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1 Introduction

The most of real-life problems, according to Leibnitz and Euler [3, 10, 13], can
be stated as optimization problems, because the lows of the nature just follow the
principles of Fermat, Lagrange, Euler, and other equations provided by extremum
principles.

On the other hand, the contemporary situation can be characterized by the crucial
impact and the increasing value of the numerical methods in view of computational
solving the problems of practical interest.

It is worthy to note that the optimization problems must be separated into two
parts: convex and nonconvex. From the viewpoint of the numerical processing of
the problem of a rather general kind{

f0(x) ↓ min
x
, x ∈ S ⊂ R

n,

fi(x)≤ 0, i = 1,2, . . . ,m,
(P0)

there exists a “solvable case”—this one of the convex optimization problems, those
where the domain S and the functions f0 and fi are all convex [3, 13, 22, 40].

Under minimal additional computability assumptions a convex optimization
problem is computationally tractable [3, 22]. It means that the computational effort
required to solve the problem to a given accuracy grows moderately with the
dimension of the problem and the required number of accuracy digits.
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In contrast to this, general-type nonconvex problems are too difficult for
numerical solution, since in a real-life nonconvex optimization problem there can
exist a lot (often a huge!) of local extrema and stationary points which are rather far
from a global solution [9, 17, 25, 28].

As a consequence, the classical optimization methods (conjugate gradients,
Newton’s and quasi-Newton’s methods, TRM, SQP, IPM, etc.) turn out to be
inoperative, in general, and ineffective as to finding a global solution in noncon-
vex problems because they are not able to escape a local pit.

Moreover, specialists in applied problems do not think about the correctness of
direct application of classical optimization methods in nonconvex problems, while
the numerical results are interpreted only in the content aspect, without thinking of
the fact that all classical optimization methods converge to the global solution only
in convex problems [3, 22].

At the same time, in nonconvex problems, the direct application of standard
methods may have unpredictable consequences [3, 17, 24, 28, 40], and sometimes
may even distract one from the desired solution. So, these arise various approaches
which completely neglect the classical optimization methods and use a direct selec-
tion way employing, for example, the B&B idea or cut’s method. As well known the
latter algorithms suffer the curse of dimension, when the volume of computations
grows exponentially side by side with the growth of the problem’s dimension [17].
We are sure, there exists also another way of solving nonconvex problems of high
dimension [18, 19, 26–37].

In the recent two decades, we have managed to construct a theory of global
search, which is harmonic from the viewpoint of the theory of optimization
and which unexpectedly has turned out to be rather efficient in the aspect of
computations, especially for the problems of high dimensions. Simultaneously nec-
essary and sufficient Global Optimality Conditions (GOCs) for the principal classes
of nonconvex problems can be viewed as the kernel of the theory (see below) [28].

Furthermore, we have proposed a family of local search methods (LSMs), which,
on the one hand, in some cases develop methods earlier known for the special prob-
lems and, on the other hand, this family of LSMs represents a joint ensemble of
methods, which is harmonic from the viewpoint of GOCs [28, 31, 33].

Moreover, the procedures of escape from stationary or local solutions, which
are based on GOCs, are unique and quite efficient even in case of any simplest
implementation [18, 19, 26–28, 31–37].

Besides, the approach elaborated has been tested on a wide field of popular non-
convex problems (some part of which is represented below). It has demonstrated
an unexpected efficiency during the numerical solving problems of high dimension.
Note, convex optimization methods are successfully used “inside” the procedures of
local and global search proposed [18, 19, 26–28, 31–37].

Finally, we have to add that, according to the opinion of numerous confirmed
specialists in optimization, the most attractive and promising fields of investigation
and, may be, even modelling paradigms in optimization in twenty-first century can
be represented (see [24]), in particular, by the following examples which both pos-
sess the hidden nonconvex structures:
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• the search for equilibriums in competitions (conflict situations or games);
• hierarchical optimization problems.

Unexpectedly for us, we turned out to be on this main stream, but rather prepared,
i.e. possessing a suitable mathematical apparatus.

2 Examples of Applied Problems

2.1 Linear Complementarity Problems

As well known [7], the linear complementary problem (LCP) aims at finding the
pair of vector (x,w) ∈ R

n+n, which satisfy the following conditions:

Mx+q = w, 〈x,w〉= 0,
x ≥ 0, w ≥ 0,

}
(1)

for a given vector q ∈ R
n and a given real (n× n)-matrix M which is, in general,

indefinite. Many physical, engineering problems (the braking problem; the prob-
lem of contact; the problem of viscoelastic twisting, etc.), some economic problems
(the problems of market equilibrium, the problem of optimal constant basic capital,
etc.) and problems of computational geometry can often be stated as LSP. From the
first glance any nonconvexity is not visible in (1). Even if we consider a similar
formulation of LSP, for example,

〈x,Mx+q〉= 0, M = M	,
x ≥ 0, Mx+q ≥ 0,

}
(1 ′)

a nonconvexity does not appear since all data stays to be linear. However, if one
looks at the problem as optimization problem:

Φ(x) := 〈x,Mx〉+ 〈x,q〉 ↓ min, x ∈ S,

S
�
= {x ∈ R

n | x ≥ 0, Mx+q ≥ 0},

}
(2)

it becomes clear that the properties and the structure of the LSP (1) depend on the
features of the matrix M, as follows.

(a) If M is nonnegative definite, the problem (2) is convex, i.e. solvable with the
classical methods, for instance, the conjugate gradient method (CGM).

(b) If M is negative definite, then the problem (2) turns out to be nonconvex
(anticonvex) optimization problem of concave minimization (that is equivalent
to convex maximization).

(c) If M is indefinite, i.e. it has positive and negative eigenvalues, then the problem
(2) must be classified as a d.c. minimization problem:

Φ(x) = g(x)−h(x) ↓ min
x
, x ∈ S, (3)
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where g(x) = 〈x,M1x〉+ 〈q,x〉, M1 = M	
1 > 0, h(x) = 〈x,M2x〉, M2 = M	

2 > 0,
M = M1 −M2, g(·) and h(·) are strongly convex functions on R

n. In each of cases
(a), (b), and (c) one has to apply the different methods of local and global search in
order to find a global solution to Problem (2) or, what is equivalent, to find a solution
to Problem (1).

The conclusion is unexpected: if anyone needs to have a solution to the LCP (1),
then he has to choose the only one way (global search method (GSM)) among three
different paths (GS methods) dependent on the properties of the matrix M. Below
we will show how to do it.

So, very simple, from the first sight, Problem (1) may turn out to be very difficult
to solve, since it possesses, in general, a hidden nonconvexity.

2.2 Search for an Equilibrium

As example of equilibrium problems, let us consider the bimatrix games [33] which
reflect the conflict of two parties (players), each one having a finite number of
strategies. After having introduced the mixed strategies, we obtain

〈x,Ay〉 ↑ max
x

, x ∈ Sm,

〈x,By〉 ↑ max
y

, y ∈ Sn,

Sp =
{

x ∈ R
p
+ |

p

∑
i=1

xi = 1
}
, p = m,n.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4)

Some economics, engineering and ecological problems can be represented in the
form of bimatrix games, in which the Nash equilibrium is the common concept and
can be represented as follows: find an equilibrium situation (x∗,y∗) ∈ Sm ×Sn:

〈x∗,Ay∗〉 ≥ 〈x,Ay∗〉 x ∈ Sm,
〈x∗,By∗〉 ≥ 〈x∗,By〉 y ∈ Sn.

}
(5)

In formulae (4) and (5), from the first sight, any nonconvexity also is not yet visible,
since all the data is linear, and the problem (4)–(5) seems to be convex, i.e. solvable
by the classical methods and approaches.

However, it turns out that the search for the Nash equilibrium can be
reduced [20, 21] to solving the following nonconvex (in general) problem of math-
ematical programming:

F(x,y,α,β ) := 〈x,(A+B)y〉−α −β ↑ max,
x	B−βen ≤ 0n, x ∈ Sm,
Ay−αem ≤ 0m, y ∈ Sn,

⎫⎬
⎭ (6)

where α,β ∈R, ep = (1,1, . . . ,1)	 ∈R
p, p=m,n. Note that the numbers α∗ and β∗

in a global solution (x∗,y∗,α∗,β∗) to Problem (6) are the optimal profits of the first



On Solving Optimization Problems with Hidden Nonconvex Structures 469

and second players, respectively, in the game (4)–(5), while the pair (x∗,y∗) turns
out to be just a Nash equilibrium point in the game (4)–(5).

On account of the formulation (6) it becomes clear that a way (method) of finding
a Nash point strongly depends on the properties of the matrix (A+B).

So, the conclusion is obvious here and consists in the fact that the initial statement
(4)–(5) of a bimatrix game is deceptive in the sense that it has, in general, a hidden
(implicit) nonconvexity.

2.3 Hierarchical Optimization Problems

Hierarchical problems are encountered in practice because of impossibility of
accumulation of the total available information at the upper level in the process
of investigation of structurally complex control systems (social, economic,
ecological-economic ones, etc.) and, as a consequence, possess some hidden non-
convexity generated by just hierarchical structures.

For example, the financial systems in the economic power countries are usually
constructed as bilevel systems. Besides, the electric energy system in USSR was
organized as a four-level system.

As to mathematical aspects of the statement, problems of bilevel programming
represent extremum problems, that side by side with standard constraints which are
expressed in terms of equalities and inequalities, include the constraints described
with the aid of optimization subproblem representing the lower level of the bilevel
problem (or the player called the follower in difference with the player of the upper
level called the leader).

To begin with, let us consider the linear bilevel problem

(LBP) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F(x,y) := 〈c,x〉+ 〈d,y〉 ↓ min
x,y

,

x ∈ X = {x ∈ R
m | Ax ≤ b},

y ∈ Y∗(x) := Argmin
y
{〈d1,y〉 | y ∈ Y (x)},

Y (x) = {y ∈ R
n | A1x+B1y ≤ b1 },

where c ∈ R
m, d,d1 ∈ R

n, b ∈ R
p, b1 ∈ R

q, and A, A1, B1 are matrices of
corresponding dimensions. Suppose, that
(H1): the function F(x,y) is bounded below on the nonempty set Z,

Z := {x ∈ R
m, y ∈ R

n | Ax ≤ b, A1x+B1y ≤ b1 };

(H2): the function 〈d1,y〉 is bounded below on the set Y (x) for all x ∈ X .
Even in this very simple case it is easy to construct an example showing the non-
convexity of the problem (LBP).

