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Abstract Feeding is a vital function that provides nutritional and energy metab-
olism needs for animals. To ensure feeding, mammalian brains possess several
interrelated neuronal systems that regulate different aspects of feeding behaviors.
These neuronal circuits controlling food intake are strongly regulated by peripheral
signals that contribute to the fine regulation of the energy homeostasis, such as
metabolites and hormones. Among the signals regulating food intake, the stomach-
derived hormone ghrelin and its receptor [named ghrelin receptor or the growth
hormone secretagogue receptor type 1a (ghrelin receptor 1a)] play a major role.
Ghrelin is the only mammalian peptide hormone able to increase food intake.
Ghrelin stimulates appetite by affecting both food intake itself and also the
rewarding aspects of feeding. As discussed below, the central distribution of ghrelin
receptor 1a supports the concept that ghrelin regulates both homeostatic and
hedonic aspects of feeding, and evidence from different studies confirms that
ghrelin promotes food intake via diverse mechanisms. Of note, derangements in the
ghrelin/ghrelin receptor 1a system have been reported in several eating disorders,
including obesity, anorexia nervosa, bulimia nervosa, binge eating disorders,
cachexia, and Prader-Willi syndrome. Here, the potential pathways by which
ghrelin receptor 1a regulates feeding, with a special focus on hedonic aspects of
eating, are delineated. Also, recent evidence suggesting a role of the ghrelin system
in disorders with alterations of food intake is briefly reviewed.
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Homeostatic and Hedonic Feeding Circuits

Feeding regulation involves an integrated regulatory system in which homeostatic
brain circuits, that drive food intake depending on energy store levels, interact with
the hedonic circuits that drive consumption based on rewarding properties of foods
(Berthoud 2011; Saper et al. 2002). The homeostatic circuits provide a means by
which signals of energy availability, including ghrelin, modulate food intake
(Williams and Elmquist 2012; Schwartz et al. 2000). Thus, homeostatic-driven
feeding occurs under negative energy balance conditions, when fuel stores are
depleted and plasma ghrelin is elevated (Williams and Elmquist 2012; Schwartz
et al. 2000). In contrast, hedonic-driven feeding refers to the involvement of
cognitive, reward, and emotional factors that lead to the consumption of plea-
surable foods even when extra calories are not necessary (Berthoud 2011; Saper
et al. 2002). Neuronal systems controlling homeostatic feeding are located mainly
in the brainstem and hypothalamus while neuronal systems controlling hedonic
feeding are primarily related to cortico-limbic structures (Berthoud 2011; Saper
et al. 2002; Williams and Elmquist 2012; Schwartz et al. 2000). Importantly, both
homeostatic and hedonic brain circuits driving food intake are regulated by
peripheral signals.

The hypothalamus contains several nuclei involved in food intake regulation,
including the arcuate nucleus (ARC), the paraventricular nucleus (PVN), the
lateral hypothalamic area (LHA), the ventromedial nucleus (VMN), and the
dorsomedial nucleus (DMN) (Williams and Elmquist 2012; Schwartz et al. 2000;
Suzuki et al. 2010). The ARC has become a major focus for energy balance
research because circulating factors, such as ghrelin, have increased accessibility
to this nucleus, where receptors for peripheral signals are highly expressed
(Williams and Elmquist 2012; Schwartz et al. 2000; Suzuki et al. 2010). The ARC
contains a key set of neurons that express the potent orexigenic neuropeptides
agouti-gene-related protein (AgRP) and neuropeptide Y (NPY), and also the
neurotransmitter c-aminobutyric acid (GABA) (Williams and Elmquist 2012;
Schwartz et al. 2000; Suzuki et al. 2010). To explain homeostatic food intake,
initial emphasis has been placed on a simple model in which ARC neurons act as
first-order neurons that sense peripheral factors and then regulate second-order
neurons of the PVN, VMN, DMH, and LHA (Williams and Elmquist 2012;
Schwartz et al. 2000; Suzuki et al. 2010). Recent evidence shows that another
target of ARC neurons is the parabrachial nucleus (PBN), which is located in the
hindbrain and inhibits feeding (Wu and Palmiter 2011; Atasoy et al. 2012). Sec-
ond-order neurons project then to other brain areas, including the dorsal vagal
complex in the brainstem, which comprises the nucleus tractus solitarius (NTS),
the area postrema (AP), and the dorsomotor nucleus of the vagus (DMV), and
plays a major role regulating food intake in concert with the ARC (Williams and
Elmquist 2012; Schwartz et al. 2000; Suzuki et al. 2010). The dorsal vagal
complex senses peripheral hormones directly and also integrates neuronal inputs
from the hypothalamic and peripheral centers. In particular, the NTS is a
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termination site of the vagal afferent fibers that transmit visceral sensory infor-
mation, including gastric distension and gut factors, from cell bodies located in the
nodose ganglia (Williams and Elmquist 2012; Schwartz et al. 2000; Suzuki et al.
2010). Thus, homeostatic adjustments of food intake integrate not only hypotha-
lamic systems governing intake on a meal-to-meal basis but also brainstem
systems regulating meal size and/or meal frequency.

