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Preface

Panos Pardalos was born to parents Calypso and Miltiades on June 17, 1954, in
Mezilo (now Drossato), Greece. Ever since his grandmother Sophia taught him how
to count in his early childhood, Panos has been fascinated with mathematics. The
remote location of the mountain village and rather unfavorable economic conditions
Panos grew up in did not stop him from pursuing knowledge. When he was 15,
Panos wrote a letter to the Greek Ministry of Education describing his aspirations
and the obstacles he faced in his quest for learning. The government responded by
providing a scholarship to support his studies at Athens University.

After obtaining a bachelor’s degree in mathematics in 1977, Panos continued his
education in the USA. In 1978, he earned a master’s degree in mathematics and com-
puter science from Clarkson University (Potsdam, NY) and started Ph.D. studies in
computer and information sciences at the University of Minnesota. In 1985, Panos
successfully defended his dissertation, which served as the basis for his first book
Constrained Global Optimization: Algorithms and Applications (Springer-Verlag,
1987) coauthored with his Ph.D. advisor, Judah Ben Rosen. This book became a
landmark publication in the emerging field of global optimization and helped Panos
to establish himself as one of the leading researchers in the field. By the time of the
book’s publication he already started his independent academic career as an assis-
tant professor of computer science at Pennsylvania State University.

In 1991, Panos moved to the Department of Industrial and Systems Engineering
at the University of Florida (UF), where he currently holds the position of Distin-
guished Professor and University of Florida Research Foundation Professor. He also
serves as the director of Center for Applied Optimization. At UF, Panos is also an
affiliated faculty of Computer & Information Science & Engineering Department,
Biomedical Engineering Department, McKnight Brain Institute, and the Genetics
Institute.

Panos compiled a very impressive record over the years of his (still very active)
academic career, which includes nearly 20 coauthored books and over 300 journal
articles. He is also an editor of numerous books, including a 7-volume Encyclopedia
of Optimization co-edited with Christodoulos Floudas and published by Springer.
He served as the editor-in-chief and an editorial board member of many highly
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viii Preface

respected journals and as the managing editor of several book series. He has or-
ganized conferences and gave plenary lectures in world leading institutions. Over
50 of his former Ph.D. students enjoy successful careers in academia and industry,
making the impact of his mentoring felt all over the world.

Panos has been honored with a number of awards for his scholastic achieve-
ments. His notable recognitions include the Constantin Carathéodory Prize (2013)
and EURO Gold Medal (2013); Honorary Doctorates from N.I. Lobachevski State
University of Nizhni Novgorod, Russia (2005), V.M. Glushkov Institute of Cy-
bernetics of The National Academy of Sciences of Ukraine (2008), and Wilfrid
Laurier University, Canada (2012); Honorary Professorships from the Graduate
School of Information Technology & Mathematical Sciences, University of Ballarat,
Australia (2010) and from Anhui University of Sciences and Technology, China
(2013). He was elected a Foreign Associate Member of Reial Académia de Doctors,
Spain (1998), a Foreign Member of Lithuanian Academy of Sciences (1999), Petro-
vskaya Academy of Sciences and Arts, Russia (2000), and the National Academy
of Sciences of Ukraine (2003), as well as an Honorary Member of the Mongolian
Academy of Sciences (2005). He is also the recipient of a medal in recognition of
broad contributions in science and engineering of the University of Catania, Italy
(2013).

Ivan V. Sergienko, Academician of the National Academy of Sciences of
Ukraine (NASU), presents the diploma of a foreign member of NASU to
Panos M. Pardalos (2003)

As impressive as his academic accomplishments are, it is safe to say that his
personal qualities and friendship are the primary reasons Panos is so much loved
and respected by his colleagues and students. As he likes to say, “Whatever it is
that we do, we are humans first.” His enthusiasm for science is just a reflection of
his positive, energetic, and happy personality. He always remembers his roots and
knows how to enjoy simple things in life. Many of the readers might have heard the
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following story about Panos that is very characteristic of his caring nature. When
he was a Ph.D. student at the University of Minnesota, Panos planted a grapefruit
seed in a pot, and a tree started growing. When he moved to Penn State a few years
later, he brought the plant with him. The next destination for Panos and the tree
was Gainesville, Florida, where the climate was finally warm enough for planting a
grapefruit tree outside. After some proficient treatment from Panos’s father, the tree
thrived as did Panos’s career at UF, bearing so much highest-quality fruit that it was
plenty not only for the Pardalos family but also for Panos’s colleagues and students
in the department to enjoy.

N~ 7 e 2 y : e o |
Panos with his son, Akis, and wife, Rosemary, next to the famous
grapefruit tree, February 1, 2014

On behalf of all the authors of the chapters, we are very pleased to dedicate
this book to Panos Pardalos on the occasion of his 60th birthday, and wish him
many more happy, healthy, and productive years. We would like to thank all the
contributors as well as Razia Amzad and Elizabeth Loew of Springer for making
this publication possible.

Xpovio TToAAG TTé&vo!
Athens, Greece Themistocles M. Rassias

Princeton, NJ Christodoulos A. Floudas
College Station, TX Sergiy Butenko
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Piecewise Linear Classifiers Based
on Nonsmooth Optimization Approaches

Adil M. Bagirov, Refail Kasimbeyli, Giirkan Oztiirk, and Julien Ugon

1 Introduction

Nonsmooth optimization provides efficient algorithms for solving many machine
learning problems. For example, nonsmooth optimization approaches to the cluster
analysis and supervised data classification problems lead to the design of very eff-
icient algorithms for their solution (see, e.g., [1, 3, 4, 10, 13]). Here our aim is
to demonstrate how nonsmooth optimization algorithms can be applied to develop
efficient piecewise linear classifiers. We use a max—min and a polyhedral conic sep-
arabilities as well as an incremental approach to design such classifiers. This chapter
contains results which are extensions of those obtained in [14—16].

The problem of separating finite sets has many applications in applied mathe-
matics. One such application is the design of supervised data classification algo-
rithms. If convex hulls of the sets do not intersect, then they are linearly separable
and one hyperplane provides complete separation. However, in many real-world
applications this is not the case. In most data sets, classes are disjoint, but their
convex hulls intersect. In this situation, the decision boundary between the classes
is nonlinear. It can be approximated using piecewise linear functions. Over the last
three decades different algorithms to construct piecewise linear decision boundaries
between finite sets have been designed and applied to solve data classification prob-
lems (see, e.g., [2, 10, 11, 18, 19, 24, 27, 31, 39-41]).

Piecewise linear classifiers are very simple to implement and their memory
requirements are very low. Therefore they are suitable for small reconnaissance
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robots, intelligent cameras, imbedded and real-time systems, and portable
devices [27]. In general, the determination of piecewise linear boundaries is a
complex global optimization problem [40]. The objective function in this prob-
lem is nonconvex and nonsmooth. It may have many local minimizers, yet only
global minimizers provide piecewise linear boundaries with the least number of
hyperplanes. Additionally, the number of hyperplanes needed to separate sets is not
known a priori. Newton-like methods cannot be applied to solve such problems.
As a result piecewise linear classifiers require a long training time, which creates
difficulties for their practical application.

In order to reduce the training time most techniques try to avoid solving opti-
mization problems when computing piecewise linear boundaries. Instead they use
some form of heuristics to determine the number of hyperplanes. Most of these
techniques apply fast clustering algorithms (such as k-means) to find clusters in
each class. Then they compute hyperplanes separating pairs of clusters from differ-
ent classes. The final piecewise linear boundary is obtained as a synthesis of those
hyperplanes (see [18, 19, 24, 27, 31, 39—41]). These techniques try to train hyper-
planes locally. Despite the fact that these algorithms are quite fast they do not always
find minimizers, even local ones of the classification error function.

In this chapter, we propose a different approach to design piecewise linear clas-
sifiers. This approach is based on the use of (1) hyperboxes, which can be described
by the very simple piecewise linear functions, to identify data points which are away
from boundaries between pattern classes; (2) polyhedral conic separability to accu-
rately identify data points lying on or near the boundaries between the classes; (3)
max—min separability and an incremental approach to find piecewise linear bound-
aries between pattern classes.

Following these steps first, we approximate classes using hyperboxes and iden-
tify data points which are away from the boundaries between classes. Such points
can be easily classified using only approximating hyperboxes. In the next iteration
we remove all these points from the further consideration and apply the polyhedral
conic separability to more accurately identify data points which are on or close to
boundaries between classes. In this iteration we also identify regions which can be
classified using the polyhedral conic functions (PCFs). Then we remove all data
points from these regions and apply max—min separability to the rest of the data
set to find piecewise linear boundaries between the sets. Piecewise linear bound-
aries are built by gradually adding new hyperplanes until separation is obtained
with respect to some tolerance. Such an approach allows one to significantly reduce
computational effort to train piecewise linear classifiers and considerably improve
their classification accuracy. We apply the proposed classifiers to solve supervised
data classification problems in 12 publicly available data sets, report the results of
numerical experiments, and compare the proposed classifiers with nine other main-
stream classifiers.

The rest of this chapter is organized as follows: In Sect. 2 we give an overview of
existing piecewise linear classifiers. The definition and some results related to max—
min separability are given in Sect. 3. The classification algorithm based on the PCF
is described in Sect.4. Section 5 presents the incremental max—min separability
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algorithm. The hybrid polyhedral conic and max-min separability (HPCAMS)
algorithm, its implementation, and classification rules are given in Sect. 6. Results
of numerical experiments are presented in Sect. 7. Section 8 concludes the chapter.

2 Review of Piecewise Linear Classifiers

Piecewise linear classifiers have been a subject of study for more than three decades.
Despite the fact that the computation of piecewise linear boundaries is not an easy
task, piecewise linear classifiers are simple to implement, provide a fast (real-time)
classification time and have a low memory requirement. Another advantage of
piecewise linear classifiers is that they do not depend on parameters. The simplicity
of their implementation makes them very suitable for many applications [27].

Existing piecewise linear classifiers can be divided into two classes. The first
class contains classifiers in which each segment of the piecewise linear boundary is
constructed independently. An optimization problem is formulated for each segment
separately. Thus these segments are found as a solution to different optimization
problems. We call such an approach a multiple optimization approach.

The second class contains classifiers in which the problem of finding a piecewise
linear boundary is formulated as an optimization problem. In this case a single opt-
imization problem is solved to find piecewise linear boundaries. We call such an
approach a single optimization approach.

2.1 Classifiers Based on a Multiple Optimization Approach

To the best of our knowledge, the first approach to construct a piecewise linear clas-
sifier was described in [39] (see also [40]). This paper introduces a procedure to
locally train piecewise linear decision boundaries. Correctly classified patterns pro-
vide adjustments only in those segments of the decision boundary that are affected
by those patterns.

The method proposed in [32] is based on the cutting of straight line segments
joining pairs of opposed points (i.e., points from distinct classes) in n-dimensional
space. The authors describe a procedure to nearly minimize the number of hyper-
planes required to cut all of these straight lines. This method does not require par-
ameters to be specified by users, an improvement over methods proposed in [39].
This piecewise linear classifier provides a much faster decision than the k-nearest
neighbors classifier for a similar accuracy. In [28], the piecewise linear classifier is
compared with a neural network classifier. The latter performs slightly better than
the former, but it requires a much longer training time.

In the paper [41] a modification of the method from [32] is proposed. This
method constructs the hyperplanes of a piecewise linear classifier so as to keep
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a correct recognition rate over a threshold for the training set. The threshold is
determined automatically by the Minimum Description Length criterion so as to
avoid overfitting of the classifier to the training set.

The paper [37] presents a learning algorithm which constructs a piecewise linear
classifier for multi-class data classification problems. In the first step of the algo-
rithm linear regression is used to determine the initial positions of the discriminating
hyperplanes for each pair of classes. An error function is minimized by a gradient
descent procedure for each hyperplane separately. A clustering procedure decom-
posing the classes into appropriate subclasses can be applied when the classes are
not linearly separable. This classifier was included in the STATLOG project where
it achieved good classification results on many data sets [29].

The paper [18] proposes an approach to construct a piecewise linear classifier
using neural networks. The training set is split into several linearly separable train-
ing subsets, and the separability is preserved in subsequent iterations. In [27] the
piecewise linear boundary is represented as a collection of segments of hyperplanes
created as perpendicular bisectors of the line segments linking centroids of the
classes or parts of classes.

The paper [31] proposes a piecewise linear classifier which starts with a linear
classifier. If it fails to separate the classes, then the sample space of one of the classes
is divided into two subsample spaces. This sequence of splitting, redesigning, and
evaluating continues until the overall performance is no longer improved.

In [19] the authors propose a linear binary decision tree classifier, where the
decision at each non-terminal node is made using a genetic algorithm. They apply
this piecewise linear classifier to cell classification.

2.2 Classifiers Based on a Single Optimization Approach

There are different approaches to design piecewise linear classifiers based on a
single optimization approach. The notion of the bilinear separation was intro-
duced in [17]. In this approach two hyperplanes were used to separate classes. An
algorithm for finding those hyperplanes was also developed.

The paper [2] introduces the concept of polyhedral separability which is a gen-
eralization of linear separability. In this case one of the sets is approximated by a
polyhedral set and the rest of the space is used to approximate the second set. The
error function is a sum of nonsmooth convex and nonsmooth nonconvex functions.
An algorithm for minimizing the error function is developed where the problem of
finding the descent directions is reduced to a linear programming problem.

The concept of max—min separability was introduced in [10]. In this approach
two sets are separated using a continuous piecewise linear function. Max—min sepa-
rability is a generalization of linear, bilinear, and polyhedral separabilities [11]. It is
proven that any two finite point sets can be separated by a piecewise linear function.
The error function in this case is nonconvex and nonsmooth. An algorithm for
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minimizing the error function is developed. Results presented in [11] demonstrate
that the algorithm based on max—min separability is effective for solving supervised
data classification problems in many large-scale data sets.

Polyhedral conic separability was introduced in [22] where PCFs are used to
separate classes. An algorithm for finding such separating PCFs was also designed.

Incremental learning algorithms are becoming increasingly popular in supervised
and unsupervised data classification. This type of approach breaks up the data set
into observations that can be classified using simple separators, and observations
that require more elaborate ones. This allows one to simplify the learning task by
eliminating the points that can be more easily classified. Furthermore, at each ite-
ration, information gathered during prior iterations can be exploited. In the case of
piecewise linear classifiers, this approach allows us to compute as few hyperplanes
as needed to separate the sets, without any prior information. Additionally, this ap-
proach allows us to reach a near global solution of the classification error function
by using the piecewise linear function obtained at a given iteration as a starting
point for the next iteration. Thus it reduces computational effort and avoids possible
overfitting. Papers [14—16] present different incremental piecewise linear classifiers.
Piecewise linear classifiers introduced in these papers are based in the max—min and
polyhedral conic separabilities. In these classifiers simple piecewise linear separa-
tors such as hyperboxes are used to find the set of easily classifiable points.

3 Max-Min Separability

The approach we propose in this chapter finds piecewise linear boundaries of
classes. These boundaries are determined using max—min separability, a concept
which was introduced in [10] (see also [11]). In this section we briefly recall the
main definitions from these papers.

3.1 Definition and Properties

Let A and B be given disjoint sets containing m and p n-dimensional vectors, re-
spectively:

A={d',....d"},d eR"i=1,...,m,
B={b',... . b"},b R j=1,...,p.
Consider a collection of hyperplanes H = {{x'/,y;;}, j € J;, i €1}, where x'/ €

R" y; R jed,ielandI={1,...,1},1>0,J; #0Viel
This collection of hyperplanes defines the following max—min function on R”":

o(z) max I;Ileljl‘ll {(xV,2) —yij}, z € (D

Here (-,-) is an inner product in R".
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Definition 1. The sets A and B are max—min separable if there exist a finite number
of hyperplanes {x"/,y;;} with x'/ € R", y;; € R!, j € J;, i €I such that
l.forall i€land acA
Ijléllll{ X a)y—yij} <0;
2. for any b € B there exists at least one i € [ such that

Ijrén,l{ (x"b) ) —yij} > 0.

Remark 1. 1t follows from Definition 1 that if the sets A and B are max—min separa-
ble then ¢(a) < 0 for any a € A and ¢(b) > 0 for any b € B, where the function @ is
defined by (1). Thus the sets A and B can be separated by a function represented as a
max—min of linear functions. Therefore this kind of separability is called max—min
separability.

Remark 2. The notions of max—min and piecewise linear separabilities are equiv-
alent. The sets A and B are max—min separable if and only if they are disjoint:
ANB=0T[10].

3.2 Error Function

Given any set of hyperplanes {x'/,y;;}, j € J;, i € I with x/ € R", y;; € R an
averaged error function is defined as (see [10, 11])

where

fX,Y)=(1/m) Zmax [0 maxmin{ (x/, a >—yij+1}:| ,

=1 i€l jeJ;
4 ij 3t
L L
LX,Y)=(1/p) ; {0 yminmax{—(x »b>+)’u+l}]7

and X = (xlla"'vxlql) S RnLa Y = (yllw"aqu[) € RL? L= Zielqiv qi = |Ji|7 i €
I={1,...,1}. |J;] denotes the cardinality of the set J;. It is clear that f(X,Y) > 0 for
allX e R"-and Y € R-.

Remark 3. The error function (2) is nonconvex and if the sets A and B are max—min
separable with the given number of hyperplanes, then the global minimum of this
function f(X*,Y,) =0 and the global minimizer is not always unique. Moreover,
X =0 € R" cannot be an optimal solution [10].

The problem of max—min separability is reduced to the following mathematical
programming problem:
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minimize f(X,Y) subject to (X,Y) € R"+DE 3)

where the objective function f is described by Eq. (2).

In the paper [11], an algorithm for solving problem (3) is presented. This
algorithm exploits special structures of the error function such as piecewise par-
tial separability (for the definition of piecewise partial separability, see [12]). In this
algorithm it is assumed that the number of hyperplanes is known a priori. However
this information is not always available. The classification accuracy is highly depen-
dent on this number. A large number of hyperplanes may lead to overfitting of the
training set. It is therefore imperative to calculate as few hyperplanes as needed to
separate classes with respect to a given tolerance. An incremental approach can be
applied to solve this problem.

The complexity of the error function (2) computation depends on the number of
data points. For data sets containing tens of thousands of points the error function
becomes expensive to compute, and the algorithms proposed in [10, 11] become
very time consuming. In most large data sets not all data points contribute to the
piecewise linear functions separating classes. Such points are away from the bound-
aries between classes. Identification of such data points is decisive to reduce (and
sometimes significantly) computational effort to evaluate the error function. An inc-
remental approach allows one to reduce the number of points at each iteration by
eliminating points easily classified using simpler piecewise linear separators calcu-
lated at previous iterations. Also, this scheme allows us to reduce the risk of overfit-
ting by only considering the data points that are relevant.

4 Classification Algorithms Based on PCF's

In this section we describe classification algorithms based on the separation via
PCFs.

It is impossible to overestimate the importance of theorems on the existence of a
separating hyperplane for two disjoint convex sets. A large number of methods for
solving single-objective optimization problems are based on these theorems. In con-
vex vector optimization, it is a common practice to characterize efficient points of
sets as support points by positive or strictly positive linear support functionals. Many
classification algorithms are based on the linear separation theorems. Unfortunately
convex hulls of many data sets encountered in classification problems are not dis-
joint and therefore the linear separation theorems of convex analysis used in data
classification problems leads to difficulties. The simple reason is that, for disjoint
nonconvex sets a separating hyperplane may not exist. Therefore, nonconvex anal-
ysis requires special separation theorems.

The main reason of difficulties arising when passing from the convex analysis to
the nonconvex one is that the nonconvex cases may arise in many different forms
and each case may require a special approach. Some problems of nonconvex opt-
imization, in more generalized form, have been studied in the framework of the
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abstract convexity (see [30, 33-36, 38]). Abstract convexity suggests variety of app-
roaches which can be used to analyze different nonconvex problems. It generalizes
the existing supporting philosophy for convex sets and suggests different ways to
support nonconvex sets by using a suitable class of real functions alternatively to the
class of linear functions used in convex analysis. These investigations demonstrate
the importance of finding a specific class of functions defining special nonlinear
supporting surfaces which are suitable to analyze the given nonconvex problem.

In [20] Gasimov suggested a special type of PCFs and with their help obtained
characterization theorems for Benson properly efficient points in vector optimiza-
tion without any convexity and boundedness conditions. By using the same class of
PCFs, recently Kasimbeyli [25] proved a nonlinear separation theorem for noncon-
vex cones.

In the following subsection we present the class of PCFs. The subsequent sub-
section demonstrates how the separation technique based on PCFs is used in non-
convex nonsmooth optimization and then we give the corresponding classification
algorithms.

4.1 Polyhedral Conic Functions

The class of PCFs that we consider in this subsection consists of functions g, ¢ y.):
R" — R defined as:

Ewe ya)(X) = wx—a)+&|x—al, -7, 4)

where w,a € R", £,y € R, and ||x||; = |xi1|+ - + |x,| is an /;-norm of the vector
xeR".

Lemma 1. A graph of the function g ¢ y.q) defined in Eq.(4) is a polyhedral cone
with vertex at (a,—y) € R" x R.

Proof. To prove the lemma we show that:

1. A graph of the function is a cone with vertex at (a, —y) € R" x R, and
2. Each sublevel set of this function is a convex polyhedron.

To prove the first part, consider a set graph(g,,.¢ y..)) — (@, —7):
graph(g(¢ ya)) = (@, =7) ={(x—a,0+7) : (wx—a)+ & |x—al, —y=a}.
By letting x —a =y, oo + Y = B this set can be written also as
graph(ge ya)) — (@ =) = {0 B) : wy) +&yll, =B} (5)

It is obvious that this set is a cone with vertex at the origin. Indeed if (y,8) €
graph(g(w,é,y,a)) - ((1, *’}/) then
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(w,y) +& 1yl = B-

Hence, for any A > 0 we have:

A{w,y) + A& [Iyll, = 2B,
or
(w,Ay) + & 12yl = AB,

which implies that (Ay, A 3) also belongs to graph(g(,,.¢ .4)) — (@, —7) and therefore
this set is a cone with vertex at the origin.

Now we show the second part of the proof. Let o be a real number. Then the
sublevel set of the function g(,, ¢ ;. given by (4) is:

So = {x eR" :g(w,cg.y,a)(x) = <W,)C—(1> +§ ||)C—(1||1 —r< OC}.

By using a definition of /;-norm, this set can equivalently be written as

Se={xeR": (Wx—a)—y< a},

where
n

(w,x—a) = 2 (wi+ Esgn(x; — a;)) (xi — a;).
i=1
This means that the sublevel set S, is an intersection of utmost 2" half spaces and
therefore is a convex polyhedron. The proof is completed. O

Definition 2. A function g : R” — R is called polyhedral conic if its graph is a cone
and all its sublevel sets
Se={xeR":g(x) < a},

for o0 € R, are polyhedrons.

It follows from Lemma 1 that each function of the form (4) is a PCF.

4.2 Conical Supporting Surfaces in Nonsmooth Optimization

By using the PCFs, Azimov and Gasimov introduced the notion of the weak subdif-
ferential, which is a generalization of the classic subdifferential [6, 7]. With the help
of this notion, a collection of zero duality gap conditions for a wide class of noncon-
vex and nonsmooth optimization problems was derived. In this subsection we give
some important properties of the weak subdifferentials and study some relationships
between the weak subdifferentials and the directional derivatives in the nonconvex
case. We recall the concept of the supporting cones and the weak subdifferentials
(see [6, 7, 21, 23, 26]).

Let (X,]|-|x) be a real normed space, and let X* be the topological dual of X. Let
(x*,c) € X* x R, where R is the set of nonnegative real numbers. We define the
conic surface C(X;x*,¢) C X with vertex at ¥ € X as follows:
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Cxx",c)={xeX: {x",x—X)—cl|lx—%| =0}. (6)

Then the corresponding upper- and lower-conic halfspaces are, respectively,
defined as

CH(®x'e)={xeX: (" ,x—%) —c|x—x| <0} (7
and

C (xx*c)={xeX: (x",x—%) —c|x—%| >0} (3)
Note that if ¢ = 0, the conic surface C(X;x*,c) becomes a hyperplane. Hence the

supporting cone defined below is a simple generalization of the supporting hyper-
plane.

Definition 3. C(x;x*,c) is called the supporting cone to the set S C X if § C
CT(X;x*,¢) (or § C C™ (X;x*,¢)) and cl(S) NC(x;x*,c) # 0.

It is clear that the lower-conic halfspace C~ (¥;x*,c) is a convex cone with vertex
atx.

Definition 4. Let F' : X — R be a single-valued function, and let ¥ € X be the given
point where F(X) is finite. A pair (x*,c) € X* x Ry is called the weak subgradient
of F atX if

F(x)—F(x) > (x",x—Xx) —c|lx—%| forall x € X. )

The set
"F(x)={(x",c) eX*" xR} : F(x) = F(x) > (x",x—X) —c||lx—x]|| forall x € X}

of all weak subgradients of F' at X is called the weak subdifferential of F at X.
If 0"F(X) # 0, then F is called weakly subdifferentiable at X. If (9) is satisfied
only for x € S, where S C X, then we say that F is weakly subdifferentiable at x
on S. The weak subdifferential of F at X on S will be denoted by d¢' F (X).

Remark 4. It is obvious that, when F is subdifferentiable at X (in the classical sense),
then F is also weakly subdifferentiable at X; that is, if x* € dF (X), then by definition
(x*,c) € dVF (%) for every ¢ > 0. It follows from Definition 4 that the pair (x*,c) €
X* xRy is a weak subgradient of F' at X € X if there is a continuous (superlinear)
concave function

8(x) = (&, x=X) + F(x) —c|lx—x| (10)
such that g(x) < F(x) for all x € X and g(X) = F(X). The set hypo(g) = {(x,a) €
X xR :g(x) > o} is a closed convex cone in X x R with vertex at (%, F(¥)). Indeed,

hypo(g) — (%, F (X))
= {(x—F 0 —F®)EXxR: (', x—T) —c|x—3| > a— F(X)}
={(u,B) € X xR: (x",u) —clul| > B}.

Thus, it follows from (9) and (10) that

graph(g) = {(x, ) € X xR: g(x) = o}
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is a conic surface which is a supporting cone to

epi(F)={(x,a) e X xR:F(x) <o}
at the point (¥, F (X)) in the sense that

epi (F) C epi(g), and cl(epi (F)) Ngraph(g) # 0.

For presentation of the main theorem of this section, we use the following stan-
dard assumption.

Assumption 1 Let

o function F : R" — R be directionally differentiable at x € R",

e the directional derivative F'(X) of F at X be bounded from below on some neigh-
borhood of Ogn, and
e the following apply:

F(x)—F(x)>F'(x)(x—X) forall xcR". (11)
Theorem 1. Let Assumption 1 be satisfied for function F : R" — R. Then F is weakly
subdifferentiable at x € R" and
F'(%)(h) = sup{(x*,h) —c||h| : (x*,c) € "F(X)} forallheR", (12)
where F'(x)(h) denotes the directional derivative of F at X in the direction h.

The following theorem gives necessary and sufficient optimality conditions in
the nonconvex case. First we give a definition of the starshaped set.

Definition 5. A nonempty subset S of a real linear space is called starshaped with
respect to some X € S if for all x € S,

Ax+(1-A)xeS VA€]0,1]. (13)
Theorem 2. Let S be a nonempty subset of R" starshaped with respect to X € S, and

let F : R" — R be a given function. Suppose that F has a directional derivative at X
in every direction x — X with arbitrary x € S and that

F(x)—F(x)>F'(x)(x—Xx) forallx€S.

(a) Ifx € S is a minimal point of F on S, then
sup{{(x*,x —%) —c|lx—x|| : (x",c) € IF(X)} >0 forall x€S. (14)

(b) If for some X € S the inequality (14) is satisfied, then X is a minimal point of F
onS.
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4.3 PCF Algorithm

We state now our algorithm for solving the separation problem. Since the algorithm
is based on PCFs we will call it PCF Algorithm [22].

We consider the problem of separation of two nonempty finite point sets A and
B in R”. An iterative algorithm generating a nonlinear separating function by using
PCFs and therefore called a PCF algorithm is developed. This algorithm is based
on solutions of linear programming subproblems. A solution of these subproblems
at each iteration results in the PCF which separates a certain part of the set A from
the whole set B. By excluding these points from A, algorithm passes to the next
iteration and so on. The resulting separation function is defined as a point-wise
minimum of all the functions generated. We show that the algorithm terminates in
a finite number of iterations and the maximum number of iterations required for
separating two arbitrary finite point sets does not exceed the number of elements in
one of these sets. An illustrative example has been constructed and application on
classification problems has been implemented.

Let A and B be two given sets in R":
A={d eR":icl},B={b cR":jeJ}

where I = {1,...,m}, J ={1,...,p}. The algorithm presented below generates at
each iteration a function of the form (4) by calculating the parameters w,& and y as
a solution of a certain linear programming (LP) subproblem. These parameters are
used to define a PCF whose sublevel set divides the whole space into two parts such
that all the points of B remain “outside,” and as many points of A as possible remain
“inside” of this sublevel set. By excluding these latter points from A, algorithm
passes to the next iteration and generates new separating function for this modified
set. The process continues until an empty set is obtained. The resulting separating
function is defined as a point-wise minimum of all functions so generated. We will
prove that the algorithm terminates in finite steps.

Algorithm 1. PCFs classification algorithm

Initialization Step: Set I, :=1,A; :==A,and [ := 1.

Step 1: Let a' be an arbitrary point of A;. Solve subproblem P;:

(B)  min (W) (15)

m
subject to
<w,atal>+§’a’;a’l—y+1§yi, Viel, (16)
—<w,b-f—a’>—§Hb-/’—a"’1+y+1go, vjield, 17)

y=1-.ym) ERE,weR,EER,y> 1. (18)
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Let w!,E!, %,y be a solution of (F;). Set

81(X) 1= 8t &1 o a1 (%) (19)
and go to Step 2.

Step 2: Set I,y :={icl:g(d)+1>0}A, :={d cAj:ich },l:=1+1.
If A; # 0 then go to Step 1.

Step 3: Define the function g(x) (separating the sets A and B ) as
glx) = rnlin gi(x) (20)
and stop.

At each iteration [, the algorithm arbitrarily chooses some element ¢’ from the
set A; and calculates parameters (w!, £/, 7) by solving a linear subproblem (P). All
these parameters are then used in (19) for defining the function g;. It follows from
Lemma 1 that the graph of the function g; consisting of points (x,z) € R” x R with
z = gi(x) is a cone with vertex at (a’, —7'). A constraint y > 1 stated in constraint
set (18) ensures that the vertex of this cone has to be placed “under” the hyperplane
z=0, that is in the half-space R” x (0, —oe). The constraint set (16) ensures that
the point @/ and all the points of the set A’ which are “close” to a’ have to be in
the polyhedron corresponding to the sublevel set {x : g;(x) < —1}. The closeness
of these points of A; to a is defined by the optimal value of the objective function
(15)in (P,). That is the sublevel set {x : g;(x) < —1} will include as much elements
of A; (besides of a) as the value of this objective function is close to zero. Thus
the objective function (15) and the constraint sets (16) and (18) ensure that all the
elements of A; will be enclosed to the sublevel set {x : g;(x) < —1} of g if this
minimum is zero. On the other hand the constraint set (17) ensures that all the ele-
ments of the set B have to be remained outside of the sublevel set {x : g;(x) < 1}
at each iteration. Note that such a “separability” at each iteration becomes possible
due to the characteristics of PCFs described in Lemma 1. We will call the method
of separation described in the algorithm the PCF separation.

The following theorem proves that the presented algorithm terminates in a finite
number of iterations and the resulting function g defined by (20) separates arbitrary
disjoint sets A and B consisting of finite number of elements in R".

Theorem 3. PCF Algorithm terminates in a finite number of iterations and the func-
tion g : R" — R defined by (20) strictly separates the sets A and B in the sense that

gla) <0,VacA, 21
g(b) >0, Vb eB. (22)

Proof. First show that the problem (F) has a solution(w;, &, %) € R" X Ry x [1,)
such that the corresponding function g; separates at least one element, (say a;) of A;
and the whole set B. By taking w; = 0,7 = 1 we obtain a function g;(x) = &||x —
a'||; — 1, for which we have g;(a') = —1 < 0 and g;(b’/) = &||b/ —d'||; —1,Vj € J.



14 A.M. Bagirov et al.

Since b/ € B we have ||/ —a'||; > 0,V € J. Therefore when £ is sufficiently large,
the term &||b/ — d'||; can be made large enough. Then for £ sufficiently large, we
have g;(b’) > 0,V € J which means that the function g;(x) = &|x —a!||; — 1 sep-
arates a' and the set B in the sense that g;(a;) < 0 and g;(b) >0, Vb € B.

Let A; be the subset of A; consisting of elements which are separated from B by
the function g; formed using the solution of the problem (P,) at the /th iteration, and
let A;; | be the subset of A; consisting of the elements which could not be separated
from B by g;. If this set is not empty the algorithm will be continued. Since the
set A has a finite number of elements, the process will be terminated after the finite
number of iterations. Thus we will have a partition Aj,A»,...,A; of the set A and
functions g1, g2, . ..,gr Wwith properties:

A=J4,
gi(a) <0,Ya € A,
g(b)>0,¥heB,i=1,...,L.

Then the function g(x) = mlin{gl(x)} will obviously have the properties (21)

and (22). Indeed, since for every a € A there exists [ € {1,2,...,L} such thata € Ay,
we have g;(a) < 0 and therefore g(a) = rnlin{gl (@)} < 0. On the other hand, since

gi(b)>0foralll € {1,2,...,L}, b € B, we have g(b) > 0. O

Corollary 1. Let A and B be two arbitrary sets consisting of finite number of points
in R". Then

1. there exists a partition of A : A = \JA; such that, coA; N\ B = 0 and functions
gi(x) = (wi,x)+& x|l =y, for L =1,2,..., with g;(a) < 0,Va € coA;,g;(b)>0,
Vb € B, and

2. the function g(x) = mlingl (x) separates A and B in the sense of (21) and (22).

Here co stands for convex hull of a set.

Proof. 1. The existence of a partition A : A = |JA; and functions g;(x) with a
property
gi(a) <0,YacA;, g(b)>0,VbeB,

follows from the proof of Theorem 3. Let C; = {x € R" : g;(x) < 0}. Then
A CC,BC {xeR": g/(x) >0}, and CNB = 0 by construction. By Lemma 1,
C; is a convex polyhedron. Since it contains A;, it contains also coA;—the
smallest convex set containing A;. Thus, (coA;) NB = 0.

2. Is obvious. O

Example 1. Consider two finite point sets A and B in R? shown in Fig. 1. Note that
the set A is taken to consist of two isolated parts. The coordinates x; and x, of the
points described in this figure are given in Table 1.
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Fig. 1 Two finite point sets A and B in R?

Table 1 Coordinates of data points

A1 2 3 4 5 6 7 8 9 10 11 12
x1—2 -2 -2 -2 -05-0505 05 2 2 2 2
xn05-052 -2 2 -2 2 -2 05 -2-052

13 14 15 16 17 18 19 20 21 22 23 24
12 12 12 12 135 135145145 16 16 16 16
2 -205-05 2 -2 2 -2-0505 2 -2

B'1 2 3 4 5 6 7 8 9 10 11 12
x 8 6 20 6 15 20 1 -1 -6 20 —6 —6
xx—-6 -1 6 -6 6 1 6 6 1 -6 -1 —6

13 14 15 16 17 18 19 20 21 22 23 24
8 1320 6 15 13 8 -1 -6 6 8 1
-1 6 -1 1 -6 -6 1 -6 6 6 6 —6

This example has been solved by PCF algorithm. The geometrical interpretations
for separation function obtained by PCF algorithm are presented in Fig. 2.

PCF Algorithm is applied for constructing a separation function. GAMS/CPLEX
solver is used for solving the LP subproblems. Algorithm has been terminated in
seven iterations. The subsets A;,/ = 1,...,7 partitioning the set A and the corre-
sponding PCFs g; separating these sets from B at each iteration are presented below:

g1(x) = 0.06(x; — 14.5) +0.11(x2 —2) +0.34(|x; — 14.5 + [x2 —2[) — 1,

g2(x) = —0.06(x; +0.5) +0.11(x —2) + 0.34(|x; + 0.5+ |x2 — 2|) — 1,

g3(x) = —0.05(x; —2) +0.23(x; — 0.5) + 0.46(|x; — 2| + |x2 — 0.5]) — 1,

g4(x) = 0.11(x; — 16) +0.02(x2 +0.5) +0.34(Jx; — 16| + |x2 +0.5]) — 1,

g5(x) = —0.02(x; —0.5) — 0.11(x2 +2) +0.34(Jx; —0.5| + |2 +2]) — 1,

g6(x) = —0.11(x; +2) — 0.06(x2 +0.5) + 0.34(|x; +2| + |x2 +0.5]) — 1,
(x) =

g7(x) = —0.07(x; — 12) —0.26(x2 +2) +0.53(|x; — 12| + [x2 +2[) — 1.7.
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Ai(x) = {(16,2),(14.5,2),(16,0.5),(12,2),(13.5,2),(14.5,-2)},
Ay(x) = {(2,2),(0.5,2),(—2,2),(—0.5,2),(—2,0.5),(—0.5,-2)},
As(x) = {(2,0.5),(2,-2),(2,-0.5)},

Aq(x) = {(16,-2),(16,—-0.5),(12,-0.5)},

As(x) = {(0.5,-2),(-2,-2)},

Ag(x) = {(-2,-0.5)},

A;(x) = {(12,0.5),(12,-2),(13.5,-2)}.

5 10 45

20

Fig. 2 Two-dimensional and three-dimensional views of polyhedral functions
obtained by the first way
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5 Incremental Max-Min Separability

In this section we describe an incremental algorithm for finding piecewise linear
boundaries between finite sets. We assume that we are given a data set A with g
classes: Ay,...,A,. At each iteration of the algorithm we solve problem (3) with a
preset number of hyperplanes to find a piecewise linear boundary between a given
class and the rest of the data set. This is done for all classes using the one vs all
approach. After computing piecewise linear boundaries for all classes we define data
points which can be easily classified using the piecewise linear boundaries from this
iteration. Then all these points are removed before the next iteration.

The algorithm stops when there are no sets to separate (the remaining points, if
any, belong to only one set). For each set the improvement in classification accuracy
and the objective function value compared to the previous iteration is used as a
stopping criterion for the final piecewise linear boundary between this set and the
rest of the data set.

For the sake of simplicity we split the incremental algorithm into two parts:
Algorithm 2 (outer) and Algorithm 3 (inner). Algorithm 2 contains the main steps
of the method. These steps are the initialization of starting points, the number of
hyperplanes, and the update of the set of undetermined points. Algorithm 3 is called
at each iteration of Algorithm 2. It computes the piecewise linear boundaries for
a given set; refines the set of undetermined points; updates starting points and the
number of hyperplanes for the next iteration of Algorithm 2.

5.1 Algorithm

First, we describe the outer algorithm. Let €y > 0 be a tolerance.

Algorithm 2. An incremental algorithm.
1: (Initialization) Set A; =A, Q}t =0, u=1,...,q. Select any starting point
(x,y) such that x € R",y € R!, and set

XM=y Y =yVYu=1,...,q.
Set
cl .= {1,...,9}, liu:= {1},]11“ ={1},ry = l,s{u =1 u=1,...,q,
the number of hyperplanes for class u: /j, := 1 and iteration counter k := 1.

2: (Stopping criterion) If |C¥| < 1 then stop. Otherwise go to Step 3.

3. (Computation of piecewise linear functions) For each u € CK apply Algorithm 3.
This algorithm generates a piecewise linear boundary (X***¥,.), the set of
indices Iy y, Jf Tl e Ik 1,4, @ number of hyperplanes /i, a starting

point (X*1# ¥\ ,) € RHDhtiu for class u, the set AX*! containing “und-

etermined” points, and the set Qﬁ of easily separated points from class u.
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4: (Refinement of set C*) Refine the set C* as follows:
CHl = {uech: |AH| > golA, ).
Set k:=k+1 and go to Step 2.

We will now present the inner algorithm for separating class A,, u € {1,...,4}
from the rest of the data set. At each iteration k of Algorithm 2 we get the subset
A’,j C A, of the set u € CK which contains points from this class which are not easily
separated using piecewise linear functions from previous iterations. Let

be a set of all points removed from the set A, during the first k > 0 iterations. We
denote

—k —k
= U (a\2), ai= U (a\T)).
t=1,....q t=1,....q,t7#u
Algorithm 3 finds a piecewise linear function separating the sets A¥ and Ai . Let
€ > 0,8 > 0,& > 0 be given tolerances and o > 1 be a given number.

Algorithm 3. Computation of piecewise linear functions.
Input: Starting points (X**¥;,) € R+ Dk the set of indices Iy, J&

i le Iku’
and the number of hyperplanes I, at iteration k of Algorithm 2.

Output: A piecewise linear boundary (X s Yiur) € R Dl the set of indices
L1 us Jl.kH’”, i € Ii41,4, a number of hyperplanes [y ,, a starting point
(X514 Y1) € RUFDiia for class u, a set of undetermined points A,

and a set Q’;*l of easily separated points from class u.

1: (Finding a piecewise linear function) Solve problem (3) over the set D, starting
from the point (X**,Y},) € RO+Dh Let (X¥* ¥;,,) be the solution to this
problem, f, be the corresponding objective function value, and f,, and f3,
be the values of functions f; and f5, respectively. Let Ey, be the error rate for
separating the sets A and fﬁk at iteration k over the set A, that is

~ HaeAy: gi(a) > 0}U{b €Ay : gj(b) <O}
- A ’

Eku

where
k _ : ij*
a) = max min ({(x"*,a) —y; i) .
(Pu( ) i€l jEJ{“‘ (< ) > ylj*)
2: (The first stopping criterion) If max{f};,, f>,} < & then set AT =g okl =

A, \@ﬁ and stop. (X" ¥;,..) is the piecewise linear boundary for set A,,.
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3: (The second stopping criterion) If k > 2 and f;"_, , — fi,, < & then set AkFl =@,
QK1 =0, and stop. (X¥*,¥},.) where X = Xk=1u* . = Vi | 4 is the
piecewise linear boundary for the set A,,.

4: (The third stopping criterion) If Ey, < & then set Aﬁ“ =0, Qﬁ“ =Ay \Qﬁ,
and stop. (X*** ¥, ) is the piecewise linear boundary for the set A,,.

5: (Refinement of sets of undetermined points) Compute

fku,min = mll} (Pzi{ (a)
S

u

and the following set of easily classified points by the function ¢F:

Q§+l = {a € Aﬁ : (Ptf(a) < Gfku,min} .
Refine the set of undetermined points from the set A, as follows:

A= a0l

6: (Adding new hyperplanes)

L. If ff',, > &1 then set
: i k+lu gk i
s;c+l,uzs;cu+17‘]i _JiuU{S;CJrl,M}
forall i € I,,. Set
X = Ty = Vij-18 € Dy ] = Sy y e

2. If f;,, > € then set

- o k+1u __ yku
rk-‘rl,u = Tku + I?I]H‘lau - Iku U {rk+1’u}’Jrk+l,u - Jrku'
Set
ij i—1,j% _ i ; ku
xJ:x I 7yij7yi717j7*7lirk+17u7jGJrku.

