
The Shortest Superstring Problem

Theodoros P. Gevezes and Leonidas S. Pitsoulis

An alphabet is a finite non-empty set whose elements are called letters. A string
is a sequence of letters. Given two strings si and s j, the second is a substring of the
first if si contains consecutive letters that match s j exactly. We say that si is a super-
string of s j. The Shortest (common) Superstring Problem (SSP) is a combinato-
rial optimization problem that consists in finding a shortest string which contains as
substrings all of the strings in a given set. The strings of the set may be overlapping
inside the superstring exploiting their common data.

1 Applications

The SSP has several important applications in various scientific domains and this is
the reason why it has attracted the interest of many researchers. In computational
molecular biology, the DNA sequencing procedure via fragment assembly can be
formulated as SSP. In virology, the SSP models the compression of viral genome.
In information technology, the SSP can be used to achieve data compression. In
scheduling, SSP solutions can be used to schedule operations in machines with
coordinated starting times. In the field of data structures, efficient storage can be
achieved in specific cases using the solutions of the SSP.

T.P. Gevezes (�) • L.S. Pitsoulis
Faculty of Engineering, School of Electrical and Computer Engineering, Aristotle University
of Thessaloniki, 54124 Thessaloniki, Greece
e-mail: theogev@gen.auth.gr; pitsouli@gen.auth.gr

T.M. Rassias et al. (eds.), Optimization in Science and Engineering: In Honor
of the 60th Birthday of Panos M. Pardalos, DOI 10.1007/978-1-4939-0808-0 10,
© Springer Science+Business Media New York 2014

189

mailto:theogev@gen.auth.gr
mailto:pitsouli@gen.auth.gr

190 T.P. Gevezes and L.S. Pitsoulis

1.1 DNA Sequencing

The molecule of the DNA encodes the genetic information used in the develop-
ing and functioning of living beings. DNA is a double-stranded sequence of four
types of nucleotides: adenine, cytosine, guanine and thymine, and thereby it can be
viewed as a string over the alphabet {a,c,g, t}. In the field of molecular biology,
the DNA sequencing procedure determines the sequence of a DNA molecule, that
is the precise order of the nucleotides within it. DNA sequencing highly accelerates
biological and medical research.

Due to laboratory equipment constraints, only parts of DNA up to few hundred
nucleotides can be read reliably, while the length of the DNA molecule in many
species is quite longer. To recognize a long DNA sequence, many copies of the
DNA molecule are made and cut into smaller overlapping pieces, named fragments,
that can be read at once. Each fragment is chosen from an unknown location of the
molecule. To reconstruct the initial DNA molecule, these fragments must be re-
assembled in their initial order, a procedure known as the DNA assembly problem.
Due to the huge amount of data generated by the fragment sequencing methods, an
automated procedure supported by a computer software is necessary for the assem-
bly process. Intuitively, shortest superstrings of the sequenced fragments preserve
important biological structures [33, 46, 53], and in practice they are proved to be
good representations of the original DNA molecule [27, 34]. Therefore, the SSP
can be considered as an abstraction of the assembly problem, and consequently
many researchers developed assembly methods based on it [18, 45, 51]. The most
widely used of them, the shotgun sequencing, is essentially the natural greedy al-
gorithm for the SSP. Similar assembly problems arise during reconstruction of RNA
molecules or proteins from sequenced fragments.

1.2 Data Compression

In the fields of computer science, information technology and data transmission, a
crucial issue is the size of the stored or transferred data. Data compression is the pro-
cess of encoding data using fewer bits than their original representation. According
to whether the compressed data is exactly as the original data or not, we distinguish
the lossless compression and the lossy compression, respectively (see [50]).

Considering data as text over an alphabet, an intuitive method of lossless com-
pression is based on the idea of dividing the text into strings and representing it by
a superstring of these strings with pointers to their original positions. Based on this
principle, several macro schemes concerning the nature of the pointers are taken un-
der consideration in [55, 56], leading in general applications of the SSP in the field
of textual substitution. In programming languages, each alphanumerical string in
the code may be represented as a pointer to a common string stored in the memory.
Therefore, the target of the compiler is to arrange the alphanumerical strings in such
a way that they overlap as much as possible [15, 37]. Other general applications of
the SSP on data compression are discussed in [14, 54].

The Shortest Superstring Problem 191

1.3 Modelling the Viral Genome Compression

Viruses are forced to reduce their genome size by environmental factors such as the
need for quick replication and the small amount of nucleic acid that can be incor-
porated in them. One way to compress their genome is by overlapping their genes.
Genes are the parts of the DNA that specify all proteins in living beings. Between
genes there are generally long sequences of nucleotides that do not be coded into
proteins. On the other hand, overlapping genes are common in viruses. Therefore,
in most virus species, two or more proteins are coded by the same nucleotide se-
quence, allowing viruses to increase their repertoire of proteins without increasing
their genome length, as indicated in [10].

In [24, 25], the SSP is used to model the viral genome compression. The genes
are considered as strings and the purpose is to find a shortest superstring that con-
tains them all. The computational results show that the amount of compression
achieved by the viruses in the real world is the same or very close to the one obtained
by the algorithms in all the examples considered in [24, 25]. Another conclusion
from these computations is that the average compression ratio of viruses is remark-
ably high considering the fact that the DNA molecules are very difficult to compress
in general. Finally, by modelling the viral genome compression as SSP, any exact
solution or lower bound of the corresponding SSP instance provides a bound on the
real size of a viral genome with a given set of genes.

1.4 Scheduling with Coordinated Starting Times

The Flow Shop Problem (FSP) and the Open Shop Problem (OSP) concern the
scheduling of operations in machines and have particular applications in scheduling
and planning of experiments. Given a set of k machines M1, M2, . . . ,Mk the problem
is to schedule a set of jobs on them, where each job consists of k operations and the
i-th operation has to be assigned on the machine Mi. A machine can process at most
one operation at a time, and any two operations of a job cannot be processed simul-
taneously. In the FSP, the operation on Mi has to be finished before the operation on
Mi+1 can start for each job, whereas in the OSP there is not such commitment. In
the no-wait versions of these problems, it is required the operations of a job to be
processed directly one after the other. The optional constraint of coordinated start-
ing times necessitates an operation starting on one machine only when each of the
other machines is either idle or also starts an operation. In all these cases, the task is
to find a schedule such that the overall processing time is minimized.

The FSP and the OSP on two machines, and their corresponding no-wait versions
are polynomially solvable in general, but this is not always true when the machines
have to coordinate the starting times of operations. In [39], this additional constraint
is considered. Each instance of the no-wait version of these problems under the
additional constraint of the coordinated starting times can be transformed into an
SSP instance, where all strings are of a special form. The NP-completeness of these

192 T.P. Gevezes and L.S. Pitsoulis

problem versions is proved using this transformation. Apart from the computational
complexity, this transformation can be applied for solving the constrained FSP and
OSP. Each exact and heuristic algorithm for the SSP can be applied to these prob-
lems too. Also, the special case of the SSP can be used to derive approximation
algorithms for the constrained shop problems.

1.5 Data Structure Storage

In [15], a special case of the SSP is considered, where all the strings are of length
at most two. It is proved that this version of the SSP is solvable in polynomial time.
This SSP case has applications to the storage of data structures, and specifically to
the Huffman trees [23] that encode pairs of letters, which are used to an entropy
encoding algorithm for lossless data compression, and for efficient representation of
directed graphs in memory.

2 Definitions and Notations

Let N be the set of natural numbers including 0. All the numbers in this chapter
are natural, unless otherwise stated. For a real x, �x� denotes the smaller integer
greater than or equal to x. For a letter l, the notation l ∈ Σ means that l belongs to
alphabet Σ , while for a string s, if all letters of s belong to Σ , we say that s is over
the alphabet Σ . If s is a string, then |s| denotes its length, that is the number of its
letters, while if S is a set, then |S| denotes its cardinality. For a string s and i, j ∈ N

such that 1 ≤ i ≤ j ≤ |s|, the substring of s from i-th to j-th letter is denoted by s[i, j].
Any substring s[1, j] is a prefix of s, and if j < |s|, then it is called a proper prefix.
Similarly, any substring s[i,|s|] is a suffix of s, and if i > 1, then it is called a proper
suffix.

The placement of two or more strings one next to the other denotes their con-
catenation, e.g. sis j is the concatenation of si and s j. A coverage string between
strings si and s j , in this specific order, is a string v such that si = uv and s j = vw,
for some non-empty strings u,w. In other words, v is a string that is a proper suffix
of si and a proper prefix of s j. The length of the coverage string is called coverage
between the corresponding strings and is a non-negative integer. A join string of
si and s j is the concatenation of these two strings with a coverage string appearing
only once, that is uvw. We use J{si,s j} to denote the set of all join strings of si and s j

regardless their order.
The overlap string between si and s j is their longest coverage string, and is

denoted by o(si,s j). Its length |o(si,s j)| is called overlap. The overlap of a string
with itself is called self-overlap, and notice that it is not limited to half the total
string length. The merge string of si and s j is the concatenation of these two strings
with the overlap string appearing only once, that is the shortest join string between

The Shortest Superstring Problem 193

them. It is denoted by m(si,s j). We have |m(si,s j)| = |si|+ |s j| − |o(si,s j)|. The
length of the prefix of si before the overlap string with s j is called distance from si

to s j and is denoted by d(si,s j).

Example 1. Suppose that we have the strings s1 = bbacb and s2 = bcabbcabb over
the alphabet {a,b,c}, so |s1| = 5 and |s2| = 9. The one-letter string b is a proper
suffix of s1 and a proper prefix of s2. Moreover, it is the longest such string, and
thus the overlap string between them, o(s1,s2) = b, with overlap 1. The coverage
strings between s2 and s1 are b and bb, and so o(s2,s1) = bb with overlap 2. The
self-overlap of the first string is |o(s1,s1)| = 1, while |o(s2,s2)| = 5. The corre-
sponding merge strings are m(s1,s2) = bbacbcabbcabb, m(s2,s1) = bcabbcabbacb,
m(s1,s1) = bbacbbacb, and m(s2,s2) = bcabbcabbcabb. The distance from s1 to s2

is d(s1,s2) = 4, while d(s2,s1) = 7, d(s1,s1) = 4, and d(s2,s2) = 4. Finally, the set
of all join strings is J{s1,s2} = {bbacbbcabbcabb,bcabbcabbbbacb,bbacbcabbcabb,
bcabbcabbbacb,bcabbcabbacb}. ��

Given a finite set S of strings over an alphabet Σ , the sum of lengths of the strings
in S is defined as ||S||= ∑s∈S |s|. The orbit size of a letter l ∈ Σ is the number of its
occurrences in the strings of S.

An instance of the SSP is specified by a finite set S = {s1,s2, . . . ,sn} of strings.
A string s is a superstring of S, if it is a superstring of all si ∈ S. A multiset is a
generalization of the notion of the set where elements are allowed to appear more
than once. Without loss of generality, S is defined to be a set since if S is a multiset,
then S has exactly the same superstrings as the set {s : s∈ S}. Also, it is assumed that
S is a substring-free set, i.e., no string si ∈ S is a substring of any other string s j ∈ S.
This assumption can be made without loss of generality, since for any set of strings
there exists a unique substring-free set that has the same superstrings, obtained by
removing any string is a substring of another.

Given a set S = {s1,s2, . . . ,sn} of strings over an alphabet Σ , the SSP is the
problem of finding a minimum length superstring of S. Note that such a string may
not be unique. The length of a shortest superstring of S is denoted by optl(S), while
the corresponding achieved compression is defined as optc(S) = ||S||−optl(S). The
decision version of the SSP is described as follows. Given a set S of strings and a
k ∈N, is there a superstring s of S such that |s|= k?

Example 2. Suppose that we have the multiset S′ = {s1,s2,s3,s4,s5,s6} of strings
over the alphabet {a,b,c}, where s1 = bababbc, s2 = bbccaac, s3 = bbcaaabb, s4 =
acabb, s5 = bcaaab, and s6 = acabb. The corresponding substring-free set is S =
{s1,s2,s3,s4} with |S|= 4 and ||S||= 27. The orbit size of the letter a in S is 9, of
the letter b is 12, and of the letter c is 6. These are the two shortest superstrings of S:
s = bababbccaacabbcaaabb and s′ = bababbcaaabbccaacabb, with optl(S) = |s|=
|s′|= 19 and optc(S) = 7. ��

Let In be the finite set {1,2, . . . ,n}, and Πn be the set of all permutations of the
set In. Any solution for the SSP of n strings can be represented as a permutation
p ∈ Πn, indicating the order in which strings must be merged to get the superstring.