A key element of neuronal circuits regulating food reward behaviors is the
dopaminegic pathway emanating from the midbrain ventral tegmental area (VTA)
(Berthoud 2011; Saper et al. 2002; DiLeone et al. 2012; Hyman et al. 2006).
Dopaminergic VTA neurons project to the nucleus accumbens (NAc) in the ventral
striatum and other areas such as the amygdala, medial prefrontal cortex (mPFC),
hippocampus, and hypothalamus (DiLeone et al. 2012; Hyman et al. 2006). The
VTA receives projections from many brain nuclei, including the above-mentioned
areas that receive projections from the VTA and cholinergic neurons of the
laterodorsal tegmental area (LDTg) (Dickson et al. 2010). In addition, the VTA
receives taste information via afferent sensory fibers that have two brainstem relays,
in the NTS and in the PBN (DiLeone et al. 2012; Hyman et al. 2006). Dopamine
release in the NAc potently augments the drive to obtain food rewards (Palmiter
2007). The shell part of the NAc is particularly important for eating behaviors since
it sends projections to the LHA neurons controlling food intake (Stratford and
Kelley 1999; Zheng et al. 2007). Orexigenic LHA neurons seem to be under a tonic
inhibition that can be relieved by activation of reward pathways (Stratford and
Kelley 1999; Zheng et al. 2007). In addition, LHA orexin neurons send projections
to the VTA, where they activate dopaminergic neurons (Nakamura et al. 2000;
Korotkova et al. 2003). Thus, LHA orexin neurons have been proposed as a
potential link between homeostatic and hedonic circuits regulating food intake
(Mahler et al. 2012).

Ghrelin and Ghrelin Receptor 1a in Feeding Centers

The ghrelin receptor 1a is present in and regulates both homeostatic and hedonic
feeding centers (Perello and Zigman 2012; Skibicka and Dickson 2011; Zigman
et al. 2006; Guan et al. 1997). Initially, ghrelin was shown to stimulate food intake
by acting on homeostatic hypothalamic circuits (Nakazato et al. 2001; Briggs and
Andrews 2011). Ghrelin effects on homeostatic eating likely involve the NPY/
AgRP/GABA neurons of the ARC that express high levels of ghrelin receptor 1a
(Nakazato et al. 2001; Briggs and Andrews 2011; Kageyama et al. 2010; Willesen
et al. 1999). Ghrelin-induced food intake also seems to depend on orexin neurons
of the LHA, where ghrelin receptor 1a is expressed (Toshinai et al. 2003;
Olszewski et al. 2003). Additionally, some evidence indicates that the vagus nerve
integrity is required for ghrelin-induced food intake (Date 2012; Date et al. 2002).
According to this possibility, ghrelin receptor 1a is expressed in vagal afferent
neurons of nodose ganglia and in the dorsal vagal complex (Zigman et al. 2006;
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Sakata et al. 2003). The presence of ghrelin receptor 1a in dopaminergic VTA
neurons supports the possibility that ghrelin can regulate hedonic aspects of eating
(Abizaid et al. 2006; Zigman et al. 2006; Chuang et al. 2011). Ghrelin may also
regulate mesolimbic circuits indirectly via the cholinergic neurons of the LDTg,
which express ghrelin receptor 1a (Dickson et al. 2010; Jerlhag et al. 2008).
Ghrelin’s action on food reward requires intact orexin signaling; however, the
neuronal circuits by which ghrelin recruits the LHA orexin neurons are still
unknown (Perello et al. 2010). Ghrelin presumably affects eating behaviors by also
acting on the hippocampus, a brain structure involved in memory and decision
making that expresses ghrelin receptor 1a (Zigman et al. 2006; Diano et al. 2006).
Figure 1 summarizes the ghrelin targets and the potential neuronal circuits con-
trolling homeostatic and hedonic aspects of food intake affected by ghrelin.

The ability of ghrelin to act in the brain and increase food intake depends on the
accessibility of circulating ghrelin to the above-mentioned brain areas. Circulating
ghrelin cannot freely cross the blood–brain barrier, and it is currently unclear how
this hormone enters the brain (Fry and Ferguson 2010). In mice, ghrelin can be
transported from the brain for circulation via a saturable transport system; how-
ever, no such system has been identified for blood to brain transport (Banks 2008).
It is frequently assumed that circulating ghrelin is able to access to the ARC, where
blood–brain barrier is presumably weaker; however, this possibility is still under
debate (Fry and Ferguson 2010; Rodriguez et al. 2010; Schaeffer et al. 2013).
Another possibility is that circulating ghrelin gains access to the brain through the
sensory circumventricular organs, which are specialized areas with fenestrated
capillaries. The median eminence, located in close apposition to the ARC, is a
circumventricular organ where plasma ghrelin can easily diffuse to reach neuronal
ghrelin receptor 1a (Schaeffer et al. 2013). The AP is another circumventricular
organ also known to participate in food intake regulation and that expresses ghrelin
receptor 1a (Fry and Ferguson 2007, 2010; Zigman et al. 2006). Thus, circulating
ghrelin could directly act on AP neurons, which then innervate several hypotha-
lamic and brainstem feeding centers (Fry and Ferguson 2007). Some evidence
does suggest that ghrelin-induced feeding depends on intact signaling at the AP
(Gilg and Lutz 2006; Date et al. 2006).