7: (New starting point) Set

. . k+1
Xk_H’u = (Xku*axija [AS ]k-‘rl,ua J€ J'+ 1M)7

l

) ok,
Yirtu = V> Vij» 1 € v JEI ),

k+1,
hitu= 2, Vit
i€lkt 10

and go to Step 1.
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5.2 Explanations to the Algorithms

The following explains Algorithm 2 in more detail. In Step 1 we initialize the
starting points, the number of hyperplanes for each class, and the collection C!
of sets to be separated. Step 2 is the stopping criterion verifying that the collec-
tion C* contains at least two sets to separate. In the third step Algorithm 3 is called
and returns piecewise linear boundaries for each set, the subsets of points not yet
separated by these piecewise linear boundaries, and updated starting points for the
next iteration of Algorithm 2. In Step 4 we refine the set C* by removing sets fully
separated using piecewise linear boundaries from previous and current iterations.

The following explanations clarify Algorithm 3. In Step 1 we compute a piece-
wise linear function with a preselected number of hyperplanes using the starting
point provided by Algorithm 2. It also computes the separation error rate between
a given class u and the rest of the data set. The algorithm contains three stopping
criteria which are given in Steps 2—4.

e The algorithm terminates if both values f},,, f5, for class u is less than a given
tolerance £ > 0. The last piecewise linear function for this class is accepted as a
boundary between this class and the rest of the data set (Step 2).

e If k > 2 and the difference between values of the error function (for class u) in
two successive iterations is less than a given tolerance & > 0 then the algorithm
terminates. The piecewise linear function from the previous iteration is accepted
as the boundary between this class and the rest of the data set (Step 3).

o Finally, if the error rate is less than a threshold €3 > 0 then the algorithm termi-
nates and the piecewise linear function from the last iteration is accepted as the
boundary between this class and the rest of the data set (Step 4).

If none of these stopping criteria is met, then in Step 5 we refine the set of und-
etermined points by removing points easily separated using the piecewise linear
functions from the current iteration. In Step 6, depending on the values of the error
function on both sets, we may add new hyperplanes. Finally in Step 7 we update the
starting point and the number of hyperplanes.

As an illustration Fig.3 shows the result of the first iteration of Algorithm 2
for a data set with three classes A, Ap, and A3. At this iteration we compute one
hyperplane for each set. The data set in its original form is illustrated in Fig. 3a.
We select any starting point in Step 1 of Algorithm 2 and then call Algorithm 3 in
Step 3. Algorithm 3 computes one linear function for each class using one vs all
strategy. A hyperplane given in Fig. 3b presents the linear function separating the
class A; from the rest of the data set with the minimum error function value. This
hyperplane is computed in Step 1 of Algorithm 3. Then in Step 5 of Algorithm 3
we compute a hyperplane (with dashed lines in Fig. 3c, here ¢ = 1) by translating
the best hyperplane so that beyond this dashed line only points from the class A lie.
We remove all points from the class A; which lie beyond this line before the next ite-
ration (Step 5 of Algorithm 3) and do not consider them in the following iterations.
These data points can be easily classified using linear separation. We repeat the
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Fig. 3 The first iteration of Algorithm 2 for three sets Ay, A, and A3

same computation for other classes A, and A3 and remove all data points which can
be classified using linear functions (see Fig. 3d). Then we compute all data points
which lie in the grey area in Fig. 3e. These points cannot be determined by linear
separators and we use only these points to compute piecewise linear boundaries in
the next iteration of Algorithm 2.

6 The HPCAMS Algorithm

Algorithm 2 allows one to find piecewise linear boundaries between pattern classes.
At each iteration the function (2) is minimized. The complexity of the computation
of this function depends on the number of data points. However, in large data sets
many data points lie far away from other classes. Therefore they are not relevant
to the computation of the boundary between their class and other classes. In this
section we propose Algorithm 4 where one PCF is used for each class in order to
eliminate those irrelevant data points before applying Algorithm 2. First, we will
explain each step of Algorithm 4 and then formulate it at the end of this section.

If we fix the point c, then the finding one PCF is a linear programming problem.
Furthermore, if this point is not fixed, then the PCF may eliminate points which are
close to other classes. It is preferable to select a data point which is far away from
the boundary of its associated class as c. In order to find such a point we propose to
use hyperboxes approximating classes. We select ¢ lying inside only one hyperbox
when possible (Step 1) and then we solve the problem (15)—(18). As a result we find
a PCF approximating the interior of the classes (Step 2). Then we eliminate those
points from the data set and apply Algorithm 2 to the remaining points (Step 3).

In the sequel we explain each step of Algorithm 4 in more detail.
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6.1 Computation of Vertices of Polyhedral Conic Sets

In Step 1 of Algorithm 4 we approximate each class by one hyperbox.
Assume that we are given data set A with g > 2 classes Ay, ..., A,. For each class
A; we compute:

l.
]

_ . ni . .
=mina; ‘=maxa;, j=1,...,n,i=1,...
acA; ] ﬂj acA; ]2 J ’ IAd] ’ q

and define vectors &' = (@l,...,a), Bi= (Bf,...,ﬁi), i=1,...,q which in turn

n
define the following hyperboxes in n-dimensional space R” fori =1,...,q:

HA) =o', B = {xeRr": ';ijgﬁ_]’:,jzl,...,n}.

All points from the i-th class belong to the hyperbox H(A;).

To ensure that the first components of the vertices of the polyhedral conic sets
lie inside the classes we take a sufficiently small 7 > 0 and consider the following
extended hyperbox for each class A;, i=1,...,q:

HA) =o' ,p] = {xeR": af<x; <P}, j=1,....,n},
where for j=1,...,n
= (B ). B =Bl n(Bj o)
The hyperbox H(A;) can be described as
H(A;) ={xeR": y;(x) <0},
where the piecewise linear function y;(x) is defined as follows:
i(x) = max {&} —xj,x; — B}, j=1,...,n}.

In order to find the vertex for the i-th polyhedral conic set we define the set

R; = {aEAiI min y/k(a) >0}

g, kFi
This set contains all points from the i-th class which are outside hyperboxes of
all other classes. First we consider the case when the set R; # 0. Figures 4 and 5
illustrate this case. We compute

01 = minyi(a)

acR;

and choose ¢! as follows:

¢ €Ri, yi(c") = 0.
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Fig. 4 Identification of the vertices of the polyhedral conic sets for the two classes
A| and A; using hyperboxes

Fig. 5 Identification of the vertices of the polyhedral conic sets for the three classes
A1, Ay, and A3 using hyperboxes

If R; = 0 then for any a € A;

<0.
i Wi(a) <

In this case we compute

)» =max min a
Q acA; k=1,....q, k#iv/k( )

and choose ¢' as follows:

i : i A
c' €A min c)=0s.
" k=1,..q, k;éiwk( )=0
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6.2 Identification of Boundary Points

To identify boundary points{ we solve the problem (15)—(18). After solving it we find
the values for the vector w' and scalars &;, ¥ which define PCFs g; for each class
i=1,...,q. Then for a given class i € {1,...,q} we compute the following:

= min  ming;(h).
1 j:l,-.--,fl-,./‘#i bEA_,’gl( )

Consider the level sets of the function g;, i=1,...,q:
Si(8)={xeR": gi(x) <6}, 6 eR.

If §; > 0 then the set S i(0) does not contain points from any other classes, it only con-
tains points from the i-th class. If §; < 0 then the set S;(0) also contains points from
other classes. Therefore we replace §; by Sl- = min{0, 51}. To ensure that boundary
points are not removed, 5 is again replaced by the following number:

§=56-0(n-5)

where 0 > 0 is a sufficiently small number. For each class i we can define the fol-
lowing sets:

Di:{GEAiZg,'(Cl)S&},l'Zl,...7q. 23)

The set D; approximates the interior of the i-th class and it does not contain points
from other classes. We then define the set of boundary points as follows:

B,':A[\Di,izl,...,q. (24)

Let 0 € (0,1) be a sufficiently small number. For each class i = 1,...,q we
introduce the following number:

ri = |Bil/|Ai]
and then we consider the set
P={i=1,...,q: r,>0}. (25)

If P =0 then classes A;, i = 1,...,q can be approximated by their corresponding
sets D; with the sufficiently small error 6. Otherwise we can apply Algorithm 2 over
sets B;, i € P to find piecewise linear boundaries between classes.

6.3 Outline of the Algorithm

In summary an algorithm for finding piecewise linear boundaries between classes
Aj, i=1,...,q can be formulated as follows:
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Algorithm 4. Computation of piecewise linear boundaries.

1: (Finding a vertex of a polyhedral conic set) Approximate eachclassi=1,...,q
with the hyperbox H(A;) and compute the point ¢’ of the corresponding poly-
hedral conic set (see Sect. 6.1).

2: (Identifying boundary points) Compute polyhedral conic sets by solving the
problem (15)—(18) and using the points ci=1,... ,q. Find the sets D;, i =
1,...,q using (23) and the sets B;, i = 1,...,q of boundary points using (24)
(see Sect. 6.2). Compute the set P using (25). If |P| < 1 then stop. Otherwise go
to Step 3.

3: (Finding piecewise linear boundaries) Apply Algorithm 2 over sets B;, i € P to
find piecewise linear boundaries between classes (see Sect. 5).

Algorithm 4 is illustrated in Fig. 6.

We call this algorithm the HPCAMS algorithm. This algorithm generates one
PCF g; foreachclassi = 1,...,q. It also generates piecewise linear functions ¢; for
classes i € P when |P| > 1. If i & P then we set ¢;(x) = +oo. If |P| < 1 then we set
@i(x) = +oo foralli = 1,...,q. Then the function ¥ separating the i-th class from
the rest of the data set can be computed as follows:

Fi(x) = min{gi(x), @i(x)}, i=1,...,q. (26)

6.4 Implementation of the Algorithm

In this subsection we describe the conditions for the implementation of Algorithm 4.
As mentioned earlier this algorithm consists of two stages. In the first stage we
compute PCFs approximating classes (Steps 1 and 2). There are three tolerances in
this stage, in Step 1 7 >0 andin Step2 6 >0and o > 0. Wetake n =0.1, 6 =0.05,
and o = 0.01.

In the second stage we apply Algorithm 2 to find piecewise linear boundaries
(Step 3). This algorithm contains one tolerance &y > 0. We choose & = 0.01. The
following conditions have been chosen for the implementation of Algorithm 3.

1. The values of tolerances € > 0,& > 0, and & > 0 are:
€ =0.005, & = f;/100, &3 = 0.001,

where f7 is the optimal value of the objective function for linear separation.

2. We restrict the number of hyperplanes to 10.

3. In Step 1 of Algorithm 3 we use the discrete gradient method of [8, 9] as modi-
fied in [11] to solve minimization problem (3).

We implemented the algorithm in Fortran 95 and compiled it using the Lahey
Fortran compiler on a 1.83 GHz Intel Pentium IV CPU with 1 GB of RAM running
Windows XP.
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Fig. 6 Algorithm 4 for three sets A, Ay, and A3

6.5 Classification Rules

To compute piecewise linear boundaries between classes we use the one vs all strat-
egy, that is, for each class i we consider this class as one class and the rest of the
data set as a second class. Then we apply Algorithm 4 to separate the i-th class from
the rest of the data set. This means that for each class i Algorithm 4 generates the
separating function '¥; defined in (26). Then we can apply the following classifi-
cation rule to classify new data points (observations). If the new point v belongs
to the set D; then we classify it to the i-th class. If this point does not belong
to any of the sets D;, i = 1,...,q then we compute the values ¥;(v),..., ¥ (v)
and classify this point to the class i associated with the minimum function value:
i =argmin{¥|(v),...,¥% ()}
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7 Computational Results

We tested the HPCAMS algorithm on medium sized and large-scale real-world data
sets readily available from the UCI machine learning repository [5]. The selected
data sets contain either continuous or integer attributes and have no missing values.
Table 2 contains a brief description of the characteristics of the data sets. This table
contains the number of data points in training and test sets. The class attribute is
included in the number of attributes in this table.

Table 2 Brief description of data sets

Data sets (Train, test) No. of No. of
attributes classes
Shuttle control (SH) (43,500, 14,500) 10 7

Letter recognition (LET) (15,000, 5,000) 17 26
Landsat satellite
image (LSI) (4,435, 2,000) 37 6
Pen-based recognition of
handwritten digits (PD) (7,494, 3,498) 17 10
Page blocks (PB) (4,000, 1,473) 11 5
Optical recognition of
handwritten digits (OD) (3,823, 1,797) 65 10

Spambase (SB) (3,682, 919) 58 2
Abalone (AB) (3,133, 1,044) 9 3
DNA (2,000, 1,186) 180 3

Isolet (ISO) (6,238,1,559) 618 26
Phoneme_CR (PHON) (4,322, 1,082) 6 2
Texture_CR (TEXT) (4,400, 1,100) 41 11

In our experiments we used some classifiers from WEKA (Waikato Environment
for Knowledge Analysis) for a comparison. WEKA is a popular machine learn-
ing suite for data mining tasks written in Java and developed at the University
of Waikato, New Zealand (see for details [42]). We chose representatives of each
type of classifier from WEKA: Naive Bayes (with kernel) (NB kernel), Logistic,
Multi-Layer Perceptron (MLP), Linear LIBSVM (LIBSVM (LIN)), support vec-
tor machines classifier SMO with normalized polynomial kernel (SMO (NPOL)),
SMO (PUK), a decision tree classifier J48 (which is an implementation of the C4.5
algorithm), and a rule-based classifier PART. The classifiers chosen produced an
overall better accuracy than other classifiers. We also include the original incremen-
tal max—min separability algorithm (CIMMS) from Sect. 5 in our experiments.

We apply all algorithms from WEKA with the default parameter values. We put
the following limits: 3 h of CPU time (for training and testing) and 1 GB of memory
usage. In the tables a dash line shows that an algorithm exceeded one of these limits.
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Tables 3 and 4 contain test set accuracy on different data sets using different
classifiers. One can see that in most of the data sets (except Optical recognition of
handwritten digits, Phoneme_CR, Landsat satellite image, Isolet and Page blocks)
the classification accuracy achieved over the test set by the HPCAMS algorithm is
either the best or comparable with the best accuracy.

Table 3 Test set accuracy for different classifiers

Data set AB |DNA| LSI |LET | OD | PD
Classifier
NB(kernel) [57.85|93.34(82.10{74.12|90.32|84.13
Logistic 64.27|88.36(83.75|77.40(92.21|92.85
MLP 63.51|93.68(88.50|83.20(96.55|89.85
LIBSVM (LIN)|60.73{93.09|85.05(82.40|96.55|95.00
SMO (NPOL) [60.25(95.36(79.60(82.34|96.66|96.86
SMO (PUK) (64.18{57.93|91.45| - [96.61{97.88
J48 60.15192.50{85.35|87.70(85.75|92.05
PART 57.95(91.06|85.25|87.32189.54|93.65
CIMMS 65.80193.42(88.15|91.90(94.27|96.63
HPCAMS |66.09(94.18|87.15{91.04|93.10{96.57

Table 4 Test set accuracy for different classifiers (cont.)
Data set PHON| SH |TEXT| ISO | PB | SB

Classifier
NB(kernel) | 76.53 [98.32|81.00| - |88.39(76.17
Logistic 74.58 196.83199.64 | — (91.72|92.06
MLP 81.52199.75199.91| - (92.80{92.06
LIBSVM (LIN)| 77.54 | - |99.1896.02|87.03|90.97
SMO (NPOL) | 78.74 {96.81|97.27| - |89.48|92.60
SMO (PUK) |83.27 (99.50{99.55| - |88.53|93.04
J48 85.67 199.95/93.91 |83.45(93.55|92.93

PART 82.72 199.98(93.8282.81(92.46(91.40
CIMMS 81.05 {99.84{99.82195.19|87.10(93.80
HPCAMS | 80.13 |99.86{99.36 |193.52|89.55(93.47

Table 5 presents pairwise comparison of the HPCAMS classifier with other clas-
sifiers using test set accuracy. The table contains the number of data sets and their
proportion where the HPCAMS algorithm achieved better testing accuracy. These
results demonstrate that the HPCAMS algorithm performs well on test set in com-
parison with other classifiers. Comparison with the CIMMS algorithm shows that
on some data sets boundary between classes is highly nonlinear and application of
PCFs may remove some points from the boundary. In such cases CIMMS algorithm
achieves better accuracy than the HPCAMS algorithm. However, in most cases the
difference in accuracy is less than 1 %.
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Table 4 presents training and testing time for the HPCAMS algorithm and train-
ing time for the CIMMS algorithm. Results demonstrate that the use of PCFs allows
us to significantly reduce training time on data sets with a large number of data
points. However, the HPCAMS algorithm still requires a longer training time than
most of the other tested classifiers. The proposed algorithm is very fast in testing
phase for all data sets. Results show that testing of the new algorithm is similar to
that of Neural Network classifier MLP, Logistic classifier, and CIMMS. Decision
tree and rule-based classifiers use more testing time than the proposed algorithm.
SVM algorithms use 1-2 order more testing time than the HPCAMS algorithm.

Table 5 Pairwise comparison of the HPCAMS classifier with others using testing
accuracy

Classifier  |[No. of data sets|Proportion (%)
NB(kernel) 12 100

Logistic 10 83.33
MLP 7 58.33
LIBSVM(LIN) 10 83.33
SMO (NPOL) 9 75.00
SMO (PUK) 7 58.33
J48 9 75.00
PART 8 75.00
CIMMS 4 33.33

Table 6 Training and testing time (in seconds)

Data set|Training time| Training time|Testing time
CIMMS HPCAMS | HPCAMS

AB 27.22 37.03 0.00
DNA 32.06 42.27 0.03
LSI 523.28 451.67 0.03
LET 9,941.34 7,389.73 0.16
OD 81.88 106.31 0.05
PD 203.02 158.91 0.03
PHON 34.75 39.13 0.00
SH 782.47 731.70 0.03
TEXT 47.28 55.33 0.02
ISO 3,927.3 2,994.64 1.86
PB 27.63 89.55 0.02
SB 295.23 240.20 0.02

It should be noted that in order to implement the HPCAMS classifier it is suf-
ficient to save in memory one polyhedral conic and one piecewise linear functions
for each class. Therefore the memory usage of the HPCAMS classifier is very low.
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8 Conclusion

In this chapter we have developed a new algorithm for the computation of piece-
wise linear boundaries between pattern classes. This algorithm consists of two main
stages. In the first stage we compute one PCF for each class in order to identify data
points which lie on or close to the boundaries between classes. In the second stage
we apply the max—min separability algorithm to find piecewise linear boundaries
using only those data points. Such an approach allows us to reduce the training time
of the max—min separability algorithm from [10] on large data sets by 3—10 times.
The new algorithm provides almost instantaneous testing and has a low memory us-
age. We present the results of numerical experiments. These results demonstrate that
the proposed algorithm consistently produces a good test set accuracy on most data
sets when comparing with a number of other mainstream classifiers. However, the
proposed algorithm requires more training time than most of the other classifiers.
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Variational Inequality Models Arising
in the Study of Viscoelastic Materials

Oanh Chau, Daniel Goeleven, and Rachid Oujja

1 Thermo-Viscoelastic Models

Because of their considerable impact in everyday life and their multiple open
problems, contact mechanics still remain a rich and fascinating domain of challenge.
The literature devoted to various aspects of the subject is considerable, it concerns
the modelling, the mathematical analysis as well as the numerical approximation of
the related problems.

For example, many food materials used in process engineering are viscoelastic
[18] and consequently, mathematical models can be very helpful in understanding
various problems related to the product development, packing, transport, shelf life
testing, thermal effects, and heat transfer. It is thus important to study mathematical
models that can be used to describe the dynamical behavior of a given viscoelastic
material subjected to various highly nonlinear and even non-smooth phenomena like
contact, friction, and thermal effects.

A panoply of tools and approaches are needed to face the multiple difficul-
ties of the problems. Abstract functional nonlinear analysis could be found in
[5, 7, 14, 20, 26]. An early attempt at the study of contact problems for elastic
and viscoelastic materials within the applied mathematical analysis framework was
introduced in the pioneering reference works [12, 13, 19, 22]. For the error esti-
mates analysis and numerical approximation, the reader can refer to [11, 15, 17].
Further extensions to non-convex contact conditions with non-monotone and possi-
ble multi-valued constitutive laws led to the active domain of non-smooth mechanic
within the framework of the so-called hemivariational inequalities, for a mathemat-
ical as well as mechanical treatment we refer to [16, 23]. Finally, the mathematical,
mechanical, and numerical state of the art can be found in the proceedings [25].
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The basic mechanical contact problem is the following. We consider a
deformable body which occupies a bounded domain Q C R (d = 1 or 2 or 3),
with a Lipschitz boundary I" and let v denote the unit outer normal on I'. The
body is acted upon by given forces and tractions. As a result, its mechanical state
evolves over the time interval [0, 7], T > 0. We assume that the boundary I" of € is
partitioned into three disjoint measurable parts Iy, I3, and I3. The body is clamped
on I x (0,T). Here, we are interested in various natures of Ij. In case of classical
fixed condition, the property meas(I7) > 0 holds (see [1, 3, 8, 10]), which allows
to use the well-known Korn’s inequality. In case of a free boundary, we consider
meas(I7) = 0, where I] is reduced to one point or eventually may be an empty
set. This last case presents a source of additional difficulties and new approach is
necessary (see [2, 10]). We suppose also that surface tractions of density f, act on
I3 x (0,T). The solid is in frictional contact with a rigid obstacle on I3 x (0,7T),
where various contact conditions may be considered. Moreover, a volume force of
density f acts on the body in Q x (0,T) (see Fig. 1).

In this paper, u = (u;) denotes the displacement field, 0 = (0o;;) is the stress field,
and €(u) = (&;(u)) denotes the linearized strain tensor.

In what follows, for simplification, we don’t indicate explicitly the dependence
of functions with respect to x € QUT and ¢ € [0,T]. Everywhere in the sequel,
the indexes i and j run from 1 to d, summation over repeated indices is implied,
and the index that follows a comma represents the partial derivative with respect to
the corresponding component of the independent variable. Moreover the dot above
represents the time derivative, i.e.,

du . d%u
= —, = —.
dt dr?
Let us denote the mass density by p : 2 — R . The dynamical evolution of the
body is described by the following equation of motion

pii=Divo+f, in Qx(0,7).

Here ii represents the acceleration of the dynamical process.

Fig. 1 The mechanical contact problem
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1.1 Thermo-Viscoelastic Constitutive Law

For viscoelastic materials, the body follows a constitutive law of Kelvin—Voigt’s
type in the form

o(r) = Ae(iu(r)) + Ge(u(t)),

where A and G are generally nonlinear functions, A represents the viscosity opera-
tor, and G the elasticity operator.
In the case of linear Kelvin—Voigt constitutive law, we have

Oij = iji1 & (1) + gijr i (1),

where A = (a;ji) is the viscosity tensor and § = (g;;x;) the elasticity tensor.

This last law is qualified as of short memory, for it is instantaneous and takes
place at each time .

The long memory viscoelastic constitutive law is defined by

o (1) = Ae(iu(r)) + Se(u —|—/Bt—v (5)ds in Q.

Here B is the so-called tensor of relaxation which defines the long memory
behavior of the material. The above convolution term represents a kind of sum of all
the elasticity of the body through the past, from the initial time to the present time.
Of course, as a particular case, when B = 0, we recover the usual visco-elasticity of
short memory.

In order to complete the last law with some additional thermal effects, we con-
sider the following Kelving—Voigt’s long memory thermo-viscoelastic constitutive
law

(1) = Ae(u(r)) + Ge (u +/3t—s (5)ds—0(1)C, in €,

where C, := (c;j) represents the thermal expansion tensor and 6 is the temperature
field.

1.2 The Temperature Field

We suppose that the evolution of the temperature field 6 is governed by the heat
equation (see [7, 8]) obtained from the conservation of energy and defined by the
following differential equation

6 —div(KVO) = r(a(t)) +q(t),
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where K = (k;;) represents the thermal conductivity tensor, div(KVO) = (k;;6 ;) i,
q(t) the density of volume heat sources, and r(iz(f)) a nonlinear function of the
velocity. Usually, the following linear function is used

r(i(t)) = —ciji j(1).
The associated temperature boundary condition on I3 is described by
k,’j Q,’I’Lj = —ke (0 — BR) on l—é X (O,T),

where O is the temperature of the foundation and k, is the heat exchange coefficient
between the body and the obstacle.

1.3 Subdifferential Contact Condition

Let us here describe the surface contact condition on I3. We model the frictional
contact with a general subdifferential boundary condition of the form

uelU, oWv)—e(i)>—-ov(v—i) Ywel. (1)

In this condition, U represents the set of contact admissible test functions, oV
denotes the Cauchy stress vector on the contact boundary, and ¢ : I3 x RY — R
is a given convex function. The inequality in (1) holds almost everywhere on the
contact surface. Various situations may be modeled by such a condition. Examples
and detailed explanations of inequality problems in contact mechanics which lead
to boundary conditions of this form can be found in [9, 23].

Here we present some examples of contact and dry friction laws which lead to
such subdifferential inequality.

Example 1. Bilateral contact with Tresca’s friction law. This contact condition can
be found in [13, 23]. It is written in the form of the following boundary condition:

uy =0, ‘GT| <g,
lot| <g = u: =0, on I3 x (0,T). 2)
lo7|=¢g = ity =—A07, A >0

Here g > 0 represents the friction bound, i.e., the magnitude of the limiting friction
traction at which slip begins. The contact is assumed to be bilateral, i.e., there is no
loss of contact during the process.

The set of admissible test functions U consists of those elements of H; whose
normal component vanishes on I3.

Moreover, it is straightforward to show that if {u, 0’} is a pair of regular functions
satisfying (1) then

ov(v—i) > glic| —glv:|  WeU,
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a.e.on I3 x (0,T). We get the following contact functional
@(v) =g|vel.

Example 2. Viscoelastic contact with Tresca’s friction law. We consider the contact
problem with the boundary conditions

—oy = Kiy|" iy, |0 <g,
lo¢| <g = u; =0, on Tz x (0,T). 3)
|o|=¢ = iy =—A0r, 120

Here g,k > 0 and the normal contact stress depends on a power of the normal speed
(this condition may describe the motion of a body, say a wheel, on a fine granular
material, say the sand on a beach). We have U = H;, 0 <r < 1, and

o(v) =

k r+l1

% +g|vel-
r+ 1 | V| gl ‘L'|
Example 3. Viscoelastic contact with friction. Here, the body is moving on sand or
a granular material and the normal stress is proportional to a power of the normal
speed, while the tangential shear is proportional to a power of the tangential speed.
We choose the following boundary conditions:

— oy =kliy| iy, 0r=—pli/P"lir  onI3x(0,T). 4)

Here p € L*(I3) and k € L*(I3) are positive functions and 0 < p, r < 1. We choose
U=H;,V={veH |v=0on I },and

_ k r+1 H ptl
o) = gl + E el
Remark 1. In the examples above, the normal pressure as well as the tangential stress
is related to powers of the normal and tangential speeds. This is dictated by the
structure of the functional ¢ which depends only on the surface velocity.

1.4 Notation and Functional Spaces

In this short section, we present the notations we shall use and some preliminary
materials for functional spaces. For further details, we refer the reader to [13].

We denote by Sy the space of second order symmetric tensors on R? (d = 2,3),
while “ - 7 and | - | will represent the inner product and the Euclidean norm on Sy
and RY. Let Q C R’ be a bounded domain with a Lipschitz boundary I" and let v
denote the unit outer normal on I". We also use the following notation:
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H={u=w)|uel*(Q)}, H={o=(0y)|0;,=0;cl’(Q)},

Hy={ucH|e(u)eH}, Hi={oceH|DivoeH}.

Here € : Hf — H and Div : H{; — H are the deformation and the divergence
operators respectively defined by:

e(u) = (&;(u), &ju)= %(”i,jJF”j,i)a Div o = (ai;))-

The spaces H, I{, H, and J{; are real Hilbert spaces endowed with the cannonical
inner products given by:

<MaV>H=/ u;v;dx, <Gﬂ'>}c:/ 0ijTijdx,
Q Q

(u,v)g, = (u,v)g + (e(u),€(v))gc, (0,7)3¢, = (0,7)5¢ + (Div 0,Div 1)4.
The associated norms on the spaces H, H, H;, and H; are denoted by |- |5, | - |7,

| |, and |- |g¢,, respectively.

Let Hr = H? (r')? and let y: Hy — Hr be the trace map. For every element
u € Hy, we also use the notation u to denote the trace yu of u on I" and we denote
by uy and u; the normal and the tangential components of # on I given by:

Uy =u-V, Ur = U—UyV. 5)

Let H}- be the dual of Hr and let < -,- > denote the duality pairing between H- and
Hr. For every o € 31, ov can be defined as the element in HI’- which satisfies:

(ov,yu) = (0,e(u))5c +(Div o,u)y  VueH,. (6)
Let also oy and o denote the normal and tangential traces of o, respectively. If o
is a smooth function, e.g., 0 € C!, then

(oVv,yu) :/ oVv-uda Yu € H; @)
r

where da is the surface measure element and
oy =(oV)-v, O;r=0V—0yV. (8

Finally, we recall that C([0,T];X) is the space of continuous functions from [0, 7]
to X; while C"([0,T];X) (m € N*) is the set of m times differentiable functions.
Then D(€) denotes the set of infinitely differentiable real functions with compact
support in Q. We will also use the Lesbesgue spaces LP(0,7;X); and the Sobolev
spaces:

W™P(0,T;X), HIQ):={weW"(Q),w=0onT},

where m > 1 and 1 < p < oo,
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2 Dynamic Contact Problems with Clamped Condition

In this section, we present the results obtained in [1, 3, 8, 10] with the usual fixed
condition. In [8], the authors (Chau and Awbi) analyze a problem which describes
the frictional contact between a short memory thermo-viscoelastic body and a rigid
foundation. The process is assumed to be quasistatic and the contact is modeled
by a normal damped response condition with friction law. Moreover, heat exchange
condition has been taken into account on the contact surface. The mechanical model
is described as a coupled system of a variational elliptic equality for the displace-
ments and a differential heat equation for the temperature. Then the authors present
a variational formulation of the problem and establish the existence and unique-
ness of weak solution in using general results on evolution equations with mono-
tone operators and fixed point arguments. In [1], the constitutive law has been ex-
tended to a long memory viscoelastic type and the contact has been modeled by a
general subdifferential condition on the velocity. The authors (K. Addi, O. Chau,
and D. Goeleven) derive weak formulations for the models and establish existence
and uniqueness results. The proofs are based on evolution variational inequalities,
in the framework of monotone operators and fixed point methods. The quasistatic
evolution in these two latter works has been then extended to dynamic process for
long memory thermo-viscoelastic materials in [3]. Finally, the authors (O. Chau, D.
Goeleven, and R. Oujja) complete the study by numerical approximations in [10],
where analysis of error order estimate and various simulations have been provided.
The dynamic mechanical problem for long memory thermo-viscoelastic materials
subjected to subdifferential contact condition and to clamped condition is then for-
mulated as follows.

Problem Q : Find a displacement field u : 2 x [0,T] — R?, a stress field o :
Q x [0,T] — Sy, and a temperature field 6 : Q x [0,T] — R such that for a.e.
€ (0,7):

(1) = Ae(i(t)) + Se(u +/ Bt —s)e(uls))ds—0()C, in Q, (9

ii(t) =Divo(t) + fo(r) in Q, (10)
u(t)=0 on I, (1)
o(t)v=/[y(r) on I, (12)
ut)elU, ow)—eo(u(t))>—-c(@)v-(w—u(r)) YweU on I3, (13)
0(t) —div(K.VO(t)) = —C,‘j%(t)“rq(t) on £, (14)
006

iy 5 Om =k (00)—68) on Ty as)
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6(1)=0 on LUD, (16)
0(0)=6y in Q, (17)
u(0) =up, a(0)=vy in Q. (18)

Here, we suppose that meas(I7) > 0 and the mass density p = 1. We suppose also
that the set of contact admissible test functions verifies

D(Q) cU CH.

Finally, ug, vo, 6p represent, respectively, the initial displacement, velocity, and tem-
perature.

To obtain the variational formulation of the mechanical problems (9)-(18) we
need additional notations. Thus, let V denote the closed subspace of H; defined by

D) cV={veH |v=0 on I}}NU.
We set
E={neH(Q),n=0 on LUDL}, F=L*Q).

Since meas I7 > 0, Korn’s inequality holds, i.e., there exists Cx > 0 which depends
only on £ and I3 such that

leW)llsc > Ck v, — WveV.

A proof of Korn’s inequality may be found in [21, p. 79].
On V we consider the inner product given by

(u,v)v = (e(u),e(v))sc  Vu,v €V,
and let || - ||y be the associated norm, i.e.,
[vilv=lleM)llsc  VveV.

It follows that || - ||z, and || - ||v are equivalent norms on V and therefore (V,|| - ||v) is
a real Hilbert space. Moreover, by the Sobolev’s trace theorem, we have a constant
Co > 0 depending only on £2, I, and I3 such that

||VHL2(F3) < Golpvllv YveV.

In the study of the mechanical problem (9)-(18), we assume the following condi-
tions (see e.g. [3, 20]).
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The viscosity operator A : 2 x S; — S satisfies:

(a) there exists Ly > 0 such that
|[A(x,e1) —A(x,€2)| < Lgler — &
Vey, €2 €8, ae. x € Q)
(b) there exists my4 > 0 such that
(A(x,e1) —A(x,2)) - (61— €2) > ma &1 — €22 (19)
Ve, €2 €8, ae.x€ Q)
(¢) x+— A(x,€)is Lebesgue measurable on 2,Ve € S,
(d) the mapping x — A(x,0) € H.
The elasticity operator G : Q x S; — Sy satisfies:
(a) there exists Lg > 0 such that
15(x, 1) = G(x,€2)| < Lgle1 — &
Ve, e0 €8, ae.xe€ Q) (20)
(b) x+— G(x,¢€) is Lebesgue measurable on ,Ve € Sy,
(¢) the mapping x — G(x,0) € H.

The relaxation tensor B : [0,T] x Q x S; — Sz, (t,x,7) — (Bjjin(t,x) Tn)
satisfies

(i) Bijgn € WI(0,T;L7(RQ)),

(i) B(t)o-t=0-B(1)T 2h
Vo,1€8,, ae.t€(0,T), ae. in Q.

We suppose that the body forces and surface tractions satisfy
fo€WY(0,T:H),  f, e WH0,T:L3(13)Y). (22)
We assume that the thermal tensor and the heat source density satisfy the conditions:
Co=(cij), cij=c;i €L™(Q), qeW"0,T;[*(Q)). (23)
The boundary thermic data are supposed to satisfy the regularity condition:
ke € L7(2;RT), 6r e W2(0,T;L*(I3)). (24)

We suppose that the thermal conductivity tensor verifies the usual symmetry and
ellipticity properties, i.e., for some ¢; > 0 and for all (&) € R:

Ke=(kij), kij=kj €L7(Q), kij&iSj = cr&ii. (25)
We assume that the initial data satisfy the conditions
up €V, v eV, 6€cE. (26)

On the contact surface, the following frictional contact function

y(w):= | o(w)da
I
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is assumed to verify

(1) v :V — R is well defined, continuous, and convex,

(ii) there exists a sequence of differentiable convex functions

(W) : V—R suchthat YweL*(0,T;V),

/ W, (w dt—)/ y(w(r))dt, n — oo,

(iii) for all sequence (w,) and w in W'2(0,T;V) such that
Wy —w, w, —w weakly in L*(0,T;V),

then hmmf / Wy (wy(2))dt > / y(w
(v)ifw eV, w=0 on I3, then Vn € N, y,(w) = Oyr.

27)

Here v (v) denotes the Fréchet derivative of , at v.
Using Green’s formula, we obtain the variational formulation of the mechanical
problem Q as follows.

Problem QV : Find u: [0,T] =V, 0 :[0,T] — E satisfying a.e. t € (0,T):

(i(t)+Au(t) +Bu(t) +CO(t),w—iu(t))y«y

(] Ble—s) ) o) —e(al0) )+ o) = wlatr).
> (f(t),w—ilt))yxy VYweV,

O(t)+KO0(t)=Ru(t)+Q(t) in E,

u(0) =up, (0)=vy, 6(0)=6p.

Here the operators and functions A,B :V — V', C: E—V, y:V —R,
K:E—E,R:V—E, f:[0,T]— V', and Q:[0,T] — E’ are defined by
YveV,VweV,VT €eE,Vn €E:

<AV,W>V’><V = (.A(SV),SW):}Q

(Bv,w)yry = (G(ev),ew)se,

(CT,Whyrsey = —(TCey €W) g,

(F@)whyrey = (fo(t),w)a + (f2(1), W) 12(53)4
<Q(t),n>5fxa=/ keGR(t)ndx—i—/ q(t)ndx,

at dn
'XE — ij dx ke da,

(KT M ”2’1/ ij Ix; +/ TN

8vi
(Rv,N)prxe = */Q Cij ij ndx.

Let us recall now the following main mathematical result (see for details [3]):
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Theorem 1. Assume that (19)—(27) hold. Then there exists an unique solution {u, 0}
to problem QV with the regularity:

ueWr(0,T;V)NW>>(0,T;H),
6 c W'2(0,T;E)nW1=(0,T;F).

2.1 Analysis of a Numerical Scheme

In this section, we study a fully discrete numerical approximation scheme of the
variational problem QV (see [10]). For this purpose, we suppose in the following
that the conditions on the data (19)—(27) of Theorem 1 are satisfied. In particular,
we have

fec(o,T);v), Qec(o,T|;E".

Let {u, 6} be the unique solution of the problem QV and let us introduce the velocity
variable
v(t) =u(t), Vtel0,T].

Then .
)= uo—l—/ v(s)ds, Vrel0,T].

0
From Theorem 1 we see that {v, 8} verify for all z € [0, T]:

((1) +Av(t) +Bu(t) + CO(1),w —v(t))vixy

(/ Bt — ) e(uls)) ds,e(w) — s<u<r>>) Ty o) @8)

X
(ft),w=v(t))yrxy, YweV.
(0(1),m)F 4+ (KO(1), M) prxe = (RV(t), M) pree +(Q(), M prxp, YN EE. (29)
u(0) =ug, v(0)=vy, 6(0)= 6y, (30)

with the regularity:

veWwh2(0,7;v)nW'=(0,T;H),
(€2

6 c W'2(0,T;E)NWI=(0,T;F).
In this section, we make the following additional assumptions on the solution and
contact function:

veW?>2(0,T;H), (32)

6 € W>2(0,T:F), (33)
v is Lipschitz continuous on V. (34)
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Let V" C V and E" C E be a family of finite dimensional subspaces, with & > 0
a discretization parameter. We divide the time interval [0,7] into N equal parts:
ty =nk, n=0,1,...,N, with the time step k = T /N. For a continuous function
w € C([0,T]; X) with values in a space X, we use the notation w, = w(z,) € X. Then
from (28) and (29) we introduce the following fully discrete scheme.

Problem P'*, Find vk = ("} v ghk = {g/*}N_ c EM such that
vik=vi, e =6} 35)

andforn=1,...,N,

ik hk
n . n— I,Wh—vhk —|—<A hk Wh—vhk>vl V+<Bun 17wh_vh >V’><V
H
+(CH,Z 17 wh — th>v/xv + ‘I/(Wh) - w(w’i") (36)
n—1
(k Z B tm hk)7 8( h) 78( hk))
H
> fm k>V’><Va vwhevhv
th er}zlkl h
-1 + (KO M g
( k . < n > X (37)
= <szka nh>E’><E + <Qna nh>E’><Ev Vnh € Eh,
where
uzk = uﬁ'i] +kvﬁk, uﬁk = u(}j (38)
Here ”0 evh Vi eyh 05’ € E" are suitable approximations of the initial values u,
vo, 6.

Forn=1,...,N, suppose that un 1V Z 1 thl are known. We may then calculate
VK by (36), Bnhk by (37), and u"* by (38). Hence the discrete solution v'* C V",
0"k c E" exists and is unique.

We now turn to an error analysis of the numerical solution. The main result of

this section is the following one (see for details [10]).

Theorem 2. We keep the assumptions of Theorem 1. Under the additional assump-
tions (32)—(33), then for the unique solution Vik c vhoghk — Eh of the discrete
problem P, we have the following error estimate
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1<n<

n=1 n=1

< CHMO_MOHV+C||V0_V0k||H+C||60_60HF+C max, ||v,, willa

hyj2 h2 2
+e max ||9n*nn|\p+6k2I\vrwj\lv+ckZ\I(’rn,-HE
sn<N i=1 j=1

2
(2 v —(vj+1— j+1)||H)

2
N—1 N
c (2 16; =1} — (841 n};l)nF) +ek ek Y, [vi—whlv,
j=1 j

j=1

where for j=1,...,N, w’} evh, n;’ € E" are arbitrary.

45

max_ v — ViII7 + (kz IIVn—vhklv> + max |6, — 9hk||p+<k2 116 — 9hk|E>

39)

The inequality (39) is a basis for error estimates for particular choice of the finite-

dimensional subspace V" and under additional data and solution regularities.

As a typical example, let us consider Q C R?, d € N*, a polygonal domain. Let
T" be a regular finite element partition of Q. Let V* C V and E” C E be the finite
element space consisting of piecewise polynomials of degree < m — 1, withm > 2,
according to the partition T”. Denote by I} : H"(Q)? — V" and [T} : H"(Q) —
E" the corresponding finite element interpolation operator. Recall (see, e.g., [11])

that:
{ ||w7Héw||Hz ya < ch™! Wlgm(qy, Ywe H™(Q)4,

I — gl gy < B Mlgma), V0 € H™(Q),

where [ = 0 (for which H? = L2) orl=1.

In the following we assume the additional data and solution regularities

uo 6H0¢+1(Q)d7
ve ([0, T H** T (@Q)4), veL'(0,T;H*(Q)%),
0 cC([0,T;H*(Q)), 6¢cLY(0,T;H*(Q)).

Here
oao=m—12>1.

We remark that the previous properties already hold for @ = 1, except for
veC([0,T];H*(Q)4) and 6 € C([0,T];H*(Q)).
Then we choose in (39) the elements
up =i uo, vh=Ivy, 6 =116,

and
wh=TII}v;, nf=II46;, j=1,...N.

(40)
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From the assumptions (40), we have:

luo —uglly < ch®, leollu <ch®, |eollr < ch®,
Ag < ch”*, B0§0h2a7
Az < Cha, B3 < Cha,
kAy < ch*®, kBy <ch®*, kB, <ch®*.

Using these estimates in (39), we conclude to the following error estimate result.