194 T.P. Gevezes and L.S. Pitsoulis

It is implied that the shortest superstrings are derived only by string merges. If this
is not the case, there would be parts of the superstring that do not correspond to any
string, or some consecutive strings would not exploit their longest coverage string
and could be joined by a larger coverage. In both cases there would be a shorter
superstring. The elements of a permutation p∈ Πn are denoted by p(i), i ∈ In, where
i indicates the order of each element in p such that p = (p(1), p(2), . . . , p(n)).

Given an order of strings (s1,s2, . . . ,sn) the superstring s = 〈s1, . . . ,sn〉 is defined
to be the string m(s1,m(s2, . . .m(sn−1,sn) . . .)). In such an order, the first string s1

is denoted by first(s) and the last string sn is denoted by last(s). Notice that s is the
shortest string such that s1,s2, . . . ,sn appear in this order as substrings.

For a set S = {s1,s2, . . . ,sn} of strings and a permutation p ∈ Πn, the corre-
sponding superstring is defined as strSp(S, p) = 〈sp(1),sp(2), . . . ,sp(n)〉. For any SSP
instance S = {s1,s2, . . . ,sn}, there exists a permutation p ∈ Πn such that strSp(S, p)
is an optimal solution. For any p ∈ Πn, the length of the superstring strSp(S, p) is
given by |strSp(S, p)| = ∑n

i=1 |si| −∑n−1
i=1 |o(sp(i),sp(i+1))|. Therefore, the SSP can

be formulated as

min
p∈Πn

n

∑
i=1

|si|−
n−1

∑
i=1

|o(sp(i),sp(i+1))|. (1)

The shortest superstrings that correspond to the permutation p of the optimal solu-
tion have length equal to optl(S). A superstring of the minimum length is achieved
when the sum of the overlaps between consecutive strings, in the order defined by
p, is maximized.

There are two ways to assess the solution quality of a non-exact algorithm for
the SSP: the length measure and the overlap or compression measure. According
to the first measure, a superstring is better when its length is shorter. In this case,
the SSP is described as a minimization problem. According to the second measure,
a superstring is better when the achieved compression is greater. In this case, the
problem is described as a maximization problem. The two measures are equivalent
when applied to exact solutions, but they give different results when they measure
the relative preciseness of non-exact solutions obtained by approximation or heuris-
tic algorithms. A good algorithm with respect to one of the above measures is not
necessarily a good algorithm with respect to the other measure.

Example 3. For the substring-free set S = {s1,s2,s3,s4} of Example 2 and the two
shortest superstrings of it, s= 〈s1,s2,s4,s3〉 and s′ = 〈s1,s3,s2,s4〉, we have first(s) =
first(s′) = s1, last(s) = s3, and last(s′) = s4.

Let s′′ = strSp(S, p) for the permutation p = (3,4,2,1), which is a super-
string of length |s′′| = 24. According to the length measure the solution s′′ is
(|s′′| − optl(S))/optl(S) = 26.3% far from the optimal length, while according to
the compression measure is (optc(S)− (||S||− |s′′|))/optc(S) = 71.4% far from the
optimal compression. ��

A directed graph G is defined by a vertex set V (G) and an arc set E(G) which
contains ordered pairs of vertices and is denoted by G= (V,E). For an arc e= (u,v),
u is called the tail of e, and v the head of e. We say that e is incident to both vertices,

The Shortest Superstring Problem 195

while for v the arc e is an incoming arc, and for u is an outgoing arc. An arc with
the same tail and head is called a loop. For a vertex v ∈V , the number of incoming
arcs of v is denoted by deg−(v), and the number of outgoing arcs of v is denoted
by deg+(v). The overall number of the incident arcs to a vertex v regardless of their
direction is the degree of v. The degree of a graph is the maximum degree between
its vertices. Graph G is complete if there is an arc (u,v) for any vertex pair u,v ∈V ,
u �= v. For a weight function w : E → N, we denote by G = (V,E,w) a weighted
directed graph. When there is no confusion we denote by wi j the weight of arc
e = (vi,v j) ∈ E . If the elements of set E have no direction, then they are called
edges and the corresponding graph is called undirected. An undirected graph is
called bipartite if its vertex set can be partitioned into two subsets, V1 and V2, such
that every edge is incident to a vertex of V1 and to a vertex of V2. If the arc set
contains ordered tuples instead of pairs of vertices then we have a multigraph.

Given a set S = {s1,s2, . . . ,sn} of strings, the complete directed weighted graph
G = (V,E,w) with

• vertex set V = {s1,s2, . . . ,sn},
• arc set E = {(si,s j) : si,s j ∈V, i �= j}, and
• weight function w : E → N, with wi j = |o(si,s j)|,
is called the overlap graph of S and is denoted by Go(S). If the arc weight function
depends on the distance instead of the overlap between the string pairs, that is wi j =
d(si,s j), then the corresponding graph is called the distance graph of S, and is
denoted by Gd(S). Notice that all weights on both graphs are non-negative integers.
In the following, it is assumed that the overlap and distance graphs have no loops,
unless otherwise stated. For any set A ⊆ E of arcs on both graph, we denote by o(A)
the sum of weights of the arcs on Go(S), that is their total overlap, and by d(A)
the sum of weights of the arcs on Gd(S), that is their total distance. For each arc
e = (s,s′) on both graphs, we have

|s|= o({e})+ d({e}). (2)

Example 4. For the substring-free set S = {s1,s2,s3,s4} of Example 2 the associated
overlap and distance graphs are depicted in the next figure.

Go(S)

s3 s4

s1 s2
3

2

2

1

0

2

0

3

0

1

0
2

Gd(S)

s3 s4

s1 s2
4

5

3

7

7

3

8

4

7

4

7
6

For the arc set A = {(s1,s2),(s3,s4)}, we have o(A) = 3 and d(A) = 12. ��

196 T.P. Gevezes and L.S. Pitsoulis

A walk on a directed graph is a sequence of arcs where the head of each arc
except the last one is the tail of the next arc. A walk can be specified either by its
vertices or its arcs in the order of appearance in it. A path on a directed graph is
a walk with no repeating vertices. On an undirected graph, a path is a sequence of
consecutive edges that connect no repeating vertices. A walk is called Eulerian if it
contains all the arcs of the graph, while a path is called Hamiltonian if it contains
all the vertices of the graph. A cycle is a path where the first and the last vertices
are the same. A cycle with k arcs is called a k-cycle. For a string set S and the
associated overlap and distance graphs, consider a cycle c on them, a string s ∈ S
corresponds to a vertex of c, and let s′ be the unique previous string of s in c. The
superstring 〈s, . . . ,s′〉 where the strings are in the order around c is called the cycle
superstring of c with respect to s and is denoted by strC(c,s). The superstring
〈s, . . . ,s′,s〉 where the strings are in the order around c is called the extended cy-
cle superstring of c with respect to s and is denoted by strC+(c,s). Notice that
strC+(c,s) = m(strC(c,s),s).

Example 5. For the substring-free set S = {s1,s2,s3,s4} of Example 2 and the as-
sociated overlap and distance graphs presented in Example 4, consider the cy-
cle c = (s1,s2,s4,s1). We have strC(c,s1) = bababbccaacabb, and strC+(c,s1) =
bababbccaacabbababbc. ��

Some combinatorial optimization problems are closely related to the SSP due to
their nature and are used in the establishment of many results of the SSP. A match-
ing on a directed graph is a set of arcs, no two of which are incident to the same
vertex. A maximum matching on a weighted graph is a matching with the largest
total weight, while the Matching Problem (MP) looks for a maximum matching
on a weighted directed graph. The MP is defined similarly on undirected weighted
graphs. A directed matching is a set of arcs, no two of which have the same tail
or the same head. In other words, it is a set of disjoint paths and cycles on a graph.
The Directed Matching Problem (DMP) looks for a maximum directed matching.
Both MP and DMP can be solved in polynomial time (see, e.g., [42, 59]). A cycle
cover on a directed graph is a set of cycles such that each vertex of the graph is in
exactly one cycle. The Cycle Cover Problem (CCP) on a weighted directed graph
consists in finding a cycle cover with maximum total weight. The CCP is solvable
in polynomial time by reduction to the MP on bipartite graphs (see, e.g., [42]).

The Hamiltonian Path Problem (HPP) on a weighted directed graph consists
in finding an optimal Hamiltonian path according to its total weight. If the objec-
tive is to minimize the total weight, then the Min-HPP is considered, while if the
objective is to maximize the total weight, then the Max-HPP is considered. The de-
cision HPP on a directed graph G asks for the existence of a Hamiltonian path on
G. Similarly, we have the maximization and the minimization Hamiltonian Cycle
Problem, which are also known as Traveling Salesman Problems (Min-TSP and
Max-TSP). Both HPP and TSP are NP-hard problems [30]. There is a simple rela-
tion between these problems. The HPP on a graph G can be transformed to the TSP
on a graph G′ obtained from G by adding a new vertex u and zero-weighted arcs
from u to each vertex of G and from each vertex of G to u.

The Shortest Superstring Problem 197

3 Computational Complexity

The results described in this section concern the computational complexity of the
SSP, and justify the fact that there are only few exact algorithms, and on the other
hand so many approximation algorithms for it. The SSP cannot be solved efficiently
to optimality in polynomial time. It can be approximated within a constant ratio,
whereas this ratio has a bound.

3.1 Complexity of Exact Solution

Given a string set S and a string s, there is a polynomial time algorithm for checking
if s is a superstring of S, and therefore the decision SSP belongs in class NP.

A string is primitive if no letter appears more than once into it. Next theorem
establishes the NP-completeness of the decision SSP.

Theorem 1 ([15]). The decision SSP is NP-complete. Furthermore, this problem is
NP-complete even if for any integer m ≥ 3 the restriction is made that all strings in
set S are primitive and of length m.

The proof is based on a polynomial time transformation from the decision HPP on
directed graphs with the following additional restrictions:

• there is a designated start vertex s with deg−(s) = 0 and a designated end vertex
t with deg+(t) = 0,

• for each v �= t, we have deg+(v)> 1.

A set S of specific strings of length 3 is constructed, and each string is corresponding
to a vertex of a directed graph G = (V,E) that satisfies the above restrictions. Graph
G has a Hamiltonian path if and only if set S has a superstring of length 2|E|+3|V |.
Therefore, there is no efficient algorithm for solving the SSP, unless P = NP.

Due to the nature of the SSP, several parameters can be considered fixed in or-
der to define restricted cases of the problem. Besides the length of the strings and
the primitiveness that were mentioned previously, the cardinality of the alphabet,
the orbit size of the letters, and the form of the strings were also examined for the
conservation or not of the NP-completeness.

The decision SSP remains NP-complete when it is restricted to an alphabet of
cardinality 2 as proved in [15]. A restricted version of the SSP concerning both the
alphabet cardinality and the string length is also studied and the result is stated in the
next theorem. Let bits(n) denote the number of bits that are necessary to represent
n in binary, for any n ∈N.

Theorem 2 ([15]). The decision SSP is NP-complete even if for any real h > 1, the
strings in set S are written over the alphabet {0,1} and have length �h bits(||S||)�.

198 T.P. Gevezes and L.S. Pitsoulis

The proof is based on Theorem 1 and on the encoding of each letter of the initial
alphabet with letters of the alphabet {0,1} such that no relative changes yielded to
the overlaps between the strings after the new encoding.

In [38, 39], NP-completeness results are proved for some special cases of the
decision SSP. For a set S of strings over an alphabet Σ , these complexity results can
be briefly presented as follows. The decision SSP is NP-complete even if

• all strings in S are of length 3 and the maximum orbit size of each letter in Σ is 8.
• all strings in S are of length 4 and the maximum orbit size of each letter in Σ is 6.
• Σ = {0,1} and each string in S is of the form 0p10q10r1 or 10p10q10r, where

p,q,r ∈ N.
• Σ = {0,1} and all strings in S are of the form 10p10q, where p,q ∈ N.
• Σ = {0,1,2} and each string contains a fixed number of each letter.

3.2 Complexity of Approximation

Since the SSP is a hard problem to be solved to optimality, a huge amount of effort is
made to develop approximation algorithms. The theoretical framework for the com-
plexity of this aspect establishes that although the SSP is easy to be approximated
within some constant ratio, it is hard to be approximated within any constant ratio.
The linear reduction (L-reduction) is necessary for what follows.

