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1  Introduction

The field of molecular imaging finds its roots in nuclear medicine, which since its 
inception had a major focus on task-based optimization of image quality, and on in 
vivo quantitative assessment of metabolic and physiological parameters [1]. This 
standpoint reflects the limited spatial resolution and high noise characteristics of 
SPECT and PET compared to high resolution structural imaging modalities (CT 
and MRI), which provide exquisite anatomical details. The disparities between per-
formance characteristics of currently available scanners and their potential degrada-
tion with time can be delicate and tricky to put into evidence through qualitative 
visual interpretation. This has motivated the development of objective and repro-
ducible metrics to observe and adjust changes in system performance, for intercom-
parison studies as well as for quality assurance and quality control tasks. The use of 
molecular imaging in the assessment of metabolic and physiological parameters 
linked to specific diseases further motivated quantitative molecular imaging.

The quantitative potential of molecular imaging made it possible to measure in 
vivo different physiological parameters including but not limited to organ function, 
tissue perfusion, tracer biodistribution and kinetics, and many other physiological 
parameters that necessitate accurate quantification. Quantitative analysis provides a 
direct link between the time-varying activity concentration in organs/tissues and 
relevant quantitative parameters representing biological processes taking place in 
the same organs/tissues [2].

The rate of specific tracer uptake in a tissue, organ or organ system depends on 
many aspects including its rate of delivery, local biochemical reactions, physical 
half-life and biological clearance. Quantitative molecular imaging using  SPECT/
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PET considers all these factors to noninvasively provide a numerical estimate of 
discrete physiological characteristics of tissues or organs. Various physiological pro-
cesses can be quantified from such measures, for example the rate at which the brain 
or a tumor is metabolizing glucose, referred to as metabolic rate for glucose (MRGlc), 
usually expressed in micromoles of glucose/100 g of tissue/min. These measures can 
then be correlated to clinical outcomes such as tumor evolution or response to ther-
apy in such a way to relate disease physiology to its progression. These quantitative 
estimates can also serve as early surrogate endpoints in preclinical therapy trials.

Recent advances in dedicated small-animal imaging instrumentation enabled to 
contribute unique information in biomedical research [3]. Basic research laboratories 
focusing on molecular imaging-based preclinical research demand multiple compe-
tences, resources and trained personnel far beyond what is required to run clinical facil-
ities. These laboratories usually consist of multidisciplinary teams working in close 
collaboration to solve basic research questions through quantitative regional estimation 
of physiologic or pharmacokinetic parameters from dynamic radiotracer studies.

To take full advantage of the quantitative capabilities of PET imaging, subject- 
specific correction of background and physical degrading factors must be performed 
[4]. While most of these corrections are performed in clinical imaging using sophis-
ticated computational models, compensation for these effects is hardly considered 
in preclinical imaging where much attention has focused on physical performance 
of SPECT/PET scanners, namely the spatial resolution and sensitivity (see Chaps. 4 
and 5) and animal preparation (see Chap. 18). The major challenges to quantitative 
preclinical PET imaging when the target is to quantify physiological or pharmaco-
kinetic processes can be categorized in five classes [5]:

 – Instrumentation and measurement factors: factors related to imaging system 
 performance and data acquisition protocols;

 – Physical factors: those related to the physics of photon interaction with biologic 
tissues;

 – Reconstruction factors: issues related to assumptions made by image reconstruction 
algorithms;

 – Physiological factors: factors related to motion and other physiological issues;
 – Tracer kinetic factors: issues related to difficulties in developing and applying 

tracer kinetic models, especially at the voxel level (parametric imaging).

The above referenced issues (except instrumentation factors which are addressed 
in Chaps. 4 and 5 of this volume) are discussed at some level of detail in the follow-
ing sections.

2  Advances in Image Reconstruction Strategies

The basic principle of image reconstruction is that an object can be accurately 
reproduced from a set of its projections taken at different angles by an inversion 
procedure. The analytic solution to this inverse problem has been known for about 
one century thanks to the pioneering work of the Austrian mathematician J. Radon. 
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In essence, two major classes of image reconstruction algorithms have emerged in 
PET: direct analytical methods and iterative methods. Until about two decades ago, 
the most widely used methods for image reconstruction in PET were direct analyti-
cal techniques because they are relatively quick and their derivation straightfor-
ward. However, the resulting image quality is limited by the over simplified 
line-integral model of the acquired projection data. Alternatively, iterative recon-
struction techniques are computationally much more intensive but the resulting 
images demonstrate improvements (principally arising from more accurate statisti-
cal modeling of the system response) which have enabled them to replace analytic 
techniques not only in research settings but also in the clinic [6].

Time-dependent reconstruction can be handled either by considering series of 
independent ‘static’ reconstructions [7] or direct time-dependent 4D reconstructions 
[8]. The former remains the common approach to dynamic PET image reconstruction 
consisting of independent reconstruction of tomographic data within each dynamic 
frame. Following this step, one arrives at a set of dynamic images intended to specify 
the variation of activity over time throughout the reconstructed field-of- view (FOV). 
This is still the de facto standard approach applied in routine clinical and preclinical 
studies. As opposed to static imaging, dynamic PET reconstruction can provide addi-
tional very useful information, depending on the particular tracer and study design.

The foundations of image reconstruction are covered in detail in recent reviews 
[6, 7, 9] and textbooks [1, 10] that offer comprehensive coverage of image recon-
struction techniques including appropriate representation of the object, measured 
data and the mathematical derivation of algorithms. There is also increasing interest 
in the use of advanced 4D image reconstruction strategies for research applications 
[8]. Therefore, this section only briefly summarizes novel developments in PET 
reconstruction algorithms, with particular emphasis on statistical iterative recon-
struction techniques given their popularity, promise and wide adoption by the medi-
cal imaging community. Future directions for PET image reconstruction are also 
considered, addressing mainly the issues of improving the modeling of the data 
acquisition process and task-specific determination of the parameters to be esti-
mated in image reconstruction [7].

