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Abstract The luminal-mucosal interface of the intestinal tract is the first relevant

location where microorganism-derived antigens and all other potentially immuno-

genic particles face the scrutiny of the powerful mammalian immune system. Upon

regular functioning conditions, the intestinal barrier is able to effectively prevent

most environmental and external antigens to interact openly with the numerous and

versatile elements that compose the mucosal-associated immune system. This

evolutionary super system is capable of processing an astonishing amount of

antigens and non-immunogenic particles, approximately 100 tons in one individual

lifetime, only considering food-derived components. Most important, to develop

oral tolerance and proper active immune responses needed to prevent disease and

inflammation, this giant immunogenic load has to be managed in a way that

physiological inflammatory balance is constantly preserved. Adequate functioning

of the intestinal barrier involves local and distant regulatory networks integrating

the so-called brain-gut axis. Along this complex axis both brain and gut structures

participate in the processing and execution of response signals to external and

internal changes coming from the digestive tract, using multidirectional pathways

to communicate. Dysfunction of brain-gut axis facilitates malfunctioning of the

intestinal barrier, and vice versa, increasing the risk of uncontrolled immunological

reactions that may trigger mucosal and brain low-grade inflammation, a putative

first step to the initiation of more permanent gut disorders. In this chapter, we

describe the structure, function and interactions of intestinal barrier, microbiota and

brain-gut axis in both healthy and pathological conditions.
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Abbreviations

ACTH Corticotropin

CNS Central nervous system

CRF Corticotropin-releasing-factor

DSS Dextran sulphate sodium

ENS Enteric nervous system

GALT Gut-associated lymphoid tissue

GCs Goblet cells

HNPs Human neutrophil peptides

HPA Hypothalamic pituitary-adrenal axis

IBD Inflammatory bowel disease

IBS Irritable bowel syndrome

JAMs Junctional adhesion molecules

MAPKs Mitogen-activated protein kinases

MARVEL MAL and related proteins for vesicle trafficking and membrane link

MLC Myosin light chain

MLCK Myosin light chain kinase

MUC Mucins

NGF Nerve growth factor

NLRs Nod-like receptors

NOD Nucleotide-binding oligomerization domain

PAMP Pathogen-associated molecular patterns

POFUT1 Protein O-fucosyltransferase 1

PRR Pattern recognition receptors

RELM Resistin-like molecule

TJs Tight junctions

TNBS Trinitrobenzene sulphonic acid

ZO Zonula occludens

Introduction

The survival of living organisms greatly depends on the ability of species and

individuals to constantly provide a series of complex and dynamic repository

responses to counteract internal and environmental threats. This functional equi-

librium, named homeostasis, relies upon the adequate integration of every gener-

ated response to a threat. At the gastrointestinal level, the mucosal surfaces are the

first location where immunogenic particles, environmental toxins and

microorganism-derived antigens gain access to the immune system [1]. The luminal

side of the mucosa of the ileum and jejunum is coated with hundreds of tiny finger-

like structures called villi, which in turn are composed by myriads of microvilli,

rendering a final physical contact area of about 400 m2. This enormous epithelial

surface area favours nutrient absorption and water and electrolyte transport across.

However, it also designed to select which luminal antigens should face the
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components of the mucosal-associated immune system. This selection process is

aimed at preventing the generation of inadequate pro-inflammatory signals

[2]. Mucosal processing of antigens and non-immunogenic molecules will at the

end, determine whether tolerogenic or non-tolerogenic immune responses are

raised to keep homeostasis [3].

The intestinal mucosal barrier consists of different consecutive layers, including

the intestinal flora and external mucus, the columnar epithelium and extracellular

matrix below, and the innermost lamina propria. Within the lamina propria we can
find blood and lymph vessels, a plethora of resident immune cells (plasma cells,

lymphocytes, macrophages, eosinophils, mast cells, dendritic cells, etc.), and a

significant number of intrinsic and extrinsic nerve terminals (Fig. 4.1). All of

these components may display effector and modulatory functions relevant to the

control of inflammation, absorption and secretion, transport of macromolecules and

metabolic processes [4]. Considerable evidence now supports the existence of

multidirectional communication between the components of this local regulatory

network [5, 6]. Communication is driven by the release of chemical mediators, such

as neuropeptides, neurohormones, neurotransmitters, cytokines, chemokines,

growth factors, and other regulatory molecules.

The regulation of gut physiology is also achieved through the activity of both the

enteric nervous system (ENS) and the central nervous system (CNS). ENS is an

extensive neural network, also known as the second brain, containing approxi-

mately 100 million neurons embedded in the gastrointestinal lining, similar number

to the spinal cord [7]. The ENS contains sensory neurons, inter-neurons, and motor

neurons, which primarily control motility, absorption and secretion, but also vis-

ceral sensitivity. In addition, the ENS is wired with multiple terminals from

ascending and descending CNS pathways that help to control gut function. To

understand gut physiology and pathology, it is of particular importance to consider

the role of the autonomic nervous system, and the hypothalamic pituitary-adrenal

axis (HPA) because both systems also establish a vast and complex array of

integrative and bidirectional interactions between the brain and the gut, the brain-

gut axis.

The Intestinal Barrier

The intestinal barrier has evolved to guarantee homeostasis through the execution

of basic weeping off functions, such as water secretion, to wash off harmful sub-

stances that may be present in the intestinal lumen, and by the development of a

programme, that includes active immunological surveillance. One of the first steps

to fight unwanted or harmful stimuli involves the release of mucus, defensins,

secretory-immunoglobulin A, and other chemical mediators to the lumen [8]. In

addition, the importance of maintaining epithelial permeability tight to prevent the

passage of noxious substances, was emphasized in the early 1990s [9], and reiter-

ated by many authors thereafter.
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Structure and Function of Intestinal Barrier

Mucus

The entire intestinal mucosal surface is covered by a layer of mucus gel, thicker

than 100 μm secreted by goblet cells (GCs). Mucus protects the epithelial lining

from luminal sheer forces, adhesion and invasion by microorganisms, dietary,

chemical and radiation toxins, and other antigens present in the intestinal lumen

Fig. 4.1 Intestinal barrier function. The intestinal barrier has evolved to guarantee homeostasis

through the execution of basic weeping off functions, such as water secretion and intestinal

peristaltism, and by the development of immunological surveillance. This barrier is composed by

several levels of protection aimed at preventing and selecting toxin and antigen penetration across.

The most external laters harbours mucus, enzymes, antimicrobial peptides and the intestinal

microbiota. Just below, a single-cell layer of epithelial cells, sealed by intercellular junctions,

regulates the transcellular and paracellular passage of substances. Intermingled goblet cells secrete

mucins that dissolve in water to form mucus, a major contributor to the retention of secretions

containing antibacterial peptides and digestive enzymes, and to keep epithelial hydration. The

epithelium also displays microbial recognition receptors and is able to release immune mediators.

Lamina propria leukocytes produce proteases and cytokines to modify epithelial secretory activity

and permeability range of the epithelium. M cells are found in the follicle-associated epithelium of

the Peyer’s patches and transport antigens from the luminal side to immune cells across the

epithelial barrier. IgA is produced by plasma cells, and transported through, and secreted by, the

epithelium to the luminal side. Both, the central and the enteric nervous system, interact with

the immune system, the smooth muscle and the epithelium to regulate immune responses, absorp-

tion and secretion, motility, and also visceral sensitivity. Note: IEL intraepithelial lymphocyte
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[10]. The mucus layer also contributes to the retention of mucosal secretions

containing antibacterial peptides and digestive enzymes [11, 12] and keeps epithe-

lial hydration. Mucus seems to participate in epithelial renewal, differentiation and

integrity, and relates to other biological processes [13]. More recently, mucus has

also been shown to enhance oral tolerance by imprinting dendritic cells with anti-

inflammatory properties through the assembly of a galectin-3-dectin-1-FcγRIIB
receptor complex that activated β-catenin, interfering with the expression of inflam-

matory, but not tolerogenic cytokines by dendritic cells [14].

