “additive” analogue
of a “multiplicative” zero element). All terminology that has been introduced so far
can be adapted in an obvious way for these types of monoids. Observe that the label
“quotient monoid” will be replaced by “quotient group” for monoids without a zero
element. Note that a monoid is root closed if and only if it is integrally closed in
terms of [18]. We want to thank F. Kainrath who led our attention to the integral
domain constructed in the next example.

Example 4.1. There exists a monadically Krull domain that is not a Krull domain.

Proof. Let R be an integrally closed noetherian domain, .Xi /i2N0 a sequence of
independent indeterminates over R and K a field of quotients of RŒfXi j i 2 N0g�.
For n 2 N0 set Sn D RŒfQn

iD0 X
ai
i j .ai /niD0 2 N

Œ0;n�
0 ; a0 � Pn

iD1
ai
2i

g�. Let S DS
n2N Sn. We show that S is a monadically Krull domain that is not a Krull domain.

Note that S is a subring of RŒfXi j i 2 N0g� andK is a field of quotients of S .
First we show that S is not a Krull domain. For n 2 N0 set an D

XnC1
0 .

Qn
iD1 X2i

i /X
2nC1�1
nC1 . By Lemma 3.1 it is sufficient to show that XkC1 2

fai j i 2 Œ0; k�g�1nfai j i 2 Œ0; k C 1�g�1 for all k 2 N0. Let k 2 N0 and
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i 2 Œ0; k�. Since
Pi

jD1 2
j

2j
C 2iC1�1

2iC1 C 1

2kC1 D i C 1 � 1

2iC1 C 1

2kC1 � i C 1

it follows that XkC1ai D XiC1
0 .

Qi
jD1 X2j

j /X
2iC1�1
iC1 XkC1 2 S , and thus

XkC1 2 faj j j 2 Œ0; k�g�1. Since
Pk

jD1 2
j

2j
C 2kC1C1

2kC1 C 2kC2�1
2kC2 D kC 2C 1

2kC2 >

k C 2, we have XkC1akC1 D XkC2
0 .

Qk
jD1 X2j

j /X
2kC1C1
kC1 X2kC2�1

kC2 62 S ; hence
XkC1 62 faj j j 2 Œ0; k C 1�g�1.

Next we prove that Sl is a divisor-closed subring of S that is noetherian and
integrally closed for all l 2 N. Let l 2 N. Clearly, Sl is a subring of S . Let f; g 2 S	
be such that fg 2 Sl . There is some m 2 N such that m � l and f; g 2 Sm.
Since fg 2 RŒfXi j i 2 Œ0; l�g�, it follows that f 2 RŒfXi j i 2 Œ0; l�g�; hence
f 2 Sm \ RŒfXi j i 2 Œ0; l�g� D Sl . Therefore, Sl is a divisor-closed subring of S .

Set T D fQl
iD0 X

ai
i j .ai /liD0 2 N

Œ0;l�
0 ; a0 � Pl

iD1
ai
2i

g, U D fQl
iD0 X

ai
i j

.ai /
l
iD0 2 N

Œ0;l�
0 ; l � a0 � Pl

iD1
ai
2i

g and V D ŒU �. Then T is a submonoid of
Sl . We show that T is root closed and T D V . Let L � K be a quotient group
of T . Let x 2 L and r 2 N be such that xr 2 T . Since fQl

iD0 X
ai
i j .ai /liD0 2

N
Œ0;l�
0 g is a root closed submonoid of L that contains T it follows that there is some

.bi /
l
iD0 2 N

Œ0;l�
0 such that x D Ql

iD0 X
bi
i . This implies that

Ql
iD0 X

rbi
i 2 T , and thus

rb0 � Pl
iD1

rbi
2i

. Consequently, b0 � Pl
iD1

bi
2i

; hence x 2 T . Therefore, T is root
closed. It remains to prove by induction on k that for all k 2 N and all .ai /liD1 2
N
Œ1;l�
0 such that k � Pl

iD1
ai
2i

it follows that Xk
0

Ql
iD1 X

ai
i 2 V . If k D 1, then the

assertion is clear. Now let k 2 N and .ai /liD1 2 N
Œ1;l�
0 be such that kC1 � Pl

iD1
ai
2i

.

Case 1: There is some j 2 Œ1; l� such that aj > 2j ; we have k � Pl
iD1;i 6Dj

ai
2i

C
aj�2j
2j

. It follows by the induction hypothesis that Xk
0 .
Ql
iD1;i 6Dj X

ai
i /X

aj�2j
j 2 V .

Therefore,XkC1
0

Ql
iD1 X

ai
i D X0X

2j

j X
k
0 .
Ql
iD1;i 6Dj X

ai
i /X

aj�2j
j 2 V . Case 2: aj �

2j for all j 2 Œ1; l�: We have
Pl

iD1
ai
2i

� l . If l � kC 1, then XkC1
0

Ql
iD1 X

ai
i 2 V ,

by definition. Now let l < k C 1. Since X0 2 V , it follows that XkC1
0

Ql
iD1 X

ai
i D

XkC1�l
0 Xl

0

Ql
iD1 X

ai
i 2 V . By [17, Corollary 15.12] it follows that Sl is noetherian

and integrally closed.
Let a 2 S	. There is some s 2 N such that a 2 Ss . Since Ss is a divisor-closed

subring of S it follows that ŒŒa��S is a divisor-closed submonoid of Ss . Since Ss
is a Krull domain this implies that ŒŒa��S is a Krull monoid. Consequently, S is a
monadically Krull domain. ut

It has been pointed out in [10] that every atomic IDPF-domain (this notion
has been introduced in [24]) that contains a field of characteristics zero is already
completely integrally closed. Now let the domain R in the last example be a field
of characteristics zero. Then the domain S in the last example is an atomic IDPF-
domain that contains a field of characteristics zero and yet S is not a Krull domain.
Let H be a monoid and r a finitary ideal system on H . Let J � P.H/. We say
that J possesses a length function if there exists some map � W J ! N0 such that
�.J / < �.I / for all I; J 2 J such that I ¤ J . Note that if J possesses a length
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function, then J satisfies the ACC. Moreover, ifR is an integral domain, then the set
of non-zero ideals of R possesses a length function if and only if R is a noetherian
domain and dim.R/ � 1. Observe that a monoid H is a BF-monoid if and only if
fxH j x 2 H 	g possesses a length function. Moreover, possessing a length function
is in some sense the same as satisfying a strong version of the ACC. We use it in
the next example to highlight that it is not only a BF-monoid but also that the set of
radicals of principal ideals possesses a length function. Next we introduce several
other types of generalizations of the Krull property to study the following example
in detail:

• H is called an r-SP-monoid if every r-ideal of H is a finite r-product of radical
r-ideals of H .

• H is called an r-Prüfer monoid if every non-zero r-finitely generated r-ideal of
H is r-invertible.

• An r-ideal I of H is called r-cancellative if I is cancellative in the r-ideal
semigroup of H .

Clearly, H is a Krull monoid if and only if it is a Mori monoid that is a t-Prüfer
monoid. Note that if H is a radical factorial monoid, then for all a 2 H 	 we have
A.ŒŒa��/ � D1.a/. Using Theorem 3.6 and [29, Proposition 2.4] it is straightforward
to prove that every radical factorial FF-monoid is a monadically Krull monoid (but
even a Krull monoid needs not be radical factorial; see [29, Example 4.3]). In this
light we will sharpen our first counterexample in the monoid setting and prove
that even radical factorial FF-monoids can fail to be Krull. A sequence .xi /i2N0
of integers is called formally infinite if fi 2 N0 j xi 6D 0g is finite. IfH is additively
written, k 2 N and I � H , then set kI D fPk

iD1 ai j .ai /kiD1 2 I Œ1;k�g.

Example 4.2. Let G be a free abelian group with basis .ei /i2N0 . For x 2 G, let
.xi /i2N0 2 Z

.N0/ denote the unique formally infinite sequence such that x DP
i2N0 xi ei . Set H D fx 2 G j x0 � xi � 0 for all i 2 N0g. Then H is a

submonoid of G, G is a quotient group of H , and the following is true:

1. v-spec.H/	 D X.H/, t-spec.H/	 D X.H/ [ fHnH�g, every non-empty
t-ideal of H is t-cancellative and .kP /t is P -primary for all k 2 N and P 2 t-
spec.H/	.

2. H is a t-SP-monoid, t-dim.H/ D 2, H is an FF-monoid, fpy CH j y 2 H g
possesses a length function, and every radical element ofH is either an atom or
a unit.

In particular, H is a radical factorial monoid that is neither a Mori monoid nor a
t-Prüfer monoid.

Proof. Clearly, H is a submonoid of G and H� D f0g. Let K � G be the quotient
group of H and i 2 N0. Obviously, e0; e0 C ei 2 H ; hence ei D e0 C ei � e0 2 K .
Therefore, G D K is a quotient group of H . For r 2 N

N0

0 set Ir D fx 2 G j x0 �
xjC1C r2jC1; xj � r2j for all j 2 N0g. Set I D fr 2 N

N0

0 j jfj 2 N0 j r2j 6D 0gj <
1; r0 � r2jC1 C r2jC2 for all j 2 N0g and L D fr 2 N

N0

0 j jfj 2 N0 j r2j 6D 0gj <
1; r0 D maxfr2jC1 C r2jC2 j j 2 N0gg. For i 2 N0, let s.i/ 2 N

N0

0 be defined by
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s
.i/
j D 1 if j 2 f0; ig and s.i/j D 0 if j 2 N0nf0; ig. If r; s 2 N

N0

0 and k 2 N0, then
we set r C s D .ri C si /i2N0 , kr D .kri /i2N0 and r � s if rj � sj for all j 2 N0.

Claim 1: For all x; y 2 H it follows that x 2 p
y CH if and only if fi 2 N0 j

yi > 0g � fi 2 N0 j xi > 0g and fi 2 N0 j y0 > yi g � fi 2 N0 j x0 > xi g. Let
x; y 2 H . Observe that x 2 p

y CH if and only if there is some k 2 N such
that kxi � yi and k.x0 � xi / � y0 � yi for all i 2 N0. “)”: Let k 2 N be such
that kxj � yj and k.x0 � xj / � y0 � yj for all j 2 N0. Let i 2 N0. If yi > 0,
then kxi � yi > 0, and thus xi > 0. If y0 > yi , then k.x0 � xi / � y0 � yi > 0,
hence x0 > xi . “(”: Let fi 2 N0 j yi > 0g � fi 2 N0 j xi > 0g and
fi 2 N0 j y0 > yi g � fi 2 N0 j x0 > xi g. Set k D 1C maxfyi j i 2 N0g. Then
k 2 N and it is clear that kxi � yi and k.x0 � xi / � y0 � yi for all i 2 N0.

Claim 2: For all ; 6D A � H we have Av D fx 2 G j x0 � xi C minfa0 � ai j
a 2 Ag and xi � minfai j a 2 Ag for all i 2 Ng. Let ; 6D A � H . Set
m.i/ D minfa0 � ai j a 2 Ag and n.i/ D minfai j a 2 Ag for all i 2 N. Observe
that A�1 D fx 2 G j x C a 2 H for all a 2 Ag D fx 2 G j for all a 2 A and
i 2 N, x0 C a0 � xi C ai � 0g D fx 2 G j x0 Cm.i/ � xi and xi C n.i/ � 0

for all i 2 Ng. “�”: Let x 2 Av and i 2 N. Set y D m.i/ei and z D �n.i/ei . We
have y; z 2 A�1; hence xCy 2 H and xCz 2 H . Therefore, x0Cy0 � xi Cyi
and xi C zi � 0. This implies that x0 � xi Cm.i/ and xi � n.i/. “�”: Let x 2 G
be such that x0 � xj C m.j / and xj � n.j / for all j 2 N. Let y 2 A�1 and
i 2 N. Then x0 � xi C m.i/, y0 C m.i/ � yi , xi � n.i/ and yi C n.i/ � 0;
hence x0 C y0 C m.i/ � xi C yi C m.i/ and xi C yi C n.i/ � n.i/. Therefore,
x0 C y0 � xi C yi � 0. This implies that x C y 2 H . Consequently, x 2 Av.

As usual we denote by It .H/	 (resp. Iv.H/
	) the set of non-empty t-ideals

of H (resp. the set of non-empty divisorial ideals of H ).
Claim 3: It .H/	 D fIr j r 2 Ig and Iv.H/

	 D fIr j r 2 Lg. First we prove
that It .H/	 D fIr j r 2 Ig. “�”: Let I 2 It .H/	. For i 2 N0 set r2i D
minfyi j y 2 I g and r2iC1 D minfy0 � yiC1 j y 2 I g. There is some sequence
.z.j //j2N0 2 IN0 such that z.2i/i D r2i and z.2iC1/0 �z.2iC1/iC1 D r2iC1 for all i 2 N0.

If j 2 N0, then since z.0/0 � z.0/jC1 � r2jC1 and z.0/jC1 � r2jC2 we obtain that

r0 D z.0/0 � r2jC1 C r2jC2. Moreover, jfj 2 N0 j r2j 6D 0gj � jfj 2 N0 j z.0/j 6D
0gj < 1. Therefore, r 2 I. It remains to show that I D Ir . “�”: trivial. “�”: Let
x 2 Ir . Set E D fi 2 N j xi 6D 0 or z.0/i 6D 0g. Then E is finite. It is sufficient to

prove that x0 � xj � min.fz.2i�1/0 � z.2i�1/j ; z.2i/0 � z.2i/j j i 2 Eg [ fz.0/0 � z.0/j g/
and xj � min.fz.2i�1/j ; z.2i/j j i 2 Eg [ fz.0/j g/ for all j 2 N, because then

x 2 .fz.2i�1/; z.2i/ j i 2 Eg [ fz.0/g/v by Claim 2; hence x 2 I . Let j 2 N. Case
1a: xj 6D 0. It follows that x0�xj � r2j�1 D z.2j�1/

0 � z.2j�1/
j . Case 1b: xj D 0.

We have x0 � xj D x0 � r0 D z.0/0 � z.0/0 � z.0/j . Case 2a: j 2 E . It follows

that xj � r2j D z.2j /j . Case 2b: j 62 E . We have xj D 0 D z.0/j . “�”: Let r 2 I
and x 2 .Ir /t . Then there is some finite ; 6D A � Ir such that x 2 Av. It is an
immediate consequence of Claim 2 that x0 � xj C r2j�1 and xj � r2j for all
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j 2 N. Since A is finite, there is some l 2 N such that xl D 0 and al D 0 for all
a 2 A. It follows by Claim 2 that x0 � xl C minfa0 � al j a 2 Ag D minfa0 j
a 2 Ag � r0. Consequently, x0 � xjC1 C r2jC1 and xj � r2j for all j 2 N0,
and thus x 2 Ir . Observe that

P
i2N0 r2iei 2 Ir ; hence Ir 2 It .H/	.

Next we show that Iv.H/
	 D fIr j r 2 Lg. “�”: Let I 2 Iv.H/

	. As in
the preceding part of the proof there is some r 2 I such that I D Ir , r2i D
minfyi j y 2 I g and r2iC1 D minfy0 � yiC1 j y 2 I g for all i 2 N0. Set s D
maxfr2iC1Cr2iC2 j i 2 N0g. It remains to show that s � r0, because then r 2 L.
Set x D se0 CP

i2N r2i ei . If i 2 N, then x0 D s � r2i�1C r2i D xi C r2i�1 and
xi D r2i . Therefore, Claim 2 implies that x 2 .Ir /v D Ir , and thus s D x0 � r0.
“�”: Let r 2 L and x 2 .Ir /v. It follows by Claim 2 that x0 � xi C r2i�1 and
xi � r2i for all i 2 N. There is some j 2 N such that r0 D r2j�1 C r2j ; hence
x0 � xj C r2j�1 � r2j C r2j�1 D r0. This implies that x 2 Ir .

Claim 4: For all a; b 2 I, IaCb D .Ia C Ib/t and Ia � Ib if and only if b � a. Let
a; b 2 I. Set y.0/ D P

i2N0 a2i ei , z.0/ D P
i2N0 b2i ei and for j 2 N set y.j / DP

i2N0;i 6Dj a2i ei C .a0 � a2j�1/ej and z.j / D P
i2N0;i 6Dj b2i ei C .b0 � b2j�1/ej .

Observe that y.j / 2 Ia and z.j / 2 Ib for all j 2 N0. “�”: Let x 2 IaCb . We
prove that x0 � xj C minfy.l/0 C z.l/0 � y

.l/
j � z.l/j j l D 0 or l 2 N; xl 6D 0g

and xj � minfy.l/j C z.l/j j l D 0 or l 2 N; xl 6D 0g for all j 2 N, because then

x 2 fy.l/ C z.l/ j l D 0 or l 2 N; xl 6D 0gv by Claim 2; hence x 2 .Ia C Ib/t .
Let j 2 N. Clearly, xj � a2j C b2j D y

.0/
j C z.0/j . Case 1: xj 6D 0. We have

xj C y
.j /
0 C z.j /0 � y.j /j � z.j /j D xj C a0 C b0 � .a0 � a2j�1/� .b0 � b2j�1/ D

xj Ca2j�1Cb2j�1 � x0. Case 2: xj D 0. It follows that xj Cy.0/0 Cz.0/0 �y.0/j �
z.0/j D a0 C b0 � a2j � b2j � a0 C b0 � x0. “�”: Obviously, Ia C Ib � IaCb
and a C b 2 I. Therefore, Claim 3 implies that .Ia C Ib/t � IaCb .

Clearly, if b � a, then Ia � Ib . Now let Ia � Ib . Note that y.i/ 2 Ib for all
i 2 N0; hence y.i/0 � y

.i/
jC1 C b2jC1 and y.i/j � b2j for all i; j 2 N0. If j 2 N0,

then y.jC1/
0 � y

.jC1/
jC1 C b2jC1 and y.0/j � b2j ; hence a0 � a0 � a2jC1 C b2jC1

and a2j � b2j . Consequently, ai � bi for all i 2 N0, and thus b � a.
Claim 5: t-spec.H/	 D fIs.i/ j i 2 N0g and X.H/ D fIs.i/ j i 2 Ng. First we

show that t-spec.H/	 D fIs.i/ j i 2 N0g. “�”: Let P 2 t-spec.H/	. By Claim
3 there is some r 2 I such that P D Ir . Case 1: rj D 0 for all j 2 N. Since
P 6D H , we have r0 6D 0. This implies that r D ks.0/ for some k 2 N, and
thus P D .kIs.0/ /t by Claim 4. Therefore, P D Is.0/ . Case 2: rj 6D 0 for some
j 2 N. Let a 2 N

N0

0 be defined by ai D ri if i 2 N0, i 6D j and ai D ri � 1

otherwise. Then a 2 I, r � s.j / C a and r — a. Therefore, Claim 4 implies
that .Is.j / C Ia/t � P and Ia ª P ; hence Is.j / � P . Note that s.j / � r , and
thus P D Is.j / by Claim 4. “�”: Observe that Is.2i/ D fx 2 H j xi � 1g and
Is.2iC1/ D fx 2 H j x0 � xiC1 C 1g for all i 2 N0. Using this and Claim 3 it is
straightforward to prove that Is.i/ 2 t-spec.H/	 for all i 2 N0.
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Next we show that X.H/ D fIs.i/ j i 2 Ng. “�”: Let P 2 X.H/. Then
P 2 t-spec.H/	; hence P D Is.i/ for some i 2 N0. Since s.0/ < s.1/, it follows
by Claim 4 that Is.1/ ¤ Is.0/ , and thus i 2 N. “�”: Let i 2 N andP 2 t-spec.H/	
be such that P � Is.i/ . There is some j 2 N0 such that P D Is.j / . It follows
by Claim 4 that s.i/ � s.j /; hence s.i/ D s.j /. Therefore, P D Is.i/ , and thus
Is.i/ 2 X.H/.

Claim 6: Ir is a radical t-ideal of H for all r 2 I such that r0 D 1. Let r 2 I be
such that r0 D 1. By Claims 4 and 5 we have

p
Ir D T

P2t -spec.H/�;P
Ir P D
T
i2N0;s.i/�r Is.i/ D fx 2 G j x0 � xjC1 C maxfs.i/2jC1 j i 2 N0; s

.i/ � rg; xj �
maxfs.i/2j j i 2 N0; s

.i/ � rg for all j 2 N0g D fx 2 G j x0 � xjC1 C
r2jC1; xj � r2j for all j 2 N0g D Ir .