Definition 1 ([43]). Let A and B be two optimization problems. Problem A L-
reduces to B if there are two polynomial time algorithms F and G and real constants
α,β > 0 such that

• given an instance a of A, algorithm F produces an instance b =F(a) of B such
that opt(b) is at most α × opt(a), where opt(a) and opt(b) are the costs of the
optimal solution of instances a and b respectively, and

• given any solution of b with cost c′, algorithm G produces in polynomial time a
solution of a with cost c such that |c− opt(a)| ≤ β |c′ − opt(b)|.

For two optimization problems A and B and the constants α and β of the Defini-
tion 1, the following theorem establishes the basic usage of L-reduction.

Theorem 3 ([43]). If problem A L-reduces to problem B and there is a polynomial
time approximation algorithm for B with worst-case error ε , then there is a polyno-
mial time approximation algorithm for A with worst-case error αβ ε .

Therefore, if problem B has a polynomial time approximation scheme (PTAS), then
so does problem A.

The class Max-SNP is a class of optimization problems defined syntactically
in [43]. Every problem in Max-SNP can be approximated in polynomial time within
some constant ratio. A problem is Max-SNP-hard if any other problem in Max-SNP
L-reduces to it.

The Shortest Superstring Problem 199

Theorem 4 ([8]). The SSP is Max-SNP-hard.

The proof is based on an L-reduction from the Min-HPP, where the degree of the
associated directed graph is bounded, and all the weights are either 1 or 2, which
is Max-SNP-hard [44]. The reduction from this problem to the SSP is similar to
the one used to show the NP-completeness of the decision SSP in Theorem 1, with
the extra establishment that it is an L-reduction. The strings that are considered
for the above L-reduction have bounded lengths, and so the same reduction can be
applied to the maximization version of the superstring problem with respect to the
compression measure, and concludes to the same hardness result.

Corollary 1 ([8]). Maximizing the total compression of a string set is Max-SNP-
hard.

In [5], it is proved that if a Max-SNP-hard problem has a PTAS, then P = NP.
Therefore, there is no PTAS for the SSP, unless P = NP, which means that there
exists an ε > 0 such that it is NP-hard to approximate the SSP within a ratio of
1+ ε .

The L-reduction described in [8] for the proof of the Max-SNP-hardness of
the SSP produces instances with arbitrarily large alphabets. More precisely, each
instance of the special Min-HPP with n vertices is transformed to an SSP instance
over an alphabet with 2n+ 1 letters. However, the SSP is APX-hard even if the
alphabet contains just two letters as stated in the next theorem.

Theorem 5 ([41]). The SSP is APX-hard both with respect to the length measure and
the compression measure, even if the alphabet has cardinality 2 and every string is
of the form 10m1n01m0n+410 or 01m0n10p1q01m0n10r1s01, where m,n, p,q,r,s≥ 2.

4 Polynomially Solvable Cases

Since the SSP is NP-hard, special cases of the problem that can be solved in poly-
nomial time constitute an interesting aspect. Various additional restrictions on the
problem’s parameters, similar to these described in Sect. 3 lead to polynomial al-
gorithms revealing the boundaries between hard and easily solvable cases of the
problem.

Obviously, if the cardinality of the alphabet is equal to 1 or all the strings in
the given set are of length 1, then the SSP is trivial. Also, if the number of the
strings in the set is fixed, then the SSP is polynomially solvable by enumerating
all the different string orders. However, there are more interesting and complicated
polynomial cases of the SSP.

Since Theorem 1 establishes the NP-completeness of the SSP for string lengths
greater than 2, the question is what happens in the remaining cases. The answer is
given by the next theorem.

200 T.P. Gevezes and L.S. Pitsoulis

Theorem 6 ([37]). For a string set S= {s1,s2, . . . ,sn} and an integer k, if |si| ≤ 2, i∈
In, then there is a linear time and space algorithm to decide if S has a superstring
of length k.

A path decomposition of a directed graph G is a partition of E(G) into edge-disjoint
paths. Such a decomposition is minimum if it contains the minimum number of
paths. The linear algorithm in Theorem 6 is based on a minimum path decomposi-
tion of a graph associated with the string set S. Besides the algorithm for the deci-
sion problem mentioned in Theorem 6, there is also a linear algorithm that finds a
shortest superstring for strings of length at most 2.

A fixed maximum orbit size for the letters in the alphabet leads to a special case
of the SSP that is also solvable in polynomial time. Assume a set S of strings over
alphabet Σ and let m = max{|s| : s ∈ S}.

Theorem 7 ([61]). If the orbit size of each letter in Σ is at most 2 in S, then a shortest
superstring for S is found in polynomial time O(|Σ |2m).

Another special case of the SSP concerns the fixed difference between the sum
of string lengths and the cardinality of the alphabet as cited in [61]. Given a set S of
strings over an alphabet Σ , for a fixed difference ||S||− |Σ |, the SSP is solvable in
polynomial time by a special exhaustive enumeration. The difference ||S||− |Σ | is
mentioned as a measure of dissimilarity of the strings in S.

In [38], restricted cases of the SSP are studied, and a string form that induces
polynomial cases is found.

Theorem 8 ([38]). The SSP over the alphabet {0,1} is polynomial time solvable if
each given string contains at most one 1.

As cited in [61], a particular case of the SSP in which S is the set of all three-letter
strings over an alphabet Σ is known as the Code Lock Problem. In this case, the
possible overlaps between the strings are 1 and 2. This problem is reducible to the
Eulerian Walk Problem, where the existence of a walk that contains all the arcs of
a directed graph is sought, and hence, according to [16] it is solvable in polynomial
time.

5 Exact Solutions

There are only few exact algorithms in the literature for the SSP. This is due to
the computational complexity of the problem, and the lack of necessity for optimal
solutions at its main applications in computational molecular biology. In the DNA
sequencing practice, the biological properties of a genome molecule can be usually
expressed also by a superstring of its fragments that is not the shortest one, but its
length is close to the optimum.

The Shortest Superstring Problem 201

5.1 Exhaustive Enumeration

The SSP can be trivially solved by exhaustive enumeration of all possible arrange-
ments of the strings. The merge of the strings in some of these orders would
correspond to a shortest superstring. Given a set S of n string, the examination of
the superstrings of S that correspond to all permutations in Πn is enough to find
a shortest one. The exhaustive examination of all permutations can be executed in
time O(n!||S||), or by a different implementation that also exhaustively enumerates
the possible solutions, in time O(n||S||n+1) as mentioned in [61]. Optimal solutions
for small SSP instances taken by the exhaustive algorithm are used in [24, 25] to
compare the compression achieved by the viruses to their genome with the largest
possible compression of their genes.

5.2 Integer Programming Formulation

Given an SSP instance specified by a set S of n strings, consider the associated
overlap graph Go(S). An optimal solution to the SSP instance can be obtained by
an optimal solution to the Max-HPP on Go(S), since a maximum Hamiltonian path
contains all the vertices (strings) ordered in a single path such that it has the max-
imum total overlap. Due to the relation between the HPP and the TSP described
in Sect. 2, these solutions can be obtained by an optimal solution to the Max-TSP.
According to these transformations, optimal solutions for the SSP can be derived by
any integer programming formulation for the Max-TSP using branch and bound or
cutting plane algorithms. In [17], a benchmark set of instances with known optimal
solutions was constructed using the integer program of [40] for the Max-TSP and
used to compare the solutions of a heuristic for the SSP with the optimal ones.

6 Approximation Algorithms

The fact that the SSP is Max-SNP motivates many researches to develop approxi-
mation algorithms for it. As mentioned in Sect. 2, there are two ways to assess the
solution of an approximation algorithm: the length measure considering the SSP
as a minimization problem, and the compression measure considering the SSP as a
maximization problem.

For a string set S, and any algorithm ALG for the SSP, we use the notation ALGl(S)
to denote the length of the superstring of S obtained by ALG, and ALGc(S) to denote

the corresponding achieved compression. An approximation ratio ε = ALGl (S)
optl(S)

≥ 1

with respect to the length measure means that ALGl(S)≤ ε×optl(S) for all instances,

while an approximation ratio ε = ALGc(S)
optc(S)

≤ 1 with respect to the compression mea-

sure means that ALGc(S)≥ ε ×optc(S) for all instances. Although the two measures

202 T.P. Gevezes and L.S. Pitsoulis

are equivalent regarding the optimal solution, they differ regarding the approximate
solutions of the problem. The existence of an algorithm with a constant approx-
imation ratio for the one measure has in general no approximation performance
guarantee for the other measure.

In this section, the approximation algorithms for the SSP both with respect to the
length and the compression measure are presented, revealing the special features of
the superstrings in each case.

6.1 Approximation of Compression

The compression measure counts the number of letters gained in comparison with
the simply concatenation of all strings. Algorithms that approximate this gain are
presented here.

6.1.1 The Natural Greedy Algorithm

A very well known, simply implemented, and widely used algorithm for the SSP
is the natural greedy algorithm. It is routinely used in DNA sequencing practice. It
starts with the string set S and repeatedly merges a pair of distinct strings with the
maximum possible overlap until only one string remains in S. Next algorithm shows
the pseudo-code of the natural greedy for the SSP.

Algorithm: GREEDY

input : string set S = {s1,s2, . . . ,sn}
output: a superstring of S

1. for i = 1 to n− 1 do
2. L = {(si,s j) : si,s j ∈ S, i �= j}
3. k = max{|o(si,s j)| : (si,s j) ∈ L}
4. let (s′i,s′j) ∈ L be a pairs such that |o(s′i,s′j)|= k
5. S = (S−{s′i,s′j})∪{m(s′i,s′j)}
6. end
7. let s be the only string in S
8. return s

The operation of the GREEDY algorithm on the string set S is equivalent to the cre-
ation of a Hamiltonian path on the overlap graph Go(S). In general directed weighted
graphs, the total weight of the Hamiltonian path obtained by the greedy approach
is at least one third the weight of a maximum path [26]. In the case of the over-
lap graphs, a stronger result can be obtained by exploiting their properties. A basic
lemma that concerns the form of these graphs is restated here in terms of strings.

The Shortest Superstring Problem 203

Lemma 1 ([58]). Let s1,s2,s3, and s4 be strings, not necessarily distinct, such that
|o(s3,s2)| ≥ |o(s1,s2)| and |o(s3,s2)| ≥ |o(s3,s4)|. Then |o(s1,s4)| ≥ |o(s1,s2)|+
|o(s3,s4)|− |o(s3,s2)|.
The proof can be derived directly from the next figure, where the alignment of the
four strings according to their overlaps is presented.

s1 :

s2 :

s3 :

s4 :

. . .

. . .

. . .

. . .

|o(s1, s2)|
|o(s3, s2)|

|o(s3, s4)|

]

[

]

[

Notice that, if s1 and s4 are not distinct, then the result of Lemma 1 concerns the
self-overlap of the string s1.

The following theorem establishes the approximation performance of the GREEDY

algorithm based on the corresponding analysis of the greedy approach for the Max-
HPP and on Lemma 1.

Theorem 9 ([58]). For a string set, the compression achieved by the GREEDY algo-
rithm is at least half the compression achieved by a shortest superstring.

Next example, presented in [58], shows that the result of the Theorem 9 is the best
possible.

Example 6. For the string set {abk,bk+1,bka}, k ≥ 1, over the alphabet {a,b},
GREEDY may produce the superstring abkabk+1 or the superstring bk+1abka that
achieves compression k, whereas the shortest superstring is abk+1a and achieves
compression 2k. Notice that GREEDY can also give the shortest superstring depend-
ing on how it breaks ties. ��

6.1.2 Approximation Based on Matchings

Apart from GREEDY, two other 1
2 -approximation algorithms for the compression of a

superstring based on the MP and the DMP are presented in [62]. For an SSP instance
S, consider the associated overlap graph Go(S). In both algorithms, a matching al-
gorithm is repeatedly applied to Go(S), to produce a Hamiltonian path.

For the description of the first algorithm the notion of the arc contraction is
necessary. Given a weighted directed graph G and an arc e = (u,v) ∈ E(G), the
contraction of e is denoted by G/e and gives a new graph obtained from G where
the vertices u, v and their incident arcs are replaced by a new vertex w which has as
incoming arcs the incoming arcs of u and as outgoing arcs the outgoing arcs of v with
the same weights as on G. The MATCH algorithm initially finds a maximum matching
on Go(S), and then contracts the arcs of the matching. This process is repeated on
the new graph until a graph with no arcs comes up. Go(S) = (V,E,w) is the initial
overlap graph which remains unchanged, whereas G denotes the graph obtained in
each iteration after the arc contractions. Initially, G = Go(S). Let maxm(G) be a
maximum matching on graph G.