Components of mucus include water, phospholipids, the negatively charged

mucins (MUC), which provide a chemical barrier to protect the underlying epithe-

lium, and a variety of trefoil factors and other antimicrobials such as secretory IgA

[15], cathelicidins and defensins that provide the physical and immune protection

against luminal agents [16]. Mucus secreted at the apical brush border binds the

glycocalyx to form a viscoelastic gel with hydrophobic and surfactant properties,

dependent on the presence of phospholipids at the most apical part. Hydrophobicity

helps to fight enteric bacteria and to regulate gut permeability [17].

MUC represent the most abundant component of the mucus gel. MUC are huge

glycoproteins composed of a central protein backbone rich in serine, threonine and

proline. These glycoproteins are highly glycosylated by attached oligosaccharides,

which contain blood group structures and are initiated by N-acetyl-galactosamine

that is O-linked onto serine or threonine at the protein core [18–20]. These O-linked

oligosaccharides are responsible for MUC properties. Up to 20 different MUC

genes have been identified to date (MUC1 to MUC20) [21], with site and cell-

specific expression. Several secreted mucins (MUC2, MUC5AC, MUC5B, and

MUC6) function as extracellular viscous secretions whereas others appear as

membrane-associated mucins (MUC1, MUC3 and MUC4) in the glycocalyx

[22]. MUC1–4 represent the most abundant secreted mucins in the human intestine.

The first identified human secretory mucin was MUC2 that is also the principal

secreted MUC [23], and is normally restricted to GCs [24]. In mice, it has been

shown that colonic mucus consists of two layers with similar protein composition,

being MUC2 the major structural component. The inner layer is firmly attached to

the epithelium and functions as a barrier to prevent bacterial invasion while the

outer layer is a loose matrix usually colonized by bacteria [25]. Thickness of the

inner mucus layer varies down along the intestine according to luminal concentra-

tion of bacteria, being thicker at the highly colonized colonic segment, and thinner

at the less colonized small intestine [26]. Baseline secretion of MUC is a constitu-

tive pathway where small vesicles transport MUC directly to the cell surface where

immediate and full exocytosis of their contents takes place. The release and

secretion of packaged MUC is a different pathway regulated by specific stimuli

including microbes and their products, and neuroendocrine and inflammatory/

immune mediators. Mucus production is tightly regulated by different protein

families, such as MUC and protein O-fucosyltransferase 1 (POFUT1) family

members. Dysfunction of mucus secretion can lead to the development of intestinal

inflammation as shown by the susceptibility of MUC2 KO mice to develop spon-

taneous colitis, and by a more severe intestinal response to the administration of
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dextran sulphate sodium (DSS) [27]. These mice also display impaired host resis-

tance to parasitic infection [28], and over-enhanced susceptibility to Salmonella
enterica serovar typhimurium [29]. Decreased production and alteration of the

O-glycosylation profile of MUC2 has been associated with increased inflammation

in ulcerative colitis [30, 31]. Moreover, increased susceptibility to ulcerative colitis

[32] and Crohn’s disease [33] has been linked to a rare variable number of tandem

repeat alleles of the MUC3 gene. Mice defective in intestinal POFUT1 exhibit

chronic intestinal inflammation in association with an alteration of mucus-

associated flora, goblet cell hyperplasia and hypertrophy and elevated production

of mucus [34].

Resistin-like molecule (RELM)-β is a cysteine-rich protein also present in the

mucus layer and specifically produced by intestinal GCs. RELM-β upregulates

MUC2 and M1/MUC5AC gene expression in the human colonic HT29 cell line.

Pretreatment of murine colon with RELM-β significantly attenuates trinitrobenzene
sulphonic acid (TNBS)-induced colitis [35] while RELM-β deficient mice show

increased susceptibility to T-cell-dependent TNBS-induced colitis. Therefore,

available evidence suggests that RELM-β plays an important role in colonic

inflammation [36].

Trefoil factors, a group of small cysteine-rich peptides, are also essential pro-

tective components of the mucus layer and contribute to mucosal repair, particu-

larly, the trefoil factor 3 synthesized and secreted by intestinal GCs [37, 38]. Trefoil

factor 3 deficient mice are highly susceptible to DSS, chemotherapy and radiation-

induced colitis [39, 40], and display prominent hypoxia-elicited increases in intes-

tinal permeability [41].

Epithelial Lining

The intestinal epithelium is a single polarized continuous layer of columnar cells of

only 20 μm thick that covers the intestinal surface and separates the intestinal lumen

from the internal milieu. Although it functions primarily as a physical barrier, it also

regulates the absorption of dietary nutrients, water and electrolytes. The passage of

molecules from the intestinal lumen to the lamina propria takes place mainly

through two different routes: (1) The paracellular pathway, which allows small

molecules (<600 Da) diffuse through tight junctions (TJs) located between adja-

cent intestinal epithelial cells; and, (2) The transcellular pathway, which allows the

passage of larger particles through the epithelial cells via endocytosis or exocytosis

processes [42].

The intestinal epithelium contains several stem cell-derived cellular types, such

as absorptive enterocytes, GCs, Paneth cells, enteroendocrine cells, and M cells, as

shown in panel 1 of Fig. 4.2. This epithelial population renews every 3–5 days from

pluripotential stem cells located in the intestinal crypts to ensure cellular integrity

all along the intestinal epithelium. Pluripotential stem cells migrate to the tip of the

villus where final differentiation takes place [43]. Signalling cascades such as the

wnt and the Notch pathway are involved in epithelial proliferation and differenti-

ation, essential processes to regulate homeostasis in the intestinal epithelium [44].
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Enterocytes

Enterocytes are key elements of the epithelial lining. Although, the most important

endeavour of these cells is to maintain the integrity of the intestinal physical barrier,

enterocytes reinforce barrier strength by also developing immunologic activity.

Enterocytes express innate immune receptors [45], act as non-professional antigen

presenting cells, and release several chemokines and cytokines such as fractalkine

[46] or thymic stromal lymphopoietin [47] involved in leukocyte recruitment and in

dendritic cell regulation.

Enterocytes are tightly bonded to each other through the apical junctional

complex that separates the apical membrane from the basolateral membrane. This

apical junctional complex is composed TJs, adherens junctions, and desmosomes,

Fig. 4.2 Ultrastructure of the intestinal mucosa. Transmission electron micrographs of the

intestinal epithelium and the lamina propria of the human jejunum. The intestinal mucosa is

responsible for nutrient absorption and water secretion, which require a selectively permeable

barrier. Panel 1—Intestinal epithelium. The epithelium functions primarily as a physical barrier

between the external environment and the internal milieu. It is composed by enterocytes, secretory

cells and immune cells, all supported on the basal side by a basement membrane underneath which

the lamina propria harbors blood and lymph vessels, resident immune cells and nerve terminals.

GC goblet cell, IEL intraepithelial lymphocyte, EC enterochromaffin cell, Ep epithelial cell. Panel
2—Intercellular junctions. The epithelial cells are polarized cells bound together through

specific junctions. The apical junctional complex delineates the apical and the basal regions of

the epithelial cells. It limits the uptake of microbial and food-derived antigens and prevents the

passage of cellular elements across. TJs are located at the most apical site of the epithelium

followed by the subjacent adherens junction and the desmosomes. TJ tight junction, AJ adherens
junction, D Desmosome. Panel 3—Lamina propria. Most of the immune elements of the

intestinal barrier are located in the lamina propria, where they develop innate and adaptive

responses in coordination with the nervous system and the epithelium. Eo eosinophil, NE nerve

endings, PC plasma cell, MC mast cell, L lymphocyte, Ep epithelial cell
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as shown in panel 2 of Fig. 4.2. The junctional complex limits the uptake of

microbial and food derived antigens and prevents the passage of cellular elements

across. TJs are located at the most apical site of the epithelium and composed of

intracellular and surface-membrane proteins. Intracellular proteins are zonula

occludens (ZO)-1, ZO-2 and ZO-3, as well as cingulin. Surface-membrane or

transmembrane proteins include occludin, claudins, and junctional adhesion mole-

cules (JAMs). TJs seal the intercellular space and regulate intestinal permeability.

