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           Introduction 

 Kaposi’s sarcoma-associated herpesvirus (KSHV) (also known as human herpesvirus 
8 or HHV-8) was fi rst discovered by Drs. Yuan Chang and Patrick Moore in 1994 in 
Kaposi sarcoma lesions from HIV-infected individuals [ 1 ]. Since its discovery, KSHV 
has also been linked to two lymphoproliferative diseases, primary effusion lymphoma 
(PEL) and multicentric Castleman’s disease (MCD) [ 2 ,  3 ]. More recently, KSHV 
has been found to be associated with an infl ammatory condition called KSHV-
infl ammatory cytokine syndrome (KICS) [ 4 ,  5 ]. 

 Kaposi sarcoma (KS) lesions are highly angiogenic and the skin lesions are vis-
ibly red due to the high degree of vascularization. The vessels in KS lesions are 
prone to fl uid leakage and extravasation of red blood cells. KS progresses through 
different stages that include patch, plaque, and nodular. The lesions contain infl am-
matory cells and slit-like neovascular spaces. The elongated, spindle-shaped cells in 
these lesions are thought to be endothelial in origin. These cells are all infected with 
KSHV and are thought to be the drivers of KS pathogenesis. Spindle cells display 
many markers of the endothelial cell lineage, including factor XIII, CD31, CD34, 
and CD36 [ 6 ]. Interestingly, KSHV infection of vascular and lymphatic endothelial 
cells reprograms their transcriptional profi le towards a lymphatic or vascular lin-
eage, respectively, thus giving rise to pleiotropic marker expression in these spindle 
cells [ 7 – 10 ]. 

 Kaposi sarcoma is named after the Hungarian dermatologist, Moritz Kaposi, 
who identifi ed these lesions as “Idiopathisches multiples Pigmentsarkom der Haut,” 
or idiopathic multiple pigmented sarcoma of the skin [ 11 ]. The KS lesions seen by 
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Kaposi were found on elderly Mediterranean men and are known as “classic KS.” 
KS is common in certain geographical regions such as in Mediterranean countries 
and parts of Africa [ 12 ,  13 ]. Before the advent of HIV, KS was rare; however, 
 following the AIDS epidemic, KS was identifi ed as one of the most common AIDS- 
defi ning cancers. Currently, there are thought to be four classes of KS:

    1.    Classic KS   
   2.    Endemic or African KS   
   3.    Iatrogenic KS associated with immunosuppressive therapies in transplant 

patients   
   4.    Epidemic or AIDS-related KS    

  In contrast, PEL is an expansion of B cells in the pericardial, pleural, and perito-
neal spaces, although PEL can also occur in solid organs. Unlike KS, the KSHV- 
infected B cells in PEL have a clonal origin [ 14 ,  15 ]. Each PEL cell contains many 
copies of the KSHV episome. Another B cell disorder linked to KSHV infection is 
the plasmablastic variant of MCD [ 16 ]. In AIDS patients, MCD can manifest as an 
aggressive malignancy that is almost always associated with KSHV infection [ 3 ]. 
The most newly recognized disease associated with KSHV is KICS. KICS is similar 
to KSHV-MCD in that KICS patients have elevated viral interleukin-6 (vIL-6), 
human IL-6, and IL-10 levels and high KSHV viral titer compared to KS patients. 
Unlike KSHV-MCD, KICS patients do not suffer from proliferating plasmacytoid B 
lymphocytes in the lymph node [ 4 ,  5 ].  

    Virion Structure and Viral Genome 

 KSHV virions comprise an electron-dense nucleocapsid that is surrounded by a 
lipid bilayer envelope. A proteinaceous layer called the tegument, which exists 
between the capsid and the envelope, contains multiple proteins and viral RNA 
transcripts [ 17 – 19 ]. The virion contains multiple glycoproteins including gB, gH, 
gM, gL, gN, ORF68, and K8.1 [ 17 ]. KSHV has an icosahedral capsid that is sym-
metric ( T  = 16) with 20 triangular faces [ 20 – 22 ]. The capsid is made up of six pro-
teins, including the major capsid protein (MCP, ORF25), a heterotrimer triplex 
protein containing one copy of ORF62 and two copies of ORF26, the small capsid 
protein (ORF65), scaffold protein (ORF17.5), and protease (ORF17). The cap-
somers comprise hexamers and pentamers of MCP. Each capsid contains 150 hex-
ons and 12 pentons and these are interconnected by 320 copies of the triplex 
heterotrimer [ 21 ,  23 – 25 ]. The viral genomic DNA is linear [ 26 ] and is located inside 
the capsid. 

 Sequencing of the KSHV genome revealed its similarity to other members of the 
gammaherpesvirus family. The gammaherpesviruses are divided into two groups: 
the γ1 or lymphocryptoviruses, which includes Epstein–Barr virus (EBV), and the 
γ2 or rhadinoviruses, which includes KSHV [ 27 ,  28 ]. The genome is 165–170 kb 
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long with 140 kb of unique coding sequence fl anked on either side by repetitive 
terminal repeat sequences [ 27 ]. The KSHV ORFs are numbered consecutively from 
left (ORF 1) to right (ORF 75). ORFs unique to KSHV are denoted by a “K” desig-
nation [ 28 ,  29 ]. The KSHV genome also encodes many noncoding RNAs, including 
microRNAs [ 29 – 32 ] and other noncoding RNAs, e.g., PAN [ 33 – 36 ].  

