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1 Introduction

We provide a stochastic formulation of the classical deterministic oligopolistic
market equilibrium, à la Cournot [2] in this short note. Equilibria of this kind
are particular cases of Nash equilibria, and it is well known (see, e.g., [1] for the
general Hilbert space case, and [4] for a finite-dimensional framework close to oper-
ations research problems) that under standard hypotheses solutions can be obtained
by solving a variational inequality. Thus, we can apply the theory of random (or
stochastic) variational inequalities in Lebesgue spaces to our model. This approach
has been proposed quite recently to study many stochastic equilibrium problems
arising from applied sciences and operations research [5–8, 10]. Other approaches
to stochastic variational inequalities have been proposed by other authors. Here we
cite only the very recent paper [13] which also contains applications to Nash equi-
librium problems.

The paper is structured in four sections. In the remainder of this introduction
we briefly recall the connection between Nash equilibrium problems and variational
inequalities in the deterministic, finite-dimensional setting; in Sect. 2 we introduce
random data in the deterministic oligopolistic market model; in Sect. 3 we present
the Lebesgue-space formulation of the stochastic model; in Sect. 4 we study a par-
ticular class of utility functions, and use them to illustrate our model by means of a
numerical example.
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Consider m players each acting in a selfish manner in order to maximize their
individual welfare. Each player i has a strategy vector qi = (qi1, . . . ,qin) ∈ Xi, where
Xi ⊂ R

n is a convex and closed set, and a utility (or welfare) function wi : X1 ×
X2 × ·· · × Xm → R. He/she chooses his/her strategy vector qi so as to maximize
wi, given the moves (q j) j �=i of the other players. We will use the notation q−i =
(q1, . . . ,qi−1,qi+1, . . . ,qm) and q = (qi,q−i).

Definition 1. A Nash equilibrium is a vector q∗ = (q∗1, . . . ,q
∗
m) ∈ X , such that:

wi(q
∗
i ,q

∗
−i)≥ wi(qi,q

∗
−i), ∀qi ∈ Xi,∀i ∈ {1, . . . ,m}.

The following theorem (see e.g. [12, Chap. 6]) relates Nash equilibrium problems
and variational inequalities.

Theorem 1. Let wi ∈C1(X),∀i, and concave with respect to qi. Let F : Rmn → R
mn

be the mapping built with the partial gradients of the utility functions as follows:

F(q) = (−Dq1w1(q), . . . ,−Dqmwm(q)).

Then, q∗ ∈ X is a Nash equilibrium if and only if it satisfies the variational
inequality:

mn

∑
r=1

Fr(q
∗) · (qr −q∗r )≥ 0,∀q ∈ X

2 The Stochastic Oligopoly Model

We consider here the model in which m players are the producers of the same
commodity. The quantity produced by firm i is denoted by qi so that q ∈ R

m

denotes the global production vector. Let (Ω ,P) be a probability space and for every
i ∈ {1, . . . ,m} consider functions fi : Ω ×R→ R and p : Ω ×R

m → R.
More precisely, for almost every ω ∈ Ω , (i.e. P-almost surely in probabilistic

language), fi(ω,qi) represents the cost of producing the commodity by firm i, and
is assumed to be nonnegative, increasing, concave, and C1, while p(ω,q1+ · · ·+qm)
represents the demand price associated with the commodity. For almost every ω ∈
Ω , p is assumed nonnegative, increasing, convex w.r.t. qi, and C1. We also assume
that all these functions are random variables w.r.t. ω , i.e. they are measurable with
respect to the probability measure P on Ω . In this way, we have introduced the
possibility that both the production cost and the demand price are affected by a
certain degree of uncertainty or randomness.

Thus, the welfare (or utility) function of player i is given by:

wi(ω,q1, . . . ,qm) = p(ω,q1 + · · ·+qm)qi − fi(ω,qi). (1)
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Although many authors assume no bounds on the production, in a more realistic
model the production capability is bounded from above and we allow also for the
upper bound being a random variable: 0 ≤ qi ≤ qi(ω).