The relevance of the expression of ghrelin receptor 1a in brain areas without
access to circulating ghrelin is unclear. It has been proposed that ghrelin can be
centrally produced; however, evidence about the source and physiological sig-
nificance of centrally produced ghrelin is inconsistent (Cowley et al. 2003; Sakata
et al. 2009; Furness et al. 2011). Ghrelin receptor 1a mainly signals through Gaq/11,
phospholipase C, inositol phosphate, and calcium mobilization from intracellular
stores; although it also activates other signaling pathways (Cong et al. 2010). An
interesting feature of ghrelin receptor 1a is its strong constitutive activity that
makes it capable to signal in a ghrelin-independent manner (Mokrosinski and
Holst 2010; Damian et al. 2012). Thus, the increase of ghrelin receptor 1a
expression would accordingly increase activation of the downstream signaling
pathways affecting, as a consequence, food intake and body weight regulation
(Petersen et al. 2009). Additionally, it has been proposed that an alternative
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mechanism by which ghrelin receptor 1a regulates food intake involves its
dimerization with other G protein-coupled receptors. The ghrelin receptor 1a has
been shown to heterodimerize with the melanocortin 3 receptor, the serotonin 2C
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Fig. 1 Model of ghrelin action on neuronal circuits controlling homeostatic and hedonic eating.
Cartoons represent sagittal slices of rodent brain depicting brain circuits implicated in ghrelin’s
regulation of the homeostatic (upper panel) or hedonic (lower panel) aspects of eating. Black
areas represent brain nuclei involved in each circuit, and arrows indicate probable connections
between those brain nuclei. Stars label brain nuclei where GHSR is expressed. Abbreviations:
Amyg amygdala, AP area postrema, ARC arcuate nucleus, DMN dorsomedial nucleus, Hipp
hippocampus, LDTg laterodorsal tegmental area, LHA lateral hypothalamic area, mPFC medial
prefrontal cortex, NAc nucleus accumbens, NTS nucleus tractus solitaries, PBN parabrachial
nucleus, PVN paraventricular nucleus of the hypothalamus, VMN ventromedial nucleus, VTA
ventral tegmental area
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receptor, and the dopamine receptors, all involved in food intake and food reward
regulation (Schellekens et al. 2013; Kern et al. 2012; Jiang et al. 2006; Rediger
et al. 2011). Heterodimerization could serve to modulate specific functions of the
ghrelin receptor 1a, such as signaling pathways, or to act as an allosteric mech-
anism to regulate signaling pathways of the other receptors, independently of
ghrelin binding (Schellekens et al. 2013; Kern et al. 2012; Jiang et al. 2006;
Rediger et al. 2011).

Modulation of Hedonic Aspects of Eating in Rodent
Models by Ghrelin

Evidence from Studies Using Pharmacological
Manipulations of the Ghrelin System

Evidence shows that ghrelin enhances preference for pleasurable, sweet, and fatty
foods. In this regard, ghrelin administration shifts food preference toward a high-
fat diet (HFD) (Shimbara et al. 2004). Ghrelin administration also increases intake
of palatable saccharin solution and preference for saccharin-flavored foods in mice
(Disse et al. 2010). Similarly, rats treated with a ghrelin receptor 1a antagonist
consume less peanut butter and the liquid nutritional supplement Ensure�, but do
not change intake of regular chow in a free choice protocol (Egecioglu et al. 2010).
Likewise, treatment with a ghrelin receptor 1a antagonist selectively decreases
intake of sucrose solution in rats and saccharin solution self-administration in mice
(Landgren et al. 2011).

Ghrelin also enhances the motivation to obtain preferred foods, as evaluated by
operant lever-pressing or operant nose-poking behavioral tasks in progressive ratio
paradigms. Ghrelin administration increases operant lever-pressing for sucrose,
peanut butter-flavored sucrose or HFD pellets in rodents (Perello et al. 2010;
Finger et al. 2012; Skibicka et al. 2011; Overduin et al. 2012). Conversely,
treatment with a ghrelin receptor 1a antagonist reduces operant responding for
sucrose solution (Landgren et al. 2011). In addition, ghrelin increases food
anticipatory activity, which is characterized by increased arousal, increased
locomotor activity, and an elevated body temperature in anticipation of a predicted
meal (Merkestein et al. 2012; Jerlhag et al. 2006). Also, ghrelin secreted in
anticipation of a meal correlates to anticipatory locomotor activity, and adminis-
tration of ghrelin increases locomotor activity and foraging-like activities in
rodents (Blum et al. 2009; Keen-Rhinehart and Bartness 2005; Jerlhag et al. 2007).
On the other hand, ghrelin receptor 1a antagonists decrease anticipatory behavior
for a palatable meal (Merkestein et al. 2012).