1. By Claims 3 and 5 we have v-spec.H/	 D t-spec.H/	 \ Iv.H/
	 D fIs.i/ j i 2

N0g \ fIr j r 2 Lg D fIs.i/ j i 2 Ng D X.H/ and t-spec.H/	 D X.H/ [
fIs.0/g D X.H/ [ fHnH�g. Let A;B;C 2 It .H/	 be such that .A C B/t D
.AC C/t . By Claim 3 there exist some a; b; c 2 I such that A D Ia, B D Ib ,
and C D Ic . It follows by Claim 4 that IaCb D .AC B/t D .AC C/t D IaCc ,
and thus a C b D a C c by Claim 4. Consequently, b D c; hence B D C . Now
let k 2 N and P 2 t-spec.H/	. By Claim 4 we have .kIs.2i/ /t D Iks.2i/ D fx 2
H j xi � kg and .kIs.2iC1/ /t D Iks.2iC1/ D fx 2 H j x0 � xiC1 C kg for all
i 2 N0. Using this it is straightforward to prove that .kP /t is P -primary.

2. It follows by 1 that t-dim.H/ D 2, since HnH� is not divisorial. Let I 2
It .H/	. By Claim 3 there is some r 2 I such that I D Ir . For i 2 Œ1; r0� and j 2
N0 set r.i/j D 1, if [(j is even and rj � i ) or (j is odd and rjC1 < i � rjCrjC1)]
and set r.i/j D 0 otherwise. Observe that .r.i//r0iD1 2 fa 2 I j a0 D 1gŒ1;r0� and

r D Pr0
iD1 r.i/. By Claim 4 we have I D .

Pr0
iD1 Ir.i/ /t . Moreover, Ir.i/ is a

radical t-ideal for all i 2 Œ1; r0� by Claim 6. Therefore,H is a t-SP-monoid. Set
F D fx 2 G j xi � 0 for all i 2 N0g. Obviously, F is a free abelian monoid
andH � F is a submonoid. Consequently,H is an FF-monoid.

Set M D fpy CH j y 2 H g and let I 2 M. Then I D p
x CH for

some x 2 H . Set m D jfi 2 N0 j xi > 0gj and l D .m C 1/2. Let K � M
be a chain such that min.K/ D I (where min.K/ denotes the smallest element
of K with respect to inclusion). There is some sequence .x.L//L2K 2 HK such
that J D p

x.J / CH for all J 2 K. Let f W K ! Œ0;m� 	 Œ0;m� be defined
by f .J / D .jfi 2 N0 j x.J /i > 0gj; jfi 2 N0 j x.J /0 > x

.J /
i > 0gj/. Using

Claim 1 and the fact that min.K/ D I it is easy to prove that f is well defined.
We show that f is injective. Let J;L 2 K be such that f .J / D f .L/. Without
restriction let J � L. By Claim 1 we have fi 2 N0 j x.L/i > 0g � fi 2 N0 j
x
.J /
i > 0g and fi 2 N0 j x.L/0 > x

.L/
i > 0g � fi 2 N0 j x.J /0 > x

.J /
i > 0g.

Since f .J / D f .L/, this implies that fi 2 N0 j x.J /i > 0g D fi 2 N0 j
x
.L/
i > 0g and fi 2 N0 j x.J /0 > x

.J /
i > 0g D fi 2 N0 j x.L/0 > x

.L/
i > 0g.

Consequently, fi 2 N0 j x.J /0 > x
.J /
i g D fi 2 N0 j x.L/0 > x

.L/
i g, and thus
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J D p
x.J / CH D p

x.L/ CH D L by Claim 1. Since f is injective we have
jKj � l . Let � W M ! N0 be defined by �.J / D maxfjKj j K � M is a chain
and min.K/ D J g. Using the previous it is easy to prove that � is a well-defined
map and �.J / < �.L/ for all J;L 2 M such that L ¤ J . Consequently, M
possesses a length function.

Now let y be a radical element of H . There is some k 2 N such that yk D 0.
Set x D 2e0 C ek C P

i2N;yi>0 ei . It follows by Claim 1 that x 2 p
y CH D

y C H ; hence x0 � y0 � xi � yi � 0 for all i 2 N0. Therefore, 2 � y0 D
x0 � y0 � xk � yk D 1, and thus y0 � 1. Consequently, y 2 A.H/ [H�.

Since HnH� is a t-ideal it follows that Ct .H/ is trivial, and thus we haveH
is radical factorial by [29, Proposition 3.10.2]. Moreover, since t-dim.H/ D 2,
we have H is not a Krull monoid. Therefore, H is not a Mori monoid by [29,
Proposition 2.6]. It follows by [29, Proposition 3.9] and [29, Corollary 3.14] that
H is not a t-Prüfer monoid. ut
Note that if H is a discrete valuation monoid (i.e., an atomic valuation monoid

H withH 	 6D H�), then every radical element ofH is either an atom or a unit. The
last example also shares this property with discrete valuation monoids. An integral
domain is called an almost Krull domain if all its localizations at prime ideals are
Krull domains. The following question has been raised by Pirtle (see [28]): Is every
almost Krull domain whose height-one prime ideals are divisorial already a Krull
domain? Arnold and Matsuda answered Pirtle’s question in the negative (see [3]).
Note that our last example is of similar type, since it shows that a (radical factorial)
t-SP-monoid whose height-one prime t-ideals are divisorial is not necessarily a
Krull monoid. This also answers the questions raised after Proposition 2.6 in [29]
in the negative. Finally, Example 4.2 shows that being a t-Prüfer monoid is not a
monadic property and being “primary r-ideal inclusive” in [29, Corollary 5.3 and
Theorem 5.4] cannot be omitted.

5 Connections with Rings of Integer-Valued Polynomials

In this section we investigate the connections between rings of integer-valued
polynomials and monadically Krull monoids. In particular, we continue our search
for examples of monadically Krull domains that are not Krull. As in Sect. 4, we will
consider additively written monoids that do not possess an “additive” analogue of a
“multiplicative” zero element.

Let R be an integral domain,K a field of quotients ofR, andX an indeterminate
over K . If a; b 2 R, then we write a 'R b if b D ac for some c 2 R�. Set
Int.R/ D ff 2 KŒX� j f .c/ 2 R for all c 2 Rg, called the ring of integer-valued
polynomials over R. Observe that R � RŒX� and R � Int.R/ are divisor closed,
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Int.R/� D RŒX�� D R� and A.Int.R//\R D A.RŒX�/\R D A.R/. Especially,
if RŒX� is monadically Krull or Int.R/ is monadically Krull, then R is monadically
Krull.

Now let R be factorial and Q a system of representatives of prime elements
of R. Recall that RŒX� is factorial. If T � R, then let GCDR.T / be the set of all
greatest common divisors of T (in R). If g 2 RŒX�nR, then g is called primitive if
GCDRŒX�.g; c/ D RŒX�� for all c 2 R	 (equivalently: GCDR.fai j i 2 Œ0; k�g/ D
R� for all k 2 N0 and .ai /kiD0 2 RŒ0;k� such that g D Pk

iD0 aiXi ). If q 2 Q, then
let vq W R ! N0 [ f1g denote the q-adic valuation of R. Let dQ W Int.R/	 ! R	
be defined by dQ.g/ D Q

p2Q pminfvp.g.c//jc2Rg for all g 2 Int.R/	. Set d D dQ.
Note that d.g/ 2 GCDR.fg.c/ j c 2 Rg/ and g

d.g/
2 Int.R/ for all g 2 Int.R/	.

If M is a set and l 2 N, then a finite sequence .ai /liD1 2 Ml will be denoted
by a (i.e., a D .ai /

l
iD1). Let n 2 N, f 2 .Int.R/	/n and x 2 N

n
0nf0g. Then x is

called f -irreducible if for all y; z 2 N
n
0 such that x D y C z and d.

Qn
iD1 f

xi
i / D

d.
Qn
iD1 f

yi
i /d.

Qn
iD1 f

zi
i / it follows that y D 0 or z D 0 (this definition does not

depend on the choice of Q). In the next lemma we will use [15, Definition 1.5.2]
and Dickson’s Theorem (see [15, Theorem 1.5.3]) without further citation.

Lemma 5.1. Let R be a factorial domain, n 2 N, and f 2 .Int.R/	/n. Then fx 2
N
n
0 j x is f -irreducibleg is finite.

Proof. Let Q be a system of representatives of prime elements of R and T D fw 2
R j .Qn

iD1 fi /.w/ 6D 0g. We prove that minfvq.g.w// j w 2 Rg D minfvq.g.w// j
w 2 T g for all q 2 Q and g 2 Int.R/	. Let q 2 Q and g 2 Int.R/	. Then
minfvq.g.w// j w 2 Rg D vq.g.v// for some v 2 R. Observe that there is some
k 2 N such that vq.g.v// D vq.g.v C ql// for all l 2 N�k . Since RnT is finite,
there is some m 2 N�k such that v C qm 2 T . We have minfvq.g.w// j w 2 Rg D
vq.g.v C qm//, and thus minfvq.g.w// j w 2 Rg D minfvq.g.w// j w 2 T g.

Set P D fp 2 Q j minfvp..
Qn
iD1 fi /.w// j w 2 Rg > 0g. Clearly, P is

finite. If p 2 P , then there is some finite Sp � T such that Min.f.vp.fi .w///niD1 j
w 2 T g/ D f.vp.fi .w///niD1 j w 2 Spg. Set S D S

p2P Sp. Then S is finite.
For 
 2 SP set ˝
 D fu 2 N

n
0 j Pn

iD1.vp.fi .w// � vp.fi .
.p////ui � 0 for
all p 2 P and w 2 Sg. If 
 2 SP , then ˝
 is an additive monoid and by [15,
Theorem 2.7.14] and [15, Proposition 1.1.7.2] we have A.˝
 / is finite. It suffices
to show that fx 2 N

n
0 j x is f -irreducibleg � S


2SP A.˝
/. Let x 2 N
n
0 be f -

irreducible. There is some ı 2 SP such that minfPn
iD1 vp.fi .w//xi j w 2 Sg DPn

iD1 vp.fi .ı.p///xi for all p 2 P ; hence x 2 ˝ınf0g. Let u 2 ˝ı. If p 2 P ,
then minfvp..

Qn
iD1 f

ui
i /.w// j w 2 Rg D minfPn

iD1 vp.fi .w//ui j w 2 T g D
minfPn

iD1 vp.fi .w//ui j w 2 Sg D Pn
iD1 vp.fi .ı.p///ui , and if p 2 QnP , then

minfvp..
Qn
iD1 f

ui
i /.w// j w 2 Rg D 0. Let y; z 2 ˝ı be such that x D y C z.

If p 2 P , then minfvp..
Qn
iD1 f

xi
i /.w// j w 2 Rg D Pn

iD1 vp.fi .ı.p///xi DPn
iD1 vp.fi .ı.p///yi C Pn

iD1 vp.fi .ı.p///zi D minfvp..
Qn
iD1 f

yi
i /.w// j w 2

Rg C minfvp..
Qn
iD1 f

zi
i /.w// j w 2 Rg. This implies that dQ.

Qn
iD1 f

xi
i / D

dQ.
Qn
iD1 f

yi
i /dQ.

Qn
iD1 f

zi
i /; hence y D 0 or z D 0. Therefore, x 2 A.˝ı/. ut
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Now we present the main result of this section.

Theorem 5.2. Let R be a factorial domain. Then Int.R/ is monadically Krull.

Proof. Let K be a field of quotients of R, X an indeterminate over K , Q a system
of representatives of prime elements of R, and d D dQ. Set S D RŒX� and T D
Int.R/. It is well known that T is atomic and completely integrally closed (see [8,
Propositions VI.2.1 and VI.2.9]). By Theorem 3.6 we need to prove that fyT j y 2
A.ŒŒg��T /g is finite for all g 2 T 	. Let g 2 T 	. Some a; b 2 R	, n 2 N, v 2 N

n
0

and f 2 .A.S/nR/n exist such that g D a
b

Qn
iD1 f

vi
i and fj 6'S fk for all different

j; k 2 Œ1; n�. By Lemma 5.1 it is sufficient to show that fyT j y 2 A.ŒŒg��T /g �
fyT j y 2 A.R/; y jR d.g/g [ f

Qn
iD1 f

˛i
i

d.
Qn
iD1 f

˛i
i /
T j ˛ 2 N

n
0; ˛ is f -irreducibleg. Let

y 2 A.ŒŒg��T /. Then y 2 A.T / and y jT gl for some l 2 N.

Case 1: y 2 R. We have y 2 A.R/ and y jR d.gl / D d.g/l . Therefore, y jR d.g/.
Case 2: y 62 R. Some primitive t 2 S and some c; e 2 R	 exist such that

GCDS .c; et/ D S� and y D et
c

. This implies that c jR d.t/. Observe that

y D ed.t/

c
� t
d.t/

, ed.t/
c

2 T and t
d.t/

2 T nT �. Consequently, y 'T
t
d.t/

. There are

some w 2 S and u 2 R	 such that y w
u D gl . Therefore, etwbl D cual

Qn
iD1 f

lvi
i

and since t is primitive it follows that t jS Qn
iD1 f

lvi
i . Hence, there is some

˛ 2 N
n
0nf0g such that t 'S

Qn
iD1 f

˛i
i . This implies that y 'T

Qn
iD1 f

˛i
i

d.
Qn
iD1 f

˛i
i /

,

and thus yT D
Qn
iD1 f

˛i
i

d.
Qn
iD1 f

˛i
i /
T . Let ˇ; 
 2 N

n
0 be such that ˛ D ˇ C 
 and

d.
Qn
iD1 f

˛i
i / D d.

Qn
iD1 f

ˇi
i /d.

Qn
iD1 f


i
i /. Note that

Qn
iD1 f

ˇi
i

d.
Qn
iD1 f

ˇi
i /
;

Qn
iD1 f


i
i

d.
Qn
iD1 f


i
i /

2

T and
Qn
iD1 f

ˇi
i

d.
Qn
iD1 f

ˇi
i /

�
Qn
iD1 f


i
i

d.
Qn
iD1 f


i
i /

D
Qn
iD1 f

˛i
i

d.
Qn
iD1 f

˛i
i /

2 A.T /. Therefore,
Qn
iD1 f

ˇi
i

d.
Qn
iD1 f

ˇi
i /

2
T � or

Qn
iD1 f


i
i

d.
Qn
iD1 f


i
i /

2 T �; hence ˇ D 0 or 
 D 0. Consequently, ˛ is f -

irreducible. ut
Theorem 5.2 is also interesting from a purely factorization theoretical point

of view, since it provides a class of Krull monoids whose arithmetic is not fully
understood by now. The arithmetic of the Krull monoids involved may also differ
from the arithmetic of monadic submonoids of principal orders in algebraic number
fields.

Corollary 5.3. Let R be a factorial domain. Then Int.R/ is an FF-domain.

Proof. This follows from Theorems 3.6 and 5.2. ut
In [14] it has been shown that Int.Z/ is an FF-domain. Corollary 5.3 is a

generalization of this result. By Theorem 5.2, [8, Theorem VI.1.7] and [8, Remark
VI.2.10] we obtain that Int.Z/ and Int.Z.p// for p 2 P are monadically Krull
domains and Prüfer domains (and thus t-Prüfer domains) that are no Krull domains.
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6 Further Remarks

In Sect. 4 we showed that a radical factorial FF-monoid is not necessarily a Krull
monoid. So far we do not know whether every radical factorial, 1-dimensional
FF-domain is a Krull domain. In this last section we investigate special types of
examples that have been introduced in [20] to construct atomic Prüfer domains that
are no Dedekind domains. We study these examples in greater detail and generality
to obtain an interesting class of examples that are not “too far away” from being
examples of radical factorial 1-dimensional FF-domains that are not Krull.

Let H be a monoid. We say thatH is a weakly Krull monoid if
T
P2X.H/ HP D

H and fP 2 X.H/ j a 2 P g is finite for all a 2 H 	. Note that H is a Krull
monoid if and only ifH is a weakly Krull monoid andHP is a Krull monoid for all
P 2 X.H/. It follows from Example 4.2 that being a weakly Krull monoid is not
a monadic property (since the monoid in this example is monadically Krull, hence
monadically weakly Krull, but by [29, Proposition 2.6] it fails to be a weakly Krull).
By [1, Theorem 1] and [2, Theorem 5.1] we have H is an FF-monoid if and only if
H is atomic and fuH j u 2 A.H/; u jH xg is finite for all x 2 H 	 (such monoids
are called IDF-monoids; e.g., see [24]) if and only if H is a BF-monoid and fuH j
u 2 A.H/; u jH xg is finite for all x 2 H 	. Clearly, if H is a BF-monoid, then H
satisfies the ACCP. First we start with a simple lemma that might be of independent
interest. It gives a hint how to construct monoidsH where fuH j u 2 A.H/; u jH xg
is finite for all x 2 H 	, but that fail to be FF-monoids.

Lemma 6.1. [(cf. [21])] Let K be a monoid, S a submonoid of K that is an FF-
monoid, T � K a submonoid of K that is a valuation monoid and H D S \ T .
Then fuH j u 2 A.H/; u jH xg is finite for all x 2 H 	.

Proof. Let x 2 H 	 and D.x/ D fu 2 A.H/ j u jH xg. Then fuS j u 2 D.x/g �
fuS j u 2 S and u jS xg. Since S is an FF-monoid, it follows that fuS j u 2 D.x/g
is finite. Let v;w 2 A.H/ be such that vS D wS . We have vT � wT or wT � vT .
Therefore, vH D vS \ vT � wS \ wT D wH or wH D wS \ wT � vS \ vT D
vH ; hence vH D wH . Consequently, f W fuH j u 2 D.x/g ! fuS j u 2 D.x/g
defined by f .I / D IS for all I 2 fuH j u 2 D.x/g is an injective map. This
implies that fuH j u 2 D.x/g is finite. ut
Proposition 6.2. Let H be a monoid, K a quotient monoid of H , U a set of
overmonoids of H that are FF-monoids, and V a set of overmonoids of H that
are valuation monoids such that H D T

S2U[V S . Let .NT /T2V 2 P.U/V be such
that T \T

S2NT
S is atomic for all T 2 V and fT 2 V j S 2 NT g is finite for all

S 2 U . If fS 2 U [ V j a 62 S�g is finite for all a 2 H 	, then H is an FF-monoid.

Proof. Let fS 2 U [ V j a 62 S�g be finite for all a 2 H 	 and M D U [ fT \T
S2NT

S j T 2 Vg.

Claim 1: For all U 2 M it follows that U is an FF-monoid. Let U 2 M and T 2 V
be such that U D T \ T

S2NT
S . We show that

T
S2NT

S is an FF-monoid.
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If NT D ;, then
T
S2NT

S D K; hence
T
S2NT

S is an FF-monoid. Since
fS 2 NT j a 62 S�g is finite for all a 2 H 	, we have fS 2 NT j a 62 S�g is
finite for all a 2 K	; hence fS 2 NT j a 62 S�g is finite for all a 2 .TS2NT

S/	.
Therefore, [1, Theorem 2] implies that

T
S2NT

S is an FF-monoid. It follows by
Lemma 6.1 that U is an FF-monoid.

Claim 2: For every a 2 H 	, fS 2 M j a 62 S�g is finite. Let a 2 H 	. We have
fT 2 V j a 62 .T \ T

S2NT
S/�g � fT 2 V j a 62 T �g [ S

S2U ;a 62S�fT 2
V j S 2 NT g, and thus fT 2 V j a 62 .T \ T

S2NT
S/�g is finite. Therefore,

fS 2 M j a 62 S�g D fS 2 U j a 62 S�g [ fT \ T
S2NT

S j T 2 V ; a 62
.T \T

S2NT
S/�g is finite.

SinceH D T
S2M S , it follows by Claim 1, Claim 2 and [1, Theorem 2] that

H is an FF-monoid. ut
Proposition 6.3. Let K be a monoid, H a submonoid of K and � a set of
intermediate monoids of H and K such that fS 2 � j a 62 S�g is finite for all
a 2 H 	 andH \T

S2� S� D H�:

1. If S satisfies the ACCP for all S 2 �, then H satisfies the ACCP.
2. If S is a BF-monoid for all S 2 �, then H is a BF-monoid.

Proof. 1. Let S satisfy the ACCP for all S 2 �. Let .ai /i2N 2 HN be such that
aiH � aiC1H for all i 2 N. Without restriction let a1 6D 0. Let A D fS 2
� j a1 62 S�g. Since A is finite there is some r 2 N such that akS D arS

for all S 2 A and k 2 N�r . It is sufficient to show that akH D arH for
all k 2 N�r . Let k 2 N�r and T 2 �. If a1 2 T �, then ar ; ak 2 T �, and
thus ar

ak
2 T �. If a1 62 T �, then arT D akT ; hence ar

ak
2 T �. Consequently,

ar
ak

2 H \T
S2� S� D H�, and thus arH D akH .

2. Let S be a BF-monoid for all S 2 � and set M D f.SnS�/ \ H j S 2 �g.
It follows by [15, Proposition 1.3.2] that

T
n2N.SnS�/n D f0g for all S 2 �.