Thus, the specific Nash equilibrium problem associated with this model takes the
following form. For a.e. ω ∈ Ω , find q∗(ω) = (q∗1(ω), . . . ,q∗m(ω)):

wi(q
∗(ω)) = max

0≤qi≤qi(ω)

{
p(ω,qi +∑

j �=i

q∗j(ω))qi − fi(ω,qi)

}
,∀i. (2)

In order to write the equivalent variational inequality, consider the closed and convex
subset of Rm:

K(ω) = {(q1, . . . ,qm) : 0 ≤ qi ≤ qi(ω), ∀i}
for each ω and define the functions

Fi(ω,q) :=
∂ fi(ω,qi)

∂qi
− ∂ p(ω,∑m

j=1 q j)

∂qi
qi − p

(
ω,

m

∑
j=1

q j

)
. (3)

The Nash problem is then equivalent to the following variational inequality: for a.e.
ω ∈ Ω , find q∗(ω) ∈ K(ω) such that

m

∑
j=1

Fj[ω,q∗(ω)](q j −q∗j(ω))≥ 0, ∀q ∈ K(ω). (4)

Since F(ω, ·) is continuous, and K(ω) is convex and compact, problem (4) is solv-
able for almost every ω ∈ Ω , due to the Stampacchia’s theorem. Moreover, we
assume that F(ω, ·) is monotone, i.e.:

m

∑
i=1

(Fi(ω,q)−Fi(ω,q′))(qi −q′i)≥ 0 ∀ω ∈ Ω ,∀q,q′ ∈ R
m.

F is said to be strictly monotone if the equality holds only for q = q′ and in this case
(4) has a unique solution. In the sequel the following uniform strong monotonicity
property will be useful:

∃α > 0 :
m

∑
i=1

(Fi(ω,q)−Fi(ω,q′))(qi −q′i)≥ α‖q−q′‖2 ∀ω ∈ Ω ,∀q,q′ ∈R
m. (5)

Although the uniform strong monotonicity property is quite demanding, nonetheless
it is verified by some classes of utility functions frequently used in the literature (see,
e.g., Sect. 4).
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3 The Lebesgue Space Formulation

Now we are interested in computing statistical quantities associated with the
solution q∗(ω), in particular its mean value. For this purpose we introduce a
Lebesgue space formulation of problems (2) and (4). Moreover, in view of the
numerical approximation of the solution, from now on, we assume that the random
and the deterministic part of the operator can be separated. Thus, let:

wi(ω,q) = p

(
m

∑
j=1

q j

)
+β (ω)−α(ω) fi(qi)−gi(qi)

where α,β are real random variables, with 0 < α ≤ α(ω) ≤ α , and the part of
the cost which is affected by uncertainty is denoted now by fi (with an abuse of
notation). As a consequence, the operator F takes the form:

Fi(ω,q) = α(ω)
∂ fi(qi)

∂qi
+

∂gi(qi)

∂qi
− p

(
m

∑
j=1

q j

)
−β (ω)−

∂ p
(

∑m
j=1 q j

)
∂qi

qi.

The separation of variables allows us to use the approximation procedure developed
in [6]. Furthermore, we assume that F is uniformly strongly monotone according to
(5) and satisfies the following growth condition:

|Fi(ω,q)| ≤ c(1+ |q|),∀q ∈ R
m,∀ω ∈ Ω , ∀i (6)

and wi(ω,0) ∈ L1(Ω). Moreover, we shall assume that α ∈ L∞(Ω), while β ,qi ∈
L2(Ω). Under these assumptions the following Nash equilibrium problem can be
derived (see [9] or [3] for a similar derivation which can be easily extended to our
functional setting):

Find u∗ ∈ L2(Ω ,P,Rm) such that, ∀i
∫

Ω
wi(ω,u∗(ω))dPω = max

0≤ui≤qi

∫
Ω

wi(ω,(ui(ω),u∗−i(ω))dPω , (7)

where we used the notation: (ui,u∗−i) := (u∗1, . . . ,u
∗
i−1, ui, u∗i+1, . . . ,u

∗
m). Then, we

define a closed and convex set KP by

KP = {u ∈ L2(Ω ,P,Rm) : 0 ≤ ui(ω)≤ qi(ω),P-a.s.,∀i}

and consider the variational inequality formulation of (7): Find u∗ ∈ KP such that

∫
Ω

m

∑
j=1

Fj(ω,u∗(ω))(u j(ω)−u∗(ω))≥ 0,∀u ∈ KP. (8)

The relation between problems (7) and (8) is clarified by the following theorem.