    Viral Entry 

 KSHV encodes three glycoproteins, gB, gH, and gL, which can mediate membrane 
fusion [ 37 ]. KSHV is thought to bind to the cell via a number of different cellular 
receptor proteins. KSHV gB, gH, ORF4, and gpK8.1A bind heparin sulfate [ 38 –
 42 ]. It is likely that heparin sulfate binding allows for a concentration of virions on 
the cell membrane, which may help to increase the concentration of viruses that can 
interact with cell surface receptors. KSHV gB contains an integrin-binding RGD 
(Arg-Gly-Asp) motif that enables virus entry [ 38 ,  39 ,  43 ] by interacting with αVβ3 
and αVβ5 integrins on cells [ 44 ]. In activated B cells, dendritic cells (DCs), and 
macrophages, dendritic cell-specifi c intercellular adhesion molecule 3 (ICAM-3)-
grabbing non-integrin (DC-SIGN; CD209) can also bind KSHV [ 45 ,  46 ]. 
Collectively, heparan sulfate, integrins, and DC-SIGN are all thought to interact 
with KSHV and contribute to binding of the virus to the cell. xCT, a 12- transmembrane 
glutamate/cysteine exchange transporter protein, can also serve as a receptor [ 47 ]. 
xCT is part of the CD98 (4F2 antigen) complex that contains a glycosylated heavy 
chain and several 45-kDa light chains. Ephrin receptor tyrosine kinase A2 (EphA2) 
has also been identifi ed as a cellular receptor. Binding of EphA2 to the viral glyco-
protein dimeric complex gH-gL results in the phosphorylation and endocytosis of 
EphA2 in epithelial and endothelial cells [ 48 ]. EphA2 has also been shown to be a 
master regulator of macropinocytosis in human dermal microvascular endothelial 
cells by facilitating the recruitment of various signaling molecules to the entry site 
and by regulating the activation of KSHV-induced signaling molecules [ 49 ]. KSHV 
primarily enters cells by clathrin-mediated endocytosis [ 50 – 53 ] (Fig.  12.1 ), although 
it can also enter through macropinocytosis [ 52 ]. Virus binding to the cell initiates a 
host cell signaling cascade that allows the virus to modulate the cellular microenvi-
ronment to its advantage. Binding of KSHV to cell surface receptors such as integ-
rins stimulates the phosphorylation and activation of focal adhesion kinase (FAK), 
which in turn activates other proteins including PI3K, Src, Rho GTPases, and 
Diaphanous 2 [ 40 ,  43 ,  51 ,  54 – 63 ]. Activation of PI3K and Rho GTPase causes rear-
rangement of the cytoskeleton and formation of lamellipodia (Rac), stress fi bers 
(RhoA), and fi lopodia (Cdc42). Priming of the microtubules enables the delivery of 
viral capsids to the nuclear membrane [ 57 ,  61 ]. KSHV also activates the mitogen- 
activated protein kinase (MAPK) pathway, specifi cally ERK1/2, as well as the 
NFκB pathway; both of these pathways help initiate viral gene expression in infected 
cells [ 40 ,  56 ,  58 ,  62 ,  64 ].
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       Cellular Targets of Infection and the Viral Lifecycle 

 In vitro, KSHV can infect a wide range of cell types including fi broblasts, kerati-
nocytes, B lymphocytes, monocytes, plasmacytoid dendritic cells (pDCs), endo-
thelial cells, and epithelial cells [ 45 – 47 ,  50 ,  64 – 75 ]. However, in vivo, KSHV is 
known to infect B cells and endothelial cells [ 76 – 78 ], epithelial cells [ 79 – 81 ], and 
monocytes [ 82 ]. 

 KSHV has two phases to its lifecycle: latency and viral lytic replication (Fig.  12.2 ). 
During latency, the viral genome exists as a circular episome that is tethered to the 
host chromosomes via a viral protein named latency-associated nuclear antigen 
(LANA). Viral gene expression is restricted and only a small number of viral genes 
are expressed. In contrast, during lytic replication nearly all viral genes are expressed, 
which allows for amplifi cation of viral genomes and the subsequent assembly, egress, 
and dissemination of progeny virions. The lytic switch protein, ORF50 or Replication 
and Transcription Activator (RTA), is the master switch that controls KSHV reactiva-
tion [ 83 ,  84 ]. In cell culture, chemicals such as sodium butyrate, histone deacetylase 