Adherens junctions are located below TJs and mainly composed by e-cadherin,

catenin, and actin filaments. These protein complexes provide the necessary

strength to hold the cells together.

Occludin was the first TJ transmembrane protein identified. It belongs to the

TJ-associated MAL and related proteins for vesicle trafficking and membrane link

(MARVEL) proteins, and contains a MARVEL domain. The function of occludin

remains to be elucidated. On one hand, occludin deficient mice do not show

alterations in TJ assembly and permeability [48], but, on the other hand, occludin

seems to play a role in the regulation of integrity rather than in the de novo

assembly of the TJs [21]. Furthermore, in vitro observations suggest that occludin

localization to the TJ complex is regulated by phosphorylation [49]. Regulation of

occludin phosphorylation implicates several kinases including protein kinases C,

mitogen-activated protein kinases (MAPKs), Rho kinases, and the Src-Family

kinases [50]. When occludin is highly phosphorylated on serine and threonine

residues, it is selectively located at the TJ. In contrast, occludin dephosphorylation

at those residues by protein phosphatases, results in redistribution of the protein to

the cytoplasm [24].

The claudin family of transmembrane proteins consists of 24 members with a

molecular weight ranging from 20 to 27 kDa. Each member shows a specific organ

and tissue distribution. This protein family plays a central role in the regulation of

barrier function. Some claudins make up pores that allow preferential passage of

specific ions, while others reduce the transit of specific ions. The strength, size, and

ion selectivity of TJs is determined by claudins, as reflected by massive trans-

epidermal water loss and death of mice within one day of birth affecting claudin-1

deficient mice [51]. Moreover, segmental barrier properties along the crypt-villus

axis and throughout the length of the intestine do correlate with the disposition of

claudins [52, 53]. In the human intestine, both ileal and colonic mucosa express

tightening claudins-1, -3, -4, -5 and -7 [54, 55]. However, the expression of the

permeability mediator claudin-2 is restricted to the crypt, in the colon [30, 56], yet

detected in the crypt and the villus, in the small bowel [31]. Differences in the

expression and distribution of claudins may reflect adaptation to specific physio-

logical functions carried out by the different segments down the intestinal tract.

A third group of transmembrane receptors found at TJs is the family of JAMs.

JAMs have been implicated in the construction and assembly of TJs [57], and in the

regulation of intestinal permeability and inflammation [58]. JAM-A deficient mice

display increased intestinal permeability and inflammatory cytokine production,

and marked epithelial apoptosis to DSS-induced colitis [59]. More recently,

reduced intestinal JAM-A expression has been described in irritable bowel
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syndrome (IBS) patients, possibly contributing to intestinal barrier dysfunction in

these patients [60]. JAMs are also present on blood cells, such as leukocytes,

thereby contributing to the process of trans-endothelial migration [61].

The TJ transmembrane proteins, claudins, occludin, and JAMs are linked to the

actomyosin fibers of the cytoskeleton by members of the ZO family [62]. This

association to the peri-junctional actomyosin ring seems crucial for the dynamic

regulation of permeability at paracellular spaces. Interestingly, only ZO-1 and ZO-2

are relevant for claudin recruitment, TJ formation and for epithelial barrier

function [63].

Far from being static, TJs are quite mobile structures that readily adapt to

changing conditions and challenging stimuli. Regulation of intestinal permeability

involves different functional pathways. Fast changes in permeability occur usually

via myosin light chain kinase (MLCK)-mediated cytoskeleton contraction, and by

endocytosis of TJ proteins [64, 65]. In contrast, lasting permeability disturbances

involve the transcriptional modulation of TJ proteins, epithelial cell apoptosis and

ultrastructural alterations in the epithelium [66].

Phosphorylation of myosin II regulatory light chain (MLC) induces actomyosin

cytoskeleton contraction and increased TJ junction permeability. Rho GTPases

have been shown to regulate TJs through redistribution of ZO-1, and reorganization

of JAM-1 away from the TJ membrane [67]. Up-regulation of zonulin expression

increased intestinal permeability to bacterial and gliadin exposure. In fact, this

zonulin-mediated intestinal barrier defect has been advocated to play a central role

in the origin of celiac disease [68] and type 1 diabetes [69].

Secretory Cells

The intestinal epithelium also houses different types of specialized epithelial called

secretory cells that contribute to the reinforcement of the intestinal epithelial

barrier, mainly goblet cells, Paneth cells and enteroendocrine cells.

GCs are scattered through the epithelial lining. GCs that mainly secrete mucins,

but also trefoil peptides, RELM-β and Fc-γ binding protein. GC distribution varies

throughout the gastrointestinal tract, the number increasing from the duodenum to

the distal colon. The number of GCs is probably regulated by the intestinal

microbiota because germ-free mice have less and smaller GCs than regular

mice [70].

Paneth cells are located at the base of the crypts of Lieberkühn. Similar to the

other intestinal epithelial cell types, they evolve from stem cells at the bottom of the

crypt. Contrary to other cell types, Paneth cells migrate downwards, to the bottom

of the crypt, where they synthesize and secrete antimicrobial peptides and other

proteins to the intestinal lumen. Among them, lysozyme, α-defensins, TNF-α, and
secretory phospholipase A2 type IIA, contribute to maintain host-microbe homeo-

stasis and to protect stem cells from pathogens [71, 72]. Certain defects in Paneth

may be linked to the pathogenesis of Crohn’s disease [73, 74] and necrotizing

enterocolitis [75, 76].
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Gut enteroendocrine cells spread all along the intestinal epithelium where they

function as highly specialized chemoreceptors sensing changes in luminal osmo-

larity, pH and nutrient composition. Although they represent less than 1 % of the

entire gut epithelial population, enteroendocrine cells constitute the largest endo-

crine organ of the human body. Products released by enteroendocrine cells include

hormones, such as ghrelin, somatostatin, cholecystokinin, gastric inhibitory poly-

peptide, glucagon-like peptides and peptide YY, and neurotransmitters such as

serotonin [77]. Enteroendocrine cells inform the brain-gut axis mostly through

the activation of neural pathways [78].

The Intestinal Immune System

Mucosa-associated lymphoid tissue is a diverse and diffuse defence system found at

most mucosal surfaces of the body, such as the respiratory system and the eye

conjunctiva. The immune response generated by this system provides generalized

immunization at all mucosal surfaces [79]. About 70 % of whole body’s immune

cells reside within the gastrointestinal tract shaping the gut-associated lymphoid

tissue (GALT), which is conformed in two different compartments: the organized

immune inductive sites, and the diffuse effector sites.

Diffuse GALT is composed of two lymphocyte populations distributed at both

sides of the basal lamina. Intraepithelial lymphocytes are found between epithelial

cells, above the basal lamina. Lamina propria lymphocytes reside in lamina propria
along with many other types of immune cell, such as eosinophils, dendritic cells,

mast cells, macrophages or plasma cells (panel 3 of Figs. 4.2 and 4.3). The majority

of intraepithelial lymphocytes are CD8+ T cells that function as surface gatekeepers

of the intestinal barrier because the constantly monitor and respond against luminal

bacteria and other antigens. Lamina propria lymphocytes constitute a much more

heterogeneous population, approximately 50 % of which correspond to plasma

cells, 30 % to T lymphocytes, and the remaining 20 % to macrophages, dendritic

cells, mast cells and eosinophils. Resident B lymphocytes complete their matura-

tion into plasma cells, mostly producing IgA, but IgM and IgG. Activated T and

B-lymphocytes express α4β7 integrin and mucosal endothelial cells of Peyer’s

patches, mesenteric lymph nodes and lamina propria of the small and large

intestine constitutively express the mucosal addressin cell adhesion molecule-1

that interacts with α4β7 integrin to recirculate lymphocytes between the blood

and the gastrointestinal tract [80].