Theorem 2. u∗ is a solution of (7) if and only if it is a solution of (8).
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Proof. The proof can be obtained along the same lines as in [3], with minor
modifications. �
Since the stochastic oligopolistic market problem will be studied through (8), we
ensure its solvability by the following:

Theorem 3. Let fi(·,qi), p(·,∑m
j=1 q j) be measurable, and fi(ω, ·),di(ω, ·) are of

class C1. Let F be uniformly strongly monotone and satisfy the growth condition (6).
Then (8) admits a unique solution.

Proof. Under our assumption F : Ω ×R
m → R

m is a Carathéodory function and
it is well known that for each measurable function u(ω), the function F(ω,u(ω))
is also measurable. Under the growth condition (6) the superposition operator NF :
u(ω) → F(ω,u(ω)) maps L2(Ω ,P,Rm) in L2(Ω ,P,Rm) and is continuous, being
P a probability measure. Moreover the uniform strong monotonicity of F implies
the strong monotonicity of NF . The set KP is convex, closed, and (norm) bounded,
hence weakly compact. Then, monotone operator theory applies (see, e.g., [11] for
a recent survey on existence theorems) and (8) admits a unique solution. �
Remark 1. The Lebesgue formulation is the natural one for our stochastic problem,
in that the solution of (8) is a function which, by definition, admits finite mean value
and variance. If the unique solution of (4) is square integrable, then it also satisfies
(8) (see also Proposition 1 in [8]).

Let us note that we worked with the abstract probability space (Ω ,P) up to this
point, and this was sufficient in providing the general formulation of our problem in
Lebesgue spaces in a concise manner. However, in concrete applications the sample
space Ω is not known. On the other hand, one can measure the distributions of the
real valued random variables that are involved in the model. Hence, it is natural
to work with the probability distributions induced on the images of the functions:
A = α(ω),B = β (ω),Qi = qi(ω). Thus, let y = (A,B,Q) and consider the probabil-
ity space (Rd ,P) with d = 2+m. In order to formulate the problem (8) in the image
space we introduce the closed convex set KP by:

KP = {u ∈ L2(Rd ,P,Rm) : 0 ≤ ui(A,B,Q)≤ Qi,∀i,P-a.s.}

and consider the following problem: Find u∗ ∈ KP such that ∀u ∈ KP

∫
Rd

m

∑
i=1

[
A

∂ fi(u∗i (y))
∂qi

+
∂gi(u∗i (y))

∂qi
− p

(
m

∑
j=1

u∗j(y)

)
−B

−
∂ p

(
∑m

j=1 u∗j(y)
)

∂qi
u∗i

]
(ui(y)−u∗i (y))dP(y)≥ 0. (9)

We assume that all the random variables are independent. Moreover, as it
is verified in most applications, we assume that each probability distribution
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is characterized by its density ϕ . Thus, we have P = PA ⊗ PB ⊗ PQ, dPα(A) =
ϕα(A)dA, dPβ (B) = ϕβ (B)dB, dPq(Q) = ϕq(Q)dQ, where we used the compact

notation ϕx(X) =
n

∏
i=1

ϕxi(Xi). Hence, we can write (8) using the Lebesgue measure:

α∫
α

∫
R

∫
R

n
+

m

∑
i=1

[
A

∂ fi(u∗i (A,B,Q))

∂qi
+

∂gi(u∗i (A,B,Q))

∂qi
− p

(
m

∑
j=1

u∗j(A,B,Q)

)
−B

−
∂ p

(
∑m

j=1 u∗j(A,B,Q)
)

u∗i
∂qi

]
(ui(y)−u∗i (y))ϕα(A)ϕβ (B)ϕq(Q)dAdBdQ ≥ 0

(10)

for all u ∈ KP. The advantage of this formulation is that it is suitable for an app-
roximation procedure based on discretization and truncation. The approximation
method is applied to the example presented in Sect. 4.1, for the details of the method
we refer the interested reader to [6, 8]. The outcome of the above mentioned pro-
cedure is a sequence of simple functions (u∗k)k which converges in L2 to the exact
solution u∗ when k → ∞ (see [8, Theorem 4.2]). We can then use this sequence to
approximate the mean value of the solution, which is defined in the standard way as

〈u∗〉 :=
∫
Rd

u∗(y)dP(y).