2.1  Analytic Reconstruction Techniques

The inverse problem in the context of analytic reconstruction is expressed in a con-
tinuous framework with the algorithmic realization implemented as a discrete 
approximation of the continuous solution. Following the notation used in [7], let us 
recall that direct analytic inversion procedures in emission tomography assume that 
a 2D parallel projection representing a set of lines of response (LORs), p s u, ˆ( ), is 
equivalent to a set of line integrals through the radioatracer distribution f(r) (the 3D 
X-ray transform) [11]:

 
p f x dxs u s u, ˆ ˆ( ) = +( )
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(17.1)
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where the 3D vector r in the imaging volume is decomposed into the 2D parallel 
projection position vector s = [y' z']T and the 1D orientation unit vector x′û. This 
line-integral equation represents lines through the FOV, where each detector-pair is 
regarded as an LOR i (specified by a displacement s from the centre of the FOV 
and an orientation û = ( )ϕ θ,  and with the vector q replaced by the continuous 
function p.

The derivation of the image f given the projection data p is carried out through 
the inversion of equation (1) using the central section theorem [7, 12]. This theorem 
states that a central plane of the 3D Fourier transform F(k) of the 3D image f(r) is 
equal to the 2D Fourier transform P(k) of the 2D parallel projection data at the same 
orientation û = ( )ϕ θ, . The equivalent in the 2D (slice-by-slice) image reconstruc-
tion case is that the 1D Fourier transform of a 1D parallel projection being equal to 
a single line through the 2D Fourier transform of f. One can observe that the super-
position of these 1D Fourier transforms (one from each projection angle) creates the 
2D Fourier transform of f. However, a 1/|r| weighting of the contributions to the 2D 
Fourier transform will result from this superposition. In other terms, the ramp filter 
defined as the inverse of this weighting, i.e. |r| in frequency space is used to balance 
the irregular contributions. Filtering the projection using the convolution operator 
followed by backprojection is often used as an alternative to image reconstruction 
in Fourier space. As such, the tracer distribution ƒ is reconstructed from the acquired 
projection data p in two steps: (1) filtering in which the projections are filtered by 
the ramp filter |r|, and (2) backprojection in which the intensity of each pixel is cal-
culated from the contribution of the filtered projections.

A number of analytical reconstruction techniques were suggested in the litera-
ture, including simple backprojection, which produces a blurred version of the 
object to be reconstructed [13], backprojection followed by filtering (BPF) [14] and 
filtered backprojection (FBP)/convolution backprojection (CBP). In the context of 
3D PET imaging, the 3D reprojection method (referred to as 3DRP) emerged as the 
most popular approach and has been commonly used in practice since its inception 
[15]. Given the considerable computational resources required by 3D reconstruc-
tion, various approximate techniques have been proposed to rebin the data from the 
oblique projections into 2D direct sinogram data sets to enable the application of 2D 
reconstruction techniques, thus decreasing the computation time. Fourier rebinning 
(FORE), in which oblique rays are binned to a transaxial slice using the frequency- 
distance relationship of the data in Fourier space [16], emerged as the most promis-
ing technique.

As mentioned earlier, despite the advantages of analytic reconstruction tech-
niques (quick, simple, easy to implement…), their drawbacks (noise, streak arti-
facts, interference between regions of low and high tracer concentration…) 
motivated their replacement by iterative techniques both in clinical and research 
setting. Considering current state-of-the-art and recent progress in statistical recon-
struction techniques, interest in analytic reconstruction approaches has substantially 
declined and, as such, this category of techniques will not be discussed further in 
this chapter.
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2.2  Iterative Reconstruction Strategies

The main limitation of analytic reconstruction techniques discussed above is their 
reliance on the line-integral model [Eq. (17.1)], assuming that the measured projec-
tion data are perfectly consistent with the tracer distribution, a prerequisite that is 
certainly not materialized in practice owing to the presence of noise and considering 
the impact of other physical degrading factors [7]. The advantage of iterative tech-
niques is their ability to not only accommodate more complex models of the PET 
data acquisition process in a realistic way, but they also enable to employ non- 
orthogonal basis functions. Iterative methods are frequently used to solve problems 
involving optimization. The image reconstruction problem can be regarded as a 
special situation where the aim is to determine the ‘best’ approximation of the tracer 
distribution given a set of measured projection data.

Iterative reconstruction strategies have been around since the early days of tomo-
graphic imaging but emerged as prominent techniques and potential replacements 
for analytic techniques following the introduction of statistical reconstruction 
approaches more than three decades ago [17]. The three major issues that delayed 
the widespread adoption of iterative reconstruction techniques in the clinic, namely 
the large memory requirements owing to the size of the transition matrix, the addi-
tional computational complexity compared to single-pass analytic techniques and 
the lack of a well defined stopping criterion that can be used to objectively choose 
the number of iterations in a given scenario, are no longer a matter of concern at the 
present time given recent advances in computer technology. Still the latter criteria 
remains a hot research topic which is attracting the interest of active research groups 
since excess numbers of iterations can lead to an unacceptable noise level in the 
reconstructed images if it is not appropriately controlled [18]. In practice, a preset 
number of iterations is commonly used and, as such, iterative algorithms are not run 
into convergence.

Similar to analytic techniques, iterative algorithms make use of a backprojection 
operator to estimate the tracer distribution from the projection data. However, con-
trary to analytic methods, they also include a forward projection operator which is 
used to compute the projection data corresponding to a given tracer distribution and 
attenuation map. The projection/backprojection operators are applied multiple 
times by iterative algorithms depending on the selected number of iterations and, as 
such, their algorithmic implementation in terms of accuracy and computational effi-
ciency is crucial to achieve the best possible performance.

An iterative reconstruction technique consists of two basic components: (1) the 
parameters to estimate (a set of voxel intensities representing the tracer distribution) 
and, (2) the system model describing the relationship between the tracer distribution 
and the mean of the measured projection data. It should be emphasized that it is the 
mean of the measured projection data which is usually modeled. Iterative algo-
rithms provide the flexibility required to appropriately model and parameterize this 
mean. Generally, the system model, mapping from the parameters to the mean, is 
time-invariant [7].