Therefore,
T
n2NMn D f0g for all M 2 M. Let a 2 H 	nH�. Then fM 2

M j a 2 M g � f.SnS�/ \ H j S 2 �; a 62 S�g; hence fM 2 M j a 2
M g is finite. Since a 62 H�, there is some T 2 � such that a 62 T �, hence
.T nT �/ \ H 2 fM 2 M j a 2 M g. Consequently, [15, Theorem 1.3.4]
implies that H is a BF-monoid. ut

Corollary 6.4. Let H be a monoid and M � s-spec.H/ such that
S
M2MM D

HnH� and fM 2 M j a 2 M g is finite for all a 2 H 	.

1. If HM satisfies the ACCP for all M 2 M, then H satisfies the ACCP.
2. If HM is a BF-monoid for allM 2 M, then H is a BF-monoid.

Proof. Let � D fHM j M 2 Mg. We have H \ T
S2� S� D H \T

M2M.HM nMM/ D T
M2M.HnM/ D HnSM2MM D H�. Let a 2

H 	nH�. Then fS 2 � j a 62 S�g D fHM j M 2 M; a 2 M g is finite.
Consequently, the assertions follow from Proposition 6.3. ut
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If S is an integral domain and R � S is a subring, then let clS .R/ denote the
integral closure of R in S . We say that M 2 max.S/ is critical if for each finite
E � M , there existsQ 2 max.S/ such that E � Q2.

Proposition 6.5. [(cf. [7])] Let R be a Dedekind domain that is not a field, K a
field of quotients of R, L=K a field extension, S D clL.R/, .Li /i2N a sequence of
intermediate fields of K and L such that Li � LiC1 and ŒLi W K� < 1 for all
i 2 N and L D S

j2NLj . Let .Ai /i2N 2 P.max.R//N be such that Ai � AiC1, for
all i 2 N. Set A D S

i2N Ai and N D fM 2 max.S/ j M \ R 2 Ag. For i 2 N

set Si D clLi .R/ and Ni D fM 2 max.S/ j M \ R 2 Ai g:

1. Si is a Dedekind domain for all i 2 N, S is a 1-dimensional Prüfer domain, and
S D S

i2N Si .
2. Let for all i 2 N and P 2 max.Si / such that P \ R 2 Ai be P ª Q2 for

all Q 2 max.SiC1/. Then for all M 2 N we have M is not critical and if
A D max.R/, then S is an SP-domain.

3. Let for all i 2 N and P 2 max.Si / such that P \ R 2 Ai be SiC1
p
PSiC1 2

max.SiC1/. Then for all a 2 S	 it follows that fM 2 N j a 2 M g is finite and
if A D max.R/, then S is a weakly Krull.

4. Let
S
P2A P D RnR� and let for all i 2 N andP 2 max.Si / such thatP\R 2

Ai be PSiC1 2 max.SiC1/. Then S is a BF-domain and if j max.S/nN j � 1,
then S is an FF-domain.

5. If there is some sequence .Mi /i2N such thatMi 2 max.Si / andMiC1\Si D Mi

for all i 2 N, and fj 2 N j MjSjC1 62 max.SjC1/g is infinite, then S is not a
Dedekind domain.

Proof. 1. Clearly, S is 1-dimensional and S D S
i2N Si . By the Theorem of Krull-

Akizuki we have Si is a Dedekind domain for all i 2 N. Since L=K is an
algebraic field extension we have S is a Prüfer domain.

2. Claim 1: For all j 2 N and M 2 Nj it follows that M \ Sj ª .M \ Sk/
2

for all k 2 N�j . Let j 2 N and M 2 Nj . We show by induction on k that
M\Sj ª .M\Sk/2 for all k 2 N�j . Obviously,M\Sj ª .M\Sj /2. Now
let k 2 N�j be such thatM\Sj ª .M\Sk/2. Since .M\Sj /Sk � M\Sk ,
there is some ideal I of Sk such that .M \ Sj /Sk D .M \ Sk/I . Since
M\Sj ª .M\Sk/2, it follows that I ª M\Sk; hence ISkC1 ª M\SkC1.
We have M \ Sk 2 max.Sk/, M \ SkC1 2 max.SkC1/ and .M \ Sk/ \
R D M \ R 2 Aj � Ak , and thus .M \ Sk/SkC1 ª .M \ SkC1/2.
Since .M \ SkC1/2 is M \ SkC1-primary it follows that .M \ Sj /SkC1 D
.M \ Sk/SkC1ISkC1 ª .M \ SkC1/2; hence M \ Sj ª .M \ SkC1/2.

Claim 2: For every M 2 max.S/, we have M2 D S
i2N.M \ Si /

2. Let M 2
max.S/. “�”: Let x 2 M2. There exist some r 2 N and .xi /riD1; .yi /riD1 2
MŒ1;r� such that x D Pr

iD1 xiyi . There is some l 2 N such that xi ; yi 2 Sl
for all i 2 Œ1; r�. Consequently, x 2 .M \ Sl/2. “�”: Trivial.

Now let Q 2 N . There is some j 2 N such that Q 2 Nj . Assume that
there is someM 2 max.S/ such thatQ\Sj � M2. ThenQ\Sj D M\Sj
andM \R D Q\R 2 Aj ; henceM 2 Nj . It follows by Claim 2 that there
exists some k 2 N�j such thatM\Sj � .M\Sk/2 which is a contradiction
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to Claim 1. Consequently, .Q \ Sj /S ª M2 for all M 2 max.S/. Since
.Q \ Sj /S is a finitely generated ideal of S we have Q is not critical.

Now let A D max.R/. Then N D max.S/; hence every M 2 max.S/
is not critical. It follows by 1 that S is a 1-dimensional Prüfer domain.
Consequently, S is an SP -domain by [27, Corollary 2.2].

3. Claim: For all i 2 N we have fi W Ni ! fM \ Si j M 2 Ni g defined by
fi .M/ D M \ Si is a bijective map. Let i 2 N. Obviously, fi is a surjective
map. LetM;Q 2 Ni be such that M \ Si D Q \ Si . We show by induction on
j that for all j 2 N�i ,M \Sj D Q\Sj . Let j 2 N�i . The assertion holds for
j D i . Now letM \Sj D Q\Sj . We have .M \Sj /SjC1 � M \SjC1; hence
SjC1
p
.M \ Sj /SjC1 D M \ SjC1. Analogously SjC1

p
.Q \ Sj /SjC1 D Q \

SjC1; henceM \SjC1 D Q\SjC1. Finally, it follows thatM D S
j2N�i

.M \
Sj / D S

j2N�i
.Q \ Sj / D Q.

Let a 2 S	. There is some l 2 N such that a 2 Sl . Obviously, there is some
surjective map from fM \ Sl j M 2 N ; a 2 M g to fM \ R j M 2 N ; a 2
M g. Since fM \ Sl j M 2 N ; a 2 M g � fQ 2 max.Sl / j a 2 Qg and
fQ 2 max.Sl / j a 2 Qg is finite we have fM \ R j M 2 N ; a 2 M g is finite.
Therefore, there is some k 2 N�l such that fM \ R j M 2 N ; a 2 M g � Ak .
Since fk.fM 2 Nk j a 2 M g/ D fM \ Sk j M 2 Nk; a 2 M g � fQ 2
max.Sk/ j a 2 Qg, it follows by the claim that fM 2 N j a 2 M g D fM 2
Nk j a 2 M g is finite.

Now let A D max.R/. Then N D max.S/ D X.S/ by 1, and thus S is a
weakly Krull domain.

4. It follows by 3 that fM 2 N j a 2 Sg is finite for all a 2 S	. By [19,
Proposition 4] we have

S
M2N M D SnS�. LetM 2 N . By 2 it follows thatM

is not critical; hence M 6D M2. Since M2 is M -primary we have M2
M 6D MM .

Therefore, 1 implies that SM is a valuation domain, and thus MM is a principal
ideal of SM . This implies that SM is a Dedekind domain; hence SM is an FF-
domain and a BF-domain. Consequently, Corollary 6.4(2) implies that S is a
BF-domain. Now let j max.S/nN j � 1. Set U D fSM j M 2 N g and V D
fSM j M 2 max.S/nN g. Every T 2 U is an FF-domain and by 1 we have that
every T 2 V is a valuation domain. Obviously, U [ V D fSM j M 2 max.S/g;
hence

T
T2U[V T D S . For T 2 V set NT D U . Since jV j � 1, we have

T\TU2NT
U D S is atomic for all T 2 V . It follows that fT 2 U[V j a 62 T �g

is finite for all a 2 S	, and thus Proposition 6.2 implies that S is an FF-domain.
5. Let .Mi/i2N be such thatMi 2 max.Si / andMiC1 \ Si D Mi for all i 2 N and

fj 2 N j MjSjC1 62 max.SjC1/g is infinite. Let M D S
i2NMi . Observe that

M 2 max.S/. Assume that S is a Dedekind domain, then there is some finite
E � M such that M D .E/S . There is some i 2 N such that E � Mi . There
is some j 2 N�i such that MjSjC1 62 max.SjC1/, and thus there are some
Q;Q0 2 max.SjC1/ such that MjSjC1 � QQ0. This implies that M D QS D
Q0S and M2 D QSQ0S D M ; henceM D f0g, a contradiction. ut
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Proposition 6.6. Let R be a Dedekind domain such that max.R/ is infinite, K a
field of quotients of R, .Ai /i2N; .Bi /i2N; .Ci /i2N 2 P.max.R//N such that Ai , Bi ,
Ci are finite andAi � AiC1, Bi � BiC1, Ci � CiC1 for all i 2 N. Set A D S

i2N Ai ,
B D S

i2N Bi and C D S
i2N Ci . Assume that A \ B D A \ C D B \ C D ; and

let R=M be finite for all M 2 max.R/. Then there exists some sequence .Li /i2N
of extension fields of K such that L1 D K , Li � LiC1, ŒLi W K� < 1 and
Si D clLi .R/ for all i 2 N and such that the following conditions are satisfied:

1. For all i 2 N and M 2 max.Si / such that M \ R 2 Ai we have MSiC1 2
max.SiC1/.

2. For all i 2 N and M 2 max.Si / such that M \ R 2 Bi we have MSiC1 62
max.SiC1/ andM ª Q2 for all Q 2 max.SiC1/.

3. For all i 2 N and M 2 max.Si / such that M \ R 2 Ci we have MSiC1 62
max.SiC1/ and SiC1

p
MSiC1 2 max.SiC1/.

Proof. This follows by induction from [18, Theorem 42.5]. ut
By [29, Example 4.3] there is some Dedekind domain R such that max.R/ is

countable, R=M is finite for all M 2 max.R/, and Pic.R/ is torsion-free. Let M W
N0 ! max.R/ be a bijection. Note that since Pic.R/ is torsion-free we obtain thatS
M2max.R/nfM0gM D RnR� (since every non-unit of R is contained in at least two

different maximal ideals of R). For j 2 N set Aj D fMi j i 2 Œ1; j �g.
First set Bj D fM0g and Cj D ; for all j 2 N. Let .Li /i2N be the sequence in

Proposition 6.6, L D S
i2NLi and S D clL.R/. Then S is an SP-domain that is a

BF-domain but not Krull by Proposition 6.5.
Next set Bj D ; and Cj D fM0g for all j 2 N. Let .Li /i2N be the sequence

in Proposition 6.6, L D S
i2NLi and S D clL.R/. Then S is a completely

integrally closed FF-domain that is a weakly Krull domain but not a Krull domain
by Proposition 6.5.

Proposition 6.7. Let R be a Prüfer domain, K a field of quotients of R, L=K an
algebraic field extension, and S D clL.R/:

1. If for all intermediate fieldsK � M � L such that ŒM W K� < 1 it follows that
Pic.clM.R// is a torsion group, then Pic.S/ is a torsion group.

2. If for all a 2 L and n 2 N there is some b 2 L such that bn D a, then Pic.S/ is
torsion-free.

Proof. 1. Let I be an invertible ideal of S . Then there are some m 2 N and some
sequence .ai /miD1 2 I Œ1;m� such that I D Pm

iD1 aiS . Set M D K.fai j i 2
Œ1;m�g/, T D clM .R/ and J D Pm

iD1 aiT . Note that fai j i 2 Œ1;m�g �
M \ S D T , and thus J is a non-zero finitely generated ideal of T . Since T is
a Prüfer domain we have J is an invertible ideal of T . Since Pic.clM.R// is a
torsion group, there are some n 2 N and a 2 T such that J n D aT . Therefore,
I n D J nS D aS .
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2. Let I be an invertible ideal of S , n 2 N and a 2 S such that I n D aS . There
is some b 2 L such that bn D a. Observe that b 2 S and I n D bnS . Let
M 2 max.S/. Since S is a Prüfer domain it follows that SM is a valuation
domain; hence there is some c 2 S such that IM D cSM . This implies that
cnSM D I nM D bnSM , and thus there exists some " 2 S�

M such that cn D "bn.
Since SM is a valuation domain it follows that bSM � cSM or cSM � bSM .
Case 1: bSM � cSM . There exists some � 2 SM such that b D c�. This
implies that bn D cn�n D "bn�n; hence 1 D "�n. Consequently, � 2 S�

M ,
and thus IM D cSM D c�SM D bSM . Case 2: cSM � bSM . There is some
� 2 SM such that c D b�. We have cn D bn�n D "�1cn�n; hence �n D ".
This implies that � 2 S�

M , and thus IM D cSM D b�SM D bSM . Therefore,
IQ D bSQ for all Q 2 max.S/; hence I D bS . ut

LetH be a monoid. So far we said little about the additional property that popped
up in Theorem 3.6(3) (i.e., that for every a 2 H 	, A.ŒŒa��/ � Dk.a/ for some k 2 N).
Note that this additional property is equivalent to the notion of being pseudo-IDPF
introduced in [24]. Since we are interested in studying monadically Krull monoids
and their specializations, we investigate how to control the r-ideal class group of an
r-SP-monoid to obtain this additional property. This is reasonable since there are
non-trivial situations using the construction in Proposition 6.5 where SP-domains
that are BF-domains can show up (as pointed out before). Moreover, Proposition 6.7
indicates that the class group of domains in this construction can behave nicely. IfG
is an abelian group, then let exp.G/ be the exponent of G (i.e., if 1 is the identity
of G, then exp.G/ D inf.fn 2 N j xn D 1 for all x 2 Gg/). The group G is called
bounded if exp.G/ < 1.

Proposition 6.8. Let H be a monoid and r a finitary ideal system on H such that
H is an r-SP-monoid:

1. If Cr .H/ is finite, then for all a 2 H 	, A.ŒŒa��/ � Dk.a/ for some k 2 N.
2. If H is an FF-monoid and Cr .H/ is bounded, then for all a 2 H 	, A.ŒŒa��/ �

Dk.a/ for some k 2 N.
3. If H is r-Prüfer and Cr .H/ is bounded, then for all a 2 H 	, A.ŒŒa��/ � Dk.a/

for some k 2 N.

Proof. 1. Let a 2 H 	. Set k D jCr .H/j. We prove that A.ŒŒa��/ � Dk.a/. Let
u 2 A.ŒŒa��/. There are some l; s 2 N and some sequence .Ii /siD1 of proper
radical r-ideals of H such that al 2 uH D .

Qs
iD1 Ii /r . Observe that al 2 Ii

for all i 2 Œ1; s�; hence a 2 Ii for all i 2 Œ1; s�. This implies that as 2 uH .
If s � k, then ak 2 uH , and thus u 2 Dk.a/. Now let s > k. There is
some ; 6D E � Œ1; s� such that jEj � k and .

Q
i2E Ii /r is principal. Since

uH D .
Qs
iD1 Ii /r � .

Q
i2E Ii /r ¤ H , we have uH D .

Q
i2E Ii /r . Therefore,

ak 2 ajEjH � .
Q
i2E Ii /r D uH . Consequently, u 2 Dk.a/.

2. Let H be an FF-monoid, Cr .H/ bounded, and a 2 H 	. Set l D exp.Cr .H//,
M D fI j I is an r-invertible radical r-ideal ofH; a 2 I g and N D fbH j b 2
H; al 2 bH g. Let f W M ! N be defined by f .I / D .I l /r for all I 2 M.
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If I 2 M, then there is some b 2 H such that .I l /r D bH . Set J D aI�1.
Then J 2 Ir .H/ and aH D .IJ /r . This implies that al 2 alH D .I lJ l /r D
b.J l/r � bH , and thus f is well defined. Now let I; J 2 M be such that
f .I / D f .J /. It follows that I D p

.I l /r D p
f .I / D p

f .J / D p
.J l /r D

J . Therefore, f is injective. Since H is an FF-monoid we have jMj � jN j <
1. Set k D l jMj. We show that A.ŒŒa��/ � Dk.a/. Let u 2 A.ŒŒa��/. There are
some m; n 2 N, some sequence .˛i /niD1 2 N

Œ1;n� and some sequence .Ii /niD1 of
distinct proper radical r-ideals of H such that am 2 uH D .

Qn
iD1 I

˛i
i /r . Note

that Ii 2 M for all i 2 Œ1; n�, hence n � jMj. If ˛j > l for some j 2 Œ1; n�,
then uH � .I

˛j
j /r � .I lj /r � I ¤ H , and thus uH D .I lj /r D .I

˛j
j /r which

implies that Ij D H , a contradiction. Therefore, al 2 .I ˛jj /r for all j 2 Œ1; n�.
It follows that ak 2 .Qn

iD1 I
˛i
i /r D uH , hence u 2 Dk.a/.

3. Let H be an r-Prüfer monoid, Cr .H/ bounded and a 2 H 	. Set m D
exp.Cr .H// and k D 2m. It is sufficient to show that A.ŒŒa��/ � Dk.a/. Let
u 2 A.ŒŒa��/. By [29, Proposition 3.9], [29, Theorem 3.13] and [29, Theorem
3.3.2] there are some l 2 N and some ascending sequence .Ii /liD1 of proper
radical r-ideals of H such that uH D .

Ql
iD1 Ii /r . Set F D Il . Then F is

r-invertible. Clearly, uH � .F l/r and there is some b 2 HnH� such that
.F m/r D bH . Assume that l > k. We have uH � .F l/r � .F k/r D b2H �
bH . Since u 2 A.H/, this implies that uH D b2H D bH , hence b 2 H�,
a contradiction. Therefore, l � k, and thus ak 2 alH � .

Ql
iD1 Ii /r D uH .

Consequently, u 2 Dk.a/. ut
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Integral Closure

Irena Swanson

Abstract Since 2006, when the book on integral closures with Huneke and
Swanson (Integral Closure of Ideals, Rings, and Modules. Cambridge University
Press, Cambridge, 2006) was published, there has been more development in the
area. This chapter is an attempt at catching up with that development as well as to
fill in a few omissions. Some topics are worked out in detail whereas others are only
outlined or mentioned.

Keywords Integral closure • Rees valuations • Computing integral closure
• Lipman–Sathaye theorem • Multiplicity • j -multiplicity • Epsilon multiplicity
• Monomial ideals • Goto numbers

Subject Classifications: 13B22; Secondary: 13P05, 13P25, 13H15

1 Rees Valuations

This section is an update of Chap. 10 of [19].
The constructions in Chap. 10 show that the set of the Rees valuations of I is

contained in the union of the sets of the Rees valuations of I modulo each minimal
prime ideal; the following shows that the other inclusion holds as well.

Proposition 1.1 ([28]). Let R be a Noetherian ring and I an ideal in R not
contained in any minimal prime ideal. For each P 2 Min .R/, let TP be the set
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of the Rees valuations of I.R=P /. By abuse of notation, these valuations are also
valuations on R, with fr 2 R W v.r/ D 1g D P . Then [P TP is the set of the Rees
valuations of I .

Proof. The standard proofs of the existence of the Rees valuations show that the
set of the Rees valuations of I is contained in [P TP . We need to prove that no
valuation in [P TP is redundant.