  Fig. 12.1    Viral entry. The various stages of KSHV entry are depicted. The virion binds various 
cellular receptors and primarily enters the cell by clathrin-mediated endocytosis. Signaling initi-
ated by virion binding modulates the cytoskeleton to facilitate delivery of the virion to the nucleus. 
After the KSHV genome enters the nucleus, the decision to enter the latent or lytic phase of the 
viral lifecycle occurs       
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inhibitors, and phorbol esters reactivate the virus [ 85 ]. Other triggers include 
 cytokines such as oncostatin M, interferon-γ, and hepatocyte growth factor. Hypoxia, 
or oxygen deprivation, as well as terminal differentiation of B cells induced by 
X-box-binding protein 1 (XBP-1) expression can also reactivate KSHV [ 86 – 89 ]. 
Finally, activation of toll-like receptors (TLRs) 7 and 8 by microbes can induce 
KSHV reactivation from latently infected cells [ 90 ]. Host cellular factors such as the 
tousled-like kinases (TLKs) can also control KSHV reactivation from latency. 
Depletion of TLKs in KSHV latently infected cells results in viral reactivation [ 91 ]. 
Chromatin organizing factors such as cohesins have a regulatory role in maintaining 
KSHV latency by binding and repressing transcription of the immediate early gene 
cluster. Depletion of cohesions in PEL cells results in RTA expression and viral rep-
lication [ 92 ]. Spontaneous reactivation from latency occurs both in cell culture and 
in vivo and the primary site of lytic virus replication in humans is the oropharynx [ 73 , 
 93 – 96 ]. Clinical data demonstrates that shedding of virus during periodic bouts of 
lytic reactivation is intermittent and usually asymptomatic [ 94 ,  97 ].

       Viral Latency 

 The KSHV latent genes are encoded by a major latency locus that is transcribed in 
all latent KSHV-infected cells (Fig.  12.3 ). This locus encodes LANA, viral cyclin 
(v-cyclin), v-FLICE-inhibitory protein (v-FLIP), and the kaposins (K12). The 
LANA, v-cyclin and v-FLIP genes are under the control of the LANA promoter 
[ 98 – 100 ]. The three kaposin transcripts (A, B, C) are driven by the kaposin promoter, 
which can also generate a bicistronic transcript for v-cyclin and v-FLIP [ 101 ]. Twelve 
virally encoded pre-miRNAs are also transcribed using this promoter [ 30 – 32 ,  102 , 
 103 ]. All of these latent genes are expressed in KS and PEL cells [ 104 ,  105 ]. 
Additionally, PEL cells express v-IRF3 (also called LANA-2) during latency [ 106 ].

  Fig. 12.2    Latency and 
reactivation. Following 
infection, KSHV typically 
establishes latency in the host 
cell. RTA is the virally 
encoded lytic switch protein 
that induces sporadic bouts of 
lytic reactivation and viral 
replication       
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      LANA 

 Latency-associated nuclear antigen (LANA), the major latency protein, plays a 
 critical role in latent viral replication. LANA simultaneously binds the viral  episome 
(via the latent origin of replication in the terminal repeats) and cellular histones H1, 
H2A, and H2B [ 107 – 114 ], thus tethering the episome to host chromosomes. Latent 
viral DNA replication is performed by the host’s DNA polymerase. Therefore, 
 during cell division, viral genomic DNA undergoes replication and segregation 
 concurrently with host chromosomes, allowing distribution of viral genomes to 
daughter cells [ 113 – 115 ]. 

 Aside from its function in replication and maintenance of the KSHV latent 
genome, LANA promotes tumorigensis by altering cellular pathways involved in 
cell proliferation and survival. LANA extends the life span of endothelial cells 
[ 116 ]. LANA transgenic mice display splenic follicular hyperplasia and enhanced 
germinal center formation [ 117 ], B cell lymphomas, and an increased response to 
antigen stimulation [ 118 ]. LANA binds p53, and cells that express LANA have 
reduced activation of p53-dependent reporter genes [ 119 ]. However, most PEL 
respond to p53-activating DNA damaging agents [ 120 ]. LANA also binds the tumor 
suppressor Rb resulting in functional inactivation of Rb and increased E2F- 
dependent reporter gene activation [ 121 ]. 

 LANA also interacts with GSK-3β, which phosphorylates and inactivates 
β-catenin through ubiquitin-mediated proteosomal degradation [ 122 ]. LANA’s 
binding to GSK-3β induces its relocation to the nucleus, which allows β-catenin to 
accumulate in the cytoplasm. This allows for the transcription factor LEF to move 
into the nucleus to activate expression of cyclin D and c-myc [ 122 ]. LANA can also 
increase c-Myc protein stability [ 123 ,  124 ]. Moreover, LANA contributes to tumor-
igenesis by inducing chromosome instability. LANA interacts with the spindle 
checkpoint protein, Bub1, and dysregulates its activity leading to irregular chromo-
some replication [ 125 ]. 

 As a nuclear protein, LANA has transcriptional effects on the Rb/E2F pathway 
[ 126 – 128 ]. Although LANA can activate transcription of certain genes [ 126 – 128 ], 
LANA is predominantly a repressor of transcription [ 111 ,  129 ,  130 ]. LANA interacts 

  Fig. 12.3    The latency locus of KSHV. The latent genes include Orf73/LANA, Orf72/vCyclin, 
Orf71/vFLIP, and Kaposin/K12. The KSHV latency locus also expresses a number of viral pre- 
microRNAs that are processed into 18 mature microRNAs       
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with RBP-Jκ (also called CBF-1 or CSL) and is targeted to RBP-Jκ sites in the 
ORF50 promoter to repress RTA transcription [ 131 ]. LANA also associates with the 
cellular transcription repressors Krüppel-associated box domain-associated protein-
 1 (KAP1) and Sin3A to repress the lytic promoter RTA during primary KSHV infec-
tion, thereby promoting the establishment of latency [ 132 ,  133 ].  