Inductive sites of the GALT include organized lymphoid structures in the small

intestine such as Peyer’s patches, mesenteric lymph nodes, isolated lymphoid

follicles, and lymphocytes and antigen-presenting cells. Peyer’s patches are mac-

roscopic lymphoid aggregates found at the submucosal levels in the antimesenteric

border of the intestine. The follicle-associated epithelium covering Peyer’s patches

contains M cells, another special cell type that plays a role in monitoring the gut

lumen and maintaining intestinal barrier function. M cells display several unique

properties including apical microfolds instead of microvilli, no mucus layer, and a
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reduced glycocalyx, which facilitate the capture of luminal antigens and microor-

ganisms and their transport to contact underlying immune cells [81]. Peyer’s

patches also contain antigen-presenting cells, mainly dendritic cells, but also

macrophages. These antigen-presenting cells capture luminal antigens (taken up

by M cells in the Peyer’s patch dome), to further process and present them to

immunocompetent cells in association with the major histocompatibility complex.

Innate immunity is present in both animals and plants [82]. It serves the host

defence via immediate, but non-specific, responses to a wide variety of pathogens.

The main components of innate immune response include pattern recognition

receptors (PRRs), and antimicrobial peptides.

Fig. 4.3 Resident immunocytes in the intestinal mucosa. The majority of the immune cells within

the body reside in the gastrointestinal tract (Gut-associated lymphoid tissue, GALT), and are

distributed in two different compartments: the organized inductive sites, and the diffuse effector

sites. The diffuse GALT is composed of intraepithelial lymphocytes, between the epithelial cells,

and the lamina propria lymphocytes, which reside below the basal lamina, along with other

immune cells. The figure shows intestinal micrographs (�400 magnification) processed for

H&E staining to identify mucosal eosinophils (1), and immunohistochemistry for

T-lymphocytes (2, CD3+), B-lymphocytes (3, CD20+), macrophages (4, CD68+), plasma cells

(5, CD138+), and mast cells (6, CD117+)
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PPRs are a class protein that responds to small molecular sequences consistently

found on pathogens, named pathogen-associated molecular patterns (PAMP). PRRs

include Toll-like receptors (TLRs) and Nod-like receptors (NLRs).

The TLR family consists of at least 13 transmembrane receptors containing a

large leucine-rich repeats extracellular domain that recognizes different bacterial,

viral, parasite or self-derived ligands, such as lipopolysaccharide, peptidoglycan,

muramyl dipeptide, lipoteichoic acids, and bacterial DNA. After activation upon

PAMP recognition, TLRs initiate downstream signalling cascades, leading to

transcriptional responses and to the initiation of both innate immune responses

(macrophage activation and induction of antimicrobial peptides for various cell

types) and the adaptive immune response (induction of T cell responses and

maturation of dendritic cells) [83]. In many tissues, mast cells, dendritic cells,

monocytes/macrophages and B cells express TLRs [84]. Healthy intestinal epithe-

lial cells express relatively low levels of TLRs, such as TLR-4, perhaps explaining

why lipopolysaccharide does not induce a potent inflammatory response in normal

intestine [85]. By contrast, and consistent with the idea that chronic intestinal

inflammation may be the result of uncontrolled responses to components of the

intestinal bacterial flora, the intestinal epithelium of patients with inflammatory

bowel disease (IBD) shows increased expression of TLR-4 [86]. The cellular

localization of TLRs is also influenced by the polarized epithelial cell organization.

TLR5 is expressed on the basolateral surface of intestinal epithelia only, where if

becomes stimulated by luminal flagellin exposure when disruption of the epithelial

barrier. Therefore, its localization prevents inappropriate stimulation by flagellin,

but allows recognition of invasive pathogens [87]. Similarly, TLR9 activation

through apical and basolateral surface domains induces distinct transcriptional

responses. Whereas basolateral TLR9 strongly stimulates proinflammatory chemo-

kine secretion, through NF-kappaB activation, apical TLR9 stimulation invokes a

unique response in which ubiquitinated IkappaB accumulates in the cytoplasm

preventing NF-kappaB activation conferring mucosal tolerance towards microbial

exposure [88].

NLR constitutes a large family of 23 intracellular PRRs, being nucleotide-

binding oligomerization domain (NOD)1, NOD2 and NALP3 the most extensively

described. NOD1 and NOD2 recognize intracellular bacterial cell products, and

NALP3 responds to multiple stimuli to form a multi-protein complex termed the

NALP3 inflammasome, which promotes the release of the IL-1 family of cytokines.

Most NLRs share a similar structure consisting of a centrally located NOD, a

C-terminal leucine-rich repeat that detects PAMPs, and a variable N-terminal

domain that is critical for downstream signalling through the recruitment of adap-

tors or effector molecules [89]. NOD1 recognizes γ-D-glutamyl-meso-
diaminopimelic acid, which is found in the peptidoglycan structures of all gram-

negative as well as in several gram-positive bacteria [90]. In contrast, NOD2

recognizes muramyl dipeptide, which is found in nearly all gram-positive and

gram-negative organisms [91]. Upon ligand recognition, NOD1 and NOD2 induce

the activation of NF-kappaB and MAPKs pathways leading to the activation of both

innate and adaptive immune responses. In contrast, other NLRs such as Ipaf and
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cryopyrin respond to microbial components through the assembly of multiprotein

complexes termed “inflammasomes” that promote caspase-1 activation to generate

the proinflammatory cytokines IL-1β and IL-18 [92]. NOD1 is expressed by

intestinal epithelial cells [93] while NOD2 expression is predominantly found in

monocytes and Paneth cells [73]. Both NOD1 and NOD2 have been shown to

modulate inflammation and mediate efficient clearance of bacteria from the muco-

sal tissue during Salmonella colitis [94]. In addition, NOD2-deficient mice display

an increased load of commensal resident bacteria, and a diminished ability to

prevent intestinal colonization by pathogenic bacteria [95]. NOD-2 mutations

have been identified in Crohn’s disease patients and could be related to an impaired

release of antimicrobial peptides from Paneth cells [96].

Antimicrobial peptides are endogenous antibiotics that are constitutively

expressed in intestinal epithelial cells, yet may be also inducible in immune cells

and Paneth cells [97]. They include compounds such as lactoferrin, hepcidin,

bactericidal/permeability increasing protein, lysozyme and overall, defensins and

cathelicidins.

Defensins are a family of small cationic peptides (29–45 amino acids) that

exhibit a wide and potent antimicrobial activity spectrum against gram-negative,

and gram-positive bacteria, fungal and yeast, parasites, viruses, and even tumor

cells [98]. Defensins have been identified in both prokaryotes and eukaryotes.

Although structurally different, most defensins display cationic and amphiphilic

properties which confer them the capacity to permeabilize the bacterial cell mem-

brane. In mammals, these peptides are expressed in mucosal epithelial cells and

phagocytes, but also are released into the intestinal lumen, several grams daily, by

Paneth cells [99]. Defensins act as effector and regulatory molecules of the innate

immune response. In addition, defensins also enhance adaptive response acting on

phagocytic cells and mast cells to induce the release of inflammatory mediators and

to regulate the complement system. Defensins also interact with dendritic cells and

T cells to increase antigen-specific immune response [100].