Let Q 2 Min .R/ and v 2 TQ. By the minimality of the Rees valuations
of I.R=Q/, there exist n 2 N and r 2 R such that for all w 2 TQ n fvg,
w.r/ � nw.I /, yet r 62 I n.R=Q/ (i.e., v.r/ < nv.I /). Let r 0 be an element ofR that
lies in precisely those minimal prime ideals that do not contain r . Then r C r 0 is not
contained in any minimal prime ideal, for all w 2 TQ n fvg, w.r C r 0/ � nw.I /, and
v.rCr 0/ < nv.I /). Let J 0 be the intersection of all the minimal primes other thanQ,
let J 00 be the intersection of all the centers of w 2 TQ, and let s 2 J 0 \ J 00 nQ. By
assumption on r , there exists a positive integer k such that for all w 2 TQ n fvg,

v.s/

v.I /
� w.s/

w.I /
C 1 < k

�
w.r C r 0/

w.I /
� v.r C r 0/

v.I /

�
:

Note that for all w 2 [P 6DQSP , w.s/ D 1. Thus for all w 2 [P TP n fvg, v.s/
v.I / �

w.s/
w.I / C 1 < k

	
w.rCr 0/

w.I / � v.rCr 0/

v.I /



. Then with m D b v.s.rCr 0/k/

v.I / c, s.r C r 0/k 62 ImC1,
yet for all w 2 [P TP n fvg, w.s.r C r 0/k/ � .mC 1/w.I /. This proves that v is not
redundant. ut

Another basic new result is due to Katz and Validashti [21].

Theorem 1.2 (Katz and Validashti [21, Proposition 3.1]). Let .R;m/ be a
Noetherian local ring and I � R an ideal that is not contained in any minimal
prime ideal. Then `.I / D dimR if and only if some Rees valuation v of I has
center on m and trdegR=m.�.mv// D dimR � 1.

Proof. Suppose that `.I / D dimR. By Proposition 5.1.7 in [19], there exists a
minimal prime ideal P in R such that `.I.R=P // D `.I / D dimR. Then by
Burch’s theorem [19, Proposition 5.4.7],m=P is associated to I n.R=P / for all large
n, so that by Discussion 10.1.3 in [19], m=P is the center of some Rees valuation
of I.R=P /. Hence by Proposition 1.1,m is the center of some Rees valuation of I .

Conversely, suppose that m is the center of some Rees valuation of I and
that trdegR=m.�.mv// D dimR � 1. Let P D fr 2 R W v.r/ D 1g. By
the definition of the Rees valuations, P is a minimal prime ideal in R. By [19,
Theorem 6.6.7], dimR D 1C trdegR=m.�.mv// D 1C trdeg.R=P /=.m=P/.�.mv// �
dim.R=P /, so that dim.R=P / D dimR. If we can show that the theorem holds
for domains, then `.I.R=P // D dim.R=P / D dimR, and since dimR �
`.I / � `.I.R=P //, it follows that `.I / D dimR. Thus it suffices to prove this
direction in case R is a domain. By [19, Proposition 10.4.3], v is the contraction
of a valuation w on OR, actually on OR=Q, where Q is a minimal prime ideal
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in OR with dim. OR=Q/ D trdegR=m.�.mv//C 1 D dimR. Furthermore, this w is a

Rees valuation of I OR and of I OR=Q. Since OR=Q is formally equidimensional, by
[19, Theorem 10.4.2], we have that `.I. OR=Q// D dim. OR=Q/. But then dimR �
`.I / � `.I. OR=Q// D dim. OR=Q/ D dimR, so we are done. ut

The following in particular proves that if .R;m/ is a Noetherian local ring of
positive dimension, the number of the Rees valuations of an ideal I inR is the same
as the number of the Rees valuations of I OR.

Proposition 1.3 (Katz and Validashti [21, Lemma 5.1(b)]). Let .R;m/ be a
Noetherian local ring with completion OR. Let Q 2 Min OR be such that the integral
closure of OR=Q is a discrete valuation ring. Let W be this valuation ring. Then
the intersection of W with �.Q \ R/ is the localization of the integral closure
of R=Q \R at the contraction of the maximal ideal of W .

Proof. The flow of the proof below, as well as of the proof in [21], uses some
techniques from [24]. Neither the conclusion nor the hypotheses change if we
replace R with R=Q \ R, so that we may assume that R is a Noetherian local
domain andQ\R D .0/. By [19, Proposition 6.4.7], V D W \ �.0R/ is a discrete
valuation ring, and it contains the integral closure R of R. Let mW be the maximal
ideal in W , and M D mW \ R.

IfQ is the only associated prime ideal of OR, then dimR D dimR D dim OR D 1.
Then M is a maximal ideal in R, so of height 1, and by the Mori–Nagata Theorem
[19, Theorem 4.10.5], RM � V are both discrete valuation rings; hence RM D V .
This proves the proposition in case Q is the only associated prime of OR.

For the rest of this proof we assume that there are other associated primes of OR.
Let q be the Q-primary component of 0 OR. By prime avoidance there exists d 0 in
the intersection of all other primary components of 0 OR that is not in Q. Since the
height of m OR=Q is 1, necessarily q C d 0 OR is m OR-primary. Thus .q C d 0 OR/ \
R is m-primary. Let b be any non-zero element of this intersection. Then b is a
non-zerodivisor in R and hence also in OR. We can write b D a C sd 0 for some
a 2 q and s 2 OR. Let d D sd 0. Then b D a C d . Since Q \ R D .0/, it follows
that d 6D 0.

If d D rb for some r 2 OR, then b.1 � r/ D b � d D a 2 q, and since b is a
non-zerodivisor in OR, necessarily 1� r 2 q, so that r is a unit in OR. Thus d D rb is
also a non-zerodivisor in OR, which is a contradiction. So d 62 b OR.

Since there are no prime ideals strictly betweenQ andm OR, any other prime ideal
P in OR does not contain Q. Since d is annihilated by a power of each element in
Q, it follows that d is contained in every P -primary component. In particular, if m
is not associated to R=bR, then b OR D .bR WR m1/ OR D .b OR W OR m1/ contains d ,
which contradicts the previous paragraph. Thusm is associated to bR.

We write bR D I \ J , where J is an m-primary ideal and I is the intersection
of all other primary components. Since d is in every P -primary component, where
P is a prime ideal in OR different fromQ andm OR, then d 2 I OR. As J ism-primary,
we have .I OR C J OR/=J OR D .I C J / OR=J OR D .I C J /=J , so that we can write
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d D i � j for some i 2 I and j 2 J . Then i � d D j 2 J OR, and both i and
d are in I OR, so that i � d 2 I OR \ J OR D b OR. Thus .b; d/ OR D .b; i/ OR. Since
b � d D a 2 q, then .b � d/d 2 qd D .0/. It follows that

i 2 D .i � d/2 C 2.i � d/d C d2 2 .b2; bd; d 2/ OR D b.b; d/ OR D b.b; i/ OR;

so that i 2 2 b.b; i/ OR \ R D b.b; i/, and so i=b is integral over R.
We now let D D RŒ i

b
�. Since D is module-finite over R, the completion

of D (in the m- or mD-adic topology) is OD D ORŒ i
b
�. Let OK be the total ring

of fractions of OR. Since i � d 2 OR, then OR � OD D ORŒ i
b
� D ORŒd

b
� � OR.

Since OK is the localization of both OR and OD at the set of non-zerodivisors in OR,
there is a natural one-to-one correspondence between associated primes of OR and
OD: an associated prime ideal P in OR corresponds to P OK \ OD. Also, by integral

dependence, dim. OR=P/ D dim. OD=P OK \ OD/. Since d=b is integral over OR=Q,
W contains OD=Q OK \ OD. Let OP be the prime ideal in OD which is the center
of W modulo Q OK \ OD. In particular, OP properly contains Q OK \ OD. Note that
1 � d=b D .b � d/=b 2 Q OK \ OD and that d=b is contained in all the other
associated primes of OD. Thus Q OK \ OD is the only minimal prime ideal in OD that
is contained in OP . Hence by the established dimension equalities, OP is a maximal
ideal in OD and the height of OP is 1. Set P D OP \ D. Since OD is the completion
of D and OP is a maximal ideal in OD, OP D P OD. Hence P is a height one maximal
ideal in D.

Recall thatM D mW \R. NecessarilyM\D D P , so that asR � D D RŒ i
b
� �

R are integral extensions, M is a maximal ideal. Furthermore, DP � RDnP �
RM � V , the first inclusion is an integral extension, DP is one-dimensional, so
thatRDnP is one-dimensional and integrally closed, hence a discrete valuation ring.
Thus RDnP D RM D V . ut
Theorem 1.4 (Katz and Validashti [21, Theorem 5.3]). Let I be an ideal in a
Noetherian local ring .R;m/ that is not contained in any minimal prime ideal. Let
w be a Rees valuation of I OR with center m OR, and let Q be the corresponding
minimal prime ideal in OR such that w is a valuation on �.Q/. Then w restricted to
�.Q \ R/ is a Rees valuation of I with centerm. The function

w 7! wj�.fr2RWw.r/D1g/

from the Rees valuations of I OR with center on m OR to the Rees valuations of I with
center on m is a one-to-one and onto function.

Proof. The function is onto by [19, Proposition 10.4.3]. By faithful flatness, q D
Q \ R is a minimal prime ideal in R. Set R0 D R=q. Since Q is a minimal
prime ideal in bR0 D OR=q OR, then by Proposition 1.1, w is a Rees valuation of I bR0.
If we can prove that the restriction of w to R0 is a Rees valuation of IR0, then by
Proposition 1.1 the declared function is well defined. So by replacingR with R0 we
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may assume that R is a domain, and it remains to prove that the function has the
designated codomain and that the function is one-to-one.

Let e D dim. OR=Q/. Since OR is formally equidimensional, by [19,
Theorem 10.4.2], `.I OR=Q/ D e. Since the set of the Rees valuations of an
ideal is the same as the set of the Rees valuations of any power of that ideal, by
replacing I by its power we may assume by [19, Proposition 8.3.8] that I OR=Q
has a minimal reduction generated by e elements. By vector space avoidance, since
reductions correspond to subspaces of I=mI , we may assume that I D .a1; : : : ; as/

such that .a1; : : : ; ae/ OR=Q is a minimal reduction of I OR=Q and even that the
images of a1; : : : ; ae in the fiber ring of I in R are algebraically independent. Since
.a1; : : : ; ae/ is a reduction of I , w.I / D w.a1; : : : ; ae/. LetA be any ofR; OR; OR=Q.
By [19, Corollary 8.3.5], the fiber ring of .a1; : : : ; ae/A is a polynomial ring in
the images of a1; : : : ; ae over A=mA. Thus the image of m in the Rees algebra
AŒ.a1; : : : ; ae/t � is a prime ideal. By possibly reindexing we may assume that
w.a1; : : : ; ae/ D w.a1/. By analytic independence, a1t 62 mAŒ.a1; : : : ; ae/t �,
so that in the localization AŒ.a1; : : : ; ae/t �a1t , the image of m remains a prime
ideal. The homogeneous component of this localization of t-degree 0 is the ring
AŒa2

a1
; : : : ; ae

a1
�, and necessarily the image of m in that is still a prime ideal. Thus we

can define UA D AŒa2
a1
; : : : ; ae

a1
�mAŒ a2a1 ;:::;

ae
a1
�. When A D OR=Q, a1; : : : ; ae generate an

m OR=Q-primary ideal, so that the prime ideal m. OR=Q/Œa2
a1
; : : : ; ae

a1
� is minimal over

the principal ideal generated by a1, so that U OR=Q has dimension 1. By the set-up,W
is the localization of the integral closure of U OR=Q. In particular, the transcendence
degree of �.mW / over �.mU OR=Q/ is zero. Other consequences are that W is a Rees
valuation of .a1; : : : ; ae/U OR=Q and thus also of IU OR=Q. Since U OR=Q is the quotient

of U OR by the minimal prime ideal Q OK \ U OR, where OK is the total ring of fractions
of OR, it follows that W is a Rees valuation of .a1; : : : ; ae/U OR and of IU OR, with
the transcendence degree of �.mW / over �.mU OR/ being zero. Observe that the
completions of UR and U OR are identical. By [19, Proposition 10.4.3], there exist

a minimal prime ideal OQ in cUR and a valuation ring OW in the field of fractions
of cUR= OQ such that OW is a Rees valuation of .a1; : : : ; ae/cUR such that W is the
contraction of OW and such that dim.cUR= OQ/ � 1 equals the transcendence degree
of �.mW / over �.mU OR/, namely zero. Thus OQ is a minimal prime ideal in cUR such

that dim.cUR= OQ/ D 1. Since cUR= OQ is complete, its integral closure is local, so
that OW is the integral closure of cUR= OQ. Hence by Proposition 1.3, the intersection
of OW and hence of W with K is the localization of the integral closure of UR.
In particular, V is the localization of the integral closure of RŒa2

a1
; : : : ; ae

a1
� at a

prime ideal necessarily containing a1, so that V is a Rees valuation of .a1; : : : ; ae/.
Furthermore, since w.I / D w.a1/,

UR D R

�
a2

a1
; : : : ;

ae

a1

�
� U 0

R D R

�
a2

a1
; : : : ;

as

a1

�
� V;

so that

V D .UR/mW \UR � .U 0
R/mW \U 0

R
� V;
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and so by construction of the Rees valuations, V is a Rees valuation of I as well. ut

2 The Lipman–Sathaye Theorem for Reduced Rings

In Sect. 12.3 of [19] we proved a version of the Lipman–Sathaye theorem for
domains. This section here proves a generalized version for reduced equidimen-
sional rings. In places the exposition here is almost a verbatim repetition of
Sect. 12.3, with parts taken from Hochster’s generalization in [17]. One motivation
for working out the details of the generalization is that in the literature there are some
faulty applications of the domain case to reduced rings, with claims that JS=RS � S

whereas only JS=RS � Q
P2MinS S=P can be concluded from the domain case.

Throughout this section, let R be a universally catenary Cohen–Macaulay
Noetherian domain of positive dimension, and let K be its field of fractions. Let
X1; : : : ; Xn be variables over R, T D RŒX1; : : : ; Xn�, and S D T=I for some
radical ideal I , all of whose minimal primes have the same height n. We assume
that R � S , that all non-zero elements of R are non-zerodivisors on S , and that
each direct summand of the total ring of fractions L of S is finite and separable
overK . (Hochster [17] calls the last property generically étale.) By [19, Proposition
4.4.4], the Jacobian ideal JS=R of S over R is well defined. If g1; : : : ; gn 2 I ,
we let gX denote the determinant of the matrix whose .i; j /th entry is @gi

@Xj
. Thus

JS=R D fgX j g1; : : : ; gn 2 I gS .

Remark 2.1. The goal of this section is to prove that

.S WL JS=R/ � S WL JS=R:

The following reduction is from [17]. Let t1; : : : ; tk be variables over T , where k
is very large. Let U be the subset of RŒt1; : : : ; tk � generated by all polynomials
in t1; : : : ; tk whose coefficients generate the unit ideal in R. Then U is a multi-
plicatively closed set. Then R0 D U�1RŒt1; : : : ; tk� is a faithfully flat extension
of R that is a universally catenary Cohen–Macaulay Noetherian domain of positive
dimension and with field of fractions K 0 D K.t1; : : : ; tk/. The polynomial ring
T 0 D R0ŒX1; : : : ; Xn� over R0 is faithfully flat over T ; for any ideal H in T , the
primary decomposition ofH extends to a primary decomposition ofHT 0, so that in
particular IT 0 is reduced and all prime ideals in T 0 minimal over IT 0 have height n.
Furthermore, S 0 D T 0=IT 0 D .T=I / ˝R R

0 D S ˝R R
0 is a reduced ring. The

inclusionR0 � S 0 still holds, and every non-zero element ofR0 is a non-zerodivisor
on S 0. Every direct summand of the total ring of fractions L0 of S 0 is finite and
separable over K 0. If we can prove the displayed formula for S 0; L0; R0 in place
of S;L;R, then by the structure of these extensions,

.S WL JS=R/ � .S 0 WL0 JS 0=R0/ \L � .S 0 WL0 JS 0=R0/\ L � S WL JS=R:
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Thus it suffices to prove the goal for R0, T 0, S 0. Let I D .a1; : : : ; al /. For i D
1; : : : ; l , set fi D Pl

jD1 uij aj , where uij are distinct elements of ft1; : : : ; tkg (so
k � l2). Then by genericity, .f1; : : : ; fl /T 0 D IT 0, and any n of f1; : : : ; fl form a
regular sequence in T 0. Furthermore, letQ be a prime ideal in T 0 minimal over IT 0.
Since all elements of R0 are non-zerodivisors on S 0, it follows that Q \ R0 D 0,
so that TQ0 is a localization of K 0ŒX1; : : : ; Xn� at a prime ideal of height n, thus at
a maximal ideal. Thus QT 0

Q is generated by n elements (even if K is not infinite,
e.g., Exercise 2.28 in [19]). But QT 0

Q D IT 0
Q, so that again by genericity, any n

of f1; : : : ; fl generate IT 0
Q.

Proposition 2.2. 1. S ˝R K is a direct sum of fields and for every prime ideal Q
in T minimal over I , IQ D QQ has height n and TQ is a regular local ring of
dimension n.

2. Let Q 2 SpecT with I � Q. If g1; : : : ; gn 2 I and .g1; : : : ; gn/ W I 6� Q, then
.JS=R/Q D gXSQ.

3. If g1; : : : ; gn 2 I , then gX is not in a prime idealQ minimal over I if and only
if .g1; : : : ; gn/ W I 6� Q.

Proof. Note that S ˝R K is a localization of S at the set of all non-zero elements
of R, so that K � S ˝R K � L. Since L is module-finite over K , so is S ˝R K ,
so that S ˝R K is a reduced zero-dimensional ring, hence a direct sum of fields.
Necessarily S ˝R K D L. A prime ideal Q in T minimal over I corresponds
to a minimal prime ideal in S , and since SQ is a field, necessarily IQ D QQ.
By assumption this has height n. Since non-zero elements ofR are non-zerodivisors
on S , necessarily Q \ R D .0/, so that TQ is a localization of KŒX1; : : : ; Xn� and
is hence regular.

To prove (2), note that .JS=R/Q D JSQ=R by Corollary 4.4.5 in [19]. By
assumption .g1; : : : ; gn/ W I 6� Q it follows that IQ D .g1; : : : ; gn/Q, so that
by independence of Jacobian ideals of the presentation (Proposition 4.4.4 in [19]),
.JS=R/Q D gXSQ.

Suppose that .g1; : : : ; gn/ W I is not contained in Q. Then by (2),
.JS=R/Q D gXSQ. By the Jacobian criterion [19, Theorem 4.4.9], since SQ
is a domain, .JS=R/Q is non-zero, so that gX is not contained in Q. This
proves one direction in (3). Conversely, suppose that gX is not contained in
a prime ideal Q minimal over I . Since ht.g1; : : : ; gn/ � n, the Jacobian

ideal of T=.g1; : : : ; gn/ contains det
	
@gi
@Xj



. Thus by the Jacobian criterion [19,

Theorem 4.4.9], .T=.g1; : : : ; gn//Q is regular. However, .T=.g1; : : : ; gn//Q is
the localization of KŒX1; : : : ; Xn�=.g1; : : : ; gn/ at the image of Q, so that as
KŒX1; : : : ; Xn� is regular, necessarily .g1; : : : ; gn/Q is generated by part of a
minimal generating set of QQ. But then if the height of .g1; : : : ; gn/Q is strictly

smaller than n, we have that gX D det
	
@gi
@Xj



has zero image in SQ, so that gX 2 Q,

which is a contradiction. This proves (3). ut
Proposition 2.3. With notation as in Remark 2.1, the Jacobian ideal JS 0=R0 is
generated by elements gX such that g1; : : : ; gn is a regular sequence in IT 0 and
such that gX is not in any prime ideal minimal over IT 0.
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Proof. As in Remark 2.1, IT 0 D .f1; : : : ; fl /T
0, and any n of f1; : : : ; fl form

a regular sequence in IT 0 and generate IT 0 generically (after localizing at each
prime ideal minimal over IT 0). Certainly JS 0=R0 is generated by gX as g1; : : : ; gn
vary over n elements of ff1; : : : ; flg. Since locally at each prime ideal Q minimal
over IT 0, .g1; : : : ; gn/Q D IT 0

Q, it follows that .g1; : : : ; gn/ W I 6� Q, so that by
Proposition 2.2(3), gX is not in Q. ut
Definition 2.4. We say that g D g1; : : : ; gn 2 I is an acceptable sequence if
g1; : : : ; gn form a regular sequence and if gX is a non-zerodivisor modulo I . For
an acceptable g1; : : : ; gn 2 I we define an S -homomorphism 'g W ..g1; : : : ; gn/ W
I /=.g1; : : : ; gn/ ! L as follows: if u 2 .g1; : : : ; gn/ W I represents a class
u 2 ..g1; : : : ; gn/ W I /=.g1; : : : ; gn/, define (by abuse of notation) 'g.u/ D u

gX
,

where this fraction is in L. We set Mg to be the image of 'g. Similarly we define an
acceptable sequence in IT 0.