204 T.P. Gevezes and L.S. Pitsoulis

Algorithm: MATCH

input : string set S = {s1,s2, . . . ,sn}
output: a superstring of S

1. construct the graph Go(S)
2. P = /0
3. G = Go(S)
4. while |E(G)| �= /0 do
5. M = maxm(G)
6. P = P∪{the arcs of E(Go(S)) that correspond to M}
7. foreach (u,v) ∈ M do
8. G = G/(u,v)
9. end

10. end
11. let s be the superstring that corresponds to P
12. return s

The approximation performance of the MATCH algorithm is based on the observa-
tion that any matching on an overlap graph can be extended to a Hamiltonian path
on it, since overlap graphs are complete. Moreover, a maximum matching has total
weight at least half the weight of a maximum Hamiltonian path. This can easily be
shown by considering each Hamiltonian path as two matchings with distinct arcs,
constructed by taking alternate arcs from the path. These results imply that the com-
pression achieved by the MATCH algorithm is at least half the optimal compression.

The second algorithm with the same approximation ratio for the SSP is based on
the slightly different DMP. Remember that a directed matching on a graph is a set of
disjoint paths and cycles. For the description of this algorithm, the notion of the arc
contraction is extended naturally to paths. Given a weighted directed graph G and
a path p = (v1,v2, . . . ,vr) on it, defined by its vertices, the contraction of p gives a
new graph obtained from G where the vertices v1, . . . ,vr and their incident arcs are
replaced by a new vertex w which has as incoming arcs, the incoming arcs of v1

and as outgoing arcs the outgoing arcs, of vr with the same weights as on G. The
DIMATCH algorithm described also in [62] operates exactly as MATCH except that it
finds a directed matching of each step, opens each cycle of it by deleting an arc with
the smallest weight, and finally contracts the paths into vertices. The compression
achieved by the DIMATCH algorithm is at least half the optimal compression.

6.1.3 Approximation Based on the TSP

Any approximation algorithm for the Max-TSP is also an approximation algorithm
for the SSP with respect to the compression measure, or equivalently for the Max-
HPP, with the same ratio due to the transformation from the TSP to the HPP. For both
problems, it is implied that they are asymmetric, which means that they applied on
directed graphs, and that the weight of an arc (u,v) is not necessarily equal to the
weight of the arc (v,u).

The Shortest Superstring Problem 205

In [7, 31], two approximation algorithms for the Max-TSP are presented. In
both cases, procedures with complementary worst cases run on directed graphs with
even number of vertices. The best result among them is a Hamiltonian cycle whose
weight is at least 38

63 times the weight of a maximum weight Hamiltonian cycle for
the first algorithm, and 8

13 for the second. Both algorithms achieve their approxi-
mation performance without utilizing any special structure of the strings. In both
algorithms is required that the complete input graph G has an even number of ver-
tices. In general, for an SSP instance of n strings, the above algorithms achieve ap-
proximation ratios 38

63(1− 1
n) and 8

13 (1− 1
n), respectively. Finally, an approximation

algorithm for the Max-TSP is also designed in [29], achieving the best ratio until
now, namely 2

3 . It operates by decomposing a special form of directed multigraphs,
where the elements of the arc set are ordered triples of the vertex set.

6.2 Approximation of Length

A plethora of approximation algorithms with respect to the length measure have
been developed for the SSP using different variations of the greedy strategy. The
best one among them finds a string whose length is at most 2 1

2 times the length of
the optimal string.

6.2.1 Naive Approximation Algorithm

A naive algorithm for the SSP is used in [8] for comparison reasons in relative
performance of other approximation algorithms. Its approximation performance is
not remarkable but the idea is quite simple, showing that it is easy to develop an
algorithm for the SSP, but it is not so easy to achieve a good approximation ratio.
For a string set S, the algorithm arbitrarily chooses a string from S considering it as
the initial current string, and then repeatedly updates the current string by merging it
with a remaining string from S that yields the maximum overlap. The performance
of this algorithm highly depends on the random choice of the initial point, and it
is possible to produce superstrings whose length grows quadratically in the optimal
length.

6.2.2 Approximation Algorithm Used in a Learning Process

The first attempt to approximate the shortest superstring of a set was made in [34],
where the DNA sequencing procedure is modelled as a string learning process from
randomly drawn substrings of it. Under certain restrictions, this may be viewed
as a string learning process in Valiant’s distribution free learning model [63]. The
efficiency of the learning method depends on the solution of an algorithm which
approximates the length of a superstring, and seeks in each step for an appropriate
join string among the candidate ones.

206 T.P. Gevezes and L.S. Pitsoulis

Given a string set S = {s1,s2, . . . ,sn} and a string s, we denote by subSs(S,s) the
set of the strings in S that are substrings of s.

Example 7. Suppose that we have the string set S = {s1,s2,s3}, where s1 = caabaa,
s2 = abaaca, and s3 = baacaa are strings over the alphabet {a,b,c}. The set of
all join strings of s1 and s2 regardless their order is J{s1,s2} = {caabaaabaaca,
caabaabaaca,caabaaca,abaacacaabaa,abaacaabaa}, while the only join string
s ∈ J{s1,s2} for which subSs(S,s) = S is the string abaacaabaa. ��
Given a string set S, the GROUP-COMBINE algorithm constructs a superstring of S by
an iterative process. The algorithm begins with a string set and combines the strings
in groups such that all strings in a group are substrings of a join string of two of
them, trying to find as large groups as possible.

Algorithm: GROUP-COMBINE

input : string set S = {s1,s2, . . . ,sn}
output: a superstring of S

1. T = /0
2. while |S|> 0 do
3. find si,s j ∈ S such that mins∈J{si ,s j}

|s|
||subSs(S,s)|| is minimized

4. let s be the join string that achieves the minimum in step 3
5. S = S− subSs(S,s)
6. T = T ∪{s}
7. if |S|= 0 and |T |> 1 then
8. S = T
9. end

10. end
11. let s be the only string in T
12. return s

Next theorem establishes the approximation ratio of the algorithm.

Theorem 10 ([34]). Given a string set, if the length of the optimal superstring is m,
then GROUP-COMBINE produces a superstring of length O(m logm).

6.2.3 4-Approximation Algorithms

The first approximation algorithm with a constant ratio for the length of a super-
string is described in [8], answering a notorious open problem for the existence of
such an algorithm. The algorithm utilizes a minimum cycle cover on the distance
graph of a string set to derive a superstring with preferable properties that bound
its length. Given an SSP instance S, the CYCLE-CONCATENATION algorithm finds a
minimum cycle cover on the graph Gd(S) with loops in polynomial time. Then it

The Shortest Superstring Problem 207

opens each cycle of the cover by removing an arc chosen randomly, constructs the
superstring that corresponds to the obtained path, and concatenates these strings.

Algorithm: CYCLE-CONCATENATION

input : string set S = {s1,s2, . . . ,sn}
output: a superstring of S

1. construct the graph Gd(S) with loops
2. find a minimum cycle cover C = {c1,c2, . . . ,cp} on Gd(S)
3. foreach ci ∈C do
4. choose a vertex si ∈ ci randomly
5. s′i = strC(ci,si)

6. end
7. let s be the concatenation of the strings s′i
8. return s

Next theorem demonstrates the approximation performance of the algorithm es-
tablishing the first constant approximation ratio for the SSP.

Theorem 11 ([8]). For a string set S, CYCLE-CONCATENATION produces a superstring
of length at most 4× optl(S).

Another algorithm for the SSP with the same constant approximation ratio is
MGREEDY which is presented in [8].

Algorithm: MGREEDY

input : string set S = {s1,s2, . . . ,sn}
output: a superstring of S

1. T = /0
2. while |S|> 0 do
3. k = max{|o(s′i,s′j)| : s′i,s′j ∈ S}
4. let (si,s j) be a string pair such that |o(si,s j)|= k
5. if i �= j then
6. S = (S−{si,s j})∪{m(si,s j)}
7. else
8. S = S−{si}
9. T = T ∪{si}

10. end
11. end
12. let s be the concatenation of the strings in T
13. return s

Notice that at line 3, the two strings of each pair are not necessarily distinct
allowing in this way the self-overlaps. Since the choices at line 4 are made accord-
ing to the overlaps in S, MGREEDY can be thought as choosing arcs from the graph
Go(S) with loops. The choice of the pair (si,s j) corresponds to the choice of the
arc (last(si),first(s j)) on Go(S) in each step. Therefore, the algorithm constructs
paths, and closes them into cycles when distinctness is not satisfied at line 4. Thus,

208 T.P. Gevezes and L.S. Pitsoulis

MGREEDY ends up with a set of disjoint cycles that cover the vertices of Go(S), which
is a cycle cover. The same cycle cover can be thought on graph Gd(S) with loops.
For a cycle cover C, by Eq. (2), we have o(C)+ d(C) = ||S||, and so a cycle cover
has minimum total weight on Gd(S) if and only if it has maximum total weight on
Go(S), and in both cases it is called optimal.

Theorem 12 ([8]). The cover created by MGREEDY is an optimal cycle cover.

Notice that the presence of the loops is a necessary assumption for this result. Since
MGREEDY finds an optimal cycle cover, the superstring that is produced by it is no
longer than the string produced by algorithm CYCLE-CONCATENATION. Therefore, the
approximation ratio with respect to the length measure of MGREEDY for the SSP is
also equal to 4. Actually, the superstring of MGREEDY could be shorter than the one
obtained by CYCLE-CONCATENATION since MGREEDY simulates the breaking of each
cycle in the optimal position, that is between the strings with the minimum overlap
in the cycle.

6.2.4 GREEDY Is a 3 1
2 -Approximation Algorithm

The GREEDY algorithm has already been presented as an approximation for the com-
pression. A notorious open question is how well GREEDY approximates the length
of a shortest superstring, while a common conjecture states that GREEDY produces
a superstring of length at most two times the length of the optimum [54, 58, 62].
In fact, GREEDY may give a superstring almost twice as long as the optimal one, as
shown in the next example from [8].

Example 8. For the string set {c(ab)k,(ba)k,(ab)kc}, k ≥ 1, over the alphabet
{a,b,c}, GREEDY may produce the superstring c(ab)kc(ba)k or the superstring
(ba)kc(ab)kc of length 4k + 2, whereas the shortest superstring is c(ab)k+1c of
length 2k+ 4. ��

In [8], it is proved that GREEDY is a 4-approximation algorithm for the SSP. Next
theorem improves this approximation ratio based on a more careful analysis on spe-
cially formed strings.

Theorem 13 ([28]). The GREEDY algorithm is a 3 1
2 -approximation algorithm with

respect to the length measure.

6.2.5 A 3-Approximation Algorithm

The algorithm TGREEDY described in [8] operates in the same way as MGREEDY ex-
cept that in the last step it merges the strings in set T by running GREEDY on them
instead of simply concatenates them. Next theorem establishes its approximation
performance.

The Shortest Superstring Problem 209

Theorem 14 ([8]). For a string set S, algorithm TGREEDY produces a superstring of
length at most 3× optl(S).

In [8], a relative performance comparison between GREEDY, MGREEDY, and
TGREEDY algorithms is presented. TGREEDY always produces better solutions than
MGREEDY since in the last step it greedily merges the strings, whereas MGREEDY

just concatenates them. The approximation performance of TGREEDY is better than
this of GREEDY, but the superiority of one of these algorithms over the other is not
guaranteed as shown in the next example.

Example 9. For the string set {c(ab)k,(ab)k+1a,(ba)kc}, k ≥ 1, over the alphabet
{a,b,c}, GREEDY produces the shortest superstring c(ab)k+1ac of length 2k + 5,
whereas TGREEDY produces the superstring c(ab)kac(ab)k+1a or the superstring
(ab)k+1ac(ab)kac of length 4k+ 6, since the initial maximum overlap is the self-
overlap of the second string.

On the other hand, for the string set {cabk,abkabka,bkdabk−1}, k ≥ 1, over the
alphabet {a,b,c,d}, TGREEDY produces the shortest superstring cabkdabkabka of
length 3k+ 6, since the initial maximum overlap is the self-overlap of the second
string, whereas GREEDY produces the superstring cabkabkabkdabk−1 or the super-
string bkdabk−1cabkabka of length 4k+ 5. ��

6.2.6 Generic Approximation Based on Cycle Covers

Algorithms MGREEDY and TGREEDY implicitly construct optimal cycle covers on the
associated overlap and distance graphs of a string set, while CYCLE-CONCATENATION

explicitly takes advantage of this construction. A generic algorithm that explains
this basic idea is presented in [11].