4 A Class of Utility Functions

In this section we consider a random version of a class of utility functions widely
used in the literature (see, e.g., [12, Chap. 6]) and show that these functions satisfy
the theoretical requirements stated in the preceding section.
Thus, let

fi(ω,qi) = a(ω)aiq
2
i +biqi + ci

p

(
ω,

m

∑
i=1

qi

)
=−d

m

∑
i=1

qi + e(ω)

where 0 < a ≤ a(ω) ≤ a, a ∈ L∞(Ω), e ∈ L2(Ω), and ai,bi,d,ci are positive real
numbers. Thus, wi(ω,q) =−[a(ω)aiq2

i +biqi + ci]+ (−d ∑m
i=1 qi + e(ω))qi, and

Fi(ω,q) = [2a(ω)ai +2d]qi +d ∑
j �=i

q j +bi − e(ω) (11)

For each ω the operator F consists of a linear part and a constant vector. The follow-
ing theorem shows that F(ω,q) satisfies the monotonicity requirement mentioned
in the previous section.
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Theorem 4. Let F : Ω ×R
m →R

m defined as in (11). Then F is strongly monotone,
uniformly with respect to ω .

Proof. Let T be the matrix associated to the linear part of F . A straightforward
computation gives that the diagonal elements of T are 2a(ω)ai + 2d while its off
diagonal elements are all equal to d. Now let us decompose T as the sum of three
matrices:

T = 2a(ω)diag(a1,a2, . . . ,am)+d Im +d (12)

The first matrix is a diagonal matrix which as a(ω)mini{ai} as its minimum eigen-
value. Given that 0 < a ≤ a(ω) this matrix is positive definite, uniformly with
respect to ω . The second matrix is a scalar matrix, and because d is strictly positive
this matrix is positive definite. The third matrix, d, has each entry equal to d, hence
it is positive semidefinite. Hence, T is positive definite, uniformly with respect to ω ,
and as a consequence, F is strongly monotone, uniformly with respect to ω . �

4.1 Numerical Example

We consider the random version of a classical oligopoly problem presented in [12]
where three producers are involved in the production of a homogeneous commodity.
The cost fi of producing the commodity by firm i and the demand function p are
given by

f1(ω,q1) = a(ω)q2
1 +q1 +1

f2(ω,q2) = 0.5a(ω)q2
2 +4q2 +2

f3(ω,q3) = a(ω)q2
3 +0.5q3 +5

p

(
ω,

3

∑
i=1

)
= −

3

∑
i=1

qi + e(ω)

where a(ω) and e(ω) are random parameters that follow truncated normal
distributions:

a ∼ 0.5 ≤ N(1,0.25)≤ 1.5

e ∼ 4.5 ≤ N(5,0.25)≤ 5.5

Although we do not put upper bounds on the production capabilities, the existence
of the solution is ensured because of the coercivity of the operator generated by
f and p. Solution of the nonrandom problem (q1,q2,q3) = (23/30,0,14/15) where
a(ω) ≡ 1, e(ω) ≡ 5 is given in [12]. We use the following approximation proce-
dure to evaluate mean value of q (see [6] for a detailed description of the method).
First, we choose a discretization of the parameter domain [0.5,1.5]× [4.5,5.5] using
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N1×N2 points and solve the problem for each pair (a(i),e( j)) using an extragradient
method. Then we evaluate the mean value of q by using appropriate probability
distribution functions. Approximate mean values of q1,q2, and q3 are shown in
Table 1.

Table 1 Mean value of q = (q1,q2,q3)

N1 = 100,N2 = 100 N1 = 200,N2 = 200 N1 = 400,N2 = 400

〈q1〉 0.76935 0.77154 0.77262
〈q2〉 2.903E−08 2.9109E−08 2.9185E−08
〈q3〉 0.94103 0.9436 0.94487

5 Conclusions and Future Developments

We used the theory of random variational inequalities to incorporate uncertain data
in an oligopolistic market model. The model presented makes use of quadratic
cost functions and a linear demand price, which yields to a linear random varia-
tional inequality. In future work we plan to treat other classes of functions which
yield to nonlinear variational inequalities and to perform more extended numerical
experiments.
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