A key point in the theorem of Lipman and Sathaye is the following:

Proposition 2.5. If g and h are acceptable sequences in IT 0 .where k is large
enough/, thenMg D Mh.

Proof. For two acceptable sequences g and h in T 0 we define a distance �.g; h/
between them as the minimum integer s such that for some invertible matrices
E1 and E2 with coefficients in T 0 and for some wsC1; : : : ;wn in T 0, g E1 D
.g0
1; : : : ; g

0
s;wsC1; : : : ;wn/ and hE2 D .h0

1; : : : ; h
0
s ;wsC1; : : : ;wn/.

We prove the proposition by induction on �.g; h/. If �.g; h/ D 0, then it is easy
to check that Mg D Mh as there is an invertible matrix E such that g D hE .

We need to do the case �.g; h/ D 1 separately. By possibly multiplying
by invertible matrices, we may assume without loss of generality that g D
.y1; : : : ; yn�1; g/ and h D .y1; : : : ; yn�1; h/. Let u 2 .g/ W I , and write

uh D
n�1X

iD1
riyi C vg:

It is straightforward to check that u
gX

D v
hX

. We claim that v 2 .h/ W I . Multiplying

the displayed equation by an arbitrary element z 2 I yields zuh D Pn�1
iD1 riyi zCvgz.

As z 2 I and u 2 .g/ W I , there is an equation zu D Pn�1
iD1 siyi C sg, and upon

substitution in the preceding equation one obtains that

g.sh � vz/ 2 .y1; : : : ; yn�1/:

Since g D y1; : : : ; yn�1; g is acceptable; this is a regular sequence in T 0, so that
sh � vz 2 .y1; : : : ; yn�1/. It follows that vz 2 .h/ and hence that v 2 .h/ W I . Note
that Mg is generated by elements u

gX
as u ranges over elements of .g/ W I . Since

u
gX

D v
hX

and v 2 .h/ W I , this proves that Mg � Mh. By symmetry we obtain that
Mh D Mg . This finishes the case �.g; h/ D 1.
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Suppose that �.g; h/ D m > 1. We may assume that gi D hi for i > m.
Let I D .a1; : : : ; al /. Let b D Pn

iD1 ui ai , where u1; : : : ; un 2 ft1; : : : ; tkg such
that these variables do not appear in any gi ; hi . Then g0 D b; g2; : : : ; gn and h0 D
b; h2; : : : ; hn are regular sequences, and since gX; hX are not in any minimal prime
ideals over I , the same must be true for g0

X an h0
X . Thus g0 and h0 are acceptable

sequences. Since �.g0; g/ � 1, we have proved that Mg D Mg0 . Similarly Mh D
Mh0 . By induction on �, Mg0 D Mh0 , so that Mg D Mh. ut
Definition 2.6. Whenever R;S; T are such that the S -module Mg is independent
of the acceptable sequence, we emphasize that with writing Mg as KS=R.

The notationKS=R is meant to suggest a relative canonical module, which is the
role this module plays in the proofs.

Proposition 2.7. Let g be an acceptable sequence. Then

1. ..g/ WT I / \ I D .g/.
2. The map 'g W .g WT I /=.g/ ! L is injective. In particular, .g WT I /=.g/ Š
KS=R.

3. KS 0=R0 � .S 0 WL0 JS 0=R0/.
4. If S is normal and g is acceptable, then Mg is a reflexive S -module.
5. Assume that S is normal and that for every height one prime Q of S , RQ\R is

regular. Then KS 0=R0 D S 0 WL0 JS 0=R0 .

Proof. Certainly .g/ � ..g/ WT I / \ I . Let Q be associated to .g/. Since g is a
regular sequence and T is Cohen–Macaulay, htQ � n. If I � Q, thenQ is minimal
over I , so that by acceptability, ...g/ WT I / \ I /Q D IQ D .g/Q. If I 6� Q, then
...g/ WT I / \ I /Q D .g/Q. Thus (1) holds.

Let u 2 .g WT I / represent the class of an element u in ..g/ WT I /=.g/.
If 'g.u/ D 0, then u0 D 0 and hence u 2 I . Hence u 2 ..g/ WT I / \ I . By
(1) this means that u 2 .g/, so that u D 0. Thus 'g is injective. The last part is
immediate.

To proveKS 0=R0 � .S 0 WL0 JS 0=R0/, by Remark 2.1 it suffices to prove that for any
gX where g is acceptable, gXKS 0=R0 � S 0. But by Proposition 2.5, KS 0=R0 D Mg,
and then (3) follows trivially.

Assume that S is normal. The S -module Mg is reflexive if and only if it is
reflexive after localization at all prime ideals P (in S ) with depthSP � 1 and if
depth.Mg/P � 2 for all prime ideals P with depthSP � 2. Since S is normal,
depthSP � 1 means that htP � 1; whence SP is a regular local ring of dimension
0 or 1, so that every torsion-freeSP -module is reflexive. But .Mg/P is a subset of the
quotient field LP of SP ; whence it is torsion-free, hence free, and hence reflexive.
Now assume that depthSP � 2. Let Q be a prime ideal in T such that Q=I D P .
Then ht.Q=I / � 2, and for any acceptable sequence g, depth.T=..g/ WT I //Q � 1

since g is generated by a regular sequence and T is Cohen–Macaulay. Likewise,
depth.T=g/Q � 2. The exact sequence

0 ! ..g WT I /=.g//Q ! .T=g/Q ! .T=.g WT I //Q ! 0
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then gives depthMg D depth.g WT I /=.g//Q � 2. Hence Mg is reflexive.
By (3), KS 0=R0 � .S 0 WL0 JS 0=R0/, and by (3), KS 0=R0 is a reflexive S 0-module.

Suppose that the two modules are not equal. Then there exists a prime ideal Q in
S 0 minimal over the quotient module M D .S 0 WL0 JS 0=R0/=KS 0=R0 , so that MQ

has finite length. If depthS 0
Q � 2, we can choose a regular sequence a; b 2 S 0

Q

in S 0
Q and u 2 .S 0 WL0 JS 0=R0/Q n .KS 0=R0/Q, such that au; bu 2 .KS 0=R0/Q. By

reflexivity, KS 0=R0 D HomS 0.HomS 0.KS 0=R0 ; S 0/; S 0/, and since a; b is regular on
S 0
Q, it is also regular on .KS 0=R0/Q. Thus b.au/ D a.bu/ 2 .KS 0=R0/Q implies

that au 2 a.KS 0=R0/Q; whence u 2 .KS 0=R0/Q, which is a contradiction. So we
may assume that depthS 0

Q � 1. Since S 0 is normal, this means that htQ � 1. Set
q D Q \ R0. By assumption, R0

q is regular, and as S 0 is normal, S 0
Q is also regular.

Lift Q to a prime ideal Q0 in T 0
q . Since T 0

Q0 and S 0
Q D T 0

Q0=IQ0 are regular, IQ0 is
generated by a regular sequence, say g1; : : : ; gn, which we may assume are in I .
Then .g1; : : : ; gn/ W I 6� Q0, and Proposition 2.2(2) shows that .JS 0=R0/Q D gXS

0
Q.

Hence .S 0 WL0 JS 0=R0/Q D .S 0
Q WL0 .JS 0=R0/Q/ D

	
1
g0

X



S 0
Q, and since .g1; : : : ; gn/ W

I contains an element not inQ0, it follows that Mg =
	
1
g0

X



S 0
Q, proving the desired

equality. ut
We next compare KS=R and KB=R where B is a finite extension of S with the

same field of fractions.

Remark 2.8. Let y 2 L n S be integral over S . Set B D SŒy�. Extend the map
of T onto S to an epimorphism ' W T ŒY � ! B . Let H be the kernel of '. Clearly
H \ T D I . Since the fields of fractions are the same, H contains an element of
the form aY � b, where a; b 2 T , a 62 I , and by integrality H contains a monic
polynomial in Y with coefficients in T . Let h be such a monic polynomial of least
possible degree m. We suppose below that S has sufficiently many units (say S is
actually S 0 from Remark 2.1).

Suppose that g is an acceptable sequence for I . The sequence g� D g1; : : : ; gn; h

is clearly a sequence in Q having height n C 1 and the Jacobian g�
X;Y D gX

@h
@Y

.

If @h
@Y

is not contained in any prime ideal minimal overH , then g� is an acceptable

sequence for H . Now suppose that @h
@Y

is contained in some prime ideals minimal
overH . Let c 2 T ŒY � be contained precisely in those prime ideals minimal overH
that do not contain @h

@Y
. Since a is not contained in any prime ideal minimal over I

or over H , then for some sufficiently general unit u in S (this is the assumption),
@.hCcu.aY�b//

@Y
D @h

@Y
C ca is not contained in any prime ideal minimal overH . Since

y 62 S , it follows that m � 2, so by replacing h with hC cu.aY � b// we assume
that @h

@Y
is not contained in any prime ideal in T ŒY � minimal overH .

We now have the map from ..g�/ W H/=.g�/ ! L given by v 2 ..g�/ W H/ goes

to v0

.g�

X;Y /
0
. We denote the image of the map by Mg� .

Lemma 2.9. Let the notation be as above. Then Mg� � Mg. Precisely, for every
v 2 .g1; : : : ; gn; h/T ŒY � WT ŒY � H , there is an element u 2 .g1; : : : ; gn/T WT I such
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that

v  u
@h

@Y
mod Q:

Proof. By polynomial division we may write v D hwCa1Y m�1Ca2Y m�2C� � �Cam
for some w 2 T ŒY � and ai 2 T . Since vI � vH � .g1; : : : ; gn; h/T ŒY �, this
forces .a1Y m�1 C a2Y

m�2 C � � � C am/I � .g1; : : : ; gn; h/T ŒY �. By degree count,
.a1Y

m�1 C a2Y
m�2 C � � � C am/I � .g1; : : : ; gn/T ŒY �, and since g1; : : : ; gn 2 T ,

it follows that a1; : : : ; am 2 .g1; : : : ; gn/.
We must also have that v.aY � b/ 2 .g1; : : : ; gn; h/T ŒY �. Thus .a1Y m�1 C

a2Y
m�2 C � � � C am/.aY � b/ D .v � hw/.aY � b/ 2 .g1; : : : ; gn; h/T ŒY �. Since

.a1Y
m�1 C a2Y

m�2 C � � � C am/.aY � b/ is a polynomial in Y of degree m with
leading coefficient aa1, we have that .v � hw/.aY � b/� aa1h 2 .g1; : : : ; gn/T ŒY �
is a polynomial of Y -degree at most m � 1. Differentiating with respect to Y gives
that .v � hw/a � a1a

@h
@Y

 0 modulo H or even that va � a1a
@h
@Y

 0 modulo H .
As a is a non-zerodivisor in SŒy�, it follows that v  a1

@h
@Y

moduloQ. ut
Theorem 2.10 (Lipman–Sathaye Theorem). Let R be a universally catenary
Cohen–Macaulay Noetherian domain of positive dimension, and letK be its field of
fractions. Let X1; : : : ; Xn be variables overR, T D RŒX1; : : : ; Xn�, and I a radical
ideal in T , all of whose minimal primes have the same height n. Set S D T=I . We
assume that R � S , that all non-zero elements of R are non-zerodivisors on S , that
each direct summand of the total ring of fractions L of S is finite and separable
overK , and that for all prime idealsQ in S of height one, RQ\R is a regular local
ring. Furthermore we assume that the integral closure S of S is a finitely generated
S -module. Then

.S WL JS=R/ � S WL JS=R:

In particular, JS=RS � S .

Proof. By Remark 2.1 we may switch to R0; T 0; S 0 in place of R; T; S . Then K D
S=R D Mg is independent of acceptable sequence g for S . Fix one such g. We

write S D SŒy1; : : : ; yl � and use Lemma 2.9 repeatedly. This lemma shows that
there is an acceptable sequence g� for S such that Mg� � Mg. By Proposition 2.7

we have an equality S WL JS=R D KS=R D Mg�, and by definition KS=R D Mg.
Hence Mg� � Mg gives that

S WL JS=R � KS=R � S WL JS=R:

The last containment follows since S � .S WL JS=R/. ut



342 I. Swanson

3 Improvements for Computing the Integral
Closure of Rings

Chapter 15 of [19] presents de Jong’s [8] algorithm for computing the integral
closure, as well as some modifications due to Vasconcelos and to Lipman. Those
algorithms work by successively finding more and more elements in the integral
closure until the ring is integrally closed. Since publication, there have been two
new developments: an improvement of de Jong’s algorithm due to Greuel et al. [13]
and a very different algorithm due to Leonard and Pellikaan [22] and Singh and
Swanson [27]. We present the two in chronological order.

Leonard and Pellikaan [22] devised an algorithm for computing the integral
closure of weighted rings that are finitely generated over finite fields, and Singh
and Swanson [27] generalized the method to affine equidimensional reduced rings
over perfect fields in positive prime characteristic. This new algorithm starts with a
special module containing the integral closure and then successively constructs sub-
modules that eventually stabilize in the integral closure. In general the descending
chain condition does not hold between the integral closure and the initial module,
but the particular descending chain of submodules does stabilize. The algorithm is
now implemented both in Macaulay2 and in Singular, and it sometimes terminates
much faster than the other implementations.

The algorithm is based on the following theorem:

Theorem 3.1 ([27, Theorem 1.1]). Let R be a reduced ring that is finitely gen-
erated over a computable field of characteristic p > 0. Set R to be the integral
closure of R in its total ring of fractions. Suppose thatD is a non-zerodivisor in the
conductor ideal of R, i.e., that D is a non-zerodivisor with DR � R.

1. Set V0 D 1
D
R, and for e � 0 inductively define

VeC1 D ff 2 Ve j f p 2 Veg:

Then the Ve are algorithmically constructible modules.
2. The descending chain

V0 � V1 � V2 � V3 � � � �

stabilizes.

If Ve D VeC1, then Ve equals R.

Proof. For every e � 0, the module DVe is a submodule of DV0 and hence of R.
Thus Ue D DVe is an ideal in R. Certainly U0 D R, and for any e � 0,

UeC1 D fr 2 Ue j rp 2 Dp�1Ueg:
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Let F W R ! R be the Frobenius homomorphism taking r to rp , and let � W R !
R=Dp�1Ue be the canonical surjection. Then the kernel of � ı F is computable,
and as UeC1 D Ue \ ker.� ı F / is computable. Thus VeC1 is computable.

Certainly the chain is a descending chain, and if Ve D VeC1, then Ve D Vs for
all s � e.

By assumption, R � V0. Suppose that R � Ve . Let f 2 R. By assumption
f 2 Ve , and since R is a ring, also f p 2 R � Ve . Thus f 2 VeC1, which proves
that R � VeC1.

Let v1; : : : ; vs be the Rees valuations of the ideal DR, i.e., vi are valuations such
that for each n 2 N, DnR D fr 2 R j vi .r/ � nvi .D/ for each ig. Let e be a
positive integer such that pe > vi .D/ for each i . We claim that Ve � R, i.e., that
Ve D VeC1R. Let f 2 Ve . We can write f D r=D. By definition, .r=D/p

e 2 V0 D
1
D
R, so that rp

e 2 Dpe�1R. Thus for all i D 1; : : : ; s,

vi .r/ D 1

pe
vi
�
rp

e � � 1

pe
vi
�
Dpe�1� D pe � 1

pe
vi .D/ > vi .D/� 1:

Since vi .r/ and vi .D/ are integers, it follows that vi .r/ � vi .D/ for each i .

Thus r 2 DR � DR. In integrally closed rings, principal ideals generated by
non-zerodivisors are integrally closed, so that r 2 DR; whence f 2 R. ut

How does one make an algorithm out of this theorem if the underlying field k is
perfect? Once D is found as in the hypotheses of the theorem, the proof shows how
the rest is straightforwardly algorithmic. Thus the question is how to find such a D
algorithmically.

Write R D kŒx1; : : : ; xn�=.f1; : : : ; fm/. Let h D ht.f1; : : : ; fm/. Let JR=k
be the Jacobian ideal of R over k, i.e., JR=k is an ideal in R generated by the
determinants of all the h 	 h submatrices of the Jacobian matrix .@fi=@xj /. By
the Jacobian criterion (Theorem 4.4.9 in [19]), since R is reduced, JR=k contains
a non-zerodivisor. Let D be the determinant of some h 	 h submatrix of the
Jacobian matrix. By sampling random h 	 h submatrices or approaching them
in order, we eventually get to a non-zero D. Note that 0 WR D is non-zero if
and only if D is a zero divisor. In case that D is a zero divisor and not zero,
both 0 WR D and 0 WR .0 WR D/ are non-zero radical ideals of height zero, and
R D R=.0 WR D/ 	 R=.0 WR .0 WR D//, and it suffices to compute the integral
closures of R=.0 WR D/ and R=.0 WR .0 WR D// that are equidimensional and
have strictly smaller fewer minimal prime ideals. Thus we have reduced to the case
where D is not a zero divisor. By Theorem 2.10, D multiplies the integral closure
of R into R. Thus by applying Theorem 3.1 we construct V0; V1; : : : with this D, to
eventually get the stable value Ve D R.

We now turn to another new development in the computation of integral closure.
The improvement due to Greuel et al. [13] is as follows. Start with an affine domain
R over a perfect field k. Compute the Jacobian ideal JR=k ofR over k. With the help
of Serre’s conditions (Theorem 4.5.7 in [19]) determine if R is integrally closed.
If it is not, then compute J D p

JR=k , and R1 D HomR.J; J /. This R1 is a ring
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strictly larger thanR and contained inR. So far this is the same as de Jong’s original
algorithm. But the big saving comes next:

1. The Jacobian ideal of R1 over k is up to radical the same as JR1, so that by
Serre’s conditions (Theorem 4.5.7 in [19]), R1 is integrally closed if and only if
JR1 has grade at least two.

2. If R1 is not integrally closed, rather than repeat the procedure that we did
before on R now on R1, we can instead use J1 D p

JR1, and compute
R2 D HomR1.J1; J1/.

Note that this improvement allows us to skip the very time-consuming step of
computing the Jacobian ideal for R1.

Similarly, once Rn is computed, it is integrally closed if and only if JRn has
grade at least 2, and if it is not integrally closed, then we compute JnC1 D p

JRn
and RnC1 D HomRn.JnC1; JnC1/.

Greuel et al. [13] make further improvements. Namely, to recognize HomR.J; J /

as a ring rather than as an R-module, the standard algorithms use the following
identification: HomR.J; J / D 1

d
.dJ WR J / for any non-zerodivisor d 2 J (Lemma

2.4.3 in [19]). Thus in particular for all n, RnC1 D 1
d
.dJn WRn Jn/. This is of course

computed in the ring Rn. But by expressing Rn D 1
e
U and Jn D 1

e
H for some

non-zerodivisor e and some ideals U andH in R, [13] gives the following:

Theorem 3.2 (Theorem 3.5 in [13]). With notation as above,

RnC1 D 1

d
.dJn WRn Jn/ D 1

ed
.edH WR H/:

Thus RnC1 is computed in R rather than in Rn.

Proof. Let r 2 .dJn WRn Jn/. Write r D a
e

for some a 2 U . Then a
e
H
e

D a
e
Jn �

dJn D d H
e

, so that aH � edH ; whence r D a
e

2 1
e
.edH WR H/. This proves that

1
d
.dJn WRn Jn/ � 1

ed
.edH WR H/.

Now let r 2 .edH WR H/. Then rH � edH , so that r
e
H
e

� d H
e

, i.e., that
r
e
Jn � dJn. Since d 2 Jn, it follows that r

e
d 2 dJn, and as d is a non-zerodivisor,

r
e

2 Jn � Rn. Hence r
e

2 .dJn WRn Jn/. This proves that 1
ed
.edH WR H/ �

1
d
.dJn WRn Jn/. ut
Thus the computation of RnC1 can be done in R rather than in Rn; however, the

computation of Jn D p
JRn must still be done in Rn.

In positive prime characteristic p, to compute the radical of JRn, Greuel et al.
[13] use the following. Write Rn D 1

e
U as before. Then

Jn D ff 2 Rn W f m 2 JRn for some positive integermg
D ff 2 Rn W f m 2 JRn for some powerm of pg
D
n r
e

W r 2 U; rm 2 em�1JU for some powerm of p
o
:
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For any power m of p, f r
e

W r 2 U; rm 2 em�1JU g can be computed as the kernel
of a composition of a Frobenius map with a surjection to R=.em�1JU /. Thus Jn is
a union of these computable ideals, asm varies. Since R is Noetherian, only finitely
many m are needed; by Hermann [16] or Seidenberg [26], there is a huge a priori
upper bound on m depending on the number of variables in R and the degrees and
the number of generators of J and of the presenting ideal ofR. However, in practice
it may still be best to compute Jn in Rn rather than in R.