Theorem 3. We keep the assumptions of Theorem 2. Under the additional assump-

tions (40), we obtain the error estimate for the corresponding discrete solution vﬁk,
G,f’k, n=1,...,N:

0<n=N n=0

N 1/2
max_[|v, —vi||m + (k 2 v —%"I%)

N 1/2
+ max (16, — 6,“[[r + (kz ||9n—9/3"|%> <c(h”+k).

0<n<N =0

In particular, for o0 = 1, we have

N 1/2
max_[|v, —vi||m + (k 2 v %"I%)

0<n=N n=0

1/2
N
Gn—eh" k 9,,79}"‘ 2 <c(h+k).
+OI%1na§XN|| - ||F+< an k|2 <c(h+k)

2.2 Numerical Computations

Here we consider two typical examples of thermal contact problems with Tresca’s
friction law, the first one is bilateral and the second one obeys a normal damped
response condition (see [3, 10]). We provide numerical simulations for the discrete
schemes in Sect. 3 in using Matlab computation codes.

Example 4. Thermal bilateral contact problem with Tresca’s friction law.
The contact condition on I3 is bilateral, and satisfies (see e.g. [13, 22]):

uv:o? |GT| Sga
ol <g = i =0, onTI3 x (0,T).
|o¢| =g = ity = —A 0, for some A >0,
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Here g represents the friction bound, i.e., the magnitude of the limiting friction
traction at which slip begins, with g € L(I3), g > 0 a.e. on I3. The corresponding
admissible displacement space is:

V:={weH,, withw=0onIj, w,=0o0nI3},
and the subdifferential contact function is given by:
P(x,y) =8 |ye)| VxeD, yeRY,

where Y1 () 1= Y = Yy(x)V(X), Yy(x) := - V(x), with v(x) denoting the unit normal at
x € I3. Then the function

y(v):= / glvelda, VveV
G
is well defined on V and is Lipschitz continuous on V (see [3, 10]).

For our computations, we consider a rectangular open set, linear elastic and long
memory viscoelastic operators. We set:

Q= (071‘]) X (OaLQ)v

L= ({0} x[0,Ly]), In=[0,Li]x {L}U({L:1} x[0,L2]), I3=][0,L1]x {0},
E

(G1)ij = 1_1;2(1'11 +722)5ij+m7ij7 1<i, j<2, 7€,

At)ij=u(tini+1m)6;+ntj, 1<i,j<2,1€8,
(E(I) ’C)ij ZBl(l) (Tll —I—ng) 5ij+32(t)fij, 1<i,j<2, 1€8,t€ [07T].

Here E is the Young’s modulus, « is the Poisson’s ratio of the material, &; ;j denotes
the Kronecker symbol, and u, n are viscosity constants.

We use spaces of continuous piecewise affine functions V" C V and E" C E
as families of approximating subspaces. For our computations, we considered the
following data (IS unity):

Li=L=1 T=1,

u=10, n=10, E=2, k=0.1,

folx,t) =(0,—1),  fo(x,1) =(1,0), VZE[O,T],
cij=kij=ke=1,1<i,j<2, g=1,
Bi(t)=By(t) =102, Vte[0,T],
M():(0,0), V():(0,0), 9():0‘

The initial configuration is represented in Fig. 2.

Then we show in Fig.3 the deformed configurations at final time, where the
relaxation coefficients are positive and decreasing for the two different types of
Tresca’s friction bounds. For small friction bound, where g(x,0) = %, 0<x<1,
we observe on the contact surface a slip phenomena in the direction of the surface
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Thermal Contact

Fig. 2 Initial configuration

' ‘ ‘g(x,o)‘:x/2,0‘§xs1‘ ‘ 2 ‘ g(xo) 10x, 0<x<1‘
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-0.2 0 0.2 0.4 0.6 0.8 1 1.2 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
g(x,0) =x2,0<x< 1 g(x,0) =10x,0 < x <1

Fig. 3 Deformed configurations at final time, Og(r) =1, 0 <t < 1

fraction on I;. That means that the friction bound has been obtained in the zone of
the values of x near to 1. Whereas for large friction bound, e.g., for g(x,0) = 10x,
0 <x < 1, then slip in the direction of the traction could not be realized. In Fig. 4,
we compute the Von Mise norm, which gives a global measure of the stress in the
body. The maxima of the norm could be seen in the neighborhood of the point
(0,1) for small friction bounds and in the neighborhood of the point (1,0) for large
friction bounds. In Fig. 5, we show the influence of the different temperatures of the
foundation on the temperature field of the body. We observe larger deformations of
the body for greater temperature of the foundation.

Example 5. Thermal contact problem with normal damped response and Tresca’s
friction law.

The normal damped response contact condition with Tresca’s friction law is
defined by:
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Fig. 6 Deformed configurations at final time, Og(r) =1, 0 <t < 1
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Fig. 7 Von Mise norm in deformed configurations, Og(t) =1, 0 <t <1
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Fig. 8 Temperature field at final time, ko(x,0) = 15, 0 <x < 1

—Ov :k0|”v|r_luv» |0'r| <g,
|o¢| <g =itz =0, on I3 x (0,7).
lo:|=g = ity =—Ao;, forsomeA >0,

Here 0 < r < 1 and g, ko € L*(I3), g > 0, ko > 0. The coefficient ko represents the
hardness of the foundation and g is the friction threshold.
The admissible displacement space is given by:

V:i={weH,, withw=0onI}

and the subdifferential contact function is:

1 I
(p(x7y) = —k()(x) |}’v(x)| . +g(x)|yr(x)| Vxelz, y€ RY.
r+1
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Then setting p :=r+ 1, we have the contact function well defined on V by

k
v(v) ::/ —0|vv|”da,+/ glvi|lda, Wvev.
p I3

We verify also that y is Lipschitz continuous on V (see [3, 10]).
For our computations, we take again the previous rectangular open set, with lin-
ear elasticity and visco-elasticity, and used the following data (IS unity):

Li=L,=1, T=1,
u=10, n=10, E=2, x=0.1,
fO(x7t):(Oa_t)7 f2(x7t):(150)’ VtE[OaTL
cij=kij=ke=1,1<i,j<2, g=1,
gx,0)=3,0<x<1, r=05,

Bi(t)=By(t) =102, Vte[0,T],
M():(0,0), VQZ(O,O), 9():0.

We show in Fig. 6 the deformed configurations at final time, and through the body
for different normal damped response coefficients kg, we verify that the penetrabil-
ity of the foundation depends on its coefficient of hardness. In Fig.7 we compute
the Von Mise norm. Larger stress near the contact surface is then observed for hard
obstacle. Finally in Fig. 8, we find again the influence of the temperature of the foun-
dation on the temperature field of the body and on the final deformed configurations.

3 Dynamic Contact Problems with Free Boundary Condition

We present here a class of dynamic thermal subdifferential contact problems with
friction for long memory visco-elastic materials and without the clamped condition.
The boundary I" of the body £2 is partitioned into three disjoint measurable parts I7,
I3, and I3, with meas(I7) = 0.

The model leads to a system defined by a second order evolution inequality, cou-
pled with a first order evolution equation. We establish an existence and uniqueness
result. Finally a fully discrete scheme for numerical approximations is provided and
corresponding various numerical computations in dimension two will be given for
the cases where I is reduced to one point or is an empty set (see [2, 10]).

The dynamic mechanical problem for long memory thermo-viscoelastic materi-
als subjected to subdifferential contact condition and to non-clamped condition is
then formulated as follows.

Problem Q : Find a displacement field u : Q x [0,7] — R¢ and a stress field
0: Q2 x[0,T] — Sz and a temperature field 6 : Q x [0,7] — R such that for
ae.r€(0,7T):

o (t) = Ae(a(t)) + Ge(u +/Bt—s (5))ds—0()C, in Q, (1)
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ii(f) =Divo(t) + fo(t) in Q, 42)
o(t)v=f,(t) on Iy, (43)
ult) e, ow)—o(u(t))>—o(t)v-(w—u(t)) YwelU on Iz, (44)
0(t) —div(K.VO(t)) = —cij %(l) +4g() on £, (45)

J
iy 28 (= ke (00)~0) on T, 6)

8x/-

0(t)=0 on Ij, 47
0(0)=6, in €, (48)
u(0) =up, w(0)=vy in Q. (49)

It is worth to notice that the new feature here is due to the absence of the usual
claimed condition. However, there is coerciveness with regard to the temperature
by (46).

To derive the variational formulation of the mechanical problems (41)—(49), let
us introduce the spaces V and E defined by

D) cV=HnNU,
E={neH(Q),n=0 on DL}, F=L*Q).
On V, we consider the inner product given by
(u,v)y = (e(u),e(v))gc + (u,v)n Yu,v €V,
and the associated norm
IVII7 = lle®)ll5e +IviE — vvev.

It follows that || - ||, and || - ||y are equivalent norms on V and therefore (V.|| - ||v)
is a real Hilbert space.

In the study of the mechanical problem (41)-(49), we put again the analogous
assumptions as in Sect. 2 on the different operators and data.

The viscosity operator A : 2 X Sg — Sg, (x,T) — (ajjin(X) Txs) is linear on the
second variable and satisfies the usual properties of ellipticity and symmetry, i.e.,

(i) aijen € WH(Q),

(ii))Aoc-t=0-At Vo,T€S,, ae. in Q,

(iii) there exists m 4 > 0 such that
AT-T>mg|t]> VTES,, ae. inQ.

(50)
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The elasticity operator G : 2 x S; — Sy satisfies:

(i) there exists Lg > 0 such that
5(x, 1) = §(x,€2)| < Lg|e1 — €3]
Ve, €2 €8y, ae.x € Q, 51)

(i) x+— G(x,¢€) is Lebesgue measurable on ,Ve € Sy,
(iii) the mapping x — G(x,0) € K.

The relaxation tensor B : [0,T] x Q x S; — Sz, (t,x,7) — (Bjjin(t,x) Tn)
satisfies

(i) Bijxn € WH(0,T;L7(Q)),

(i) B(t)o-t=0-B(t)t (52)
Vo,1€8,, ae.t€(0,T), ae. in Q.

We suppose the body forces and surface tractions satisfy
foeWL(0,T:H),  f, e Wh2(0,T:L%(IF)?). (53)
For the thermal tensors and the heat sources density, we suppose that
Co=(cij), cij=c;i€L™(Q), qeW"0,T;[*(Q)). (54)
The boundary thermal data satisfy
ke € L7(Q;R"),  6p e WH2(0,T;L*(I3)). (55)

The thermal conductivity tensor verifies the usual symmetry end ellipticity: for some
cx > 0 and for all (&) € R,

Ko = (kij), kij=kj € L”(Q2), kij&&j > cx&i&i. (56)

Finally we have to put technical assumptions on the initial data and the sub-
differential condition on the contact surface as to use classical results on first order
set valued evolution equations. Here we use a general theorem taken in [20, p. 46],
in a simplified case, which is enough for our proposal and applications.

We assume that the initial data satisfy the conditions

up €V, vy € VAH(Q)?, 6yec ENHZ(Q). (57)

On the contact surface, the following frictional contact function

wm:éwmw
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Fig. 9 Initial configuration

verifies

(1) v :V — R is well defined, continuous, and convex,
(ii) there exists a sequence of differentiable convex functions

(W) : V—R suchthat YweL*(0,T;V),

T
/ W (w( dt—)/ ))dt, n — oo,
0

(iii) for all sequence (w,) and w in W1'2(O,T;V) such that
wp —w, w, —=w weakly in L*(0,T;V),

(58)

T T
then Timinf [ wn(wa(t))dr > /0 w(w())dr

n—+te J(

(iv)ifw € V and w =0 on I3, then Vn € N, y,,(w) = Oy:.

The weak formulation of the mechanical problem Q is then formulated as follows.
Problem QV : Find u: [0,T] —V, 6 :[0,T] — E satisfying a.e. t € (0,T):

(@(r) +Ad(t) + Bu(t) + CO(t), w —iu(t))yrxy

([ B0 9eluts)ds.eln —e@)) +win) - wiatn)

¥
2 {f(t), w=it))yrxy YweYV,
0(t)+KO0(t)=Ru(t)+0Q(t) in E,
u(0) =up, u(0)=vy, 6(0)= 0.

The different operators are here defined as in Sect.2. Then we obtain our main
existence and uniqueness result stated as below (see for details [2]):
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Fig. 10 Deformed configurations at final time, Og(r) =0, 0 <z < 1
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Fig. 11 Von Mises’ norm in deformed configurations, 6g(1) =0, 0 <z < 1

Theorem 4. Assume that (50)—(58) hold, then there exists an unique solution {u,0}
to problem QV with the regularity:

ueW0,T;V)NW>=(0,T;H),
(59)

0 c W'2(0,T;E)NW=(0,T;F).

3.1 Numerical Simulations A

Here, I is reduced to one point (see [10]). We take again the two typical examples
and the analogous data as in Sect. 2, except the followings:
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Fig. 12 Temperature field at final time, g(x,0) = 5, 0 <x <1
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Fig. 13 Deformed configurations at final time, Og(r) =0, 0 <7 < 1
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Fig. 14 Von Mises’ norm in deformed configurations, 6g(1) =0, 0 <7 < 1
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Fig. 15 Temperature field at final time, ko(x,0) = 10, 0 <x < 1

Q=(0,L,) x (0,L»),
L={0,0)} 1= ({0}x10, L) U(0,L1] % L) U({L1} x [0, L)),
I3 =]0, L1 [x{0},

faen) = (0,0), Ve ({0}x]0,La]), Ve e (0,7,

Falet) = (1,0), Vxe (10,L1] x {La}) U ({L1} x [0,La]), Vi € [0,T].

Similar conclusions as in Sect. 2 can be stated. See also Figs. 9, 10, 11, 12, 13, 14,
and 15.

3.2 Numerical Simulations B

Here It =0, Ir = I, fr = f5, I, = I3 (see [2]). We take again the two typical
examples as in Sect. 2 with the following data:

Q:(O7L1)X(O,L2),

I = ({0} x [0,Lo]) U ([0, Li] x {L2}) U({L1} x [0, L2]), T =]0,L1[<{0},
£o(x,0) = (0,0), Vxe{0}x[0,Ly), Vrelo,T],

folx,t) = (1,0), Vxe (0,L1] x {La)U({L1} x [0,L5]), V€ [0,T).

Analogous conclusions as in Sect. 2 can be stated. See also Figs. 16, 17, 18, 19,
20, 21, and 22.
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Fig. 17 Deformed configurations at final time, 6z(z) =10, 0 <t <1

4 A Duality Numerical Method

The fully discrete scheme (36) is equivalent to the variational inequality
(AVEE W Vi) g (W) — () > (L, " =iy, Y e VP (60)
where operator A : V — V' is defined by

(Av, w) = (%,W)HHAV, Wiy, Ywe Vi, 61)
and £ : V — R is defined by

vk
(L,w) = <Tl —Bupt —C O+ f(ta), Wiy
el (62)
- <k D B(tntm)e(u’,;k),s(w)> , Ywevh
m=0 g.c

For clearness we drop the indexes and consider in the sequel the problem:
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Fig. 18 Von Mises’ norm in deformed configurations, Og(r) =10, 0 <7 <1
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Fig. 19 Temperature field at final time, g(x,0) =3, 0 <x <1
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Fig. 20 Deformed configurations at final time, Og(¢) =10, 0 <z < 1
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Fig. 21 Von Mises’ norm in deformed configurations, 6g(r) =10, 0 <7 < 1
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Fig. 22 Temperature field at final time, ko(x,0) = 15, 0 <x < 1

Find v € V" such that
(Av, w—v) +y(w) —y(v) > (L, w =)y, YweVh (63)

Numerical approach of (63) can be placed in the frame of duality methods for
variational inequalities [4]. These methods are based on some classical results for
monotone maps given in [6, 24] for instance. For convenience, we give first a brief
introduction to the monotonous maximal operator theory.

Let G be a maximal monotone multivalued map on a Hilbert space H, and let
A be a nonnegative parameter. It can be proved that for all f € H there exists a
unique y € H such that f € (I+ AG)(y). The single-valued map J{ = (I+AG)™!
is a well defined and contraction map on H, and its called the resolvent operator of
G (see [6]).

The map
e
A

Gy,
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is called the Moreau—Yosida approximation of G. It is a maximal monotone,
single-valued, and %-Lipschitz continuous map. Moreover, G, satisfies the follow-
ing important property on which is based our method.

Lemma 1. Let be G a maximal monotone map on a Hilbert space H and G, with
A >0, its Yosida approximation. Then for all y and u in H, we have

ueGy) < u=G),(y+Au). (64)
Proof. Letbe u = G, (x). Then

G
L1
A

X< Au=x—J3x
< JHx=x—Au
< x€(I+AG)(x—Au) =x—Au+ AG(x — Au)
<= Au e AG(x—Au)
<= ueGx—Au)
and by taking x —Au=y we get: u € G(y) <= u= G, (y+ Au) O

Now returning to problem (63), the frictional contact function y is continuous and
convex , and therefore its subdifferential d y is a maximal monotone operator in Vj,,
and (63) can be written using the subdifferential operator:

Find v € V" such that

(Av, )+ (1)) = (L3 W)y, Yw €VE, ©5)
yeEIy(v).

Using relation (64), we obtain equivalently:
Find v € V" such that

{ <.AV, W> + (’}/a W)LZ(Q) = <£‘> W>V’><Va Yw € Vh7

66
Y= (0y)(v+ A7), (66)

where A > 0 and (dy), is the Yosida approximation of d .
Thereby, we apply the following algorithm to solve (66).

(0) Start with some arbitrary value of the multiplier °.
(1) For y/ known, compute v ;j solution to

(A w) + (Y W) ) = (L W)y, Yw e VL (67)
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(2) Update multiplier 7/ as

Y =@ +Ay). (68)
(3) Go to (1) until stop criterion is reached.

Theorem 5. If A is an elliptic operator and A > ﬁ, where « is the elliptic constant
of A, we have _

lim ||/ —v|| = 0.

Jj—yeo

Proof. The mapping (dy),, is %-Lipschitz and thus
ly=7" 111 = 10w+ A7) = @) (v + A7) |1?
1 ) .
< pH(VJrM’)—(V“r/W’)H2
1 . .
= ﬁH(v—v’)—&-l(}/—Y’)Hz
1 . 2 . . .
= ﬁllvajlluI((V*VJ),(Y*Y’)HHY*Y’IIZ-

Therefore

[y =#IP =y =7 > =5 v =P = 2 (=) (=) (69
Using now (66) and (67), we obtain
(A=), w)+(y—7,w) =0, Ywe V",
Thus
oy =v[> < (A=), (v=+)))
=—(y=7,v=").
Substituting in (69) we get
7= FI = Iy =71 2 = gl 4 2 v P

1 1 .
= — i _vi2
(o= ) v =vP.

1
Recalling that A > 70 Ve obtain

ly=Y I =lly=¥"1? > [lv—+/|* > 0.
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The sequence (||y— ¥/||?) >0 is decreasing and positive, therefore
lim ||/ —¥|* =0
Joe

and finally
. J_ 2 _
Jhm v —v||7=0

Remark 2. Under symmetric property of operator A and if y is differentiable this
algorithm is the Uzawa one to reach the sadlle-point of the Lagrangien:

Lv.g) = 5 (A, V)~ (£, w) + (0, W)

L(u,q) < L(u,p) < L(v,p).
Now we turn out to determine the Yosida approximation (dy), . Note first that
(Qy)2 = (@w)~ +aD~" (70)
Indeed, Vu,x € V we have from (64):

u=(dy),(x) < u€ (dy)(x—Au)
= (x—Au) € (y) ' ()
= xe (A +Qy) D)
= u=AI+0y) ) ().

And from (70) we note that the Yosida approximation of (dy) and the resolvent of
(Qy)~! are linked by

@wi =t (7)- @
Let be u,x € V, we have
= (dy)r(x) = u ((3 )’1+M)’1( )
— e 1 A0 (u)
— % ( ‘+1) (u)

==z

vV —R
x — sup{(x, y)Lz(m v(y)}

yev

+1> (e/2) =T} (/).

> \

Definition 1. The map

is the Fenchel conjugate of y.
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Theorem 6. The Fenchel conjugate y* is well defined, continuous and convex.
Its subdifferential is the inverse subdifferential (dw)~" of y, and we have

Y€ (QY)(x) == x€ (dy)(y)- (72)

From (71) and (72), we get the equality linking the resolvent of dy and the Yosida
approximation of (dy*),

1Y) = (0w")1 (). (73)

e

Let us set:

K= {f € LZ(E) S(fow) — l//<w) <0, Vw ELZ(B)}'

Theorem 7. The Fenchel conjugate y* satisfies
v =Ix, on L*(I3), (74)
where I is the indicator function of K.

Proof. Let f € L*(I3) be given. There are two possibilities. If there exists w € L?(I3)
such that

(fsw) = w(w) >0,
then for r > 0:
(f,rw) = w(rw) =r((f,w) = y(w)),
and

vi(f) = sup {(f,y) —w(w)} = +ee.

weL?(I3)

If such a w does not exist then
(f;w) = w(w) <0, ¥w € L*(I3),

but this quantity vanishes for w = 0, so that:

v (f)=0 0
Consequently, we can compute (dy™*) as (dIx) and we obtain
(@v")(y) = (9lk)(y) = Nk (y), Vy €K, (75)

where
N(y) ={f € L*(I3) : (f,w—y) <0, ¥w e K}.

is the normal cone of K in y.
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On the other hand, we can easily prove that the Yosida approximation of (dlx) is

I—Px
A’ 9

(9Ix)s = (76)
where Py is the projection operator on K.
Now, taking into account (73), (75), and (76) we have for allx € V
7Y () = (9y") 1 (Ax)
= (9Ik) 1 (2x)
= A(I—Px)(Ax)
= A%x — APx(Ax).

We get finally

1—Jov
)
(@y)a(x) = —*=()

x—A%x+ APx(Ax)
A
1-A?

=— x+ Px(Ax).

Therefore the multiplier 7/ in (68) is updated by the formula

P = (27 + P (W ARY). 77
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Neighboring Local-Optimal Solutions
and Its Applications

Hsiao-Dong Chiang and Tao Wang

1 Introduction

Local-optimal solutions are of fundamental importance to the study of nonlinear
optimization, which also closely resemble some concepts in biochemistry and elec-
trical power engineering. The present work on local-optimal solutions is closely
related to the various studies of complexity. Indeed, an effective tool for our study
is provided by Sperner’s lemma [1-4], which is stated as follows.

Theorem 1 (Sperner’s Lemma). Every Sperner labeling of a triangulation of an
n-dimensional simplex contains a fully labeled cell that is labeled with a complete
set of the labels.

This lemma yields the Brouwer fixed point theorem [5] and plays an important
role in the proof of Monsky’s theorem [6] that a square cannot be cut into an odd
number of equal-area triangles. On the finite covering by non-polyhedral closed sets,
there are also many interesting corollaries [7, 8] derived from Sperner’s lemma, and
a proposition (see [7, Lemma 2-26]) is rephrased below.

Theorem 2. Consider an n-dimensional simplex Q*, and (n+ 1) closed sets
Vi CR®0 < k < n. Let {v;0 < k < n} be the set of vertices of Q*, and Qy
be the (n — 1)-dimensional face of Q* opposite to the vertex vy. Suppose that
Q* C ULy Vi, and (Qr NVi) = O with vy, € Vi for all 0 < k < n. Then, the intersec-
tion (Ni—o Vi) # 0.

On a proof of Theorem 2, the key ingredient (see Fig. 1) is that every point in Vj is
labeled by L, and under the specified conditions the Sperner’s lemma yields the ex-
istence of a fully labeled cell in an arbitrary finite triangulation of S. By making the
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e

Fig. 1 Theorem 2 can be proved by Sperner’s lemma, and the fully labeled cells are
indicated by bold dots in the triangulations

triangulation smaller and smaller, one can easily show that the collection of fully
labeled cells contains a convergent subsequence whose limit is a common point
shared by V}’s. Indeed, Sperner’s lemma and Theorem 2 can be alternatively inter-
preted in engineering design and nonlinear optimization, and motivate the study of
the algebraic structure of the collection of local-optimal solutions.

The present work is devoted to estimating the number of neighboring local-
optimal solutions, which provides an important index for evaluating the com-
plexity of nonlinear systems in biochemistry and electrical engineering, and the
computational complexity of solution methods for nonlinear optimization. First of
all, we show that there are at least 2n local-optimal solutions neighboring to the
given solution, if the corresponding gradient system of the optimization problem
is spatially periodic in R". Here the gradient is called spatially periodic, if it repeats
the values in regular intervals or periods along n linearly independent directions.
On the lower bound, it is expected that an improved estimation n(n+ 1) can be
obtained by investigating the local-independence of a collection of neighboring
local-optimal solutions. The local-independence has been proved for n = 2, which
is followed by an example for validating the derived bounds. Moreover, some engi-
neering applications are elaborated at last, for interpreting Sperner’s lemma and the
present study.

2 Mathematical Preliminaries

2.1 Nonlinear Optimization and Local-Optimal Solution

We consider an optimization (minimization) problem of the form

mianR" f(x)7 (1)

where the function f : R" — R is differentiable over R”. By convention, a point x*
is called a local-optimal solution of (1) if there is a neighborhood U C R" of x*
such that f(x) > f(x*) for all x € U. It should be apparent that any unconstrained
maximization problem can be directly converted to the form (1), by negating the obj-
ective function. In addition, the gradient V f(x) = 0, at a local-optimal solution x,.
When the determinant of Hessian matrix det(V2 f) # 0 at a point x,, one has that
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the point x* is a local-optimal solution for (1), if and only if the point x* is a stable
equilibrium point of the gradient system x = —V f(x(¢)).

Therefore, we can use the term “local-optimal solution” and “stable equilibrium
point” interchangeably, without causing any confusion. Moreover, two local-optimal
solutions are called neighboring to each other, if their stability regions of the gradi-
ent system intersect on the boundary. For the constrained problems, we shall exam-
ine the projected gradient system [9—11].

2.2 Gradient System and Equilibrium Point

To define the neighboring solutions, we must introduce the gradient system of (1),
say

(1) = F(x(t)) = =Vf(x(t)) € R", 2

where the state vector x = (xp,...,x,) € R?, and F(x) = (Fi(x),...,F,(x)). Here, F;
is a scalar function, for all 1 <i < n. The solution of (2) starting from xy € R" at
t = 0 is called a frajectory and denoted by ¢ (-, xp) : R — R”".

A state vector x* € R” is called an equilibrium point of (2), if F(x*) = 0. In
addition, an equilibrium point x* € R" is hyperbolic, if the Jacobian matrix of F(-) at
x* has no eigenvalues with zero real part, which implies det(V2 f(x*)) # 0. Further-
more, a type-k equilibrium point refers to a hyperbolic equilibrium point at which
the Jacobian has exactly k eigenvalues with positive real part. In particular, a hyp-
erbolic equilibrium point is called a (asymptotically) stable equilibrium point if at
the point each eigenvalue of the Jacobian has negative real part, while it is called an
unstable equilibrium point if all the eigenvalues have a positive real part, which are
an equilibrium point of type-0 and of type-n respectively.

Given a type-k equilibrium point x*, its stable manifold W*(x*) and unstable
manifold W*(x*) are defined as,

Wi (x*) = {x € R : limy oo @ (£,x) = x*},
W (x*) = {x e R" : limy—_oe @ (#,x) = x*}

where the dimension of W*(x*) and W*(x*) are k and (n — k), respectively. The
stability region (or region of attraction) of stable equilibrium point x; is

A(xg) = {x e R" 1 limy 0o @ (£,X) = x4}

As mentioned earlier, there is a one-to-one correspondence between the stable equi-
librium points of (2) and the local-optimal solutions of (1) under the hyperbolic
assumption, and then the neighboring solutions are well defined as follows. Con-
sider two local-optimal solutions x} and x, of the problem (1), we say that the point
x, is a local-optimal solution neighboring to x;, if the closure of stability region
A(x,) intersects that of A(x}), i.e., the set (A(x}) NA(xy)) # 0. Accordingly, such
A(x}) is called a stability region neighboring to A(x,). Here A denotes the closure
of A. Apparently, a stability region is uniquely determined by a stable equilibrium
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point. We thus can just estimate the number of neighboring stability regions when
necessary.

Nevertheless, the structure of stability boundary dA(x;) for the nonlinear system
(2) is complex in general, and the quasi-stability boundary is commonly studied
instead. Indeed, the quasi-stability boundary dA,(x;) of a stable equilibrium point
x5 is defined by JdA(x

(.

s), and the quasi-stability region Ap,(x,) is the open set
int(A(xs)), where int(-) refers to the interior. It is known that the quasi-stability
region A, (x;) C Ap(xs) € A(x,), and the quasi-stability boundary dA,(xs) C dA(x;).
We shall show that the neighboring local-optimal solutions can be equivalently
defined by quasi-stability boundaries, which relies on a general proposition [12].

Proposition 1 (Intersection of Quasi-Stability Boundary). Let x;,x, € R" be two
distinct stable equilibrium points of (2). On the quasi-stability boundary, one has

(9Ap(x5) NIA, (x5)) = (A(xs) NA(XS)).

Proof: See Appendix.
Proposition 1 suggests an equivalent definition of the neighboring solution.

Remark 1. Given two distinct local-optimal solutions x;,x; of (1), the solution x, is
neighboring to x;, if and only if (dA,(xs) NIA,(x})) # 0.

Hence, a stability boundary will always refer to the quasi-stability boundary dA,,
without causing any confusion.

2.3 Characterization of Stability Boundary

Prior to introducing the characterization of stability boundary, we recall that a
set K C R" is invariant regarding the dynamics at (2), if every trajectory of (2)
starting in K stays in K for all # € R. By the definition, the stable manifold is
always invariant. Moreover, for two submanifolds M| and M, of a manifold M,
they meet the transversality condition, if either (1) (M; N M) = 0, or (2) at every
point y € (M} N M,), the tangent spaces of M; and M, span the tangent spaces of
M aty.
On the stability boundary, we make the following assumptions.

(A1) All the equilibrium points are hyperbolic and are finite in number on a stability
boundary.

(A2) The stable and unstable manifolds of equilibrium points on the stability
boundary satisfy the transversality condition.

(A3) Every trajectory approaches an equilibrium point as t — +oo.

Here (A1) and (A2) are generic properties [13] for nonlinear dynamical systems.
Moreover, (A3) is not generic; however, it is satisfied by a large class of nonlinear
dynamical systems, as the electric power system. To study the neighboring solutions,
we need the characterization theorems.



Neighboring Local-Optimal Solutions and Its Applications 71

Theorem 3. (Theorem 4.2 [14]: Complete Characterization of Quasi-Stability
Boundary) Consider a stable equilibrium point xg of the nonlinear dynamical sys-
tem (2) satisfying the assumptions (Al)—(A3). Let xé, i € N be the equilibrium points
on the quasi-stability boundary 0A,(x,). Then, the quasi-stability boundary

aAP (x5) = UxéeaA,, (xs) we (xé) :

This implies that the intersection of stability boundaries is also the union of stable
manifolds of the equilibrium points in the intersection.

2.4 Spatially Periodic Dynamical Systems

A function F = (F1,F,...,F,) : R" — R™ is called spatially periodic [15-19], if
there exist n constants p; > 0 for 1 <i < n, such that Fj(x) = Fj(x+ pje;) for all
x € R" and 1 < j < m. It is worthwhile noting that Fj is a scalar function, and e;
denotes the vector in R” with 1 in the ith coordinate and 0’s elsewhere. In addition,
given a spatially periodic function F (x), an n-tuple p. = (p}, p3, ..., p};) is called the
spatial periods, if each p} > 0 is the minimum positive number p; such that Fj(x) =
F; (x+ pie;) for all x € R*,1 < j < m. In literature, there have been many reports
on the applications of spatially periodic dynamics and systems [15-19] in physics,
chemistry, and electrical engineering, etc. Moreover, the dynamical system (2) is
spatially periodic if the gradient V f is spatially periodic.

Indeed, a spatially periodic function with p} # 27 can be transformed into a
function having p; = 2x for all 1 <i < n. More precisely, given a spatially per-
iodic function fj(x) with spatial periods p., it is easy to check that the function
f(x) = ilx®@ ps/2r) = fi(x1p}/2m, ..., x,p}/2m) is also spatially periodic, with
the spatial period = 2 for all x;’s. This suggests, without loss of generality we can
assume p; = 27 for all 1 <i < n, if the system is spatially periodic.

Additional hypotheses are imposed on the system (2).

(A4) The system (2) is spatially periodic with the spatial period p} = 2x for 1 <
i < n. Moreover, there is at most one stable equilibrium point in each region
of the form IT"_, [x;,x; +-21) C R", for all x = (x1,...,x,) € R".

In other words, if x; is a stable equilibrium point of (2), then any stable equilibrium
point ¥ € R" can be represented by %, = x;+ {, for some { € P. By the condition
(A4), we can write the set P = 217", where Z" is the n-dimensional integer lattice.
Moreover, a vector { € P is called a (spatial-) period vector, and the set P is
the collection of period vectors.

(A5) Every stability region A(x;) is bounded.

The boundedness assumption in (AS5) ensures that all the stability regions are
uniformly bounded for the given spatially periodic gradient system.
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3 Symmetry and Number of Neighboring
Local-Optimal Solutions

In this section, we derive a lower bound on the number of neighboring local-optimal
solutions [12]. The key propositions are presented below, and their proof and other
intermediate results are contained in the appendix. It should be noted that the fol-
lowing analysis and propositions are presented under the hypotheses (A1)—(AS),
until specified otherwise.

We introduce the translation operator Ty (x) = x + {, for x,{ € R" and denote
by 8 the set of all local-optimal solutions of (1). It is straightforward to see that
the inverse T, ! = T,g, and the set S8 coincides with the collection of all stable
equilibrium points of (2). To begin with, the spatial-periodicity of (2) manifestly
leads to the following proposition, and the proof is omitted.

Proposition 2 (Spatial-Periodicity of Equilibrium Points). Let { € P be a spatial-
period vector, and x, be an equilibrium point of (2). Then, T (xe) is also an equilib-
rium point of (2), and Ty (W*(x,)) is the stable manifold of Ty (x.). Moreover, the set

(Tz (W*(xe)) "W*(xe)) = 0, and the closure Te (W5 (x,)) = T (W¥(x,)).

By Proposition 2, the spatial-periodicity of the gradient system (2) yields the
periodicity of local-optimal solutions in & and also that of the corresponding
stability regions of (2). With the properties of extreme points on a convex hull [20,
Corollaries 18.3.1 and 18.5.3], one can easily derive the proposition below.

Proposition 3 (Existence of Extreme Point). For an arbitrary finite point set € =
{¥; 1 <i<q} CRY there always is a point x* € & (Fig. 2), such that

{T (), T )P\ & # 0,

Sor all nonzero § € R". Here, such x* is called an extreme element of the set €.

As an important application, the extreme element in Proposition 3 will serve as
the center of symmetry in the derivation of the proposed lower bound.

By the definition, there is a one-to-one correspondence between the (neighbor-
ing) local-optimal solutions of (1) and the (neighboring) stability regions of (2).
To estimate the number of neighboring solutions, we here estimate the number of

Fig. 2 An illustration for Proposition 3, where the dots are the points in €
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neighboring stability regions, as presented in Proposition 4. This proposition fol-
lows from the Sperner’s lemma and Theorem 2, by constructing the closed sets Vj,
0<k<n.

Indeed, by Proposition 2 the collection .7 of all distinct stability regions of (2)
must be countable and can be described as

o = {Aiie N} = {T;(A,); { € P},

where the set Ay is any given stability region of (2). Moreover, we denote by xes
the unique stable equilibrium point satisfying A; = A(x}).

Proposition 4 (Existence of Neighboring Stability Regions). There exist
(n+1) distinct stability regions {A; ;0 < k < n} C &/, such that the intersection

(m;::OXik) # 0
Proof: See Appendix.

i

This proposition shows that any given stability region must have at least n neigh-
boring stability regions. Based on this intermediate result, we will further prove
at Theorem 4 that 2n gives a general lower bound on the number of neighboring
solutions. Without loss of generality, we assume that iy = k for 0 < k < n at Propo-
sition 4, and x? is an extreme point in {x’s‘ ;0 < k < n} satisfying the property at
Proposition 3. Clearly, Ag is an extreme element in the collection

oy = {A30<i<n). (3)

Besides, we denote by ; € P the vector such that Ty, (A;) = Ao, or to say Tgl (Ag) =
A; for 1 <i<n,with {y=0.

Proposition 5. The elements in the augmented collection
= {T; ' (Ao); 1 i< n}U{Ty(Ao); 1 <i<n} 4)

are pairwise different, and (ANAg) # 0 for all A € ;.
Proof: See Appendix.

The assertion on the augmented collection (4) directly shows that, for any local-
optimal solution x; of the problem (1), the stability region A(x;) has at least 2n
neighboring stability regions. Thus, we are ready to state a theorem on the lower
bound for the number of neighboring local-optimal solutions [24].

Theorem 4 (Estimation Obtained by Symmetry). Consider an optimization prob-
lem minyegn f(x) at (1), such that the objective f is twice-differentiable and the
dynamical system x = —V f(x) at (2) satisfies the conditions (Al)—(AS5). Then, any
local-optimal solution x5 of (1) has no less than 2n neighboring local-optimal
solutions.
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Proof: Apparently, the number of neighboring stability regions gives a lower bound
on the neighboring local-optimal solutions. In the remainder of the proof, we esti-
mate the number of neighboring stability regions.

In light of Propositions 4 and 5, there are (n+ 1) stability regions, say <7, =
{A;;0 <i < n} as defined at (3), such that N}_yA; # 0, and Ay is an extreme el-
ement in .o7,. By taking Ag as the center of symmetry, we obtain an augmented
collection of stability regions <7, at (4). As showed in Proposition 5, there are 2n
distinct elements in .7, and (ANAg) # 0 for all A € 7, This implies that Ay has
at least 2n neighboring stability regions. In other words, the solution x? has at least
2n neighboring local-optimal solutions {T[;lfl ()1 <i<n}U{T(x0); 1 <i<n},
where T, (xi) = x¥ for all 0 < i < n. Proposition 2 suggests that any local-optimal

solution x, and the solution x? must have exactly the same number of neighboring
local-optimal solutions. The proof is completed. U

4 Local-Independence and Proof for Planar Case

By Theorem 4, there are at least 4 = 2n neighboring local-optimal solutions for the
optimization problems in R2. In fact, for the planar problems, we can derive an im-
proved bound on the number of neighboring local-optimal solutions, by investigat-
ing the local-independence of the collection © = {{; 0 <i < n}, where §y =0 and
i’s are defined at (4) for i > 1. Here the collection O is called locally independent,
if the vector difference of any two distinct vectors in © is unique. Note that the col-
lection of neighboring solutions obtained by symmetry at (4) and Theorem 4 forms
a subset of the collection of neighboring solutions obtained by vector differences
(of the vectors in @) at Theorem 5. The main result is stated below.

Theorem 5 (Estimation Obtained by Local-Independence). Consider a planar
optimization problem min, > f(x) at (1), such that f is twice-differentiable and
the dynamical system x = —V f(x) at (2) satisfies the conditions (Al)—(AS5). Then,
the collection O is locally independent for n = 2, and any local-optimal solution x;
of (1) has at least six neighboring local-optimal solutions.

To show the local-independence of @, we need an auxiliary proposition on the
collinear stability regions.

Proposition 6 (Separation of Collinear Elements). The set (AgN TO:Cl (Ao)) =0, for
all §{ € ©\{&}, a > 1 satisfying o € P (Fig. 3).

Proof: See Appendix.

Proposition 6 shows that, for any three collinear stability regions, the middle
region must separate the other two. It also implies that the vectors in © \ {{y} are
linearly independent, which yields the local-independence of ©. Now we are ready
to give a complete proof of the theorem on the improved bound.
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Fig. 3 An illustration of Proposition 6, where the point x? = x; and x% = x,,

Proof of Theorem 5: In light of Proposition 4, there are three distinct stability regions
{Ai,,Ai, ,Ai, }, such that (ﬂ?,:ogiq) # 0. The collection @ is defined by © = {{,; 0 <
g < 2}, where the vector {; € P is uniquely determined by Ty, (A; q) = Ap. Now we
consider the collection of vector differences

er = {Cj] - gjz; Cijjz € @7j1 7&]2}

To complete the proof, we will show that T{] (Ag)NAg # 0 for all { € ©F, and the
collection ©®* consists of six distinct nonzero vectors.

(i) We begin by showing Tg_l(Zo) NAg # 0 for all { € O*. To fix the ideas, we

consider a vector { € ©*, and by the construction there must be distinct vectors
¢’ 8" € @ with §’' # £”, such that § = (' — £”). From the choice of @, one has

AoN Ty (Ao) N Ty (Ao) # 0, 5)
no matter whether the zero vector 0 € {{’,{”}. Then, the set

TC_I(K()) NAy = g_,lg,,(Z()) NAy = Tgu( g_/l(xo)ﬂTg_//l (Zo))

D) TC” (A()ﬂT, (AO) C" ( 0)) #0

owing to (5) and the fact that the translation T« (+) preserves the set cardinality.

The claim that TC_I (Ap) NAg # 0 for all { € O has been justified.

(i) It remains to prove that ©@* contains six distinct vectors, or to say, the vector
difference of any two distinct vectors in @ is unique. First, one trivially has
—§'#£ " and (§'— ") £ (§" =), if ' # " € ©. Two more claims need
to be clarified.

e First, we claim ' # —{" if £’ # ”. On the contrary, if {’ = —{”, then

K()ﬁT, (A()) C” ( 0) = AOQTC”(AO) g// ( 0)

=Ty (Ty, 1% (Ao)onng,,( 0)) C TC//(AoﬂTg,,( 0) =0 ©

in light of Proposition 6. However, this contradicts the property (5). We have
ruled out the case that ' = —{”. Consequently, ' # —{" if {' # (" € ©.
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o Next, we claim (Cl 1 ) # (Cﬁ - 2//)’ if Cllv {/74:2/7 2” € O with Cl/ ¢ {Clﬂvgé}
and " & {{],&)}. Clearly, there must be a nonzero vector in {{{,/, &5, 8)'},
in view of {] Q {&,&} and &' & {{,&}}. One can suppose without loss of
generality that {' = C 1 7 0. Since O only contains two nonzero vectors at n = 2,
we thus can denote by {” the unique nonzero vector in © \ {{;}. Consequently,
(.o c (0.0,

To prove the assertion by contradiction, we assume on the contrary that
the difference ({] — ') = (& — &) for some such ¢, &/, (), C) € ©. Then
5= G+ (G~ 8) = (&' +83) — . By recalling that {2/, &3} € {0,¢"}, one
must have the vector (§{' + §5) = a{” for some o € [0,2]. Now we examine the
vector §J'.

o If §J €{0,0"}, then §' = {| = /" for some o € [—1,2]. We observe that
o & {—1,0,1}; otherwise, a contradiction can be derived similar to (6). When

"€ (—1,0), an application of Proposition 6 leads to

g (AO) é‘//( ) C/ (AoﬂT(l a)c//(AO)):w @)

due to (1 — o) > 1. When o’ € (0,1), the vector {” = {’/0o/, and by analogy
we have

ZoﬂTT,l(Z0> AOmT(l/a)C/( )—@ ®)

in view of 1/0/ > 1. When o/ € (1,2), it also turns out that
XoﬂTg_,l(Ko) AoﬂT /C”( ) =0. )
Obviously, (7)—(9) all contradict the property (5) satisfied by the vectors in ©.

e Otherwise, if §J = {J, it leads to that {' = {] = o/2- {", where a/2 € [0,1].
A contradiction can be derived, by an argument analogous to (8).