Example 1. ([8]) Consider the problem
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F(x,y) = x+3y ↓ min
x,y

, x,y ∈ R,

1 ≤ x ≤ 6, y ∈ Y∗(x) = Sol(PL),

}
(LBP1)

(PL) :

⎧⎪⎨
⎪⎩

f (y) =−y ↓ min
y
,

x+ y ≤ 8, x+4y ≥ 8,
x+2y ≤ 13.

Regardless of the convexity of the set

Z = {(x,y) ∈ R
2 | 1 ≤ x ≤ 6, x+ y ≤ 8, x+4y ≥ 8, x+2y ≤ 13},

it is easy to see even geometrically that the set

Z∗ = {(x,y) ∈ Z | y ∈ Y∗(x)}

is nonconvex which provides for the nonconvexity in the problem (LBP1). ��
So, the Example 1 shows the importance of the preliminary theoretical study

of hierarchical optimization problems and, as, may be, the simplest case of (BP),
the (LBP).

2.4 Problems of Financial and Medical Diagnostics

Such problems are well known as applied ones, and on the other hand, these prob-
lems are often interpreted as the problems of generalized separability. For example,
if the two sets of points A and B are characterized by the matrices A = [a1, . . . ,aM],
B = [b1, . . . ,bN ], ai,b j ∈ R

n, then the problem of polyhedral separability may be
reduced to the problem of minimization of the nonconvex nondifferentiable error
function (V = (vp), Γ = (γp), γp ∈ R, vp ∈ R

n, p = 1, . . . ,P)

F(V,Γ ) = F1(V,Γ )+F2(V,Γ ), (7)

F1(V,Γ ) =
1
M

M

∑
i=1

max{0; max
1≤p≤P

(〈ai,vp〉− γp +1)},

F2(V,Γ ) =
1
N

N

∑
j=1

max{0; min
1≤p≤P

(−〈bi,vp〉+ γp +1)}.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8)

In this problem it is also not clear with which kind of nonconvexity we are dealing
and how to overcome not only the nonsmoothness of the problem but also a non-
convexity generated apparently by F2(·).

But, anyway, the question arises how to attack optimization problems with a
hidden or an explicit nonconvexities.
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3 Optimization Problems with the Functions of A.D.Alexandrov

The targets of our presentation can be bounded by consideration of the class DC(Rn)
of the functions f (·) which can be represented as the difference of two convex func-
tions (d.c. functions). The class was, for the first time, introduced in 1934 [1, 2] by
the Russian mathematician A.D.Alexandrov, the member of AS of USSR.

Nowadays, this class is viewed by the specialists [9, 17, 25, 39] to be rather wise
for consideration. Furthermore, the DC(Rn) possess several remarkable properties.

(a) The set DC(Rn) is generated by the well-studied class—the convex cone of
convex functions and forms a linear space [12, 13, 17, 28, 39].

(b) DC(Rn) includes the well-known classes such as twice differentiable functions,
power and trigonometric polynomials [12, 13, 17, 39].

(c) Any continuous function on a compact set K⊂ R
n can be approximated at any

desired accuracy (in the topology of homogeneous convergence) by a function
from DC(K) [12]. Consequently, any optimization problem with continuous
functions can be approximated at any desired accuracy by an extremum problem
with functions of A.D.Alexandrov.

Only note, that, if f (·) is a d.c. function, then there exists an infinite number
of d.c. representations of the form (3), for example, in the form of difference of
strongly convex functions.

Closedness of the set DC(Rn) of functions of A.D.Alexandrov with respect to
the majority of operations, which are used in optimization, is also essential from
the optimization viewpoint. For example, a sum, a difference, the module, the max-
imum, the minimum, etc. of the family of d.c. functions occur also in the class
DC(Rn).

Besides, the number of problems with d.c. functions is so large that the major-
ity of the specialists, who have a long-time experience of solving problems of d.c.
programming are sure [9, 12, 13, 17, 39] that all (or almost all) nonconvex optimiza-
tion problems turn out to be really d.c. problems.

In this connection, the following statement of optimization problem can be
viewed as rather general:

f0(x) = g0(x)−h0(x) ↓ min
x
, x ∈ S,

fi(x) = gi(x)−hi(x)≤ 0, i = 1, . . . ,m;
f j(x) = g j(x)−h j(x) = 0, j = 1, . . . ,N.

⎫⎬
⎭ (9)

Here gi, g j, hi, h j are convex functions and S is convex set from R
n.

Apparently, almost all the specialists in optimization areas could estimate
Problem (9) as very difficult and unsolvable by the existing approaches and methods
even for the case of middle dimension (say, n = 100, . . . ,1,000.)

Actually, even very simple (from the viewpoint of Problem (9)) the convex max-
imization quadratic problem on a box (which is a very particular case of (9)):
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h(x) = 1
2 〈x,Qx〉 ↑ max

x
, Q = QT > 0,

x ∈ S := Π = {x ∈ R | αi ≤ xi ≤ βi i = 1, . . . ,n}

}
(10)

is proved to be NP-hard [9]. Therefore, to begin with, let us simplify the situation
and start with rather simple (from the first glance) nonconvex optimization prob-
lems.

1. D.C. minimization

(P) : f (x) = g(x)−h(x) ↓ min, x ∈ D, (11)

where g(·), h(·) are convex functions, and D is a convex set, D ⊂ R
n.

2. D.C. constraint problem

(DCC) :
f0(x) ↓ min

x
, x ∈ S,

F(x) = g(x)−h(x)≤ 0,

}
(12)

where g(·) and h(·) are as above, S ⊂ IRn, f0(·) is a continuous function.
3. Convex maximization

h(x) ↑ max, x ∈ D, (13)

(when g ≡ 0 in (11)).
4. Reverse-convex constraint problem

f0(x) ↓ min, x ∈ S,
h(x)≥ 0,

}
(14)

(g ≡ 0 in (12)).

Note, that any quadratic optimization problem with arbitrary matrices occurs in
the classification (11)–(14) or takes the form (9).

4 Global Search Methodology

Since in our approach the general global search procedure includes two principal
parts:

(a) local search;
(b) procedures of escaping a critical point provided by a LSM; we are going, first,

to consider special (for each class of d.c. programming problems) LSMs.
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4.1 Local Search

The ideas of the most of LSM are rather simple and may consist in the consecutive
solution of the (partially) linearized problems which for Problems (11)–(14) turn
out to be convex. As a consequence, it becomes possible to apply classical convex
optimization methods (Newtonians, CGM, TRM, etc.) in order to find a solution to
linearized problems, i.e. within the framework of Local Search Schemes.

So, unlike that in well-known methods of the so-called Global Optimization
(such as B&B, cuts methods), which, say, “deny and ignore” the modern and classi-
cal optimization methods, we insist on the obligatory, but “indirect” application of
these methods.

For example, as regards the problem of d.c. minimization (P)–(11), the basic
element, the “cornerstone” of the Global and LSMs is solving the following (lin-
earized at a current iteration point xs ∈ D) convex problem

(PLs) : Φs(x) := g(x)−〈h′(xs),x〉 ↓ min
x
, x ∈ D, (15)

where h′(xs) = h′s ∈ ∂h(xs), s = 1,2, . . . is a subgradient of the convex function h(·)
at the point xs [13]. It is clear that in the differentiable case h′s coincides with the
usual gradient ∇hs [13].

Furthermore, the LSM itself for (P)–(11) may consist in the consecutive solving
(likewise in the method of “direct iterations”) Problems (PLs)–(15). More precisely,
given xs ∈ D, we can find xs+1 ∈ D as an approximate solution to (PLs) by means
of some suitable convex optimization method (for example, BFGS), or one of the
packages of applied software (Xpress-MP, IBM CPLEX etc).

So, we produce the sequence {xs} according to the inequality:

Φs(x
s+1) := g(xs+1)−〈h′(xs),xs+1〉 ≤ inf

x
{g(x)−〈h′(xs),x〉 | x ∈ D}+δs (16)

where the sequence {δs} fulfils the condition

∞

∑
s=0

δs <+∞, δs > 0, s = 1,2, . . . .

It was rather surprising that the process in this case converges in the following sense.

Theorem 1. Suppose the cost function of Problem (P)–(11) is bounded below, so
that

V(P) := inf( f ,D)
�
= inf

x
{ f (x) | x ∈ D}>−∞.

Then the sequence {xs} ∈ D generated by the rule (16) satisfies the following con-
ditions.

(a) The number sequence { fs}, fs = f (xs) converges in the sense, as follows:

lim
s→∞

fs = f∗ ≥ V(P). (17)
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(b) lim
s→∞

[inf
x
{g(x)−g(xs+1)+ 〈h′(xs),xs+1 − xs〉 | x ∈ D}] = 0. (18)

or, what is the same (see (PLs)–(15)),

lim
s→∞

[V(PLs)−Φs(x
s+1)] = 0, (18′)

where

Vs := V(PLs) := inf
x
{g(x)−〈h′(xs),x〉 | x ∈ D} (19)

is the optimal value of the linearized problem (PLs)–(15)
(c) If the function h(·) in (15) is strongly convex, then we have

lim
s→∞

‖xs − xs+1‖= 0. (20)

(d) Any limit point x∗ of the sequence {xs} generated by LSM (16) is a solution
of the following linearized problem

(PL∗) : Φ∗(x) := g(x)−〈y∗,x〉 ↓ min
x
, x ∈ D, (21)

where y∗ = h′(x∗) ∈ ∂h(x∗).

Note that very frequently for small dimension (n ≤ 7,8,10) cases LSM (16)
provides for a global solution to (P)–(11).

It is interesting that historically the particular case (g≡ 0) of LSM (16) for differ-
entiable convex maximization problem (13) has been proposed by Bulatov in 1969
[4] and can be represented in the modern form as follows:

〈h′(xs),xs+1〉+δs ≥ sup
x
{〈h′(xs),x〉 | x ∈ D}. (22)

Besides, the well-known “power” method for finding the maximal eigenvalue of
a symmetric positive definite matrix A, or what is the same, for solving the prob-
lem [38]

〈x,Ax〉 ↑ max
x

, ‖x‖ ≤ 1, (23)

turns out to be very particular case of LSM (22), when the linearized problem (PLs)
(with g ≡ 0) can be solved analytically. Note that the method (22) in Problem (23)
converges to the global solution [38].

Thus, one can conclude that the idea of linearization with respect to the basic
nonconvexity of a nonconvex problem has certainly some age. Anyway, it is worth
noting to mention the works of the group of Pham Dinh Tao in which the idea of
linearization with respect to the basic nonconvexity also demonstrated its effective-
ness [14–16].