17 Quantification of Small-Animal Imaging Data



472

Several iterative reconstruction strategies have been devised with the expectation 
maximization (EM) algorithm applied in PET as an iterative method to compute 
maximum likelihood (ML) estimates of the tracer distribution, being the most popu-
lar approach [17]. This approach assumes that the measured projection data consist 
of samples from a set of random variables whose probability density functions are 
linked to the actual tracer distribution according to a mathematical model of the data 
acquisition process.

The EM algorithm entails two different steps [19]: (1) computation of current 
projection data from the tracer distribution estimated at the preceding iteration using 
the forward projection operator according to a predefined system matrix (aij), start-
ing from an initial guess (usually a uniform cylinder) at the first iteration, (2) the 
present estimate fj

new is updated by multiplying the preceding estimate fj
old by the 

backprojection of the ratio of measured (pi) over the estimated projections in such a 
way to maximise the likelihood. The ensuing ML-EM equation is therefore given by:
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Based on an ordered sets approach, an accelerated version of the EM algorithm 
referred to as the Ordered Subsets EM (OSEM) algorithm was proposed in 1994 
[20]. This algorithm handles the projection data in subsets (blocks) within each 
iteration so as to speed up convergence by a factor proportional to the number of 
subsets. Many studies reported that OSEM generates images of comparable quality 
to those generated by the EM technique in a fraction of the processing time.

Traditionally, PET images were reconstructed using analytic techniques (FBP) 
following correction for the various physical degrading factors (attenuation, scatter, 
randoms, etc.). An appealing feature and attractive asset of iterative techniques is 
that the physical model of the data acquisition process and scanner geometry can be 
incorporated into the reconstruction algorithm through the use of weights or penal-
ties. Statistical reconstruction methods often incorporate corrections for photon 
attenuation and degradation of spatial resolution (resolution recovery). Additional 
constraints and penalty functions can also be incorporated to reduce statistical noise 
or to ensure that the image has other desirable properties, thus allowing the algo-
rithm to be tuned to meet the requirements of specific clinical protocols (task- 
specific). There is extensive literature demonstrating substantial improvement of 
image quality and quantitative accuracy of PET images when using iterative recon-
struction techniques especially when applied to low count projection data (poor 
statistics) typically encountered in oncologic or other similar studies. Figure 17.1 
compares an 18F-NaF skeletal rat PET study reconstructed using analytic (3DRP) 
and iterative (ML-EM) reconstructions. Note the significant improvement in image 
quality and spatial resolution when using iterative reconstruction. Clinical and 
 preclinical scanner manufacturers have gradually improved their reconstruction 
software by incorporating correction for photon attenuation, scatter, random events, 
spatial resolution degradation and other factors by modeling these effects into itera-
tive reconstruction algorithms. This trend is expected to keep on into the future and 
traditional analytic algorithms will become obsolete.
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One of the main issues faced by iterative algorithms is the ill-conditioning of the 
inverse problem in PET image reconstruction. Regularization is often employed to 
counterbalance this through the use of appropriate techniques including post- 
reconstruction smoothing, early termination of the iterative process or Bayesian 
priors which are used to modify the ML objective to a maximum a posteriori (MAP) 
objective) [7].

If there is no a priori knowledge about the tracer distribution, maximising the 
likelihood is equivalent to maximising the posterior. However, some a priori knowl-
edge is always available, i.e. the reconstructed image should not be too noisy [19]. 
A prior distribution favouring smooth solutions can be defined through a Markov 
random field or a Gibbs random field [21]. The probability of a voxel in a Markov 
random field depends on the intensities of voxels in the neighbourhood of that par-
ticular voxel according to a Gibbs distribution. This category of techniques has been 
successfully used in small-animal PET imaging and implemented on some com-
mercial scanners [22]. Anatomical information derived from MRI has also been 
used to tune the noise suppressing prior in MAP-type algorithms by limiting 
smoothing to within organ boundaries revealed by the anatomical data [23, 24]. 
If the limited spatial resolution of the PET scanner is modelled, then this category of 
algorithms can produce a strong resolution recovery near anatomical boundaries.

Resolution recovery image reconstruction has received considerable attention 
during the last decade [25]. These techniques have been reported to improve both the 
noise properties and spatial resolution of the reconstructed images, potentially result-
ing in more accurate quantification. This is achieved by more accurate modeling of 
the relationship between the image and projection data within the system matrix. 

Fig. 17.1 Comparison of maximum intensity projections of an 18F-NaF skeletal rat scan generated 
using analytic (3DRP) reconstruction (top) and iterative list-mode EM reconstruction (bottom). 
The iterative EM method benefits from improved modeling of the acquired PET data which signifi-
cantly improves image quality and spatial resolution. Reprinted with permission from [7]
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These techniques can be implemented either in image or projection space based on 
accurate characterization of the spatially invariant or variant scanner- specific point 
spread function (PSF). The system matrix, usually combining various physics and 
instrumentation related factors, such as scanner geometry, positron range, parallax 
error, intercrystal scatter, and non-colinearity of annihilation photons, can be esti-
mated using analytic calculations [26], Monte Carlo modeling [27] or experimental 
measurements [28–31]. The latter proved to be the favorite approach for deriving 
the spatially variant PSFs through accurate measurements of the spatial resolution 
characteristics of the PET scanner. For this purpose, a point source is commonly 
used to sample and parametrize the spatially varying PSF at different positions in the 
transaxial/axial FOV. Such algorithms have been recently implemented on clinical 
PET scanners and have proved to be useful for small-animal imaging [32].