A contradiction always arises if ({] — {|') = (§} — &}'). Hence, the claim ({] —

) 7& (Cz J/) must be true, for all §{, ], &}, 5 € © with §{ ¢ {{{',{)} and §[' ¢
{C NG Th1s claim shows that the vector difference of any two distinct vectors in
Ois unique. That is, we have justified the local-independence of ©.

To sum up, O is locally independent for n = 2. Moreover, the collection © con-
tains three distinct vectors, and then there are 6 = 3 - 2 nonzero difference vectors,
as collected in ©*. The verified claims suggest that the collection ®* includes six
distinct vectors, and Tgl (Ao) NAg # 0 for all { € O*. In other words, the stability
region A has at least six neighboring stability regions, so does any stability region
A(xy), in light of the spatial-periodicity by Proposition 2. As a consequence, the
solution x; must have at least six neighboring local-optimal solutions. The proof is
completed. (]

Example: To validate the derived bound, we consider a nonlinear optimization
problem min g2 f(x), say

f(x) = =3cos(x|) — cos(xz) — cos(x; —x2) —0.04x; — 0.06x;. (10)
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A simple computation shows that the gradient —V f(x) = (F} (x), F>(x)) with
F (x) = —3sinx; — sin(x1 —XQ) +0.04, F, (x) = —sinxp — sin(xz —xl) +0.06.

One can easily check that the gradient V f(x) is spatially periodic, but not the objec-
tive function f. The point x¥ = (0.0200,0.0400) is a local-optimal solution to the
problem (10). With reference to Fig. 4 left, the points x§ for 1 <i < 6 are the neigh-
boring local-optimal solutions of x?, by seeing that there is a point xgi’l shared by
the stability boundaries A, (x) and dA,(x?) for 1 <i < 6. They have been summa-
rized in Fig. 4 right. Hence, the solution x” has exactly six neighboring local-optimal
solutions.

As proved by Theorem 5, there should be at least 6 = n(n+ 1) neighboring local-
optimal solutions for x? at n = 2. This equals to the actual number of neighboring
local-optimal solutions. Thus, the number 6 = n(n+ 1) provides the optimal lower
bound on the number of neighboring local-optimal solutions, and this (lower) bound
cannot be improved anymore for the planar optimization problems.

5 Engineering Interpretations

There are a number of engineering applications and interpretations related to the
Sperner’s lemma and the present study of local-optimal solutions.

First of all, Sperner’s lemma has found interesting applications in software engi-
neering [21, 22] and robust machines [23]. Clearly, software systems are of critical
importance in the modern society, and their safety and quality have direct and imm-
ediate effects on our daily lives. In the manufacture and quality assurance process,
an important element is the testing of software and hardware systems, to prevent
the catastrophic consequences caused by software failure. In the industry, an aff-
ordable approach is to use the test suites generated from combinatorial designs,
which involves identifying parameters that define the space of possible test scenar-
ios, then selecting test scenarios to cover all the pairwise interactions between these
parameters and their values. This process is called the construction of efficient com-
binatorial covering suites, and lower bounds on the size of covering suites [21, 22]
have been derived by using the Sperner’s lemma.

Furthermore, it should be noted that some concepts in power engineering [24],
chemical engineering [25, 26], and molecular biology [27] resemble the local-
optimal solutions in nonlinear optimization. Take the protein folding [27] as an
example, the proteins are chains of amino acids and must self-assemble into well-
defined conformations before fulfilling their biological functions, which can be
achieved through a myriad of conformational changes (see Fig.5). By convention,
a conformation refers to a possible structure of the protein, and a conformational
change is a transition between conformations. The resulting structure of folded pro-
tein is called the native state, determined by the sequence of amino acids, which can
be interpreted as the state attaining the global minimum of the Gibbs free energy.
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Local-Optimal Solutions
Neighboring to x?
(1) x 2) x}

—6.2632 0.0200
0.0400 6.3232
@) x @ !
6.3032 6.3032
6.3232 0.0400
6 7 (6) x}
0.0200 || —6.2632

—6.2432 || —6.2432

Fig. 4 Left: The stability region A,(x?) is the area enclosed by the bold curve
that the points x’g, 1 < k <12 lie on. Moreover, the local-optimal solution xé is
neighboring to the solution x?, for 1 <i < 6. Right: A summary of the neighboring
local-optimal solutions, e.g., x! = (—6.2632,0.0400) € R?

The protein folding has a multi-state nature, and there can be many meta-stable
states that can trap the folding and hinder the progress toward the native state. In
this spontaneous optimization process, the meta-stable states play the role of local-
optimal solutions, which may pertain to severe mammalian diseases.

Besides, the present work sheds light on the study of feasible components of the
optimal power flow problem. In a typical power flow model [24], the power balance
equations for the real and reactive power at node k € {1,2,...,N} are described by

Hy_ = (PkG - PkL) — é\’zl VkVi(Gki COS(ek — Oi) + By sin(@k — 9,)) =0,
Hy, = (Q](j — Qé) — Z{il VkV,'(Gki Sil‘l(@k — 9,‘) — By COS(@k — 9,‘)) =0.

A solution 6 = (61, 6,...,6y) € RY to the above equations (fixing PC, P, 09, OF,
Vi) must be a local-optimal solution of the minimization problem: ming gy 1(|H||?,
where the vector function H = (Hy,Ha, . ..,Hay) € R?", and an associated gradient
system is given by § = —VgH - H. The task of finding the local-optimal solutions
of the minimization problem ming gy 1||H|? thus is transformed to seek the sta-
ble equilibrium manifolds of the gradient system, where the stable manifolds of the
stable equilibrium manifold are defined by [24]. Hence, the number of neighboring
stable equilibrium manifolds can be estimated similar to Theorem 4, if the associ-
ated gradient system satisfies the recast conditions in terms of stable equilibrium
manifolds, corresponding to (A1)—(AS).
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Fig. 5 The energy landscape of protein folding

6 Concluding Remarks

We have developed lower bounds for the number of neighboring local-optimal
solutions for a class of nonlinear optimization problems. By the symmetry of the
neighboring solutions, it is shown that there are at least 2n local-optimal solutions
neighboring to a given one, where n is the dimensional of the state space. Moreover,
for the planar problems, we can obtain an improved lower bound 6 = n(n+1) >
4 =2n at n = 2. This is derived from the local-independence of the (n+ 1) neigh-
boring elements at Proposition 4. Nevertheless, it remains unclear whether n(n+ 1)
also provides an optimal lower bound on the number of neighboring local-optimal
solutions for the optimization problems in R"” with n > 3.
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Appendix
A Proof of Proposition 1

Proof: It should be apparent that (A(x;) NA(x,)) = 0, owing to x; # x}. By the
definition dA,(x;) = JdA(x), the task can be equivalently converted to show (A (x;) N
A(xL)) = (dA(x5) NdA(x)). The remaining analysis is given by examining the two

possibilities of the intersection of closures.
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o If (A(xs) NA(x,)) =0, it is straightforward to see that (dA(x;) NJA(x})) = 0. The
conclusion is true. L

e Otherwise, (A(xy) NA(x,)) # 0. Due to (A(x;) NA(x,)) = 0, one has (A(x;) N
A(x])) C (QA(xs) NA(X])) U (A(x,) NA(xs)) C (dA(xs) UJA(x,)). Recalling that
A(xs) is open, we thus have the set (int(A(x;)) \ dA(xs)) C (A(xs) \ 9A(xs)) =
A(x;), so is at the point x/.

To prove by contradiction, we assume on the contrary that there is a point y; €
(A(xs) NA(x])), with either y; & dA(x;) or y; & dA(x}). To fix the ideas, we suppose
v & dA(xy). This implies the point y; € int(A(x,)). Then, an open ball B (y;) exists
in R”", with the center at y; and the radius & > 0, such that B¢ (y;) C int(A(x;)).

Since y; € (A(x5) NA(x})) C A(x}), there must be a convergent sequence of points
i € A(x},), k > 1 with y; = limy_,.. yx. Recalling that A(x}) is an open set, one thus
can choose g > 0 for k > 1, such that Bg, (yx) C A(x}) and lim_.. & = 0. The choice
of yi’s ensures Bg, (yk) € Be(yy) for all k sufficiently large. From the construction of
Be(y;), it yields Bg, (vx) C int(A(x;)) NA(x}), for all large ks.

Let dim(-) be the dimension [28] of a set in a Euclidean space. One can eas-
ily check that dim(Bg, (yx)) = n for all k > 1. Meanwhile, dim(dA(x)) = (n—1)
with dim(A(x;)) = dim(A(x;)) = n, so are the sets for x,. This leads to (Bg, (k) \
dA(xy)) # 0, owing to dim(Bg, (vx)) > dim(dA(xy)). Then, for k > 1 sufficiently
large,

Ax) NAQ) 2 (int(A(xs)) \ 9A(xs)) NA(x,)

)
2 (Be, (i) \ 0A(xs)) N B, (yk) = (Bg (vi) \ 9A(xy)) # 0.

As a consequence, (A(x;) NA(x})) # 0. However, it violates the fact that the stability
regions are disjoint for distinct stable equilibrium points. So the point y; must belong

to JA(x,) and also belong to JA(x}) by analogy. This is valid for every point y; €

(A(x5) NA(x%)). We thus can conclude that (A(xs) NA(x})) = (dA(xs) NJA(x})). O

B Proof of Proposition 4

Toward the proof of Proposition 4, first of all we need the existence of local-optimal
solution (i.e., stable equilibrium point of (2)), which is stated below.

Proposition B.1 (Existence of Local-Optimal Solution). Let %" = {x.; x. € R"}
be the set of all equilibrium points of (2). Then, there exists at least one stable
equilibrium point of (2) in 2.

Proof: From the condition (A1), the equilibrium points are all hyperbolic, which
yields det(VF) # 0 for all equilibrium points of (2). Then, the equilibrium points
are isolated. It follows that the set of all equilibrium points of (2) in R” is countable.
In the sequel, we can represent the set of equilibrium points as 2" = {x{; ¢ € N}.
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To show the conclusion, we assume on the contrary that no point in 2" is stable.
Clearly, the stable manifold W*(x{) is of dimension dim(W*(x{)) < (n—1) <n
for all ¢ € N. Besides, the stable manifold W*(x{) is locally diffeomorphic to a
Euclidean space. Thus, W*(x{) is the union of countably many closed discs B} with
dim(BJ ) =dim(WS(x{)) < (n—1), j € N. In light of the condition (A3)—~(A5), any
point in R" belongs to the stable manifold of an equilibrium point in £, which
shows the space R" = U enUjen By It follows from Sum Theorem [28, Theorem
1.5.3] that ‘

dim(R") < max{dim(B}); q,j € N} < (n—1).

However, this contradicts the fact dim(R”) = n. Hence, the contrary proposition
must be false. In a word, there must be one stable equilibrium point in 2~ C R". [J

Remark B.1. By (A4) and Proposition B.1, there is exactly one stable equilibrium
point x¥ in the subset [0,27)" of the state space R”, which includes exactly a single
(spatial-) period for each x;, 1 <i < n. Proposition 2 also implies that T (x¥) is
the only stable equilibrium point in the region 7 ([0,27)"), for all { € P. More-
over, let x; be a stable equilibrium point in 8, and A be the stability region of x;.
Together with Proposition B.1, Proposition 2, and the assumption (A4), one has
8 = {T¢(xs); £ € P} = T¢(8), for all { € P, which is countable and consists of inf-
initely many points. Besides, the hypotheses (A3)—-(AS) guarantee that the entire
space R” is the union of the closure of the stability regions of the points in 8. Or to
say, R" is the union of closures of the stability regions in &7 = {T; (Ay); { € P}.

When applying the Sperner’s lemma to prove Proposition 4, we need that the
intersection of any compact set with the closures of stability regions in <7 is a union
of finitely many closed sets, which yields that the union is a close set as well. To this
end, an auxiliary proposition is summarized.

Proposition B.2 (Finite Intersection with Compact Set). For any compact set
WY CR", there are only finitely many stability regions in &/ whose closures inter-
sect \P.

Proof: By the condition (AS), each stability region is bounded. Let ¢ be the
diameter of a stability region Ag, and || - || be the usual Euclidean norm of a
vector. By the trlangle inequality, glven an arbitrary £g > 0, if ||§|| > s + ¢, then

lx=y|l > lly— Tg ()||7Hx— ¢ ()||>||Z_,’||—€>€5,forallpomtsx€A and

y € T (Ay). Here, the inverse T, L= T ;.
Let p > 0 be the diameter of ¥, and A; € &7 be a stability region such that
('P NAg) # 0. By setting £5 = 2p, we thus have ||y —x|| > £5 = 2p > p, for all
€ (A,NY),y € Ty (Ay), § € P with || ]| > €5+ £. Then, (Ty(A;) N'¥) = 0 for all
C € P with ||§]| > £+2p, due to (W NA;) #0.
In other words, (T (A;) N'P) # 0, only if § € P with [|{]| < £+ 2p. Observe that
there are only finite number of vectors § € P satisfying ||{|| < £+ 2p. The proof is
completed. (]
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Remark B.2. In view of (Al) and Lemma B.2, there are only finite number of
equilibrium points in the region [0,27)" C R".

Proof of Proposition 4: Consider a closed set 2* in R” which is the closure of a non-
degenerated simplex, with {Qy; 0 < k < n} being the (rn — 1)-dimensional faces of
Q*. Besides, {V;;0 <k <n} are (n+ 1) closed sets in R” such that Q* = (Uy_, Vx),
and (VN Q) = 0 for all 0 < k < n, with the vertex opposite to O being contained
in V. By Sperner’s lemma and Theorem 2, the set ((;_ V) # 0.

To this end, we shall construct such closed sets V;’s, by using the closures
of stability regions. First of all, we arbitrarily choose a simplex Q* € R" with
dim(Q*) = n, where {Qy;0 < k < n} are the (n— 1)-dimensional face set of Q*,
and the point g is the vertex of Q* opposite to Q. Moreover, the simplex can be
selected sufficiently large, such that * contains an open ball B, (x*), where x* € Q*
and the radius p > 0 is the diameter of a stability region. Then, every stability region
A; doesn’t intersect all the faces of Q*, with either (A; N Q) = 0 or g; € A; for each
0 <k < n. In light of Proposition B.2, there are only finitely many A;’s € .7 such
that (A; N Q*) # 0.

The sets V}’s are obtained by induction as follows. Let % be the set of all A; €
</ such that (A; N Qp) = 0 with (A;NQ*) #0, and Vo = U {(AiNQ*); A; € %}
Suppose that the collection .27; and the closed set V; have been obtained, for all
0 < j < k. We denote by 7% 1 the collection of A; € &7 such that

AigUsio o, (AiNQ1) =0 and (ANQ7)#0.

The closed set Vi1 =UJ {(X,- NQ*); A € Fiy } This process is terminated, once
Vy, is obtained. Clearly, U;_o Vi = 2%, and (VN Q) =0 forall 0 <k <n.

Next, we verify that each V; is not empty. Clearly, Vy # 0, and we suppose
V; # 0 for all j =0,1,...,k. It remains to show V;; # 0. Apparently, the ver-
tices {¢;; k< j<n}C ﬂ’j‘-zo Q;, which implies g; & A;, for all A; € U'j‘»zoﬂij and
k < j < n.Since Q* C R" = (Jy s Ai, there must exist one stability region A
that contains the vertex g 1. It is straightforward to see that A+ & UI;':() /. More-
over, by the choice of Q*, the set A;+ doesn’t intersect the face Qi opposite to
gi+1- Hence, Vi1 2 (A NQ*) # 0. By this inductive argument, we conclude that
Vi #0,forall 0 <k <n.

Then, it follows from Theorem 2 that ((;_y Vi) # 0. Let y. be a point in this
nonempty intersection. Since y, € Vi, there must be a set A;, € 7, such that y, €
(A;, N Q") C Vi. We thus obtain a finite subset {A;,; 0 <k <n} C o7, which satisfies
(Mi=0Ai,) 2 Ni—o(Ai, N2*) D {y.} # 0. The first assertion is proved. O
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C Proof of Proposition 5

Proof: Above all, the vector §; # 0, due to x? # x|, Ag # A; and Ty, (A;) = Ag for 1 <
i <n.Meanwhile, §; # C; for all i # j, in light of A; # A and Ty, (A;) = Ag = Ty, (4;).
In addition, T¢, (x9) = xi for all 1 < i < n, where the stability region A; = A(x).

To show that the elements in <7, at (4) are pairwise different, it suffices to only
clarify that Tz, (Ag) # A; for all 1 < i, j <n, and Ty, (Ao) # Ty, (Ap) forall i # j.

e To justify T (Ag) # A, we assume on the contrary that Ty, (Ag) = A; for some
1 <i,j < n. In other words, the corresponding stable equilibrium points satisfy

Ty, (x0) = x]. Observe that Tr,(xh) = XY or TC;I (x9) = xi, by the definition of {;.

Then, xi /2+x]/2=1/2- Tglfl(x?) +1/2- Ty, (x)) = x?. That is, x can be repre-
sented by a convex combination of two elements in {x!,...,x"}. However, this
contradicts the choice of x?, which is an extreme point in the point set. A contra-
diction arises. We thus can conclude that TQ (Ag) £A jforall 1 <i,j<n.

e Next we show Ty, (Ag) # Ty, (Ap), foralli# j, 1 <i, j <n.To prove by contradic-
tion, we assume on the contrary that Ty, (Ag) = T, (Ap) for some i # j. Trivially,
ityields Ag = T¢, ¢,(Ao), and then {; = {;, which violates the choice that {; # ;
for all i # j. A contradiction arises. Thus, the contrary proposition must be false.
We have completed the proof of the assertion that 7y, (Ao) # Tz, (Ao) for all i # j
with 1 <i,j <n.

In a word, the elements in <7, are pairwise different. Moreover, (Tg. (Ap) N
Z()) = (TCI' (Z()) N Té}(zi)) = Tg (X() ﬁgi) = (), due to (Z() ﬂzi) ) ﬂZZOZ,»q # 0.
Therefore, the set (ANAg) # 0, for all A € 7. The proposition is proved. [

D Proof of Proposition 6

Proposition 6 will be proved by contradiction, which relies on the following result
on the plane geometry and simple curves.

Proposition D.1 (Intersection of Simple Curves). Let v be a unit vector in the
plane, and the line { be defined by £ = {Av; A € R}, with S being an open segment
C (. The set H refers to a connected component of the set (R*\ £), which is a
half-plane.

Let y C H be a simple curve satisfying that the set I' = (yUS) forms a Jordan
curve, and the length m|(I") < . Then, the set

YN T (y) # 0, (11)

if the set (SN Ty (S)) # 0 for some o € R.
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Fig. 6 In Proposition D.1, the curve ¥, must intersect ¥, if (SN Sy) # 0

Proof: Let x1,x, be the endpoints of the segment S, and x%,x¢ be that of the segment
S, wWhere Sy = Ty, (S) and ¥y, = T, () (Fig. 6). Without loss of generality we fix
the point x; = Tg,,(x1), where o = ||S]| > 0 is the length of S. That is, the point x;
lies downstream of x; on /.

Observe that the set (H N Ty (S)) € (HNY{) =0, for all a € R. Clearly,
Iy = To(YUS) = Ty (IN) is a Jordan curve. One can also easily check that, the set
I, CH forall e € R, in view of Ir;, = Ty, (Ir) C H. Here Ir refers to the bounded
connected component of the set (R>\ I"), or to say Ir- is the interior enclosed by the
Jordan curve I'. The conclusion is obviously true at o = 0. It remains to examine
the case for o # 0. To fix the ideas, we consider the case that @ > 0 in the sequel.

Since x3 = Ty,c(x1) with o = ||S|| > O, one must have that, the condition
(§NSq) # 0 implies the point x, € Sy and x¢ € S, if oo > 0. To show (YN yy) # 0,
we need to claim that (yN1Ir,) # 0, and (y\Ir,) # 0.

(i) We start by justifying the claim that (yNIr,) # 0.

First of all, we claim the set (B¢ (x2) NH) C Ir,,, for some € > 0. Observe that the
curve ¥, C H and the point x, € ¢ C (R?\ H). Then, the point x, & ¥,,, and thereby
(Be(x2) NYy) = 0 for all € > O sufficiently small. Moreover, the set (B (x2) NH) N
I, = 0 for all € > 0 sufficiently small, in view of (Bg(x2) NH)N{ = 0. By the
simple-connectivity of (Bg(x2) NH), the set

(Be(xa)NH) C I, or (Be(x2)NH) C (R*\Ir,,). (12)

It should be apparent that the ball B¢ (x2) must intersect Ir,, owing to the point
X2 € Sq C Iy and I is the boundary of Ir;,. Then,

(Bg()CQ)ﬂH)ﬂIra D) (Bg()CQ)ﬁIra)ﬁIra = (Bg()Q)ﬂIra) #£0

inlight of I'y € H and I, € H by Conway [29, Corollary 13.1.11]. We can conclude
that the set (Be(x2) NH) C Ir;, for all € > 0 sufficiently small, in view of (12). The
auxiliary claim is proved.

One can easily check that (YN Be(x2)) # 0 for all € > 0, due to xp € 7. It turns
out that the set

(YN Ir,) 2 YN (Be(x2) NH) = (YN Be(x2)) # 0
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for all € > O sufficiently small, owing to Y C H and the verified auxiliary claim
(Be(x2) NH) C Ir;,. We complete the proof for the claim (i).

(ii) Next we prove that (y\Ir, ) # 0.

We begin by showing the point x; ¢ IT;, . Clearly, the point x; & S¢. By the bound-
edness of the set Ir;,, one can easily check that 7}, (x;) doesn’t belong to I, for all
A € R with |4 | being sufficiently large. Let x7 be the point Ty, (x;), for some A <0
with |A| being sufficiently large. It should be apparent that the segment

§* = {Ty,(x1); A < A’ < 0}

doesn’t intersect S and S, in view of ¢ > 0. By recalling that (S*Nyy) C (S*NH) =
0, we thus obtain the set (S* N Ig) = 0. That is, either the segment S* C I, or the
set (S*NIr,) = 0. Hence, the endpoints x} and x; of the segment S* must belong to
a same connected component of the set (R?\ Iy, ). It turns out that the point x; € Ir;,,
owing to x; & Ir;,. The claim is proved.

Since the set 71} is closed, there must be an € > 0 sufficiently small, such that
(Be(x1)N1r,) = 0. Clearly, the set (YN Bg(x1)) # 0 for all € > 0. Then, the set

(r\Ir,) 2 (YN Be(x1)) \Ir,, = (YN Be(x1)) # 0

for all € > 0 sufficiently small. That is, (y\ Ir;,) # 0. Claim (ii) is justified.

At last, the Jordan curve theorem yields (yN1Iy) # 0, in view of the verified
claims (yN1Ir,) # 0 and (y\Ir,) # 0. Evidently, the set (yNSy) C (yN¥) = 0.
Then, the set (YN Ty (Y)) = (YNYe) = (YN Iy) # 0, if (SN Ty (S)) # 0 for some
o> 0.

Similarly, it can be shown that (YN Ty, (7)) # 0, if (SN T, (S)) # 0 with o < 0.
The proof of the proposition is completed. O

Proof of Proposition 6: To prove the conclusion, we will derive a contradiction for
the contrary opposition by applying Proposition D.1. To this end, we construct the
desirable lines and segments as follows (see Fig. 3).

(i) Let n € R? be a unit vector perpendicular to . We consider an arbitrary point
x. € Ao and define a signed distance function by d,,(y) = (y — x., n) for y € R,
Recalling that the closure Ag is compact, we thus have, there are x;, x,, € Ag such that

dn(x1) = inf{dy(y): y €Ao}t:  dn(xu) = sup{dn(y): y € Ao}.
The straight lines are defined by
O={x+A,; LR} = {T{C‘ (x1); A €R}, L, ={x,+AL; 2 €R}.

It is apparent that the region Q2 confined between ¢; and /,, is a simply connected
set, with dy, (x;) < d,(y) < dn(x,) forall y € Q.

(ii) By the assumption (AS5), there is a simple curve yp C Ao satisfying that the
curve ¥, connects the point x; to x,, with the length m; () < eo. For convenience
we use Y to refer to the curve T[;C] (70), where the endpoint x{* = Tazl (x7) and

X = Ta_gl (xy). In addition, we fix the point x = x; and xJ = x,,.
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On the set (2 y1), there are only two connected components, say €; and €,.
Apparently, the components £;, €, C R? are simply connected, though they are not
bounded. Without loss of generality we suppose that the ray r; = {Tl_gl (x); A <

1} C Q) and 1, = {T&1 (x); A > 1} C Q,. It can be easily checked that (£, N
ﬁu) =T
(iii) We proceed by claiming that Ay C €;, and T}' (Ag) C Q, for o > 1.
Observe that the set (AgNy;) C (AoN T, '(40)) =0 and AgN (¢;U¢,) = 0. Then,
(ApN3Ly) =0, where d€2; C y; U (¢;UZ,). In other words,

Ao CQ or (AgNQ)=0. (13)

From the construction, we easily observe that the point x? € £, and x}* € Q, for
all & > 1. In view of (Bq, () Nr,) =0 for o = ||C]| and the point XV & 0, with

x) &7, one has (B¢(x?) N Q,) = 0, for all £ > 0 sufficiently small. This further
yields

(Bs(x?) Ny = Bs(x?) NEUnU,) = (Bs(x?) neQ) # 0.

On the other hand, (B¢ (x?) NAg) # 0 owing to x) € A. Together with Ay C €, it
implies that

(AoN€y) D (AN Be(x])) N (Be(x)) N&2y)
= N

(Be(x)) N Q)
= (AoNQ)NB (x?) (AoﬂBs(xl))#m

for all € > 0 sufficiently small. Finally, the set Ag C €2;, in view of (13). An analo-
gous argument shows that T’Cl (Ag) C Q, for o > 1.

(iv) To prove the conclusion, we assume on the contrary that (AgN T, ( 0)) #0.

By the verified claims, one has (AgNT, ot "(A0)) C(Q,NQ,) =7,. Proposmon 1
implies that (Ap N TaC (A0)) = (dAoNT,, (8A0)), for all o # 0 with o§ € P, due to
(AoNT,, al '(40)) = 0. As a consequence (yl NAg) = (yl *Cl (7 ))=0for o> 1,
in view of 1 € T, (Ag) and (y1 N (AO)) (T ¢ H(40)N Ty '(Ap)) = 0. It turns
out that the set (AgNT_, at '(Ap)) C (}/] \}/1) = {x},xl}.

To fix the ideas, we suppose the point x; € (AgN T, gl (Ao)). Then, the points

1,0 —o -7 2 o e ro1A
x;,x,x, % €Ap, and xj,x;,x, Tg (Ag).

In light of the condition (AS5), there is a simple curve ¥ C Ag such that ¥ joins the
points x[a and xll. Clearly, the curve T{l (y) C Tg' (Ap), whose closure connects
the point x? to x, ~*. Let S be the segment joining the points x} and x; %, with the line
¢ = {;. An application of Proposition D.1 yields that (YN TC’I( Y)) # 0, in view of

(SN TC*1 (S)) 2 {2V} # 0. In other words, the set (AoﬁTgl (A9)) 2 (yﬂT H(y) #0,
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which, however, violates the fact (Ao N T{l (Ap)) = 0. The contrary opposition must
be false. We thus can conclude that (AgN T, Cl (Ap)) = 0 for o > 1. The proof is
completed. U
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General Traffic Equilibrium Problem
with Uncertainty and Random Variational
Inequalities

Patrizia Daniele, Sofia Giuffre, and Antonino Maugeri

1 Introduction

In the last decades some papers (see [3-5, 8]) have been devoted to the study of
random variational inequalities or general random equilibrium problems. Particu-
larly Gwinner and Raciti in [5] present a class of linear random variational inequal-
ities on random sets and give measurability, existence, and uniqueness results in
a Hilbert space setting. Moreover in a special case they provide an approximation
procedure. In paper [6] the authors apply the theory of random variational inequali-
ties to study a class of random equilibrium problems on networks in the linear case,
whereas the application to nonlinear random traffic equilibrium problem is treated
in [7]. In paper [9], which is devoted to the study of a general infinite dimensional
complementarity problem, the authors consider a random traffic equilibrium prob-
lem in the framework of generalized complementarity problems.

The aim of this paper is to consider a general random traffic equilibrium problem,
namely a traffic problem where the data are affected by a certain degree of uncer-
tainty, to give a random generalized Wardrop equilibrium condition and to show that
the equilibrium conditions are equivalent to a random variational inequality.

The need to develop a random model of the traffic network arises because the
path flows as well as the travel demand are often variable over time in a non-regular
and predictable manner. Such an uncertainty can be caused not only by several
factors such as the particular hour of the day, the particular day of the week, the
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particular week of the year but also by a sudden accident or a maintenance work.
Moreover, since the demand itself is dynamic and can change randomly, we propose
a framework which is able to handle random constraints.

We choose for our model a Hilbert space setting, which allows us to obtain,
under general assumptions, existence and uniqueness results. The paper is organized
as follows. In Sect. 2 the detailed random traffic equilibrium model is presented, a
random generalized Wardrop equilibrium condition is stated, and a variational char-
acterization of the equilibrium is given. In Sect. 3 we provide the proof of the main
result and in Sect. 4 some existence results are discussed. Finally Sect. 5 summarizes
our results and future work.

2 The Model and Main Results

For the reader’s utility we introduce in detail the model of random traffic equilib-
rium problem (see [2] for the deterministic case). A traffic network consists of a
triple (N,A,W), where N = (N1,N,,...,N,) is the set of nodes, A = (Ay,...,A,)
represents the set of the directed arcs connecting couples of nodes, and W =
{wi,...,w;} C N XN is the set of the origin—destination (O/D) pairs. The flow on
the arc A; is denoted by f; and the uncertainty which affects the knowledge of f; is
given by the dependence of f; on w, namely f; = f;(®), where @ € Q and (2,.A, P)
is a probability space. We will set f(®) = (fi(®),..., fx(®)). We call a set of con-
secutive arcs a path and assume that each O-D pair w; is connected by r; > 1 paths,
whose set is denoted by R, j = 1,...,/. All the paths in the network are grouped
into a vector (Ry,...,R;;). We can describe the arc structure of the path by using the
arc-path incidence matrix A = {8}, i = 1,...,n, r = 1,...,m, whose entries take
the value 1 if A; € R, and 0 if A; ¢ R,. To each path R, there corresponds a flow
F(®), ® € Q, and the path flows are grouped into a vector (Fi(®),...,F,(®)),
which is called the path flow vector. The flow f; on the arc A; is equal to the sum of
the flows on the paths which contain A; so that f(®) = AF (), ® € Q. Let us now
introduce the unit cost of going through A; as a function ¢;(f(®)) > 0 of the flows
on the network, so that ¢(f(®)) = (c1 (f(®)),...,c,(f(®))) denotes the arc cost on
the network. Analogously C(F(®)) = (C1(F(®)),...,Cu(F(®))) will denote the
cost on the paths. Usually C(F ( )) is given by the sum of the costs on the arcs

building the path: C,( Z Oirci(f , 0 € QorC(F(w)) =ATc(AF (w)).

Instead of assuming that the paths have an infinite capacity, we suppose that there
exist two random capacity vectors A (), U(®), A(®) < p(®), such that

0<A(w) <F(w) <u(w) P-as.

For each pair w; there is a given random traffic demand D;(w) > 0 so that
(D(w),...,D;(w)) is the demand vector. We require that the so-called traffic con-
servation law is fulfilled, namely that the demand D;(w) verifies
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m
Y ¢yF(0)=Dj(w) j=1,...,1 P-as.,
r=1

where @ = {(pj,}, j=1,...,0, r=1,...,m, is the pair-incidence matrix whose el-
ements @;. are equal to 1, if the path R, connects the pair w;, and equal O other-
wise. In order to guarantee general existence results under minimal assumptions
we set our problem in the framework of a Hilbert space and, precisely, we as-
sume that F(w) € L*(Q,P,R™), D(w) € L*(2,P,R) and the random cost function
C(F(w)) : L*(Q,PR™) — L*(2,P,R™). By L>(Q,P,R™) we denote the class of
R™-valued functions defined in €2, which are square integrable with respect to the
probability measure P, while the symbol (-, -) will denote the standard scalar product
in R™. Moreover we set

((G,F))z/g(G(w),F(a)))dPa, VF,G € L*(Q,P,R™).

Then the set of random feasible flows is given by
Kp = {F(0) € L*(2,P,R™) : A(0) < F(0) < u(0),®F (o) = D(0)P-as.},

which is a closed, bounded, and convex subset of LZ(Q,P, R™).
Setting Vo € Q2

K(w) ={F(0) eR": A(0) < F(0) < u(0), PF(0) = D(w)},
Kp may be rewritten as
Kp = {F(0) € L*(2,P,R™) : F(0) € K(®)P-as.}.
We can give the following definition of equilibrium.

Definition 1. A distribution H € Kp is an equilibrium distribution from the user’s
point of view iff

Vw; € W, VRy, Ry € R; and P-a.s. there holds (1)
Cy(H(0)) < C(H(0)) = Hy(0) = pg(@) or Hy(w) = As(@).

Now we prove that an equilibrium distribution can be characterized by means of
a variational inequality.

Theorem 1. H € Kp is an equilibrium flow according to Definition 1 iff it is a solu-
tion to the variational inequality:

(C(H).F ~H)) = [ (C(H(@)).F(0) ~H(@)dPy >0, YFeKp, (@)

or, in compact form, using the expectation EP

EP({(C(H),F —H)) >0,
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where

Ep(<H1,H2>)Z/Q<H1(CO),H2((D)>de VHl,H2€L2(Q,P,Rm).

Remark 1. In Sect. 3, during the proof of Theorem 1, we implicitly prove that
variational inequality (2): Find H € Kp such that

| (c(H(@)).F(@) - H(@)dpy >0, VFeKy

is equivalent to the pointwise finite dimensional variational inequality (3) with
random parameter:
Find H € Kp such that P-a.s.

l
Y Y C(H()(F(0)—H(0) >0, YF(o)eK(). 3)
J=IRER;

In the paper [9] the authors study the problem: Find H(®) € K(®) such that
!
Y, Y G(H(0)(F(0)-H(w) >0, VF(o)ecKo)
J=1RER

without a priori assuming that H € Kp, but looking for conditions which ensure that
H € Kp. In Remark 1.1 in [9] they give a positive answer under suitable conditions.

Moreover the relationship between the two formulations is further specified in
Proposition 1 in [7] (see also Remark 6.1).

Remark 2. Definition 1 is equivalent to the following condition: for every w; € W
there exists a random variable C/(®) such that for all R, € R; and P-a.s.
C,(H(®)) < C/(0) = H,(0) = (o)
C/(Hw))>C(w) = H,(0) =A(0)"
If y, = oo for all r, then_ the above conditions can be rendered as follows: for
every w; € W and P-a.s. if C/(®) := ming,ex, C;(H(®)), then

(C(H (o)) — C/(0))(H(0) — A (0)) =0 VR, €R; P-as.

3 Proof of Theorem 1

First, we prove that (1) implies (2). By assumption H € Kp is an equilibrium distri-
bution and it is enough to prove that P-a.s.

l
Y Y GH(@)(F(0)~H/(0) >0, VF(0)eK@®), @&
J=1RER;

because, by integrating in £2, we get (2).
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Let w; € W be an arbitrary O/D pair. We denote by
Aj:={R; e R Hy(®) < g(w)} and Bj:={R;€R;:H(w)> A(w)}.

From (1)
C,(H(w)) > Cs(H(w)) forallR, € Ajand R, € B;.

So, there exists y; € R such that

me >vy; > sup Cs(H(w)).
it ColH(@)) 2 sup Cu(H(0)

Let F(w) € K, be arbitrary. Then, for every R, € R, C.(H(w)) < v, implies R, ¢
Aj, hence H,(w) = y1,(w), therefore F,.(®) — H,(®) < 0 and
(Cr(H(w)) - ;) (F(0) — H(w)) = 0.
Likewise, C.(H(®)) > v; implies (C,(H(®)) — ¥;j) (F-(®) — Hr(®)) > 0.
Thus,

Y, G(H(0))(F(0)—H (o) >y Y (F(0)-H/(o)

RER; RER;
=7v;(D(w) —D(w)) =0.

Hence,
< C(H(w)),F(w)—H(0)>= i Z C/(H(w))(F(w)—H (w)) >0
J=IRER;
VF(0) € K,,
and (2) holds true.

Now, we prove that (2) implies (1). Ad absurdum we assume that there exist
wj € W, Ry, Ry € R; and a set E € A with P(E) > 0 such that in £ C,(H(®)) <
Cs(H(w)), but Hy(w) < pg(w) and Hy(®) > As(@).

We set: §(w) = min { iy (®) — Hy(o),Hy(0) — A;(w)} > 0inE.

Consider now the flow F*(®) defined as:

F'(0)=H(w) in Q\E

Hr((l)) lf}"#q,
(w) = { J(0)+0(w) if r=¢q inE.
Hy(w)—d6(w) if r=s
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It is easy to verify that F*(®) € Kp, then we can calculate the variational inequality
2)in F*(w) :

| (€t (). F* (@)~ Hw)dPo = [ C,(H(®) - C.(H(@)] 8(0)dPy <0

which is an absurdity.

4 Existence of Equilibria

There are two standard approaches to the existence of equilibria, namely with and
without a monotonicity requirement (see [10]). We shall employ the following
definitions.

Let E be a reflexive Banach space over the reals, K C E be a nonempty, closed,
and convex set, A : K — E* be a map to the dual space E* equipped with the weak™
topology.

Definition 2. A mapping A from K to X* is called pseudomonotone in the sense of
Brezis (B-pseudomonotone) iff

1. For each sequence u, weakly converging to u (in short u, — u) in K and such
that limsup,, (Aup, u, —u) < 0 it results that:

liminf(Auy,, u, —v) > (Au,u—v), YweK;

n

2. For each v € K the function u — (Au,u — v) is lower bounded on the bounded
subsets of K.

The following Theorem holds (see [1, 10])

Theorem 2. Let K be a nonempty convex and weakly compact subset of E and A a
B-pseudomonotone mapping from K to E*. Then variational inequality

(Au,y—uy >0, WYvekK
admits solutions.

In our framework, since Kp is a nonempty convex and weakly compact subset of
L?(Q,P,R™), Theorem 2 becomes

Theorem 3. If C : L>(Q,P,R™) — L*(Q,P,R™) is B-pseudomonotone, namely

1. For each sequence H, weakly converging to H (in short H, — H) in Kp and
such that limsup, ((C(H,),H, — H)) < 0 it results that:

lin}linf«C(Hn),Hn —H)) > ((C(H),H-v)), YweKp;
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2. For each v € Kp the function H — ((C(H),H — v)) is lower bounded on the
bounded subsets of Kp,

then variational inequality (2) admits solutions.

In the case of monotone approach, we need the following definitions.

Definition 3. The map A : K — E* is said to be pseudomonotone in the sense of
Karamardian (K-pseudomonotone) iff for all u,v € K
(Avu—v) >0 = (Au,u—v)>0

Definition 4. A mapping A : K — E* is lower hemicontinuous along line segments,
iff the function

é — <A§ U= v>
is lower semicontinuous for all #,v € K on the line segments [u,V)].

The following theorem holds (see [10]).

Theorem 4. If K is convex, closed, and bounded and A is a K-pseudomonotone and
lower hemicontinuous along line segments mapping, then variational inequality

(Au,v—u) >0, Wwek
admits solutions.

In our framework, Theorem 4 becomes

Theorem 5. If C : L*(Q,P,R™) — L*(Q,P,R™) is K-pseudomonotone, namely for
allH,v € Kp

({C(v),H—=v)) >0 = < C(H),H—v>>0
and lower hemicontinuous along line segments, namely the function
&= ((C(8),H—v))

is lower semicontinuous for all H,v € Kp on the line segments [H,v], then varia-
tional inequality (2) admits solutions.

Let us remark that if we assume that C is continuous and verifies the condition
3e1 > 0: |[C(H(®))] < 1| H(0)]), P-as.,

then C results to be lower hemicontinuous along line segments.
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5 Conclusions

In this paper we applied the random approach used in [10] to the traffic network
problem (see also [6]) with capacity constraints on the path flows. Starting from the
generalized Wardrop equilibrium condition governing the dynamic traffic networks
in [2], we considered a model which includes uncertainty on the data, specifically on
the path flows as well as on the travel demand. So we introduced a general random
traffic equilibrium problem, and we gave a random generalized Wardrop equilib-
rium condition and showed that the equilibrium conditions are equivalent to a ran-
dom variational inequality. Moreover we provided some existence theorems. Further
work is to study in this framework the duality theory and to provide an approxima-
tion procedure, but also to extend the random approach to other situations such as
the case of mergers/acquisitions.
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Computational Complexities of Optimization
Problems Related to Model-Based Clustering
of Networks

Bhaskar DasGupta

1 Introduction

For complex systems of interaction in biology and social sciences, modeled as
networks of pairwise interactions of components, many successful approaches to
mathematical analysis of such networks rely upon viewing them as composed of
subnetworks or modules whose behaviors are simpler and easier to understand.
Coupled with appropriate interconnections, the goal is to deduce emergent proper-
ties of the complete network from the understanding of these simpler subnetworks.
Such modular decomposition of networks appears quite often in the application
domain. For example, in social networks it is a common practice to partition the
nodes of a network into modules called communities such that nodes within each
community are related more closely to each other than to nodes outside the commu-
nity [14, 17,21, 35-37, 42], and similarly in regulatory networks modular decompo-
sition has been used in studying “monotone” parts of the dynamics of a biological
system [12, 16] and more generally in studying a network in terms of intercon-
nectivity of smaller parts with well-understood behaviors [22, 43]. These problems
are also closely connected to many partitioning problems in graphs based on local
densities studied in other computer science applications. Simplistic definitions of
modules traditionally studied in the computer science literature, such as cliques,
unfortunately do not apply well in the context of biological and social networks and
therefore alternate methodologies are most often used [14, 17, 21, 35-37, 42]. As in
virtually all works on network partitioning and community detection, we consider
a static model of interaction in which the network connections do not evolve over
time. In this chapter we focus on one approach of modular analysis of networks,
namely the model-based approach.
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2 Model-Based Decomposition

In the context of biological or social interaction networks, an important problem
is to partition the nodes into a set of so-called communities or modules of statisti-
cally significant interactions. Such partitions facilitate studying interesting proper-
ties of these graphs in their applications, such as studying the behavioral patterns of
a group of individuals in a society, and serve as important steps towards computa-
tional analysis of these networks. The general model-based decomposition approach
can be described in the following manner:

e We have an appropriate “global null model” G of a background random graph
providing, implicitly or explicitly, the probability p,, of an edge between two
nodes u and v.

e The general goal is to place nodes in the same module if their interaction patterns
are significantly stronger than those inferred by G and in different modules if their
interaction patterns are significantly weaker than those inferred by G. No a priori
assumptions are made about the number of modules as opposed to some other
traditional graph clustering approaches.