Ghrelin can also affect more complex, reward-related eating behaviors such as
those that take place in a food conditioned place preference (CPP) test. In the food
CPP test, animals are conditioned to associate one chamber of the CPP apparatus
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with regular chow and a second, visually and texturally distinct chamber with an
equal-calorie amount of a more pleasurable food, such as HFD. After conditioning,
animals have free access to both chambers in the absence of food, and conditioned
place preference for HFD is demonstrated by animals spending more time in the
chamber associated with the more rewarding food. Food CPP studies performed in
mice reveal that both administration of ghrelin and physiological increases in
plasma ghrelin induced by caloric restriction enable acquisition of CPP for HFD
(Perello et al. 2010; Disse et al. 2011). Similarly, treatment with a ghrelin receptor
1a antagonist blocks CPP for chocolate pellets in satiated rats (Egecioglu et al.
2010). Of note, the assessment of the ghrelin effect on the hedonic valuation per se
by monitoring the avidity of ingestion of a liquid food via lickometry has
suggested that ghrelin does not affect food palatability (Overduin et al. 2012).

The dopaminergic VTA neurons are important for ghrelin’s effects on hedonic
aspects of eating. Exogenous ghrelin releases dopamine in the NAc from VTA
neuronal terminals, and ghrelin increases action potential frequency in dopami-
nergic VTA neurons (Abizaid et al. 2006; McCallum et al. 2011; Jerlhag 2008;
Jerlhag et al. 2006, 2007). Acute intra-VTA administration of ghrelin increases
intake of regular food, intake of peanut butter over regular chow, and operant lever-
pressing for sucrose and banana-flavored pellets (Abizaid et al. 2006; Naleid et al.
2005; Egecioglu et al. 2010; Skibicka et al. 2011; Weinberg et al. 2011). In addition,
pretreatment with a dopamine D1 receptor antagonist eliminates ghrelin-induced
increases in lever pressing in rats, without compromising generalized motor control,
indicating a role for dopamine signaling in ghrelin’s motivational feeding effects
(Overduin et al. 2012). On the other hand, intra-VTA administration of ghrelin
receptor 1a antagonists decreases food intake in response to peripherally adminis-
trated ghrelin, intake of a more preferred HFD, and fasting-induced operant lever
pressing for sucrose pellets (Abizaid et al. 2006; Naleid et al. 2005; King et al. 2011;
Skibicka et al. 2011). Chronic intra-VTA administration of ghrelin also dose-
dependently increases intake of regular chow (King et al. 2011), and VTA-lesioned
rats spend less time than control rats exploring tubes containing peanut butter in
response to centrally administrated ghrelin (Egecioglu et al. 2010). Similar effects
are observed in food-restricted rats, in which chronic intra-VTA administration of
ghrelin enhances while chronic intra-VTA delivery of a ghrelin receptor 1a antag-
onist blunts operant responding for chocolate-flavored pellets (King et al. 2011).
Furthermore, intra-VTA administration of ghrelin fails to affect operant lever-
pressing for food rewards in animals with dopamine depletion induced by delivery of
the neurotoxin 6-hydroxydopamine in the VTA (Weinberg et al. 2011). Ghrelin
administration into the VTA also stimulates locomotor activity via an increase in the
extracellular concentration of dopamine in the NAc (Jerlhag et al. 2007).

The rest of the neuronal circuit recruited by ghrelin to regulate hedonic aspects
of eating is just starting to be elucidated. Ghrelin action on food reward requires
intact orexin signaling, as evidenced by the failure of orexin-knockout mice or
wild-type (WT) mice given an orexin receptor antagonist to manifest ghrelin-
induced effects on HFD reward (Perello et al. 2010). Other signals that likely
mediate ghrelin actions on food intake are the endocannabinoids, which regulate
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both homeostatic and hedonic aspects of eating (Harrold and Williams 2003).
Central injection of ghrelin to endocannabinoid receptor type 1 knockout mice
fails to increase food intake, suggesting that the endocannabinoid signaling is
necessary for ghrelin’s orexigenic effect (Kola et al. 2008). Moreover, the ghrelin-
induced enhancement of food CPP seems to be partially mediated by the cholin-
ergic pathway (Disse et al. 2011). In this regard, nicotinic receptor signaling seems
to play a role in ghrelin’s actions on food reward since administration of a
selective antagonist of the a3b4 nicotinic receptor blocks both ghrelin-induced
increase of sucrose intake and dopamine release in the NAc following intra-VTA
administration of ghrelin (McCallum et al. 2011). The stimulatory effect of ghrelin
on dopaminergic neurons of the VTA also appears to depend on the excitatory
glutamatergic inputs (Abizaid et al. 2006). In fact, the ability of ghrelin to activate
the dopaminergic VTA system and the locomotor activity is suppressed by
pharmacological blockade of glutamatergic N-methyl-D-aspartate (NMDA)
receptors but not by blockade of opioid or orexin receptors (Jerlhag et al. 2011).