Furthermore, special methods of local search have been developed for the prob-
lems with d.c. constraints (12), (14) (see [31]). These methods have also been
grounded, for example, on considering linearized problems of the form
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g(x)−〈h′(xs),x〉 ↓ min
x
,

x ∈ S, f0(x)≤ ζs = f0(xs),

}
(24)

and the duality of Tuy [39].

4.2 Global Optimality Conditions

The second step in the global search methodology can be viewed as the most
important one and even crucial, because the question is how to escape a critical
point (provided by an LSM and that is not a global solution).

Such a procedure is substantiated by the theoretical basis produced with the help
of the so-called GOC which for the case of d.c. minimization problem (P)–(11)
takes the following form.

Theorem 2. If z is a global solution to (P), z ∈ Sol(P), ζ := f (z), then

(E) :

{∀(y,β ) ∈ R
n ×R : h(y) = β −ζ ,

g(x)−β ≥ 〈h′(y),x− y〉 ∀x ∈ D.
(25)

Proof. Suppose, for some pair (y,β ) satisfying (25) and a feasible point x̂ ∈ D the
inequality in (25) is violated

g(x̂)< β + 〈h′(y), x̂− y〉.

Then due to convexity of h(·) we have

f (x̂)
�
= g(x̂)−h(x̂)< h(y)+ζ −h(y) = f (z),

or f (x̂)< f (z). Thus, x̂ is “better” than z, which contradicts to z ∈ Sol(P). ��
So, when selecting the “perturbation parameters” (y,β ) satisfying (25) and

solving the linearized problem (sf. (15))

Φy(x) := g(x)−〈h′(y),x〉 ↓ min
x
, x ∈ D, (26)

(where y ∈ R
n is not obligatory feasible!) we obtain a family of starting points

x(y,β ) for a further (assume) local search.
Moreover, on each level ζk = f (zk) it is not necessary to investigate all the pairs

(y,β ) satisfying (25), ζk = β − h(y), but it is sufficient to discover the violation of
the variational inequality (25) only for one pair (ŷ, β̂ ).

After that, one proceeds to the next iteration of the global search: zk+1 := x̂,
ζk+1 := f (zk+1), and starts the procedure from the very beginning. So, the idea of
the GSM becomes considerably more clear.
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For the case of d.c. constraint problem (12) the character of GOC is a little bit
different. It particular, the necessary conditions are rather far from the sufficient
ones. More precisely, we have the result as follows:

Theorem 3. Assume that in Problem (DCC)–(12) the following condition holds:

(G) :
there does not exist a solution x∗ ∈ S
to Problem (12) such that F(x∗)< 0.

}
(27)

If a point z ∈ S is a global solution to Problem (12) such that F(z) = 0, then

(E1) :

{ ∀(y,β ) ∈ R
n ×R : β = h(y), ∀h′(y) ∈ ∂h(y)

g(x)−β ≥ 〈h′(y),x− y〉 ∀x ∈ S, f0(x)≤ f0(z).
(28)

Proof. Suppose we find some parameters (y0,β0), h′(y0) ∈ ∂h(y0) and a point x0 ∈
S such that

β0 = h(y0), f0(x0)≤ f0(z), and g(x0)−β0 < 〈h′(y0),x0 − y0〉.

Then due to convexity of h(·) we obtain

0 < β0 −g(x0)+h(x0)−h(y0) =−F(x0).

Hence, we have the feasible point x0 ∈ S, F(x0) < 0 = F(z) with the property
f0(x0)≤ f0(z). It means that x0 is a solution to Problem (12) as well as the point z.
The latter contradicts to the condition (G)–(27). ��

A procedure of escaping a local pit can be conducted in a similar manner as it
was explained after Theorem 2.

In the next subsection such a procedure will be precised for the case of d.c. min-
imization problem (11).

4.3 Global Search Methods

In order to deal with nonconvex optimization problems and, in addition, on the basis
of the rather large computational experience [11, 18, 19, 26–28, 31–37] we propose
three principles on which can be produced a search for a global solution to d.c.
optimization problems of the forms considered above.

1. Linearization with respect to the basic nonconvexities of the problem under
scrutiny and, consequently, the reduction of the original problem to a family
of (partially) linearized problems.

2. Application of contemporary convex optimization methods for solving
linearized problems and, as a consequence, “within” special LSMs.

3. Construction of “good” approximations (resolving sets) of the level surfaces/epi-
graph boundaries of convex functions.
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Moreover, by working rather long time (about 30 years) on the field of nonconvex
optimization, several practical rules have been elaborated, which can be represented
as follows:

1. Never apply convex optimization methods directly.
2. Exact classification of the problem under scrutiny.
3. Application of special (for the class of problems to which belongs your problem)

LSM, or (your problem’s) specific methods.
4. Application of GSM specialized for the class which includes your problem.
5. Construction of suitable approximations of level surfaces (and the boundaries

of the epigraphs) of convex functions with the aid of the experience obtained
during solving similar problems.

6. Application of convex optimization methods for solving linearized problems and
within the framework of special LSM.

These rules may be explained otherwise and by examples, following the
instances.

1. Never apply CGM or BFGS if you are not convinced that your problem is
convex.

2. Try to separate the data of your problem into two parts—convex and anticonvex.

For example, dealing with a quadratic function of the kind

q(x) =
1
2
〈x,Qx〉,

where the matrix Q is indefinite, you have to separate the matrix Q(n× n) into a
difference Q = Q1 −Q2 of two symmetric positive definite matrices Qi = QT

i > 0,
i = 1,2. Note there exists infinity of such representations and several methods and
ways to obtain its [28, 38].

Further, it is very important where your quadratic function q(x) is situated—in
the objective function or among the constraint’s data, because depending on the
situation you have different types of the problem to solve—d.c. minimization (11)
or d.c. constraint problem (12), respectively. And as a consequence, you have to
follow the different strategy (GSM, see below).

To demonstrate the effectiveness of these practical rules, let us consider the
following example.

Example 2 (Incorrect Classification). Consider the problem

ϕ(x) =
n
∑

i=1
ln(1+ xi) ↓ min

x
,

x ∈ Π =
{

x ∈ R
n | − 1

2 ≤ xi ≤ 3
}⊂ R

n.

⎫⎬
⎭ (29)

Obviously, the point z =
(− 1

2 , . . . ,− 1
2

)T
is the solution to the problem. Suppose, the

current iterate is xk = (0, . . . ,0)T
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∇ f (x) =

(
1

1+ x1
, . . . ,

1
1+ xn

)T

, ∇ f (xk) = (1, . . . ,1)T ,

∇2 f (x) =

⎡
⎢⎣
− 1

(1+x1)2 . . . 0

. . . . . . . . .
0 . . . − 1

(1+xn)2

⎤
⎥⎦ , ∇2 f (xk) =

⎡
⎣−1 . . . 0
. . . . . . . . .
0 . . . −1

⎤
⎦ .

The auxiliary problem of Newton’s method

Φ(d) =
n

∑
i=1

di −
n

∑
i=1

d2
i ↓ min, d ∈ Π = (Π − xk)

has obviously the solution d = (3, . . . ,3)T (take the case n = 2), which is a direction
to the worst feasible point x=(3, . . . ,3)T . As a consequence, the iteration of the line-
search method xk+1 = xk + tdk cannot escape from xk = (0, . . . ,0)T and the process
is stopped at xk. Besides, note that the auxiliary problem conserves the nonconvex
character of the original problem (29).

In contrast to the incorrectness of the above classification, let us look at the goal
function of Problem (29) as a concave function, and correspondingly at the problem
(29) as the concave minimization problem. Then we immediately conclude that we
are dealing just with Problem (13) (h(·) =−ϕ(·)). Hence, we have to apply, first, the
special LSM (16) where g(x)≡ 0. So, beginning at arbitrary feasible point x0 ∈ Π ,
we have to solve the linearized problem

(PL0) : 〈∇ϕ(x0),x〉=−〈∇h(x0),x〉 ↓ min
x
, x ∈ Π ⊂ R

n,

i.e.
n

∑
i=1

1

1+ x0
i

· xi ↓ min
x

−1
2
≤ xi ≤ 3, i = 1, . . . ,n

that provides for the global solution to the original problem (29)

x1 = z
�
=

(
−1

2
, . . . ,−1

2

)T

∈ Sol(P).

So, the special LSM (in one step!) has found the global solution to Problem (29).
��

Let us return now to the construction of a GSM (strategy) based on GOC
presented in Theorem 2 and specialized only for Problem (P)–(11).

The basic stages of such a GSM (strategy) can be described as follows:

I. Find a critical point z by means of the special LSM ((16), for example).
II. Choose a number β ∈ [β−,β+], where β− = inf(g,D), β+ = sup(g,D) can be

approximated by rather rough estimates.
III. Construct an approximation
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A(β ) = {y1, . . . ,yN | h(yi) = β −ζ , i = 1, . . . ,N = N(β )}

of the level surface of the function h(·).
IV. Beginning at every point yi of the approximation A(β ) find a feasible point ui

by means of the special local search algorithm (16).
V. Verify the VI (25) from GOC

g(ui)−β ≥ 〈h′(wi),ui −wi〉 ∀i = 1, . . . ,N, (30)

where wi may be found as the projection of the point ui onto the convex set

L(h,β −ζ ) = {x ∈ R
n | h(x)≤ β −ζ }.

VI. If ∃ j ∈ {1, . . . ,N} such that (30) is violated, then set xk+1 := u j and return to
Stage I. Otherwise change β and return to Stage III.

Example 3. Consider the problem

f (x) ↓ min, x ∈ R, (31)

f (x) =

{ 1
4 x4 − 1

2 x2, x ≥ 0,
1
2 x4 − x2, x < 0.

(32)

The d.c. representation is here obvious, for example

f (x) = g(x)−h(x),

where

g(x) =

{ 1
4 x4, x ≥ 0,
1
2 x4, x < 0,

h(x) =

{
1
2 x2, x ≥ 0,
x2, x < 0.

(33)

Let us choose the starting point x0 = 100, while the global solution is z = −1,
which can be readily seen.

(A) Local search
We have s = 0, x0 = 100, ∇h(x0) = x0 = 100, since

∇h(x) =

{
∇h1(x) = x, x ≥ 0,

∇h2(x) = 2x, x < 0.
(34)

Then the linearized (convex) problem (PL0)–(15) takes the form

(PL0) : Φ0(x) = g(x)−〈∇h(x0),x〉= 1
4

x4 −100x ↓ min
x
, x ∈ R.