Recent advances in the field focus on task-specific image reconstruction by incor-
porating the targeted objective within the reconstruction process, thus enabling to 
better suit the predefined task. This could be either the generation of high quality 
images with better spatial resolution and noise properties (usually required in clinical 
diagnostic imaging), or direct estimation of kinetic parameters of interest (usually 
needed in preclinical research involving small-animal studies). Estimating the meta-
bolic rate of glucose from [18F]-FDG PET scans instead of dynamic images of the 
time course of [18F]-FDG concentration in tissue is one such example. PET images 
usually contain very complex noise distributions that need to be modeled for accurate 
tracer kinetic modeling. Strategies for direct estimation of kinetic parameters from 
the dynamic data set can simplify this task since such methods make use of the mea-
sured data, which are known to follow the simple independent Poisson distribution 
[8]. This concept was used in the framework of the EM algorithm to estimate kinetic 
parameters by maximizing the Poisson log-likelihood of obtaining the measured 
dynamic data [33]. Such approaches have been further extended and revisited by 
various groups and are described more in detail in the above referenced review [8].

3  Scatter Modeling and Correction

With the introduction of commercial preclinical PET scanners, small-animal imag-
ing is becoming readily accessible and increasingly popular. The choice of a par-
ticular system being dictated in most cases by technical specifications, special 
attention has to be paid to methodologies followed when characterizing system per-
formance. Since different methods can be used to assess the scatter fraction, differ-
ences may be methodological rather than reflecting any relevant difference in the 
performance of the scanner. Standardization of the assessment of performance char-
acteristics is thus highly desired [34].

Little has been published on modeling the scatter component in small-animal 
PET scanners owing to the relatively small scatter fraction when imaging rodents 
(compared to clinical imaging). The origin of scatter for small-animal imaging has 
not been well characterized, but, has been proposed to stem mainly from the gantry 
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and environment rather than the animal itself [35]. This point of view is supported 
by the fact that scatter correction usually does not involve correcting for scatter in 
the detector itself. Figure 17.2 illustrates the difference in terms of origin and shape 
between object and detector scatter components.

The scatter component for a prototype PET scanner based on avalanche photo-
diode (APD) readout of two layers of lutetium oxyorthosilicate (LSO) crystals with 
depth of interaction information, called the Munich-Avalanche-Diode-PET 
(MADPET), was assessed using Monte Carlo calculations [36]. In a more advanced 
version of this prototype (MADPET-II), the scatter fraction in a mouse-like cylin-
drical phantom (6 cm diameter, 7 cm height) containing a spherical source (diam-
eter 5 mm) placed at its center was 16.2 % when the cylinder is cold and increased 
to 37.7 % when the cylinder is radioactive for a lower energy discriminator of 
100 keV and no restrictions in the acceptance angle [37]. One study reported a scat-
ter fraction of 25–45 % in the rat brain using 11C-raclopride and an increase in dis-
tribution volume ratio of 3.5 % after scatter correction [38]. Monte Carlo simulations 
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Fig. 17.2 (a) Schematic diagram of the origin and shape of detector scatter component for a cylin-
drical multi-ring PET scanner geometry estimated from a measurement in air using a line source. 
(b) Schematic diagram of the origin and shape of object scatter component estimated from mea-
surements in a cylindrical phantom using a centred line source. Both single and multiple scatter are 
illustrated
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showed that small-animal PET scanners are also sensitive to random and scattered 
coincidences from radioactivity outside the FOV [39].

Important contributions to the field were made by Bentourkia et al. [40] who 
used multispectral data acquisition on the Sherbrooke small-animal avalanche pho-
todiode PET scanner to fit the spatial distribution of individual scatter components 
of the object, collimator and detector using simple mono-exponential functions. The 
scatter fraction of this scanner for rat imaging was estimated to be 33.8 % with a 
dominant contribution of the single-scatter component (27 %) as assessed by Monte 
Carlo calculations [41]. The position-dependent scatter parameters of each scatter 
component are then used to design non-stationary scatter correction kernels for each 
point in the projection. These kernels are used in a non-stationary convolution- 
subtraction method which consecutively removes object, collimator, and detector 
scatter from projections [42]. This technique served as basis for the implementation 
of a spatially variant convolution subtraction scatter correction approach using dual- 
exponential scatter kernel on the Hamamatsu SHR-7700 animal PET scanner [43].

The SF and noise equivalent count rate (NECR) are usually measured using vari-
ous discrete phantoms of different uniform size [35, 44, 45]. The idea of the NEMA 
protocol for scatter fraction estimation is to use a uniform cylindrical phantom with 
a line source inserted at predefined radial displacements to give an estimate of the 
scatter fraction, which is representative of the whole phantom [46]. For this purpose, 
the scatter fraction and count rate performance are determined using a mouse- and 
rat-sized phantoms and an 18F line source insert. The mouse-sized phantom is 
70 ± 0.5 mm long and 25 ± 0.5 mm in diameter with a cylindrical hole (3.2 mm diam-
eter) drilled parallel to the central axis at a radial distance of 10 mm. The rat-sized 
phantom has a diameter of 50 ± 0.5 mm and a length of 150 ± 0.5 mm with a cylindri-
cal hole (3.2 mm diameter) drilled parallel to the central axis at a radial distance of 
17.5 mm. For instance, the scatter fraction for the X-PET™ subsystem of the FLEX 
Triumph™ PET/CT scanner was measured to be 7.9 % for the mouse- sized phantom, 
whereas a value of 21 % was reported for the rat-sized phantom [47]. These values 
were measured to be 19 % and 31 %, respectively, for the LabPET™-8 scanner [48].

Monte Carlo simulation studies have shown that the optimum radial displace-
ment of the line source required for relevant assessment of the scatter fraction for a 
range of phantom sizes was ~3/4 of the phantom radius from the center [44], which 
is very close to the position recommended by the NEMA NU-4 standard for animal 
scanners [46] contrary to the NU-2 standard for clinical whole-body scanners [49].