4 Integral Closure with a View Towards Constructive
Mathematics

This section is motivated by Lombardi’s paper [23] and Grinberg’s post [14] and
only imports a few of the results written by them.

It is of interest that both papers generalize the definition of integrality. The
following version is taken from [14]. Let R � S be an inclusion of rings. For
each m 2 N0 let Im be an ideal in R, and assume that I0 D R and that for all
m;m0, ImI 0

m � ImCm0 . Then x 2 S is n-integral over .R; fImgm/ if there exists
an equation (of integral dependence) xn C a1x

n�1 C � � � C an with aj 2 Ij for
each j . This notion of integrality is, after some translation of language, the same as
the old notion of integrality of the ring SŒt� over the Rees ring over R associated to
the filtration fImgm; thus we do not describe these notions further here. It should be
mentioned that some of the proofs about basic facts on integral closures are more
streamlined with the new definition. Interested reader can go directly to the sources.

The rest of the section proves some interesting results encountered in the two
papers.

Theorem 4.1 ([14, Theorem 2]). Let R � S be rings; let a0; : : : ; an 2 R, x 2 S ,
such that

Pn
iD0 ai xi D 0. Then for any k 2 f0; : : : ; ng,

Pn�k
iD0 aiCkxi satisfies an

equation of integral dependence of degree n over R.

Proof. Let u D Pn�k
iD0 aiCkxi . Then

xku D
n�kX

iD0
aiCkxiCk D

nX

iDk
aix

i D �
k�1X

iD0
aix

i :

Thus for t 2 fk; : : : ; ng, xtu D �Pk�1
iD0 aixiC.t�k/, and for t 2 f0; : : : ; k � 1g,

xtu D Pn�k
iD0 aiCkxiCt , which shows that for t D 0; : : : ; n, xtu 2 Pn

iD0 xiR. Note
that U D Pn

iD0 xiR is a faithful finitely generated R-module; we just showed that
uU � U , so that by [19, Lemma 2.1.8], u is integral over R and it satisfies an
equation of integral dependence of degree n. ut
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The following is due to the classical Dedekind–Mertens Lemma (see Sect. 1.7 in
[19], where it should have been stated explicitly). It is also related to [19, Lemma
2.1.19].

Theorem 4.2 (Kronecker’s Theorem). Let R be a ring and X a variable over R.
If f 2 RŒX� factors as

f D
 

mX

iD0
aiX

i

!0

@
nX

iDj
bjX

j

1

A ;

then for all i 2 f0; : : : ; mg and all j 2 f0; : : : ; ng, aibj is integral over A.

Theorem 4.3 (Kronecker’s Theorem). Let k be a field, letX0; : : : ; Xm; Y0; : : : ; Yn
be indeterminates over k, and for k D 0; : : : ; m C n, let Zk D P

iCjDk XiYj .
Then for all i 2 f0; : : : ; mg and all j 2 f0; : : : ; ng, XiYj is integral
over kŒZ0; : : : ; ZmCn�.

Theorem 4.4 (Theorem 22 in [14]). Let R � S be rings, and let x; y; z 2 S .
Suppose that z is integral over RŒx� and over RŒy�. Then z is integral over RŒxy�.

Proof. Reasoning very similar to the one for [19, Proposition 2.1.16] shows that
we may assume that R and S are domains. Let v be a valuation on the field of
fractions of RŒxy� that is non-negative on RŒxy�. Then v is non-negative either on
RŒx� or onRŒy�. Hence by assumption v.x/ � 0. Since v is an arbitrary valuation, by
[19, Proposition 6.8.14], z is integral overRŒxy�. ut
Remark 4.5. Another related paper in the constructive spirit is [1] due to Barhoumi
and Lombardi. The Traverso–Swan theorem says that a reduced ring R is semi-
normal if and only if the canonical map PicR ! PicRŒX� of Picard groups is an
isomorphism. The paper [1] gives an explicit algorithm for obtaining from a given
set of generators a sequence of elements c1; : : : ; cm that generate the overring and
such that for all i , c2i ; c

3
i 2 RŒc1; : : : ; ci�1�.

5 Multiplicity and Monomial Ideals

In this section, let k be a field, X1; : : : ; Xd variables over k, and let R be either
kŒŒX1; : : : ; Xd �� or kŒX1; : : : ; Xd �.

In [19, Proposition 1.4.2] it was proved that the integral closure of a monomial
ideal is monomial. Not all monomial ideals have monomial reductions, however,
say for example .X4;XY 2; Y 9/. In this section we address the question of when the
integral closure of a not-necessarily monomial ideal in R monomial. We restrict our
attention to zero-dimensional ideals. A characterization for such ideals was given
by Saia in [25] for the ring of convergent power series over C. An algebraic proof
for CŒŒX1; : : : ; Xd �� was given by Biviá-Ausina in [2]. The treatment below follows
that of [2], using multiplicities.
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We start with a geometric result for multiplicity of monomial ideals.

Theorem 5.1. Let I be a zero-dimensional monomial ideal in R. Then e.I / D
dŠ vol I , where vol I is the complement in Rd�0 of the Newton polyhedron NP.I /
of I .

Proof. For any monomial ideal J , define E 0.J / to be the set in Zd�0 of all exponent
vectors of monomial elements of J , and let E 0.J / D E.J /C Rd�0 � Rd�0. By the
structure of the integral closure of monomial ideals, say by discussion on page 11
of [19], limn

1
n
E.I n/ D NP.I /, 1

n
E.I n/ � NP.I / for all n, and for sufficiently

divisible n, 1
n
E.I n/\ Zd�0 D NP.I /\ Zd�0. By the definition of multiplicity,

e.I / D limn

d Š

nd
�

�
R

In

�
D limn

d Š

nd
�

�
R

In

�
(1)

D limn

d Š

nd
.number of integer lattice points in Rd�0 n E.In// (2)

D limn

d Š

nd

�
number of 1

n
-integer lattice points in

Rd
�0nE.In/

n

�
(3)

D dŠ limn

number of 1
n

-integer lattice points in Rd�0 n E.In/

n

nd
: (4)

Any 1
n

-integer lattice point 1
n
.˛1; : : : ; ˛d / in Rd�0 n E.In/

n
determines a unique

d -dimensional box whose 2d vertices are 1
n
.˛1 C "1; : : : ; ˛d C "d /, as "1; : : : ; "d

vary over the set f0; 1g. This box has volume 1

nd
. The union of all such boxes

contains Rd�0 n E.In/

n
, and for sufficiently divisible n, the union of all such boxes

contains NP.I / \ Zd�0. Thus vol I , the volume of Rd�0 n NP.I /, is at most (and
approximately)

number of 1
n

-integer lattice points in Rd�0 n E.In/

n

nd
:

But limn
1
n
E.I n/ D NP.I /, so that by Riemann integrals, the conclusion follows. ut

Theorem 5.2 (Saia [25], Biviá-Ausina [2]). Let I be a .X1; : : : ; Xd/-primary
ideal in R. Let NP.I / be the convex hull in Rd of the set of all d -tuples .e1; : : : ; ed /
such that Xe1

1 � � �Xed
d appears with a non-zero coefficient in some element of I .

.This set is called the Newton polyhedron of I and generalizes the same notion for
monomial ideals./ Then the complement of NP.I / in Rd�0 has finite volume vol.I /.

If dŠ vol.I / D e.I /, then I is a monomial ideal.

Proof. Let J be the monomial ideal inR generated by all the monomials that appear
with a non-zero coefficient in some element of I . Then I � J , and NP.I / D
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NP.J /. By Theorem 5.1, dŠ vol.J / D e.J /, so that by assumption e.J / D e.I /.
If R is local (if it is a power series ring), then by the Rees theorem (11.3.1 in [19]),
I D J , which is monomial by [19, Proposition 1.4.2]. If R is not local, say if it
is the polynomial ring, then I D J holds locally after localizing at the unique the
maximal ideal that contains I , and hence it holds globally. ut

In Saia, the condition for the integral closure of a .X1; : : : ; Xd /-primary ideal
being monomial is phrased in terms of non-degeneracy of its Newton polyhedron.
We do not discuss degeneracy of Newton polyhedra.

6 Epsilon and j -Multiplicities

At the end of Sect. 11.3 in [19], we defined j -multiplicity and stated one theorem
without proof. Since then, there have been more activity on j -multiplicities and a
generalization to "-multiplicities. We briefly indicate some of that development.

An equivalent formulation of j -multiplicity of an ideal I in a Noetherian local
ring .R;m/ of dimension d is as

j.I / D lim
n!1

.d � 1/Š
nd�1 �R

�
H0
m

�
I n

I nC1

��
;

where H0
m.M/ is the 0th local cohomology of a module M with support in m;

namely it is the submodule of the module M generated by all elements that are
annihilated by a power of m.

Katz and Validashti [21, Theorem 3.9] proved that if I has analytic spread
equal to the dimension of the ring, then j.I / can be expressed as an integer-linear
combination of the v-values of I , as v varies over all normalized Rees valuations
of I . They also prove in [21, Corollary 3.11] that for all positive integers n,
j.I n/ D ndimR � j.I /.

Jeffries and Montaño [20] recently proved that with the proper definition of
a truncated volume of a not-necessarily bounded complement of the Newton
polyhedron of an ideal in Rd�0, for any monomial (not-necessarily zero-dimensional)
ideal I in a polynomial ring, j.I / equals dŠ times this volume. This generalizes
Theorem 5.1.

Ulrich and Validashti generalized the j -multiplicity to modules in [29]: if E is a
submodule of a free finitely generated R-module F D Re, then the j -multiplicity
of E is

j.E/ D lim
n

.d C e � 1/Š
ndCe�1 �

n�1X

iD0
�R

�
H0
m

�
EiF n�i

EiC1F n�i�1

��
;
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where the products are as in Sect. 16.5 of [19]. (That section is about the
Buchsbaum–Rim multiplicity.) In fact, j -multiplicity of modules contains both
the j -multiplicity of ideals and the Buchsbaum–Rim multiplicity to modules,
and correspondingly [29] contains characterizations of integral dependence via
j -multiplicity.

In [21] Katz and Validashti pursue a modification of j -multiplicity for ideals, and
in [29], Ulrich and Validashti pursue a modification of j -multiplicity for modules
as above: the " multiplicity of E is

".E/ D lim sup
n

.d C e � 1/Š
ndCe�1 � �R

�
H0
m

�
F n

En

��
:

Both [21, 30] prove another characterization of integral dependence (under certain
assumptions) using this new multiplicity, and non-vanishing theorems. Jeffries and
Montaño [20] present the " multiplicity of a monomial ideal in terms of a certain
volume.

Cutkosky [7] proved that under some assumptions, such as depthR � 2 and R
is essentially of finite type over a field of characteristic zero, in the definition of "
multiplicity, “limsup” can be replaced with “lim”.

7 Grading

Huneke and Swanson [19, Theorem 2.3.2] proves that the integral closure of a Nd 	
Ze-graded ring R inside a compatibly Nd 	 Ze-graded ring S is graded as well.
Shiro Goto pointed out the following shorter proof.

For this proof we assume (or one could give a proof simpler than that of Theorem
2.3.2) that if A is a subring of B , and if A0 D AŒX1; : : : ; XdCe; X�1

dC1; : : : ; X�1
dCe�

and B 0 D BŒX1; : : : ; XdCe; X�1
dC1; : : : ; X�1

dCe� are Nd 	 Ze-graded by monomials
in the variables X1; : : : ; XdCe , then the integral closure of a homogeneous subring
of A0 in B 0 is Nd 	 Ze-graded.

Now letG D Nd	Ze . Then the groupRŒG� isRŒX1; : : : ; XdCe; X�1
dC1; : : : ; X�1

dCe�.
If R is also G-graded, define 'R W R ! RŒG� to be the homomorphism that takes a
homogeneous r 2 R of degree g to r � g 2 RŒG�. Similarly define 'S .

By a previous paragraph, when we think of RŒG� as G-graded by monomials
in X1; : : : ; XdCe, then the integral closure of RŒG� in SŒG� is G-graded. Now let
s 2 S be integral over R. Applying 'S to the equation of integral dependence
of s over R shows that 'S.s/ is integral over RŒG�. Thus all the homogeneous
components of 'S.s/ are integral over RŒG�. But the homogeneous components of
'S.s/ are precisely of the form h �m, where h is a homogeneous component of s in
S and m is a monomial in X1; : : : ; XdCe; X�1

dC1; : : : ; X�1
dCe. But then by writing out

the equation of integral dependence of h � m over RŒG� we get that h, an arbitrary
homogeneous component of s, is integral over R.
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8 Goto Numbers

In this section .R;m/ is a Noetherian local ring. The Goto number of a parameter
ideal Q is the largest integer q such that Q W mq is integral over Q. These numbers
were explored in [3, 12, 15, 31]. The motivation for Goto numbers came from the
following result that predates [19]:

Theorem 8.1 (Corso et al. [6], Corso and Polini [4], Corso et al. [5], Goto [9]).
Let .R;m/ be a Cohen–Macaulay local ring of positive dimension. Let Q be a
parameter ideal in R and let I D Q W m. Then the following are equivalent:

1. I 2 6D QI .
2. The integral closure of Q is Q.
3. R is a regular local ring and �.m=Q/ � 1.

Thus I 2 D QI if .R;m/ is a Cohen–Macaulay local ring that is not reg-
ular. Furthermore, when this is the case, the associated graded ring grI .R/ D
RŒI t�=IRŒI t� and the fiber ring RŒI t�=mRŒI t� are both Cohen–Macaulay. If in
addition dimR > 1, it follows that the Rees algebra RŒI t� is a Cohen–Macaulay
ring. Several papers explored more generally I W mq for various positive integers q,
keeping in mind related questions on good properties of the Rees algebras and fiber
rings. See for example Goto et al. [10], Goto et al. [11], Horiuchi [18], and so on.
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1 Introduction

This chapter consists of a collection of open problems in commutative algebra.
The collection covers a wide range of topics from both Noetherian and non-
Noetherian ring theory and exhibits a variety of research approaches, including the
use of homological algebra, ring theoretic methods, and star and semistar operation
techniques. The problems were sent to us, in response to our request, by the authors
of the articles in this volume and several other researchers in the area. We also
included our own contributions. Some of these problems appear in other chapters
of this volume, while others are unrelated to any of them, but were considered
important by their proposers. The problems were gathered by the contributors from
a variety of sources and include long-standing conjectures as well as questions that
were generated by the most recent research in the field. Definitions and clarifying
comments were added to make the problems more self-contained, but, as a rule, if
unidentified notions are used, the reader can find the relevant definitions in the cited
references. The purpose of this chapter is to generate research, and we hope that the
problems proposed here will keep researchers happily busy for many years.

The underlying assumption is that all rings are commutative with 1 (and 1 ¤ 0),
all modules are unital, all groups are abelian, and the term “local ring” refers to a
not-necessarily Noetherian ring with a unique maximal ideal. Several notions and
ring constructions appear in a number of the proposed problems. For the reader’s
convenience, we mention a few definitions and sources of information here:

Let R be a commutative ring and let G be an abelian group written mul-
tiplicatively. The group ring RG is the free R module on the elements of G
with multiplication induced by G. An element x in RG has a unique expression
x D P

g�G xgg; where xg�R and all but finitely many xg are zero. Addition and
multiplication inRG are defined analogously to the standard polynomial operations.
Basic information about commutative group rings may be found in [60,84] and [63,
Chap. 8 (Sect. 2)].

Let D be a domain with quotient field KI Int.D/ denotes the ring of integer-
valued polynomials, that is, Int.D/ D ff 2 KŒX� j f .D/ � Dg: More generally,
for a subset E of K; Int.E;D/ D ff 2 KŒX� j f .E/ � Dg, and thus, Int.D/ D
Int.D;D/. For several indeterminates, Int.Dn/ D ff 2 KŒX1; : : : ; Xn� j f .Dn/ �
Dg: For a D-algebra A; containingD; IntK.A/ D ff 2 KŒX� j f .A/ � Ag: Note
that IntK.A/ is contained in Int.D/ if and only if A \ K D D: Basic information
about integer-valued polynomials may be found in [19].

Basic information on the star and semistar operations that appear in some of these
problems may be found in [59, Sects. 32 and 34] and [95].

Basic information on the integral closure of ideals in Noetherian rings that is
used in some of these problems may be found in [81].
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Finally, for interested readers, we provide the list of contributors in the
Acknowledgment section at the end of this chapter.

2 Open Problems

Problem 1. Glaz [67] and Bazzoni and Glaz [14] consider, among other properties,
the finitistic and weak global dimensions of rings satisfying various Prüfer condi-
tions. The Prüfer conditions under considerations are:

(1) R is semihereditary (i.e., finitely generated ideals of R are projective).
(2) w.dim R � 1:

(3) R is arithmetical (i.e., ideals of Rm are totally ordered by inclusion for all
maximal ideals m of R):

(4) R is Gaussian (i.e., c.fg/ D c.f /c.g/ for all f; g�RŒx�).
(5) R is locally Prüfer (i.e., Rp is Prüfer for every prime ideal p of R).
(6) R is Prüfer (i.e., every finitely generated regular ideal of R is invertible).

Let mod R be the set of all R-modules admitting a projective resolution consist-
ing of finitely generated projective modules. The finitistic projective dimension of
R is defined as fp.dim R = sup {proj.dimRM : M�mod R and proj.dimRM < 1}.
In general, fp.dim R � w.dim R, and if R is a local coherent regular ring, then
fp.dim R = w.dim R [67, Lemma 3.1]:

Problem 1a. Let R be a Prüfer ring. Is fp.dim R � 1?
The answer is affirmative for Gaussian rings [67, Theorems 3.2 and 14, Proposi-

tion 5.3]. It is also clearly true for Prüfer domains.

Problem 1b. Let R be a total ring of quotients. Is fp.dim R D 0?
Note that a total ring of quotients is always a Prüfer ring, so this question asks

if for this particular kind of Prüfer ring, fp.dim R is not only at most equal to 1,
but is actually equal to 0: This is true for a local Gaussian total ring of quotients
[67, Theorem 3.2 (Case 1)]. More information and a detailed bibliography on the
subject may be found in [66, 68].

Problem 2. Using the results obtained for the finitistic projective dimension of
rings (see previous problem) with various Prüfer conditions, it is possible to
determine the values of the weak global dimensions of rings under certain Prüfer
conditions [14, 67], but many questions are not yet answered:

Problem 2a. If R is a Gaussian ring, then is w.dim R D 0; 1, or 1?
This is the case for coherent Gaussian rings [67, Theorem 3.3] (and actually,

more generally, for coherent Prüfer rings [14, Proposition 6.1]), arithmetical rings
[97 and 14, remark in the last paragraph], and a particular case of Gaussian rings
[14, Theorem 6.4].

Problem 2b. If R is a total ring of quotients, is w.dim R D 0; 1, or 1?
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This is true if R is coherent [68, Corollary 6.7], in which case w.dim R = 0 or
1, and also holds for one example of a non-coherent ring [68, Example 6.8].

In general:

Problem 2c. What are the values of w.dim R when R is a Prüfer ring?
Additional information and references on the subject may be found in [68].

Problem 3. Is the integral closure of a one-dimensional coherent domain in its field
of quotients a Prüfer domain?

This question, which also appears in [23, Problem 65], was posed by Vasconce-
los. It had been answered positively in many, but not all, cases. A useful reference
that will lead to many other useful references is [63, Chap. 5 (Sect. 3) and Chap. 7
(Sect. 4)].

Problem 4. A ring R is a finite conductor ring if aR \ bR and .0 W c/ are finitely
generated ideals ofR for all elements a; b, and c in R. A ring R is a quasi-coherent
ring if a1R\ : : :\anR and .0 W c/ are finitely generated ideals ofR for all elements
a1; : : : ; an and c in R. Examples of both classes of rings include all coherent rings,
UFDs, GCD domains, G-GCD domains (i.e., domains in which the intersection of
two invertible ideals is an invertible ideal), and the still more general G-GCD rings
(i.e., rings in which principal ideals are projective and the intersection of two finitely
generated flat ideals is a finitely generated flat ideal). For more information on these
classes of rings see references [64, 65]. Let G be a multiplicative abelian group
and let RG be the group ring of G over R. In the group ring setting where R is a
domain, characterizations of group rings as UFDs and GCD domains were obtained
in [61, Theorems 6.1, 6.4, and 7.17]. In the case whereR is a ring with zero divisors,
however, the behavior of the finite conductor and quasi-coherent properties has been
only partially described. Specifically, in the general ring setting, both properties
descend from RG to R [65, Proposition 3.2], and the question of ascent from R

to RG reduces to the situation where G is finitely generated [65, Proposition 3.1].
This, however, does not solve the problem of ascent for either property. Even in the
case whereR is a G-GCD ring andG is an infinite cyclic group, ascent is unknown.