For a string set S, let C = {c1,c2, . . . ,cp} be a cycle cover on the graph Gd(S).
Suppose that an arbitrary string ri is picked from each cycle ci ∈C, and these strings
form the representative set R = {r1,r2, . . . ,rp}. Let r = 〈r1,r2, . . . ,rp〉 be a super-
string of R. By replacing each ri, i ∈ Ip, in r with the string strC+(ci,ri), we get the
string

〈strC+(c1,r1),strC
+(c2,r2), . . . ,strC

+(cp,rp)〉,
which is called the extension string of r with respect to C and is denoted by
ext(r,C). Observe that ext(r,C) is a superstring of S.

For a string set S, the GENERIC-COVER algorithm constructs a minimum cycle
cover C on the graph Gd(S), and chooses a random string from each cycle of this
cover to form a set R of representatives. Then, it finds a new minimum cycle cover on
Gd(R), opens each cycle of this cover in a random position, and concatenates the re-
sulting cycle superstrings to create a superstring of R. Finally, it returns the extension
string of this superstring with respect to the cycle cover C to take a superstring of S.

210 T.P. Gevezes and L.S. Pitsoulis

Algorithm: GENERIC-COVER

input : string set S = {s1,s2, . . . ,sn}
output: a superstring of S

1. construct the graph Gd(S)
2. find a minimum cycle cover C on Gd(S)
3. R = /0
4. foreach ci ∈C do
5. choose a string si of ci randomly
6. R = R∪{si}
7. end
8. create the graph Gd(R)
9. find a minimum cycle cover CR on Gd(R)

10. foreach cycle ci ∈CR do
11. let si be the head of a randomly chosen arc of ci

12. s′i = strC(ci,si)

13. end
14. let r be the concatenation of the strings s′i
15. r = ext(r,C)
16. return r

The GENERIC-COVER algorithm has approximation ratio equal to 3. This algorithm
constitutes the base for the design of better approximation algorithms for the SSP
as described below.

6.2.7 Handling 2-Cycles and 3-Cycles Separately

For an SSP instance specified by a string set S, optc(S) may grow quadratically in
optl(S) in general. Thus, to take advantage of a compression approximation to de-
sign length approximation algorithms with constant ratio based on GENERIC-COVER

framework, a key is to construct suitable subproblems for which optc(S) is linear
in optl(S). The main difficulty in determining such subproblems and so in improv-
ing the length approximation performance of the GENERIC-COVER algorithm appears
in handling k-cycles with small k in the cycle cover CR. In [60], the compression
achieved by GREEDY is utilized, to design a length approximation algorithm for the
SSP. The algorithm is based on the scheme of GENERIC-COVER handling separately
the 2-cycles in the minimum cycle cover CR. In this way, the algorithm achieves an
approximation ratio 2 8

9 . In [11], an approximation algorithm that handles separately
the 2-cycles and the 3-cycles is developed and gives a superstring of length at most
2 5

6 times the length of a shortest superstring.

The Shortest Superstring Problem 211

6.2.8 Approximation Algorithms Based on the TSP

As cited in [31], a relationship between the SSP and the Max-TSP according to their
approximation is given by the following lemma.

Lemma 2 ([8]). If the Max-TSP has a (1
2 + ε)-approximation, then the SSP has a

(3− 2ε)-approximation with respect to the length measure.

Utilizing this relation, the approximation algorithms for the Max-TSP mentioned
in Sect. 6.1.3 can be used to derive approximation ratios for the SSP with respect to
the length measure. Consider an SSP instance S of n strings and the corresponding
Max-TSP instance Go(S). For even number of strings, the algorithm described
in [31] and achieves an approximation ratio of 38

63 for the Max-TSP, gives a 2 50
63 -

approximation ratio for the SSP, while the algorithm described in [7] and achieves
an approximation ratio of 8

13 for the Max-TSP, gives a 2 10
13 -approximation ratio for

the SSP. For odd number of strings the algorithms achieves a ratio of 2(50
63 +

1
n) and

2(10
13 +

1
n) for the SSP, respectively. The algorithm described in [29] and achieves

an approximation ratio of 2
3 for the Max-TSP, gives a 2 2

3 -approximation ratio for
the SSP.

6.2.9 Exploiting the Superstring Structures

The approximation algorithms presented above are largely graph-theoretical, mean-
ing that they sufficiently exploit the structure of overlap and distance graphs, but
they do not take advantage of the structure inside the strings or in general of the
properties not evident in graph representation. In this sense, they solve a more gen-
eral problem than the one at hand.

An algorithm that captures a great deal of the structure of the SSP instances is
presented in [3]. It takes advantage of the structure of strings with large value of
overlap, proving several key properties of such strings. It follows the framework of
the GENERIC-COVER algorithm using a more sophisticated way to choose the repre-
sentatives at line 5 and to open each cycle at line 12. After finding a cycle cover on
the associated distance graph, the key is to exploit the periodic structure of the cycle
superstrings that arise. In this way, the algorithm achieves a bound either to the total
overlap of the rejected arcs at line 12 or to the total additional length of extending
each cycle at line 15. The result is to construct a superstring whose length is no more
than 2 3

4 times the length of an optimal superstring.
This algorithm and the 2 50

63 -approximation algorithm for the Max-TSP that is
mentioned in Sect. 6.2.8 have complementary worst cases, and so a better ratio can
be achieved by their combination. When the worst case of the first algorithm occurs,
the Max-TSP algorithm runs as a subroutine on the set of representatives to take a
better result. Balancing the two algorithms, an approximation ratio of 2 50

69 for the
SSP can be achieved [2].

In [4], the study of the key properties is extended to strings that exhibit a
more relaxed form of the periodic structure considered before. Algorithmically,

212 T.P. Gevezes and L.S. Pitsoulis

the new approach is also based on the framework of the GENERIC-COVER and is a
generalization of the previous one. On the other hand, the analysis is very different
and includes a special structure of 2-cycles. Let c be a 2-cycle in the cycle cover
CR of the GENERIC-COVER algorithm, consisting of the vertices si and s j, which are
the representatives of the cycles ci and c j in the cycle cover C. Without loss of
generality assume that d(ci)≥ d(c j). The cycle c is a g-HO2-cycle if

min{|o(si,s j)|, |o(s j ,si)|} ≥ g(d(ci)+ d(c j)).

In the new algorithm, during the selection of the representatives a technique is
used to anticipate the potential of each string to participate in a 2

3 -HO2-cycle. Such
strings have a very specific structure, and if there is a string without such a structure
in a cycle, it is chosen as the representative. Otherwise, the knowledge of the struc-
ture of the entire cycle can be used to trade the amount of the lost overlap against
the additional length of extending the representative to include the rest of the cycle.
In this way, a 2 2

3 -approximation algorithm for the SSP is designed.

6.2.10 Rotations of Periodic Strings

Two approximation algorithms for the SSP that are based also on the inner structure
of the strings and their periodic properties are presented in [9]. They use the same
framework of the GENERIC-COVER algorithm, but they make use of new bounds on
the overlap between two strings.

Both algorithms pay special attention to the selection of the representatives but
without concentrating on k-cycles with small k. Instead of choosing a string obtained
by opening each cycle, the new idea is to look for superstrings of the strings in
a cycle that are not too long and are guaranteed not to overlap with each other
by too much. Each chosen superstring does not even have to be one of the cycle
superstrings obtained by opening the cycle. Given a cycle ci = (s1,s2, . . . ,sp,s1) of
the cycle cover C of algorithm GENERIC-COVER, a string rc is a candidate to be a
representative of c if for some j

• rc is a superstring of strC(s j+1) and
• rc is a substring of strC+(s j).

A sophisticated procedure is used to choose the representatives such that they satisfy
these two conditions and also have an appropriate property to lead to the improved
ratio.

After this step, the two approximation algorithms follow different ways. The
first algorithm after finding the second cycle cover opens each cycle and concate-
nates the cycle superstrings, achieving an approximation ratio of 2 2

3 . The second
algorithm constructs a superstring of the representatives using as subroutine an ap-
proximation algorithm with respect to the compression measure for the SSP. As
subroutines, we can use the approximation algorithms cited in Sect. 6.1.3. Using

The Shortest Superstring Problem 213

the 38
63 -approximation algorithm described in [31] a length ratio of 2 25

42 is achieved,
while using the 8

13 -approximation algorithm described in [7] a length ratio of 2 15
26 is

achieved.

6.2.11 2 1
2 -Approximation Algorithms

The best approximation ratio with respect to the length measure for the SSP is the
2 1

2 until now. It can be achieved by two different methods, one from the field of the
superstrings and the other from the field of the TSP.

The first algorithm is described in [57]. Given a string set S, the algorithm be-
gins by constructing a minimum cycle cover C on graph Gd(S). Then, instead of
choosing representatives, it combines the cycles of C to produce a new cycle cover
C′, and finally opens each cycle in C′ to produce a set of cycle superstrings. The
concatenation of these superstrings yields a superstring of S. The algorithm exploits
the properties of cycles and cycle covers on a special multigraph to achieve the
2 1

2 -approximation ratio.
The second approach that achieves the same length ratio for the SSP is an approx-

imation algorithm for the Max-TSP described in [29]. It finds a Hamiltonian cycle
whose weight is at least 2

3 the weight of a maximum Hamiltonian cycle. Using this
procedure as a subroutine in the algorithm cited in Sect. 6.2.10, a length ratio of 2 1

2
for the SSP can be achieved.

7 Parallelizing the Solving Process

In complexity theory, the class NC consists of the decision problems (languages)
decidable in polylogarithmic parallel time O(logO(1) n) on a parallel computer with
polynomial number O(nO(1)) processors. In this definition, a parallel random ac-
cess machine (PRAM) is assumed, that is a parallel computer with a central pool of
memory, where any processor can access any bit of memory in constant time. The
class RNC, which stands for random NC, extends NC with access to randomness.
The class RNC consists of the decision problems (languages) that have a random-
ized algorithm which is solvable in polylogarithmic parallel time on polynomially
many processors, and its probability of producing a correct solution is at least 1

2 .
It is conjectured that there are some tractable problems which are inherently se-

quential and cannot significantly be sped up by using parallelism. For an algorithm,
a common method to show that it is hardly parallelizable is to prove that the algo-
rithm is P-complete for the problem it applied to. The GREEDY algorithm belongs to
this case since the problem of finding a superstring chosen by the GREEDY algorithm
is P-complete [11]. This means that GREEDY is difficult to be parallelized effectively.
In the following, parallel approximation algorithms for the SSP are presented.

214 T.P. Gevezes and L.S. Pitsoulis

7.1 NC Algorithm with Logarithmic Length Ratio

Given a ground set X of elements and a family Y of subsets of X , a set cover of X
with respect to Y is a subfamily Y ′ ⊆Y of sets whose union equals to X . Assigning a
weight w(x) to each element x∈X the total weight of each set and family is naturally
defined. The Set Cover Problem (SCP) is to find a set cover of the ground set of
the minimum weight. The SCP can be approximated within a logarithmic ratio by a
parallelizable algorithm [6].

In [11], a similar approach to the one presented in Sect. 6.2.2 for grouping is
applied to the SCP. Given a set S of n strings, we define

F = {subSs(S,s) : s ∈ J{si,s j},si,s j ∈ S},

that is the family of the sets of substrings of all possible pairwise join strings from
S. Considering S as the ground set and F as a family of its subsets, they specify an
instance of the SCP. From each set cover C ⊆ F of S, a string sC can be constructed
by merging the join strings that correspond to the sets of C. Observe that sC is a
superstring of S. Let the weight of each set of F be the length of the corresponding
join string, and w(C) be the total weight of the set cover C. Because of the merging
of the join strings, |sC| ≤ w(C). Also, it is proved that the length of the superstring
corresponds to a minimum set cover C∗ is at most twice the length of an optimal su-
perstring, that is |sC∗ | ≤ 2×optl(S). These results combined with the parallelization
of the SCP imply an NC algorithm with logarithmic approximation for the SSP.

Theorem 15 ([11]). For a string set S of n strings, there is an NC algorithm that for
any ε > 0, finds a superstring whose length is at most (2+ ε) logn times the length
of a shortest superstring.