These peptides are classified as α and β-defensins according to their disulphide

bond pairing pattern. The human α-defensins 1–4, conventionally referred as to

neutrophil defensin (human neutrophil peptide, HNP), although defensins HNP1-3

are also expressed in epithelial cells of inflammed mucosa [101]. In contrast, human

α-defensin 5 and 6 (HD5 and HD6) are only expressed in Paneth cells of the small

intestine [102]. HD5 has been shown to induce IL-8 expression on intestinal

epithelial cells [103], and to protect mice from DSS colitis and Salmonella infection
[104]. More recently, HD6 has been shown to form fibrils and nanonets that

surround and entangle bacteria to protect the small intestine against invasion by

diverse enteric pathogens [105].

Human β-defensin-1 is constitutively expressed in the small intestine and the

colon. In contrast, Human β-defensins-2-4 expression is inducible [106] in inflam-

matory conditions such as IBD [107, 108] or infection by enteroinvasive

bacteria [109].

The other major class of antimicrobial peptides is the cathelicidin group. In

mammals, about 35 members have been identified, but only one in humans:
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hCAP18/LL37 [110]. Although regarded as neutrophil specific, hCAP18/LL37is

also expressed in other leukocytes, keratinocytes and epithelial cells of the respi-

ratory, genitourinary and gastrointestinal tract [111], and in human breast

milk [112].

Expression of hCAP18/LL37 in human colonic epithelial cells has been related

to cell differentiation [113]. Infection of intestinal epithelial cells by Shigella spp.

inhibits the expression of hCAP18/LL37 [114], while bacterial components such as

sodium butyrate [115] or TLR-ligands such as bacterial DNA [116] induce its

expression.

Acquired immunity is restricted to vertebrates and constitutes a second line of

defence against pathogens. It is driven by B and T lymphocytes through specific

receptors and confers protection against re-exposure to the same antigen. Antigen

binding to these receptors results in clonal expansion of these cells and the initiation

of a directed immune response. Functionally speaking, within the adaptive immu-

nity, we can distinguish inductive and effector compartments. Antigen presentation

and naive T and B-lymphocytes activation occurs in the inductive compartment. In

the effector compartment sensitized cells against different antigens extravasate and

differentiate to carry out the destruction of pathogens. IgA secretion has been

shown to be regulated through TLR-signalling [117] but also by changes in the

composition of intestinal Microbiota [118].

Intestinal Barrier Dysfunction

Stress, Hormones and Neurotransmitters

Stress represents a threat to the internal homeostasis. In response to stress, a

coordinated response is initiated to maintain stability through the autonomic,

endocrine, and immune systems. The main systems activated during the stress

response are the sympatho-adrenomedullary, a component of the sympathetic

division of the autonomic nervous system, and the HPA axis. The autonomic

nervous system provides, through its sympathetic and parasympathetic arms, the

fastest response to stressor exposure, leading to rapid alterations in physiological

state through neural innervation of end organs. Stress activation of the HPA axis

stimulates the parvocellular neurons in the paraventricular nucleus of the hypo-

thalamus to secrete corticotropin-releasing-factor (CRF), which in turn travels to

the anterior pituitary to promote the synthesis of corticotropin (ACTH)

[119]. ACTH, when released into the systemic circulation, activates the adrenal

cortex to induce cortisol and corticosterone secretion that circulate through the

bloodstream to reach every tissue [120]. Adaptation to stress through the activation

of the sympatho-adrenomedullary system and the HPA axis to maintain homeosta-

sis is called “allostasis”. However, excessive stress exposure impairs this adaptive

response, eventually predisposing these subjects to the development of disease or to
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exacerbation of previous existing ones [121], specially in stress-sensitive disorders,

like IBS.

At the experimental level, different type of stresses, acute and chronic, physical

or psychological, have been shown to influence properties of the intestinal barrier

function, including as ion and water secretion, intestinal permeability, mucus

secretion, and also intestinal flora. Ion and water secretion allows the intestine to

wash away noxious substances present in the intestinal lumen, preventing adhesion

to the mucosal surfaces and penetration to the lamina propria. The jejunum of rats

submitted to restraint stress or cold restraint stress was found to show an increase its

baseline short-circuit current, indicative of enhanced anion secretion [122]. Later, it

was observed that peripheral CRF and repetitive exposure to water avoidance stress

reproduced stress-induced rat jejunal and colonic epithelial barrier dysfunction via

cholinergic and adrenergic nerves and mast cells [123, 124]. More recently, it has

been shown that chronic psychosocial stress also activates mucosal mast cells and

increases baseline short-circuit current in both the jejunum and the colon [125]. In

humans, studies using jejunal segmental perfusion techniques reveal that acute

physical or psychological stress either reduce net water absorption or increase

secretion in healthy subjects and in patients with food allergy [126, 127] through

the parasympathetic nervous system and mast cell activation [128]. More recently,

we have extended these observations to show that in healthy female volunteers that

intestinal water secretion during cold pain stress was significantly reduced in those

with moderate background stress compared to those with low stress [129]. This

observation could indicate a loss of regulatory mechanisms in subjects suffering

from continuous life stress.

Both paracellular and transcellular permeability to small and large molecules

increased in response to acute and chronic stress in the rodent jejunum and colon

[130–133]. Several mechanisms, including mast cells, CRF [134], MLCK, and

cytokines like interferon gamma, and interleukin-4 [135] have been implicated.

In humans, it is known that surgery, trauma, and gastrointestinal infections [136]

increase intestinal permeability. CRF has been shown to enhance transcellular

uptake of macromolecules in human colonic mucosa via CRF-R1 and CRF-R2

receptors, located on subepithelial mast cells [137]. Unpublished observations from

our group indicate that intravenous CRF increased intestinal permeability in healthy

subjects and in IBS patients [138]. Acute psychological stress also increases small

intestinal permeability in humans and peripheral CRF reproduces the effect of

stress and mast cell stabilization blocks the effect of both stress and CRF,

suggesting the involvement of mast cells [139]. Cold pain stress also increased

intestinal permeability in female healthy subjects, although this response was larger

in women with moderate background stress. Increased intestinal permeability has

been found in diarrhoea prone IBS patients [140]. These findings provide new

insight into the complex interplay between the central nervous system and gastro-

intestinal function in man.

Acute stress causes mucin release in the rat colon, along with enhanced secretion

of rat mast cell protease II and prostaglandin 2. These changes were reproduced by

intravenous or intracerebral injection of CRF in non-stressed rats, and were
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inhibited by the administration of a CRF antagonist or a mast cell stabilizer

[141]. In addition, stress-induced release of mucin was abolished in mast-cell

deficient mice, highlighting a key role of mast cells in stress-mediated mucin

release [142]. In contrast, rats submitted to chronic stress displayed mucus deple-

tion along with increased bacterial adhesion and penetration into enterocytes [143].