Problem 4a. Assume that R is a G-GCD ring andG is a finitely generated abelian
group. Do the finite conductor and the quasi-coherent properties ascend from R

to RG?
Further explorations of these conditions in the group ring setting may shed light

on a more general problem:

Problem 4b. Are the finite conductor and quasi-coherent properties for rings
distinct?

Other useful references include [51, 69].

Problem 5. Let R be a commutative ring and let G be an abelian group with the
property that the order of every element of G is invertible in R. Then w.dim RG =
w.dimR + rankG [33, Theorem] and [62, Theorem 2]. With the aid of this formula,
it is possible to characterize von Neumann regular and semihereditary group rings
RG [62, Corollaries 1 and 2].
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Problem 5a. Is there a similar formula that relates the global dimension of RG to
the global dimension of R in combination with some invariant of the groupG?

In this direction, there is one classical result, Maschke’s theorem [84, page 47],
which pertains to a special case of semisimple rings (i.e., rings of global dimension
zero): Let G be a finite group and let k be a field. Then kG is a semisimple ring if
and only if the characteristic of k does not divide the order of the groupG. Beyond
this, characterizations of group rings of finite global dimension are not known, even
for the simple cases of global dimension zero (semisimple rings) or one (hereditary
rings).

Problem 5b. Find characterizations of semisimple and hereditary group rings.
Other useful references include [69, 103].

Problem 6. The generalization of the notion of a Cohen–Macaulay and a Goren-
stein ring from the Noetherian to the non-Noetherian context is a recent develop-
ment. As such, the questions of when a group ring RG; where R is a commutative
ring and G is an abelian group, is Cohen–Macaulay or Gorenstein have yet to be
investigated. The articles [72, 80] introduce the notions of non-Noetherian Cohen–
Macaulay and non-Noetherian Gorenstein, respectively. An excellent survey of
these theories which discusses the underlying homological framework is found
in [79].

Problem 7. This problem arises within the context of work done by Hamilton
and Marley [72] to characterize non-Noetherian Cohen–Macaulay rings, as well as
work of Hummel and Marley [80] to characterize non-Noetherian Gorenstein rings.
In light of the role that homological dimensions, infinite finite free resolutions of
modules, and local (co)homology played in the development of these theories for
local coherent rings, Hummel [79] posed the question:

Is there a non-Noetherian characterization of local complete intersection rings
such that (coherent) local Gorenstein rings are complete intersections and such that
(coherent) local complete intersection rings are Cohen–Macaulay?

André [10] provided a characterization of non-Noetherian complete intersection
rings parallel to its following Noetherian counterpart using André–Quillen homol-
ogy: Let .R;m/ be a local Noetherian ring with residue field k, and let ˇi D dimk

TorRi .k; k/ be the i th Betti number. R is a complete intersection if and only if the

Betti numbers appear in the following equality of power series:
X

ˇix
i D .1Cx/r

.1�x2/s
with 0 < r � s D dim R.

While able to prove a similar characterization for non-Noetherian rings, André
showed there was no relation between the integers r and s above in the non-
Noetherian case.

In [79] one can find more background on this problem, as well as potential
definitions or characterizations of non-Noetherian complete intersection rings.

Problem 8. Let (R;M ) be a Noetherian local ring. R is said to be quasi-complete
if for any decreasing sequence fAng1

nD1 of ideals of R and each natural number k,
there exists a natural number sk with Ask � .

T1
nD1 An/ C Mk. If this condition
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holds for any decreasing sequence fAng1
nD1 of ideals of R with

T1
nD1 An D 0,

then R is called weakly quasi-complete (in which case, we actually have Ask �
Mk). Now, if R is complete, then R is quasi-complete, which implies that R is
weakly quasi-complete. Also R is quasi-complete if and only if each homomorphic
image of R is weakly quasi-complete. The implication “R complete implies that R
is quasi-complete” was first proved by Chevalley [24, Lemma 7]; for a proof in this
volume see [4, Theorem 1.3]. Note that a DVR is quasi-complete, but need not be
complete. More generally, a one-dimensional Noetherian local domain is (weakly)
quasi-complete if and only if it is analytically irreducible [4, Corollary 2.2].

Problem 8a. Is a weakly quasi-complete ring quasi-complete?

Problem 8b. Let k be a field and R D kŒX1; : : : ; Xn�.X1;:::;Xn/; n � 2: Is R
(weakly) quasi-complete?

Regarding Problem 8b, in [4, Conjecture 1] it is conjectured that R is not weakly
quasi-complete and in [4, Example 2.1] this is shown to be the case if k is countable.
Note that R not being quasi-complete is equivalent to the existence of a height-
one prime ideal P of kŒŒX1; : : : ; Xn�� with P \ kŒX1; : : : ; Xn� D 0: For additional
information see [4].

Problem 9. A commutative ring R is said to be a McCoy ring if each finitely
generated ideal I � Z.R/ (where Z.R/ denotes the set of zero divisors of R)
has a nonzero annihilator. In 1980, Akiba proved that if R is an integrally closed
reduced McCoy ring, then the polynomial ring RŒX� is also integrally closed
[2, Theorem 3.2]. He also proved that if RM is an integrally closed domain for each
maximal ideal M , then RŒX� is integrally closed [2, Corollary 1.3]. In addition he
provided an example of a reduced ring R that is not a McCoy ring but locally is an
integrally closed domain [2, Example]. Combining his results, one has that if R is
a reduced ring such that RM is an integrally closed McCoy ring for each maximal
ideal M , then RŒX� is integrally closed [78, page 103].

Does there exist an integrally closed reduced ringR such thatRM is an integrally
closed McCoy ring for each maximal ideal M , but R is not a McCoy ring and it is
not locally a domain?

Problem 10. With the notation and definitions of the previous problem, a ring R
has .An/ if each ideal I � Z.R/ that can be generated by n (or fewer) elements
has a nonzero annihilator. Example 2.5 in [90] shows that for each n � 2, there
are reduced rings which have .An/ but not .AnC1/. An alternate restriction on zero
divisors is (a.c.): R has (a.c.) if for each pair of elements r; s 2 R, there is an
element t 2 R such that Ann.r; s/ D Ann.t/. The rings in Examples 2.2 and 2.4 of
[90] show that there are reduced McCoy rings that do not have (a.c.), and reduced
rings with (a.c.) that are not McCoy.

Do there exist reduced rings that have both (a.c.) and .An/ for some n � 2 that
are not McCoy rings?
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Problem 11. Let P be a nonzero prime ideal of a Prüfer domain R. Then, it is
known that PS is a divisorial prime in each overring R � S � RP if and only if
PRP is principal and each P -primary ideal (of R) is a divisorial ideal of R.

Problem 11a. Characterize whenP (andR) is such thatP \T is a divisorial prime
of T for each Prüfer domain T � R with the same quotient field as R.

Note that no assumption has been made about PS being, or not being, divisorial
for R ¨ S � RP . This is true for each P if Z � R � Q.

Problem 11b. Characterize when P (andR) is such that there is no Prüfer domain
T � R with the same quotient field as R such that P \T is a divisorial prime of T .

More information about the problem may be found in [45].

Problem 12. Let D be an almost Dedekind domain with a non-invertible maximal
ideal M . Then D.X/ is also an almost Dedekind domain and MD.X/ is a non-
invertible maximal ideal with corresponding residue field F.X/ where F D D=M .
Let R be the pullback of F ŒX�.X/ over MD.X/. Then R is a Prüfer domain, R ¨
D.X/ ¨ D.X/MD.X/, MD.X/ is a divisorial prime ideal of R, it is not a divisorial
(prime) ideal ofD.X/, butMD.X/MD.X/ is a divisorial prime ideal ofD.X/MD.X/.
In contrast, if P is a nonzero non-maximal prime of the ring of entire functions E
and N is a maximal ideal that contains P , then E ¨ EN ¨ EP , P.D P2/ is not
a divisorial ideal of E , PEN is a divisorial prime ideal of EN , and PEP is not a
divisorial (prime) ideal of EP .

Problem 12a. Does there exist a Prüfer domain R with a nonzero prime P such
that there is a countably infinite chain of overringsR D R0 ¨ R1 ¨ R2 ¨ � � � ¨ RP
where for all n � 0, PR2n is a divisorial ideal of R2n and PR2nC1 is an ideal of
R2nC1 that is not divisorial? If such a chain exists, is PS divisorial or not divisorial
as an ideal of S D S

Rm.� RP /?

Problem 12b. Does there exist a Prüfer domain R with a nonzero prime P such
that there is a countably infinite chain of underrings R D R0 © R1 © R2 © � � � ©
T D T

Rm with T having the same quotient field asR where for all n � 0, P \R2n
is a divisorial ideal of R2n and P \R2nC1 is not a divisorial ideal ofR2nC1? If such
a chain exists, is P \ T divisorial or not divisorial as an ideal of T ?

More information about the problem may be found in [45].

Problem 13. A domain D with field of quotients K is called a straight domain if
for every overring S of D, S=PS is torsion-free over D=P , for every prime ideal
P of D.

Problem 13a. IfRP andR=P are straight domains, does this imply that RCPRP
is a straight domain?

A domain D is called divided if PDP D P for every prime ideal P of D; D is
called locally divided ifDM is divided for every maximal idealM ofD. An answer
to Question 13a may shed light on an open question posed in [30]:

Problem 13b. Does there exist a straight domain which is not locally divided?
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Extending these definitions, analogously, to general rings, we note that there
exists a straight ring which is not a domain and not locally divided. For more details,
see [32, Sect. 2].

Problem 14. Comparing the Krull dimensions of the ring Int.D/ of integer-valued
polynomials and of the classical ring DŒX� of polynomials with coefficients in D;
it is known that dim.Int.D// � dim.DŒX�/ � 1, with possibility of equality [19,
Example V.1.12]. The question of an upper bound remains open: It is conjectured to
be equal to dim.DŒX�/:

Problem 15. Considering a one-dimensional local Noetherian domain D with
finite residue field, when does Int.D/ satisfy the almost strong Skolem property?

See [19, Chap. VII] for a survey of Skolem properties. It is known that it is
enough that D be analytically irreducible and was recently shown that D must be
unibranched [20] leaving open the question of a necessary and sufficient condition.

Problem 16. A sequence fangn�0 of integers is said to be self .simultaneously/
ordered if for all positive integers m; n W Qn�1

kD0.an � ak/ divides
Qn�1
kD0.am � ak/:

If f is a nonconstant polynomial of ZŒX�; distinct from ˙X; then, for every x 2 Z,
the sequence ff �n.x/gn�0 (where f �n denotes the nth iterate of f ) is self-ordered
[1, Proposition 18]. For instance, the sequence fqngn�0; with q ¤ 0;˙1, obtained
with f .X/ D qX and x D 1; is self-ordered. Aside from the (infinitely many)
sequences obtained with such a dynamical construction are the three following

“natural” sequences:
˚
.�1/n  n

2

��
n�1 ; fn2gn�0 ; and

n
n.nC1/
2

o

n�0. Also, if the

sequence fangn�0 is self-ordered, then so is fbanCcgn�0, for all integers b 6D 0 and
c:We note the importance of the word “natural” (although not defined), for instance,
the “natural candidates” fn2gn�1 and fnkgn�0 for k � 3 are not self-ordered. On
the other hand, one can construct infinitely many “artificial” self-ordered sequences
by the following ad hoc construction: choose two distinct integers a0 and a1 and,
for n � 1, define inductively anC1 to be any integer, distinct from the ak’s for
0 � k � n, such that

Qn�1
kD0.an � ak/ divides anC1 � a0: These integers can be

chosen to be prime numbers, thanks to Dirichlet’s theorem, and hence, there are
infinitely many self-ordered sequences contained in the set P of prime numbers,
although P itself cannot be self ordered. The question is:

Are there any other “natural” self-ordered sequences neither obtained by a
dynamical construction nor by an affine map applied to the three previous examples?

More details can be found in [22, Sect. 5.2, Q.2].

Problem 17. The nth Bhargava factorial [15] associated to an infinite subset E of
Z is the integer nŠE such that 1

nŠE
is the generator of the fractional ideal formed by

the leading coefficients of the polynomials f .X/ 2 Int.E;Z/ with degree � n [22,
Sect. 3]. These factorials have the following properties:

1. 0ŠE D 1.
2. 8n � 0, nŠ divides nŠE .
3. 8n;m � 0, nŠE 	mŠE divides .nCm/ŠE .
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Mingarelli [92] called abstract factorials a sequence fnŠagn�0 of positive integers
satisfying these three properties. Clearly, such sequences are non-decreasing, but
although there cannot be three consecutive equal terms [92, Lemma 8], one may
have kŠa D .k C 1/Ša for infinitely many k [92, Proposition 12].

Are there subsetsE ofZ such that the sequence of Bhargava’s factorials fnŠEgn�0
is not ultimately strictly increasing? [22, Sect. 4.3, Q.1].

Note that, for E D fn3 j n � 0g, one has 3ŠE D 4ŠE D 504, yet the sequence
fnŠEgn�0 is ultimately strictly increasing.

Problem 18. Given an abstract factorial fnŠagn�0 as in the previous question, one
may define a generalization of the constant e [92, Definition 17] by ea D P

n�0 1
nŠa
:

For Bhargava’s factorial associated to a subset E one denotes this number by eE:
For example, if E D N

.2/ D fn2 j n � 0g, then eN.2/ D eC 1
e . The constant ea is

always irrational [92, Theorem 28].
For which infinite subset E is eE a transcendental number [22, Sect. 6.5]?

Problem 19. Int.D/ is known to be a freeD module ifD is a Dedekind domain. TV
domains, defined by Houston and Zafrullah in [77], are domains in which t-ideals
coincide with v-ideals. TV PvMD domains were extensively studied in [82]. For a
Krull domain, or more generally for a TV PvMD domain, Int.D/ is known to be
locally free and hence a flat D module [37].

Problem 19a. Is Int.D/ a flat D module for any domainD?

Problem 19b. Is Int.D/ a free D-module for any domainD?

Problem 20. Let D be an integral domain. The canonical D-algebra homomor-
phism Int.D/˝Dn �! Int.Dn/ is known to be an isomorphism if Int.D/ is free or
if D is locally free and Int.Dm/ D Int.D/m for every maximal ideal m of D [35].

Is this canonical morphism always injective? surjective?

Problem 21. Let D be an integral domain. Does Int.D/ always have a unique
structure of a D-D-biring such that the inclusion DŒX� �! Int.D/ is a homo-
morphism of D-D-birings?

This is the case if the canonical D-algebra homomorphism Int.D/˝Dn �!
Int.Dn/ is an isomorphism for all n [36].

Problem 22. LetD � A be an extension of domains. Let B be the quotient field of
A and Int.A/ D ff 2 BŒX� j f .A/ � Ag be the ring of integer-valued polynomials
of A and similarly Int.An/ be the ring of integer-valued polynomials in several
indeterminates. If Int.Dn/ � Int.An/ for all positive integer n; then the extension
D � A is said to be almost polynomially complete [35].

If Int.D/ � Int.A/, does it follow that the extension D � A is almost
polynomially complete?

Problem 23. Recall that, for a set S of nonnegative integers, the natural density
ı.S/ of S is defined to be ı.S/ D limn!1 jfa2S Wa<ngj

n
; provided the limit exists.
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Let K be a number field and OK be the corresponding ring of algebraic integers.
Consider the natural density ı.Int.OK// of the set of nonnegative integers n such
that Intn.OK/ is free (Intn.OK/ denotes the OK -module formed by the integer-
valued polynomials of degree at most n).

Prove or disprove the following conjecture [38]: ı.Int.OK// exists, is rational,
and is at least 1=Card.PO.OK// (where PO.OK// denotes the Pólya group of OK ).
Then compute ı.Int.OK//:

Problem 24. Consider the ring Int.E;Z/whereE is the set formed by the elements
of a sequence fungn�0 of integers determined by a recursion unC1 D aun C bun�1
and initial values u0, u1:

Problem 24a. Compute a regular basis (i.e., a basis with nth term of degree n) of
the Z-module Int.E;Z/.

Problem 24b. Compute the characteristic sequence of Int.E;Z/ with respect to
each prime p, that is, the sequence f˛p.n/gn�0, where ˛p.n/ is the p-adic valuation
of the fractional ideal consisting of 0 and the leading coefficients of elements of
Int.E;Z/ of degree no more than n.

Problem 24c. Determine the asymptotic behavior of this sequence, that is, compute
the limit limn!1 ˛.n/=n (the limit exists, by Fekete’s lemma, since the sequence
f˛.n/g is superadditive).

Based on the results of Coelho and Parry [25] answers are known if b D ˙1,
which includes the cases of the Fibonacci and Lucas numbers [83, 102]; however
the method used there does not seem to extend to general a; b. This question can, of
course, be extended to higher-order recursive sequences.

Problem 25. There has been much recent progress in understanding IntQ.Mn.Z//

where Mn.Z/ is the ring of n 	 n matrices with integer coefficients, beginning
with Frisch’s contribution [48] and more recently those of Peruginelli [98] and of
Peruginelli and Werner [99]. These descriptions relate IntQ.Mn.Z// to polynomials
integer valued on algebraic integers or divisible by irreducibles modulo dZŒx�.
There remains however, as in the previous problem, to:

Problem 25a. Compute a regular basis of IntQ.Mn.Z//:

Problem 25b. Compute its characteristic sequence with respect to each prime p:

Problem 25c. Determine the asymptotic behavior of this sequence.

Problem 26. LetD be an integral domain and letA be a torsion-freeD-algebra that
is finitely generated as a D-module. We consider the ring IntK.A/ of polynomials,
with coefficients in the quotient field K of D; that are integer-valued over A, that
is, IntK.A/ D ff 2 KŒX� j f .A/ � Ag. For every a 2 A, we denote by �a.X/ 2
DŒX� the minimal polynomial of a over D. Each polynomial f in the pullback
DŒX� C �a.X/KŒX� is obviously such that f .a/ 2 A. Hence,

T
a2A.DŒX� C

�a.X/KŒX�/ � IntK.A/:
For which algebras A as above does this inclusion become an equality?
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Note that equality holds for the D-algebra A D Mn.D/ of n 	 n matrices over
D [99, Remark 3.4]. The ring IntK .Mn.D// has been studied in several places; see
for instance [46, 98].

Problem 27. LetD be an integral domain with quotient fieldK . LetA be a torsion-
freeD-algebra, containingD; finitely generated as a D-module, and such that K \
A D D. Letting B D K ˝D A (i.e., the ring of fractions a

d
with a 2 A and d 2

D;d ¤ 0), one can consider the set Int.A/ D ff 2 BŒX� j f .A/ � Ag: Working
with polynomials inBŒX�, one assumes that the indeterminateX commutes with all
elements of B and that polynomials are evaluated with X on the right; see [85] for
more details on polynomials with non-commuting coefficients. Note that IntK.A/ D
Int.A/\KŒX�: The set Int.A/ is always a left A-module, but it is not clear whether
it has a ring structure when A is not commutative. A sufficient condition for Int.A/
to be a ring is that each element of A can be written as a finite sum

P
i ciui , where

each ui is a unit of A and each ci is central in B [106]. Examples of algebras that
meet this condition include the matrix rings Mn.D/ and group rings DG where G
is a finite group. Yet this condition is not necessary [107].

Problem 27a. Give an example of a D-algebra A such that Int.A/ is not a ring
(possibly relaxing some of the conditions on A, for instance, that A is finitely
generated as a D-module).

Problem 27b. In [107], it is conjectured that Int.A/ is always a ring when D has
finite residue rings. Prove this conjecture or give a counterexample in this case.

Problem 28. In [89], it is shown that if A is the ring of integers of an algebraic
number field, then IntQ.A/ is Prüfer. More generally, let D be an integral domain,
let K be its quotient field, and let A be a D-algebra. If IntK.A/ is a Prüfer
domain contained in Int.D/, then Int.D/ must also be Prüfer, and hence D must
be integrally closed. This condition is not sufficient: IntK.A/ need not even be
integrally closed and [99] gives some general theorems regarding the integral
closure of IntK.A/.

Determine when this integral closure is Prüfer.
Note that Loper [87] determined such a criterion for the classical ring of integer-

valued polynomials.

Problem 29. In the early 1990s, J.D. Sally gave expository talks on the question of
which rings lie between a Noetherian domain D and its quotient field F [74]. The
manuscript [74] provides abundant evidence that when the dimension ofD is greater
than one, the class of rings between D and F is rich in interesting Noetherian and
non-Noetherian rings. A narrower problem, which remains open, is the following:

Describe the integrally closed rings between a two-dimensional Noetherian
domain and its quotient field.