Observe that each group of strings selected by the GROUP-COMBINE algorithm is a
set of the family F as it was described previously, and so this algorithm constructs
implicitly a set cover of S with respect to F . Theorem 15 proves that this result can
also be obtained by a parallelizable procedure letting as open problem the design
of an NC algorithm with a constant approximation ratio with respect to the length
measure for the SSP.

7.2 RNC Algorithm with Constant Length Ratio

An RNC algorithm for the SSP is based on a parallelizable implementation of
the sequential 2 5

6 -approximation algorithm mentioned in Sect. 6.2.7. The only non-
trivially parallelizable steps of this algorithm are the computations of the minimum
cycle covers. Remember that, the problem of finding an optimal cycle cover is equiv-
alent to the problem of finding a maximum matching on a bipartite graph. In general,
it is not known if it can be done in either NC or in RNC. However, when the weights
of the graph are given in unary notation, a condition that can be satisfied in the case

The Shortest Superstring Problem 215

of this algorithm, a maximum matching can be found in RNC (see e.g. [49]), giving
the next theorem for the SSP.

Theorem 16 ([11]). For a string set S, there is an RNC algorithm that finds a super-
string of length at most 2 5

6 × optl(S).

7.3 NC Algorithm with Compression Ratio 1
4+ε

Given a weighted directed graph, a natural greedy approach for finding a maximum
cycle cover is described as follows. Scan the arcs in non-increasing order of weights,
and select an arc that does not have the same head or the same tail with a previously
selected arc. Repeat until the selected arcs form a cycle cover. This approach finds
a cycle cover of weight at least half the weight of a maximum cycle cover [11]. As
mentioned in Sect. 6.2.3, if the graph is an overlap graph with loops then this greedy
approach always finds a maximum weight cycle cover.

For the development of an NC compression approximation algorithm with a con-
stant ratio for the SSP, a slightly different algorithm from the natural greedy for
the CCP is designed. This algorithm achieves a worse approximation ratio, but can
be parallelized. It is based on the idea that the natural greedy algorithm could be
only a bit worse if in each step it chooses instead of the maximum weight arc, one
with a similar weight. The arcs of the graph are partitioned into levels, such that the
weights of all arcs in a level are within a constant factor. Given a graph G and a real
c > 1, an arc e ∈ E(G) has c-level equal to k if ck−1 < w(e)≤ ck, and c-level equal
to 0 if w(e) ≤ 1. The algorithm operates like the natural greedy algorithm assum-
ing that all arcs in each level have the same weight. The usage of this algorithm on
overlap graphs for finding superstrings concludes to the next theorem.

Theorem 17 ([11]). For a set S of n strings, there is an NC algorithm for the SSP
that achieves a compression ratio 1

4+ε . It runs either in time O(log2 n log1+ε ||S||)
on a PRAM with ||S||+ n4 processors or in time O(log3 n log1+ε ||S||) on a PRAM
using n2 + ||S|| processors.

8 Inapproximability Bounds

Both minimization and maximization versions of the superstring problem are Max-
SNP-hard, which means that there exists an ε > 0 such that it is NP-hard to approx-
imate the SSP within a ratio of 1+ ε with respect to the length measure, or within
a ratio of 1− ε with respect to the compression measure. The practical side of this
theoretical result is expressed by explicit bounds to the approximation ratio in both
cases.

The first work to this direction appears in [41], where inapproximability bounds
are given for a special case of the SSP. Specifically, the result concerns SSP instances

216 T.P. Gevezes and L.S. Pitsoulis

where the alphabet is {0,1} and every string is of the form 10m1n01m0n+410 or
01m0n10p1q01m0n10r1s01, where m,n, p,q,r,s ≥ 2. This special case is used also in
Theorem 5 that concerns APX-hardness results. Let us refer to this special case as
SSP2 for short. The next two theorems establish the inapproximability results.

Theorem 18 ([41]). The SSP2 is not approximable within 1 1
17245 with respect to the

length measure, unless P = NP.

Theorem 19 ([41]). For every ε > 0, the SSP2 is not approximable within 1 1
11216 −ε

with respect to the compression measure, unless P = NP.

In [64], inapproximability bounds for the SSP restricted to instances with equal
length strings are given. Moreover, these bounds are extended to instances over
alphabets of cardinality 2 improving the previous ones.

Theorem 20 ([64]). For any ε > 0, unless P = NP, the SSP on instances with equal
length strings is not approximable in polynomial time within ratio

• 1 1
1216 − ε with respect to the length measure, and

• 1070
1071 + ε with respect to the compression measure.

A very important result about the relation between the inapproximability of the
SSP over an alphabet of cardinality 2 and over any alphabet is established in the next
theorem. It implies that the alphabet cardinality does not affect the approximability
of the SSP.

Theorem 21 ([64]). Suppose that the SSP can be approximated by a ratio ε on
instances over an alphabet of cardinality 2. Then the SSP can be approximated by
a ratio ε on instances over any alphabet.

This result holds for both measures, length and compression. Therefore, the bounds
established in Theorem 20 hold also for alphabets of cardinality 2.

The computation of the inapproximability bounds for the SSP reveals the large
gap between these and the best known approximation ratios for the problem both
for the length measure and the compression measure.

9 Heuristics

The design of the approximation algorithms is oriented to the achievement of the
approximation ratio and not to the best possible result. On the other hand, real-
world applications usually need practically good results and not theoretically good
ratios for the result. A heuristic algorithm can satisfy this requirement by giving
solutions to SSP instances that have not approximation performance guarantee but
are experimentally close to the optimum. The greedy strategies seem to perform
much better than their proved approximation ratios both in average and in real-world
cases. In this section, the heuristic algorithms for the SSP are described.

The Shortest Superstring Problem 217

9.1 A Variant of the Natural Greedy

A problem with the GREEDY algorithm is that it makes choices that may forbid good
overlaps from future selection. In an attempt to eliminate this behaviour, a heuristic
that imitates GREEDY but chooses differently the string pair in each step is described
in [58]. Here, the modification is given in terms of strings instead of arcs in the
associated overlap graph as made in the original work. The selection criterion in
each step is not just the overlap but the overall influence of the choice of each string
pair. Given a string set S and two string si and s j in it, let

oi(si,s j) = a|o(si,s j)|
−max{|o(si′ ,s j)|,si′ ∈ S, i′ �= i}
−max{|o(si,s j′)|,s j′ ∈ S, j′ �= j}.

where a is a parameter that tunes the method. The idea is to take under consideration
also the overlaps that would be eliminated if the pair (si,s j) is selected. The pseudo-
code of this heuristic algorithm is exactly as the one of GREEDY except that line 3
changes to k = max{oi(s′i,s′j) : (s′i,s′j) ∈ L}. In experiments cited in [58] with this
heuristic algorithm, the best results were obtained with parameter a values from 2 to
2.5. In this case, the modified algorithm gives superstrings with average additional
length from the optimum about 1

5 the corresponding average additional length of
GREEDY.

9.2 A Heuristic Parametrized by a Learning Process

A three-stage heuristic algorithm for the SSP, named ASSEMBLY, is presented in [20].
It is based on the observation that the set of the remaining strings in the GREEDY

algorithm after a number of merges is very possible to contain only string pairs with
small overlaps. The ASSEMBLY algorithm, in a try to avoid mistakes, terminates the
greedy strategy when false merges are expected to occur, a decision based on the
number of remaining strings.

The first stage of the algorithm is similar to the GREEDY algorithm except that it
is terminated when the remaining string set has a cardinality c. The second stage of
the ASSEMBLY algorithm is also based on greedy choices, although not made among
all the possible overlaps, but only among these that pass a certification procedure.
Given two strings si and s j in the set of the remaining strings with |o(si,s j)| > 0,
a third string sk is a certificate if its overlap with both si and s j is greater than 0.
It is experimentally determined that for two strings si and s j with |o(si,s j)| > 0,
the existence of a certificate increases the probability their merge string participates
to the shortest superstring. The second stage of the ASSEMBLY algorithm has as input
the output string set of the first stage, and utilizes the idea of the certification to boost
the greedy choices to string pairs that are also certified. It is terminated when the

218 T.P. Gevezes and L.S. Pitsoulis

cardinality of the remaining string set became equal to the parameter b. The third
stage of the ASSEMBLY algorithm is a restricted backtracking procedure. Its input
is the output string set of the second stage. It excludes some solutions based on a
learning process, and then performs an exhaustive search through the rest solution
space. In this way, it tries to balance between time efficiency and accuracy.

The ASSEMBLY algorithm is tested both on domains of random and real-world
SSP instances. The first is taken by random string generators over specific distribu-
tion specifications, and the second is taken by DNA sequence databases. A number
of instances of each domain are used as input to a learning procedure to specify the
parameters b, c and the excluded solutions of the third stage, and the rest is used to
test the ASSEMBLY algorithm. Every version of the ASSEMBLY algorithm was tested
on the domain that was used for its training, but also to the other domain. The results
show that ASSEMBLY performs significantly better when trained on the same domain
it was tested, whereas the randomly trained version has poor performance on the
real-world instances. The version of the algorithm that is trained by a successfully
sequenced DNA molecule achieves a very high accuracy and effectiveness to in-
stances of the same domain. This indicates that a successfully sequenced part of a
DNA molecule can be used to significantly speed up the sequencing of the whole
DNA molecule. The sequenced part can act as input to the learning procedure to de-
termine the suitable parameter values, and the whole molecule can then be obtained
by the ASSEMBLY algorithm with high accuracy and significantly sped up. The run-
ning time of the algorithm mainly depends on the running time of its third stage,
which may be exponential. The tested instances suggest a sub-exponential growth
of search space for this stage, but experiments on larger SSP instances are needed
to conjecture a polynomial growth.

9.3 Genetic Algorithm

Some heuristic algorithms are inspired by evolutionary processes in nature. Genetic
algorithms [22] belong to this class of heuristics. They are search methods that sim-
ulates the evolution process of natural selection, and used in many scientific fields to
solve optimization problems. In a genetic algorithm for an optimization problem, a
population, that is a collection of candidate solutions, called individuals, is evolved
to reach better solutions. The evolution happens in generations that reflect the al-
ternations to the population. During each generation the fitness of each individual
in the population is evaluated proportionally to the suitability of its value for the
objective function of the optimization problem. The most suitable individuals are
selected to perpetuate their kind by recombining their genomes, i.e., their solutions,
in specific points and by possibly randomly mutated. In this way, a new population
is formed and the procedure is repeated for the next generation. Commonly, the al-
gorithm terminates when either a maximum number of generations is produced, or
a satisfactory fitness level is reached.

The Shortest Superstring Problem 219

A genetic algorithm for the SSP is described in [66]. The input of the algorithm
is a set S of strings specifying the SSP instance. The genome of each individual in
the population is represented as a collection of strings from S in specific order, such
that it is a candidate solution to the SSP instance. A crucial point of the algorithm
is that an individual may not contain all the strings from S or may contain duplicate
copies of the same string. This choice makes the output not a permutation of the
strings in S giving in this way new potentials to the algorithm. The algorithm was
tested to SSP instances over an alphabet of cardinality 2 using specific values for
the parameters of the population size, the number of generations, and the mutation
rates. The input instances were generated randomly following the DNA sequencing
procedure. The experimental results show that when the number of the strings is 50
the genetic algorithm is better than GREEDY, while its dominance is lost when the
number of the strings becomes 80.

9.4 Coevolutionary Algorithm

Coevolutionary algorithms also belong in the class of the biologically inspired
evolutionary procedures. They generalize the idea of the genetic algorithms involv-
ing individuals from more than one species. Coevolution in nature refers to the
simultaneous evolution of two or more species with coupled fitness. There are two
different kinds of coevolution: the competitive one where the purpose is to obtain
exclusivity on a limited resource, and the cooperative one where the purpose is
to gain access to some hard to attain resource. In cooperative coevolutionary al-
gorithms there is a number of independently evolving species representing com-
ponents of potential solutions which together form complex structures to solve an
optimization problem. Complete solutions are obtained by assembling representa-
tive members of each species. The fitness of each individual depends on the quality
of the complete solutions it participates in. Therefore, the fitness function measures
how well an individual cooperates with individuals from other species to solve the
optimization problem.

A cooperative coevolutionary algorithm adjusted to the SSP is presented in [66].
It is based on populations of two species that evolve simultaneously. The first pop-
ulation contains prefixes of candidate solutions of the SSP instance, and the second
population contains candidate suffixes. Each species population evolves separately
and the only interaction between the two populations is through the fitness function.
Computation experiments similar to those for the genetic algorithm show that this
algorithm performs at least as good as the genetic algorithm and that requires less
computation time since the required involved populations are smaller and the con-
vergence is faster. Compared with GREEDY, it reaches better solutions after a number
of generations both in experiments with 50 and 80 input strings.