Exhaustive experimental measurements were also carried out to characterize the 
magnitude and origin of scattered radiation for the microPET II small-animal PET 
scanner [35]. It has been shown that for mice scanning, the scatter from the gantry and 
room environment as measured with a line source placed in air dominates over object 
scatter. The environmental scatter fraction rapidly increases as the lower energy dis-
criminator decreases and can be over 30 % for an open energy window of 150–
750 keV. The scatter fraction originating from the mouse phantom is very low (3–4 %) 
and does not change considerably when increasing the lower energy discriminator. 
The object scatter fraction for the rat phantom varies between 10 and 35 % for differ-
ent energy windows and increases as the lower energy discriminator decreases.
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Likewise, the measured scatter fractions for the mouse (rat) NEMA count rate 
phantom in the microPET-R4 and the microPET®—FOCUS-F120 were 14 % 
(29 %) and 12.3 % (26.3 %), respectively, when using a low energy discrimination 
of 250 keV [50]. If the discriminator is increased to 350 keV, the scatter fraction 
drops to 8.3 % (19.6 %) and 8.2 % (17.6 %), respectively. Scatter correction is thus 
more important for rat scanning whereas a large energy window (i.e., 250–750 keV) 
would be more appropriate for small objects (e.g. mouse brain scanning) to increase 
system sensitivity.

Several observations reported that within specific rodent species, especially rats 
or small rabbits, there is substantial variation in body size when rodents are litters 
or correspond to diabetic models put on high calorie diets. Also the rodents’ body 
shape is not uniform throughout the axial direction. The body cross-section of 
rodents’ specially rats and large species increases from head towards pelvic region 
[51]. Moreover, it has been suggested that a phantom representing a varying range 
of cross-sections and dimensions would be more suited for the assessment of these 
parameters for clinical PET systems [52]. Furthermore, it is nowadays common 
practice to increase the throughput of rodent PET studies by simultaneous scanning 
of multiple rodents placed at different radial offsets in the scanner’s FOV [53].

More recently, Prasad et al. [51] reported on the design and development of a 
cone-shaped phantom for the measurement of object size-dependent SF and NECR 
and, second, to assess these parameters as a function of radial offset, object size and 
lower energy threshold for two small animal PET scanners, namely the X-PET™ 
and LabPET™-8, using the developed cone-shaped phantom. The optimized dimen-
sions of the cone-shaped phantom were 158 mm (length), 20 mm (minimum diam-
eter), 70 mm (maximum diameter) with taper angle of 9°. Depending on the radial 
offset from the centre of the central axial FOV (3–6 cm diameter), the SF for the 
cone-shaped phantom varied from 26.3 to 18.2 %, 18.6 to 13.1 % and 10.1 to 7.6 % 
for the X-PET™, whereas it varied from 34.4 to 26.9 %, 19.1 to 17.0 %, and 9.1 to 
7.3 % for the LabPET™-8, for lower energy thresholds (LETs) of 250, 350 and 
425 keV, respectively. The SF increases as the radial offset decreases, LET decreases 
and object size increases. Overall, the SF is higher for the LabPET™-8 compared to 
the X-PET™ scanner. Figure 17.3 illustrates a Monte Carlo model of the 
LabPET™-8 small animal PET scanner with a cone-shaped phantom in the FOV 
(left). The SF for FOVmouse corresponding to the cone-shaped phantom for the 
LabPET™-8 scanner using a LET of 250, 350 and 425 keV is also shown (right). 
The SF estimates are shown for a line source located at the center and at 10 and 
15 mm radial offset [51].

The same authors characterized the magnitude and spatial distribution of the 
scatter component in small-animal PET imaging when scanning single and multiple 
rodents simultaneously and assessed the performance of model-based scatter cor-
rection under similar conditions [54]. The modelled scatter component for the 
LabPET™-8 scanner using the single-scatter simulation (SSS) technique was com-
pared to Monte Carlo simulation results. A good agreement was observed between 
calculated and Monte Carlo simulated scatter profiles for single- and multiple- 
subject imaging. In the LabPET™-8 scanner, the detector covering material (kovar) 
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contributed the maximum amount of scatter events while the scatter contribution 
due to lead shielding was negligible. The increase in SF ranged between 25 % and 
64 % when imaging multiple subjects (three to five) of different size simultaneously 
in comparison to imaging a single subject.

Similar approaches were undertaken for positron emission mammography 
(PEM) units where both high spatial and contrast resolution and sensitivity are 
required to meet the needs of early detection of breast tumors, hence avoiding 
biopsy intervention. In this context, a scatter correction method for a regularized 
list-mode ML-EM reconstruction algorithm was proposed [55]. The object scatter 
component is modeled as additive Poisson random variable in the forward model of 
the reconstruction algorithm. The mean scatter sinogram, which only needs to be 
estimated once for each PEM configuration is estimated using lengthy Monte Carlo 
simulations [54].

A more recent approach aiming at simultaneous correction for attenuation and 
scatter was suggested [56]. This is achieved by analytical assessment of the spatial 
distribution of scattered photons using both emission and transmission images com-
bined with prior knowledge of the probability of Compton scattering and scanner 
detection efficiency. The authors reported improved performance compared to the 
model-based approach proposed by Watson [57].

4  Attenuation Compensation

Similar to scatter correction [58], little has been published on attenuation correction 
(AC) in small-animal PET imaging owing to the low magnitude of attenuation fac-
tors when imaging rodents (compared to clinical imaging). The magnitude of the 
correction factors ranges from approximately 45 for a 40 cm diameter human 
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subject and decreases down to 1.6 for a 5 cm diameter rat) to nearly 1.3 for a 3 cm 
diameter mouse [59]. This elucidates why the problem of photon attenuation has 
been overlooked in small-animal imaging even in the third generation of preclinical 
PET scanners [60]. PET scanner calibration factors are usually determined with and 
without AC given that AC is till not well established in small-animal imaging.