To simplify the situation, in order to solve (PLs) let us apply the Fermat rule instead
of any numerical method. This yields

∇Φ(x) = x3 −100 = 0.
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Taking into account that 43 = 64, 53 = 125, let us risk to set x1 ≈ 4.5. Further, we
have to solve the next linearized problem (s = 1)

(PL1) : Φ1(x) =
1
4

x4 −4.5x ↓ min
x
, x ∈ R,

and, as a consequence, the equation

∇Φ1(x) = x3 −4.5 = 0,

whence it follows that x2 ≈ 1.7.
For s = 2 consider the next linearized problem

(PL2) : Φ2(x) =
1
4

x4 −1.7x ↓ min
x
, x ∈ R,

and the corresponding equation

x3 −1,7 = 0,

that provides for the solution x3 ≈ 1.2. Hence, it is clear that {xs} tends to
z0 = 1 ∈ Arglocmin (31).

(B) Global search.

Step 1. Thus, beginning at x0 = 100 LSM provided for the point z0 = 1, ζ0 :=
f (z0) =− 1

4 .
Step 2. To begin with let us choose β0 = g(z0) = g(1) = 1

4 .
Step 3. Now we need to construct an approximation

A0 =

{
y1,y2, . . . ,yN | h(yi) = β0 −ζ0 =

1
4
−
(
−1

4

)
=

1
2

}
.

i = 1, h1(y)
�
=

1
2

y2 =
1
2
, y > 0, y1 = 1,

i = 2, h2(y)
�
= y2 =

1
2
, y < 0, y2 =−

√
2

2
.

So, we obtain A0 = {y1 = 1, y2 =−
√

2
2 }.

Step 4. Further, we have to solve the linearized problems (i = 1,2)

(PLi) : Φi(x) = g(x)−∇h(yi),x〉 ↓ min
x
, x ∈ R.

a) i = 1,

Φ1(x) =
1
4

x4 −〈∇h1(y1),x〉= 1
4

x4 − x ↓ min
x

.

The Fermat rule provides for u1 = 1.
i = 2,
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Φ2(x) =
1
4

x4 −〈∇h2(y2),x〉= 1
4

x4 −〈2y2,x〉= 1
4

x4 +
√

2x ↓ min
x
, x ∈ R,

whence it follows ∇Φ2(x) = x3 +
√

2 = 0 that yields u2 =−(2)1/6.
b) i = 1,

Φ3(x) =
1
2

x4 −〈∇h1(y1),x〉= 1
2

x4 − x ↓ min
x

.

As above, one has u3 =
3
√

0.5.

Here, it is necessary to note that the points u2 and u3 are unacceptable because
the initial data and the final results are incompatible, i.e.

a) i = 2, g(x) = g1(x) = 1
4 x4 when x ≥ 0 meanwhile the solution u2 =−(2)1/6 is

negative;
b) i = 1. g(x) = g2(x) = 1

2 x2 when x < 0, while u3 =
3
√

0.5 > 0.
Further we consider the last case.

c) i = 2.

Φ4(x) = g2(x)−〈∇h2(y2),x〉= 1
2

x4 −〈2y2,x〉= 1
2

x4 +
√

2x ↓ min
x

.

It is easy to see that the Fermat rule ∇Φ4(x) = 2x3 +
√

2 = 0 yields u4 =

−
(√

2
2

)1/3
.

Now, we have to verify VI (30).
Step 5. a) i = 1.

g(u1)−β0 −〈∇h(y1),u1 − y1〉= 1
4

u4
1 =

1
4
−〈y1,u1 − y1〉= 1

4
− 1

4
−0 = 0.

b) i = 2.

g2(u2)−β0 −〈∇h2(y2),u2 − y2〉= 1
2 u4

4 − 1
4 −〈2y2,u4 − y2〉

= 1
2

(√
2

3

)4/3 − 1
4 + 〈√2,−

(√
2

2

)1/3
+

√
2

2 〉

= 1
2

[(
1
2

)2/3 − 1
2

]
+ 〈√2,

(√
2

2

)
−
(√

2
2

)1/3〉.

Without a computer it is rather difficult to decide about the sign of the latter
expression. Suppose, our program was incorrect at this point, and we turned out
to be unsuccessful to violate the VI (30). What do we have to do further? It is
necessary to change β for another value, i.e. to loop to Step 2.

Step 2. Change β0 for β1 =
3
4 .

Step 3. We need a new set A1 of points yi satisfying

h(y) =

{
1
2 y2, y ≥ 0,
y2, y < 0

}
= β1 −ζ0 =

3
4
−
(
−1

4

)
= 1,
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whence it follows
i = 1, y1 =

√
2,

i = 2, y2 =−1.

On account of (34) we have to solve the linearized (convex) problems (i= 1,2)

(PLi) : Φi(x) = g(x)−〈∇h(yi),x〉 ↓ min
x
, x ∈ R.

Note that here it is sufficient to investigate only the case (i = 1, a) and (i = 2, b),
because other two (i = 1, b) and (i = 2, a) turn out to be unacceptable, as above.
i = 1, a)

g1(x)−〈∇h1(y1),x〉= 1
4

x4 − x
√

2 ↓ min
x
, x ∈ R.

With the help of Fermat rule one has

x3 −
√

2 = 0, x ≥ 0, u1 = (2)1/6.

i = 2, b)

g2(x)−〈∇h2(y2),x〉= Φ4(x) =
1
2

x4 +2x ↓ min, x ∈ R,

which provides for

2x3 +2 = 0, u4 =−1.

Now, we need to verify VI (30). However, it is sufficient to consider only the case
(i = 2, b) with u4 =−1, y2 =−1. Actually, in this case due to (34) we have

g2(u4)−β1−〈∇h2(y2),u4−y2〉= 1
2

u4
4−1−〈2(−1),−1−1〉= 1

2
−1−0=−1

2
< 0.

The latter inequality means that GOCs have been violated, and, moreover, we were
successful to “jump” out the local pit z0 = 1 directly to the global solution z1 =−1
by means of Global Search Strategy (Method). ��

5 Numerical Solution of the Applied Problems

5.1 Linear Complementarity Problem

As it was said in Sect. 2, we have to look at the LCP (1) as the optimization problem
(2). Besides, we will consider the most difficult case when (2) is nonconvex. More
precisely, the matrix M in the statement (2) is indefinite, i.e. possesses positive and
negative eigenvalues.
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Note that the LCP (1) represents necessary optimality conditions for the problem

f (x) =
1
2
〈x,Mx〉+ 〈q,x〉 ↓ min, x ≥ 0. (35)

However, this problem cannot replace (2) because M is indefinite. As a conse-
quence, f (·) in (35) can be unbounded below, while the objective function in (2)
is nonnegative and takes the zero value only at a solution to Problem (2). It is clear
that this provides an additional information for the computational process.

Now, let us describe the principal stage of the Global Search Algorithm (GSA).
0. Classification. Thus, we decide to classify LCP with an indefinite matrix M as

a d.c. minimization problem (3) with the strongly convex functions g(·) and h(·):

g(x) = 〈x,M1x〉+ 〈q,x〉, h(x) = 〈x,M2x〉,
Mi = M	

i > 0, i = 1,2, M = M1 −M2.

I. The next stage is the local search. In order to do it, let us apply the LSM (16)
which (for the LCP (2)) takes the form of the consecutive solutions of the following
linearized problem

Φs(x) = 〈M1x,x〉+ 〈q−2M2xs,x〉 ↓ min,
x ≥ 0, Mx+q ≥ 0.

}
(36)

To the end of solving Problems (36) we used the well-known XPress solver, which
was especially designed for solving convex quadratic and linear programming
problems.

On the other hand, to organize rather effective testing of the LSM (16), the data
of the (n× n) matrix M were randomly generated in the interval [−n,n] (see [34]).
So, the set of randomly generated LCPs of type (2) and of the dimension varying
from n = 2 to n = 1000 has been formed. Moreover, for every LCP we used three
different starting points. Further, the local solution process has been performed and
analyzed on this field of test LCPs. In particular, the results enable us to observe
the behavior of the method (15)–(16) and to choose appropriate starting points for
global search (“good-bad” points, starting at which the LSM (15)–(16) does not
provide for a global solution to Problem (2)).

Note separately that due to Theorem 1 the linearized problems (36) may be
solved at a low accuracy at the first steps; further, the accuracy δs can be gradually
improved (δs ↓ 0), for example, δ0 = 0.1, δs+1 = 0.5δs until the condition δs ≤ δ
is fulfilled with a given accuracy δ > 0. The results of computational testing of
LSM (16) have been presented for the first time in [34] and after have been con-
siderably improved (till the dimension n = 1,000 with a 3.4 GHz Pentium computer
with 1 Gb of memory). The auxiliary linearized problems (36) have been solved by
XPress solver.

On the basis of the analysis of the results of computational testing [34] one can
conclude that the LSM (16) showed itself rather effective for LCP (2). Moreover,
it was considerably more effective in comparison with X-Press solver, because the
latter was unable to deal with nonconvex LCP (2) of dimension n ≥ 10, meanwhile
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the LSM (15)–(16) yielded a critical (feasible) point for (2) in all considered test
problems till the dimension n = 1,000 with obligatory and considerable decreasing
of the goal function Φ(·) in (2) (see [34]).

So, LSM (15)–(16) can be applied in a GSA, although it is not able, in general,
to reach a global solution.

Now we can pass to a global search described in Sect. 4. To begin with, first, one
has to propose a numeric solution of the equation

h(y)
�
= 〈y,M2y〉= β −ζk, M2 = MT

2 > 0,

where ζk := Φ(zk), β ∈ [β−,β+], more precisely to construct an approximation

Ak(β ) = {y1, . . . ,yN | h(yi) = β −ζk, i = 1, . . . ,Nk}
of the level surface Uk(β ) = {x | h(x) = β − ζk}. The construction of such an
approximation is a key point in the implementation of the global search.

Regardless of the importance of this procedure, the construction may be per-
formed in rather simple fashion, for example,

yi = μid
i, i = 1, . . . ,N, (37)

where di are elements of some set in R
n, for instance, di = ei, {e1, . . . ,en} being the

Euclidian basis of Rn, and the numbers μi are chosen as the roots of the quadratic
equation h(μidi) = β −ζk due to the quadratic structure of h(·).

In order to solve Problem (2) we used the approximations as follows:

R1 = {yi = μie
i, yi+n =−yi | i = 1, . . . ,n},

R2 = {yi = zk +μie
i, yi+n = zk −μie

i | i = 1, . . . ,n},
where zk is the current iteration point.