As an example of applicability of the above framework of model-based clustering
framework, consider the following maximization version of the standard {4, —}-
correlation clustering that appears in the computer science literature extensively
[5, 10, 46]:

Input: an undirected graph G = (V, E) with each edge {u,v} € E having
alabel ¢,, € {1,—1}.
Valid solution: a partition Vy,...,V; of V.

k
Objective: maximize 2 2 lyy.

i=luyeV;

The above problem can be placed in the above model-based clustering framework
in the following manner:

e Let H be the graph consisting of all edges labeled 1 in G.
o Let
_Jo,ife,, =1
Puy = 1, otherwise
e Let the modularity of a partition V; be

MV = Y, (amv_Pu,v)v

u,veV;
where
o 1, if {u,v} is an edge of H
“Y 771 0, otherwise.

e Let the total modularity of the partition Vi, ...,V be defined as Ef: M.
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As is well known, every graph decomposition procedure has both pros and cons, and
there exists no universal decomposition procedure that works for every application.
Any decomposition method that relies on a global null model such as the one
currently discussed suffers from the drawback that each node can get attached
to any other node of the graph; for another possible criticism, see [18]. To de-
sign and analyze a model-based decomposition, one faces at least the following
three choices, each being influenced by the appropriateness in the corresponding
applications:

(C1) What should be an appropriate null model G?

(€2) How should we precisely measure the statistical significance (“fitness”) of
an individual module of the given graph?

(C3) How should we combine the fitnesses of individual modules to get a total
fitness value for the entire network?

In this chapter, we begin with a specific choice of (C1)—(C3) that leads us to the
so-called modularity clustering, an extremely popular decomposition method in
practice in the context of both social networks [1, 32, 37, 38] and biological net-
works [22, 43]. Subsequently, we discuss a few other choices for (C1)-(C3). An
algorithm A for a maximization (resp., minimization) problem is said to have an
approximation ratio of € (or simply an €-approximation) provided A runs in poly-
nomial time in the size of the input and produces a solution with an objective value
no smaller than 1/e times (resp., no larger than € times) the value of the optimum.
We assume that the reader is familiar with standard concepts in algorithmic design
and analysis such as found in textbooks [13, 19, 48].

3 Basic Modularity Clustering

To simplify discussion, suppose that our input is an undirected unweighted graph'
G = (V,E) of n nodes and m edges, let A = [a,,,] denote the adjacency matrix of
G,ie.,

C(1,if (uv) €E
Guy = 0, otherwise,

and let d,, denote the degree of node u.

3.1 Definitions

In the basic version of modularity clustering as proposed by Newman and others [21,
32, 35, 36, 38], the following options for (C1)—(C3) were selected.

! The definitions can be easily generalized for directed and weighted graphs; see Sect. 3.5.
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Choice for (C1):  The null model G is dependent on the degree-distribution of the
given graph G and is given by p,, = % with u = v being allowed. Such
a null model preserves the distribution of the degree of each node in the
given graph in expectation, i.e., Y,,cy Puy = dy.

Choice for (€2): If nodes u and v belong to the same partition, then one would
expect a,,, to be significantly higher than p,,,. This is captured by adding
the term a,,, — pu,» to the objective value of the decomposition. Thus, for a
subset of nodes V/ C V, its fitness is given by M(V') =3, , ey (duy — Puy)-

Choice for (3): A partition 8 = {V},...,Vi} of nodes” has a total fitness (“mod-
ularity”) of

k k
M(S)=LZM(VI-)—L <2<au,v—d“d”>> ()

2m 5 2m S uyev; 2m

and our goal is to maximize M(8) over all possible partitions 8 of V. The ﬁ
factor is introduced only for a min—-max normalization of the measure [23]
so that 0 < maxg { M(8) } < 1.

Formally, the modularity clustering (McC) problem is defined as follows:

Problem name: modularity clustering (MC).
Input: an undirected graph G = (V,E).
Valid solution: a partition 8 = {V;,..., Vi } of V.
- - 1< d,d,
Objective: maximize M(8) < D (a,” — >> .

2m 5 uyev: 2m

In the sequel, we use OPT to denote the maximum modularity value maxg {M (S)}
of a given graph G. M(8) can be equivalently represented via simple algebraic
manipulation [8, 15, 37, 38] as

2

where m; is the number of weights of edges whose borh endpoints are in the cluster
Vi and D; = 3¢y, d, is the sum of degrees of the nodes in V.

Yet another equivalent way to represent M(8), which was found to be quite useful
in proving NP-completeness when inputs are restricted to graphs with the maximum
degree of any node bounded by a constant, is the following. Let m;; denote the
number of edges one of whose endpoints is in V; and the other in V; and D; = ¥,y d,,
denote the sum of degrees of nodes in cluster V;. Then,

o dd,
M(Vl) ~ om <MGVZV¢V ( m au.v))

2 Each V; is usually called a “cluster”.
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and this gives us the following third equation of modularity (note that now each pair
of clusters contributes to the sum in Eq. (3) exactly once):

Dl‘Dj m,'j
M(8) = Z (Zm2 T m )
Vi,Vii<j

An important special case of the McC problem arises [8, 15] if we restrict the
maximum number of partitions of V to some pre-specified value x. This special
case, referred to as the modularity x-clustering (xK-MC) problem, is thus formally
defined as follows.

3)

Problem name: modularity x-clustering (x-MC).
Input: an undirected graph G = (V,E).
Valid solution: a partition 8 = {Vy,...,V,} of V with k < k.

I . 13 dyd,
Objective: maximize M(8) = — > | auy— :

2m i=1 \u,veV; 2m

In the sequel, we use OPT to denote the maximum modularity value of the modu-
larity x-clustering problem for a given graph. The usefulness of the x-McC problem
in designing approximation algorithms for the McC problem is brought out by the
following lemma.

Lemma 1 ([15]). For any k > 1, OPT, > (1— 1) OPT.

Thus, in particular, OPT, > OPT/2 and, for large enough k, OPT , approximates
OPT very well.

3.2 Absolute Bounds for OPT and OPT

Although it is difficult to specify accurately the range of values that OPT or OPT
may take for general graphs, it is possible to derive some bounds when the given
graph G has some specific topologies. For example, bounds of the following kinds
were demonstrated in [8, 15].

e If G is a complete graph, then OPT = 0.

e If G is an union of k disjoint cliques each with 7/k nodes, then OPT =1 — %

e If Gis ad-regular graph (i.e., a graph in which every node has a degree of exactly
d), then

OPT > 07%:16 if n > 40d°

OPT > % — 2 otherwise

e If Gis a graph in which every node has a degree of at most d and d < %, then
OPT > L.
e For any graph G and any x, 0 < OPT, <1— %
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3.3 Computational Hardness Results

3.3.1 NP-Hardness Results

It was shown in [8] that computing OPT is NP-complete for sufficiently dense
graphs (graphs in which nodes have degrees roughly Q (1/n) for every node) and
this NP-completeness result for dense graphs holds even if one wishes to compute
just OPT),. A basic idea behind many of these reductions is that large size cliques of
the graph are properly contained within a community. The authors in [15] show that
computing OPT; is NP-complete even if the given graph is G sparse and regular,
namely even if G is a d-regular graph for any fixed d > 9. The NP-completeness
proof in [15] for sparse graphs, motivated by the proof for this case in [8], is
from the graph bisection problem for 4-regular graphs which is known to be
NP-complete [28]. Intuitively, in this reduction an optimal solution for the modular-
ity 2-clustering problem is constrained to have exactly the same number of nodes in
each community.

3.3.2 Beyond NP-Hardness: APX-Hardness Results

A minimization problem is said to be APX-hard if it cannot be approximated within
a factor of 1+ € for some constant € > 0 under the assumption of P # NP. The
authors in [15] showed that computing OP T for any x > 1 is APX-hard for dense
regular graphs, namely for d-regular with d = n — 4. This approximation gap is
derived from the following approximation gap of the maximum independent set
problem for 3-regular graphs [11]:

Problem name: Maximum Independent Set for 3-regular graphs (3-
Mis).
Input: a graph H = (V,E) that is 3-regular, i.e., every node
has a degree of exactly 3.
Valid solution: a subset V' C V of nodes such that every pair of nodes
uandvin V' is independent, i.e., {u,v} € E.
Objective: maximize |V'|.
A;)S p;:zlvnel;till?;lgﬁp: NP-hard to decide if ‘I/I}g)é{ V'| } > 2|V| or if

v} < v,
max {[V/| } < 5[V

The reduction is carried out by providing the edge-complement of the graph H as
the input graph G to the Mc problem, i.e., the input to Mc is G = (V,E) with
E ={{u,v}|u,v €V, {u,v} & F}. The reduction was completed in [15] by proving
the following bounds for any x:
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o Ifmaxycy { \V/|} > 12|V then OPT > %fﬁf,

o Ifmaxy.cy { \V’|} < 7oq|V| then OPT . < G235

This provides the desired inapproximability result with e =1 — % ~20.0006. The
intuition behind a proof of the above bounds is that, for the type of sparse graphs H
that is considered in the reduction, edge-complements of large-size independent set
of nodes in H must be properly contained within a cluster of G and that OPT, <

OPT,; for any x > 2.

3.4 Approximation Algorithms

In this section, we review several combinatorial and algebraic method for designing
approximation algorithms for the M and x-Mc problems.

3.4.1 Greedy Heuristics

As a first attempt at designing approximation algorithms for Mc, one may be
tempted to use a greedy approach of the following type that can easily be imple-
mented to run in O (n*logn) time [8]:

1. Start with each node being a separate cluster. Let €0 = { {v} [lveVv } be
this initial clustering.
2.fori=1,2,....n—1do
e Merge two clusters of C'~! that yield a clustering with the largest
increase or the smallest decrease in modularity.
o Let C' be the new clustering obtained.
endfor
3. Return max { M (€') } as the solution.

Consider the graph G = (V,E) consisting of the union of two disjoint cliques V;
and V,, each having /2 nodes, along with 7/2 additional edges corresponding to
an arbitrary maximum bipartite matching { {u,v}|u € V1, v € V2 } among nodes
in Vi and V,. Brandes et al. [8] observed that the above greedy approach has an
unbounded approximation ratio on this graph by showing that the greedy algorithm
obtains a modularity value of O even though OPT is very close to 1/2. Thus, greedy
approaches do not seem very promising in designing algorithms with bounded app-
roximation ratios.
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3.4.2 Linear Programming-Based Approach

It is possible to formulate the modularity clustering problem with arbitrarily many
clusters as an integer linear program (ILP) in the following manner. For every two
distinct nodes u,v € V, let x,,, be a Boolean variable defined as:

P 0, if u and v belong to the same cluster
“V7" 1 1, otherwise

One constraint of partitioning the nodes into clusters is the so-called triangle
inequality constraint:

if u,v and v, z belong to the same cluster then u,z must also belongs to the same cluster.

This is easily described by the linear (inequality) constraint x,, ; < x,,, +x,,;. Noting
that 1 —Xx, , is the contribution of a pair of distinct nodes u, v to the modularity value
computed by Eq. (1), we arrive as the following equivalent ILP formulation of the
Mc problem [1, 8, 15]:

Ay — dydy d2
maximize Y, 27'” (1 —=xuy) — 2—"
vey <M

uveV: u#tv m
subject to
Vu#v#z: X <X+ X,
Yu#v: x,,€{0,1}

However, solving an ILP exactly is in general an NP-hard problem. A natural
approach is therefore to consider the linear programming (LP) relaxation of the ILP
obtained by replacing the constraints “VYu #v: x,, € {0,1}” by Vu#v: 0<x,, <1,
solving this LP in polynomial time [26], and then use some type of “rounding”
scheme to convert fractional values of variables to Boolean values.> The authors
in [1] used such an LP-relaxation with several rounding schemes for empirical
evaluations.

Unfortunately, [15] showed that this LP-relaxation-based approach, irrespec-
tive of the rounding scheme used, may not be a very good choice for designing
approximation algorithms with good guaranteed approximation ratio in the follow-
ing manner. Let OPT denote the optimal objective value of the LP obtained from
the ILP. Then, it was shown in [15] that, for every d > 3 and for all sufficiently large
n, there exists a d-regular graph with n nodes such that the integrality gap OPT¢/opPT
is Q(+/d ), and thus an approximation ratio of o(y/z ) would be impossible to achieve
irrespective of the rounding scheme used.

3 See [48, part I] for further details of such an approach.
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3.4.3 Spectral Partitioning Approach

Spectral partitioning methods for graph decomposition problems are well known
[41, 45]. This approach was first suggested by Newman in [37] for the 2-Mc prob-
lem but a theoretical analysis of the approximation ratio of this approach is not yet
known. Consider the n x n symmetric matrix W = [w,,] with w;,, = ay, — dﬁ‘r‘f;,
and suppose that W has an eigenvector u; with a corresponding eigenvalue b; for

i=1,2,...,n. For every node u € V, let x,, be a selection variable defined as:

- —1, if u is assigned to cluster 1 (V})
" 1, if uis assigned to cluster 2 (Vo =V \ V})

and let X = [x,] be the 1 x n column vector of these selection variables such that
X =3, aju; with a; = u} X. Then, it can be shown that
1 n

4m 5

M(S) (uf X)b;.

Thus, one would like to select X proportional to the eigenvector with the largest
eigenvalue to maximize M(S). However, such an eigenvector will in general have
entries that are not -1 but real values. This would therefore require exploring some
nontrivial “rounding scheme” for such an eigenvector to convert the real values of
the components of the eigenvector to +1 such that the new value of objective does
not decrease too much; currently, no such rounding scheme is known.

This approach can also be applied to the M C problem by using the same approach
recursively to decompose the clusters V| and V, adjusting the objective function
to reflect the fact that certain edges have been deselected by the partitioning, and
continuing in this fashion until the modularity value cannot be improved further.

3.4.4 Quadratic Programming-Based Approach

Using the fact that OPT, > OPT/2 > OPTx/> for any k > 2, it follows that an
algorithm for 2-Mc having an approximation ratio of € also provides an algorithm
for k-Mc having an approximation ratio of 2¢. The quadratic programming-based
approach discussed in this section provides an approximation algorithm for 2-Mc,
thereby also providing an approximation algorithm for x-Mc for any k¥ > 2. As in
the previous section, for every u € V let x, be a selection variable defined as:

. —1, if u is assigned to cluster 1 (V})
v 1, if uis assigned to cluster 2 (V, =V \ V})

dl,l dV

Then, since Z (au,v— m

u,vevV

) =0, Eq. (1) can be rewritten for the 2-MC problem

as

M(S) = ﬁ < z Wy (1 "‘xuxv)) - L z Wy yXyXy = XTWX (4)

u,vev m u,vev
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dyd,
Auy— 5mv

where w,, = = 2, W = [w,,] € R"" is the corresponding symmetric matrix

of wy,’s and x € {—1,1}" is a column vector of the indicator variables. Note that
2
the w,,, values can be positive or negative, but w, , = — du g always negative.

Equation (4) describes a quadratic form with arbitré;ny real coefficients. As a
first attempt, one might be tempted to use an existing semi-definite programming
(SDP)-based approximation on quadratic forms to obtain an efficient algorithm.
However, a direct application of many previously known results on SDP-based
approximation is not possible. For example, the results in [9] cannot be directly
applied since the diagonal entries w,, are negative, the results in [40] cannot be
directly applied since the coefficient matrix W is not necessarily positive-
semidefinite, and even the elegant results on Grothendieck’s inequality in [4]
cannot be applied because we do not have a bipartition of the nodes.

However, the authors in [15] were able to adopt the techniques in [4, 9] in
a nontrivial manner to provide a randomized approximation algorithm with an
appoximation ratio of p, where

8.4Ind = O(logd), if G is a d-regular graph with d < 5

Elp]= if dmax, the maximum degree over all nodes, is at

0 (10g dmax) ) most In
16Inn

We briefly outline the proof for the O (logd) bound when G is d-regular with

. ot )
d < 57— Consider the matrix W' = [wu’v] , where

w

)

, 0, ifu=v
Y| Wy, otherwise.

First, it is shown that if OPT, = max x ' Wx and OPT/2 = max Xx'W’x, then
xe{-1,1}" xe{—1,1}"

OPT), > OPT, — % Then, the following lower bound on OPT is derived:

0.13/va, if n > 40d°
OPT, > %3/ — 2 otherwise
d n’

This shows that it suffices to approximate OPT). Note that the diagonal entries of
the matrix W’ are now zeroes and OPT5 = € (1/4). Next, we utilize the follow-
ing algorithmic result on quadratic forms proven in [4, 9]. Consider the following
randomized approximation algorithm:
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Randomized approximation algorithm in [4, 9] for computing

OPT,= max x Wx=  max Y, Wy XuXy
xe{-1,1}" Vu: xee{-11} \\Ty

1. Solve the following maximization problem

maximize Y, w, X, X,
u,veVv
u#v
subject to
YueV: X, e R"
YuecV: X, is a symmetric positive semi-definite matrix
in polynomial time using the semidefinite programming approach.*
Let the solution vectors be X, foru € V.
. Select a suitable real number 7' > 1.
3. Let r be a vector selected uniformly over the n-dimensional unit-norm hyper-
sphere.

[

4 Setx —4 L HYar>T
. Setx, = Yoot
1 with probability 1 + Yur
Otherwise, if =T <Y,r <T,setx, = . p . y ? éT
—1 with probability 5 — ﬁ"

5. Return {x,|u € V } as the solution.

The bounds in [4, 9] imply that the above algorithm returns a solution satisfying

!
’ [ z W] R ( p) |w;,v!>

u,vev u,vev

The proof can then be completed by showing that ¥, ey ’wfw] < 2 and selecting

T =+4Ind.

3.4.5 Other Heuristic Approaches

Other approaches for solving the M ¢ problem include:

e simple heuristics without any guarantee of performance, and
e simulated-annealing type approaches that are exhaustive and slow [22] and there-
fore difficult to apply to large-scale networks with thousands of nodes.

4 See [48, Chap. 26].
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3.5 Extensions to Directed or Weighted Networks

An extension of the basic modularity clustering to a more general weighted directed
network is easy and was done by Leicht and Newman [32] in the following manner.
Suppose that our input is a directed weighted graph G = (V,E,w) of n nodes where
w: E — R* denotes a function giving a positive weight to every edge in E, and let
A = [ay,y] denote the weighted adjacency matrix of G, i.e.,

P w(u,v), if (u,v) €E
“r00, otherwise.

Letd"= Y, w(v,u) and d" = Y w(u,v) denote the weighted in-degree and the
(vu)eE (u,v)€E
weighted out-degree of node u, respectively, and let m= Z wy,, denote the sum of
(u,v)€E
weights of all the edges. Then, Eq. (1) computing the modularity value of a cluster
C C V needs to be modified as

1 dout din
M(C):m< z (au,v_ umv ))
u,veC

The authors in [15] showed that with some effort almost all our computational com-
plexity results for modularity clustering on undirected networks can be extended to
directed weighted networks.

4 Other Model-Based Graph Decomposition

In this section we discuss a few other choices for the (C1)—(C3) items for model-
based graph decomposition.

4.1 Alternate Null Models (Alternate Choices for (C1))

A natural objection to the basic modularity clustering is that the background degree-
dependent null model may not be appropriate in all applications. We discuss a few
other choices that have been explored in the literature.

4.1.1 Scale-Free Null Model

The choice of the linear preferential attachment model for the class of scale-free net-
works [6] may not be an appropriate choice since Karrer and Newman [27] showed
that this may not provide a new null model. However, it is still an open question
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as to whether other generative models for scale-free networks, such as the “copy”
model by Kumar et al. [30] in which new nodes choose an existing node at random
and copy a fraction of the links of this node, provide a new and useful null model.

4.1.2 Classical Erdos—Rényi Null Models

A theoretically appealing choice is the classical Erdos—Rényi random graph model,
e.g., the random graph G(n,p) in which each possible edge {u,v} is selected uni-
formly and randomly with a probability of p. Although the Erd6s—Rényi model has
a rich and beautiful theory [7] with significant applications in other areas of com-
puter science, it is by now agreed upon that such a model may be inadequate in
many social and biological network applications. Nonetheless, a formal investiga-
tion of such a null model is of independent theoretical interest and may provide
insight regarding the properties that an appropriate null model must satisfy. If p is
selected such that the expected number of edges of the random graph is equal to
the number of edges of the given graph, then maximizing modularity with this new
null model is precisely the same as maximizing modularity in an appropriate regu-
lar graph [15]; otherwise, however, it is not clear what the complexity of computing
this new modularity value is.

4.1.3 Application Specific Null Models

Sometimes null models motivated by specific applications in biology and social
sciences are used by the researchers. Two such null models are described next.

Null Models for Transcriptional and Signaling Biological Networks

One of the most frequently reported topological characteristics of such networks is
the distribution of in-degrees and out-degrees of nodes, which is close to a power law
or a mixture of a power law and an exponential distribution [2, 20, 33]. Specifically,
in biological applications, metabolic and protein interaction networks are heteroge-
neous in terms of node degrees and exhibit a degree distribution that is a mixture
of a power law and an exponential distribution [2, 20, 24, 33, 34], whereas tran-
scriptional regulatory networks exhibit a power law out-degree distribution and an
exponential in-degree distribution [31, 44]. Based on these types of known topo-
logical characterizations, Albert et al. [3] suggested some degree distributions and
network parameters for generating random transcriptional and signaling networks
for the null model. Random networks with prescribed degree distributions can be
generated in a variety of ways, e.g., by using the method suggested by Newman
et al. in [39].
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Markov-Chain Null Model

In this method, a random network for the null model is generated by starting with
the given input network G = (V, E) and repeatedly swapping randomly chosen pairs
of connections in the following manner [25]:

repeat
e Select two edges, {a,b} and {c,d} randomly and uniformly among all
edgesin E.
elfa=corb=dor{a,d} €Eor{b,c}c€E
then discard this pair of edges
else add the edges {a,d} and {b,c} to E
delete the edges {a,b} and {c,d} from E
until a specified percentage of edges of G has been replaced

4.2 Alternate Fitness Measures (Alternate Choices for (C2)—(C3))

Exact or approximate solutions to the modularity measure as described by (1) may
tend to produce many trivial clusters of single nodes. For example, DasGupta and
Desai in [15] showed that if the maximum node degree dp.x of G satisfies dpax <
165%, then there is a clustering in which every cluster except one consists of a single
node and the modularity value is at least 25 % of the optimal. One reason for such a
consequence is due to the fact that the fitness measure for a modularity clustering is
the sum of fitnesses of individual clusters (i.e., for a clustering 8 = {V},V5,...,Vi},
M(8) is the summation of M(V;)’s), and one moderately large cluster sometimes
over-compensates the negative effects of many small clusters.

Based on these observations, it is reasonable to investigate other suitable choices
of the function that combines the individual fitness values into a global fitness
measure without sacrificing the quality of the optimal decomposition. Some rea-
sonable choices include the max-min objective, namely

Mmax-min(g) = min M(V;),
VeS8

and the average objective, namely

Maverage (8) Z;{:l M(Vl)

k

DasGupta and Desai investigated the max-min objective in [15] and showed that
the max-min objective indeed avoids generating small-size trivial clusters and the
optimal objective value for max-min objective is precisely scaled by a factor of 2
from that of the objective of the basic modularity clustering, thereby keeping the
overall quantitative measure the same.
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5 Conclusion and Further Research

There is still a large gap between the 1.0006 factor inapproximability result and
logarithmic factor approximation algorithm known for modularity clustering
problems. Designing better scalable algorithms for these problems would enable
one to apply this method to much larger networks than that is currently done. A few
interesting directions for future algorithmic research are as follows:

Is it possible to do a nontrivial analysis of the spectral partitioning approach
discussed in Sect. 3.4.3, perhaps by using the techniques presented in analysis of
the spectral method for MAX-CUT such as in [47]?

Is it possible to augment the ILP formulation for modularity clustering as dis-
cussed in Sect. 3.4.2 with additional redundant constraints using the cutting plane
approach [29] to decrease the integrality gap substantially and perhaps thereby
obtaining an improved approximation algorithm?
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On Distributed-Lag Modeling Algorithms
by r-Convexity and Piecewise Monotonicity

Ioannis C. Demetriou and Evangelos E. Vassiliou

1 Introduction

A linearly distributed lag model in time series data is used to predict current values
of a dependent variable y based on both the current value of an independent variable
x and lagged values of x. Specifically, the data are the pairs (x;,y;), t =1,2,...,n+
m— 1, where we assume that y, is given approximately by a weighted sum of x;, and
m— 1 past values of x;, where m is a prescribed positive number representing the lag
length that is smaller than n. Thus, we have

ye = Bixe+ Boxi—1 + Baxi—o+ -+ BuXe—mi1 + &, e9)

where (1,2, .., B are the unknown lag coefficients and & is a random variable
with zero mean and constant variance. Distributed-lag modeling refers to only the
last n observations of y;, t =1,2,...,m—1,m,... .m+n—1, because m — 1 degrees
of freedom are lost due to Eq. (1). With matrix notation, the unconstrained lag dis-
tribution problem is to determine a vector 7 = (B, 2, .., Bn) that minimizes the
objective function a

F(B)=(y—-XB)" (y—XB), 2

where XT = (VmsYm+1s--->Ym+n—1) and X is the n x m matrix of current and lagged
values of x; defined as
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Xm Xm—1 "0 X2 X1
Xm+1 Xm0 X3 X2
X = Xm+2  Xm+1 0 X4 X3

Xm4n—1 Xm+n—2 " Xn+1 Xn
We assume that X has full rank. Then the unconstrained minimum of (2) is

B=x"x)""x"y. 3)
Such an estimation may give imprecise results, because of the multicollinearity that
usually occurs among the lagged values of the independent variable. Nonetheless,
if we avoid severe inaccuracies in the calculation of the lag coefficients due to (3),
then there appear discernible patterns in the unconstrained estimate, which follow
from the nature of the observations. Hence it may be necessary to assume some
structure for the relation between the lag coefficients and so far there have been
several suggestions in the literature.

The use of distributed lags in Economics and Electrical Engineering is very old.
The paper of Levinson [28] had an important impact on the field directly and indi-
rectly as Kailath [22] notes and several models are considered by [1, 4, 12, 13, 21,
26, 32] and [33], for instance. These models assume that the underlying function of
the lag coefficients can be approximated closely by a form that depends on a few
parameters. Over the years, literature on the subject agrees that some weak repre-
sentation of the lag coefficients is a sensible requirement for a satisfactory model
estimation (see, e.g., [18, 29] and references therein).

In this work we take the view that one knows some properties of an underlying
relation, but one does not have sufficient information to put the relation into any
simple parametric form. We assume that the rth derivative of the underlying relation
allows a certain number of sign changes, which we call “prior knowledge.” The prior
knowledge is conveyed to the calculation through the requirement that the sequence
{A7B: j=1,2,...,m—r} has a certain number of sign changes, where A7f3 is the
Jjth difference of order r of the lag coefficients f;, i = j,j+1,..., j+r, whose value
is (see, e.g., [19])

a8 =1y () B -t () Byvr oot

(rf2>ﬁj+r2— (rf1>ﬁj+r1+(:) Bisr. @

Relation (4) is a linear combination of fB;,i = j,j+ 1,...,j 4+ r, where the
coefficients of successive f3; are binomial coefficients prefixed by alternating signs.
An immediate advantage of this approach to lag estimation is that it avoids the
assumption that the relation has a form that depends on a few parameters, which
occurs in many other techniques. Depending on the value of r and the number of
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sign changes in (4), several particular methods may arise from this approach. In this
paper we consider two methods that are both effective in lag modeling estimation
and efficient in computation.

In Sect. 2 we give a brief description of a method for calculating lag coefficients
that minimize (2) subject to nonnegative rth consecutive differences, where r is
smaller than m [34]. It is a quadratic programming algorithm, which solves the
problem very efficiently by taking advantage of certain submatrices of the Toeplitz
matrices that occur during the calculation. An advantage of this method to lag coef-
ficient estimation is that, due to the constraints on 1, 3,,.. ., Bx, it obtains particu-
lar properties that occur in a variety of underlying relations of the lag coefficients,
such as monotonicity, convexity, concavity, and r-convexity. It is very useful that
our condition on the lag coefficients allows mathematical descriptions for these nice
properties.

In Sect. 3 we give brief descriptions of two procedures for estimating the lag co-
efficients B;,Bs,...,Bn subject to the condition that the coefficients have at most
k monotonic sections, where k is a prescribed positive number less than m. They
are iterative algorithms that combine the steepest descent method and the conjugate
gradient method with piecewise monotonicity on the components of § [11]. Start-
ing from an initial estimate of j3, each iteration of these methods adjusts the lag
coefficients by solving efficiently a combinatorial optimization calculation that im-
poses piecewise monotonicity constraints on the lag coefficients. An advantage of
this idea to lag coefficient estimation is that piecewise monotonicity gives a property
that occurs to a wide range of underlying relations of the lag coefficients.

In Sect.4 we present an application of these methods to real quarterly
macroeconomic data derived from the Federal Reserve Bank of St. Louis for
the period 1959:Q2-2013:Q2. Dependent variable is the Annual Rate of Change of
the GDP in United States and independent variable is the Annual Rate of Change
of the Money Supply for United States. The values of m, r, and k were selected to
provide a variety of models in the final lag coefficients. We present sufficient details
of results intended for use as a guide to apply the methods. It is believed that the
illustrative analysis of this section will be helpful for judging possible relations.

In Sect. 5 we present some concluding remarks. Numerical results that demon-
strate the accuracy and the performance of these methods are presented by [10, 11]
and [34].

2 Calculating the Lag Coefficients Subject to r-Convexity

In [34], we seek lag coefficients By, ,,..., B, that minimize the objective func-
tion (2) subject to the r-convexity constraints

ATB>0, j=1,2,...m—r. 5)

Ideally, the fitted function of the lag coefficients is to have a nonnegative rth
derivative. Functions like this are called r-convex (see [23] for a definition) and we
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analogously call r-convex a vector whose components satisfy the constraints (5).
Similarly the problem may well be defined for the case where the differences (4) are
nonpositive,

A;ﬁgo, j:1727"'>m_ra (6)

in which case we call the solution vector r-concave.
The cases r = 1,2 in (5) allow very important applications. When r = 1, the

constraints are
,Bi+1_ﬁl'207 i:1727”’7m_1a (7)

which implies monotonically increasing coefficients (see, e.g., [31] for a general
treatment of the subject of monotonic regression)

B <P << By (8)

Analogously, the monotonically decreasing coefficients satisfy the inequalities

Inequalities (9) suggest that the lag coefficients become more significant as time
proceeds. These constraints may be seen as a generalization of the method of [13],
where the coefficients f§; are imposed to decline arithmetically.

In cases such as in production situations, the assumption r = 2 in (5) implies
that the lag coefficients are subject to the increasing rates of change (see, [20] for a
definition)

Bo=Bi <Bs—P<-<Bu—PBu1, (10)
which is equivalent to assuming that {f3; : i = 1,2,...,m} satisfy the convexity
conditions,

Bi+2_2ﬁi+1+ﬁi207 1:1,27,m—2 (11)

By considering piecewise linear functions it can be proved that if » = 1 and
B is optimal, then there exists a monotonic function that interpolates the points
(i,B;),i=1,2,...,m. Similarly, if = 2, then there exists a convex function that in-
terpolates (i, 3;), i = 1,2,...,m. These statements do not generalize to larger values
of r as it has been shown by Cullinan and Powell [3], which means that nonnegative
differences of order » > 3 do not imply that there exists a function with a nonnega-
tive rth derivative that interpolates the above points.
We can express the constraints (5) in the matrix form

DIB >0, (12)

where D, is the m x (m — r) rectangular matrix, whose elements (D,);; are defined
by the relation

e ,j<i<j4+r, j=12,....m—r
(D) =4 Y (u) f=r=ITn (13)
otherwise.

)
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Now the nonzero components of the jth column of D, are those that occur in the
differences (4) giving a Toeplitz pattern that depends on the value of r.

Since the constraints on 3 are linear and consistent and since the second deriva-
tive matrix of (2) with respect to 3 is twice the positive definite matrix X TX, the
problem of minimizing (2) subject to (12) is a strictly convex quadratic program-
ming problem. It has a unique solution, B say, that is usually straightforward to
calculate by standard quadratic programming methods (see, e.g., [14]). The solu-
tion depends on the Karush-Kuhn-Tucker optimality conditions (see, e.g., [27]),
which state that § = f3 if and only if the constraints (12) are satisfied and there exist
Lagrange multipliers A; > 0,i € A such that the equation

2XT(XB-y) =Y Aia;, (14)
icA

holds, where A is the subset {i : A73 = 0} of active constraint indices and g; € R™ is
the ith column of D,.. We define, A; =0, for i € [1,m — r]\A and denote the (m —r)-
vector of Lagrange multipliers by A.

The method of [34] employs a version of the strictly convex quadratic program-
ming calculation of [9]. It generates a sequence of subsets of the constraint indices
{1,2,...,m—r}, where for each subset A the equations

ap=0 icA (15)

are satisfied and the vector 8 is obtained by minimizing the objective function (2)
subject to (15). Moreover, unique Lagrange multipliers A;,i € A are defined by
the first order optimality condition (14). An outline of the quadratic programming
method for minimizing (2) subject to (12) is as follows.

Step 0:  Set A ={1,2,...,m—r} and calculate the associated f3 and A. If any neg-
ative multipliers occur, then start removing the corresponding constraint
indices from A, one at a time, while recalculating each time f and A,
until all the multipliers become nonnegative. a

Step 1:  If the constraints (12) are satisfied, then terminate. Otherwise record y =
A, find the most violated constraint, Q£ B < 0say, add k to A and calculate
Band A. a

Step2: IfA; >0, i€ A, then branch to Step 1.

Step 3:  Seck the greatest value of 6 such that the numbers (1 —0)u; +0A;, i € A
are nonnegative, which implies 0 < 8 < 1. If p is the value of i that gives
(1—6)u;+6A; =0, then remove p from A, replace tt by (1 —60)u+ 64,
calculate 8 and A and branch to Step 2. N N

The implementation of this algorithm depends strongly on the Toeplitz structure
of the constraint coefficient matrix (13) for deriving the solution of the equality con-
strained problem that minimizes (2) subject to (15) and the corresponding Lagrange
multipliers that occur during the quadratic programming iterations. In particular, the
following method is highly suitable, if, as it happens in the examples of [34], there
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is a small number of inactive constraints. We express 3 as a linear combination of
a basis of the subspace of vectors 3 that satisfy the equality constraints (15). Since
there are no redundant equations in (15), we can find m — p linearly independent
m-vectors {u, : s € S} such that @, u; = 0, s € S, for all i € A, where we let p = |A|
be the number of elements of A.

The following basis, proposed by Cullinan [2] and modified by Vassiliou and
Demetriou [34], has the beautiful feature that the matrices that occur are banded
and positive definite. We let the notation |r/2]™ = |r/2] if ris odd and |r/2|” =
(lr/2] —1) if r is even, where | ¢| denotes the largest integer that is smaller than g.
Also, we let S be the index set

S={l,....[r2u{j+1r/2]: j¢ AYU{m—[r/2]",...,m}
and the vectors u,, for s € S are defined by the equations
(u,); = Oy, fors,tes (16)

and
alu,=0, ificAandscs, (17)

where 0 is the Kronecker’s delta.

Each of the basis vectors is obtained by solving a p X p system of equations,
whose coefficient matrix elements are derived by deleting a column of the p x m
coefficient matrix (17) for each s € S. Let M, be the matrix so obtained. Depending
on the sign pattern of D,, M, is positive definite if (r mod 4 = 0, 3) and nega-
tive definite if (r mod 4 = 1, 2) as it is proved by Demetriou and Lypitakis [7]. In
addition, M, inherits the bandwidth form of D,. Hence, the unknown components
{(tg)ig|rj2) : 1€ A} canbe calculated efficiently and stably by Cholesky factoriza-
tion if r is even and by band LU factorization if » is odd. Since this process has to be
repeated for each s € S in order to generate all the basis elements, we factorize M,
only once and subsequently use this factorization to derive the components of each
basis vector.

Having defined this basis, we can work with reduced quantities throughout the
calculation. We express any vector 8 that satisfies (15) in the form

B=ue, (18)

where U is the m x (m — p) matrix whose columns are the vectors {u, : s € S} and
6 is an m — p vector, whose components are to determined. Working with 6 instead
of with the m-vector 3 provides two advantages. One is that there are much fewer
variables, because A is usually kept large during the quadratic programming itera-
tions and the other is that Eq. (15) are satisfied automatically. By substituting (18)
into (2) we obtain the reduced quadratic function

v(0) = XU0—ylf3, (19)
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whose unique minimizer is calculated by applying Cholesky factorization to the first
order condition
xu)"(xU)o = (xU)"y. (20)

Although the value of r is not a restriction to this calculation, the most popular
choices restrict r to values smaller than 7 or 8. Hence, if p is close to m — r, as in the
numerical results of [34], the amount of numerical work required to solve (20) for
0 is quite low.

Once f is available, the corresponding Lagrange multipliers {A; : i € A} are de-
fined by the first order conditions (14), which form an overdetermined system with
m — p redundant equations. So p equations may be chosen in order to specify the p
unknowns multipliers and all possible choices will give the same solution, provided
the chosen system is non-singular. In view of the magnitude of the elements of D,,
the central element (there are two such elements with opposite sign, if 7 is odd) of
each column of D, is also the largest in absolute value element of each column.
Thus, by choosing the rows (i+ |r/2]) € A of (14), we derive a system of equa-
tions whose coefficient matrix has diagonal dominance and is the transpose of the
p X p matrix M,. Since the factorization of M, is already available from the calcu-
lation that provided the components of the basis vectors, it is remarkable that this
choice, which has resulted to M,, is also suitable to the calculation of the Lagrange
multipliers.

3 A Conjugate Gradient Algorithm with Piecewise Monotonicity

In this section we consider the problem of estimating lag coefficients by minimiz-
ing (2) subject to the condition that the lag coefficients 1, 2, . . ., B, have at most k
monotonic sections, where k is a prescribed positive number that is less than m.

The problem when k = 1 may be solved by the structured quadratic program-
ming calculation that is stated in Sect.2. The problem when k = 2 concerns the
minimization of (2) subject to the constraints

Bi<B<--<B }7 @1

Be > Br+1 = = B

where ¢ is one of the variables of the optimization calculation. In order to identify the
value of 7 that gives the least value of (2), one would solve m — 2 separate quadratic
programming problems in m variables, forr =2,3,... ,m—1.

When k > 2, we consider the problem of calculating a vector 3 that minimizes (2)
subject to the piecewise monotonicity constraints a

th—l S ﬁt.?—1+1 S cee S ﬁt_s‘? lfS iS Odd (22)
Bo > By i1 > > By ifsiseven |’

where the integers {¢;: s =0, 1,...,k} satisfy the conditions

l=p<nH< - <tr=m. (23)
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It is quite difficult to develop efficient optimization algorithms for calculating a
solution to this problem, because the integers {#; : s =2,3,...,k — 1} are not known
in advance and they are variables in the optimization calculation. Indeed, the cal-
culation of a global minimum of (2) would require about O(mk) separate quadratic
programming calculations in m variables, which is not practicable.

Therefore, we consider an alternative form of the problem where an iterative
algorithm attempts to minimize (2) by combining the conjugate gradient method
with piecewise monotonicity constraints on the lag coefficients.

We begin the description with the process that involves the steepest descent
method (details for the steepest descent method are given by [16], for instance)
with piecewise monotonicity constraints on the lag coefficients, which we extend
subsequently by the introduction of a term that requires little additional work and
gives the conjugate gradient method. This process starts from an initial estimate
ﬁ(o) of B that satisfies the constraints (22) and generates a sequence of estimates

{ﬁ(j) :j=1,2,3,...} to B in two phases. In the first phase it takes a descent direc-
tion from the current estimate to a new estimate of 3. In the second phase it replaces
the new estimate by its best piecewise monotonic approximation. In the first phase,
the algorithm calculates a new estimate of the form

B(Hl) _ ﬁ(j) + Oljdm, (24)

where o is a step-length and d (/) is the search direction
d(j) =xT (X_XEU))' (25)

The step-length ¢¢; with exact line search is determined by the minimization of the
convex function of one variable F( BY) + ogli )) which gives

d(j)TxT (y 7xﬁ (J)) (26)
o= .
! 1xd|2

Since (25) involves matrix X only by multiplication, ill-conditioning of X is irrel-

evant here. Having calculated E Y “), the algorithm proceeds to the second phase,
which calculates a vector E that minimizes the sum of the squares of the residuals

18U B3 =3 (B — g @7

i=1

subject to (22), while the integers {t; : s = 0,1,...,k} satisfy (23). This is a
formidable combinatorial problem which has been solved efficiently by [8] in only
O(m? + km logym) computer operations. Some details of this calculation are given
in this section, after the description of the conjugate gradient process below. The
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algorithm finishes if the vector 8 found at the second phase satisfies the convergence
condition n

1B —BYV2/[1B]l> < e, (28)

where € is a small positive tolerance. This test is applied at every estimate 8 G+
including the ﬁrst iteration as well. When the test (28) fails, then the algorithm
replaces ﬁ by its best piecewise monotonic approximation vector 3, increases
J by one and branches to the beginning of the first phase in order to calculate at least
one new vector in the sequence {ﬁ(j) 1 j=1,2,3,...}. This gives the following
algorithm. n

Step 0: Set j = 0and ﬁ(o) =0.
Step 1: Calculate d) = X7 (y —xB\)).

Step 2:  Calculate o; and set B = [3 +od).
Step 3:  (Piecewise monotonic approximation) By employing Algorithm 2 of [5]
calculate B, namely a least squares approximation with k monotonic sec-

tions to 8 1),

Step 4:  If criterion (28) is satisfied then quit, otherwise replace 8 (1) by B, in-
crease j by one and branch to Step 1.

If we drop Step 3, which provides the best piecewise monotonic approximation to
current 3 U H), it can be proved that the algorithm terminates at the minimum of (2)
(see, e.g., [17]). By incorporating the piecewise monotonicity constraints into this
algorithm further restricts the solution because the monotonicity algorithm is norm
reducing [31]. By invoking the strict convexity of (2) and the contraction mapping
theorem, it can be proved (the convergence analysis of [25] is suitable to this case)
that this algorithm meets the termination condition for some finite integer j. Thus
it converges to a local minimum of (2) subject to the constraints (22). However, the
numerical results of [10] show that this algorithm is very slow in practice, which
makes it rather inefficient to be useful.