Evidence from Studies Using Genetic Manipulations
of the Ghrelin System

Mouse models with genetic manipulations of the ghrelin system have been
instrumental in order to establish the mechanisms underlying ghrelin’s actions on
eating behaviors. These models include mice over-expressing ghrelin and mice
with deletion of the genes encoding ghrelin, ghrelin receptor 1a, or the enzyme that
octanoylates ghrelin [ghrelin O-acyltransferase (GOAT)]. In addition, a conditional
ghrelin receptor 1a null mouse model in which ghrelin receptor 1a transcription is
globally blocked but can be cell-specifically reactivated in a Cre recombinase-
mediated fashion has been generated.

Most mouse models overexpressing or lacking bioactive ghrelin show minor
alterations on food intake behaviors. Transgenic mice with increased brain and
circulating bioactive ghrelin do not differ from WT controls in food intake or body
weight (Reed et al. 2008). In contrast, chronic overproduction of bioactive ghrelin
in the stomach increases food intake but does not alter long-term body weight gain
due to a paradoxical increase in energy expenditure (Bewick et al. 2009). The
double-transgenic mice overexpressing both human ghrelin and GOAT genes in
the liver have decreased energy expenditure and increased body weight without
food intake alterations only when fed on HFD rich in medium-chain triglycerides
(Kirchner et al. 2009). Similarly, ghrelin-deficient mice show normal food intake
and body weight, as compared to WT mice. (De Smet et al. 2006; Wortley et al.
2005; Sun et al. 2003; Dezaki et al. 2006; Sato et al. 2008). In addition, no
differences are observed when some other aspects of eating behaviors of ghrelin-
deficient mice are evaluated, including post-fasting hyperphagia or forced dark
cycle induced eating (Wortley et al. 2005; Sun et al. 2003; Pfluger et al. 2008; Sato
et al. 2008; De Smet et al. 2006). Of note, ghrelin-deficient mice show some
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alterations in their food intake behaviors under particular experimental settings.
For instance, they lack anticipatory eating response failing to match the increase in
food intake observed in WT type controls during 6 h food intake following
repeated overnight fasts (Abizaid et al. 2006). Studies where ghrelin-deficient mice
were chronically fed with HFD failed to show any reduction of food intake (Dezaki
et al. 2006; Wortley et al. 2005; Sun et al. 2003). Only one of these studies was
able to detect that ghrelin deficiency results in reduced body weight and fat mass,
among other beneficial effects (Wortley et al. 2005). On the other hand, the
GOAT-deficient mice, which lack plasma bioactive ghrelin, do not differ from WT
controls in food intake or body weight, when fed with regular chow (Kirchner et al.
2009; Zhao et al. 2010). One study showed that GOAT deficiency results in
decreased body weight when animals were fed on HFD rich in medium-chain
triglycerides (Kirchner et al. 2009), but this body weight phenotype was not
observed by other researchers (Zhao et al. 2010). GOAT-deficient mice display an
attenuated motivation for HFD in an operant responding model and also a
decreased hedonic feeding response examined in a ‘‘dessert effect’’ protocol, in
which the intake of a palatable HFD pellet ‘‘dessert’’ is assessed in calorically
sated mice (Davis et al. 2012).

The use of ghrelin receptor 1a deficient mice has shown an obligatory role of
ghrelin signaling in certain hedonic aspects of eating that are separated from eating
associated with body weight homeostasis. Ghrelin receptor 1a deficient mice show
a subtle but significant decrease in body weight without food intake alterations
when they have free access to regular chow diet (Abizaid et al. 2006; Zigman et al.
2005; Sun et al. 2004). Interestingly, ghrelin receptor 1a null mice are resistant to
HFD-induced body weight gain, if they are exposed to HFD early in their life
(Zigman et al. 2005; Perello et al. 2012). However, no differences in HFD-induced
body weight gain are observed if mice are exposed to HFD during adulthood (Sun
et al. 2008). Additionally, ghrelin receptor 1a deficient mice show an improvement
of aging-associated obesity due mainly to a reduced adiposity and increased
thermogenesis (Lin et al. 2011; Ma et al. 2011). Ghrelin/ghrelin receptor 1a double
knockout mice exhibit decreased body weight when placed on a standard chow
diet (Pfluger et al. 2008). Ghrelin receptor 1a deficient mice are protected from the
weight gain induced by exposure to HFD although no reduction in HFD intake is
observed (Zigman et al. 2005; Perello et al. 2012). Importantly, ghrelin receptor 1a
deficient mice have a reduced intake of the more rewarding food in a free choice
paradigm and a reduced dopamine release in the NAc induced by rewarding foods
(Egecioglu et al. 2010). Also, ghrelin receptor 1a null mice also fail to enhance
feeding in response to a light cue used as positive-conditioned stimulus as com-
pared to WT mice (Walker et al. 2012).