Besides, we also applied the third approximation using the form (37), where
di(i = 1, . . . ,n) have been produced as the solutions of the linear programs〈

ei,x
〉 ↓ min

x
, x ≥ 0, Mx+q ≥ 0, i = 1, . . . ,n (38)

and dn+1 is the solution of the similar problem

〈e,x〉 ↓ min
x
, x ≥ 0, Mx+q ≥ 0, (39)

with e = (1, . . . ,1)T ∈ R
n.

The results of computational testing of the developed GSA have first been pub-
lished in [34] and turned out to be rather promising for the test problems of dimen-
sion till 400.

Now we are having the software which is able to solve LCP (2) till the dimension
103 in 10–12 min and till the dimension 104 in 90–150 min, remember, by means of
(only one) almost the same computer as it was used in [34], without applying any
parallel technology.
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In addition, in order to compare the efficiency of GSA with existing software
the same series of randomly generated problems have been solved using the solver
PATH [34], which was especially designed for solving the LCP (1). Note that
all computational simulations have been carried out by students and postgraduate
students.

So, the qualities of the programs implemented may vary significantly.
Nevertheless, we can conclude that the developed GSA proved to be rather

effective for solving (nonconvex) LCPs with indefinite matrix M.

5.2 Bimatrix Games

Here we present the principal points of the numerical search for Nash equilib-
rium (NE) defined in (5) in the two-person game stated in (4). The computational
algorithm has been developed on the foundation of the following result of Mills [21].

Theorem 4. ([21]) (i) A situation (x∗,y∗) is a Nash equilibrium in the bimatrix
game G(A,B) (4) if and only if (x∗,y∗) is a part of a global solution (x∗,y∗,α∗,β∗)∈
R

m ×R
n ×R

2 to Problem (6).

(ii) Moreover, α∗ and β∗ are the payoffs of the first and the second players, respec-
tively:

〈x∗,Ay∗〉= α∗, 〈x∗,By∗〉= β∗.

(iii) Finally, the optimization value of the goal function in Problem (6) is equal to
zero

V(6) = F(x∗,y∗,α∗,β∗) = 0.

��

5.2.1 Classification

In order to develop a numerical method for solving Problem (6) we have, first, to
classify it as a nonconvex problem. Because all the constraints in (6) are linear,
we have to decide about the features of the cost function of Problem (6). It can be
readily seen that this function has the d.c. decomposition as follows:

F(x,y,α,β ) = h(x,y)−g(x,y,α,β ), (40)

where

h(x,y) = 1
4 (‖x+Ay‖2 +‖x+By‖2)

g(x,y,α,β ) = 1
4 (‖x−Ay‖2 +‖x−By‖2)+α +β

}
(41)

are convex functions (h(·) on R
m+n, g(·) on R

m+n+2). In other words, we have the
d.c. minimization problem (PBM) as follows:



486 A.S. Strekalovsky

(PBM) :

F0(x,y,α,β ) =−F(x,y,α,β ) = g(x,y,α,β )−h(x,y) ↓ min
x,y,α ,β

,

(x,β ) ∈ X = {x ∈ Sm, β ∈ R | x	B ≤ βen },
(y,α) ∈ Y = {y ∈ Sn, α ∈ R | Ay ≤ αem }.

⎫⎪⎬
⎪⎭ (6′)

It is easy to see that the cost function F0(x,y,α,β ) is nonnegative (F0(·) ≥ 0,
F(·)≤ 0) on the feasible set of Problem (PBM)–(6′).

In addition, if we denote

α(y) := max
1≤i≤m

(Ay)i, β (x) := max
1≤ j≤n

(x	B) j, (42)

then due to the necessity proof of Theorem 2 we can reformulate Theorem 2 in the
contrapositive form as follows.

Theorem 5. ([28]) If a feasible tuple (x̂, ŷ, α̂, β̂ ) is not a global solution to Problem
(PBM)–(6′), then there exist some vectors (u,v) ∈ Sm ×Sn and (x̄, ȳ) ∈ Sm ×Sn, and
a number γ such that

γ −h(u,v) = ζ := F0(x̂, ŷ, α̂, β̂ )> 0, (43)

g(u,v,α(v),β (u))≤ γ ≤ sup(g,D), (44)

g(x̄, ȳ,α(ȳ),β (x̄))− γ < 〈∇xh(u,v), x̄−u〉+ 〈∇yh(u,v), ȳ− v〉. (45)

��
Applying just this result we will develop a GSM for finding a global solution

to (PBM)–(6′). The first step of this GSM is a local search algorithm which takes
into account the bilinear structure of the cost function α +β −〈x,(A+B)y〉 of the
Problem (PBM)–(6′).

5.2.2 Local Search

First, let us repeat that LSMs play the important role in the processes of search for
a global solution to nonconvex problems, since it provides for the so-called critical
(stationary) points which may be considerably better than a simple feasible point.
Moreover, if a starting point occurs rather closed to a global solution (as in the case
of Newton method for solving systems of nonlinear equations), then an LSM is able
to provide for the global solution.

Therefore, we have to pay our attention and considerable efforts to a creation (a
design or a choice) and the substantiation of local search procedures.

For instance, for the case of Problem (6′) it might be possible to apply the LSM
(15)–(16) taking into account the d.c. representation (40)–(41) and applying the
corresponding methods of quadratic programming.

However, in this case the bilinear nature of Problem (PBM)–(6′), the specific
character of the cost function 〈x,(A+B)y〉, namely, its bilinearity, would be lost.
Therefore, we propose to follow another way, more natural in the case, taking
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into account the bilinear structure of the goal function F0(x,y,α,β ) = α + β −
〈x,(A+B)y〉. Combining the linearization idea and the separation of the variables
into groups according to the statement of Problem (PBM)–(6′), we obtain without
alternative a procedure of consecutive solving the following two (linearized at a
point (u,v) ∈ R

m ×R
n) problems

(PLx) :

{
β −〈(A+B)v,x〉 ↓ min

(x,β )
,

(x,β ) ∈ X = {(x,β ) ∈ Sm ×R | x	B ≤ βen},
(46)

(PLy) :

{
α −〈u	(A+B),y〉 ↓ min

(y,α)
,

(y,α) ∈ Y = {(y,α) ∈ Sn ×R | Ay ≤ αem}.
(47)

Unexpectedly enough, the procedure of consecutive solving the Problem (PLx) and
(PLy) converges in the following sense.

Theorem 6. ([33]) The sequence of the tuples (xs,ys,αs,βs) generated by the LSM
consisting in the consecutive fulfilling of the following inequalities

αs+1 −〈xs(A+B),ys+1〉− ρs

2
≤ inf

(y,α)
{α −〈xs(A+B),y〉 | (y,α) ∈ Y}, (48)

βs+1 −〈xs+1(A+B),ys+1〉− ρs

2
≤ inf

(x,β )
{β −〈x,(A+B)ys+1〉 | (x,β ) ∈ X}, (49)

converges to a quadruple (x̂, ŷ, α̂, β̂ ) satisfying the conditions as follows

F0(x̂, ŷ, α̂, β̂ )≤ F0(x̂,y,α, β̂ ) ∀(y,α) ∈ Y,

F0(x̂, ŷ, α̂, β̂ )≤ F0(x, ŷ, α̂,β ) ∀(x,β ) ∈ X ,

}
(50)

provided that ρs > 0, s = 0,1,2, . . .,
∞
∑

s=0
ρs <+∞. ��

We will call, henceforth, such a point satisfying (50) a critical point of Problem
(PBM)–(6′). The LSM (46)–(49) has been tested on a rather large field of well-
known test problems [33], and also on the various test problems especially con-
structed with the help of the idea from [5], by beginning the known games of
small dimension (2 × 2, 3 × 3) and until the test-games of rather high size (say,
m = n = 1,000).

Computational simulations certify unexpected effectiveness of the developed
LSM that naturally depends on the method or a package of applied software
(CPLEX) that was used for solving the linear problems (46), (47). Now we are
able to perform LSM with the data m = n = 106 rather easily and effectively.

5.2.3 Global Search Algorithm

Recall that, in addition to local search, the basic stages of a GSM include an ap-
proximation of the level surface of the convex function h(·) (which creates the basic
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nonconvexity in Problem (PBM)–(6′)), a solution of a linearized problem (PLs), the
verification of the VI (30) with wi ∈U(h,γ −ζ ) = {(x,y)∈R

m+n | h(x,y) = γ −ζ},
and finally a line search along the variable γ ∈ R.

Taking into account the particularities of Problem (6′) the following modifica-
tions have been introduced into the general scheme of Global Search on the bases
of Theorem 5.

1. Due to the properties of the cost function F0(x,y,α,β ) (see Theorem 4) the sup-
plementary stopping criterion was introduced.

2. Two new parameters (q and ν) have been introduced in order to control the speed
and the accuracy of the algorithm [23].

Let us now describe the GSM for solving Problem (PBM)–(6′) in a more algorithmic
form.

Assume, we are given a starting feasible point (x0,y0,α0,β0) ∈ D = X ×Y ;
number sequences {τk} and {δk}, k = 0,1,2, . . ., τk ↓ 0, δk ↓ 0 (k → ∞); a set of
directions Dir = {(ū1, v̄1), . . . ,(ūN , v̄N) ∈ R

m+n} the bounds γ− ≈ inf(g,D),γ+ ≈
sup(g,D); and parameters ν ∈]0,1[ and q.

Global Search Methods for (PBM)–(6′).

Step 0. Set k := 0, (x̄k, ȳk, ᾱk, β̄k) := (x0,y0,α0,β0), s := 0, p := 1, γ := γ−,
Δγ = (γ+− γ−)/q.
Step 1. Starting from (x̄k, ȳk, ᾱk, β̄k) ∈ D, move to τk—critical point
(xk,yk,αk,β k) ∈ D by means of the special LSM (48)–(49).
Set ξk := F0(xk,yk,αk,βk)≤ F0(x̄k, ȳk, ᾱk, β̄k).
Step 2. (Stopping criterion). If ξk ≤ ε , where ε is the prescribed accuracy, then
STOP: (xk,yk) ∈ NE(G,ε).
Step 3. With the help of the point (ūp, v̄p) ∈ Dir (p = 1, ..,N) construct
a point (up,vp) such that h(up,vp) = γ − ξk. Compute the numbers αp :=
max

1≤i≤m
(Avp)i,βp := max

1≤ j≤n
(upB) j.