Stress can also induce microbiological changes in the intestinal flora. Maternal

separation in infant rhesus monkeys decreased faecal bacteria, especially

Lactobacilli, and increased their susceptibility to opportunistic bacterial infections

[144]. Similarly, prenatal stress reduced the overall numbers of Bifidobacteria and

Lactobacilli in the newborn infants [145]. Interestingly probiotic treatment ame-

liorates stress-induced changes in the gastrointestinal tract [146] and attenuates the

observed Lactobacilli reduction in maternally-deprived rat pups [147]. In addition

to these microbiological changes, dexamethasone administration in rats enhanced

bacterial adherence to the mucosa, decreased secretory-immunoglobulin A secre-

tion, and increased intestinal permeability [148]. More recently, Söderholm

et al. showed that chronic psychological stress in rats, leads to an increased antigen

and bacterial uptake in follicle associated epithelium from Peyer’s patches [149] as

well as in the villous ileal and colonic epithelium. Emotional stress during take-off

in cosmonauts induced changes in faecal Bifidobacteria and Lactobacillus, as well
as an increase in Escherichia coli, whereas a substantial increase in Enterobacteria
and Clostridia was found after the flight [150]. These stress-induced changes in the
faecal flora have been related to catecholamine release into the intestinal lumen

and/or into the systemic circulation, as the addition of various catecholamines to

cultures of gram negative bacteria resulted in dramatic increases in growth of

E. coli, Yersinia enterocolitica and Pseudomonas aeruginosa [151].

Mast cells are known to modulate stress-mediated responses of the epithelial

barrier function, to orchestrate the mucosal immune function and to participate in

the defence against bacteria [152, 153]. To exert these functions, enteric mast cells

are strategically located within the gastrointestinal tract, developing an optimal

sensory and effector interaction within the local regulatory neuroendocrine net-

works. Upon activation, mast cells act as effector cells, through the selective

(piecemeal degranulation) (Fig. 4.4) or massive release (anaphylactic degranula-

tion) of preformed or newly produced biological mediators. More relevant to stress-

mediated inflammation is their ability to communicate, bidirectionally, with both

the enteric, autonomic and central nervous systems. Anatomical contacts between

mast cells and enteric nerve fibres have been demonstrated in the human gastroin-

testinal mucosa and these contacts increase, when inflammation is present

[154]. An increase in the nerve-to-mast cell proximity in the colonic mucosa of

IBS patients has been positively correlated with the severity and frequency of

abdominal pain [155]. This mast cell-enteric nerve interaction provides a physical

substrate for bidirectional communication between the CNS and the gut, by which

stress might influence gastrointestinal physiology. This is reflected in vivo by the

release of mast cell products into the lumen of the human small intestine after cold

stress, which is accompanied by increased epithelial secretion [128]. Mast cell

mediators released after degranulation can sensitize mesenteric afferents and
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nociceptive receptors [156]. Among the potential mast cell mediators involved,

both histamine and serotonin induce intestinal secretion of water, electrolytes and

mucus. In addition, mast cells from IBS patients release more histamine and

tryptase than intestinal mast cells from normal subjects [157] a fact that has been

linked to the generation of visceral hypersensitivity, through the activation of

proteinase-activated receptors type 2. These receptors can modulate enteric neuro-

transmission, secretion, motility, epithelial permeability, and visceral sensitivity,

and are also known to regulate intestinal inflammation [158]. However, altered

expression of histamine H1 and H2 receptor subtypes has recently been reported in

mucosal biopsies from distal gut of IBS patients, suggesting that these receptors

could also play a role in these processes [159].

CRF and related peptides are the most important neuroendocrine factors medi-

ating the effects of stress, both at the central and peripheral level. CRF urocortin

(Ucn) 1, Ucn 2 and Ucn 3 exert their effects after binding to G protein-coupled

receptor subtypes, CRF-R1 and CRF-R2, signalling through cAMP [160]. After

physical or psychological stress, neural or immune release of CRF and urocortins

mediate autonomic, hormonal, and behavioural responses to stress and stimulate the

ENS to modulate gastrointestinal motility and secretion [161–163]. Increased CRF

and urocortin expression has been demonstrated in the colonic mucosa of IBD

patients [164, 165].

Vasoactive intestinal peptide is also involved in the regulation of chloride

secretion, mucin release, paracellular permeability and epithelial cell proliferation

Fig. 4.4 Intestinal mast cells. Enteric mast cells are known to modulate the epithelial barrier

function, to orchestrate the mucosal immunity and to participate in the defence against bacteria.

They are strategically located within the gastrointestinal tract, developing sensory and effector

interactions within the local regulatory neuroendocrine networks. Upon activation, mast cells act

as effector cells, through the selective (piecemeal degranulation) or massive release (anaphylactic

degranulation) of preformed or newly produced mediators. The figure shows transmission electron

micrographs of ultrastructural characteristics of mucosal mast cells: a resting mast cell in health

(H ), with granules filled (white arrows) and no signs of degranulation; piecemeal degranulation in

a mast cell from a patient with irritable bowel syndrome (IBS), identified by partial or total

emptiness of granules content (black arrows) and intact granules (white arrow); and anaphylactic

degranulation in a mast cell from a food allergy patient (FA), identified by fusion of granule

membranes devoid of content (black arrow). Barr indicates 2 μm
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[166, 167]. Psychological stress increases vasoactive intestinal peptide levels in the

small intestine of mice [168] and vasoactive intestinal peptide has been implicated

in the regulation of the intestinal barrier function, through its direct effect on tight

junction-associated protein, ZO-1, in epithelial cells [169].

Substance P participates in gut inflammation by interacting mainly with the

neurokinin-1 receptor, expressed on nerves, epithelial, endothelial and smooth

muscle cells, and immune cells, such as mast cells, macrophages, and T cells

[170]. This neuropeptide has been found to stimulate macrophage and eosinophil

secretion of pro-inflammatory cytokines, to increase NK cell activity and migration,

and to activate the release of chemokines from leukocytes. It also induces the

release of vasoactive mediators from mast cells, contributing to chloride secretion,

intestinal permeability, vascular leakiness and oedema at sites of inflammation,

modulating diarrhoea, inflammation, and motility [171]. Substance P mediates

stress-induced CRF expression in mice eosinophils, and eosinophil-derived CRF

is responsible for mast cell activation and consequently, epithelial barrier

dysfunction [172].

Nerve growth factor (NGF) has been involved in the development of stress-

induced barrier dysfunction [173] and hyperalgesia during inflammation [174,

175]. These effects seem to be mediated by CRF and mast cells [176, 177]. Maternal

deprivation has been shown to induce hyperalgesia to rectal distension and to

enhance colon permeability in association with elevated NGF expression [173]. A

subsequent study from the same group showed that CRF, acting through its receptor

CRF-R1, stimulated NGF release from mast cells, which in turn increased gut

paracellular permeability [178]. More recently, norepinephrine has been shown to

induce visceral sensitivity to colorectal distension by increasing the expression of

NGF in the rat colon wall [179]. These findings support the importance of NGF in

stress-induced visceral hypersensitivity, but also in stress-induced barrier

dysfunction.

Sex steroids also play a role in modulating intestinal barrier, although conflicting

results have been described. Estrogen can bind to two different receptors named

estrogen receptor-α and β. Estrogen receptor-α mediates estrogen signalling in the

development of secondary sex characteristics, and the regulation of the menstrual

cycle and sperm maturation [180]. In contrast, estrogen receptor-β is mainly

expressed in epithelial cells and is the most abundant estrogen receptor in the

colon [181]. Both progesterone and estradiol have been shown to reduce chloride

secretion in intestinal epithelial cells [182, 183], whereas estradiol has also been

found to reinforce epithelial permeability [184], and to up-regulate JAM-A and

occludin expression [185].

Other hormones have been involved in the regulation of intestinal barrier

function (Table 4.1).
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Infections

Intestinal pathogens have developed specific strategies to gain access to the lamina
propria. Strategies include direct TJ disruption, the production of toxins that induce
fluid and electrolyte secretion, and the activation of the inflammatory cascade

[186]. Vibrio cholerae can directly alter TJs through its cytotoxin hemagglutinin

protease, a metalloproteinase that disrupts occludin-ZO-1 interactions leading to TJ

and cytoskeleton anchorage destabilization [187]. In addition, other toxins have

been involved in TJ disruption by V. cholerae such as the RTX toxin, that crosslinks

actin inducing cell rounding and increased permeability [188], or the ZO toxin, that

fragments ZO-1 and occludin and disrupts the actin cytoskeleton [189, 190]. Clos-
tridium difficile infection produces two distinct exotoxins, Toxin A and B (TcdA

and TcdB), that through RhoA GTPases inactivation cause actin filament disaggre-

gation and cell rounding, resulting in increased paracellular permeability [191,

192]. Recent findings suggest that toxin A could even disrupt directly TJ proteins

[193]. Clostridium perfringens enterotoxin utilizes claudin-3 and 4 as receptors

[194] to bind the enterocyte surface where it forms small protein complexes in the

plasma membrane that interact with other proteins forming a large complex, that at

the end triggers massive permeability changes [195]. Enteropathogenic E. coli
infection directly disrupts TJ through occludin dephosphorylation and dissociation

from TJs to the cytoplasma [196] and MLC phosphorylation [197] enhancing

intestinal permeability.