The significance of ghrelin signaling on hedonic eating regulation becomes
more evident in situations in which plasma ghrelin is physiologically elevated,
such as fasting, caloric restriction, or stress (Perello and Zigman 2012). In this
regard, ghrelin receptor 1a deficient mice show important eating behavior altera-
tions under specific experimental conditions. For instance, WT mice subjected to
prolonged caloric restriction show enhanced-CPP for HFD while ghrelin receptor
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1a deficient mice lack such response (Perello et al. 2010; Disse et al. 2011).
Moreover, ghrelin receptor 1a deficient mice in response to scheduled meals have
both attenuated anticipatory hyperlocomotion and reduced expression of the
marker of cellular activation c-fos in the mesolimbic pathway (Lamont et al. 2012;
Blum et al. 2009). Similarly, ghrelin receptor 1a deficient mice do not anticipate
food when exposed to an activity-based anorexia model, in which mice are given
free access to a running wheel and fed once per day for 2 h (Verhagen et al. 2011).
The chronic social defeat stress (CSDS) procedure, which subjects mice to daily
bouts of social defeat by aggressive male mice, has been also used to study the
physiological effect of ghrelin on feeding behaviors (Lutter et al. 2008; Patterson
et al. 2013). WT mice exposed to CSDS increase their plasma ghrelin concen-
tration and regular chow intake during and for at least 1 month after the defeat
period. In contrast, ghrelin receptor 1a null mice fail to show CSDS-induced
hyperphagia (Lutter et al. 2008; Patterson et al. 2013). In WT mice, CSDS also
increases CPP for HFD while such a stress-induced food reward response is not
observed in CSDS-exposed ghrelin receptor 1a null mice (Chuang et al. 2011). In
contrast to these findings, a chronic unpredictable stress model that also elevates
plasma ghrelin decreases food intake and body weight gain in WT mice, while
similarly treated ghrelin receptor 1a deficient mice lack these changes (Patterson
et al. 2010). Thus, further work is needed to clarify the role of ghrelin on food
intake among different rodent models of stress.

The mouse model with reactivable genetic deletion of ghrelin receptor 1a has
been very valuable to establish the physiological roles of some of ghrelin’s brain
targets. In this nontraditional mouse model, ghrelin receptor 1a gene expression is
disrupted by a transcriptional blocking cassette flanked by loxP sites that enable
Cre recombinase-mediated ghrelin receptor 1a gene re-expression (Zigman et al.
2005). Thus, the ghrelin receptor 1a transcription is globally blocked in ghrelin
receptor 1a null mice, but it can be cell-specifically reactivated in a Cre-mediated
fashion (Zigman et al. 2005). Using this strategy, mice expressing ghrelin receptor
1a selectively in tyrosine hydroxylase-containing cells, including a subset of VTA
dopaminergic neurons, was generated (Chuang et al. 2011). These mice show a
significant, albeit reduced, response to the orexigenic effects of ghrelin (Chuang
et al. 2011). Interestingly, mice with re-expression of ghrelin receptor 1a selec-
tively in tyrosine hydroxylase-containing neurons show full CPP for HFD when
treated with exogenous ghrelin or exposed to a CSDS protocol (Chuang et al.
2011). This study suggests that expression of ghrelin receptor 1a in dopaminergic
neurons is sufficient for ghrelin’s actions on both food intake and food reward. Of
note, mice with re-expression of ghrelin receptor 1a in specific hindbrain nuclei,
including the NTS, DMV, AP, nucleus ambiguous, and facial motor nucleus, fail
to show ghrelin-induced food intake (Scott et al. 2012). Thus, direct action of
circulating ghrelin on ghrelin receptor 1a expressing hindbrain neurons is not
sufficient to mediate acute orexigenic effects of ghrelin.

74 M. Perello and J. Raingo



Relevance of Ghrelin Effects on Hedonic Aspects
of Eating for Humans

Many studies suggest that ghrelin signaling is relevant for human food intake
regulation. Human beings have a preprandial rise and a postprandial decline in
plasma ghrelin levels suggesting that ghrelin recapitulates in humans its physio-
logical role in hunger and/or meal initiation observed in rodents (Cummings 2006;
Cummings et al. 2001). The preprandial ghrelin surge occurs as many times per
day as meals are provided to subjects exposed to habituated feeding schedules
(Cummings 2006; Cummings et al. 2001). Importantly, ghrelin levels also rise
preprandially initiating meals voluntarily in the absence of cues related to time or
food, and the temporal profiles of plasma ghrelin levels and hunger scores tightly
overlap in this setting (Cummings 2006; Cummings et al. 2001). The postprandial
ghrelin decrease seems to be critical for satiety sensation and, accordingly, it
decreases proportionally to meal calorie content (le Roux et al. 2005). Of note,
postprandial ghrelin decrease is impaired after high-fat meals likely contributing to
reduce satiety and causing overeating (Yang et al. 2009). The mechanisms
involved in the control of pre and postprandial ghrelin regulation in humans are
currently unclear.