Step 4. If g(up,vp,αp,βp) > γ + νγ , then set p := p+ 1 and return to Step 3.
Else go to Step 5.
Step 5. Starting at the point (up,vp,αp,βp) find a 2τk-critical point
(x̂p, ŷp, α̂p, β̂p) ∈ D of Problem (6′) by means of special LSM.
Step 6. (Stopping criterion). If F0((x̂p, ŷp, α̂p, β̂p) ≤ ε , then STOP.
(x̂p, ŷp) ∈ NE(G,ε).
Step 7. Find a δk-solution (xp

0 ,y
p
0) to the level problem or, what is equivalent,

〈∇xh(xp
0 ,y

p
0), x̂

p − xp
0〉+ 〈∇yh(xp

0 ,y
p
0), ŷ

p − yp
0〉+δk

≥ sup
(x,y)

{〈∇xh(xp
0 ,y

p
0), x̂

p − x〉+ 〈∇yh(xp
0 ,y

p
0), ŷ

p − y〉 | h(x,y) = γ −ζk}, (51)

where h(xp
0 ,y

p
0) = γ −ζk.

Step 8. Compute

ηk(γ) = g(x̂p, ŷp, α̂p, β̂p)− γ −〈∇xh(xp
0 ,y

p
0), x̂

p − x̂p
0〉−〈∇yh(xp

0 ,y
p
0), ŷ

p − ŷp
0〉.
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Step 9. If ηk(γ)≥ 0 and p < N, then set p := p+1 and loop to Step 3.
Step 10. If ηk(γ) ≥ 0 and p = N, then set γ := γ +�γ and p := 1 and return to
Step 3.
Step 11. If ηk(γ)< 0, then k := k+1,(x̄k+1, ȳk+1, ᾱk+1, β̄k+1) := (x̂p, ŷp, α̂ p, β̂ p),
and return to Step 1.
Step 12. If p = N and ηk(γ)≥ 0∀γ ∈ [γ−,γ+] (i.e., the line search with respect to
γ ∈ [γ−,γ+] is finished), then stop.

The GSM presented above is not an algorithm, since some of its steps have not
been described clearly, and must be precised. For instance, it is not clear how to
find the pair (xp

0 ,y
p
0) on Step 7, besides, how to construct a point (up,vp) on the

level surface of h(·): h(up,vp) = γ − ζk with the help of a given direction (ūp, v̄p)
on Step 3. As to the first problem of Step 7, it can be solved analytically for the
quadratic function

h(x,y) =
1
4
(‖x+Ay‖2 +‖x+By‖2), (52)

more precisely, the exact solution is given by the formula [32, 33]

(xp
0 ,y

p
0) = t(x̂p, ŷp), t =

[ γ −ζk

h(x̂p, ŷp)

] 1
2
.

The construction of point (up,vp) satisfying h(up,vp) = γ −ζk can be done in the
similar way:

(up,vp) = λp(ū
p, v̄p), p = 1, . . . ,N,

λp = λp(ζk,γ) =±[γ −ζk/h(ūp, v̄p)]
1
2 .

To the end of the solving Problem (PBM)–(6′) it was used the approximations
of the level surface U(h,γ −ζ ) = {(x,y)| h(x,y) = γ −ζ} (see Step 3) constructed
with the help of the following sets of directions

Dir1 = {(ei,e j) ∈ R
m+n| i = 1, . . . ,m, j = 1, . . . ,n},

where {ei} is the Euclidian basis in R
m and {e j} is the basis in R

n, respectively;

Dir2 = {(ei + x,e j + y)| i = 1, . . . ,m, j = 1, . . . ,n},

where (x,y) is a critical point provided by the special LSM;

Dir3 = {(a j + em,b
i + en)| i = 1, . . . ,m, j = 1, . . . ,n},

where a j ∈ R
n are the columns in A and bi ∈ R

n are the rows in B, and
ep = (1, . . . ,1) ∈ R

p, p = m,n.
Note that the sets Dir1,Dir2,Dir3 have been selected as the most efficient ones

after comparative computational experiments. But on the other hand, it is easy to
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see that the number of points in the constructed approximations strongly depends
on the size of the problem, i.e. is equal to m×n.

So, the number of points in the approximations grows as q2, where q =
min{m;n}.

It is clear that this moment makes it prohibited the numerical solution of Prob-
lem (PBM)–(6) of high dimension due to the excessive solution time.

In order to avoid this drawback it was employed some reducing procedure of the
sets Dir1,2,3 to sets with the number of points equal to 2(m+n) [23, 33].

5.2.4 Computational Simulations

The numerical experiments were conducted applying software programs imple-
menting the GSAs described above. For all the problems, a starting point was chosen
as follows:

x0
i =

1
m
, i = 1,2, . . . ,m; y0

j =
1
n
, j = 1,2, . . . ,n,

α0 = max
i
(Ay0)i, β0 = max

j
(x0B) j.

The computational simulations have been separated into several stages, and the
first results of these experiments have been published in [23].

Further, the analysis of the results allowed us to conclude about some shortcom-
ings of the software program developed. First of all, it was the solving method for
linearized problems (46)–(47). Recall that to the end the simplex method program
or the supporting cone method program was employed, which showed itself very
excessive from the viewpoint of the solution time of problems of high dimension.

As a consequence, for solving the BM games of rather high dimension (up to
1,000 × 1,000) we decided to apply ILOG CPLEX 9.1(http://www-01.ibm.com/
soft-ware/commerce/optimization/cplex-optimizer/index.html) especially oriented
to LP problems. In addition, in order to create the worst conditions for the global
search software the entries of matrices A and B have randomly been generated from
the interval [−n,n], where n = m.

The software programs of global search were run on Pentium 4, CPU 3 GHz with
512 Mb of RAM and have been implemented by post-graduated students without a
long computational experience.

Nevertheless, the results of computational solving of BM games (m = n) can be
viewed as rather promising from the point of view of analysis of numeric results of
Table 1.

In Table 1, m = n is the number of pure strategies of players 1 and 2, F0 stands
for the value of the goal function at the starting points, Fk is the corresponding value
at the best obtained point, st is the number of iterations of GSAs (or, what is the
same, the number of critical (stationary) points passed by GS algorithms), LP and
Loc represent the number of linearized problems solved and the number of local
search algorithm’s applications, respectively.

http://www-01.ibm.com/soft-ware/commerce/optimization/cplex-optimizer/index.html
http://www-01.ibm.com/soft-ware/commerce/optimization/cplex-optimizer/index.html
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Table 1 Computational results

m = n F0 Fk st LP Loc Time

200 40.3811 0 2 972 65 00:43.66
250 51.1617 0 4 4,843 321 5:36.30
300 60.1209 0 2 28 2 00:44.17
400 75.0987 0 6 16,168 978 59:05.49
500 75.3494 0 2 158 20 05:57.88
600 84.1025 0 2 82 7 07:33.92
700 89.0439 0 2 54 6 11:50.34
800 99.8335 0 2 48 3 15:28.70
900 100.0419 0 3 136 11 29:31.38

1,000 106.8368 0 3 178 18 45:04.34

It can readily be seen that in the cases of m = n = 250 and 400 it happened to
randomly generate very difficult problems.

Despite these difficulties, all test-problems have successfully been solved that
certifies on the computational effectiveness of the software program created on the
basis of the GSA and the Global Search Theory.

Now, we are preparing to attack the bimatrix game of dimension m = n = 104

and the similar three-person-game of dimension m = n = l = 5, and 10.

5.3 Quadratic-Linear Bilevel Optimization

In this subsection we will consider the following problem of bilevel programming

(BP) : F(x,y) :=
1
2
〈x,Cx〉+ 〈c,x〉+ 1

2
〈y,Cy〉+ 〈c1,y〉 ↓ min

x,y
, (53)

(x,y) ∈ X := {(x,y) ∈ R
m ×R

n | Ax+By ≤ a, x ≥ 0}, (54)

y ∈ Y∗(x) := Argmin
y
{〈d,y〉 | y ∈ Y (x)} (55)

Y (x) := {y ∈ R
n | A1x+B1y ≤ b, y ≥ 0}, (56)

where we are seeking an optimistic solution [6, 8], i.e. the upper level (x, leader)
and the lower level (y, follower) are searching together (in cooperation) a common
solution (x∗,y∗). Here, c ∈R

m, d,c1 ∈R
n, a ∈R

p, b ∈R
q, and matrices C, C1, A, B,

A1, B1 are of corresponding dimensions. In addition, C =C	 > 0, C1 =C	
1 > 0, so

that the leader cost function is a convex quadratic function, while the follower goal
function is linear.
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Assume that
(H): (i) the function F(x,y) is bounded from below on X ,
(ii) the function 〈d,y〉 is bounded from below on Y (x) ∀x ∈ Pr(X).

It is clear, that, from the first glance, any nonconvexity is not visible in the
formulation (BP)–(53)–(56). In order to put it explicit we apply the KKT-conditions
for the follower problem (55) –(56):

d + vB1 ≥ 0, v ≥ 0, A1x+B1y ≤ b,
〈d,y〉−〈A1x−b,v〉= 0,

}
(57)

where v is the Lagrangian multipliers. Since the follower problem is also convex,
the relations (57) are equivalent to the statement (55)–(56).

Let us replace, now, in (BP) the follower problem by (57). It yields us the new
problem

(P) : F(x,y) ↓ min
x,y,v

,

Ax+By ≤ a, A1x+B1y ≤ b, d + vB1 ≥ 0,
〈d,y〉= 〈A1x−b,v〉, x ≥ 0, y ≥ 0, v ≥ 0.

⎫⎪⎬
⎪⎭ (58)

The following result establishes the relation between the (BP) and Problem (P).

Theorem 7. ([8]) For the pair (x∗,y∗) to be a global solution to Problem (BP)–
(53)–(56), it is necessary and sufficient that there exists a vector v∗ ∈ R

q such that
the triple (x∗,y∗,v∗) is a global solution to Problem (P)–(58). ��

Note, that, first, the relation exists only between the global solutions of Problems
(P) and (BP), but it does not take place between local solutions or between local
and global ones.

Second, it is easy to see that the feasible set of Problem (P)–(58) is nonconvex
because of the presence of the bilinear equality-constraint in (58). Thus, Problem
(P)–(58) turns out to be nonconvex.