    vCyclin 

 vCyclin shows homology to cellular cyclin D. vCyclin binds and activates cdk6 in 
a similar fashion as its cellular homolog [ 134 ]. vCyclin can also induce phosphory-
lation of histone H1, p27, nucleophosmin (NPM), Id-2, and cdc25a [ 135 – 137 ]. 
vCyclin promotes S-phase entry and can overcome Rb-mediated cell cycle arrest 
mediated by cdk inhibitors [ 138 ]. Phosphorylation of p27 by vCyclin-cdk6 targets 
p27 for degradation thereby inhibiting the regulation of cdk6 by p27 [ 139 ,  140 ]. 
vCyclin also opposes senescence and G1-arrest induced by vFLIP (see section on 
vFLIP)-activated NFκB by resisting cdk inhibitors and by targeting p27 for degra-
dation [ 141 ]. Interestingly, vCyclin can also bind cdk9 resulting in increased phos-
phorylation of p53 and subsequent cell cycle arrest [ 142 ]. vCyclin transgenic mice 
develop lymphomas only in animals defi cient for p53 [ 143 ,  144 ]. vCyclin trans-
genic mice also display severe lymphatic dysfunction and develop chylous ascites 
[ 145 ]. Therefore, vCyclin is not suffi cient to induce tumorigenesis, but it contrib-
utes to cellular transformation by promoting cell cycle progression and proliferation 
when cells are in a contact-inhibited state [ 146 ].  

    vFLIP 

 KSHV vFLIP or K13 is the viral homolog of cellular FLIP (FLICE [protein FADD- 
like interleukin-1 beta-converting enzyme, now called caspase-8] inhibitory pro-
tein). vFLIP contains two death effector domains (DEDs) that allows for homotypic 
protein–protein interactions with other DED-containing proteins. Overall, vFLIP 
has been shown to inhibit Fas-dependent apoptosis [ 147 – 149 ], with the exception of 
one report [ 150 ]. vFLIP upregulates the NFκB signaling pathway [ 151 – 155 ] and 
can bind NEMO (also called IKKγ) in PEL cells [ 156 – 158 ]. This complex activates 
IKK, resulting in IκB phosphorylation and the release of active p65-p50 NFκB het-
erodimers [ 159 ]. Binding of vFLIP to the adaptor NEMO and activation of NFκB 
are essential for protecting cells against death receptor-induced cell death [ 160 ]. 
Moreover, vFLIP enhances interferon regulatory factor 4 (IRF4)-mediated gene 
transcription [ 161 ] and induces the expression of IL-1β, IL-18, and caspase-1 tran-
scripts via NFκB [ 162 ]. Expression of vFLIP protects B cells from B cell receptor- 
induced apoptosis by NFκB activation [ 163 ]. Transgenic vFLIP mice displayed an 
increased incidence of lymphoma and enhanced responses to mitogenic stimuli 
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[ 150 ,  164 ]. A separate line of vFLIP transgenic mice displayed B cell-derived 
tumors and lymphadenopathy with an increased number of lambda light chain- 
expressing plasmablasts, similar to MCD [ 149 ].  

    Kaposin/K12 

 The kaposin locus encodes three proteins: kaposins A, B, and C [ 165 ]. Kaposin A 
is a small transmembrane protein that can transform cells in vitro [ 166 ,  167 ]. 
Kaposin B activates the p38 MAPK signaling pathway by direct interaction with the 
kinase MK2, a p38 substrate [ 168 ]. This results in the stabilization of cytokine and 
growth factor mRNAs [ 168 ]. Kaposin B also induces phosphorylation of STAT3 
and MK2-mediated phosphorylation of TRIM28 thus relieving STAT3 repression 
from TRIM28 and enhancing infl ammation [ 169 ].  

    Viral miRNAs 

 The KSHV pre-miRNAs produce 18 mature miRNAs [ 170 ]. Both host and 
viral mRNAs are targeted by the KSHV miRNAs. KSHV miRK9-3p (also called 
miRK9*) targets the expression of the viral RTA protein [ 171 ] while several 
viral miRNAs including miR-K12-1, miR-K12-3-3p, miR-K12-6-3p, and miR-
K12-11 target thrombospondin, an anti-angiogenic protein [ 172 ]. One KSHV 
miRNA, miRK11, shares seed sequence identity with a lymphoid-specifi c host 
miRNA (miR155) that modulates B cell differentiation [ 173 – 175 ]. Deletion of a 
14-miRNA cluster from the viral genome increased viral lytic replication due to 
lowered NFκB activity [ 176 ]. Thus, the KSHV miRNAs modulate KSHV viral 
latency and lytic replication. KSHV miRNAs also regulate cell transformation and 
tumorigenesis by preferentially targeting pathways related to cancer including the 
NFκB pathway. KSHV mIR-K1 targets and reduces IκBα levels thereby facilitating 
NFκB activation, cell growth, and survival. Several KSHV miRNAs are implicated 
in promoting cell growth and survival by modulating levels of various host proteins. 
Moreover, some KSHV miRNAs regulate the levels of cellular proteins involved in 
the immune response and angiogenesis [ 177 – 179 ].   

    Viral Lytic Cycle 

 Like other herpesviruses, the lytic program of KSHV also displays a temporal order 
of gene expression: immediate early, delayed early, and late genes. 