Intestinal Microbiota

Intestinal microbiota has been shown to influence intestinal barrier function and the

brain-gut axis [198, 199]. Intestinal microflora displays several important functions

to maintain gut homeostasis, such as nutrient digestion, vitamin and hormone

production and most importantly, protection from microbial colonization, achieved

through competition for intestinal nutrients and for attachment sites

[200]. Probiotics are live microorganisms which, when consumed in adequate

amounts, confer a health benefit on the host. Increasing evidence suggests that

probiotics implement intestinal epithelial homeostasis and enhance barrier tightness

and integrity. In contrast with pathogens, probiotics have been shown to increase

Table 4.1 Hormones and intestinal barrier

Hormone Function References

Glucagon-like peptide 2 Decreases intestinal permeability [292, 293]

Growth hormone Decreases intestinal permeability [294, 295]

Insulin-like growth factor 1 Decreases intestinal permeability [296, 297]

Ghrelin Decreases intestinal permeability [298]

KdPT Decreases intestinal permeability [299]

KdPT a tripeptide derivative of the C-terminus of α-melanocyte-stimulating hormone
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occludin expression [201], and to enhance ZO-2 expression in parallel to its

redistribution towards the cell boundaries via silencing of PKCζ [202] thereby

leading to TJ stabilization and the restoration of the epithelial barrier. Specific

Lactobacilus salivarus strains prevent hydrogen peroxide-induced reduction in

transepithelial resistance when added to Caco-2 cell monolayers [203]. Similarly,

Lactobacillus rhamnosus GG improves intestinal barrier function in the immature

murine gut through the induction of claudin 3 expression [204], the regulation of

apoptosis and the promotion of cytoprotective responses [205]. Interestingly,

probiotics have also demonstrated beneficial effects in other tissues such as the

skin barrier [206] or the respiratory tract [207, 208].

There is a significant body of evidence indicating that probiotics can also prevent

intestinal barrier damage in conditions such as IBD or experimental stress. In rats,

DSS-induced colitis was ameliorated by Lactobacillus reuteri decreasing the bac-

terial translocation from the intestine to mesenteric lymph nodes [209]. E. coli
Nissle 1917 has been shown to confer protection against murine DSS colitis-

associated increase in mucosal permeability through up-regulation of ZO-1 expres-

sion [210]. Moreover, a probiotic mixture of Lactobacillus acidophilus,
Bifidobacterium lactis, Lactobacillus plantarum and Bifidobacterium breve helped
to maintain the integrity of colonic mucosal barrier in the DSS model by down-

regulating macrophage nitric oxide production and by enhancing mucus production

[211]. In this model, the administration of a probiotic mixture prevented not only

the decrease in TJ proteins expression, but also the increase of epithelial apoptotic

ratio induced by acute colitis [212]. Furthermore, in patients with severe pouchitis,

probiotics were able to restore the mucosal barrier, as they decreased E. coli K12
passage through the intestinal epithelium in Ussing chambers [213].

Probiotics also play a role in stress-induced intestinal damage and psychiatric

comorbidity. Lactobacillus farciminis has been shown to suppress stress-induced

hyperpermeability and endotoxemia, and to prevent HPA axis response and

neuroinflammation in rats submitted to partial restraint stress [214]. Probiotic

administration to mice submitted to food and mobility restriction increased IgA

producing cells, CD4+ cells in the lamina propria of the small intestine, and

secretory IgA in the lumen and also reduced the levels of IFN-γ
[215]. Bifidobacterium lactis CNCM I-2494 has been shown to suppress gut

hypersensitivity and colonic barrier disruption induced by partial restraint stress

in rats [216, 217]. In the last years, attention has been also pointed to the potential

role of microbiota in the pathophysiology of psychiatric disorders such as depres-

sion and anxiety [218] and neurodevelopmental disorders such as autism. Interest-

ingly, treatment with the human commensal Bacteroides fragilis restores gut

permeability, alters microbial composition, and ameliorates defects in communi-

cative, stereotypic, anxiety-like and sensorimotor behaviors in a mouse model of

the autism spectrum disorder [219]. Since psychiatric comorbidities are highly

common in functional gastrointestinal disorders, the emerging role of microbiota

and probiotics in the regulation of intestinal and brain barrier function and its

implication in behavioral changes in the host certainly will boost investigations in

this field in the years ahead.
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Inflammatory Mediators

Several inflammatory mediators have been involved in intestinal barrier regulation.

In vitro experiments with epithelial cell monolayers demonstrated that interferon-γ
and TNF-α induce epithelial barrier dysfunction through MLCK up-regulation and

MLC phosphorylation [220, 221], although they can also disrupt intestinal perme-

ability through down-regulation of occludin transcription [222] and up-regulation

of the channel-forming TJ protein claudin-2 expression. In addition, TNF-α but also

IL-1β have been shown to inhibit electrogenic sodium absorption in the rat distal

colon [223], and mice injected with TNF-α present diarrhoea as a consequence of

Na+/H+ exchange inhibition [224].

Similarly, IL-13 and IL-4 increased paracellular permeability in a dose- and

time-dependent fashion and IL-4, but not IL-13, stimulated chloride secretion in

T84 cells [225] through a PI3K pathway [226]. In contrast, IL-10 has been identi-

fied as a protector cytokine in barrier function as the addition of this cytokine to T84

cells prevents interferon-γ-induced disruption of T84 monolayer barrier integrity

and limits chloride secretion [227]. Moreover, IL-10 deficient mice display

increased intestinal permeability [228] and most importantly, develop spontaneous

colitis [229], suggesting that increased permeability predisposes to intestinal

inflammation.

Although, beyond the limits of this chapter. It is to know that many other

cytokines have been involved in barrier function such as IL-17A, IL-17F, IL-22,

and IL-26, interferon-α, interferon-β, transforming growth factor-α, and -β [230,

231].

Nutritional Factors

Some dietary compounds are able to induce intestinal barrier dysfunction in

susceptible individuals such as in celiac disease and food allergy. The gliadin

fraction of wheat gluten is the environmental triggering of celiac disease. In

genetically predisposed subjects gluten exposure may lead to increased intestinal

permeability and inflammation. Recent evidence has shown that the increase in

intestinal permeability occurs through the activation of the zonulin pathway in a

MyD88-dependent fashion [232]. The protein zonulin is the target of the Zot toxin

of the V. cholerae and has been show to play a pivotal role in TJ regulation in

different autoimmune disorders such as type 1 diabetes and celiac disease

[233]. Food allergies are adverse reactions against food antigens that are IgE and

mast cell mediated. Altered intestinal permeability has also been involved in the

pathophysiology of food allergy, as these patients display an enhancement of

intestinal permeability even in the absence of food allergens [234]. Moreover,

patients under tacrolimus treatment have been shown to develop new-onset food

allergies that could be related to tacrolimus-induced increase in intestinal

permeability [235].
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In contrast with these observations, several diet products such as glutamine or

butyrate have been shown to exert a protective effect on the intestinal barrier.

Butyrate, a short chain fatty acid produced by intestinal microbial fermentation of

dietary fibres, maintains intestinal barrier function through an increase in mucus

production [236] and an enhancement in TJ protein expression [237]. Glutamine

has also been shown to protect intestinal barrier function through the regulation of

TJ proteins such as claudin-1, and occludin [238].