Fahey et al. [61] have shown that the use of transmission (TX)-based AC 
improved the quantitative accuracy but also reduced the precision as indicated in the 
variability of the attenuation corrected data. This can be compensated by noise 
reduction schemes such as segmentation of the TX data. Another study compared 
several measured TX-based techniques for deriving the attenuation map on the 
microPET Focus 220 animal scanner [62]. This includes coincidence mode with 
and without rod windowing, singles mode with two different TX sources (68Ge and 
57Co), and post-injection TX scanning. Moreover, the efficiency of TX image seg-
mentation and the propagation of TX bias and noise into the emission images were 
examined. It was concluded that 57Co-based AC provides the most accurate attenu-
ation map having the highest SNR. Single-photon TX scanning using 68Ge sources 
suffered from degradations resulting from object Compton scatter. Monte Carlo 
simulation studies also demonstrated that background contamination in the 68Ge 
singles-mode data due to intrinsic 176Lu radioactivity present in the detector crystals 
can be compensated using a simple technique [63]. Compensating for scatter 
improved the accuracy for a cylindrical phantom (10 cm diameter) but overcor-
rected for attenuation for a mouse phantom. Low-energy 57Co-based AC also 
resulted in low bias and noise in post-injection TX scanning for activities in the 
FOV up to 20 MBq. Attenuation map segmentation was most successful using 57Co 
single-photon sources, however, the modest improvement in quantitative accuracy 
and SNR may not rationalize its use, particularly for small-animals. More sophisti-
cated techniques using multiple sources for TX scanning where each point source is 
surrounded by a plastic scintillator coupled to a miniature photomultiplier tube to 
allow collection of the energy the positron must lose before annihilation were also 
developed [64, 65]. The LoR joining the current source position and detector posi-
tion is identified through the pulse provided by the energy lost in the plastic scintil-
lator whereas scanner’s conventional detectors provide the second pulse.

Combined anato-molecular PET/CT imaging also provides a priori subject- 
specific anatomical information that is needed to correct the PET data for photon 
attenuation and other physical effects. The potential use of small-animal CT for AC 
is now well established and is considered to be one of the potential applications of 
low-dose microCT imaging which can drive the further development of dual- 
modality small-animal PET/CT [66]. Similar to SPECT/CT [67, 68], the accuracy of 
CT-based attenuation correction (CT-AC) in preclinical imaging was demonstrated 
using phantom and animal studies where the low-dose CT was suitable for both PET 
data correction and PET tracer localization [59]. The principle of CT-AC is shown 
in Fig. 17.4. Some of the advantages of the technique are the low statistical noise and 
high-quality anatomical information, small crosstalk between PET annihilation pho-
tons and low energy X-rays, and higher throughput imaging protocols. Noise analy-
sis in phantom studies with the TX-based method showed that noise in the TX data 
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increases the noise in the corrected PET emission data whereas the CT-based method 
was accurate and resulted in less noisy images. For small-animal imaging, hardware 
image registration approaches that rely on the use of custom made imaging cham-
bers which can be rigidly and reproducibly mounted on separate PET and CT pre-
clinical scanners [69] is a reasonable alternative to combined PET/CT designs 
[70–72]. Calculated AC was reported to provide similar correction compared to 
CT-AC for a cylindrical phantom and a mouse for which the attenuation medium 
volume matches the PET emission source distribution [73]. However, it undercor-
rects for attenuation when the emission image outline underestimates the attenua-
tion medium volume (unmatched source distribution and attenuation medium).

One should note that accurate and robust conversion of CT numbers derived 
from low-energy polyenergetic X-ray spectra of a CT scanner to linear attenuation 
coefficients at 511 keV is essential for accurate implementation of CT-AC of PET 
data. Several conversion strategies have been reported in the literature including 
segmentation [74], scaling [75], hybrid (segmentation/scaling) [76], bilinear or 
piece-wise scaling [77], quadratic polynomial mapping [78, 79], and dual-energy 
decomposition methods [80]. Energy-mapping methods are generally derived at a 
preset tube voltage and current. These methods are widely used and validated on 
clinical PET systems [81]; however, they still need to be thoroughly investigated on 
dedicated high resolution, small FOV scanners such as those used for small-animal 
imaging. PET images of a transverse slice of the NEMA NU 4- 2008 image quality 
phantom reconstructed with and without attenuation correction are shown in 
Fig. 17.5. A horizontal line profile is also shown [79].

Despite the wide acceptance of CT-AC as a reliable technique allowing to achieve 
more accurate quantification in high resolution preclinical PET imaging, further 
work is still needed to explore its broad potential, in particular when combined with 
scatter and beam hardening correction of cone-beam CT data [82]. The impact of 
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X-ray scatter in cone-beam CT subsystems coupled to PET scanners on combined 
preclinical PET-CT systems has been investigated in a limited number of studies 
[83–85]. Most of the approaches estimate the scatter-to-primary ratio (SPR) from 
projections in the 3D cone-beam geometry using the beam stop method or from 
Monte Carlo simulations. Alternatively, analytical models were derived to estimate 
the first order X-ray scatter by approximating the Klein–Nishina formula so that the 
first order scatter fluence is expressed as a function of the primary photon fluence on 
the detector [86].

Following the introduction of hybrid small-animal PET/MRI systems [87–92] 
(see also Chap. 15), MRI-guided attenuation compensation has received a great deal 
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of attention in the scientific literature [93–95]. This is a very active research topic 
that will certainly impact the future of hybrid PET/MRI technology. The major dif-
ficulty facing MRI-guided attenuation correction lies in the fact that the MRI signal 
or tissue intensity level is not directly related to electron density which renders 
conversion of MRI images to attenuation maps less obvious compared to CT. One 
approach uses representative anatomical atlas registration where the MRI atlas is 
registered to the subject’s MRI and prior knowledge of the atlas’ attenuation proper-
ties (for example through coregistration to CT atlas) is used to yield a subject- 
specific attenuation map [96]. This is the basis of the method proposed by Chaudhari 
et al. [97] for mice imaging, using the Digimouse atlas. The critical and crucial part 
of the algorithm is the registration procedure which might fail in some cases with 
large deformations [98, 99]. The other fundamental question that remains to be 
addressed is: does the global anatomy depicted by an atlas really predict individual 
attenuation map? [93].