 The RTA protein encoded by KSHV ORF50 is the key lytic switch protein that 
controls reactivation from latency and initiates lytic replication. Ectopic expression 
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of RTA alone can induce reactivation from latency [ 83 ,  180 ,  181 ] and deletion or 
inactivation of RTA prevents reactivation from latency [ 84 ,  182 ]. ORF50 is an 
immediate-early protein as it is transcribed in the presence of cycloheximide, mean-
ing no other viral protein synthesis is required for ORF50 expression [ 83 ,  183 ,  184 ]. 
ORF50 is the fi rst transcript to be made during reactivation following chemical 
induction of PEL with TPA [ 181 ,  185 ]. This is because the ORF50 promoter is 
induced by TPA and lytic induction is associated with demethylation of the ORF50 
promoter [ 186 ,  187 ]. ORF50, K8, and K8.1 genes are all part of a polycistronic 
transcript. 

 KSHV RTA has an amino-terminal DNA-binding domain (DBD) and a carboxy- 
terminal activation domain. ORF50 can bind to and activate many different KSHV 
viral promoters as well as the two origins of lytic replication, OriLyt-L and OriLyt-R 
[ 188 ]. The RTA/ORF50-binding sites are called RTA-response elements (RREs), 
although many of the RREs share limited sequence homology [ 189 – 199 ]. Although 
ORF50 can directly bind DNA to transcriptionally activate promoters, it can also 
interact with other cellular transcription factors such as RBP-Jκ [ 192 ]. RBP-Jκ rec-
ognition sites are found in several ORF50-responsive gene promoters [ 189 ,  192 , 
 196 ,  199 – 201 ]. ORF50 can also bind the transcription factors C/EBPα [ 190 ,  202 ], 
Oct-1 [ 203 ], and STAT-3 [ 204 ]. Additionally, ORF50 can interact with factors 
involved in chromatin modifi cation such as CBP and histone deacetylase 1 [ 205 ], 
the chromatin remodeling complex SWI/SNF, and the TRAP/Mediator complex, 
which enables interaction of RNA pol II with many transcription factors [ 206 ]. 

 The spliced isoform of plasma cell transcription factor X box-binding protein 1 
(XBP-1s) can also govern the switch from latency to lytic replication [ 88 ,  89 ]. 
XBP-1s is not present in PEL, but the induction of hypoxia or endoplasmic reticu-
lum stress gives rise to XBP-1s and subsequent induction of the lytic cycle [ 89 , 
 207 ]. In addition to ORF50, ORFs K8, ORF45, and K4.2 are also classifi ed 
as immediate early genes, although some reports classify them as delayed early 
(DE) genes. 

 DE genes encode transcripts that are sensitive to cycloheximide (since their 
expression depends on activation of their promoters by IE proteins) but resistant to 
viral DNA synthesis inhibitors. DE proteins include the viral DNA polymerase, 
thymidine kinase, ribonucleotide reductase, ssDNA-binding protein, and poly-
merase processivity factor, which prepare the infected cell for the onset of viral 
DNA replication. Several other DE proteins function in nuclear-cytoplasmic trans-
port of viral RNAs (ORF57), modulation of signal transduction (K1, K15, and 
vGPCR), and immune evasion (K3/MIR1 and K5/MIR2). 

 The delayed early lytic phase is followed by viral DNA replication. The core 
replication machinery is directed to the replication origins on the viral genome 
called oriLyts. The KSHV genome contains two oriLyt regions: the left-hand origin 
(oriLyt L) which lies between ORFs K4.2 and K5, and the right-hand element (ori-
Lyt R) which lies between ORFs K12 and 71 [ 208 ,  209 ]. Viral genome replication 
is thought to occur in a rolling circle mechanism and linear genomes are produced 
and packaged into nascent capsids. The viral replication machinery comprise the 
KSHV viral DNA polymerase, helicase, polymerase processivity factor, primase, 
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primase-associated factor, and single strand-binding protein [ 210 ]. Following DNA 
replication, late gene expression ensues. Most late genes encode structural proteins 
such as capsid proteins and envelope proteins [ 99 ,  104 ,  211 ,  212 ].  

    Host Response to KSHV Infection and the Viral 
Counter Response 

 An innate immune response occurs following KSHV infection due to the detection 
of KSHV by various host cellular proteins including TLRs, IFI-16, and RIG-I like 
receptors. TLRs are the fi rst line of defense against infecting microbes. TLRs detect 
pathogen-associated molecular patterns (PAMPs) present on the invading microbe 
and initiate signaling cascades leading to the activation of type I interferon (IFN) 
and NFκB and the production of proinfl ammatory cytokines [ 213 ]. TLRs can be 
expressed endosomally or on the cell surface. KSHV activates TLR3 during infec-
tion of primary human monocytes leading to the upregulation of TLR3 expression 
and its downstream mediators, including IFN-β1 and CXCL10 [ 75 ]. In human 
pDCs, which are the body’s chief IFN-producing cells, viral infection activates 
TLR9, a DNA sensor [ 65 ]. KSHV is also sensed by another innate immune protein, 
the interferon gamma-inducible factor IFI-16, and IFI-16 colocalizes with the 
KSHV genome in the nucleus [ 214 ] and forms an infl ammasome resulting in the 
production of IL-1β during primary and latent infection [ 162 ,  214 ]. The double 
stranded RNA sensor retinoic acid-inducible gene 1 (RIG-I) and its adaptor mito-
chondrial antiviral signaling protein (MAVS) also sense KSHV infection. Primary 
infected KSHV cells that have been depleted of RIG-I and MAVS have increased 
KSHV and reduced IFN-β transcription [ 215 ]. 