An attempt to combine the cooperative coevolutionary approach with natural
greediness concludes to the design of an improved method, which incorporates
both parallelism and greed as described in [66]. The method consists of three

220 T.P. Gevezes and L.S. Pitsoulis

stages. In the first stage, three parallel and independent runs of the cooperative
coevolutionary algorithm operate, returning as output the populations of the prefixes
and suffixes, instead of the merge string of the best representatives. Also the GREEDY

algorithm runs and its solution is split into a prefix and a suffix. In the second stage,
two new collections of prefixes and suffixes are generated. The first contains the
best 1

3 individuals of the prefix population of each cooperative coevolutionary run,
and the prefix of the greedy solution. The second is constructed similarly by the
corresponding suffixes. In the third stage the cooperative coevolutionary algorithm
runs with the two collections constructed in the second stage as initial populations,
instead of random populations. The experimental results show that this algorithm
performs better than the simple cooperative coevolutionary algorithm even if the
cardinality of its populations and the number of its generations in each stage are
quite smaller.

9.5 Preserving Favoured Subsolutions

An extension of the genetic algorithm motivated by the desire to address the failure
of this algorithm in specific domains, is the PUZZLE algorithm described in [67]. It is
designed to improve the performance of the genetic algorithm on relative ordering
problems, i.e., problems where the order between genes is crucial instead of their
global locus in the genome. Corresponding genes to strings and genome to super-
string the SSP is exactly a problem of this kind. The main idea behind the PUZZLE

algorithm is to preserve good subsolutions found by the genetic algorithm by choos-
ing carefully the combination points between two solutions. In this way, it promotes
the assembly of increasingly larger good building blocks from different individuals,
a result that explains also the name of this algorithm.

Two different populations are evolved in the PUZZLE algorithm. A population of
solutions (s-population) and a population of building subsolutions (b-population).
Accordingly, we have the p-individuals and the b-individuals. Notice that this sit-
uation is completely different from the one described for the cooperative coevo-
lutionary algorithm, since here the two populations are not complementary com-
ponents of a complete solution. The interaction between these two populations is
performed differently in each way. The fitness of a b-individual depends on the fit-
ness of the s-individuals that contain it, while the choice of the combination points
in s-individuals is affected by the b-individuals that contain these points.

The PUZZLE algorithm was compared with the genetic algorithm since it is its ex-
tension and with GREEDY. Experimental results with SSP instances over alphabet of
cardinality 2 show that the PUZZLE algorithm outperforms both GREEDY and genetic
algorithm, producing shorter superstrings in the average. The result is obtained by
instances with 50 and 80 strings. Comparing with the cooperative coevolutionary
algorithm, PUZZLE is better for instances with 50 strings, whereas it is worse for
instances with 80 strings.

The Shortest Superstring Problem 221

In [67], two expansions of the PUZZLE algorithm are discussed. The first one
is a direct combination of PUZZLE with cooperative coevolution. The two ideas of
the complementary components in different populations and of the solutions and
subsolutions also in different populations are combined to derive a new algorithm.
During this algorithm four populations are evolved:

1. population of prefixes,
2. population of suffixes,
3. population of building sub-prefixes, and
4. population of building sub-suffixes,

where the interaction between 1 and 2 operates according to cooperative
coevolutionary algorithm, and the interaction between 1, 3 and between 2, 4 op-
erates according to algorithm PUZZLE. The second expansion of PUZZLE involves
ideas from messy genetic algorithms [21]. They are iterative optimization algo-
rithms that use local search techniques, adaptive representation of the genomes, and
decision sampling strategies.

9.6 Discrete Neural Network

In computer science, neural networks are learning programming structures that
simulate the function of biological neural networks as the one constitutes the human
brain. They are composed of artificial neurons and connections between them called
synapses. Neural networks are used for solving artificial intelligence problems as
well as combinatorial optimization problems.

A discrete neural network used for solving the SSP is described in [35]. Dis-
creteness concerns the values that neurons can handle. In general, it is formed by
n neurons, where the state of each neuron i ∈ In is defined by its output vi. The
vector V = (v1,v2, . . . ,vn) whose components are the corresponding neuron outputs
is called the state vector. The energy of each state vector is given by the energy
function of the network. The aim of the network is to minimize the energy function
via its learning operation which happens in iterations. The energy function usually
coincides with the objective function of the optimization problem to solve, such that
a local minimum of the former is also a local, and possibly global, optimum to the
latter. In the case of the SSP, and given a string set S, any feasible vector of the neural
network represents an order of the strings in S, utilizing the permutation expression
of the SSP solutions. So, feasible state vectors are those correspond to permuta-
tions, and vi = k means that string sk is placed in the i-th place in the superstring.
Notice that there is an one-to-one correspondence between neurons and strings in
S. In each learning iteration, the neural network searches different solutions using
neuron updating schemes. Given a vector V = (v1,v2, . . . ,vn) corresponding to the
current state, and two neurons i and j, 1 ≤ i < j ≤ n, the network considers updates
to the following different states:

• (v1, . . . ,vi,vi+1, . . . ,v j,v j+1, . . . ,vn),
• (v1, . . . ,vi,v j+1, . . . ,vn,vi+1, . . . ,v j),

222 T.P. Gevezes and L.S. Pitsoulis

• (vi+1, . . . ,v j,v1, . . . ,vi,v j+1, . . . ,vn),
• (vi+1, . . . ,v j,v j+1, . . . ,vn,v1, . . . ,vi),
• (v j+1, . . . ,vn,v1, . . . ,vi,vi+1, . . . ,v j), and
• (v j+1, . . . ,vn,vi+1, . . . ,v j,v1, . . . ,vi),

that correspond to the combinations of the three parts that the state vector is sepa-
rated into according to the specific two neurons. For each of these candidate solu-
tions the one that decrease mostly the energy function value is selected as the next
network state. This procedure is repeated until convergence is detected, thus a state
vector is found where the updates with all pairs of neurons do not cause any change.
Due to the used update scheme, the network remains in a feasible state along all
iterations. Once the network converges, the stable state represents a local minimum
of the energy function which is equivalent to a local maximum of the total overlap
between the strings in S.

Experimental results are performed with SSP instances for strings of fixed and
variable lengths. The neural network algorithm runs 100 times for each instance
and its results were compared with those of GREEDY. In experiments with fixed string
length, neural network outperforms GREEDY in most cases on average, and always on
best results. In experiments with variable string lengths, neural network outperforms
GREEDY both on average and best results.

9.7 GRASP with Path Relinking

A Greedy Randomized Adaptive Search Procedure (GRASP) is an iterative meta-
heuristic for combinatorial optimization, which is implemented as a multi-start pro-
cedure where each iteration is made up of a construction phase and a local search
phase. The first phase constructs a randomized greedy solution, while the second
phase starts at this solution and applies repeated improvement until a locally op-
timal solution is found. The procedure continues until a termination condition is
satisfied such as a maximum number of iterations. The best solution over all itera-
tions is kept as the final result. GRASP seems to produce good quality solutions for
a wide variety of combinatorial optimization problems. A survey on GRASP can be
found in [47] while an annotated bibliography in [12]. Path Relinking (PR) [19] is
an approach to integrate intensification and diversification strategies in search for
optimal solutions. PR in the context of GRASP is introduced in [32] as a memory
mechanism for utilizing information on previously found good solutions.

In [17], an implementation of GRASP with PR for solving the SSP is presented.
It solves large scale SSP instances of more than 1,000 strings and outperforms the
GREEDY algorithm in the majority of the tested instances. The proposed method is
able to provide multiple near-optimum solutions that is of practical importance for
the DNA sequencing, and admits a natural parallel implementation. Extended com-
putational experiments on a set of SSP instances with known optimal solutions,
produced by using the integer programming formulation presented in Sect. 5.2, in-
dicate that the new method finds the optimum in most of the cases, and its average
error relative to the optimum is close to zero.

The Shortest Superstring Problem 223

10 Asymptotic Behaviour

It can be observed a discrepancy between the theoretical results from the worst-case
analysis and the experimental observations from the approximation and heuristic
algorithms for the SSP. A possible explanation for this fact is given by the average-
case analysis for the problem.

The asymptotic behaviour of the compression achieved by an optimal superstring
is analysed in [1] under a certain probability model for the lengths of the strings and
the letter distribution in them. The average optimal compression of n strings tends
to n logn

Hμ
, where Hμ =−∑m

i=1 p(ai) log p(ai) is the Shannon entropy of the choosing
law μ for the letters from the alphabet to construct the strings.

The asymptotic behaviour of some algorithms for the SSP is based on the above
result and explains the good performance of the greedy strategies. In [13], the algo-
rithms GREEDY, MGREEDY, and NAIVE are analysed in a probabilistic framework and
it is proved that they are asymptotically optimal. In [65], the results of the asymptotic
behaviour are extended to the TGREEDY and DIMATCH algorithms, after the observa-
tion that the performance of TGREEDY is never worse than that of MGREEDY, and that
the intermediate result of the maximum directed matching in DIMATCH coincides
actually with the result of MGREEDY (see Theorem 12). The steps of DIMATCH up to
the construction of the maximum directed matching are analysed in a probabilistic
way with the additional assumption that all strings have the same length, and the
asymptotic optimality of these algorithms is established.

By the complexity results in Sect. 3.2, we know that there is not PTAS for the
SSP for both performance measures unless P = NP. In [48], a probabilistic PTAS
for the SSP that achieves a (1+ ε)-approximation in expected polynomial time, for
every ε > 0, is presented. This algorithm

1. either returns a possibly non-optimal solution, the solution of GREEDY, in poly-
nomial time,

2. or returns an optimal solution, via a maximum Hamiltonian path on the associ-
ated overlap graph, in non-polynomial time.

Under certain conditions in the data of the SSP instance, in the first case GREEDY has
asymptotic approximation ratio 1+ ε with respect to the length measure, and in the
second case the expected running time of finding the maximum Hamiltonian path
can be polynomial, since it depends on the time spent when it is executed and its
execution probability. Analysing these situations, for a random input the algorithm
has approximation ratio 1+ ε with respect to the length measure and polynomial
expected running time.

11 Smoothed Analysis

The classical complexity analysis implies that the SSP is a hard problem in the
worst case. The average-case analysis explains the effectiveness of greedy strategies
under suitable probability models which are far from reality. In addition to these two

224 T.P. Gevezes and L.S. Pitsoulis

frameworks, the latest developed smoothed analysis explains why greed works so
well for the SSP in real-world instances of the DNA sequencing practice. Smoothed
analysis is introduced in [52] to demonstrate the fact that some algorithms like the
simplex algorithm run in exponential time in the worst case, but in practice they are
very efficient.

In [36], the smoothed analysis of the GREEDY algorithm is realized, making the
observation that the asymptotic optimal behaviour of the greedy techniques is due to
the fact that the random strings do not have large overlaps, and so the concatenation
of the strings is not much longer than the shortest common superstring. However, the
practical instances arising from DNA assembly are not random and the input strings
have significantly large overlaps. By defining small and natural perturbations that
represent the mutations of the DNA sequences during evolution, it is proved that for
any given instance S of the SSP, the average approximation ratio of the GREEDY algo-
rithm on a small random perturbation of S is 1+o(1). This result points out that the
approximation inefficiency of SSP instances indicating by the Max-SNP-hardness
result can be destroyed by a very small perturbation. As very handily noted, if there
had been a hard instance for the DNA assembly problem in history, the hardness
would have likely been destroyed by the random mutations of the DNA sequences
during the evolution. This result makes the SSP a characteristic case where the com-
plexity is different in the worst-case analysis and in the smoothed analysis.

Acknowledgements This research has been funded by the European Union (European Social
Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program:
Thalis. Investing in knowledge society through the European Social Fund.