5  Partial Volume Effect Correction

The quantitative accuracy of PET is hampered by the low spatial resolution capabil-
ity of currently available scanners. The well accepted criteria is that one can accu-
rately quantify the activity concentration for sources having dimensions equal or 
larger than two to three times the system’s spatial resolution measured in terms of its 
full width at half maximum (FWHM) [100, 101]. Sources of smaller size only partly 
occupy this characteristic volume and, as such, the counts are spread over a larger 
volume than the physical size of the object owing to the limited spatial resolution of 
the imaging system. It should be emphasized that the total number of counts is con-
served in the corresponding PET images. In this case, the resulting PET images 
reflect the total amount of the activity within the object but not the actual activity 
concentration. This phenomenon is referred to as the partial volume effect (PVE) and 
can be corrected using one of the various strategies developed for this purpose [102].

In clinical PET imaging, partial volume errors are great sources of errors impact-
ing PET image quantification. In preclinical PET imaging, partial volume errors are 
expected to be less severe owing to the higher spatial resolution of dedicated small 
bore systems. However, it is a matter of fact that the quantitative accuracy in small 
animal imaging still bears inherent limitations especially for quantification of tracer 
uptake in small organs such as mouse brain or heart [103]. It has been reported that 
dedicated preclinical PET scanners can provide accurate quantification to within 
6 % for features larger than 10 mm. About 60 % of object contrast was retained for 
features as small as 4 mm [61].

The high cost of dedicated preclinical instrumentation and the interest expressed 
by several groups to conduct preclinical research studies in facilities equipped only 
with commercial scanners for clinical studies motivated the use of clinical PET 
scanners for imaging laboratory animals. Moreover, various strategies were devel-
oped to scan multiple rodents simultaneously at different radial offsets in the 
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scanner’s FOV to increase the throughput of PET scanners [104]. However, the 
limited spatial resolution of clinical scanners deteriorates image quality and ham-
pers the quantitative accuracy by enhancing the impact of partial volume errors in 
small- animal imaging. Despite these limitations, several investigators successfully 
carried out research experiments involving scanning laboratory animals on clinical 
PET scanners [105–107]. Many of these studies used simple approaches for partial 
volume correction using the method based on the calculation of recovery coeffi-
cients (RCs) [108, 109]. In this approach, the correction is performed by multiply-
ing the uptake value in a specific region of interest (ROI) with a size-dependent RC. 
RCs are commonly calculated through experimental measurements using objects 
with known size, shape, activity concentration and location in the scanner’s FOV 
[110]. Many of these approaches accounted for both ‘spill-out’ (loss of activity) and 
‘spill- in’ (increase of activity) to and from the surrounding tissues, respectively. 
Few studies reported on partial volume correction for preclinical studies involving 
the use of small-animal PET scanners [103, 111]. Correction for partial volume 
even using this simple approach significantly improved both accuracy of small-
animal PET semi-quantitative data in rat studies and their correlation with tumour 
proliferation, except for largely necrotic tumours [111].

More sophisticated approaches described in the literature were designed specifi-
cally to compensate for partial volume effect in rat brain imaging [112], tumour 
imaging [113] and cardiovascular imaging [114–117] including correction for par-
tial volume effect when using image-derived input function for kinetic modelling 
[118, 119]. Most of these studies demonstrated significant improvement in quantita-
tive accuracy when partial volume effect is applied. It has also been demonstrated 
that image correction and reconstruction techniques, object size and location within 
the FOV have a strong influence on the resulting partial volume effect [120]. Among 
the above referenced approaches, methods using the wavelet transform to incorpo-
rate the high resolution structural information (CT or MRI) into low resolution PET 
images seem to be promising and should be investigated further [121].

6  Issues Pertaining to Quantification and Kinetic Modelling

The kinetic modeling of PET data depends on the radiotracer used for imaging, the 
data acquisition protocol and the biological tissues or organs under study. Each 
radiotracer behaves differently in the body, and the same tracer could be affected 
differently in different types of tissue. The general principles of kinetic modeling 
are extensively reviewed elsewhere and will not be discussed here [122, 123]. 
Basically, two approaches were adopted for kinetic analysis: (1) tracer-dependent 
models performed on a voxel-by-voxel basis to produce parametric images and, (2) 
grouping voxels representing homogeneous tissues in volumes of interest (VOIs). 
The former approach bears the inherent drawback of generating noisy time-activity 
curves (TACs) at the voxel level and, as such, it is tricky to fit the model to the data 
for short-lived radionuclides. To this end, a number of approaches have been 
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suggested to tackle this challenge, including spatial noise reduction techniques, 
cluster analysis and spatial constrained weighted nonlinear least-square methods 
and wavelet denoising approaches [124]. Alternatively, the latter approach is more 
robust because of the averaging of the voxels contained in each VOI, thus enabling 
to handle the data with better statistical properties. This also allows significant 
reduction of computation time since the processing is limited to a predefined num-
ber of VOIs instead of a large number of voxels. Yet, this approach presents some 
fundamental limitations particularly when the assumption of tissue homogeneity 
within a VOI is questionable.

In the context of small-animal imaging, kinetic modeling of tracers presents sev-
eral issues and additional challenges compared to human studies that need to be 
addressed through research before the technique can be exploited to its full potential 
[125]. This includes improved image correction, reconstruction and analysis 
 techniques, and the use of blood plasma data coupled with advanced kinetic models. 
In addition to these technical concerns, two other issues still need to be carefully 
addressed. These include the impact of anesthesia on the physiological processes 
being studied [126] and the radiation dose delivered to the animals [127–129], 
 particularly in longitudinal studies where the animal serves as its own control.