Work on this problem is surveyed in [96]. The evidence suggests that this class
of rings is quite complicated. A framework for describing the integrally closed rings
between ZŒX� and QŒX� is given in [88].
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Problem 30. Let R be a ring and let n be a positive integer. A proper ideal
I of R is called an n-absorbing ideal if whenever the product x1x2 � � �xnC1 2 I
for x1; x2; : : : ; xnC1 2 R, then there are n of the xi ’s whose product is in I .
Clearly, a 1-absorbing ideal is just a prime ideal. A proper ideal I of R is
called a strongly n-absorbing ideal if whenever I1I2 � � � InC1 � I for ideals
I1; I1; : : : ; InC1 of R, then there are n of the ideals Ii ’s whose product is a subset of
I . Obviously, a strongly n-absorbing ideal is an n-absorbing ideal.

Problem 30a. Let I be an n-absorbing ideal ofR: Is I a strongly n-absorbing ideal
of R?

Note that if n D 1 the answer is obviously positive and if n D 2 a positive answer
is contained in [11, Theorem 2.13].

Problem 30b. Let I be an n-absorbing ideal of R: Is rad.I /n � I ?
Note that if I is an n-absorbing ideal, then so is rad.I /: For n D 2, the positive

answer to this question is proved in [11, Theorem 2.4].

Problem 30c. Let I be an n-absorbing ideal of R: Is I ŒX� an n-absorbing ideal of
the polynomial ring RŒX�?

Note that if n D 2, then the answer is affirmative [7, Theorem 4.15].

Problem 31. Let F=K be a transcendental field extension, and letX be an indeter-
minate over F . By a result of Halter-Koch [70, Theorem 2.2], A D T

V V .X/ DT
V V ŒX�MV ŒX�, (where V ranges over the valuation rings of F=K and MV is the

maximal ideal of V ), is a Bézout domain. However,A is not the Kronecker function
ring of a domain with quotient field F (and hence does not arise directly from
an e.a.b. star operation). Fabbri and Heubo-Kwegna [39] show this issue can be
circumvented when F D K.X0;X1; : : : ; Xn/ is a purely transcendental extension of
K by introducing the notion of projective star operations, which are glued together
from traditional star operations on affine subsets of projective n-space. The ring
A is then a “projective” Kronecker function ring of the projective analogue of the
b-operation. More generally, e.a.b. projective star operations give rise to projective
Kronecker function rings. The theory of projective star operations is worked out in
[39] for projective n-space, but the following problem remains open:

Develop projective star operations for projective varieties (i.e., for the case where
F=K is a finitely generated field extension that need not be purely transcendental)

Problem 32. Let D be a domain and let I be a nonzero ideal of D. Recall that I
is called stable if I is invertible in its endomorphism ring E.I / D .I W I /; and the
integral domainD is called .finitely/ stable if each nonzero (finitely generated) ideal
is stable. As usual, the ideal I is called divisorial if I D I v D .D W .D W I //; and
D is called a divisorial domain if each nonzero ideal is divisorial. A Mori domain
is a domain satisfying the ascending chain condition on divisorial ideals. Clearly
Noetherian and Krull domains are Mori. It has been proved in [54] that a stable
domain is one-dimensional if and only if it is Mori. Since Mori domains satisfy the
ascending chain condition on principal ideals, a Mori domain D is Archimedean,
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that is,
T
n�0 xnD D .0/, for each non-unit x 2 D. The class of Archimedean

domains includes also completely integrally closed domains and one-dimensional
domains.

Problem 32a. Is a stable Archimedean domain one-dimensional?
The answer is positive in the semilocal case [54], so that a semilocal stable

Archimedean domain is Mori (see also [50, Theorem 2.17]). Hence, a way of
approaching this problem is trying to see if for stable domains the Archimedean
property localizes. In general the Archimedean property does not pass to local-
izations. For example, the ring of entire functions is an infinite-dimensional com-
pletely integrally closed (hence, Archimedean) Bézout domain which is not locally
Archimedean, because an Archimedean valuation domain is one-dimensional.

IfD is a Mori stable domain and I is a nonzero ideal ofD, we have I v D .x; y/v,
for some x; y 2 I [50, Theorem 2.17]. Therefore, we can say that in a stable Mori
domain, each divisorial ideal is 2-v-generated. Since a divisorial Mori domain is
Noetherian, this result generalizes the fact that in a Noetherian domain that is stable
and divisorial each ideal can be generated by two elements [50, Theorem 3.6].

Problem 32b. Let D be a one-dimensional Mori domain such that each divisorial
ideal is 2-v-generated. Is it true that each divisorial ideal is stable?

Note that the answer to this question is negative when D has dimension greater
than one. For example, let D be a Krull domain. Then, each divisorial ideal of
D is 2-v-generated [93, Proposition 1.2] and stability coincides with invertibility
[50, Proposition 2.3]. Hence, each divisorial ideal of D is stable (i.e., invertible) if
and only if D is locally factorial [17, Lemma 1.1].

Recall that a nonzero ideal I of an integral domain D is v-invertible if .I.D W
I //v D D; and I is called v-stable if I v is v-invertible as an ideal of E.I v/, that
is, .I v.E.I v/ W I v//v D E.I v/. Clearly, v-invertibility implies v-stability. If each
nonzero ideal of D is v-stable, we say that D is v-stable [52]. Each nonzero ideal
of a Krull domain is v-invertible; thus a Krull domain is v-stable. However, a Krull
domain is stable if and only if it is a Dedekind domain, that is, it has dimension
one. An example of a one-dimensional Mori domain that is v-stable but not stable is
given in [53, Example 2.6].

Problem 32c. Let D be a Mori domain such that each divisorial ideal is 2-v-
generated. Is it true thatD is v-stable?

Problem 33. It is well known that if an integral domain D has finite character,
then a locally invertible ideal is invertible. Conversely, if each locally invertible
ideal is invertible, D need not have finite character (e.g., a Noetherian domain
need not have finite character). However, a Prüfer domain such that each locally
invertible ideal is invertible does have finite character. This fact was conjectured
by Bazzoni [12, p 630] and proved by Holland et al. in [76]. (A simplified proof
appears in [91]). Halter-Koch gave independently another proof in the more general
context of ideal systems [71]. Other contributions were made by Zafrullah in [111]
and by Finocchiaro et al. in [40]. Following Anderson and Zafrullah [6], an integral
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domain D is called an LPI domain if each locally principal nonzero ideal of D
is invertible. Since a Prüfer domain is precisely a finitely stable integrally closed
domain [50, Proposition 2.5], one is led to ask the following more general question
(which appears in [13, Question 4.6]):

Assume that D is a finitely stable LPI domain. Is it true that D has finite
character?

The answer to this question is positive if and only if the LPI property extends to
fractional overrings [49, Corollary 15]. In particular, this holds when D is Mori or
integrally closed. For an exhaustive discussion of this problem, see [49].

Problem 34. Let D be an integral domain, let S be a multiplicatively closed set
in D; and let DS be the ring of fractions of D with respect to S . Consider R D
DCXDSŒX�; the ring of polynomials overDS in indeterminateX and with constant
terms in D.

Recall that a GCD domain is an integral domain with the property that any
two nonzero elements have a greatest common divisor and a PvMD is an integral
domain with the property that every nonzero finitely generated ideal is t-invertible.
It was shown in [26, Theorem 1.1] that R is a GCD domain if and only if D is
a GCD domain and for all d 2 Dnf0g GCD.d;X/ exists. In [9, Theorem 2.5]
it was shown that R is a Prüfer v-multiplication domain (for short, PvMD) if and
only if D is a PvMD and the ideal .d;X/ is t-invertible for all d 2 Dnf0g. Next,
recall that an integral domain is a v-domain if every nonzero finitely generated ideal
is v-invertible. Note that if D is a v-domain, it is possible that DS may not be a
v-domain. For more information about v-domains consult [44].

Problem 34a. Find necessary and sufficient conditions for R D D C XDSŒX� to
be a v-domain. Prove or disprove thatR is a v-domain if and only ifD is a v-domain
and .d;X/ is v-invertible for all d 2 Dnf0g.

More generally:

Problem 34b. Let A � B be an extension of integral domains, and let X be
an indeterminate over B . Find necessary and sufficient conditions for the integral
domain ACXBŒX� to be a v-domain.

Problem 35. An integral domain D is called an almost GCD (for short, AGCD) if
for each pair x; y 2 Dnf0g, there is an integer n D n.x; y/ (depending on x and y)
such that xnD \ ynD is principal. The theory of AGCD domains runs along lines
similar to that of GCD domains; see [5] for more information and a list of references
on the topic. An integral domainD is a domain of finite t-character if every nonzero
non-unit of D belongs to at most a finite number of maximal t-ideals of D. AGCD
domains of finite t-character were characterized in [34]. An idealA ofD is t-locally
principal if ADP is principal for every maximal t-ideal P of D. In [111] it was
shown that if D is a PvMD, then D is of finite t-character if and only if every
nonzero t-locally principal ideal of D is t-invertible. A GCD domain is a PvMD
because the v-closure of every nonzero finitely generated ideal in a GCD domain is
principal. We can therefore conclude that a GCD domain is of finite t-character if
and only if every nonzero t-locally principal ideal A of D is t-invertible.
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Now, we are in a position to state an open problem:
Let D be an almost GCD domain such that every nonzero t-locally principal

ideal is t-invertible. Is D of finite t-character?

Problem 36. LetD be an integral domain, letK be the field of quotients ofD, and
let F .D/ denote the set of all the nonzeroD-submodules of K .

Let T denote a nonempty collection of overrings of D and, for any T 2 T , let
?T be a semistar operation on T . An interesting question posed in [23, Problem 44]
is the following:

Problem 36a. Find conditions on T and on the semistar operations ?T under
which the semistar operation ?T on D defined by E?T WDT f.ET /?T j T 2 T g,
for all E 2F .D/; is of finite type.

Note that, if D D TfT j T 2 T g is locally finite and each ?T is a star operation
on T of finite type, then Anderson in [3, Theorem 2] proved that ?T is a star
operation on D of finite type. Through the years, several partial answers to this
question were given and they are mainly topological in nature. For example, in [42,
Corollary 4.6], a description of when the semistar operation ?T is of finite type
was given when T is a family of localizations of D and ?T is the identity semistar
operation on T , for each T 2 T . More recently, in [41], it was proved that if T is a
quasi-compact subspace of the (Zariski–Riemann) space of all valuation overrings
ofD (endowed with the Zariski topology) and ?T is the identity (semi)star operation
on T , for each T 2 T , then ?T is of finite type. Another more natural way to see
the problem stated above is the following.

Problem 36b. Let S be any nonempty collection of semistar operations on D and
let ^S be the semistar operation defined by E^S WD TfE? j ? 2 Sg for all
E 2 F .D/: Find conditions on the set S for the semistar operation ^S on D to be
of finite type.

Note that it is not so difficult to show that the constructions of the semistar
operations of the type ?T and ^S are essentially equivalent, in the sense that every
semistar operation ?T can be interpreted as one of the type ^S , and conversely.

Problem 37. A finite-dimensional integral domainD is said to be a Jaffard domain
if dim.DŒX1;X2; : : : ; Xn�/ D n C dim.D/ for all n � 1 and, equivalently, if
dim.D/ D dimv.D/, where dim.D/ denotes the (Krull) dimension of D and
dimv.D/ its valuative dimension (i.e., the supremum of dimensions of the valuation
overrings of D). As this notion does not carry over to localizations, D is said
to be a locally Jaffard domain if DP is Jaffard for each prime ideal P of D.
The class of (locally) Jaffard domains contains most of the well-known classes of
(locally) finite-dimensional rings involved in dimension theory such as Noetherian
domains, Prüfer domains, universally catenarian domains, and universally strong
S(eidenberg) domains. It is an open problem to compute the dimension of poly-
nomial rings over Krull domains in general. In this vein, Bouvier conjectured
that “finite-dimensional Krull (or, more particularly, factorial) domains need not
be Jaffard” [18, 43]. Bouvier’s conjecture makes sense beyond the Noetherian
context. Explicit finite-dimensional non-Noetherian Krull domains are scarce in
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the literature and one needs to test them and their localizations as well for the
Jaffard property. In [16], the authors scanned all known families of examples
of non-Noetherian finite-dimensional Krull (or factorial) domains existing in the
literature. They showed that all these examples—except two—are in fact locally
Jaffard domains. The two exceptions are addressed below in the open Problems 37b
and 37c. Bouvier’s conjecture is still elusively open and one may reformulate it in
the following simple terms:

Problem 37a. Is there a Krull (or, more particularly, factorial) domainD such that
1C dim.D/ Œ dim.DŒX�/?

In [16], Bouchiba and Kabbaj examined David’s second construction described
in [29] of a three-dimensional factorial domain which arises as an ascending union
of three-dimensional polynomial rings Jn in three variables over a field k; namely,
J D S

Jn with Jn D kŒX; ˇn�1; ˇn� for each positive integer n, where the variables

ˇn satisfy the following condition: For n � 2, ˇn D �ˇs.n/n�1Cˇn�2

X
, where the s.n/ are

positive integers. We have Jn � J � JnŒX
�1� for each positive integer n. Therefore,

by [31, Theorem 2.3], J is a Jaffard domain (since the Jn’s are affine domains, i.e.,
finitely generated k-algebras), but it is not known if J is locally Jaffard. So the
following question is open:

Problem 37b. Is J a locally Jaffard domain?
Clearly, a negative answer to Problem 37b will solve (affirmatively) Bouvier’s

conjecture for factorial domains (cf. Problem 37a).
In [16], the authors also investigated the known family of examples which stem

from the generalized 14th problem of Hilbert (also called Hilbert–Zariski problem):
Let k be a field of characteristic zero, T a normal affine domain (i.e., an integrally
closed domain which is a finitely generated algebra) over k, and F a subfield of the
quotient field of T . The Hilbert–Zariski problem asks whether D D F \ T is an
affine domain over k. Counterexamples for this problem were constructed by Rees
[100], Nagata [94], and Roberts [101], where D wasn’t even Noetherian. In this
vein, Anderson et al. [8] asked whether D and its localizations inherit from T the
Noetherian-like main behavior of having Krull and valuative dimensions coincide
(i.e., whetherD is locally Jaffard). In [18], the authors proved that D is Jaffard, but
were not able to determine whether D is locally Jaffard. In fact, they addressed
this problem in the more general context of subalgebras of affine domains over
Noetherian domains and the following question remains open:

Problem 37c. Let A � D be an extension of integral domains, where A is
Noetherian domain and D is a subalgebra of an affine domain T over A. Is D a
locally Jaffard domain?

Clearly, a negative answer to Problem 37c will solve (affirmatively) Bouvier’s
conjecture for Krull domains.

Problem 38. A one-dimensional local Mori domain R is called locally tame if for
every irreducible element u 2 R there is a constant t 2 N0 with the following
property: For every a 2 uR and every factorization v1 � : : : � vm of a (where m 2 N
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and v1; : : : ; vm are irreducibles ofR), there is a subproduct, say v1 � : : : �vl , which is a
multiple of u and which has a factorization containing u, say v1 � : : : �vl D uu2 � : : : �uk
(where k 2 N0 and u2; : : : ; uk are irreducibles of R), such that maxfk; lg � t .

Let R be a one-dimensional local Mori domain. Is R locally tame?
Denote by OR the complete integral closure of R: It is known that R is locally

tame in each of the following cases: The conductor .R W OR/ ¤ f0g [56,
Proposition 2.10.7];R is Noetherian [73, Theorem 3.3]; OR is Krull and jX. OR/j � 2

[58, Theorem 3.5 and Corollary 3.6].
Assume that R is locally tame. Then this implies the finiteness of several

arithmetical invariants, such as the catenary degree and the set of distances of R:
Also, the sets of lengths in R have a well-defined structure [55], [57], and [56,
Theorem 3.1.1].

Problem 39. Analyze and describe non-unique factorization in Int.D/, whereD is
a DVR with finite residue field.

We remark that the results obtained by Frisch [47] for Int.Z/ rely heavily on the
fact that Z has prime ideals of arbitrarily large index.

Problem 40. Let Z (respectively, Q) denote the integers (respectively, the ratio-
nals), and let F be a field. It is known that Spec.F Œx; y�/ is order-isomorphic to
Spec.ZŒy�/ if and only if F is contained in the algebraic closure of a finite field
[109, Theorem 2.10]; and in that case Spec.A/ is order-isomorphic to Spec.ZŒy�/ for
every two-dimensional domain that is finitely generated as an F -algebra. Moreover,
the poset Spec.ZŒy�/ is characterized, among posets, by five specific axioms [21,
Theorem 2.9]. For more background information, see references [21, 108–110].

Problem 40a. Find axioms characterizing the poset QŒx; y�.
See [21, Remark 2.11.3].

Problem 40b. Are Spec.QŒx; y�/ and Spec.Q.
p
2/Œx; y�/ order-isomorphic?

Problem 40c. More generally, let F and K be algebraic number fields. If A
is a two-dimensional affine domain over F , is Spec.A/ order-isomorphic to
Spec.KŒx; y�/?

This question is close to Question 2.15.1 of [110]. It is also observed in
Example 2.14 of [110] and Corollary 7 of [108] that if L is an algebraically closed
field of infinite transcendence degree over Q, then the spectra of LŒx; y; z�=.x4 C
y4 C z4 � 1/ and LŒx; y� are known to be non-isomorphic.

Problem 40d. At the other extreme, letF andK be fields, neither of them algebraic
over a finite field. If Spec.F Œx; y� and Spec.KŒx; y�/ are order-isomorphic, are F
andK necessarily isomorphic fields?

This is Question 2 of [110].

Problem 41. Let I be the integral closure of the ideal .xa; yb; zc/ in a polynomial
ring in variables x, y, z over a field.

Classify all triples .a; b; c/ for which all powers of I are integrally closed.
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For basic information on the integral closure of monomial ideals, see [81,
Chap. 1, Sect. 1.4]. The case of two variables is known by Zariski’s theory of integral
closure of ideals in a two-dimensional regular ring [81, Chap. 14], and for three
variables some work was done by Coughlin in [27].

Problem 42. For some special ideals, such as for monomial ideals, there are fast
algorithms for computing their integral closure. For computing the integral closure
of general ideals, however, the current algorithms reduce to computing the integral
closure of the Rees algebra and then reading off the graded components of the
integral closure This computes simultaneously the integral closures of all powers
of the ideal, which is doing more than necessary. This excess of work makes the
computation sometimes unwieldy.

Problem 42a. Is there a more direct algorithm for computing the integral closure
of a general ideal?

Problem 42b. In particular, can the Leonard–Pelikaan [86] and Singh–Swanson
[104] algorithms be modified for computing the integral closure of ideals?

More information and references on the topic may be found in [105, Sect. 2].

Problem 43. The following is a general form of the Lipman–Sathaye Theorem, as
found in Theorem 2.1 of [75]: Let R be a Noetherian domain with field of fractions
K . Assume that the S2-locus is open in all algebras essentially of finite type over
R. Let S be an extension algebra essentially of finite type over R such that S is
torsion-free and generically étale over R, and such that for every maximal ideal
M of S , RM\R is normal, and SM has a relatively S2-presentation over RM\R.
Let L D K ˝R S and let S be the integral closure of S in L. Assume that S is
module-finite over S , and that for every height-one prime ideal Q of S , RQ\R is
regular. Then .S WL JS=R/ � .S WL JS=R/:

The suggested problem is to find how tight is the statement of this theorem: relax
some assumption and either prove the theorem or find a counterexample for that
relaxation.

Problem 44. Let R be a ring and let I be an ideal in R. A set of Rees valuation
rings of I is a set fV1; ::; Vr g consisting of valuation rings, subject to the following
conditions:

(1) Each Vi is Noetherian and is not a field.
(2) For each i D 1; : : : ; r there exists a minimal prime ideal Pi of R such that Vi is

a ring between R=Pi and the field of fractions of R=Pi .
(3) For each natural number n, I n = \r

iD1.I nVi /\R;where I n denotes the integral
closure of I n.

(4) No set of valuation rings of cardinality smaller than r satisfies conditions
(1)–(3).

Basic information on Rees valuations of ideals may be found in [81, Chap. 10].
Ideals that have only one Rees valuation have several good properties.
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Cutkosky proved in [28] the existence of a Noetherian, two-dimensional,
complete, integrally closed local domain .R;m/ in which every m-primary ideal
has more than one Rees valuation. Give a construction of such a ring.
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Note that while this chapter and reference [54] were in proof, Problem 32a has been answered
negatively. A counter example is given in [54, Example 3.9] with a 2-dimensional Prüfer domain.
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