Let us denote
H(x,y,v) := 〈d,y〉−〈A1x−b,v〉 (59)

and introduce a μ-parametric family of problems as follows:

(P(μ)) : F1(x,y,v,μ) = F(x,y)+μH(x,y,v) ↓ min
x,y,v

,

(x,y,v) ∈ D := {(x,y,v) | Ax+By ≤ a, A1x+B1y ≤ b,
d + vB1 ≥ 0, x ≥ 0, y ≥ 0,v ≥ 0},

⎫⎪⎬
⎪⎭ (60)

where μ > 0 is a penalty parameter. If we rewrite the function H(·) in the form

H(x,y,v) = 〈d + vB1,y〉−〈A1x+B1y−b,v〉, (59 ′)

then it becomes clear that

H(x,y,v)≥ 0 ∀(x,y,v) ∈ D. (61)



On Solving Optimization Problems with Hidden Nonconvex Structures 493

Furthermore, it can be readily seen that for a fixed value of μ Problem (P(μ)) is
convex and quadratic with respect to the variables (x,y), and, besides, bilinear with
respect to the variables x and v. So, Problem (P(μ)) can be called quadratic-bilinear,
but anyway it stays to be nonconvex with the convex feasible set D (defined in (60))
and the nonconvex objective function F1(·). Below we will show that F1(x,y,v,μ) is
a d.c. function.

Let us suppose (x(μ),y(μ),v(μ)) be a solution to Problem (P(μ))–(60) for
a given μ ∈ R. Further, denote H[μ ] = H(x(μ),y(μ),v(μ)). Then the following
relations between Problems (P)–(58) and (P(μ))–(60) take place.

(i) If the equality H[μ̂ ] = 0 holds for some value μ̂ ∈ R and
(x̂, ŷ, v̂) = (x̂ = x(μ̂), ŷ = y(μ̂), v̂ = v(μ̂)) is a solution to Problem (P(μ̂)),
then the triple (x̂, ŷ, v̂) is a solution to Problem (P).

(ii) Moreover, for all μ > μ̂ the equality H[μ ] = H(x(μ),y(μ),v(μ)) = 0 holds,
and, in addition, (x(μ),y(μ),v(μ)) is a solution to Problem (P).

In connection with these assertions we have results more suitable for computa-
tional uses.

Proposition 1. ([36]) Let (x(μ),y(μ),v(μ)) ∈ D be a τ1-solution to Problem
(P(μ)), and, besides,

H(x(μ),y(μ),v(μ))≤ τ2.

Then

(i) y(μ) is a τ2-solution to the follower problem (55)–(56) with parameter x= x(μ);

(ii) (x(μ),y(μ)) is an approximate τ1-solution to Problem (BP)–(53)–(56). ��
The above assertions allow us to apply the global search methodology developed

in Sect. 4 for solving Problem (P(μ))–(60) and, as a consequence, for finding an
approximate global solution to Problem (BP)–(53)–(56).

5.3.1 Local Search

It can be readily seen that Problem (P(μ)) can be rewritten in the following form

(P(μ)) : F1(x,y,v) :=
1
2
〈x,Cx〉+ 〈c,x〉+ 1

2
〈y,C1y〉+ 〈c1,y〉

+μ
[〈d,y〉−〈A1x−b,v〉] ↓ min

x,y,v
, (62)

(x,y) ∈ Z := {(x,y) | Ax+By ≤ a, A1x+B1y ≤ b, x ≥ 0, y ≥ 0}, (63)

v ∈V := {v | d + vB1 ≥ 0, v ≥ 0}. (64)

On account of the assumptions (H), it is easy to see that the cost function F1(·) is
bounded from below on the set D = Z×V . Further, the statement (62)–(64) of Prob-
lem (P(μ)) suggests the idea of local search consisting in a consecutive solution of
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the problem (62)–(64) with respect to the groups of variables; more precisely, in the
case (62)–(64) , first, with respect to the pair (x,y) and, after that, with respect to the
variables v, or in the inverse order.

Note that Problem (P(μ)) with a fixed value of the variable v becomes a convex
quadratic optimization problem. On the other hand, for a fixed pair (x,y) we obtain
a linear programming (LP) problem with respect to v. So, these auxiliary problems
can be solved by standard software packages (CPLEX, X-Press, etc.)

Therefore, we can produce local search as it was done for the Bimatrix games.
Given some starting point v0 ∈ V , we describe a so-called V -procedure as fol-

lows:

Step 0. Set s := 0, vs := v0.
Step 1. Find a ρs

2 -solution (xs+1,ys+1) of the problem

1
2
〈x,Cx〉+ 〈c,x〉+ 1

2
〈y,C1y〉+ 〈c1,y〉

+μ
[〈d,y〉−〈A1x−b,vs〉] ↓ min

x,y
, (x,y) ∈ Z,

⎫⎬
⎭ (PLs)

so that the following inequality holds

F1(x
s+1,ys+1,vs)≤ inf

(x,y)
{F1(x,y,v

s) | (x,y) ∈ Z}+ ρ2

2
. (65)

Step 2. Find a ρs
2 -solution vs+1 of LP problem

〈d −A1xs+1,v〉 ↓ min
v
, v ∈V, (LPs)

so that the following inequality is satisfied

F1(x
s+1,ys+1,vs+1)≤ inf

v
{F1(x

s+1,ys+1,v) | v ∈V}+ ρ2

2
. (66)

Step 3. Set s := s+1 and loop to Step 1.
Under the condition

ρs > 0, s = 0,1,2, . . . ,
∞

∑
s=0

ρs <+∞,

we can prove, as it was in the Bimatrix games, that the numerical sequence
{F1s = F1(xs,ys,vs)} generated by the V -procedure from above is converging.

Moreover, if (xs,ys,vs)→ (x̂, ŷ, v̂), then the point (x̂, ŷ, v̂) turns out to be a critical
point of Problem (P(μ))–(62)–(64) [35] or partially global solution to (P(μ)), i.e.

F1(x̂, ŷ, v̂)≤ F1(x,y, v̂) ∀(x,y) ∈ Z,
F1(x̂, ŷ, v̂)≤ F1(x̂, ŷ,v) ∀v ∈V.

}
(67)
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Note that if a point (x̄, ȳ, v̄) is a local solution to Problem (P(μ))–(62)–(64), then
(x̄, ȳ, v̄) turns out to be a critical point of Problem (P(μ)). Thus, the notion of critical
point just introduced is really substantiated by and connected with the common
notion of local solution. The similar to V -procedure so-called XY -procedure (start-
ing at a point (x0,y0) ∈ Z) has also been studied and substantiated.

In order to test the developed LSM a rather large field of test-problems of the
form (BP)–(53)–(56) has been constructed with the help of the idea of Calamai and
Vicente [5], which provides for the bilevel problems with well-known properties,
local and global solutions (even the numbers of which is known).

Now, a few words about the numerical testing of LSM.
First, the computational simulation was threefold:

(a) to choose a suitable value of the penalty parameter μ that provides for the equal-
ity H(x(μ),y(μ),v(μ)) = 0 (the exact penalty [3, 22, 40]);

(b) to find starting points suitable for Global Search, i.e. from which the LSM was
not able to reach a global solution;

(c) and finally, to compare two versions of LSM (with V - or XY -procedures).

Analyzing the testing results, one concluded that the computational time was
rather short (less than 0.1 s), when the stopping criterion was satisfied at the accuracy
τ = 10−4.

Furthermore, the value μ = 10 of penalty parameter μ turned out to be sufficient
to reach the equality H(x(μ),y(μ),v(μ)) = 0 at a τ-critical point (x(μ),y(μ),v(μ)).
The targets (b) and (c) have been also reached.

Moreover, it should be specially noted the high rate of convergence of the XY -
and V -procedures on the considered series of randomly generated problems, only
two iterations were needed (starting from arbitrary feasible point) in order to get
a critical point. So, the results of computational testing of the LSM were rather
promising [35, 37].

5.3.2 Global Search

Let us repeat that the numerical test results showed that the special LSMs (V - and
XY procedures) do not, in general, yield a global solution, even in problems of small
sizes.

According to the methodology of Sect. 4, first we need to derive an explicit d.c.
decomposition (if possible) of the cost function of the problem under scrutiny.

It is not hard to see that the goal function F1(x,y,v) of the problem (P(μ)) can
be represented as a difference of two convex functions, for instance, as follows:

F1(x,y,v) = g(x,y,v)−h(x,v), (68)

where
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g(x,y,v) =
1
2
〈x,Cx〉+ 〈c,x〉+ 1

2
〈y,C1y〉+ 〈c1,y〉

+μ
(〈v,b〉+ 〈y,d〉+ 1

4
‖v−A1x‖2),

h(x,v) =
μ
4
‖v+A1x‖2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(69)

are convex functions. Note that this d.c. decomposition is different with respect to
these ones that was used in [35–37].

As it was noted above, the procedures of escaping critical points are based on
GOC of Theorem 2 (see (25)) and employing the constructive (algorithmic) property
of GOC. In the case of Problem (P(μ)) these GOCs take the form as follows:

(x∗,y∗,v∗) ∈ Sol(P(μ)), ζ := F1(x∗,y∗,v∗) =⇒
∀(z,w,γ) ∈ R

m+q+1 : h(z,w) = γ −ζ , (70)

g(x,y,v)− γ ≥ 〈∇xvh(z,w),(x,v)− (z,w)〉 ∀(x,y,v) ∈ D. (71)

Besides, if for some (ẑ, ŵ, γ̂) in (70) and (x̂, ŷ, v̂) ∈ D

g(x̂, ŷ, v̂)< γ̂ + 〈∇xvh(ẑ, ŵ),(x̂, v̂)− (ẑ, ŵ)〉,

i.e. the VI (71) is violated, then due to the convexity of h(·) it follows

F1(x̂, ŷ, v̂)< F1(x∗,y∗,v∗).

In other words, (x̂, ŷ, v̂) ∈ D is “better” than (x∗,y∗,v∗).
Similarly to Sect. 4 and according to the methodology presented in Sect. 3 Prob-

lem (P(μ)) is decomposed into several simpler problems as follows:

(a) one-dimensional search along the variable γ;
(b) constructing the level surface approximation of the convex function h(x,v),

which does not depend on y, as it was in our earlier papers [35–37]. It is clear
that in this case the approximations must be easier to construct.

On the other hand, we have to pay attention to the fact that in view of the differ-
ent d.c. representation (68)–(69) the global search has to be changed and becomes
different with respect to [35, 36].

Assume, we are given a point (x0,y0,v0) ∈ R
m+n+q, numerical sequences {τk},

{δk}, τk, δk > 0, k = 0,1, . . ., τk ↓ 0, δk ↓ 0 (k → ∞), numbers γ− ≈ inf
(x,y,v)

(g,D) and

γ+ ≈ sup
(x,y,v)

(g,D), an algorithm’s parameter M and a direction’s set of the form

Dir =
{
(al ,cl) ∈ R

m+q | (al ,cl) �= 0, l = 1, . . . ,N
}
.