 To counter the host-mediated immune response, KSHV encodes many gene 
products that thwart various arms of the host immune response. Several KSHV 
proteins are able to ablate the activation and function of type I IFNs produced in 
response to microbial infection. Activation of the innate immune response leads to 
the activation of cellular interferon regulatory factors (IRFs), e.g., IRF3 and IRF7, 
type I interferon (IFNα and IFNβ), and infl ammatory cytokines. IFNα/β secreted 
from the infected cell can bind to IFNα and IFNβ receptors expressed on neighbor-
ing cells. IFN receptor activation induces signaling that stimulates transcription of 
many different IFN-sensitive genes (ISGs), and the cellular IRFs themselves. 

 The KSHV genome encodes four homologs of cellular IRFs. vIRF-1, -2, -3, and 
-4 were named based on their order of discovery. vIRF-3 is latently expressed but the 
other vIRFs (vIRF-1, -2, and -4) are mainly expressed during the lytic cycle. Although 
primarily a lytic gene, vIRF-1 can also be transcribed in latently infected KS cells 
[ 216 ,  217 ], vIRF-1 is transcribed in latently infected KS cells [ 105 ,  195 ]. vIRF-1, -2, 
and -3 cannot bind IRF-binding motifs in type I IFN and ISG promoters since they 
do not contain the DBDs of cellular IRFs (Fig.  12.4 ). vIRF-1 inhibits IFN activation 
in response to Sendai virus infection [ 216 ,  218 ] and dimerizes with cellular IRF1 and 
IRF3 to prevent their activation of IFN promoters. vIRF-1 can bind and sequester the 
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coactivator, CBP/p300, away from cellular IRFs, thereby inhibiting CBP/p300 
 histone acetyltransferase activity on IRF-driven promoters [ 217 ,  219 ,  220 ]. vIRF-2 
inhibits cellular IRF1- and IRF3-mediated transcription [ 217 ,  221 ], IFNβ promoter 
activity [ 222 ], ISG56 activation [ 221 ], and ISRE transactivation [ 221 ]. Similar to 
vIRF-1 and vIRF-2, vIRF-3 can inhibit transactivation of the IFN- α4 and IFN-α6 
promoter [ 223 ,  224 ]. vIRF-3 also inhibits IFNγ-mediated activation of the GAS pro-
moter and CIITA promoters PIV and PII [ 225 ]. Downregulation of the CIITA pro-
moters results in reduced major histocompatibility complex class II (MHC II) 
expression [ 226 ] and a hampered adaptive immune response.

   Two other KSHV proteins that are not IRF homologs can also thwart cellular IRF 
signaling. ORF50 induces IRF7 degradation and ORF45 can bind IRF7 and prevent 
its phosphorylation and nuclear translocation [ 227 ,  228 ]. An ORF45-deleted virus 
was less able to replicate compared to wild-type virus [ 229 ,  230 ]. 

 Two viral proteins, ORFs K3 and K5, inhibit presentation of MHC-I [ 231 ]. K3 
and K5 encode for  m odulators of  i mmune  r ecognition (MIR1 and MIR2, respec-
tively). K5/MIR2 downregulates only HLA-A and HLA-B, while K3/MIR1 down-
regulates all four HLA allotypes (HLA-A, -B, -C, -E) [ 232 ,  233 ]. The KSHV MIR 
proteins functionally resemble the cellular MARCH protein family. This is a fam-
ily of ubiquitin ligases that ubiquitinate cellular glycoproteins and target them for 

  Fig. 12.4    The KSHV vIRFs. KSHV encodes four vIRFs that share varying amounts of homology 
with cellular IRFs. One function of the vIRFs is to block cellular IRF function and interferon acti-
vation that is initiated by the host cell’s immune response to the virus       
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 lysosomal destruction [ 234 ]. The MIRs also downregulate CD1d, an MHC-related 
protein that presents lipids and glycolipids to classical T and nonclassical NK T 
cells [ 235 ]. Additionally, K5/MIR2 (but not K3) can downregulate ICAM-1 and 
the costimulatory molecule B7-2 (CD86) [ 236 ,  237 ], which are proteins that exist 
on antigen-presenting cells and function in activating CD4-positive T cells. 
K5-driven downregulation of these proteins prevents helper T cell costimulation 
[ 236 ] and inhibits Natural Killer (NK) cell cytotoxicity [ 237 ]. Furthermore, K3 
and K5 downregulate the interferon gamma receptor 1 (IFN-gammaR1) [ 238 ] and 
K5 reduces surface expression of the NKG2D ligands MHC class I-related chain A 
(MICA) and MICB, as well as the NKp80 ligand activation-induced C-type lectin 
(AICL) [ 239 ] (Fig.  12.5 ).