A vast improvement in efficiency is achieved by the method of [11] that combines
the conjugate gradient method of Fletcher and Reeves with exact line searches as
described by [14] with piecewise monotonicity constraints on the components of 3.
The only change to the above steepest descent algorithm is that on most iterations
the search direction is altered from (24) to the vector

d(}) ( Xl} )_H,d/ 1) (29)

except that the last term is omitted if j = 1. The value of 7; is determined by the
Fletcher—Reeves [15] conjugacy condition

IXT(y—xBY)|3
V= (30)
IXT (y—xBY=D)|3

Then the algorithm proceeds as in the steepest descent case and is as follows.
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Step 0:  Set j =0, Ew) =0,and p =
Step 1: Calculate d\/) = XT(y— [3 )—l—}/d =0,

Step 2: Calculate o; and set B [3( Dt o;d.
Step 3:  (Piecewise monotonic approximation) By employing Algorithm 2 of [5]
calculate B namely a least squares approximation with £ monotonic sec-

tions to B 1),

Step 4:  If criterion (28) is satisfied then quit, otherwise replace 8 (+1) by B, cal-
culate y;, increase j by one and go to Step 1.

The choice of ¥; is suitable, because the conjugate gradient method has the prop-
erty that, if F(.) is a convex quadratic function, if d") = X7 (y —xBW), and if
formula (29) is used for all j > 2, then (see [30]) in exact arithmetic the method ter-
minates because X7 (y —Xﬁ(j)) =0, for some j € [1,m+ 1]. Hence, if we exclude
Step 3 from the above algorithm, the remaining steps terminate at the unconstrained
minimum of (2). In addition, the Fletcher—Reeves condition (30), in view of our
quadratic function and the exact line searches we use, gives descent [14]. This is im-
portant, because the convergence of this algorithm can be established by arguments
similar to those that follow the steepest descent algorithm above. Furthermore the
numerical results of [11] show a considerably higher convergence speed than the
method that uses the steepest descent.

In the rest of the section we discuss some properties of the piecewise monotonic-
ity method that is employed by Step 3. Given a positive integer k < m, Step 3 seeks
an m-vector 3 that is closest to f§ (+1) by minimizing (27) subject to the conditions
that the components of 8 consist of at most kK monotonic sections. Without loss of
generality, we specify that the first monotonic section is increasing. The approxi-
mation process is a pI'O]eCtIOIl because if (U+1) satisfies the constraints (22), then

B=B U+D_ Therefore if B (*+1 consists of more than k monotonic sections, then the

piecewise monotonicity constramts prevent the equation f§ = 8 G+ , which means
that the integers {#; : s =2,3,...,k— 1} are all different.

The most important property of this calculation is that each monotonic section
in a best piecewise monotonic fit is the optimal approximation to the corresponding
data. Indeed, the components {f; : i =#,_1,t,—1 +1,...,t} on [t;_1,Z,] minimize the

sum of the squares
15

3 (BUT B2 31)

=ty

subject to the constraints
ﬁi§ﬁ5+1,i:t571,...,ts—l, if 5 is odd (32)
and subject to the constraints

Bi > Bir1,i=t_1,...,t,— 1, if sis even. 33)
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In the former case the sequence {f; : i =t;—1,f,_1 + 1,...,;} is the best monotonic
increasing fit to {ﬁi(ﬁl) ti =ty 1,051+ 1,...,5} and in the latter case the best
monotonic decreasing one. Therefore, provided that {t; : s = 2,3,...,k— 1} are
known, the components of  are generated by solving a separate monotonic prob-
lem on each section [t;_1,t] in only O(t; —t,_1) computer operations. We introduce
the notation ot (#;_1,ts) and B (¢;—1,%) for the least value of (31) subject to the con-
straints (32) and (33), respectively. We denote by 8(k,n) the least value of (27) at
the required minimum and, if k is odd, we obtain the expression

S(k,n) = aflto,n) +B(t1,0) +a(ta,t3) + -+ ot(tg—1, ) (34)

and analogously if k is even, where we replace the last term in this sum by
B(tr—1,t).

Reversely now, we use separation and, an optimal 3 associated with the integer
variables {#; : s =2,3,...,k— 1} can split at #;_; into two optimal sections. One
section that provides a best fit on [f,#;—1], which is similar to 8 with one monotonic
section less, and one section on [t;_1,#] that is a single monotonic fit to the remain-
ing data, giving 6 (k,n) = 6(k— 1,tx_1) + a(tx—1,1) if k is odd and analogously if
k is even. We note that the value of #;_; in [t_5, ] that gives 8 (k,n) is independent
of the integers {r; : 0 < j <1._3}. Hence, it is proved by [8] that the optimization
problem of Step 3 can be replaced by a problem which is amenable to dynamic
programming.

The implementation of dynamic programming includes several options that are
considered by Demetriou [5] and Demetriou and Powell [8]. Demetriou [6], es-
pecially, has implemented the method of [5] in Fortran and provided a software
package that derives a solution in O(m?v + kv?) computer operations, where V is
the number of local extrema of the data and where an integer p is the index of a

local maximum of the sequence [3[0“), i=2,....m—1,if ﬁlgjjl) < ﬁ,ng) and

[3<J AREN ﬁpfll , and similarly for a local minimum. Since V is a fraction of m, the
previous complexity is reduced at least by a factor of 4. In practice, however, the

method is by far more efficient than the theory indicates.

4 Numerical Results from an Example on the USA Inflation Rate

Studies for different time periods suggest that changes in the growth rate of money
are reflected in the inflation rate for a long time period ahead. Among other factors
the nature of the lag is important to the decision of specifying a short or a long-term
policy, as, for example, it is stated by Karlson [24].

In this section some numerical results illustrate the methods of Sects.2 and 3
by an application to real quarterly macroeconomic data that considers particular
relations for the lags between money and prices. The original source of the data
is the International Monetary Fund. Dependent variable is the Continuously Com-
pounded Annual Rate of Change of the GDP Implicit Price Deflator in United States
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— USAGDPDEFQISMEI_CCA =+ MYAGMIUSMO052S CCA_SA

Fig. 1 Time series plots of the quarterly rates of change of the GDP Implicit Price
Deflator in United States (solid line) for the period 1955-04-01-2013-04-01 and the
quarterly rates of change of the M1 for United States (dotted line) for the period
1959-04-01-2013-09-01. Both time series are seasonally adjusted. The right-hand
side secondary axis corresponds to M1 values

and independent variable is the Continuously Compounded Annual Rate of Change
of the Money Supply for United States. The money supply variable is defined of
what is known as “M1.” The data amount to 217 pairs of observations x and y for
the period 1959:Q2-2013:Q2 and are available from the Federal Reserve Bank of
St. Louis (see, http://www.research.stlouisfed.org). Variable x is identified with the
name MYAGM1USMO52S and variable y with the name USAGDPDEFQISMEI in
the relevant data base. The data are displayed in Fig. 1.

First we applied the method of Sect. 2 to these data. Specifically, we calculated
the coefficients of the distributed-lag model (1) with m = 17, 21 subject to the con-
straints (5) on the components of § by allowing r = 1,2,3,4,5,6, and 7. We call
r-convex the coefficients so derived. Also, we call r-concave the coefficients derived
by a similar calculation subject to the constraints (6). Occasionally, throughout the
section, we refer to the coefficients with the term “model.”

The actual values of m, r, and the calculated coefficients are given in Tables 1
and 2 for the problems with the r-convex constraints (5) and the r-concave con-
straints (6), respectively. The coefficients are shown in the third (r = 1), fourth
(r =2) and so on column of each table. The last column of each table displays the
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unconstrained lag coefficients obtained by minimizing (2) for each m. The amount
of CPU time to carry out these calculations in double precision arithmetic in a com-
mon pc is negligible. All the results are presented in four decimal digits of accuracy.
The coefficients of Tables 1 and 2, for r = 2, 3, 4, and 5 for each m are displayed in
Figs.2, 3,4, and 5.

The values of m, r, and the calculated Lagrange multipliers associated with the
lag coefficients of Tables 1 and 2 are presented in Tables 3 and 4, respectively.
Tables 3 and 4 indicate the dependencies between active constraints and Lagrange
multipliers, because a Lagrange multiplier measures the marginal potential change
of the value of (2) at an optimal 3, when the corresponding constraint is changed
ever so slightly. The higher the value of the multiplier, the more sensitive the optimal
value of the objective function is to perturbations of the corresponding constraint.
A zero Lagrange multiplier in these two tables indicates an inactive constraint.

If the lag coefficients satisfy all the constraints (5) as equations, as for example
in the case (m = 17, r = 7) of Table 3 where all Lagrange multipliers are positive,
then all the corresponding coefficients of Table 1 lie on the best fit by a polynomial
of degree at most r — 1. If, as it is actually expected, some constraints in (5) are am-
ply satisfied, then the r-convex lag coefficients lie on a piecewise polynomial curve,
where the polynomial pieces are of degree at most r — 1. The results of [34] show
that the r-convex lag coefficients do not deviate far from the polynomial of degree
r— 1 and they do so in a smooth manner alternating above and below the polyno-
mial curve. Hence the r-convex lag model is more flexible than the corresponding
polynomial of degree r — 1, which in fact is Almon’s model [1].

We had better look at some details of Table 1 when m = 17. The 1-convex lag co-
efficients, which are presented for r = 1, satisfy the monotonicity constraints (8) and
consist of four sections of different equal components. In view of Table 3, they are
associated with the active constraint indices A = {1,2,...,5,7,9,...,15} and the
zero Lagrange multipliers Ag, Ag, and A;6. The 1-convex model, simple as it is, is no
liable to produce an undulating fit but only a monotonically increasing step function.
The 2-convex coefficients, in view of the Lagrange multipliers in Table 3 for r = 2,
are obtained by minimizing (2) subject to the equations f8; —2B;+1 + Bit2 =0, i =
2,3,...,14. We see in Fig. 2 that the 2-convex model is a polygonal line with inte-
rior knots at the second and the 16th data point, which are associated with the zero
Lagrange multipliers A; and A;s of Table 3. This polygonal line follows the general
trend of the unconstrained coefficients. The 3-convex coefficients, in view of the La-
grange multipliers for » = 3, are obtained by minimizing (2) subject to the equations
—Bi+3Biv1 —3Bi2+ B3 =0,i=1,2,...,13, while =14+ 315 — 316+ P17 =
0.0167 > 0. Hence, the first 16 coefficients lie on an increasing second degree poly-
nomial on the range [1, 16], while the 17th coefficient, $;7 = 0.0650, due to the inac-
tive constraint, lies over the polynomial curve toward the coefficient B =0.0819.
The 4-convex coefficients lie on two overlapping cubics that are obtained by min-
imizing (2) subject to fB; — 4B;+1 + 6Pit2 —4Bit3 + Piva =0,i =2,3,...,10 and
Bi3 — 4B14 + 6B15 — 4B16 + B17 = 0, while the inactive constraints are associated
with the zero Lagrange multipliers A;,A4,1, and A2, as we can see in Table 3 for
r = 4. The 5-convex coefficients lie on two overlapping quartics that are obtained
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Table 1 The r-convex and the unconstrained lag coefficients

r-Convex Unconstrained

m B r=1 r=2 r=3 r=4 r=>5 r==6 r=7 lag coefficients
Bi 0.0231 0.0648 0.0225 0.0685 0.0541 0.0705 0.0642 0.0772
B, 0.0231 0.0116 0.0232 0.0095 0.0263 0.0062 0.0168 —0.0020
Bs  0.0231 0.0143 0.0241 0.0090 0.0123 0.0063 0.0056 0.0015
B+ 0.0231 0.0170 0.0250 0.0110 0.0084 0.0153 0.0092 0.0190
Bs  0.0231 0.0197 0.0261 0.0151 0.0111 0.0184 0.0164 0.0348
Be  0.0231 0.0224 0.0273 0.0204 0.0178 0.0204 0.0227 —0.0025
B;  0.0243 0.0251 0.0286 0.0265 0.0260 0.0240 0.0275 0.0425
Bs  0.0243 0.0278 0.0301 0.0327 0.0340 0.0299 0.0315 —0.0020
17 By  0.0407 0.0305 0.0316 0.0382  0.0405 0.0370 0.0360 0.0728
Bio 0.0407 0.0332 0.0333 0.0426  0.0444 0.0434  0.0408 0.0391
Bii 0.0407 0.0359 0.0351 0.0451 0.0455 0.0470 0.0450 0.0440
B2 0.0407 0.0386 0.0370 0.0450 0.0438 0.0465 0.0466 0.0203
Bz 0.0407 0.0413 0.0390 0.0419 0.0398 0.0418 0.0439 0.0755
Pia 0.0407 0.0440 0.0411 0.0349 0.0348 0.0349 0.0371 0.0241
Bis  0.0407 0.0467 0.0434 0.0315 0.0326 0.0308 0.0301 0.0269
Bis  0.0407 0.0494 0.0458 0.0398 0.0403 0.0380 0.0344 0.0281
Bi7  0.0656 0.0578 0.0650 0.0681 0.0680 0.0693 0.0718 0.0819
Bi 0.0200 0.0269 0.0069 0.0472  0.0361 0.0480 0.0405 0.0527
B, 0.0200 0.0255 0.0132 0.0099 0.0172 0.0080 0.0162 —0.0009
Bs  0.0200 0.0254 0.0188 0.0016  0.0091 0.0027 0.0061 —0.0034
By 0.0200 0.0254 0.0235 0.0081 0.0087 0.0081 0.0061 0.0148
Bs  0.0230 0.0254 0.0275 0.0156 0.0134 0.0155 0.0123 0.0341
Be  0.0274 0.0254 0.0307 0.0233  0.0207 0.0236 0.0215 0.0078
B;  0.0274 0.0253 0.0330 0.0307 0.0289 0.0312 0.0310 0.0367
Bs  0.0274 0.0253 0.0346 0.0371 0.0364 0.0375 0.0388 0.0067
Bo  0.0274 0.0253 0.0354 0.0419 0.0420 0.0418 0.0439 0.0778
Bio  0.0274  0.0253 0.0354 0.0444 0.0448 0.0437 0.0454 0.0345
21 By 0.0274  0.0253 0.0347 0.0440 0.0446 0.0429 0.0436 0.0451
B2 0.0274  0.0252 0.0331 0.0401 0.0413 0.0396 0.0389 0.0267
Bz 0.0274 0.0252 0.0307 0.0337 0.0353 0.0340 0.0323 0.0753
Pia 0.0274  0.0252 0.0275 0.0261 0.0272 0.0268 0.0249 0.0038
Bis  0.0274  0.0252 0.0236 0.0182 0.0183 0.0188 0.0179 —0.0072
Bie  0.0274 0.0251 0.0188 0.0113 0.0100 0.0114 0.0122 0.0029
Bz 0.0274 0.0251 0.0133 0.0064 0.0041 0.0061 0.0082 0.0445
Pis 0.0274 0.0251 0.0070 0.0047 0.0031 0.0047 0.0057 0.0023
Bio  0.0274 0.0251 —0.0002 0.0072  0.0095 0.0095 0.0084 —0.0123
B0 0.0274 0.0251 0.0406 0.0397 0.0405 0.0364 0.0342 0.0442
B1 0.1036  0.1098 0.1291 0.1278 0.1277 0.1286  0.1308 0.1351

by minimizing (2) subject to —f; + 581 — 108i12 + 10Bi43 — 5Bira+ Birs =0,i =
1,2,...,9and — B2 +5B13 — 10814+ 10815 — 5816+ B17 = 0. And so on for r =6, 7.
We see that the r-convex coefficients for r > 4 of Table 1 when m = 17 follow
gently the trend of the unconstrained coefficients, as it is also illustrated in Fig. 2.
The impact of the constraints to the calculation of the coefficients is shown by the
sizes of the multipliers, which in the case r = 4 are smaller than those of the cases
r=3,5,6,7. It seems that the 4-convex model in this m = 17 experiment is the most
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Table 2 The r-concave and the unconstrained lag coefficients

r-Concave Unconstrained
m B r=1 r=2 r=3 r=4 r=>5 r==6 r=7 lag coefficients
B 0.0334 0.0190 0.0703 0.0362 0.0683 0.0562 0.0709 0.0772
B 0.0334 0.0209 0.0101 0.0277 0.0130 0.0258 0.0057 —0.0020
B3 0.0334  0.0227 0.0056 0.0223  0.0073 0.0110 0.0062 0.0015
Ba 0.0334 0.0246 0.0118 0.0195 0.0084 0.0072 0.0156 0.0190
Bs 0.0334 0.0264 0.0176 0.0190 0.0137 0.0108 0.0192 0.0348
Be 0.0334 0.0283 0.0228 0.0203 0.0210 0.0183 0.0199 —0.0025
B 0.0334 0.0302 0.0274 0.0231 0.0286 0.0271 0.0231 0.0425
Bs 0.0334 0.0320 0.0315 0.0269 0.0351 0.0352 0.0295 —0.0020
17 B 0.0334 0.0339 0.0351 0.0313  0.0397 0.0412 0.0375 0.0728
Bio 0.0334 0.0358 0.0382 0.0360 0.0421 0.0442 0.0444 0.0391
Bii 0.0334 0.0376 0.0407 0.0405 0.0424 0.0442 0.0477 0.0440
Bio  0.0334 0.0395 0.0427 0.0443 0.0410 0.0418 0.0462 0.0203
Biz  0.0334 0.0414 0.0442 0.0472  0.0389 0.0382 0.0407 0.0755
Bia  0.0334  0.0432  0.0451 0.0487 0.0375 0.0354 0.0341 0.0241
Bis  0.0334 0.0451 0.0455 0.0484 0.0387 0.0361 0.0315 0.0269
Bie 0.0334 0.0469 0.0454 0.0458 0.0449 0.0439 0.0399 0.0281
Bi7  0.0334 0.0488 0.0447 0.0407 0.0588 0.0628 0.0677 0.0819
B 0.0286 0.0186 0.0502 0.0049 0.0474 0.0366 0.0498 0.0527
B 0.0286  0.0200 0.0136 0.0150 0.0116 0.0181 0.0059 —0.0009
B3 0.0286 0.0214 0.0159 0.0226  0.0043  0.0094 0.0020 —0.0034
Ba 0.0286 0.0228 0.0181 0.0280 0.0055 0.0082 0.0090 0.0148
Bs 0.0286 0.0241 0.0202 0.0315 0.0121 0.0124 0.0170 0.0341
Be 0.0286 0.0255 0.0221 0.0333 0.0213 0.0197 0.0243 0.0078
By 0.0286 0.0269 0.0239 0.0337 0.0308 0.0283 0.0308 0.0367
Bs 0.0286 0.0283 0.0255 0.0331 0.0391 0.0365 0.0362 0.0067
Bo 0.0286 0.0297 0.0270 0.0317 0.0448 0.0429 0.0404 0.0778
Bio 0.0286 0.0301 0.0284 0.0298 0.0470 0.0464 0.0428 0.0345
21 By 0.0286 0.0305 0.0296 0.0276  0.0456 0.0464 0.0432 0.0451
B> 0.0286 0.0309 0.0307 0.0256  0.0407 0.0427 0.0410 0.0267
Pz 0.0286 0.0314 0.0317 0.0239 0.0329 0.0356 0.0361 0.0753
Bia  0.0286 0.0318 0.0325 0.0229 0.0233 0.0259 0.0285 0.0038
Bis 0.0286 0.0322 0.0331 0.0228 0.0137 0.0153 0.0190 —0.0072
Bis 0.0286 0.0326 0.0336 0.0240 0.0060 0.0060 0.0092 0.0029
P17 0.0286 0.0330 0.0340 0.0266  0.0029 0.0008 0.0018 0.0445
Bis  0.0286 0.0335 0.0343 0.0311 0.0075 0.0037 0.0013 0.0023
Bio  0.0286 0.0339 0.0344 0.0376  0.0231 0.0192 0.0140 —0.0123
Bo  0.0286 0.0343  0.0343 0.0466 0.0540 0.0529 0.0488 0.0442
B 0.0286  0.0347  0.0342 0.0581 0.1045 0.1114 0.1175 0.1351

successful choice among the r-convex models in following the trend of the uncon-
strained coefficients. Similar results are obtained for m = 21, except that the method
employs 21 coefficients instead of 17. In this case, it is clear the 4-convex model
gives the best results. Now the 4-convex coefficients lie on a fit that consists of four
overlapping cubics that follow smoothly the trend of the unconstrained coefficients
all over the range, as it is also illustrated in Fig. 3.
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Fig. 2 The unconstrained (plus sign) and the r-convex lag coefficients of Table 1,
when m = 17 and r = 2,3,4, and 5. A piecewise linear interpolant illustrates the

associated coefficients
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Fig. 3 AsinFig.2, but m =21

The r-concave coefficients for » < 4 of Table 2 seem unsuccessful in following
this trend, especially at the tails of the unconstrained coefficients. The reason is that
not only the approximation by nonpositive differences is not suitable when r < 4,
but also the inactive constraints that occur at the r-concave fits are so rare that these
fits do not allow more flexibility than that of a polynomial fit of degree r — 1. For
example, all the components of the 1-concave model are equal, as opposed to the
1-convex model; the 2-concave model for m = 17 and m = 21, which is presented in
Figs. 4 and 5, respectively, is a straight line fit as opposed to the 2-convex polygonal
model; the 3-concave model, except at the left end of the range, gave poor results;
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the 4-concave model failed to follow the trend of the unconstrained coefficients
at the left half of the range and gave poor results for the right half of the range.
However, the r-concave coefficients, for r > 5, are much closer to the components
of B than those for » < 4, because the r-concave fit tends to undulate for larger
values of r. Still, the values of the Lagrange multipliers are kept large.

Next, we applied the conjugate gradient-type method of Sect.3 to the data
described in the beginning of the section. Therefore we estimated the coefficients
of the distributed-lag model with m = 17, 21 subject to the piecewise monotonicity
constraints (22) on the components of 3 for k = 1,2, ..., 6, where the first mono-
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Table 3 The Lagrange multipliers that correspond to the lag coefficients of Table 1

r-Convex
m A r=1 r=2 r=3 r=4 r=>5 r==6 r=7
M 296.58 0  1,634.05 0 6,149.12 1,697.93 71,610.28
A2 318.98 7690  4,861.62 4941  22,266.43 0 366,144.86
A3 199.50 37586  8,743.49 1,192.22  41,321.04 0 902,718.82
s 134.47 73277 12,588.86  3,153.40  53,127.46  12,878.60 1,453,646.53
As 80.12 1,115.96 15,652.99 4,463.18 53,474.10  31,826.18 1,741,209.45
s 0 1,617.83 17,064.43 4,999.97 41,940.12  51,847.92 1,580,571.26
A7 5898 1,976.79 16,884.35 3,783.62  27,705.83  50,496.51 1,115,288.38
As 0 239558 14,654.00 2,587.10  14,324.94  32,132.68 613,846.77
17 L 82.03 2471.50 11,244.74  1,665.53 4,473.71 15,393.00 249,044.41
Ao 132.08 224372  7,483.21 803.68 0 8,517.42 52,882.99
i 15042 1,783.05  4,018.59 0 0 2,494.36 -
A2 17829 1,230.80  1,465.29 0 86.08 - -
A3 221.67 580.09 300.39 23.29 - - -
A 123.17 162.89 0 - - - -
Als 34.46 0 - - - - -
A6 0 - - - - - -
M7 - - - - - - -
M 178.66 0  1,520.79 6.36 5,617.82 1,063.93 112,337.53
A 173.80 36740  4,787.05 0  24,097.74 0 654,489.39
A3 4726 1,327.38  8,885.78 94159  53,651.32  15,605.84 1,902,073.32
Ag 0 2,673.06 12,999.04 295746  85,725.13  90,771.01 3,723,747.68
As 0 4210.62 16,378.73 4,740.05 113,230.14 252,693.56 5,502,455.15
As 16.09 5,800.62 1831551 5,103.94 133,710.17 479,660.33  6,420,797.25

A7 119.44 7,201.96 18,557.30 3,094.40 151,648.22 678,318.38 6,071,823.25
As 172.27 8,462.07 16,536.60 1,044.23 163,510.59 763,000.22 4,624,195.67
Ao 477.13  9,046.76  13,048.99 0 164,431.73 694,166.97 2,721,109.06
Ao 75475 8,988.84  8,830.08 657.58 149,367.38 501,655.02 1,110,351.23
21 A 1,021.84  8,272.88  4,791.60 2,588.90 117,277.33 267,402.70 237,879.61

Alx 1,227.38  7,012.41 1,817.45 4,879.08  73,098.98  90,975.31 0
Az 1,352.69  5,347.66 557.68 520432  32,177.45 12,267.54 14,858.87
Ala 1,233.82 3,757.00 364.70  3,329.33 7,528.65 0 20,205.95
Ais 1,029.78 241141 366.66  1,009.03 0 2,301.89 —
A6 802.72 1,352.58 170.93 0 54.85 - —
M7 590.81 538.09 0 67.56 - - —
Mg 346.62 53.88 9.76 - - - -
Ao 67.76 0 — - - - —
20 0 — — — — — —
2o - - - - - - -

tonic section of the fit is increasing. Also we estimated coefficients, where we al-
lowed the first monotonic section to be decreasing. The amount of CPU time to
carry out these calculations in single precision arithmetic is negligible.

The tolerance for the termination criterion (28) in Step 4 was set to 107°. The
actual values of m, k, and the calculated coefficients with the increasing option
are given in Table 5, while the coefficients with the decreasing option are given
in Table 6. The coefficients are shown in the third (k = 1), fourth (k = 2), and so
on column of each table. The last column of each table displays the unconstrained
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Table 4 The Lagrange multipliers that correspond to the lag coefficients of Table 2

r-Concave
m A r=1 r=2 r=3 r=4 r=>5 r==6 r=7
M 76.51 653.07 0 4,041.46 0 30,641.37 14,430.64
A 455.65 1,382.08 0 14,603.60 1,406.95 136,046.25 17,553.30
A3 981.14 1,853.82 21443  30428.76  10,973.84 312,424.60 0
Ay 143464 2,112.71 442,54  48,758.00 32,745.41 497,491.78 8,058.22
As  1,841.09 2,109.29 534.64  66,170.59  61,169.00 615,835.25 47,007.34
As  2,19891 1,803.41 821.42  78,654.88  87,255.56 610,712.40 129,036.51
A7 2,371.01 1,44850 1,153.21  84,255.25  97,070.86 500,875.99 161,218.23
Ag  2,555.75 859.09 2,116.72 80,253.22  88,742.28 336,025.61 104,777.13
17 A 2,439.73 469.75 3,140.85 67,388.58  67,084.79 174,025.68 27,566.27
Ao 2,251.48 269.84  3,772.34  48,926.32  40,249.24 60,824.27 3,022.83
A1 2,013.19 209.83  3,721.74  29,29346  16,598.38 11,490.81 -
Az 1,725.58 289.84  3,092.94 12,901.62 3,755.66 — —
Az 1,406.44  456.18  1,838.81 3,260.96 - - -
Ma 1,169.72  419.65 632.85 — — — —
Als 873.55 217.14 - - — — -
Me 486.74 — — — — — —
A7 — — — — — — —
M 59.00  456.66 0 7,036.82 0 33,927.71 10,655.22
A 376.54 881.22 449.63  28,537.02 2,079.81 172,036.14 0
A3 820.74  997.01 2,263.46 67,499.85 16,793.68 456,105.85 0
Ay 1,173.21 934.50  5,733.88 12291697 55911.40 854,672.23 237,572.29
As  1,452.29 760.16 10,782.88 189,891.40 120,597.74 1,279,736.53 1,037,984.91
As  1,677.55 494.11 17,341.48 259,823.15 199,140.55 1,632,523.87 2,570,050.48
A7 1,775.89 293.92 24,858.56 322,698.03 268,188.21 1,868,054.30 4,469,092.13
As  1,904.41 0 33,258.33 366,002.78 313,905.99 1,960,403.04 6,013,750.04
Ao 1,745.24 96.85 41,043.27 381,826.35 329,370.07 1,899,263.75 6,510,991.70
Ao 1,554.97 559.44 46,832.45 367,461.26 315,230.01 1,686,421.42 5,704,141.80
21 A 1,367.95 1,301.65 49,537.66 325,462.15 276,942.31 1,342,042.44 3,933,275.53
Az 1,195770 2,236.97 48,618.74 263,660.49 223,403.24 911,134.06 2,016,305.28
Az 1,056.27 3,229.46 43,815.49 193,808.72 159,611.75 489,767.11 680,876.45
Mg 1,084.41 3,873.47 36,113.20 126,459.39  93,854.36 183,118.29 110,027.36
As 1,115.68 4,105.97 26,752.69  69,871.66  39,704.26 34,778.82 —
Me 1,136.72 3,910.86 17,092.21  29,516.89 8,716.24 — —
A7 1,15557 3,266.40  8,612.74 7,146.94 — — —
Mg 1,123.22  2,250.31  2,575.12 — — — —
A9 1,045.03 948.85 - - - - -
Ao 658.89 — — — — — —
2o - - - - - - -

lag coefficients. The underlined numbers indicate the positions of the local extrema,
maxima, and minima. The coefficients of Tables 5 and 6, fork =1, 2, 3,4, 5, and 6,

for each m are displayed in Figs. 6, 7, 8, and 9.

The results of Table 5 are as follows. The monotonically increasing components
when (m = 17,21; k = 1) consist of four sections of different equal components.
The lag coefficients for k = 1,3, 5, apart from slight differences in the fourth deci-
mal place of sporadic values, are the same with the lag coefficients for k = 2,4, 6,
respectively. The user may specify whether the first monotonic section in (22) is in-
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Table S The piecewise monotonic lag coefficients where the first monotonic section
is increasing and the unconstrained lag coefficients

Unconstrained

m Bi k=1 k=2 k=3 k=4 k=5 k=6 lag coefficients
Bi 0.0227  0.0227 0.0708 0.0708 0.0704 0.0704 0.0772
B 0.0227  0.0227 0.0120 0.0120 0.0108 0.0108 —0.0020
B3 0.0227  0.0227 —0.0034 —0.0034 —0.0036  —0.0036 0.0015
Ba 0.0227  0.0227 0.0197 0.0197 0.0200 0.0200 0.0190
Bs 0.0227  0.0227 0.0197 0.0197 0.0200 0.0200 0.0348
Bs 0.0227  0.0227 0.0197 0.0197 0.0200 0.0200 —0.0025
B 0.0245  0.0245 0.0251 0.0251 0.0200 0.0200 0.0425
Bs 0.0245  0.0245 0.0251 0.0251 0.0200 0.0200 —0.0020
17 P 0.0408  0.0408 0.0411 0.0411 0.0578 0.0578 0.0728
Bio  0.0408  0.0408 0.0411 0.0411 0.0435 0.0435 0.0391
B 0.0408  0.0408 0.0411 0.0411 0.0435 0.0435 0.0440
P12 0.0408  0.0408 0.0411 0.0411 0.0435 0.0435 0.0203
Bz 0.0408  0.0408 0.0411 0.0411 0.0435 0.0435 0.0755
Pia  0.0408  0.0408 0.0411 0.0411 0.0328 0.0328 0.0241
Bis  0.0408  0.0408 0.0411 0.0411 0.0281 0.0281 0.0269
Bis  0.0408  0.0408 0.0411 0.0411 0.0401 0.0401 0.0281
Bz 0.0670  0.0670 0.0627 0.0627 0.0696 0.0696 0.0819
B 0.0199  0.0199 0.0165 0.0165 0.0483 0.0483 0.0527
B 0.0199  0.0199 0.0165 0.0165 0.0100 0.0100 —0.0009
Bs 0.0199  0.0199 0.0165 0.0165 —0.0082  —0.0082 —0.0034
in 0.0199  0.0199 0.0165 0.0165 0.0149 0.0149 0.0148
Bs 0.0236  0.0235 0.0215 0.0215 0.0229 0.0229 0.0341
Be 0.0274  0.0274 0.0218 0.0218 0.0229 0.0229 0.0078
B 0.0274  0.0274 0.0224 0.0224 0.0229 0.0229 0.0367
Bs 0.0274  0.0274 0.0224 0.0224 0.0229 0.0229 0.0067
Bo 0.0274  0.0274 0.0604 0.0604 0.0611 0.0611 0.0778
Bio  0.0274  0.0274 0.0441 0.0441 0.0438 0.0438 0.0345
21 B 0.0274  0.0274 0.0441 0.0441 0.0438 0.0438 0.0451
P12 0.0274  0.0274 0.0441 0.0441 0.0438 0.0438 0.0267
Pz 0.0274  0.0274 0.0441 0.0441 0.0438 0.0438 0.0753
Pia  0.0274  0.0274 0.0116 0.0116 0.0118 0.0118 0.0038
Pis  0.0274  0.0274 0.0116 0.0116 0.0118 0.0118 —0.0072
Bis  0.0274  0.0274 0.0116 0.0116 0.0118 0.0118 0.0029
P17 0.0274  0.0274 0.0116 0.0116 0.0118 0.0118 0.0445
Pis 0.0274  0.0274 0.0116 0.0116 0.0118 0.0118 0.0023
Pio  0.0274 0.0274 —0.0081 —0.0081 —0.0087  —0.0087 —0.0123
Bo  0.0274  0.0274 0.0458 0.0458 0.0484 0.0484 0.0442
Py 0.1033  0.1033 0.1330 0.1330 0.1286 0.1286 0.1351

creasing or decreasing, but the algorithm can give 3, < B, as for example occurs in
Table 5 for k = 3,4,5,6 when m = 17, by regarding the first monotonic component
B as the first monotonic section. Thus in Table 5, we have underlined the number
B1 for k =3,4,5,6 when m = 17 and for k = 5,6 when m = 21. When m = 17, a
minimum occurs at 33 for k = 3,4,5,6, a maximum at ¢ for k = 5,6, and a mini-
mum at ;5 for k = 5,6. It is noticeable that each fit preserves the positions of the
extrema as k increases. Similar results are observed when m = 21. We see also that
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Table 6 The piecewise monotonic lag coefficients where the first monotonic section
is decreasing and the unconstrained lag coefficients

Unconstrained

m B k=1 k=2 k=3 k=4 k=5 k=6 lag coefficients
Bi 0.0335 0.0708 0.0708 0.0704 0.0704 0.0699 0.0772
B 0.0335 0.0120 0.0120 0.0108 0.0108 0.0103 —0.0020
B3 0.0335 —0.0035 —0.0034 —0.0036 —0.0036 —0.0008 0.0015
Ba 0.0335 0.0197 0.0197 0.0200 0.0200 0.0179 0.0190
Bs 0.0335 0.0197 0.0197 0.0200 0.0200 0.0179 0.0348
Be 0.0335 0.0197 0.0197 0.0200 0.0200 0.0179 —0.0025
B 0.0335 0.0251 0.0251 0.0200 0.0200 0.0392 0.0425
Bs 0.0335 0.0251 0.0251 0.0200 0.0200 0.0004 —0.0020
17 B 0.0335 0.0411 0.0411 0.0578 0.0578 0.0618 0.0728
Bio  0.0335 0.0411 0.0411 0.0435 0.0435 0.0438 0.0391
B 0.0335 0.0411 0.0411 0.0435 0.0435 0.0438 0.0440
Bio  0.0335 0.0411 0.0411 0.0435 0.0435 0.0438 0.0203
Bz 0.0335 0.0411 0.0411 0.0435 0.0435 0.0438 0.0755
Bia  0.0335 0.0411 0.0411 0.0328 0.0328 0.0322 0.0241
Bis  0.0335 0.0411 0.0411 0.0281 0.0281 0.0285 0.0269
Bie  0.0335 0.0411 0.0411 0.0401 0.0401 0.0394 0.0281
Bz 0.0335 0.0628 0.0627 0.0696 0.0696 0.0705 0.0819
Bi 0.0286 0.0528 0.0528 0.0483 0.0483 0.0480 0.0527
B 0.0286 0.0125 0.0125 0.0100 0.0100 0.0101 —0.0009
B3 0.0286 —0.0073 —0.0073 —0.0082 —0.0082  —0.0070 —0.0034
in 0.0286 0.0197 0.0198 0.0149 0.0149 0.0119 0.0148
Bs 0.0286 0.0275 0.0275 0.0229 0.0229 0.0244 0.0341
Be 0.0286 0.0275 0.0275 0.0229 0.0229 0.0244 0.0078
By 0.0286 0.0275 0.0275 0.0229 0.0229 0.0318 0.0367
Bs 0.0286 0.0275 0.0275 0.0229 0.0229 0.0076 0.0067
Bo 0.0286 0.0275 0.0275 0.0611 0.0611 0.0660 0.0778
Bio  0.0286 0.0275 0.0275 0.0438 0.0438 0.0439 0.0345
21 By 0.0286 0.0275 0.0275 0.0438 0.0438 0.0439 0.0451
B 0.0286 0.0275 0.0275 0.0438 0.0438 0.0439 0.0267
Pz 0.0286 0.0275 0.0275 0.0438 0.0438 0.0439 0.0753
Pia  0.0286 0.0275 0.0275 0.0118 0.0118 0.0115 0.0038
Bis  0.0286 0.0275 0.0275 0.0118 0.0118 0.0115 —0.0072
Bis  0.0286 0.0275 0.0275 0.0118 0.0118 0.0115 0.0029
Bi7  0.0286 0.0275 0.0275 0.0118 0.0118 0.0115 0.0445
Pis 0.0286 0.0275 0.0275 0.0118 0.0118 0.0115 0.0023
Bio  0.0286 0.0275 0.0275 —0.0087 —0.0087 —0.0050 —0.0123
B 0.0286 0.0275 0.0275 0.0484 0.0484 0.0468 0.0442
B1 0.0286 0.0999 0.0999 0.1286 0.1286 0.1280 0.1351

the last monotonic section for (m = 17,21; k = 2,4,6) has degenerated to the last
component f3,,.

The results of Table 6 are as follows. The monotonically decreasing components
when (m = 17,21; k = 1) are all equal, which indicates that this model is less suc-
cessful than the corresponding model of Table 5. The lag coefficients for k = 2,4,
apart from slight differences, are the same with the lag coefficients for k = 3,5, re-
spectively. When m = 17, the coefficients have a minimum at 33 for k =2,3,4,5,6,
a maximum at 39 and a minimum at f3;5 for k =4,5,6, and a maximum at f3; as well
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as a minimum at fg for k = 6. Similar results are observed when m = 21. We see also
that the last monotonic section when (m = 17,21; k = 3,5) has degenerated to 3.

It is remarkable that the extrema { [3,.,. 1 j=1,2,...,k—1} of the piecewise mono-
tonic coefficient estimates approach k — 1 out of the m unconstrained coefficients.
If a suitable value of & is not known in advance, then the user may apply the piece-
wise monotonicity constraints that are incorporated in the conjugate gradient algo-
rithm for a sequence of integers k. On the other hand, it would have been sensible
to give k a value, after there had been derived some information from the uncon-
strained lag coefficients. Further, we should note that the cases (m = 17;k = 2,4)
and (m =21,k =4) of Table 6, apart from slight differences, present the same results
as the cases (m = 17;k = 3,5) and (m = 21,k = 5) of Table 5, respectively. This re-
mark suggests that the piecewise monotonic constraints can be employed either with
the increasing or with the decreasing option for the first monotonic section, because
as k increases the piecewise monotonicity algorithm through the course may allow
a monotonic section to degenerate to a single component, which in turn can remedy
an initially unsuccessful choice of the first monotonic section.
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Fig. 6 With m = 17, the unconstrained (plus sign) and the piecewise monotonic lag
coefficients (first section is increasing) with k = 1(2), k = 3(4), and k = 5(6) of
Table 5

A comparison of the k = 1 case of Tables 5 and 6 with the r = 1 case of Tables 1
and 2 respectively shows that the monotonic coefficients of Tables 5 and 6, obtained
by the conjugate gradient type method of Sect.3 when k = 1, are quite close to the
monotonic coefficients of Tables 1 and 2 obtained by the method of Sect.2 when

r=1.
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Fig. 7 With m = 21, the unconstrained (plus sign) and the piecewise monotonic lag
coefficients (first section is increasing) with k = 1(2), k = 3(4), and k = 5(6) of

Table 5
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Fig. 8 With m = 17, the unconstrained (plus sign) and the piecewise monotonic lag
coefficients (first section is decreasing) with k = 1,3(2) and k = 5(4) of Table 6
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Fig. 9 With m = 21, the unconstrained (plus sign) and the piecewise monotonic lag
coefficients (first section is decreasing) with k = 1,3(2) and k = 5(4) of Table 6

5 Discussion

We have considered two methods for calculating distributed-lag coefficients subject
to sign conditions on consecutive differences of the coefficient estimates and have
presented an application of these methods to real macroeconomic data on money
and prices that gives attention to particular relations for the lag coefficients. Further,
we have included some relations that suggest conflicting strategies, in order to shed
light to the behavior of these methods and help decide for suitable relations.

The first method is a strictly convex quadratic programming calculation subject
to nonnegative differences of order r of the lag coefficients. The method is efficient
computationally, because the matrices that occur are banded and positive definite
due to the Toeplitz structure of the constraint functions. Two important practical
questions concern the size of m and the choice of r. The size of m can be selected
by statistical methods. The choice of order r should depend on properties of the
underlying relation. If, however, the choice of r is a matter of experimentation, the
user may try iteratively some values of r, as suggested by Cullinan [2] and Vassil-
iou and Demetriou [34]. Some modeling advantages of using this method are that
it achieves a rather weak representation of the lag coefficients, it obtains well rec-
ognized structures which take the form of monotonicity, convexity, and r-convexity
for »r > 3, and it provides estimations of higher rates of change of the underlying re-
lation. In the example considered, the r-convex lag coefficients were able to follow
the general trend of the (unknown) unconstrained lag coefficients in a rather smooth
manner.
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The second method estimates piecewise monotonic lag coefficients by an itera-
tive procedure that combines the conjugate gradient method with a piecewise mono-
tonicity data approximation method. The procedure is both efficient computationally
and competent to its modeling task. In addition, it overcomes the multicollinearity
problem that frequently occurs in the practice of distributed-lag calculations. The
obtained piecewise monotonicity model provides a weak, nonetheless very realistic
representation of the lag coefficients, a property that is highly desirable by the ex-
perts. Moreover, the choice of the prior knowledge parameter k gives the estimation
of the lag coefficients valuable flexibility.