Drugs and Toxins

Ethanol has been shown to promote separation of ZO-1 proteins in Caco-2 mono-

layers and disassembly and displacement of perijunctional actin and myosin fila-

ments from the perijunctional areas and MLCK activation [239]. Recent findings

point to one of its metabolites, acetaldehyde, as the main toxic product for intestinal

barrier because it raises tyrosine phosphorylation of ZO-1, e-cadherin, and

β-catenin [240]. Further investigations revealed that the deleterious effects of

ethanol require the presence of resident microflora, to oxidize ethanol into acetal-

dehyde in situ, and downstream mast cell activation [241], and that the ethanol-

mediated increase in intestinal permeability is modulated through iNOS-mediated

activation of RhoA [242] and IL-22 [243].

NSAIDs can increase intestinal permeability. Several factors play a role in

NSAIDs-induced intestinal barrier dysfunction. In vitro experiments with gastric

epithelial monolayers showed that barrier dysfunction was associated with

decreased expression of claudin 7 and involved phosphorylation of p38 MAPK

[244]. NSAIDs also affect intestinal barrier through inhibition of intestinal epithe-

lial restitution by decreasing calpain activity and membrane-associated expression

of calpain-2 [245], and also through the increase of intestinal NO synthase [246].

Other drugs causing intestinal barrier dysfunction appear in Table 4.2. It is of

particular interest the development of new drugs, such as larazotide, that may

decrease intestinal permeability in celiac disease by acting on TJs.

Other Disorders Associated with Barrier Dysfunction

Many other conditions such as chronic kidney disease [247], type 1 diabetes [248],

primary biliary cirrhosis and primary sclerosing cholangitis [249], liver cirrhosis

[250], alcoholic liver disease [251], autoimmune thyroiditis [252] and IgA nephrop-

athy [253] have been associated with TJ dysfunction. In addition, some life

threatening conditions have been related to intestinal barrier dysfunction and

translocation of bacteria or/and endotoxin from gastrointestinal tract. In this line,

hemorrhagic shock has been associated with increased intestinal permeability and

bacterial translocation [254] through mucus damage and the generation of free

radical species [255]. Estrogens exert a protective role against hemorrhagic shock-

induced gut and lung injury by the activation of estrogen receptor-α, β or both [256]
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receptors. Similarly, gut inflammation and loss of gut barrier function has been

related to splachnic ischemia-reperfusion through HIF-1 activation [257]. Multiple

injured patients also show an increased intestinal permeability that correlates with

IL-6 levels [258]. Severe burn injury also results in the loss of intestinal barrier

function involving MLCK-dependent MLC phosphorylation signalling pathway

[259] and p38 MAPK activation [260] in a TLR-4-dependent process [261].

Intestinal Barrier and Disorders of the Brain-Gut Axis

The pathophysiology of several gastrointestinal disorders involves intestinal barrier

dysfunction and dysregulation of brain-gut interactions, particularly functional

gastrointestinal disorders including IBS and functional dyspepsia. In recent years,

due to new imaging techniques, such as positron emission tomography, it has been

possible to characterize the role of the CNS in modulating gut motility and visceral

pain in patients with functional gastrointestinal diseases. There is significant over-

lap between the brain regions responsible for modulating visceral sensitivity and

regions involved in emotion processing in these patients. IBS patients display a

higher activation of the anterior cingulate cortex in response to rectal distension

[262] that correlates with the presence of psychosocial disorders when compared to

healthy subjects [263].

At the peripheral level, mucosal inflammation, increased intestinal permeability

and visceral hypersensitivity are findings associated with clinical manifestations of

IBS. Mast cells play a key role in IBS pathophysiology because they modulate

intestinal permeability, and target visceral afferents involved in abdominal pain

[155]. Stress has been associated with the development, exacerbation and perpet-

uation of IBS through the brain-gut-axis. Early life stress plays a major role in the

vulnerability of individuals to develop IBS in adult life [264–266]. Post-traumatic

stress syndrome or sexual abuse are also important risk factors in the development

of IBS and functional gastrointestinal disorders [267] and both acute psychological

Table 4.2 Drugs and intestinal barrier

Drug Effect on permeability References

Ethanol Increase [239, 241]

NSAIDs Increase [244, 245]

Methotrexate Increase [300]

Corticosteroids Increase [301]

Omeprazole Increase [302]

Cyclophosphamide Increase [303]

Tacrolimus Increase [304, 305]

Vitamin D Decrease [306]

Larazotide/AT1001 Decrease [307–310]

Anti-TNF monoclonal antibodies Decrease [311]

Heparin Decrease [312]
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and physical stress have been associated with enhancement of visceral sensitivity

[268] and small-intestine motility in IBS [269].

Functional dyspepsia is characterized by postprandial fullness and early satiation

or by epigastric pain or burning in the absence of an organic cause Functional

dyspepsia has been show to share some of the pathophysiological features of IBS.

Particularly, patients with functional dyspepsia display low-grade inflammation in

the duodenal mucosa, characterized by an increased infiltration of mucosal mast

cells and eosinophils, and increased duodenal permeability [270]. Acute gastroen-

teritis has been shown to be a risk factor for functional dyspepsia development

[271], as well as the presence of psychosocial comorbidities such as anxiety and

depression [272], and life stress [273].

Stress, acting through the brain-gut axis, also modulates intestinal inflammatory

conditions such as IBD. Social Gibbon monkeys submitted to social upheaval

develop spontaneous colon inflammation [274]. Intracolonic infusion of TNBS

induced a significantly higher inflammatory reaction in maternally deprived rats

than in control animals [275]. Collins et al. [276] found that rats recovering from

TNBS-induced colitis and submitted to mild restraint stress displayed a significant

increase in myeloperoxidase activity. Moreover, overt inflammation was induced

when animals were exposed to stress in combination with a small dose of TNBS,

suggesting an additive effect [277]. In keeping with these findings, a significant

association between stress and relapse in IBD has been reported, especially in

patients with ulcerative colitis [278, 279]. Although the mechanism underlying

the association between stress and IBD remains unclear, disturbances of brain-gut

axis, peripheral neuroendocrine-immune interactions and altered intestinal barrier

function [280–284] have been demonstrated in IBD patients [285].

Finally, a heterogeneous group of conditions associated with chronic manifes-

tations affecting the CNS and the gut may possibly reflect the existence of primary

or secondary alterations of brain-gut axis, intestinal microbiota and barrier function.

This is the case of diabetes and the metabolic syndrome [286], liver encephalopathy

[287], neuropsychiatric disorders [288], autism [289], chronic fatigue [290] or

fibromyalgia [291], although the ultimate pathophysiological mechanisms are not

well known.
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296. Lorenzo-Zúñiga V, Rodrı́guez-Ortigosa CM, Bartolı́ R, Martı́nez-Chantar ML, Martı́nez-

Peralta L, Pardo A, Ojanguren I, Quiroga J, Planas R, Prieto J (2006) Insulin-like growth

factor I improves intestinal barrier function in cirrhotic rats. Gut 55(9):1306–1312

297. Dong CX, Zhao W, Solomon C, Rowland KJ, Ackerley C, Robine S, Holzenberger M,

Gonska T, Brubaker PL (2014) The intestinal epithelial insulin-like growth factor-1 receptor

links glucagon-like peptide-2 action to gut barrier function. Endocrinology 155:370–379

(Epub 2013 Nov 21)

298. Bansal V, Ryu SY, Blow C, Costantini T, Loomis W, Eliceiri B, Baird A, Wolf P, Coimbra R

(2010) The hormone ghrelin prevents traumatic brain injury induced intestinal dysfunction. J

Neurotrauma 27(12):2255–2260
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