Most studies show that intravenous bolus or continuous administration of
ghrelin stimulates hunger sensations and food intake in healthy individuals
(Akamizu et al. 2008; Adachi et al. 2010; Schmid et al. 2005; Levin et al. 2006;
Wren et al. 2001; Falken et al. 2010; Druce et al. 2005). It is interesting to note that
some of these studies have used ghrelin doses that result in supra-physiological
increases in plasma hormone levels. Also, administration of exogenous ghrelin
cannot mimic the postprandial decrease of the hormone levels that occur in
physiological conditions. Despite these considerations, it is normally accepted that
exogenous ghrelin can regulate meal initiation and food intake of human beings
(Cummings 2006). Functional magnetic resonance imaging studies indicate that
ghrelin increases the neural response in brain centers implicated in hedonic
feeding of human subjects (Goldstone et al. 2009; Malik et al. 2008; Neary and
Batterham 2010). Fasting-induced increases of plasma ghrelin enhance both the
appeal of high-calorie more than low-calorie foods and the reward-related brain
centers’ response to pictures of high-calorie over low-calorie foods (Goldstone
et al. 2009). Also, ghrelin administration to human subjects increases the activa-
tion of some hedonic feeding-related brain centers, including the substance nigra
and the VTA, in response to tempting food pictures (Malik et al. 2008; Neary and
Batterham 2010). Thus, ghrelin seems to have a significant role in food reward
behavior and appetite regulation in humans.
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Role of Ghrelin and Ghrelin Receptor 1a
on Disorders with Alterations of Food Intake

Obesity. Obesity is defined as an excessive fat accumulation that presents a risk to
health. Obesity is a heterogeneous disorder with several potential etiologies
including genetic and environmental factors. Little association has been found
between obesity and ghrelin or ghrelin receptor 1a mutations in humans
(Gueorguiev et al. 2009; Liu et al. 2011). However, the ghrelin system appears
relevant for human obesity (Hillman et al. 2011). Most obese patients have
chronically low levels of circulating ghrelin and a blunting of the nocturnal plasma
ghrelin increase compared to normal subjects (Hillman et al. 2011; Tschop et al.
2001). Similarly, plasma ghrelin is decreased in diet-induced obesity mouse
models, where a resistance to ghrelin-induced food intake and ghrelin-induced
motivation to obtain food rewards is observed (Finger et al. 2012; Perreault et al.
2004; Briggs et al. 2010). Still, obese people seem to be fully sensitive to the
orexigenic effects of exogenous ghrelin (Druce et al. 2005). Several studies show
that obese people have a blunted postprandial decrease of plasma ghrelin, which
likely increases the time they feel hungry and participates in the pathophysiology
of obesity (le Roux et al. 2005; Yang et al. 2009; Morpurgo et al. 2003; English
et al. 2002). Also, ghrelin levels rise in obese individuals after weight loss induced
by dieting, and such increase of plasma ghrelin likely contributes to the rebound
weight gain commonly observed in dieters (Cummings et al. 2002b). In addition,
the marked and prolonged weight loss observed in obese individuals who undergo
Roux-en-Y gastric bypass surgery is thought to be enhanced by postsurgery
reductions in circulating ghrelin (Cummings and Shannon 2003; Beckman et al.
2010). These clinical studies, among others (Schellekens et al. 2012), support the
concept that pharmacological manipulations of ghrelin signaling may be a
potential strategy to reduce food intake and ultimately body weight in obese
patients (See ‘‘Ghrelin Receptors a Novel Target for Obesity’’ for details).

Prader-Willi syndrome (PWS). PWS is a genetic obesity syndrome caused by a
defect in the chromosome 15 (q11–13). Children with PWS display growth hor-
mone deficiency, rapid weight gain, and voracious appetite. Hyperphagia of PWS
seems to involve alterations of hedonic aspects of feeding, since functional mag-
netic resonance imaging in these patients shows enhanced activation of the mes-
olimbic system areas following regular meals intake, when high-calorie foods are
offered or even when food pictures are displayed to them (Miller et al. 2007;
Holsen et al. 2006; Dimitropoulos and Schultz 2008). Of note, most PWS patients
have several-fold higher ghrelin levels compared to weight-matched controls
(Cummings et al. 2002a; DelParigi et al. 2002; Haqq et al. 2003a). In some PWS
patients, the hyperphagia is related to high plasma ghrelin as hyperghrelinemia
precedes obesity and plasma ghrelin levels positively correlate with their feelings
of hunger (Haqq et al. 2003a; Purtell et al. 2011; Feigerlova et al. 2008). Of note,
not all young PWS patients have elevated plasma ghrelin levels (Haqq et al. 2008).
In addition, intervention studies suppressing ghrelin levels in PWS patients have

76 M. Perello and J. Raingo

http://dx.doi.org/10.1007/978-1-4939-0823-3_6


failed to reduce appetite or compulsive eating (Tan et al. 2004; De Waele et al.
2008; Haqq et al. 2003b). Thus, the role of the ghrelin system in the pathogenesis
of this disorder is still unclear.