The GS algorithm used here can be represented as follows:

Step 0. Set k := 0, (x̄k, ȳk, v̄k) := (x0,y0,v0), l := 1. γ := γ−;Δγ := γ+− γ−/M.
Step 1. Starting at the point (x̄k, ȳk, v̄k) construct a τk-critical point (xk,yk,vk)∈D
in Problem (P(μ)) by applying V - or XY -procedure. Set ζk := F1(xk,yk,vk).
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Step 2. Given a point (al ,cl) ∈ Dir, construct a point (zl ,wl) such that
h(zl ,wl) = γ −ζk.
Step 3. Solve the linearized problem as follows:

(PLl) : g(x,y,v)−〈∇xvh(zl ,wl),(x,v)〉 ↓ min
(x,y,v)

, (x,y,v) ∈ D.

Let the point (x̂, ŷ, v̂) be a solution to (PLl).
Step 4. Starting at the point (x̂, ŷ, v̂) construct a δk-critical point (x̂l , ŷl , v̂l).

Step 5. If F1(x̂l , ŷl , v̂l) < ζk
�
= F1(xk,yk,vk), then set (x̄k+1, ȳk+1, v̄k+1) :=

(x̂l , ŷl , v̂l), k := k+1, l := 1, γ := γ− and loop to Step 1.
Step 6. If F1(x̂l , ŷl , v̂l)≥ ζk and l < N, then set l := l +1 and return to Step 2.
Step 7. If F1(x̂l , ŷl , v̂l)≥ ζk and l = N, then set γ := γ +Δγ , l := 1 and come back
to Step 2.
Step 8. If l = N, F1(x̂l , ŷl , v̂l) ≥ ζk ∀γ ∈ [γ−,γ+] (i.e., one-dimensional search
along γ over the interval [γ−,γ+] is terminated), then STOP; (xk,yk,vk) is a criti-
cal point provided by Algorithm of global search.

Remark 1. It is clear that different values of the parameter M are responsible for the
partitioning of the interval [γ−,γ+] into a suitable number of parts to implement a
passive one-dimensional search along γ . On the other hand, it is necessary to precise
how to construct a direction’s set Dir and, furthermore, an approximation of the level
surface h(z,w) = γ −ζk.

Taking into account that in contrast to the earlier papers [35–37] here due to (69)

h(x,v)
�
=

μ
4
‖v+A1x‖2, (69 ′)

we have to choose γ ≥ ζk so that γ− can always be chosen as follows: γ− := ζk.
Other points of the implementation of the algorithm were similar to [35–37].

Let us focus now on the construction of approximation of the level surface

U(γ) = {(z,w)| h(z,w) = γ −ζk}.

Recall that, on the one hand, such an approximation should be representative enough
to escape a critical point (if possible). On the other hand, if we are rather far from
a global solution, then the approximation must allow us to “jump out” the critical
point where we are.

Let us show how to construct an approximation. Given a set of directions

Dir = {(al ,cl) ∈ R
m+q|(al ,cl) �= 0, l = 1, . . . ,N},

we construct a point of an approximation An in a rather simple manner as follows:

(zl ,wl) = λl(a
l ,cl), h(zl ,wl) = γ −ζk, l = 1, . . . ,N. (72)
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Due to (69 ′) the corresponding equation

μ
4
‖cl +A1al‖λ 2

l = γ −ζk (72 ′)

leads us to very simple computing in order to calculate λl .
As the sets of directions, one can consider, for example, the set

Dir1 = {(xk + ei,vk + e j),(xk − ei,vk − e j)| i = 1, . . . ,m, j = 1, . . . ,q}

where (xk,vk) is the part of the current critical point (xk,yk,vk); ei ∈R
m, e j ∈R

q are
the Euclidean basis vectors. Further, it has been employed the set

Dir0 = {(ai,b j)|(ai,b j) �= 0, i = 1, . . . ,m, j = 1, . . . ,q}.

where ai and b j are, respectively, rows and columns of the matrix A1, which specifies
nonconvexity in the goal function of Problem (P(μ))–(60).

Note that the numbers of points in the approximations constructed are equal to
2qm and grow rapidly with the dimension. Therefore, we have also made the reduc-
tion of the approximations as described in [35, 36]. The first stages of computational
testings of the developed GSA have been presented in [36, 37].

Here, we will show the preliminary results of further computational experiments
with improved GSA described above (see Tables 2 and 3).

In particular we see in Table 2 the comparison of the results of computational
solving the test-problems (generated, as above, with the help of the methodology
from [5]) by GSA described above and by means of very popular package of applied
software KNITRO (www.ziena.com/knitro.htm).

Since KNITRO is not able to solve bilevel problems directly, the equivalent for-
mulation (P(μ)) (with μ = 10,15,20) was used to this end.

On the other hand, GSA has been run on a computer with the processor Intel Core
2 Duo 2.0 GHz, while KNITRO used a computer with more powerful processor
Intel Core 2 Quad 2.8 GHz. In Table 2 F∗ is the known optimal values of the test-
problems, FKms and T are the best values of the goal function and the corresponding
solving time provided by KNITRO, while FXY , FV , and T stand for the best values of
the cost function and the solution time obtained by GSA (using XY - or V -procedure
as LSM). The bold values in Table 2 denote the successful cases when the known
global solutions to the test-problems have been reached by the used algorithms.

Analyzing results of Table 2, it is easy to note that the KNITRO (multistart)
was successful to find the global solutions only in 61 % of the test-problems of the
middle dimension with the accuracy ε = 10−2. Meanwhile, applying the programs
implementing GSA, all considered test-problems have been solved at the same
precision.

Moreover, it is not hard to see the big difference in solution time between GSA
and KNITRO for the problems of middle dimension more than 10. For example,
for m = n = 30, KNITRO worked about 1.5–2 h without reaching a global solution,
meanwhile GSA provided for a global solution in 2 min approximately.

www.ziena.com/knitro.htm
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Table 2 Comparison of global search algorithm (GSA) with KNITRO

KNITRO multistart Global search
Name F∗ FKms T FXY T FV T

5×5 1 −21 −21 7.7 −21 11.4 −21 7.3
5×5 2 −9 −9 8.7 −9 11.3 −9 4.7
5×5 3 −5 −5 9.9 −5 11.7 −5 4.6

10×10 1 −38 −30 1:17.2 −38 33.1 −38 23.7
10×10 2 −26 −26 1:17.0 −26 29.2 −26 12.4
10×10 3 −14 −14 1:22.4 −14 24.6 −14 16.0
15×15 1 −19 −19 11:08.5 −19 20.3 −19 19.0
15×15 2 −27 −19 5:43.6 −27 38.6 −27 31.5
15×15 3 −43 −35 7:01.2 −43 48.1 −43 35.5
20×20 1 −24 −24 19:13.7 −24 26.9 −24 45.9
20×20 2 −48 −48 30:20.5 −47.999 1:12.0 −47.999 1:10.9
20×20 3 −52 −32 29:54.4 −52 1:13.1 −52 52.0
30×30 1 −142 −134 1:34:34.9 −141.997 4:30.3 −141.997 1:46.8
30×30 2 −58 −38 1:31:23.5 −58 1:26.2 −58 1:51.3
30×30 3 −42 −29.999 2:39:15.4 −42 51.5 −42 1:08.9

Table 3 Testing of global search algorithm (GSA) on problems of high dimension

m+n N LocSolavg Locavg Stavg Tavg

20 1,000 146.2 2,012.7 1.9 8.57
40 1,000 13,1284.1 3,436.6 2.1 20.69
60 100 1.34 ·108 4,601.5 2.0 34.36
80 100 1.17 ·1011 6,485.1 2.1 59.51

100 100 1.20 ·1014 9,352.5 2.1 1:40.29
150 10 3.78 ·1021 8,050.3 3.0 1:52.38
200 10 1.27 ·1029 12,263.8 2.8 4:00.69
250 10 4.27 ·1036 17,704.3 2.7 8:04.28
300 10 3.93 ·1044 72,245.6 17.9 49:53.48
350 10 2.12 ·1052 216,721.1 25.2 3:56:09.12
400 10 8.64 ·1059 318,448.7 27.6 9:10:24.43

Now, let us look at Table 3 where presented the results of computational solution
of the test-problems of high dimension (until m= n= 200) provided by the software
program implemented in a computer with the processor Intel Core i5-2400 3.1 GHz.
In Table 3 N is the number of test-problems in series, LocSolavg is an average number
of local solutions which are not global in one problem of the series (this is very
important difficulty index of the problem); Locavg stands for the average number
of switching on of the LSM in conducting GSA; Stavg is the average number of
iterations of GSA or critical points passed by GSA; Tavg is the average working time
of the program implementing the GSA.
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From the results of computation testing we can see, firstly, that all 2,350
randomly generated problems have been successfully solved so that, regardless the
fantastic difficulty of the test-problems (m+ n = 300 and LocSolavg = 3.93 · 1044,
m+n = 400 and LocSolavg = 8.64 ·1059), GSA has found a global solution in every
considered test-problem.

However, this version of program is characterized by the rapid increase in com-
puting time with the growth of the dimension: for m+ n = 400 it takes more than
9 h. On the other hand, it can be explained by the number Locavg of local search
applications which is more than 310 thousands.

Moreover, it is not hard to note that the number Stavg of approximately criti-
cal points, at which it happened an improvement of the cost function, turned out
to be rather moderate with respect to the number LocSolavg of local solutions
(different from global ones) which is varying from rather big (m + n = 60 and
LocSolavg = 1.34 · 108) until incalculable (m + n = 300, LocSolavg = 3.93 · 1044;
m+n = 400, LocSolavg = 8.64 ·1059).

So, we conclude that the new results of computational solving the bilevel prob-
lem can be viewed as rather promising and competitive. Moreover, we did not be
successful to find, at present, the solution’s results of similar problems of such
dimensions in the existing literature.

6 Concluding Remarks

In the present paper, new procedures of finding the solution to the linear comple-
mentarity problem with indefinite matrices, the Nash equilibrium in bimatrix games,
and optimistic solution in quadratic-linear bilevel optimization problems have been
proposed, discussed, and illustrated.

Further, a new approach based on GOCs, LSMs and GSMs, was applied in order
to solve all three problems. In addition, the new results of computational solutions
were presented in the paper. According to these results, the new approach has shown
itself rather promising and competitive.
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