References

1. Alexander, K.S.: Shortest common superstrings for strings of random letters. In: Crochemore,
M., Gusfield, D. (eds.) Combinatorial Pattern Matching. Lecture Notes in Computer Science,
vol. 807, pp. 164–172. Springer, Berlin (1994)

2. Armen, C., Stein, C.: Improved length bounds for the shortest superstring problem. In: Akl,
S., Dehne, F., Sack, J.R., Santoro, N. (eds.) Algorithms and Data Structures. Lecture Notes in
Computer Science, vol. 955, pp. 494–505. Springer, Berlin (1995)

3. Armen, C., Stein, C.: Short superstrings and the structure of overlapping strings. J. Comput.
Biol. 2(2), 307–332 (1995)

4. Armen, C., Stein, C.: A 2 2
3 -approximation algorithm for the shortest superstring problem. In:

Hirschberg, D., Myers, G. (eds.) Combinatorial Pattern Matching. Lecture Notes in Computer
Science, vol. 1075, pp. 87–101. Springer, Berlin (1996)

5. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness
of approximation problems. J. ACM 45(3), 501–555 (1998)

6. Berger, B., Rompel, J., Shor, P.W.: Efficient NC algorithms for set cover with applications to
learning and geometry. J. Comput. Syst. Sci. 49(3), 454–477 (1994)

7. Bläser, M.: An 8/13-approximation algorithm for the asymmetric maximum TSP. In: Pro-
ceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
’02), pp. 64–73. Society for Industrial and Applied Mathematics, Philadelphia (2002)

The Shortest Superstring Problem 225

8. Blum, A., Jiang, T., Li, M., Tromp, J., Yannakakis, M.: Linear approximation of shortest
superstrings. J. ACM 41, 630–647 (1994)

9. Breslauer, D., Jiang, T., Jiang, Z.: Rotations of periodic strings and short superstrings. J. Al-
gorithm. 24, 340–353 (1997)

10. Chirico, N., Vianelli, A., Belshaw, R.: Why genes overlap in viruses. Proc. R. Soc. B. Biol.
Sci. 277(1701), 3809–3817 (2010)

11. Czumaj, A., Ga̧sieniec, L., Piotrów, M., Rytter, W.: Sequential and parallel approximation of
shortest superstrings. J. Algorithm. 23, 74–100 (1997)

12. Festa, P., Resende, M.: GRASP: An annotated bibliography. In: Ribeiro, C., Hansen, P. (eds.)
Essays and Surveys in Metaheuristics. Operations Research/Computer Science, pp. 325–367.
Kluwer Academic, Dordecht (2002)

13. Frieze, A., Szpankowski, W.: Greedy algorithms for the shortest common superstring that are
asymptotically optimal. Algorithmica 21, 21–36 (1998)

14. Gallant, J.K.: String compression algorithms. Ph.D. thesis, Princeton (1982)
15. Gallant, J., Maier, D., Storer, J.A.: On finding minimal length superstrings. J. Comput. Syst.

Sci. 20(1), 50–58 (1980)
16. Gerver, M.: Three-valued numbers and digraphs. Kvant 1987(2), 32–35 (1987)
17. Gevezes, T., Pitsoulis, L.: A greedy randomized adaptive search procedure with path relinking

for the shortest superstring problem. J. Comb. Optim. (2013) doi: 10.1007/s10878-013-9622-z
18. Gingeras, T., Milazzo, J., Sciaky, D., Roberts, R.: Computer programs for the assembly of

DNA sequences. Nucleic Acids Res. 7(2), 529–543 (1979)
19. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Norwell (1997)
20. Goldberg, M.K., Lim, D.T.: A learning algorithm for the shortest superstring problem. In:

Proceedings of the Atlantic Symposium on Computational Biology and Genome Information
and Technology, pp. 171–175 (2001)

21. Goldberg, D., Deb, K., Korb, B.: Messy genetic algorithms: Motivation, analysis, and first
results. Complex Syst. 3, 493–530 (1989)

22. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan
Press, Ann Arbor (1975)

23. Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proc. Inst.
Radio Eng. 40(9), 1098–1101 (1952)

24. Ilie, L., Popescu, C.: The shortest common superstring problem and viral genome compres-
sion. Fundam. Inform. 73, 153–164 (2006)

25. Ilie, L., Tinta, L., Popescu, C., Hill, K.A.: Viral genome compression. In: Mao, C., Yoko-
mori, T. (eds.) DNA Computing. Lecture Notes in Computer Science, vol. 4287, pp. 111–126.
Springer, Berlin (2006)

26. Jenkyns, T.A.: The greedy travelling salesman’s problem. Networks 9(4), 363–373 (1979)
27. Jiang, T., Li, M.: Approximating shortest superstrings with constraints. Theor. Comput. Sci.

134(2), 473–491 (1994)
28. Kaplan, H., Shafrir, N.: The greedy algorithm for shortest superstrings. Inf. Process. Lett. 93,

13–17 (2005)
29. Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation algorithms for asym-

metric TSP by decomposing directed regular multigraphs. J. ACM 52, 602–626 (2005)
30. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W.

(eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)
31. Kosaraju, S.R., Park, J.K., Stein, C.: Long tours and short superstrings. In: Proceedings of the

35th Annual Symposium on Foundations of Computer Science, pp. 166–177. IEEE Computer
Society, Washington, DC (1994)

32. Laguna, M., Martı́, R.: GRASP and path relinking for 2-layer straight line crossing minimiza-
tion. INFORMS J. Comput. 11, 44–52 (1999)

33. Lesk, A.M.: Computational Molecular Biology. Sources and Methods for Sequence Analysis.
Oxford University Press, Oxford (1988)

34. Li, M.: Towards a DNA Sequencing Theory (Learning a String), vol. 1, pp. 125–134. IEEE
Computer Society, Los Alamitos (1990)

226 T.P. Gevezes and L.S. Pitsoulis

35. López-Rodrı́guez, D., Mérida-Casermeiro, E.: Shortest common superstring problem with dis-
crete neural networks. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds.) Adaptive and
Natural Computing Algorithms. Lecture Notes in Computer Science, vol. 5495, pp. 62–71.
Springer, Berlin (2009)

36. Ma, B.: Why greed works for shortest common superstring problem. In: Ferragina, P., Landau,
G. (eds.) Combinatorial Pattern Matching. Lecture Notes in Computer Science, vol. 5029, pp.
244–254. Springer, Berlin (2008)

37. Maier, D., Storer, J.A.: A note on the complexity of the superstring problem. Technical Report
233, Computer Science Laboratory, Princeton University, Princeton (1977)

38. Middendorf, M.: More on the complexity of common superstring and supersequence prob-
lems. Theor. Comput. Sci. 125(2), 205–228 (1994)

39. Middendorf, M.: Shortest common superstrings and scheduling with coordinated starting
times. Theor. Comput. Sci. 191(1–2), 205–214 (1998)

40. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling sales-
man problems. J. ACM 7, 326–329 (1960)

41. Ott, S.: Lower bounds for approximating shortest superstrings over an alphabet of size 2.
In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) Graph-Theoretic Concepts in Computer
Science. Lecture Notes in Computer Science, vol. 1665, pp. 55–64. Springer, Berlin (1999)

42. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity.
Prentice-Hall, Englewood Cliffs (1982)

43. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes.
J. Comput. Syst. Sci. 43(3), 425–440 (1991)

44. Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with distances one and
two. Math. Oper. Res. 18(1), 1–11 (1993)

45. Peltola, H., Söderlund, H., Ukkonen, E.: SEQAID: a DNA sequence assembling program
based on a mathematical model. Nucleic Acids Res. 12(1), 307–321 (1984)

46. Pevzner, P.A., Waterman, M.S.: Open Combinatorial Problems in Computational Molecular
Biology, p. 158. IEEE Computer Society, Los Alamitos (1995)

47. Pitsoulis, L., Resende, M.: Greedy randomized adaptive search procedures. In: Pardalos, P.,
Resende, M. (eds.) Handbook of Applied Optimization, pp. 178–183. Oxford University Press,
Oxford (2002)

48. Plociennik, K.: A probabilistic PTAS for shortest common superstring. In: Proceedings of
the 34th International Symposium on Mathematical Foundations of Computer Science 2009
(MFCS ’09), pp. 624–635. Springer, Berlin (2009)

49. Reif, J.H.: Synthesis of Parallel Algorithms, 1st edn. Morgan Kaufmann, San Francisco (1993)
50. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423,

623–656 (1948)
51. Shapiro, M.B.: An algorithm for reconstructing protein and RNA sequences. J. ACM 14,

720–731 (1967)
52. Spielman, D., Teng, S.H.: Smoothed analysis of algorithms: Why the simplex algorithm usu-

ally takes polynomial time. In: Proceedings of the Thirty-Third Annual ACM Symposium on
Theory of Computing (STOC ’01), pp. 296–305. ACM, New York (2001)

53. Staden, R.: Automation of the computer handling of gel reading data produced by the shotgun
method of DNA sequencing. Nucleic Acids Res. 10(15), 4731–4751 (1982)

54. Storer, J.A.: Data compression: Methods and theory. Computer Science Press, New York
(1988)

55. Storer, J.A., Szymanski, T.G.: The macro model for data compression (extended abstract). In:
Proceedings of the Tenth Annual ACM Symposium on Theory of Computing (STOC ’78), pp.
30–39. ACM, New York (1978)

56. Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. J. ACM 29, 928–951
(1982)

57. Sweedyk, Z.: A 2 1
2 -approximation algorithm for shortest superstring. SIAM J. Comput. 29,

954–986 (1999)

The Shortest Superstring Problem 227

58. Tarhio, J., Ukkonen, E.: A greedy approximation algorithm for constructing shortest common
superstrings. Theor. Comput. Sci. 57(1), 131–145 (1988)

59. Tarjan, R.E.: Data Structures and Network Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia (1983)

60. Teng, S.H., Yao, F.: Approximating Shortest Superstrings, pp. 158–165. IEEE Computer
Society, Los Alamitos (1993)

61. Timkovskii, V.G.: Complexity of common subsequence and supersequence problems and re-
lated problems. Cybern. Syst. Anal. 25, 565–580 (1989)

62. Turner, J.S.: Approximation algorithms for the shortest common superstring problem. Inf.
Comput. 83, 1–20 (1989)

63. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
64. Vassilevska, V.: Explicit inapproximability bounds for the shortest superstring problem. In: Je-

drzejowicz, J., Szepietowski, A. (eds.) Mathematical Foundations of Computer Science 2005.
Lecture Notes in Computer Science, vol. 3618, pp. 793–800. Springer, Berlin (2005)

65. Yang, E., Zhang, Z.: The shortest common superstring problem: Average case analysis for
both exact and approximate matching. IEEE Trans. Inf. Theory 45(6), 1867–1886 (1999)

66. Zaritsky, A., Sipper, M.: Coevolving solutions to the shortest common superstring problem.
Biosystems 76(1–3), 209–216 (2004)

67. Zaritsky, A., Sipper, M.: The preservation of favored building blocks in the struggle for fitness:
The puzzle algorithm. Evol. Comput. 8(5), 443–455 (2004)

	The Shortest Superstring Problem
	1 Applications
	1.1 DNA Sequencing
	1.2 Data Compression
	1.3 Modelling the Viral Genome Compression
	1.4 Scheduling with Coordinated Starting Times
	1.5 Data Structure Storage

	2 Definitions and Notations
	3 Computational Complexity
	3.1 Complexity of Exact Solution
	3.2 Complexity of Approximation

	4 Polynomially Solvable Cases
	5 Exact Solutions
	5.1 Exhaustive Enumeration
	5.2 Integer Programming Formulation

	6 Approximation Algorithms
	6.1 Approximation of Compression
	6.1.1 The Natural Greedy Algorithm
	6.1.2 Approximation Based on Matchings
	6.1.3 Approximation Based on the TSP

	6.2 Approximation of Length
	6.2.1 Naive Approximation Algorithm
	6.2.2 Approximation Algorithm Used in a Learning Process
	6.2.3 4-Approximation Algorithms
	6.2.4 Greedy Is a 312-Approximation Algorithm
	6.2.5 A 3-Approximation Algorithm
	6.2.6 Generic Approximation Based on Cycle Covers
	6.2.7 Handling 2-Cycles and 3-Cycles Separately
	6.2.8 Approximation Algorithms Based on the TSP
	6.2.9 Exploiting the Superstring Structures
	6.2.10 Rotations of Periodic Strings
	6.2.11 212-Approximation Algorithms

	7 Parallelizing the Solving Process
	7.1 NC Algorithm with Logarithmic Length Ratio
	7.2 RNC Algorithm with Constant Length Ratio
	7.3 NC Algorithm with Compression Ratio 14+

	8 Inapproximability Bounds
	9 Heuristics
	9.1 A Variant of the Natural Greedy
	9.2 A Heuristic Parametrized by a Learning Process
	9.3 Genetic Algorithm
	9.4 Coevolutionary Algorithm
	9.5 Preserving Favoured Subsolutions
	9.6 Discrete Neural Network
	9.7 GRASP with Path Relinking

	10 Asymptotic Behaviour
	11 Smoothed Analysis
	References