The data acquisition process in small-animal imaging involving kinetic modeling 
consists of the following steps [125]: (1) animal handling and preparation, (2) tracer 
injection, usually through the tail vein, (3) dynamic or list-mode PET data acquisi-
tion, and (4) direct blood sampling or acquisition of an early dynamic frame at the 
level of the heart if image-based derivation of the input function is sought. It is often 
common practice to launch the acquisition simultaneously with bolus injection. 
Special attention has to be paid to dead-time correction particularly at the beginning 
of the scan to measure the relatively high initial activity. Likewise, appropriate 
cross-calibration procedures between the PET scanner, dose calibrator and well 
counter should be performed. The different clocks used should also be synchronized 
to limit decay correction errors. The total acquisition time has consequences on the 
size of the data sets if acquired in list-mode format and on the animal’s physiology. 
It is often assumed that the physiological and metabolic processes under investiga-
tion remain unchanged during the course of the study excluding cases where the aim 
of the study is to influence these processes (e.g. activation studies).

The input function is often required for kinetic modeling studies to determine the 
amount of the radiotracer in the blood (or plasma) delivered to tissue, and can be 
assessed from arterial blood samples. However, blood sampling is risky, and in the 
specific case of small animals, the procedure is very tricky and yet there may not be 
enough blood to extract especially in repetitive studies. Therefore, only a small frac-
tion of the total blood volume is usually withdrawn to limit side effects. This obvi-
ously has an impact on the number of samples which have to be withdrawn either 
manually or automatically by means of blood sampling devices in a discrete or 
continuous fashion. Novel automated microfluidic blood sampling devices allow 
taking only few samples corresponding to a small fraction of the total blood volume 
[130, 131]. As mentioned above, alternative methods rely on extracting the input 
function directly from images. In this case, the radioactivity in the arterial blood can 
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be assessed by defining VOIs on the left atrium chamber or on the left ventricle 
(in cardiac studies) [132, 133]. However, special attention has to be paid to correct 
for spillover from blood to tissues or from tissue to blood (owing to the small size of 
the heart relative to the scanner’s spatial resolution) and for the metabolites. Another 
alternative is to use standard arterial input function derived from an automated slow 
bolus infusion of 18F-FDG adjusted by few measured blood samples [134]. Promising 
approaches for derivation of the input function without blood sampling include ref-
erence tissue approaches [135, 136] and decomposition of images using factor anal-
ysis [137, 138] or independent component analysis [139]. Alternatively, beta-probes 
have also been used to determine the input function [140, 141], however, complex 
surgery might be needed to estimate accurately the input function [142].

Automatic quantitative analysis of molecular PET data is essential as it provides 
the potential to enhance the consistency among different interpreting observers 
regardless of their experience and to reduce the variability across institutions in 
multicentre trials. For example, the development of tracer-specific small animal 
PET probabilistic atlases [143] correlated with anatomical (e.g. MRI) templates 
enabled automated volume-of-interest or voxel-based analysis of small animal PET 
data with minimal end-user interaction [144]. One such software tool was devel-
oped by Kesner et al. [145] to enable the assessment of the biodistribution of PET 
tracers using small animal PET data. This is achieved though non-rigid coregista-
tion of a digital mouse phantom with the animal PET image followed by automated 
calculation of tracer concentrations in 22 predefined VoIs representing the whole 
body and major organs. The development of advanced anatomical models including 
both stylized and more realistic voxel-based mouse [146–149] and rat [150–153] 
models obtained from serial cryo-sections or dedicated high resolution small animal 
CT and MRI scanners will certainly help to support ongoing research in this area 
[154, 155]. Figure 17.6 illustrates a representative slice of PET, CT, cryosection, 
and Atlas and overlay images through the Digimouse model [147]. More recently, 

Fig. 17.6 Spatially registered (from left to right) PET, CT, cryosection, Atlas and overlay images 
for a coronal slice through the Digimouse model. Reprinted with permission from [147]
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a methodology for fully automated atlas-guided analysis of small animal PET data 
through deformable registration to an anatomical mouse model was reported [156]. 
Representative image registration results between experimental mouse studies and 
the Digimouse atlas are shown in Fig. 17.7. Direct segmentation of functional PET 
images enabling to alleviate the need of the corresponding anatomical information 

Fig. 17.7 Illustration of representative deformable registration example between the Digimouse 
and an experimental mouse studies showing: (a) overlay of the Digimouse atlas onto correspond-
ing CT images, (b) actual 18F-FDG PET/CT mouse study, (c) mouse study shown in (b) with 
overlay of the segmentation onto CT image (seven organs), (d) CT to CT registration of the 
Digimouse and actual mouse study shown in (c), (e) overlay of the transformed segmentation 
(seven organs) using registration parameters obtained in (d) onto CT image, and (f) transformed 
PET/CT study using registration parameters obtained in (d). Reprinted with permission from [156]
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or an Atlas have also been reported [157]. Such approaches are useful for automated 
calculation of TACs for the various organs/tissues of interest, which is required for 
the purpose of kinetic modeling.

7  Summary and Future Directions

It is gratifying to see in overview the progress that quantitative analysis of small- 
animal PET data has made, from cumbersome manual techniques, through semi- 
automated approaches requiring the availability of multimodality imaging, and 
more recently towards atlas-guided fully automated analysis approaches. Significant 
attention has been devoted to optimizing algorithmic designs and computational 
performance and to balancing conflicting requirements. Approximate methods suit-
able for applications that do not require accurate quantitative measurements and 
more sophisticated approaches for research applications where there is greater 
emphasis on accurate quantitative measurements, are being addressed. Quantitative 
high resolution preclinical multimodality imaging will undoubtedly be an accurate 
and cost-effective method for conducting various basic research studies to enable 
the understanding of complex diseases and physiological processes and might also 
assist in drug discovery and many other applications relying on the use of small- 
animal models of human disease.

Technical challenges remain for quantitative imaging, particularly in the areas of 
motion tracking and correction when scanning freely moving awake rodents [158–
160], in accurate image quantification predominantly when using exotic non- 
conventional radionuclides [161, 162], and in the development of more accurate 
kinetic models at the voxel level. As these challenges are met, and experience is 
gained, quantitative small-animal molecular imaging will attract more interest and 
make a more profound impact on biomedical research.
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