Anorexia Nervosa. Anorexia nervosa is an eating disorder of unknown etiology
characterized by refusal to maintain a minimally required healthy weight, intense
fear of gaining weight, and misinterpretation of body shape. Anorexia nervosa can
be divided into a restrictive type, with reduced food intake, and a binge eating/
purging type, with binge eating/purging episodes during anorexia phases. Most
studies report that fasted anorexia nervosa patients show high ghrelin levels, which
normalize after food intake or body weight recovery (Ogiso et al. 2011). Patients
with binging/purging anorexia nervosa type have higher ghrelin levels (Tanaka
et al. 2003, 2004). Also, single nucleotide polymorphisms in ghrelin gene are
specifically associated with binging/purging anorexia nervosa type (Dardennes
et al. 2007). However, these findings have not been fully reproduced by other
studies (Cardona Cano et al. 2012). Thus, the pathophysiological implications of
high plasma ghrelin in anorexia nervosa are currently unclear. It has been proposed
that administration of ghrelin (or ghrelin agonists) could increase food intake and
hunger in these patients and thus promote weight gain. Until now, three studies
have evaluated the effect of ghrelin administration on anorexia nervosa patients
(Miljic et al. 2006; Broglio et al. 2004; Hotta et al. 2009). In one study, anorexia
nervosa patients felt significantly less hungry compared to the thin control sub-
jects, suggesting that anorexia nervosa patients are resistant to the orexigenic
effects of ghrelin (Miljic et al. 2006). However, other studies found increased
hunger sensation and increased food intake after ghrelin administration in some
patients with anorexia nervosa (Broglio et al. 2004; Hotta et al. 2009). Thus,
further studies are needed to determine if ghrelin treatment is a therapeutic option
for this disorder.

Bulimia nervosa. Bulimia nervosa is a psychiatric disorder characterized by
repetitive episodes of consumption of large amounts of food followed by com-
pensatory behaviors in order to prevent weight gain, including self-induced
vomiting, laxative abuse, and excessive exercising. As discussed in a recent
review, findings from many studies that have investigated the potential patho-
physiological role of ghrelin in the bulimia nervosa are inconsistent, and it is
currently unclear whether the ghrelin system dysfunctions are relevant in this
eating disorder (Cardona Cano et al. 2012).

Binge eating disorders. In contrast to bulimia nervosa, patients who suffer binge
eating disorders engage in bouts of binge eating with no compensatory behavior
afterwards that increases the risk for obesity. Some patients with binge eating
disorders have an altered ghrelin dynamics, characterized by less postprandial
decrease of ghrelin with a longer time to nadir compared with obese subjects, that
could contribute to larger meals as seen during binge episodes (Geliebter et al.
2005, 2008). However, other studies have shown that fasting plasma ghrelin levels
do not correlate with the frequency and severity of binging (Monteleone et al.
2005). Interestingly, a single nucleotide polymorphism of the ghrelin gene has
been associated with binge eating disorders (Monteleone et al. 2007). As for other
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eating disorders, further studies are necessary to establish a link between binge
eating disorders and ghrelin.

Cachexia. Cachexia or wasting syndrome is defined as unintentional appetite
and body mass loss that cannot be reversed nutritionally. Lean body mass is lost
even when the affected patient eats more calories, indicating that body mass loss is
due to another primary pathology taking place. Cachexia is seen in patients with
cancer, acquired immunodeficiency syndrome, chronic obstructive pulmonary
disease, chronic renal insufficiency, congestive heart failure, tuberculosis, among
others. Total plasma ghrelin levels are elevated in patients with cachexia, as
expected for a chronic state of energy deficiency (DeBoer 2008). Despite the
elevated plasma ghrelin concentrations, patients with cachexia remain sensitive to
the orexigenic effects of ghrelin. Clinical studies have shown that administration of
ghrelin or ghrelin receptor 1a agonists increased both food intake and body weight
in patients with cachexia secondary to congestive heart failure, chronic obstructive
pulmonary disease, or chronic renal insufficiency (Nagaya et al. 2004, 2005;
Wynne et al. 2005; Deboer et al. 2008; Ashby et al. 2009). In addition, several
trials have demonstrated the efficacy and safety of ghrelin or ghrelin receptor 1a
agonists to increase food intake and body weight in patients with cancer-associated
cachexia (Neary et al. 2004; Strasser et al. 2008; Garcia et al. 2013). Thus, ghrelin
system may be a potential pharmacological target in the treatment of cachexia
(Argiles and Stemmler 2013).

Concluding Remarks

Recent studies have started to reveal the complex neuronal circuits and mecha-
nisms by which ghrelin promotes food intake. Ghrelin not only acts on neuronal
circuits that regulate homeostatic intake of food but also on neuronal circuits that
affect hedonic aspects of eating including preference for palatable foods, moti-
vation to obtain preferred foods, food anticipatory locomotor activity, rewarding
value of preferred foods, and acquisition of food CPP. Thus, ghrelin modulates a
variety of key aspects of hedonic eating that directly impact on feeding behaviors.
Of note, other peripheral signals from adipose tissue (e.g., leptin), pancreas (e.g.,
insulin), and the gastrointestinal tract (e.g., peptide YY, glucagon-like peptide-1,
cholecystokinin) also regulate central circuits controlling food intake. However,
ghrelin is the only known peptide hormone that causes an acute and potent
increase of food intake when administrated in small doses to animals or human
beings. This unique feature makes the ghrelin system exceptionally attractive for
the development of specific pharmacological therapies to treat eating disorders.
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