The authors have developed Fortran versions of the algorithms that would be
helpful for obtaining particular relations in real problem applications. Furthermore,
there is room for much empirical analysis as well as for comparisons with other
distributed-lag methods. Our methods may be useful, because they are driven by
properties such as r-convexity and piecewise monotonicity that allow a wide range
of assumptions about the lags. Besides, these properties do not occur in other
distributed-lag methods.
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Poincaré-Type Inequalities for Green’s Operator
on Harmonic Forms

Shusen Ding and Yuming Xing

1 Introduction

The purpose of this paper is to derive the Poincaré-type inequalities with unbounded
factors for Green’s operator applied to the solutions of the nonlinear elliptic dif-
ferential equation d*A(x,du) = B(x,du), which is called the nonhomogeneous
A-harmonic equation for differential forms in IR", n > 2, where A and B are operators
satisfying certain conditions. Furthermore, we prove both local and global Poincaré
inequalities with Orlicz norms for Green’s operator applied to differential forms in
L?(m)-averaging domains. Our new results are extensions of L? norm inequalities
for Green’s operator and can be used to estimate the norms of differential forms
or the norms of other operators, such as the projection operator. The Poincaré-type
inequalities have been widely studied and used in PDEs, analysis, and the related
areas, and different versions of the Poincaré-type inequalities have been established
during the recent years, see [1, 4-6, 8—12]. We all know that Green’s operator is
one of the key operators which is widely used in many areas, such as analysis and
PDEs. The study of the above equation just started in recent years, see [1, 6, 8, 16].
However, the investigation of the homogeneous A-harmonic equation has been well
developed and many applications in the related fields, including potential theory and
nonlinear elasticity, have been found, see [13—15, 20-23]. In many situations, we
often need to evaluate the integrals with unbounded factors. For instance, if the
object P; with mass m is located at the origin and the object P» with mass m, is
located at (x,y,z) in IR, then, Newton’s Law of Gravitation states that the magnitude
of the gravitational force between two objects Py and P is |F| = mmyG/d* (P, Py),
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where d(P,P,) = \/x*+y2+7% is the distance between P, and P, and G is
the gravitational constant. Hence, we need to deal with an integral whenever the
integrand contains |F| as a factor and the integral domain includes the origin.
Moreover, in calculating an electric field, we will evaluate the integral E(y) =
ﬁ Jpp(x) ﬁdx, where p(x) is a charge density and x is the integral variable.
The integrand is unbounded if y € D. This is our motivation to prove the Poincaré-
type inequalities for Green’s operator G with unbounded factors.

In this paper, we always assume that M is a bounded, convex domain and B
is a ball in IR", n > 2. Let 0B be the ball with the same center as B and with
diam(oB) = odiam(B), ¢ > 0. We do not distinguish the balls from cubes in
this paper. We use |E| to denote the Lebesgue measure of the set E. We say w
is a weight if w € Llloc(IR") and w > 0 a.e. Differential forms are extensions of
functions in IR". For example, the function u(x;,x,,...,x,) is called a O-form. A
differential k-form u(x) is generated by {dx; Adx;, A---dx; }, k=1,2,...,n, that
is, u(x) = X ur(x)dx; = Xujyiy...i, (xX)dxyy Ndxiy \--- Ndx;,, where I = (iy,ia,... i),
1 <ij <ip<-<i<n Let Al = Al(IR") be the set of all /-forms in IR",
D'(M,A!) be the space of all differential /-forms on M, and L”(M,A!) be the
I-forms u(x) = Y us(x)dx; on M satisfying [, |us|P < o for all ordered /-tuples I,
I =1,2,...,n. We denote the exterior derivative by d : D'(M,A') — D'(M,N*1)
for/ =0,1,...,n— 1, and define the Hodge star operator x : A¥ — A"~¥ as follows.
If u = ujiyeiy (X1,X2, - X0 )dXiy Ndxiy N--- Ndxy, = wpdxy, i) <ip <--- <irisa
differential k-form, then xu = *(u;i...;;dxi, Adxiy A+~ Adx;,) = (—1)XDuydxy,
where I = (i1,iz,....ir), J = {1,2,...,n} — I, and X(I) = “ 4 vk i
The Hodge codifferential operator d* : D'(M,A\'"*1) — D/(M,A!) is given by
d* = (=1)"*xdx on D'(M,AN*Y), 1 =0,1,....,n— 1. We write ||ullsy =
(S [ and [l [sare = (fys lu'w(x)dx)"*, where w(x) is a weight. Let
W(A'Q) = {u € L, (A'Q) : uhas generalized gradient}. As usual, the har-
monic [-field is defined by H(AN'Q) = {u € WA'Q) : du = d*u = O,u €
LP forsome 1 < p < oo}. The orthogonal complement of 3 in L' is defined
by H+ = {u € L' :< u,h >= 0forall h € H}. Green’s operator G is defined
as G : C°(N'Q) — HE-NC=(AQ) by assigning G(u) be the unique element of
HENC=(A'Q) satisfying Poisson’s equation AG(u) = u— H(u), where H is either
the harmonic projection or sometimes the harmonic part of # and A is the Laplace—
Beltrami operator, see [18, 21] for more properties of Green’s operator. We always
use G to denote Green’s operator in this paper.

We consider the nonhomogeneous A-harmonic equation for differential forms

d*A(x,du) = B(x,du), (1)

where the mappings A(x, &) : M x A(IR") — AY(IR") and B(x,&) : M x AH(IR") —
A=1(IR") are measurable with respect to x and &, and satisfy the conditions:

A <alglP!, AE)-E> [EP and [BE)| <BEP @

for almost every x € M and all £ € A/(IR"), where a,b > 0 are constants and 1 <
p < oo is a fixed exponent associated with (1). A solution to (1) is an element of
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the Sobolev space Wl(])’Cp(M, A1) such that [y, A(x,du)-d + B(x,du) - ¢ = 0 for
all ¢ € WI(I)’CP(M, A1) with compact support. Let A : M x Al(IR") — AY(IR") be
defined by A(x,&) = £|&|P~2 with p > 1. Then, A satisfies the required conditions
and d*A(x,du) = 0 reduces to the p-harmonic equation

d*(dulduP~%) =0 3)

for differential forms. In case that u is a function (0-form), (3) becomes the usual
p-harmonic equation div(Vu|Vu|P~2) = 0. A differential form u is called a har-
monic form if u satisfies some version of the A-harmonic equation. Much progress
has been made recently in the investigation of different versions of the A-harmonic
equations, see [5, 6, 8, 13, 15-17].

The operator K, with the case y = 0 was first introduced by Cartan in [3]. Then,
it was extended to the following version in [14]. To each y € M there corresponds a
linear operator Ky : C(M,Al) — C=(M, A=) defined by (Kyu)(x;&,...,&-1) =
fol ! lu(tx+y —ty;x—y,E1,...,& 1)dt. A homotopy operator T : C*(M,A) —
C=(M,N'71) is defined by Tu = [,,; ¢ (v)Kyudy, where ¢ € Cg’(M) is normalized so
that [, ¢ (y)dy = 1. The I-form uy € D'(M, N') is defined by

uM:|M\—1/Mu(y)dy, 1=0, and upy =d(Tu), [=1,2,....n 4)

forall u € LP(M,A'), 1 < p < . Furthermore, we have
u=d(Tu)+T(du), Q)

[Tullsp < C(s,n, M)diam (M) |[u|s 1 ©)

for any differential form u.

2 Local Inequalities

We first introduce the following lemmas that will be used in this paper.

Lemma 1 ([8]). Let u be a solution to the nonhomogeneous A-harmonic equa-
tion (1)in M and let 6 > 1, 0 < s,t < o, Then, there exists a constant C, depending
only on o,n,a,b,s, and t, such that

ldulls.z < C(n, MBI | dull; 03
for all balls or cubes B with cB C M.

Using the same method developed in the proof of Propositions 5.15 and 5.17 in [18],
we can prove that for any closed ball B= BU dB, we have

ldd*G(u)l| 5+ |d*dG(u)ll, 5 +11dG(w) |5+ 4" Gw) | 3+ |Gl g < C(s)llulls 5 (7)
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Note that for any Lebesgue measurable function f defined on a Lebesgue
measurable set E with |[E| = 0, we have [ fdx = 0. Thus, |ul;55 = 0 and
Idd*Gw)||s a5 + 1*d G, 5 + 4G a5 + 1" G) | 2 + 1| Gw) .5 = O
since |dB| = 0. Therefore, we obtain

dd*G(u)l|s.8+ [|d"dG(u)||s.8 + [|dG(u) 5.8 + " G(w)[|s.p5 + [| G (w)]|s.5
= ldd"G ()5 + ld°dG ()| 5+ 1dG(w) |, 5+ [|4"G ()|, 5+ G s 5
<C(s)lulls 5

=C(s)lulls.5-

Hence, we have the following lemma.

Lemma 2. Let u be a smooth differential form defined in M and 1 < s < eo. Then,
there exists a positive constant C = C(s), independent of u, such that

dd*G(u)l|s.5+[ld"dG (w) |5+ dG (w) |5+ " G(w)l| s+ G (w) | < C(s)[[ulls.8
forany ball BC M.

Now, we prove the following local elementary Poincaré-type inequality for
Green’s operator applied to differential forms.

Lemma 3. Letuc L} (M,A),1=1,2,...,n, 1 <s < ooand G be Green’s operator.

loc
Then, there exists a constant C = C(n,s,M), independent of u, such that

1G(u) = (G(w))8lls.8 < C(n, s, M)diam(B)||dul|s 5
for all balls B with B C M.
Proof. Replacing u by G(u) in (5), then using (6) over a ball B, we obtain

1G(u) = (G(u))slls.8 = T (d(G(w)))lls.8 < Ci(s,n, Q)diam(B)||d(G(u))

s,B (8)

for any differential form u. Since G commutes with d (see [13]), using Lemma 2,
we have

1d(G()) 5.8 = |G(d(w))lls.8 < Ca(s)[|dulls.5- ©)
Combining (8) and (9), we have
1G(u) = (G(w))lls.8 < C3(s,n, Q)diam(B)||dul|;,5-
we have completed the proof of Lemma 3.

Theorem 1. Letduc L (Q,A),1=1,2,...,n, 1 <s < oo, be a solution of the non-

loc
homogeneous A-harmonic equation in a bounded domain €2, G be Green’s operator.

Then, there exists a constant C, independent of u, such that

(151600 — (Gt ) < Clns, .2, Q) (Jog it rae) ™ (10)

[x—xp[® [x—xp|*
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for all balls B with cB C Q and any real numbers o and A with o« > A > 0, where
Y= % — % and xp is the center of ball B and ¢ > 1 is a constant.

Proof. Choose € € (0,1) such that en < ot — A and let B C £ be any ball with center
xp and radius rp. Sett =s/(1 —¢€), then, t > 5. Write § =1 /(¢ — s), from the Holder
inequality and Lemma 3, we have

(/B <|G(u) - (G(u))BDSmdx) 1/s
_ (/B(|G<u) —(G<u>)3|m)sdx)l/s

=

- ||G(u) - (G(”))B |t,B (/B |x_xB|—a[3dx)1/ﬁS

< €1 (5, Q)diam(B) |dul v | be— x5~ 5. (1

<||G(u) = (G(u))s

where v > 1 is a constant. We may assume that xg = 0. Otherwise, we just move the
center of the ball to the origin by a simple transformation. Therefore, for any x € B,
|x —xp| > |x| — |xs| = |x|. Using the polar coordinate substitution, we have

Cz(}’l,S,a)

n—of

Select m = nst/(ns+ ar — At), then 0 < m < s. By the reverse Holder inequality
(Lemma 1), we find that

/B\xfxg\_aﬁdxgCz(n,s,oc)/OBp_aBp”_ldp < (rg)"" . (12

ldull;ve < C3(n,s, a,l,Q)|B|":T? ldut||m o8, (13)

where 0 > v > 1 is a constant. Using the Holder inequality again yields

m 1/m
faulan = ( [ (il snl#—nu#) " ax )
oB

= (/GB (|du”x—xBMS)de> ) (-/C;B (|x _xBIMS) o dx) N

1/s
<(/ |d”|SX—xB|xdx) C4(n,s,a7Q)(orB)’l/S+”(S*M)/ms
OB

1/s

< Cs(n,s, 0, Q) (/ B|du|s|x—xB|_Adx) (rg)*/stnis=m)/ms 14y
O.

Note that
1 ns+ot—At a—>A

diam(B) - |B|1+%*ﬁ =|B R R |B|%’T. (15)
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Substituting (12)—(14) in (11) and using (15), we have

/s s
(5 (1G@) — (G)pl)" ldx) < Cs(n,5, 00,2, QUBY (Jogldul* v —xp| )"
We have completed the proof of Theorem 1.

Since d(x_]am < M for any x € B, where rp is the radius of ball B C £, using
the same method developed in the proof of Theorem 1, we obtain the following

Poincaré-type inequality for Green’s operator with unbounded factors.

Theorem 2. Letdu € Lj (L2, AD, 1=1,2,...,n, 1 <5 < oo, be a solution of the non-
homogeneous A-harmonic equation in a bounded domain Q, G be Green’s operator.
Then, there exists a constant C, independent of u, such that

(J516(w) = (G))sl* g m)dx)'/ < Clny5,00 2, Q)[BT [yl L) e

\AX\A

for all balls B with 6B C £ and any real numbers oo and A with o0 > A > 0, where
1 o
Y=5""m

3 Inequalities in John Domains

Finally, we are ready to prove the global Poincaré-type inequalities for Green’s
operator with unbounded factors in John domains.

Definition 1. A proper subdomain Q C IR" is called a 6-John domain, 6 > 0, if
there exists a point xg € €2 which can be joined with any other point x € €2 by a
continuous curve ¥ C £2 so that

d(§,092) > d[x—¢|
for each £ € y. Here d(&,0€2) is the Euclidean distance between & and 0Q.

Lemma 4 (Covering Lemma [17]). Each €2 has a modified Whitney cover of cubes
V = {0;} such that
UQi=Q2, Y x <Nxa
Q,‘EV \/EQ’

and some N > 1, and if Q; N Q; # 0, then there exists a cube R (this cube need not
be a member of V) in Q; N Q; such that Q;UQ; C NR. Moreover, if Q is 6-John,
then there is a distinguished cube Qo € V which can be connected with every cube
Q €V by a chain of cubes Qy,0Q1,...,0r = Q from V and such that Q C pQ;,
i=0,1,2,...,k for some p = p(n,d).

Theorem 3. Let u € Dl(Q, A% be a solution of the nonhomogeneous A-harmonic
equation (1) and s be a fixed exponent associated with the nonhomogeneous
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A-harmonic equation. Then, there exists a constant C(n,N,s,o,A,Qo,Q),
independent of u, such that

‘ 1/s .
(Jo 1G@) ~ (G| gerzadx) < CnN,5,,2,00,2) (o ldubg()dn)' (A7)

for any bounded and convex §-John domain  C R", where g(x) =Y, xo, = XQ TE—

Here ocand A are constants with 0 < A < oo < min{n,s+A —n}, s+A > n, and the
fixed cube Qg C £, the cubes Q; C Q, and the constant N > 1 appeared in Lemma 4,
Xg; is the center of Q;.

Proof. Assume that u(x) and u(x) are the Radon measures induced by du =
mdx and du; (x) = g(x)dx, respectively. We have

1 1
9 :/QW‘“ = /QWW:M(%%Q)IQI, (18)

where M(n, o, Q) is a positive constant. Using the elementary inequality (a + b)* <
2°(|al* + |b|*), s > 0, we find that

1/s
(Ja 166~ (G)ot gtz dx) = (o 16w - (Glw)g du)
< (Soev (2 fpI6t) — (G gldu + 2 [o1(Glw)o — (Glu)o,Pau))
< 1)((Soev Jo 6w~ (G0)gdn) "+ (Soev o | (Gw)o — (Gla)ayan) " (19)

for a fixed Qg C . The first sum in (19) can be estimated by using Theorem 2

Y. [ 1660~ (Gl
eV
<G00 2.2) T (0" [ laufau
eV
< Csy(ns,0,4,2)|Q[" 2/ dul'du) 2
QEV

§C4(n,s,oc,l,!2)|!2\7s/ \dul*dyay

Q

gcs(n,s,a,a,g)/ \duldp; (20)
Q

To estimate the second sum in (19), we use the property of §-John domain. Fix a
cube Q € V and let Qy,Q1,...,Qr = Q be the chain in Lemma 4

k—1
[(G(u))o = (G(u))g,| < Z(,) [(G(u))o; = (G(u)) 0. |- @1
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The chain {Q;} also has property that, for eachi,i=0,1,...,k—1, with Q;N Qs #
0, there exists a cube D; such that D; C Q;NQ;+; and Q;UQ;+1 C ND;, N > 1. Then,

IDi| <|0iNQit1| <max{|Qi|,|Qi+1]} <|0iUQit1] < |ND;| < Co(N)|Dj
which gives

max{|Q;|,|Qis1]} < max{|Q0;|,|Qi11]}

< Cy(N).
000 = o W)
Forsuch Dj, j=0,1,...,k—1, set D =min{|Do|,|D|,...,|D¢_1]}. Then
max(Q. 01y _ max(101. 10w} _ . o)
0iNQi1| D] B
Using (18), (22), and Theorem 2, we obtain
[(G(u))g, — (G(u) gy, I
1 dx
= Gu))o — (Gu))o,. |!———
T AL O Pesres
1 dx

< Cs(n,a, Q) G(u))o, — (G(u))g;,, |Sm

10iN Qi+1| Joino;. I

SCS n,OC,Q ol 1D
( )max{|Qi| 1Qi+11} Joingis

G(u)g; = (G(u))g., ['du

l+1
<Co(nN, 0, Q)Y / 1G( (), *du
270

l Q i+1 |Qj| ¥s s
<Cio(n,N,s,a, Z |Q | |du|*du,
J pPQ;

i+1
:clo(n,N,s,a,x,Q)z|Q,-|VH/ \duldp; (23)
j=i pPQ;

Since Q C NQ;j for j=1i,i+1,0 <i<k—1, from (23), we have

(G(u)g; = (G(u)gi.s ' 20(%)

i+1
< Cu(n,N,s,a,A,8) ZXNQ )" 1/ |dul|*d
pQ;

i+1
< Cpp(n,N,s,a,1,Q) Z;(NQ (x)|Q|"~ 1/ \dul*dp;. (24)
pO;
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We know that |Q|7~1/% < co since £ is bounded and y — % = %4’ % -5 x>
0 when o < s+ A +n(s — 1). Thus, from (a+b)'/s < 2V5(|a|'/* + |b]'/%), (21)
and (24), it follows that

(Gl))o— (Gaxo() < CistnN.5.04.2) 3 ([ jautam) "z (o

DeVv */pD

for every x € IR". Then,

Gu))p— (G(u d
ng/gu ()0 — (G())gy 't

> (/,

1/s K
Idu\sdm) xD(x)’ dp.
DeV P

< C13(I’Z,N,S,OC,A,Q)/IR,,

Notice that
N an(x) < Y, xpp(x) < Nya(x).

DeV DeV

Using elementary inequality | >, | < M*~' M |4]5, we finally have
Y. | G()o ~ (Glu))g,du
0ev /0
S ([ Jaulrap) o)) dn
pD

DeV

=Cia(n,N,5,0,4,9) z (/

Dev ~pD

< Cia(n,N, ,oc,/l,Q/

< Ci4(n,N,s )IR”(

duf*dp )

gcls(n,zv,s,a,/l,g)/ dul’dys. (25)
Q

Substituting (20) and (25) in (19), we have proved Theorem 3.

4 Inequalities with Orlicz Norms

In this section, we first prove the local Poincaré inequalities for Green’s operator
applied to differential forms. Then, we extend the local Poincaré-type inequalities
into the global cases in the L?(m)-averaging domains, which are the extension of
John domains and L*-averaging domain, see [7, 19]. A continuously increasing func-
tion @ : [0,00) — [0,°0) with ¢(0) = 0 is called an Orlicz function. The Orlicz space

L?(£2) consists of all measurable functions f on £ such that [, ¢ (‘xﬂ) dx < oo for
some A = A(f) > 0. L?(€) is equipped with the nonlinear Luxemburg functional
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A convex Orlicz function ¢ is often called a Young function. If ¢ is a Young
function, then |[| - ||, defines a norm in L?(£2), which is called the Luxemburg norm.

Definition 2 ([2]). We say a Young function ¢ lies in the class G(p,q,C), 1 < p <
g < oo, C>1,if (i) 1/C < @(t"/?) /(1) < C and (ii) 1/C < (1'/9)/¥(r) < C for
all > 0, where @ is a convex increasing function and ¥ is a concave increasing
function on [0, )

From [2], each of ¢, ®, and ¥ in above definition is doubling in the sense that its
values at t and 2¢ are uniformly comparable for all # > 0, and the consequent fact that

Cit? <Y Y o@) <Cot?, Cit" <D (1)) < Cot?, (27)

where C| and C; are constants. Also, for all 1 < p; < p < p> and « € IR, the func-
tion ¢@(r) = t”log% r belongs to G(p1, p2,C) for some constant C = C(p, e, p1, p2).
Here log, (1) is defined by log, (1) = 1 for < e; and log, (1) = log(t) for t > e.
Particularly, if oo = 0, we see that @(¢) =7 lies in G(p1,p2,C), 1 < p1 < p < p».

We first prove the following generalized Poincaré inequality that will be used to
establish the global inequality.

Theorem 4. Let ¢ be a Young function in the class G(p,q,C), | <p<g<e, C>1,
Q be a bounded domain and q(n — p) < np. Assume that u € D'(Q, ) is any
differential I-form, | =0,1,...,n—1, and ¢(|du|) € L\ .(£2,m). Then, there exists a
constant C, independent of u, such that

| 916 = (Gu)aldm < C [ o (|dul)dm (8)
B B
for all balls B with B C €.

Proof. Using Jensen’s inequality for ¥~!, (8), and noticing that ¢ and ¥ are dou-
bling, we obtain
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If 1 < p < n, by assumption, we have g < ;== Usmg the Poincaré-type inequality
for differential forms G(u)

(n—p)/np
</ |G (u) )|/~ P)dm>
1/p
< </ |d |”dm>
1/p
<G ( / |G(du)”dm)
B

1/p

( / IdMIPdm) : (30)

I /\

we find that

1/q 1/p
(/|G qdm) <G (/ |du|Pdm) . 31)
B

Note that the LP-norm of |G(u) — (G(u))p| increases with p and % —ooas p—rn,
and it follows that (31) still holds when p > n. Since ¢ is increasing, from (28)
and (31), we obtain

[0 (1660)~ GlaalJam < cro(es( [ auram) ™). G2

Applying (32), (i) in Definition 2, Jensen’s inequality, and noticing that ¢ and @ are
doubling, we have

[ o(166) ~ Gl )am < crop(cs( [ |duram) ")

< c1¢>(c4(/3|du|f’dm))

< Cs /B ®(|dulP)dm. (33)

Using (i) in Definition 2 again yields
[ @(duryam < ¢ [ gaul)dm (34

Combining (33) and (34), we obtain
[ 0(166) ~ (Gw)al)dm < ¢; [ o(dul)dm. (39)

The proof of Theorem 4 has been completed.
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Since each of ¢,®, and ¥ in Definition 2 is doubling, from the proof of
Theorem 4 or directly from (28), we have

[ (16010 < [ (144 56

for all balls B with 6B C Q and any constant A > 0. From (26) and (36), the fol-
lowing Poincaré inequality with the Luxemburg norm

1G(u) = (G ()l () < Clldullp(on) (37)

holds under the conditions described in Theorem 4.
Using Lemma 3.7.2 with w(x) = 1 in [1], we have the following Poincaré-type
inequality for the composition of A and G.

Lemma5. Let uc D'(Q,N), 1=0,1,--- ,n—1, be an A-harmonic tensor
on Q. Assume that p > 1 and 1 <s<e. Then, there exists a constant
C, independent of u, such that

|AG(u) — (AG(u))Bl|s.8 < Cdiam(B)||du|

5,pB (38)
for any ball B with pB C Q.

Using Lemma 5 and the method developed in the proof of Theorem 4, we can prove
the following version of Poincaré-type inequality for the composition of A and G.

Theorem 5. Let ¢ be a Young function in the class G(p,q,C), 1 <p<g<e, C>1,
Q be a bounded domain and q(n — p) < np. Assume that u € D'(Q, ) is any
differential I-form, | =0,1,...,n—1, and ¢(|du|) € L\ .(£2,m). Then, there exists a
constant C, independent of u, such that

[ 918G — (4G()sl)dm < C [ o (ldul)dm (39)
B B

for all balls B with B C €.

Now we extend Theorem 1 into the global cases in the following L% (m)-
averaging domains.

Definition 3 ([7]). Let ¢ be an increasing convex function on [0, o) with ¢(0) = 0.
We call a proper subdomain £ C IR" an L? (m)-averaging domain, if m(£2) < e and
there exists a constant C such that

/(p(r|u—u30\)dm§Csup/(p(0'|u—u3|)dm (40)
Q BCQ /B

for some ball By C Q and all u such that ¢(|u|) € L} (Q,m), where 7,0 are

loc

constants with 0 < T < oo, 0 < 0 < oo and the supremum is over all balls B C Q.
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From the above definition we see that L*-averaging domains and L*(m)-averaging
domains are special L? (m)-averaging domains when ¢(¢) = ¢* in Definition 3. Also,
uniform domains and John domains are very special L? (m)-averaging domains, see
[1, 7, 19] for more results about domains.

Theorem 6. Ler ¢ be a Young function in the class G(p,q,C), | <p<g<eo, C>1,
Q be a bounded L?(m)-averaging domain and q(n — p) < np. Assume that u €
D' (Q2,A% and @(|du|) € L' (Q,m). Then, there exists a constant C, independent of
u, such that

[ 0 (166 = (@), ) am = C [ o (ldul)dm. (1)
Q Q
where By C €2 is some fixed ball.

Proof. From Definition 3, (28) and noticing that ¢ is doubling, we have

/Qw(lG(u)—(G(u))Bol)dm < Crsup | ¢@(|G(u)—(G(u))s])dm
BCcQJ/B

< Ci sup (cz/ (p(|du)dm)
BCQ oB

< C sup <C2/ (p(|du|)dm>
BCQ Q

g@/mwmwn 42)
Q

We have completed the proof of Theorem 6.

Similar to the local case, the following global Poincaré inequality with the Orlicz
norm

1G(u) = (G(u))Byllp(2) < Clldullg(e) (43)

holds if all conditions in Theorem 6 are satisfied.
Choosing ¢(t) = t”log}t in Theorem 6, we obtain the following Poincaré
inequalities with the L” (log§ L)-norms.

Corollary 1. Let ¢(r) =1"1log¥t, 1 < p; < p < p> and o0 € R and Q be a bounded
L9 (m)-averaging domain and py(n— p1) < np;. Assume that u € D'(,A\°) and
o(|du|) € L' (Q,m). Then, there exists a constant C, independent of u, such that

160~ (G, " logs (1G(w) = (G{u)) ) d < C [ |dul”1og? (fdu]) .
' (44)
where By C €2 is some fixed ball.

Note that (43) can be written as the following version with the Luxemburg norm

1G () = (G(u)) By |22 (10g2 1) (@) < Clldul|rr10g2 1)(22)

provided the conditions in Corollary 1 are satisfied.
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Remark (i) If u is a differential function (O-form) in a domain Q C IR", (1) for
differential forms reduces to

divA(x,Vu) = B(x,Vu), x€ Q (45)

which is called the nonhomogeneous A-harmonic equation for functions. If the
operator B = 0, (45) becomes

divA(x,Vu) =0, x€ Q (46)

which is called the homogeneous A-harmonic equation for functions. In the case that
the operator A(x,&) = £|E[P~2 in (46) with p > 1, the homogeneous A-harmonic
equation (46) reduces to the usual p-harmonic equation for functions

div(Vu|VulP~2) = 0. 47)

Let p =2 in (47), we obtain the Laplace equation Au = 0 for functions in Q2 C IR".
Hence, each of Egs. (45)—(47) and the equation Au = 0 is the special case of the
nonhomogeneous A-harmonic equation (1). All results obtained in this paper are still
true for solutions of (45)—(47), that is, each theorem proved in this paper holds for
A-harmonic functions and p-harmonic functions. Especially, in Sect. 4, u does not
need to be a solution of any version of the A-harmonic equations. (ii) When dealing
with the integral of the vector field F = V f, we will face the singular integral if
the potential function f contains a singular factor, such as the potential energy in
physics. We believe that the Poincaré-type inequalities with singular factors will
find more applications in many fields in mathematics and physics.
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The Robustness Concern in Preference
Disaggregation Approaches for Decision Aiding:
An Overview

Michael Doumpos and Constantin Zopounidis

1 Introduction

Managers, analysts, policy makers, and regulators are often facing multiple
technical, socio-economic, and environmental objectives, goals, criteria, and con-
straints, in a complex and ill-structured decision-making framework, encountered in
all aspects of the daily operation of firms, organizations, and public entities. Coping
with such a diverse and conflicting set of decision factors poses a significant burden
to the decision process when ad hoc empirical procedures are employed.

Multiple criteria decision aid (MCDA) has evolved into a major discipline in
operations research/management science, which is well-suited for problem struc-
turing, modeling, and analysis in this context. MCDA provides a wide arsenal of
methodologies and techniques that enable the systematic treatment of decision prob-
lems under multiple criteria, in a rigorous yet flexible manner, taking into consider-
ation the expertise, preferences, and judgment policy of the decision makers (DMs)
involved. The MCDA framework is applicable in a wide range of different types
of decision problems, including deterministic and stochastic problems, static and
dynamic problems, as well as in situations that require the consideration of fuzzy
and qualitative data of either small or large scale, by a single DM or a group of
DMs. A comprehensive overview of the recent advances in the theory and practice
of MCDA can be found in the book of Zopounidis and Pardalos [68].
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Similarly to other OR and management science modeling approaches, MCDA
techniques are also based on assumptions and estimates on the characteristics of the
problem, the aggregation of the decision criteria, and the preferential system of the
DM. Naturally, such assumptions and estimates incorporate uncertainties, fuzziness,
and errors, which affect the results and recommendations provided to the DM. As a
result, changes in the decision context, the available data, or a reconsideration of the
decision criteria and the goals of the analysis, may ultimately require a very different
modeling approach leading to completely different outputs. Thus, even if the results
may be judged satisfactory when modeling and analyzing the problem, their actual
implementation in practice often leads to new challenges not taken previously into
consideration.

In this context, robustness analysis has emerged as a major research issue in
MCDA. Robustness analysis seeks to address the above issues through the introduc-
tion of a new modeling paradigm based on the idea that the multicriteria problem
structuring and criteria aggregation process should not be considered in the context
of a well-defined, strict set of conditions, assumptions, and estimates, but rather to
seek to provide satisfactory outcomes even in cases where the decision context is
altered.

Vincke [61] emphasized that robustness should not be considered in the restric-
tive framework of stochastic analysis (see also [34] for a discussion in the context of
discrete optimization) and distinguished between robust solutions and robust meth-
ods. He further argued that although robustness is an appealing property, it is not a
sufficient condition to judge the quality of a method or a solution. Roy [45], on the
other hand, introduced the term robustness concern to emphasize that robustness is
taken into consideration a priori rather than a posteriori (as is the case of sensitivity
analysis). In the framework of Roy, the robustness concern is raised by vague ap-
proximations and zones of ignorance that cause the formal representation of a prob-
lem to diverge from the real-life context, due to: (1) the way imperfect knowledge
is treated, (2) the inappropriate preferential interpretation of certain types of data
(e.g., transformations of qualitative attributes), (3) the use of modeling parameters
to grasp complex aspects of reality, and (4) the introduction of technical parameters
with no concrete meaning. An recent example of robustness in the context of multi-
objective linear programming can be found in Georgiev et al. [18]. The framework
for robust decision aid has some differences compared to the traditional approach
to robustness often encounter in other OR areas. A discussion of these differences
(and similarities) can be found in Hites et al. [28].

The robustness concern is particularly important in the context of the preference
disaggregation approach of MCDA, which is involved with the inference of pref-
erential information and decision models from data. Disaggregation techniques are
widely used to facilitate the construction of multicriteria evaluation models, based
on simple information that can the DM can provide [30], without requiring the
specification of complex parameters whose concept is not clearly understood by
the DMs. In this chapter we provide an overview of the robustness concern in the
preference disaggregation context, covering the issues and factors that affect the
robustness of disaggregation methods, the approaches that have been proposed to



Robustness in Disaggregation for Decision Aiding 159

deal with robustness in this area, and the existing connections with concepts and
methodologies from the area of statistical learning.

The rest of the chapter is organized as follows. Section 2 presents the context
of preference disaggregation analysis (PDA) with examples from ordinal regression
and classification problems. Section 3 discusses the concept of robustness in dis-
aggregation methods and some factors that affect it, whereas Sect. 4 overviews the
different approaches that have been proposed to obtain robust recommendations and
models in PDA. Section 5 presents the statistical learning perspective and discusses
its connections to the MCDA disaggregation framework. Finally, Sect. 6 concludes
the chapter and proposes some future research directions.

2 Preference Disaggregation Analysis

2.1 General Framework

A wide class of MCDA problems requires the evaluation of a discrete set of alter-
natives (i.e., ways of actions, options) X = {xj,Xy,...} described on the basis of
n evaluation criteria. The DM may be interested in choosing the best alternatives,
ranking the alternatives from the best to the worst, or classifying them into prede-
fined performance categories.

In this context, the construction of an evaluation model that aggregates the per-
formance criteria and provides recommendations in one of the above forms, requires
some preferential information by the DM (e.g., the relative importance of the cri-
teria). This information can be specified either through interactive, structured com-
munication sessions between the analyst and the DM or it can be inferred from a
sample of representative decision examples provided by the DM. PDA adopts the
latter approach, which is very convenient in situations where, due to cognitive or
time limitations, the DM is unwilling or unable to provide the analyst with spe-
cific information on a number of technical parameters (which are often difficult to
understand) required to formulate the evaluation model.

PDA provides a general methodological framework for the development of mul-
ticriteria evaluation models using examples of decisions taken by a DM (or a group
of DMs), so that DM’s system of preferences is represented in the models as ac-
curately as possible. The main input used in this process is a reference set of al-
ternatives evaluated by the DM (decision examples). The reference set may consist
of past decisions, a subset of the alternatives under consideration, or a set of fic-
titious alternatives which can be easily judged by the DM [30]. Depending on the
decision problematic, the evaluation of the reference alternatives may be expressed
by defining an order structure (total, weak, partial, etc.) or by classifying them into
appropriate classes.

Formally, let D(X’) denote the DM’s evaluation of a set X’ consisting of m refer-
ence alternatives described over n criteria (the description of alternative i on criterion
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k will henceforth be denoted by x;;). The DM’s evaluation is assumed to be based
(implicitly) on a decision model fg defined by some parameters 3, which repre-
sent the actual preferential system of the DM. Different classes of models can be
considered. Typical examples include:

e Value functions defined such that V(x;) > V (x;) if alternative i is preferred over
alternative j and V (x;) = V(x;) in cases of indifference [33]. The parameters of a
value function model involve the criteria trade-offs and the form of the marginal
value functions.

e Outranking relations defined such that x; Sx; if alternative i is at least as good
as alternative j. The parameters of an outranking model may involve the weights
of the criteria, as well as preference, indifference, and veto thresholds, etc. (for
details see [44, 60]).

e “If ...then ...” decision rules [19]. In this case the parameters of the model
involve the conditions and the conclusions associated to each rule.

The objective of PDA is to infer the “optimal” parameters [3* that approximate,
as accurately as possible, the actual preferential system of the DM as represented in
the unknown set of parameters 3, i.e.:

B* = argmin |3 - B|| (1)
peA

where A is a set of feasible values for the parameters 3 . With the obtained
parameters, the evaluations performed with the corresponding decision model f3,
will be consistent with the evaluations actually performed by the DM for any set of
alternatives.

Problem (1), however, cannot be solved explicitly because f is unknown. In-
stead, an empirical estimation approach is employed using the DM’s evaluation of
the reference alternatives to proxy 3. Thus, the general form of the optimization
problem is expressed as follows:

p* = argmin L[D(X'), D(x")] &)
BeA
where D (X’ ) denotes the recommendations of the model fB for the alternatives in
X’ and L(-) is a function that measures the differences between D(X’) and D(X').

2.2 Inferring Value Function Models for Ordinal Regression and
Classification Problems

The general framework of PDA is materialized in several MCDA methods that en-
able the development of decision models in different forms [14, 50, 67]. To facilitate
the exposition we shall focus on functional models expressed in the form of additive
value functions, which have been widely used in MCDA.
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A general multiattribute value function aggregates all the criteria into an overall
performance index V (global value) defined such that:

V(X,’) > V(Xj) < X; = Xj 3)
V(X,‘) = V(Xj) <~ X; ~ X;

where > and ~ denote the preference and indifference relations, respectively.

A value function may be expressed in different forms, depending on the criteria

independence conditions [33]. Due to its simplicity, the most widely used form of

value function is the additive one:

V(xi) = Y, wive(xir) “)
=1

where wy is the (nonnegative) trade-off constant of criterion k (the trade-offs are
often normalized to sum up to one) and vi(-) is the marginal value functions of the
criterion, usually scaled such that vy (xx,) = 0 and v (x}) = 1, where x, and x} are
the least and the most preferred levels of criterion k, respectively.

Such a model can be used to rank a set of alternatives or to classify them in pre-
defined groups. In the ranking case, the relationships (3) provide a straightforward
way to compare the alternatives. In the classification case, the simplest approach is
to define an ordinal set of groups G1,Ga,..., G, on the value scale with the follow-
ing rule:

t < V(Xi) <t_1 =X €Gy )

where t; > 1, --- > 1,1 are thresholds that distinguish the groups. Alternative clas-
sification rules can also be employed such as the example-based approach of Greco
et al. [21] or the hierarchical model of Zopounidis and Doumpos [66].

The construction of a value function from a set of reference examples can be per-
formed with mathematical programming formulations. For example, in an ordinal
regression setting, the DM’s defines a weak-order of the alternatives in the reference
set, by ranking them from the best (alternative x;) to the worst one (alternative X,,).
Then, the general form of the optimization problem for inferring a decision model
from the data can be expressed as in the case of the UTA method [29] as follows:

min O] +02+---+ 0Oy

n
st Y wilve(xi) = vie(xis1 0] + G — Oi1 > 8 VX; - Xy

k=1
n

Y wilve (xik) = vk (i 14)] + 0 — Gi1 =0 VX~ Xiy g

k=1 (6)

witwa+-+w, =1

vi(Xik) = vi(xj) >0 VX > X

V(X)) = 0, v (x) = 1 k=1,...,n

wi, Vi (xix), 6; > 0, Vi k
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where x* = (x7,...,x;) and X, = (x14,...,Xs) represent the ideal and anti-ideal
alternatives, respectively. The solution of this optimization problem provides a value
function that reproduces the DM’s ranking of the reference alternatives as accu-
rately as possible. The differences between the model’s recommendations and the
DM’s weak-order are measured by the error variables o7, ..., 0,,, which are defined
through the first two constraints (with d being a small positive constant). The third
constraint normalizes the trade-off constants, whereas the fourth constraint ensures
that the marginal value functions and non-decreasing (assuming that the criteria are
expressed in maximization form).

For classification problems, the optimization formulation for inferring a classifi-
cation model from the reference examples using the threshold-based rule (5) can be
expressed as follows:

4 1

min gm— z;‘;
n

s.t. Z ka(xik)+Gi+Zt€+5 Vx; € Gy, l=1,....q—1
k=1
2 kvk(xik)—ofgtg—5 Vx, € Gy, l=2,....q
k=1 (7
tr—ti1 > € {=1,....q—2
wi+wr - Fw, =1
Vi (xik) = vi(xjx) >0 Vxik 2> Xk
V() = 0, v (xf) = 1 k=1,....n
Wk, 0; ,0; >0 Vi, k

The objective function minimizes the total weighted classification error, where the
weights are defined on the basis of the number of reference alternatives from each
class (my,...,my). The error variables ot and 6~ are defined through the first two
constraints as the magnitude of the violations of the classification rules, whereas the
third constraint ensures that the class thresholds are non-increasing (with € being a
small positive constant).

For the case of an additive value function, the above optimization problems can
be re-expressed in linear programming form with a piecewise linear modeling of the
marginal values function (see for example [29]).

3 Robustness in Preference Disaggregation Approaches

The quality of models resulting from disaggregation techniques is usually described
in terms of their accuracy, which can be defined as the level of agreement be-
tween the DM’s evaluations and the outputs of the inferred model. For instance,
in ordinal regression problems rank correlation coefficients (e.g., the Kendall’s
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or Spearman’s p) can be used for this purpose, whereas in classification problems
the classification accuracy rate and the area under the receiver operating charac-
teristic curve are commonly used measures. Except for accuracy-related measures,
however, the robustness of the inferred model is also a crucial feature. Recent ex-
perimental studies have shown that robustness and accuracy are closely related [59].
However, accuracy measurements are done ex-post and rely on the use of additional
test data, while robustness is taken into consideration ex-ante, thus making it an im-
portant issue that is taken into consideration before a decision model is actually put
into practical use.

The robustness concern in the context of PDA arises because in most cases mul-
tiple alternative decision models can be inferred in accordance with the information
embodied in the set of reference decision examples that a DM provides. This is
particularly true for reference sets that do not contain inconsistencies, but it is also
relevant when inconsistencies do exist (in the PDA context, inconsistencies are usu-
ally resolved algorithmically or interactively with the DM before the final model
is built; see for instance [41]). With a consistent reference set, the error variables
in formulations (6)—(7) become equal to zero and consequently these optimization
models reduce to a set of feasible linear constraints. Each solution satisfying these
constraints corresponds to a different decision model and even though all the cor-
responding feasible decision models provide the same outputs for the reference set,
their recommendations can differ significantly when the models are used to perform
evaluations for other alternatives.

For instance, consider the example data of Table 1 for a classification problem
where a DM classified six references alternatives in two categories, under three
evaluation criteria. Assuming a linear weighted average model of the form V(x;) =
WiXi1 +waXip +wsxiz, with wi +wy+w3 =1 and wy, wy, w3 > 0, the model would be
consistent with the classification of the alternatives if V (x;) > V(x;) + 0 for all i =
1,2,3 and j =4,5,6, where § is a small positive constant (e.g., 6 = 0.01). Figure 1
illustrates graphically the set of values for the criteria trade-offs that comply with
the classification of the reference alternatives (the shaded area defined by the corner
points A-E). It is evident that very different trade-offs provide the same results
for the reference data. For example, the trade-off wy of the first criterion may vary
anywhere from zero to one, whereas w, may vary from zero up to 0.7.

The size of the polyhedron defined by a set of feasible constraints of formulations
such as (6) and (7) depends on a number of factors, but the two most important can
be identified to be the adequacy of set of reference examples and the complexity
of the selected decision modeling form. The former is immediately related to the
quality of the information on which model inference is based. Vetschera et al. [59]
performed an experimental analysis to investigate how the size of the reference set
affects the robustness and accuracy of the resulting multicriteria models in classifi-
cation problems. They found that small reference sets (e.g., with a limited number of
alternatives with respect to the number of criteria) lead to decision models that are
neither robustness nor accurate. Expect for its size other characteristics of the refer-
ence set are also relevant. These may involve the existence of noisy data, outliers,
the existence of correlated criteria, etc. [12].
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Table 1 An illustrative classification problem

Criteria

Alternatives x; x» x3 Classification

X 7 1 8 G
X2 4 5 8 G1
X3 10 4 2 G1
X4 2 4 1 G2
Xs 4 11 G
X6 1 25 G2

Fig. 1 The feasible set for the criteria trade-offs that are compatible with the classi-
fication of the example data of Table 1

The complexity of the inferred decision model is also an issue that is related
to its robustness. Simpler models (e.g., a linear value function) are more robust
compared to more complex nonlinear models. The latter are defined by a larger
number of parameters and as a result the inference procedure becomes less robust
and more sensitive to the available data. For instance, Fig. 2 illustrates a two-class
classification problem with two criteria (which correspond to the axes of the figure).
The linear classification model (green line) is robust; with the available data only
marginal changes can be made in this model (separating line) without affecting its
classification results for the data shown in the figure. On the other hand, a nonlinear
model (blue line) is not robust, particularly in the areas where the data are sparse
(i.e., the upper left and lower right parts of the graph). Therefore, care should be
given to the selection of the appropriate modeling taking into account both the DM’s
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Fig. 2 A linear vs a nonlinear classification model

system of preferences as well as the available data. This issue has been studied
extensively in areas such as the statistical learning theory [47, 56, 57].