   KSHV also encodes multiple CC chemokines: vCCL1 (formerly known as 
v-MIP-I), vCCL-2 (vMIP-II), and vCCL-3 (v-MIP-III) [ 240 ]. KSHV vCCL-1 sig-
nals through CCR8, vCCL-2 signals through CCR8 and CCR3, and vCCL-3 signals 
through CCR4 [ 241 – 243 ]. These viral chemokines activate receptors that are mainly 
present on Th2 cells, leading to a Th2-polarized response (Fig.  12.5 ). Moreover, 
vCCL-2 can interact with other chemokine receptors including CCR1, CCR2, 
CCR5, CXCR1, CXCR2, and CXCR4; however, binding of vCCL-2 to these 

  Fig. 12.5    The KSHV MIRs and vCCLs. K3 and K5 encode the KSHV MIRs, which can ubiqui-
tinate and induce the degradation of a number of immune receptors including MHC class I, ICAM- 
1, B7-2, and IFNγR1. The KSHV-encoded viral chemokines (vCCLs) block Th1 responses and 
augment Th2 responses       
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 receptors inhibits, rather than activates, signal transduction in the presence of each 
receptor’s chemokine ligands [ 241 – 243 ]. KS lesions comprise more Th2 T cells 
(CCR3+) than Th1 T cells (CCR5+) which aligns with these observations [ 244 ]. As 
well as binding T cell receptors, binding of vCCL-2 to CX3CR1 and CCR5 on NK 
cells inhibits binding to natural ligands resulting in reduced NK cell migration 
[ 245 ]. The viral chemokines can also induce angiogenic responses and activate vas-
cular endothelial growth factor (VEGF) [ 246 ,  247 ]. 

 Another viral protein that inhibits the infl ammatory response is KSHV ORF63. 
This protein shows some homology to the nucleotide binding and oligomerization, 
leucine-rich repeat (NLR) family of proteins [ 248 ]. Activation of the NLR- dependent 
infl ammasome complex results in the autocatalytic processing of procaspase- 1 to 
caspase-1. Activated caspase-1 subsequently cleaves the precursors of the proin-
fl ammatory cytokines pro-IL-1β and pro-IL-18 into their biologically active forms: 
IL-1β and IL-18, respectively [ 249 ]. ORF63 binds NLRP1, and prevents its associa-
tion with procaspase-1, thereby inhibiting the processing of procaspase-1 and sub-
sequent processing of pro-IL-1β and pro-IL18 [ 248 ]. 

 KSHV K14 encodes a glycoprotein of the immunoglobulin superfamily that 
shows homology to cellular CD200 (also known as OX2). Cellular CD200 is a 
negative regulator of infl ammation [ 250 ]. One report demonstrated proinfl amma-
tory signaling by K14 [ 251 ], but other studies found that K14/vOX2 represses 
induction of myeloid activation by suppressing TNF-α production by activated mac-
rophages, decreasing MCP-1 and IL8 production, and blocking the secretion of his-
tamine from activated basophils [ 252 ,  253 ]. In human primary monocyte-derived 
macrophages, K14 expression decreases cytokine production and phagocytic activ-
ity only in the context of IFN-γ activation [ 254 ]. Expression of K14 in antigen pre-
senting cells (APC) leads to the suppression of antigen-specifi c T-cell responses. 
These T cells make less IFN-γ and express less CD107a, a component of cytotoxic 
granules and an indication of cytotoxic killing after exposure to K14-expressing 
APC [ 255 ].  

    Viral Genes Involved in Cell Survival and Transformation 

 In addition to the genes and miRNAs described above in the section on viral latency, 
some other viral proteins that play roles in cell survival, signaling, and proliferation 
are described below and depicted in Fig.  12.6 .

      K1 

 K1 is a type I transmembrane protein located at the left end of the KSHV genome. 
K1 is found in the ER and on the cell membrane. Its amino terminus is glycosylated 
and the C-terminal cytoplasmic tail contains an immunoreceptor tyrosine-based 
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activation motif (ITAM) [ 256 ] that when phosphorylated can activate downstream 
signaling events including PLCγ activation and calcium release [ 256 ,  257 ]. K1 is 
constitutively active and its aggregation leads to ITAM phosphorylation, Syk kinase 
recruitment, and increased NFATc and AP-1 activity. Moreover, the phosphorylated 
K1 tail can interact with Syk, PI3-kinase, lyn, RAS-GAP, PLC-γ 2, vav, and cbl 
[ 257 – 259 ]. PI3K activation results in the phosphorylation and activation of Akt 
kinase [ 259 ], the cell survival kinase involved in activation of pro-apoptotic factors, 
e.g., FOXO, Bad. K1-expressing cells are more resistant to apoptosis induced by 
Fas ligand or the expression of FOXO proteins [ 259 ]. K1 interacts with endoplas-
mic reticulum-associated Hsp40 (Erdj3/DnaJB11) and heat shock protein 90-beta 
(Hsp90beta), and these interactions are important for K1’s effect on cell survival 
[ 260 ]. In B cells, K1 prevents surface transport of the B cell receptor (BCR) [ 261 ]. 
K1 has been shown to transform rodent fi broblasts [ 262 ] and K1 transgenic animals 
display lymphomas and sarcomas [ 263 ] and activated Lyn kinase [ 264 ]. K1 upregu-
lates the secretion of angiogenic factors such as VEGF and matrix metalloprotein-
ase- 9 [ 265 ] in epithelial and endothelial cells. In addition to B cells, K1 can activate 

  Fig. 12.6    The KSHV K1, K15, and vGPCR transmembrane proteins. Multiple cellular signal 
transduction pathways are activated by the expression of the viral proteins K1, K15, and vGPCR. 
These signaling pathways include MAPK, NFκB, PI3K/Akt/mTOR, and PLCγ, and their activa-
tion leads to increased production of growth factors and cytokines, cell proliferation, and cell 
survival       
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the PI3K/Akt/mTOR pathway in endothelial cells, which results in immortalization 
of primary human umbilical vein endothelial cells (HUVEC) in culture [ 266 ]. Thus, 
K1 contributes to angiogenesis and cell survival.  

    vGPCR 

 KSHV encodes a viral G protein-coupled receptor (vGPCR) that is a member of the 
seven transmembrane G protein-coupled chemokine receptor family [ 267 ]. vGPCR 
displays constitutive signaling activity, although its activity can be augmented by 
chemokines such as GRO-α and inhibited by chemokines like CXCL10/IP10 [ 268 , 
 269 ]. vGPCR signaling activates the PI3K/Akt/mTOR, NFκB, and MAPK path-
ways [ 270 – 277 ]. vGPCR augments angiogenesis and cell proliferation and vGPCR 
expression transforms cells [ 278 – 280 ]. vGPCR transgenic mice develop focal 
angioproliferative lesions similar to KS [ 281 – 283 ]. vGPCR is thought to aid trans-
formation through a paracrine mechanism [ 284 ]. vGPCR activates IKKε leading to 
phosphorylation of NFκB. Nude mice injected with vGPCR-expressing cells defi -
cient in IKKε fail to develop tumors suggesting that IKKε is essential for vGPCR- 
induced tumorigenesis [ 285 ]. vGPCR also activates expression of many cellular 
genes including Rac1 [ 286 ] and VEGF [ 271 ,  279 ].  

    K15 

 K15 lies at the right end of the viral genome and encodes another transmembrane 
signaling protein. K15 was initially named latency-associated membrane protein 
(LAMP) [ 287 ] and while it is thought to be expressed at low levels during latency 
[ 288 ], it is highly upregulated during the lytic cycle. K15 mRNAs are generated 
from alternatively spliced transcripts that include 8 or fewer exons resulting in four 
different isoforms [ 287 ,  289 ]. All spliced isoforms encode the carboxy-terminal 
cytoplasmic tail and are connected to a varying number of transmembrane domains. 
The full-length K15 protein contains 8 exons and 12 transmembrane domains. K15 
localizes to the cell membrane and is often present in lipid rafts [ 290 ]. The K15 
cytoplasmic region contains signaling motifs that, when phosphorylated, inhibit 
BCR signal transduction [ 289 ]. A TRAF-binding site in the cytoplasmic tail allows 
K15 to interact with TRAFs 1, 2, and 3 to constitutively activate NFκB and MAPK 
signaling pathways [ 287 ,  290 ]. K15 also contributes to angiogenesis. KSHV- 
infected endothelial cells induce the formation of angiogenic tubes upon reactiva-
tion; whereas, cells infected with K15-defi cient KSHV fail to form tubes. K15 
recruits PLCγ leading to the activation of calcineurin/NFAT-1 and increased expres-
sion of RCAN1, a gene involved in angiogenesis [ 291 ]. Finally, K15 can activate the 
expression of cytokines and chemokines including IL-8, IL-6, CXCL3, CCL20, 
CCL2, IL-1 α/β, and Cox-2 [ 292 ] (Fig.  12.6 ).  
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    vIL-6 

 vIL-6 is a viral homolog of human IL-6 (hIL-6). It is different from hIL-6 since it 
does not need to bind to the gp80 subunit of the IL-6 receptor complex to initiate 
gp130 signal transduction [ 293 – 296 ]. vIL-6 contributes to pathogenesis by infl u-
encing multiple pathways and cellular proteins involved in proliferation, apoptosis, 
and angiogenesis. vIL-6 shares the anti-apoptotic functions of hIL-6 on B cells, and 
can prevent apoptosis in response to pro-apoptotic stimuli [ 297 – 299 ]. Depletion of 
vIL-6 in PEL cells inhibits cell growth [ 300 ]. vIL-6 can localize to the endoplasmic 
reticulum (ER) where it is thought to signal in an “intracrine” fashion. The interac-
tion of vIL-6 and gp130 in the ER is important for maintaining PEL cell growth and 
viability via the activation of ERK 1 and 2 and STAT 1 and 3. vIL-6 also enhances 
the expression of DNA methyltransferase 1 (DNMT1) that induces irregular DNA 
methylation. Treating cells with a DNMT inhibitor results in reduced cell prolifera-
tion and migration [ 300 – 304 ]. vIL-6 can increase angiogenesis by upregulating 
VEGF [ 246 ,  305 ,  306 ]. Furthermore, vIL-6 expression induces angiopoietin 2, a 
proangiogenic and lymphangiogenic factor [ 307 ]. vIL6-expressing cells induce 
large tumors in mice and vIL6-transgenic mice develop MCD-like disease [ 308 ].   

    Conclusions 

 KSHV is an oncogenic herpesvirus associated with three different human malignan-
cies. KSHV encodes an arsenal of viral proteins that help the virus evade the host 
immune response and stay hidden inside infected cells for the lifetime of the host. 
KSHV also encodes many viral proteins that can modulate cellular signaling path-
ways to facilitate angiogenesis, cell proliferation, and survival. By manipulating these 
cellular signaling pathways, KSHV creates an environment that is benefi cial for the 
survival of the virus, which may inadvertently lead to transformation of the cell.     
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