4 Robust Disaggregation Approaches

The research in the area of building robust multicriteria decision models and obtain-
ing robust recommendations with disaggregation techniques can be classified into
three main directions. The first involves approaches that focus on describing the
set of feasible decision models with analytic or simulation techniques. The second
direction focuses on procedures for formulating robust recommendations through
multiple acceptable decision models, whereas a third line of research has focused
on techniques for selecting the most characteristic (representative) model from the
set of all models compatible with the information provided by the reference set. The
following subsections discuss these approaches in more detail.

4.1 Describing the Set of Acceptable Decision Models

The DM’s evaluations for the reference alternatives provide information on the set
of acceptable decision models that comply with these evaluations. Searching for
different solutions within this feasible set and measuring its size provides useful in-
formation on the robustness of the results. Analytic and simulation-based techniques
have been used for this purpose, focusing on convex polyhedral sets for which
the analysis is computationally feasible. As explained in the previous section, for
decision models which are linear with respect to their parameters (such as additive
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value functions) the set of acceptable decision models is a convex polyhedron. The
same applies to the other types of decision models with some simplifications on the
parameters that are inferred (see, for example, [40]).

Jacquet-Lagreze and Siskos [29] were the first to emphasize that the inference of
a decision model through optimization formulations such as the ones described in
Sect. 2.2 may not be robust thus suggesting that the existence of multiple optimal
solutions (or even alternative near-optimal ones in the cases of inconsistent refer-
ence sets) should be carefully explored. The approach they suggested was based
on a heuristic post-optimality procedure seeking to identify some characteristic
alternative models corresponding to corner points of the feasible polyhedron. In the
context of inferring an ordinal regression decision model, this approach is imple-
mented in two phases. First, problem (6) is solved and its optimal objective function
value F'* (total sum of errors) is recorded. In the second phase, 2n additional opti-
mization problems are solved by maximizing and minimizing the trade-offs of the
criteria (one at a time), while ensuring that the new solutions do not yield an overall
error larger than F*(1 + o), where o is a small percentage of F*. While this heuris-
tic approach does not fully describe the polyhedron that defines the parameters of
the decision model, it does give an indication of how much the relative importance
of the criteria deviates within the polyhedron. Based on this approach, Grigoroudis
and Siskos [24] developed a measure to assess the stability and robustness of the
inferred model as the normalized standard deviation of the results obtained from the
post-optimality analysis.

Despite their simplicity, post-optimality techniques provide only a limited partial
view of the complete set of models that are compatible with the DM’s preferences.
A more thorough analysis requires the implementation of computationally intensive
analytic or simulation approaches. Following the former direction, Vetschera [58]
developed a recursive algorithm for computing the volume of the polyhedron that is
derived from preferential constraints in the case of a linear evaluation model, but the
algorithm was applicable to rather small problems (e.g., up to 20 alternatives and 6
criteria). Similar, but computationally more efficient algorithms, are available in the
area of computational geometry, but they have not yet been employed in the context
of MCDA. For instance, Lovasz and Vempala [38] presented a fast algorithm for
computing the volume of a convex polyhedron, which combines simulated anneal-
ing with multi-phase Monte Carlo sampling.

The computational difficulties of analytic techniques have led to the adoption of
simulation approaches, which have gained much interest in the context of robust
decision aiding. Originally used for sensitivity analysis [7] and decision aiding in
stochastic environments [37], simulation techniques have been recently employed to
facilitate the formulation of robust recommendations under different decision mod-
eling forms. For instance, Tervonen et al. [52] used such an approach in order to
formulate robust recommendations with the ELECTRE TRI multicriteria classifica-
tion method [16], whereas Kadzinski and Tervonen [31, 32] used a simulation-based
approach to enhance the results of robust analytic techniques obtained with additive
value models in the context of ranking and classification problems.
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Simulation-based techniques were first based on rejection sampling schemes. Re-
jection sampling is a naive approach under which a random model is constructed
(usually from a uniform distribution [46]) and tested against the DM’s evaluations
for the reference alternatives. The model is accepted only if it is compatible with
the DM’s evaluations and rejected otherwise. However, the rejection rate increases
rapidly with the dimensionality of the polyhedron (as defined by the number of
the model’s parameters). As a result the sampling of feasible solutions becomes in-
tractable for problems of realistic complexity. Hit-and-run algorithms [35, 53] are
particularly useful in reducing the computational burden, thus enabling the efficient
sampling from high-dimensional convex regions.

4.2 Robust Decision Aid with a Set of Decision Models

Instead of focusing on the identification of different evaluation models that can be
inferred from a set of reference decision examples through heuristic, analytic, or
simulation approaches, a second line of research has been concerned with how
robust recommendations can be formulated by aggregating the outputs of differ-
ent models and exploiting the full information embodied in a given set of decision
instances.

Siskos [49] first introduced the idea of building preference relations based on
a set of decision models inferred with a preference disaggregation approach for
ordinal regression problems. In particular, he presented the construction of a fuzzy
preference relation based on the results of a post-optimality procedure. The fuzzy
preference relation allows the evaluation of the alternatives through the aggregation
of the outputs of multiple characteristic models (additive value functions) inferred
from a set of decision instances.

Recently, this idea has been further extended to consider not only a subset of ac-
ceptable models but all models that can be inferred from a given reference set (with-
out actually identifying them). Following this approach and in an ordinal regression
setting, Greco et al. [20] defined necessary and possible preference relations on the
basis of the DM’s evaluations on a set of reference alternatives, as follows:

e Weak necessary preference relation: x; 2V x; if V(x;) > V(x;) for all deci-
sion models V(-) compatible with the DM’s evaluations on a set of reference
alternatives.

e Weak possible preference relation: x; == x; if V(x;) > V(x;) for at least one

decision model V(-) compatible with the DM’s evaluations on a set of reference
alternatives.

From these basic relations preference, indifference, and incomparability relations
can be built allowing the global evaluation of any alternative using the full infor-
mation provided by the reference examples. The above relations can be checked
through the solution of simple optimization formulations, without actually requir-
ing the enumeration of all decision models that can be inferred from the reference
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examples. This approach was also used for multicriteria classification problems [21]
as well as for outranking models [10, 22] and nonadditive value models [1].

4.3 Selecting a Representative Decision Model

Having an analytic or simulation-based characterization of all compatible models
(e.g., with approaches such as the ones described in the previous subsections) pro-
vides the DM with a comprehensive view of the range of possible recommendations
that can be formed on the basis of a set of models implied from some decision ex-
amples. On the other hand, a single representative model is easier to use as it only
requires the DM to “plug-in” the data for any alternative into a functional, relational,
or symbolic model. Furthermore, the aggregation of all evaluation criteria in a single
decision model enables the DM to get insight into the role of the criteria and their
effect on the recommendations formulated through the model [23].

In the above context several approaches have been introduced to infer a single
decision model that best represents the information provided by a reference set of
alternatives. Traditional disaggregation techniques such as the family of the UTA
methods [50] use post-optimality techniques based on linear programming in order
to build a representative additive value function defined as an average solution of
some characteristic models compatible with the DM’s judgments, defined by maxi-
mizing and minimizing the criteria trade-offs. Such an averaging approach provides
a proxy of the center of the feasible region.

However, given that only a very few number of corner points are identified with
this heuristic post-optimality process (at most 2n corner points), it is clear that the
average solution is only a very rough “approximation” of the center of the polyhe-
dron. Furthermore, the optimizations performed during the post-optimality analysis
may not lead to unique results. For instance, consider again the classification ex-
ample discussed in Sect. 3 and its graphical illustration in Fig. 1 for the feasible set
for the criteria trade-offs which are compatible with the DM’s classification of the
reference alternatives (Table 1). The maximization of the trade-off constant w; leads
to corner point C, the maximization of w, leads to point A, whereas the maximiza-
tion of w3 (which corresponds to the minimization of w; + wy) leads to point D.
However, the minimization of the two trade-offs does not lead to uniquely defined
solutions. For instance, the minimization of w; may lead to point A or point E, the
minimization of wy leads either to C or D, and the minimization of w3 (i.e., the
maximization of w; 4+ w,) may lead to points B or C. Thus, depending on which
corner solutions are obtained, different average decision models can be constructed.
Table 2 lists the average criteria trade-offs corresponding to different centroid so-
lutions. It is evident that the results vary significantly depending on the obtained
post-optimality results.

A number of alternative approaches have been proposed to address the ambiguity
in the results of the above post-optimality process. Beuthe and Scannella [4] pre-
sented different post-optimality criteria in an ordinal regression setting to improve
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Table 2 The post-optimality approach for constructing a centroid model within the
polyhedron of acceptable models for the data of Table 1

Post-optimality solutions

max wj C C C C C C C C

min wy E A E A E A E A

max wyp A A A A A A A A

min wy D D C C D D C C

max w3 (min w; +wp) D D D D D D D D
min w3 (max w; +wj) B B B B C C C C

Centroid solutions

wi 0.31 0.31 0.44 044 042 042 0.54 0.54

wo 0.32 0.34 0.32 0.34 022 0.23 0.22 0.23

w3 0.37 0.35 0.24 0.23 0.37 0.35 0.24 0.23

the discriminatory power of the resulting evaluating model. Similar criteria were
also proposed by Doumpos and Zopounidis [12] for classification problems.

Alternative optimization formulations have also been introduced allowing the
construction of robust decision models without requiring the implementation of
post-optimality analyses. Following this direction, Doumpos and Zopounidis [13]
presented simple modifications of traditional optimization formulations (such as the
ones discussed in Sect. 2.2) on the grounds of the regularization principle which is
widely used in data mining and statistical learning [57]. Experimental results on ar-
tificial data showed that new formulations can provide improved results in ordinal
regression and classification problems. On the other hand, Bous et al. [5] proposed
a nonlinear optimization formulation for ordinal regression problems that enables
the construction of an evaluation model through the identification of the analytic
center of the polyhedron form by the DM’s evaluations on some reference decision
instances. Despite its nonlinear character, the proposed optimization model is easy
to solve with existing iterative algorithms. In a different framework, Greco et al.
[23] considered the construction of a representative model through an interactive
process, which is based on the grounds of preference relations inferred from the full
set of models compatible with the DM’s evaluations [20]. During the proposed in-
teractive process, different targets are formulated, which can be used by the DM as
criteria for specifying the most representative evaluation model.
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5 Connections with Statistical Learning

5.1 Principles of Data Mining and Statistical Learning

Similarly to disaggregation analysis, statistical learning and data mining are also
involved with learning from examples [25, 26]. Many advances have been made
within these fields for regression, classification, and clustering problems. Recently
there has been a growing interest among machine learning researchers towards pref-
erence modeling and decision-making. Some interest has also been developed by
MCDA researchers on exploiting the advances in machine learning.

Hand et al. [25] define data mining as “the analysis of (often large) observational
data sets to find unsuspected relationships and to summarize the data in novel ways
that are both understandable and useful to the data owner.” Statistical learning plays
an important role in the data mining process, by describing the theory that under-
lies the identification of such relationships and providing the necessary algorithmic
techniques. According to Vapnik [56, 57] the process of learning from examples
includes three main components:

1. A set X of data vectors x drawn independently from a probability distribution
P(x). This distribution is assumed to be unknown, thus implying that there is no
control on how the data are observed [51].

2. An output y from a set Y, which is defined for every input x according to an
unknown conditional distribution function P(y | x). This implies that the rela-
tionship between the input data and the outputs is unknown.

3. A learning method (machine), which is able to assign a function fg : X — Y,
where f3 are some parameters of the unknown function.

The best function fg is the one that best approximates the actual outputs, i.e., the
one that minimizes:

[ Ly )1aP(x.y) ®

where L[y, I (x)] is a function of the differences between the actual output y and
the estimate f3(x),! and P(x,y) = P(x)P(y | x) is the joint probability distribution
of x and y. However, this joint distribution is unknown and the only available infor-
mation is contained in a training set of m objects {(x1,y1),- ., (Xm,m)}, Which are
assumed to be generated independently from this unknown distribution. Thus, the
objective (8) is substituted by an empirical risk estimate:

m

%sz’nfﬁ (xi)] )

i=1

! The specification of the loss function L depends on the problem under consideration. For instance,
in a regression setting it may correspond to the mean squared error, whereas in a classification
context it may represent the accuracy rate.
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For a class of functions f3 of a given complexity, the minimization of (9) leads
to the minimization of an upper bound for (8).

A comparison of (2) and (9) shows that PDA and statistical learning are con-
cerned with similar problems from different perspectives and focus (for a discussion
of the similarities and differences of the two fields see [14, 62]).

5.2 Regularization and Robustness in Learning Machines

In the context of data mining and statistical learning, robustness is a topic of fun-
damental importance and is directly linked to the theory in these fields. Robustness
in this case has a slightly different interpretation compared to its use in MCDA.
In particular, from a data mining/statistical learning perspective robustness involves
the ability of a prediction model (or learning algorithm) to retain its structure and
provide accurate results in cases where the learning process is based on data that
contain imperfections (i.e., errors, outliers, noise, missing data, etc.). Given that the
robustness of a prediction model is related to its complexity, statistical learning has
been founded on a rigorous theoretical framework that connects robustness, com-
plexity, and the empirical risk minimization approach.

The foundations of this theoretical framework are based on Tikhonov’s regu-
larization principle [54], which involves systems of linear equations of the form
Ax =b. When the problem is ill-posed, such a system of equations may not have
a solution and the inverse of matrix A may exhibit instabilities (i.e., A may be
singular or ill-conditioned). In such cases, a numerically robust solution can be
obtained through the approximate system Ax = b, such that the following function
is minimized:

IAx =D *+ A x| (10)
where A > 0 is a regularization parameter that defines the trade-off between the
error term ||Ax — b||> and the “size” of the solution (thus controlling the solution
for changes in A and b).

With the introduction of statistical learning theory Vapnik [56] developed a gen-
eral framework that uses the above idea to relate the complexity and accuracy of
learning machines. In particular, Vapnik showed that under a binary loss function?,
the expected error E(f8) of a decision model defined by some parameters f3, is
bounded (with probability 1 — ) by:

hllog(2m/h) + 1] —log(ct/4)

m

E(ﬁ)SEemp(ﬁ)+\/ (1)

where Eepp is the empirical error of the model as defined by Eq.(9) and £ is the
Vapnik—Chervonenkis dimension, which represents the complexity of the model.

2 Although this is not a restricted assumption, as the theory is general enough to accommodate
other loss functions as well.
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When the size of the training data set in relation to the complexity of the model is
large (i.e., when m/h > 1), then the second term in the left-hand side of (11) de-
creases and the expected error is mainly defined by the empirical error. On the other
hand, when m/h < 1 (i.e., the number of training observations is too low compared
to the model’s complexity), then the second term increases and thus becomes rele-
vant for the expected error of the model.

This fundamental result constitutes the basis for developing decision and predic-
tion models in classification, regression, and clustering tasks. For instance, assume
a binary classification setting where a linear model f(x) = wx — ¥ should be de-
veloped to distinguish between a set of positive and negative observations. In this
context, it can be shown that if the data belong in a ball of radius R, the complex-
ity parameter & of a model with ||w|| < L (for some L > 0) is bounded as follows
[56, 57]:

h < min{L*R? n} +1 (12)

Thus, with a training set consisting of m positive and negative observations (y = 1
and y; = —1, respectively), the optimal model that minimizes the expected error can
be obtained from the solution of the following convex quadratic program:

o1 <
min §||WH2+CZO}'
i=1

st yi(wxi—y)+0;>1 Vi=1,...,m (13)
c; >0 Vi=1,....m
w,7eR

The objective function of this problem is in accordance with the Tikhonov regu-
larization function (10). In particular, the sum of classification errors oGy, ..., 0y, is
used as a substitute for the error term || Ax — b||? in (10), whereas the regularization
parameter A in (10) is set equal to 0.5/C. The minimization of ||w||? in the objective
function of the above problem corresponds to the minimization of the complexity
bound (12), which in turn leads to the minimization of the second term in the error
bound (11). On the other hand, the minimization of the sum of the classification
errors corresponds to the minimization of the empirical error Eepp.

This framework is not restricted to linear models, but it also extends to nonlin-
ear models of arbitrary complexity and it is applicable to multi-class problems [6],
regression problems [9, 39], and clustering problems [2]. Similar, principles and ap-
proaches have also been used for other types of data mining models such as neural
networks [17].

The development of data mining and statistical learning models with optimiza-
tion with mathematical programming techniques has received much attention [43].
In this context, robust model building has been considered from the perspective of
robust optimization. Bertsimas et al. [3] expressed a robust optimization model in
the following general form:
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min  f(x)
st gix,w) <0 Vel i=1,...,m (14)
xcR

where x is the vector of decision variables, u; € R¥ are perturbation vectors associ-
ated with the uncertainty in the parameters that define the constraints, and U; C RF
are uncertainty sets in which the perturbations are defined (for an overview of the
theory and applications of robust optimization in design problems see [36]). For
instance, a robust linear program can be expressed as follows:

min ¢'x
st. a/x <b Va,elU;, i=1,...,m (15)
x €R

where the coefficients of the decision variables in the constraints take values from
the uncertainty sets U; C R". Thus, a constraint aiTx < b; is satisfied for every a; € U;
if and only if max, c1(,{a, x} < b;.

The framework of robust optimization has been used to develop robust decision
and prediction models in the context of statistical learning. For instance, assuming
that the data for observation i are subject to perturbations defined by a stochastic
vector §; from some distribution, bounded such that ||§;||*> < 1;, the constraints of
problem (13) can be re-written as:

yilw(xi+6)—y]+0; > 1 (16)

Such methodologies for developing robust learning machines have been presented
in several works (see, for instance, [48, 55, 63, 65]). Caramanis et al. [8] as well
as Xu and Mannor [64] provide comprehensive overviews of robust optimization in
the context of statistical learning and data mining.

5.3 Applications in MCDA Disaggregation Approaches

The principles and methodologies available in the areas of data mining and statis-
tical/machine learning have recently attracted interest for the development of en-
hanced approaches in MCDA. In this context, Herbrich et al. [27] explored how
the modeling approach described in the previous section can be used to develop
value function models in ordinal regression problems and analyzed the generaliza-
tion ability of such models in relation to the value differences between alternatives
in consecutive ranks.

Evgeniou et al. [15] also examined the use of the statistical learning paradigm in
an ordinal regression setting. They showed that the development of a linear value
function model of the form V (x) = wx that minimizes ||w]||> leads to robust results,
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as the obtained model corresponds to the center of the largest sphere that can be
inscribed by preferential constraints of the form w(x; —x;) > 1 for pairs of alterna-
tives such that x; > x;.

Doumpos and Zopounidis [13] followed a similar approach for the development
of additive functions using the L; norm for the vector of parameters. Thus, they
augmented the objective function of problems (6)—(7) considering not only the error
variables, but also the complexity of the resulting value function. Through this ap-
proach, they described the relationship between the accuracy of the decision model
and the quality of the information provided by the reference data. Empirical anal-
yses on ranking and classification problems showed that the new formulations pro-
vide results that best describe the DM’s preferences, are more robust to changes of
the reference data, and have higher generalization performance compared to exist-
ing PDA approaches. A similar approach for constructing additive value functions
was also proposed by Dembczynski et al. [11] who combined a statistical learning
algorithm with a decision rule approach for classification problems.

Except for functional decision models, similar approaches have also been used
for relational models, which are based on pairwise comparisons between the alter-
natives. For instance, Waegeman et al. [62] used a kernel approach for constructed
outranking decision models and showed that such an approach is general enough to
accommodate (as special cases) a large class of different types of decision models,
including value functions and the Choquet integral. Pahikkala et al. [42] extended
this approach to intransitive decision models.

6 Conclusions and Future Perspectives

PDA techniques greatly facilitate the development of multicriteria decision aiding
models, requiring the DM to provide minimal information without asking for the
specification of complex technical parameters which are often not well-understood
by DMs in practice. However, using such a limited amount of data should be done
with care in order to derive meaningful and really useful results.

Robustness is an important issue in this context. Addressing the robustness con-
cern enables the formulation of recommendations and results that are valid under
different conditions with respect to the modeling conditions and the available data.
In this chapter we discussed the main aspects of robustness in PDA techniques and
provided an up-to-date overview of the different lines of research and the related
advances that have been introduced in this area. We also discussed the statistical
learning perspective for developing robust and accurate decision models, which has
adopted a different point of view in the analysis of robustness compared to MCDA.

Despite their different philosophies, PDA and statistical learning share common
features and their connections could provide further improved approaches to robust
decision aiding. Future research should also focus on the further theoretical and em-
pirical analysis of the robustness properties of PDA formulations, the introduction
of meaningful measures for assessing robustness, and the development of method-
ologies to improve the robustness of models and solutions in decision aid.
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Separation of Finitely Many Convex Sets
and Data Pre-classification

Manlio Gaudioso, Jerzy Grzybowski, Diethard Pallaschke, and Ryszard Urbainski

1 Introduction

Separation of sets has been for long time an interesting research area for
mathematicians. Basic concepts of classification theory are linear separability
of sets, separation margin, and kernel transformations. They have provided the
theoretical background in constructing powerful classification tools such as SVM
(Support Vector Machine) and extensions.

Starting from the pioneering works by Rosen [20] and Mangasarian [15, 16] and
under the impulse of Vapnik’s theory [25], many scientists from the Mathematical
Programming community have given in recent years valuable contributions. Accu-
rate presentations of the field can be found in the books by Cristianini and Shawe-
Taylor [6, 7] and by Scholkopf et al. [23].

More recent techniques based on non-smooth optimization have been studied by
Bagirov et al. [3, 4], Astorino and Gaudioso [1, 2], Demyanov et al. [8, 9], and
Rubinov [21].

A different approach to the separation of two sets was proposed by Grzybowski
et al. [11] and Astorino and Gaudioso [1] and Gaudioso et al. [10] which leads to
a non-smooth optimization problem. It is based on the method of separating two
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compact convex sets by an other one. In this paper we generalize these results to the
case of finitely many convex sets.

The paper is organized as follows. We begin with a survey on basic properties
of the family of bounded closed convex sets in a topological vector space. Then we
prove a separation theorem for closed bounded convex sets and present a generaliza-
tion of the Demyanov difference in locally convex vector spaces. Finally we show
an application of the separation theorem to data classification.

2 The Semigroup of Closed Bounded Convex Sets

For a Hausdorff topological vector space (X, ) let us denote by A(X) the set
of all nonempty subsets of X, by B*(X) the set of all nonempty bounded sub-
sets of X, by C(X) the set of all nonempty closed convex subsets of X, by
B(X) = B*(X)NC(X) the set of all bounded closed convex sets of X, and by
K (X) the set of all nonempty compact convex subsets of X. (Note that we consider
only vector spaces over the reals). Recall that for A, B € A(X) the algebraic sum is
definedbyA+B = {x=a+b|acA and be B},andfor A € Rand A € A(X)
the multiplication is defined by AA = {x=Aa|a € A}.

The Minkowski sum for A,B € A(X) is defined by
A+4+B = cl{x=a+b|a€A and beB}),

where cl(A) = A denotes the closure of A C X with respect to 7. For compact convex
sets, the Minkowski sum coincides with the algebraic sum, i.e., for A, B € X(X) we
have A +B = A+ B. In quasidifferential calculus of Demyanov and Rubinov [8]
pairs of bounded closed convex sets are considered. More precisely: For a Hausdorff
topological vector space X two pairs (4,B),(C,D) € B*(X) = B(X) x B(X) are

called equivalent if B4+ C = A + D holds and [A, B] denotes the equivalence class
represented by the pair (A, B) € B2(X). An ordering among equivalence classes is
given by [A,B] < [C,D]ifand only if A + D C B + C. This is the ordering on
the Minkowski—Radstrom—Hormander space and is independent of the choice of the
representatives.

For A € B(X) we denote by ext(A) the set of its extreme points and by exp(A)
the set of its exposed points (see [18]). Next, for A,B € A(X) we define: AVB =
cl conv(A UB), where conv(A UB) denotes the convex hull of AUB. We will use
the abbreviation A + BV C for A + (BVC) and C +d instead of C+ {d} for all
bounded closed convex sets A,B,C € A(X) and a pointd € X.

A distributivity relation between the Minkowski sum and the maximum operation
is expressed by the Pinsker Formula (see [19]) which is stated in a more general
form in [18] as:
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Proposition 1. Ler (X, T) be a Hausdorff topological vector space, A,B,C € A(X)
and C be a convex set. Then

(A+C)V(B+C)=C +(AVB).

The Minkowski—-Radstrom—Hormander Theorem on the cancellation property for
bounded closed convex subsets in Hausdorff topological vector spaces states that
for A,B,C € B(X) the inclusion A +B C B + C implies A C C. A generalization
which is due to Urbanski [24] (see also [18]) states:

Theorem 1. Let X be a Hausdorff topological vector space. Then for any A €
A(X), B€ B*(X), and C € C(X) the inclusion

A+BCC +B implies ACC. (olc)

This implies that B(X) endowed with the Minkowski sum “ 4+ and the ordering
induced by inclusion is a commutative ordered semigroup (i.e., an ordered set en-
dowed with a group operation, without having inverse elements), which satisfies the
order cancellation law and contains K (X) as a sub-semigroup.

3 The Separation Law for Closed Bounded Convex Sets

The separation of two bounded closed convex sets by an other bounded closed set
is extensively explained in [18]. In this section we discuss this separation concept
more detailed and generalize it to the case of finitely many bounded closed convex
sets. We begin with a general principle for the separation concepts of sets.

3.1 The Separation Concept of Martinez-Legaz and Martinon

Although any separation concept for two sets is intuitively clear, this is not so ob-
vious for the separation of arbitrary finitely many sets. The following fundamental
principle for a separation concepts had been recently formulated by Martinez-Legaz
and Martin6n in [17], namely

A subset S separates a finite family of nonempty subsets (A;),; if S separates the sets A;
and A; for every i, j € I withi # j.

Now a general separation concept which satisfies this principle is given by a slight
modification of the definition of set separation as stated in [18, Defintion 4.5.1]:

Definition 1. Let X be a topological vector space, I a finite index set, and S,A; €
B(X), i € I. Then we say that the set S properly separates the sets A;, i € I if
and only if for every collection a; € A, i € I there exist real numbers 0 < o; with
Z(X,' = 1and zoc,-ai S

iel iel
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An obvious weakening of the proper separation concept leads to:

Definition 2. Let X be a topological vector space, [ a finite index set, and S,A; €
B(X), i € I. We say that the set S separates the sets A;, i € I if and only if
(conv{a; | i €1I})NS 0 forevery collection a; € A, i € I (Fig. 1).

S

A separating set
Az / < )

Fig. 1 Proper separation of two sets (left) and proper separation of three sets (right)

Now we prove that the concept of proper separation of sets satisfies the funda-
mental principle on set-separation of Martinez-Legaz and Martinén [17]:

Proposition 2. Let X be a topological vector space, I a finite index set, and S,A; €
B(X), i € I. If S properly separates the sets A; and Aj for every i, j € I with i # j,
then S properly separates the sets A;, i € I.

Proof. Let S,A; € B(X), i € I be given, where I consists of k elements and assume
that S properly separates all pairs of sets A; and A; with i,j € I and i # j. Then
there exist for every a; € A; and a; € A; real numbers o; > 0 with z;; = oja; +

(1—045)aj € S. Put 6 = = then the convex combination ¢ Y, z;; € S has only

(2) ijel
] ) i#
nonzero coefficients, i.e., S properly separates the sets A;, i € I.

3.2 The Algebraic Separation Law

We will use the notation \/;c; {a;} for conv{a; | i € I'} and write

k
YA = A FAE AL

i=1

For the weaker concept of separation we have the following algebraic
characterization:
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Theorem 2. Let X be a topological vector space, I a finite index set, and S,A; €
B(X), i € I. Then S separates the sets A;, i € I if and only if

YA C \/( D Ak> + 5.

i€l iel \kel\{i}

Proof. Necessity: Let a; € A;, i € I be given. Then there exist o; > 0, Zai =1
icl
such that z o;a; € S. Therefore,
icl

So-3( 3 a)us ga

iel i€l \kel\{i} iel

:Za,( D ak> + Y aia;

i€l kel\{i} i€l
S \/ ( 2 Ak> + S,
icl \kel\{i}

which proves the necessity.

Sufficiency: Now fix any a; € A;, i € I. Then it follows from the assumption
YA C \/< D Ak> +S
i€l iel \kel\{i}

that for every i € [

ai+ Y, Akc>6/1< > Ak> + S,

kel\{i} kel\{i}
which means:
2 AkC\/< 2 Ak> + (S—a), i€l
kel\{i} icl \kel\{i}
From the Pinsker rule we get:

V(Ea) e VV(Z a) s

icl \kel\{i} icl Liel \kel\{i}

= \/< ) Ak) + Vis-a)

iel \kel\{i} i€l

and gives by the order cancellation law that 0 € \/ (S—aj).
i€l
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Now again by the Pinsker rule we get 0 € \/ S—a) =S+ \/ {—a;}, which
icl icl
implies that (conv{a; | i€I})NS#0.
Remark 1. For the sake of completeness, let us add the following two items:

e Parallel to the notation of separation the notation of shadowing is also used (see
[18, pp. 67 and 77]) to express the same property. Namely the physical interpre-
tation of the separation by sets is as follows: if the sets A,B,S are considered
as celestial and A shines, then S separates A and B if and only if B lies in the
shadow of S (see Fig.2).

e In [12] the following equivalence is proved:

Let X be a topological vector space, I a finite index set, and S,A; € B(X), i €
I. Then S separates the sets A;, i € I if and only if infic;[A;,0] < [S,0] in the
sense of the ordering among equivalence classes in the Minkowski—Rddstrom—
Hormander space.

Fig. 2 Tllustration to Remark 1

4 The Demyanov Difference

Demyanov original subtraction A—B (see [22]) of compact convex subsets in finite
dimensional space is defined with the help of the Clarke subdifferential (see [5]) of
the difference of support functions, i.e.,

A<B=0du(ps — pB) v

where ps and pp are the support functions of A and B, i.e., pa(x) = max (a,x)
a

This can be equivalently formulated by
A-B=conv{a—bla€ A,b e B,a+b cexp(A+B)},

where exp(A + B) are the exposed points of A + B. For the proof see [22] and note
that every exposed point of A + B is the unique sum of an exposed point of A with
an exposed point of B.



Separation and Data Pre-classification 185

To extend the definition of the difference A—B to locally convex vector spaces,
the set of exposed points will be replaced by the set of extremal points.

Definition 3. Let (X, 7) be a locally convex vector space and X (X) the family of all
nonempty compact convex subsets of X. Then for A, B € K(X), the set

A-B=conv{a—blacA,beB,a+bec ext(A+B)} € X(X)
is called the Demyanov difference of A and B.

This is a canonical generalization of the above definition, because for every A, B €
XK (X) every extremal point z € ext(A + B) has a unique decomposition z = x+y into
the sum of two extreme points x € ext(A) and y € ext(B) (see [14, Proposition 1]).

Since in the finite dimensional case the exposed points are dense in the set of
extreme points of a compact convex set, this definition coincides with the original
definition of the Demyanov difference in finite dimensional spaces.

The Demyanov difference in finite dimensional spaces possesses many important
properties. Some of them hold also for its generalization (see [13]):

Proposition 3. Let X be a locally convex vector space and A,B,C € K(X). The
Demyanov difference has the following properties:

(D1) IfA = B+C, then C = A~B.
(D2) (AZB)+B D A.

(D3) IfBC A, then 0 € A~B.
(D4) (AZB) = —(B=A).

(D5) AZC C (AZB) + (B=C).

From property (D2) of the above proposition follows immediately:

Theorem 3. Let X be a locally convex vector space, I a finite index set, and S,A; €
K(X), i € I. Then the Demyanov difference

S = (2a) = V(X A)

iel icl  kel\{i}
separates the sets A;, i € I.

Corollary 1. Let A1,A;,...,A; € K(R") be given. Then for the Demyanov differ-

ence holds
k

(XA) =

i=1 i=1 .

(34) = aup

<=

07

T
e

where QCIP’() is the Clarke subdifferential of P = min {pA1 yDAy>---> DA, }, at0 e R,
i.e., the minimum of the support functions of the sets A;.
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Proof. This follows immediately from the definition of the Demyanov difference
for the finite dimensional case (see [22]) and the formula

k k
<2pA1> — max ZPAI |l€{177k} :min{pAlapAp"'apAk}a
i=1

j=1
J#

which completes the proof.

5 Data Pre-classification

The separation law for finitely many convex sets gives a possibility to classify the
elements of Aj,Ay,...,A; € K(R") by (k+ 1) different types as:

e TYPE ) - the elements of the set A4; \ S for i € {1,..,k},

k
e TYPE (k+1)) - the set SN <UAi> )

i=1

where § € K(R") is a separating set for A1,As,...,A; € K(R")
This is illustrated in Fig. 3 for k =3 and n = 2.

o
€T

N Ay .
\ W& separating set
S

AN

x

Fig. 3 A separating rectangle S of minimal volume for the sets Aj, Az, and A3
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Now, by the separation law S € K(R") separates the set A,Az,...,A; € X(R")
if and only if

k k k

ZA,' C ZAJ' +S
i=1 i=1 \ J=1
J#i

holds, which is in finite dimension equivalent to

k k

(ZPAI> — Mmax ZpAl|i€{la"'7k} §PS
- =

and finally equivalent to

min{pAlapAla"'vak}SpS' (*)

For the case of polytopes, this gives a possibility of constructing separating sets
with the help of convex optimization problems, as for instance:

Let us assume that A1,A;,...,A; € X(R") are polytopes given by
Ay =conv{al,....a) } ,re{l,... .k}

and that we are looking for a separating set of the form S = conv {s17 e ,sp} .
Since py, (x) = max;<j<, (a?,x), re{l,..,k} and pg(,) = maxi<;<p(s;,x) equa-
tion (*) implies, that for every point x € R” the following inequality hold:

min{lgggll (a}-,x>7121]a§xlz<a§,x>,...,lrgllj%k<alj‘-7x)} < II;lj;lgxp(sﬁx)
holds.

One way to construct a convex optimization problem consists in finding a suitable
finite point set 7 C R” called a test set for the constraints. Then for the determina-
tion of a separating set S with minimal volume the following optimization problem
can be used:

min Vol(S) = ®(sy,...,s,)
under

min{ max (aj,x), lrsnjegz<a§,x>,---7lgﬂj@lﬁg}{@’%@} < max {sj,x), x€ T.
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The Shortest Superstring Problem

Theodoros P. Gevezes and Leonidas S. Pitsoulis

An alphabet is a finite non-empty set whose elements are called letters. A string
is a sequence of letters. Given two strings s; and s, the second is a substring of the
first if s; contains consecutive letters that match s; exactly. We say that s; is a super-
string of s;. The Shortest (common) Superstring Problem (SSP) is a combinato-
rial optimization problem that consists in finding a shortest string which contains as
substrings all of the strings in a given set. The strings of the set may be overlapping
inside the superstring exploiting their common data.

1 Applications

The SSP has several important applications in various scientific domains and this is
the reason why it has attracted the interest of many researchers. In computational
molecular biology, the DNA sequencing procedure via fragment assembly can be
formulated as SSP. In virology, the SSP models the compression of viral genome.
In information technology, the SSP can be used to achieve data compression. In
scheduling, SSP solutions can be used to schedule operations in machines with
coordinated starting times. In the field of data structures, efficient storage can be
achieved in specific cases using the solutions of the SSP.
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1.1 DNA Sequencing

The molecule of the DNA encodes the genetic information used in the develop-
ing and functioning of living beings. DNA is a double-stranded sequence of four
types of nucleotides: adenine, cytosine, guanine and thymine, and thereby it can be
viewed as a string over the alphabet {a,c,g,7}. In the field of molecular biology,
the DNA sequencing procedure determines the sequence of a DNA molecule, that
is the precise order of the nucleotides within it. DNA sequencing highly accelerates
biological and medical research.

Due to laboratory equipment constraints, only parts of DNA up to few hundred
nucleotides can be read reliably, while the length of the DNA molecule in many
species is quite longer. To recognize a long DNA sequence, many copies of the
DNA molecule are made and cut into smaller overlapping pieces, named fragments,
that can be read at once. Each fragment is chosen from an unknown location of the
molecule. To reconstruct the initial DNA molecule, these fragments must be re-
assembled in their initial order, a procedure known as the DNA assembly problem.
Due to the huge amount of data generated by the fragment sequencing methods, an
automated procedure supported by a computer software is necessary for the assem-
bly process. Intuitively, shortest superstrings of the sequenced fragments preserve
important biological structures [33, 46, 53], and in practice they are proved to be
good representations of the original DNA molecule [27, 34]. Therefore, the SSP
can be considered as an abstraction of the assembly problem, and consequently
many researchers developed assembly methods based on it [18, 45, 51]. The most
widely used of them, the shotgun sequencing, is essentially the natural greedy al-
gorithm for the SSP. Similar assembly problems arise during reconstruction of RNA
molecules or proteins from sequenced fragments.

1.2 Data Compression

In the fields of computer science, information technology and data transmission, a
crucial issue is the size of the stored or transferred data. Data compression is the pro-
cess of encoding data using fewer bits than their original representation. According
to whether the compressed data is exactly as the original data or not, we distinguish
the lossless compression and the lossy compression, respectively (see [50]).

Considering data as text over an alphabet, an intuitive method of lossless com-
pression is based on the idea of dividing the text into strings and representing it by
a superstring of these strings with pointers to their original positions. Based on this
principle, several macro schemes concerning the nature of the pointers are taken un-
der consideration in [55, 56], leading in general applications of the SSP in the field
of textual substitution. In programming languages, each alphanumerical string in
the code may be represented as a pointer to a common string stored in the memory.
Therefore, the target of the compiler is to arrange the alphanumerical strings in such
a way that they overlap as much as possible [15, 37]. Other general applications of
the SSP on data compression are discussed in [14, 54].
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1.3 Modelling the Viral Genome Compression

Viruses are forced to reduce their genome size by environmental factors such as the
need for quick replication and the small amount of nucleic acid that can be incor-
porated in them. One way to compress their genome is by overlapping their genes.
Genes are the parts of the DNA that specify all proteins in living beings. Between
genes there are generally long sequences of nucleotides that do not be coded into
proteins. On the other hand, overlapping genes are common in viruses. Therefore,
in most virus species, two or more proteins are coded by the same nucleotide se-
quence, allowing viruses to increase their repertoire of proteins without increasing
their genome length, as indicated in [10].

In [24, 25], the SSP is used to model the viral genome compression. The genes
are considered as strings and the purpose is to find a shortest superstring that con-
tains them all. The computational results show that the amount of compression
achieved by the viruses in the real world is the same or very close to the one obtained
by the algorithms in all the examples considered in [24, 25]. Another conclusion
from these computations is that the average compression ratio of viruses is remark-
ably high considering the fact that the DNA molecules are very difficult to compress
in general. Finally, by modelling the viral genome compression as SSP, any exact
solution or lower bound of the corresponding SSP instance provides a bound on the
real size of a viral genome with a given set of genes.

1.4 Scheduling with Coordinated Starting Times

The Flow Shop Problem (FSP) and the Open Shop Problem (OSP) concern the
scheduling of operations in machines and have particular applications in scheduling
and planning of experiments. Given a set of k machines M1, M5, ..., M, the problem
is to schedule a set of jobs on them, where each job consists of k operations and the
i-th operation has to be assigned on the machine M;. A machine can process at most
one operation at a time, and any two operations of a job cannot be processed simul-
taneously. In the FSP, the operation on M; has to be finished before the operation on
M can start for each job, whereas in the OSP there is not such commitment. In
the no-wait versions of these problems, it is required the operations of a job to be
processed directly one after the other. The optional constraint of coordinated start-
ing times necessitates an operation starting on one machine only when each of the
other machines is either idle or also starts an operation. In all these cases, the task is
to find a schedule such that the overall processing time is minimized.

The FSP and the OSP on two machines, and their corresponding no-wait versions
are polynomially solvable in general, but this is not always true when the machines
have to coordinate the starting times of operations. In [39], this additional constraint
is considered. Each instance of the no-wait version of these problems under the
additional constraint of the coordinated starting times can be transformed into an
SSP instance, where all strings are of a special form. The NP-completeness of these
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problem versions is proved using this transformation. Apart from the computational
complexity, this transformation can be applied for solving the constrained FSP and
OSP. Each exact and heuristic algorithm for the SSP can be applied to these prob-
lems too. Also, the special case of the SSP can be used to derive approximation
algorithms for the constrained shop problems.

1.5 Data Structure Storage

In [15], a special case of the SSP is considered, where all the strings are of length
at most two. It is proved that this version of the SSP is solvable in polynomial time.
This SSP case has applications to the storage of data structures, and specifically to
the Huffman trees [23] that encode pairs of letters, which are used to an entropy
encoding algorithm for lossless data compression, and for efficient representation of
directed graphs in memory.

2 Definitions and Notations

Let N be the set of natural numbers including 0. All the numbers in this chapter
are natural, unless otherwise stated. For a real x, [x] denotes the smaller integer
greater than or equal to x. For a letter /, the notation / € X means that / belongs to
alphabet X, while for a string s, if all letters of s belong to X, we say that s is over
the alphabet X. If s is a string, then |s| denotes its length, that is the number of its
letters, while if S is a set, then |S| denotes its cardinality. For a string s and i, j € N
such that 1 <i < j <|s|, the substring of s from i-th to j-th letter is denoted by S(i.j]-
Any substring sy; ;) is a prefix of s, and if j < [s, then it is called a proper prefix.
Similarly, any substring sy ) is a suffix of s, and if i > 1, then it is called a proper
suffix.

The placement of two or more strings one next to the other denotes their con-
catenation, e.g. s;s; is the concatenation of s; and s;. A coverage string between
strings s; and s;, in this specific order, is a string v such that s; = uv and s; = vw,
for some non-empty strings #,w. In other words, v is a string that is a proper suffix
of s; and a proper prefix of s;. The length of the coverage string is called coverage
between the corresponding strings and is a non-negative integer. A join string of
s; and s is the concatenation of these two strings with a coverage string appearing
only once, that is uvw. We use J, ;.1 to denote the set of all join strings of s; and s;
regardless their order.

The overlap string between s; and s; is their longest coverage string, and is
denoted by o(s;,s;). Its length |o(s;,s;)| is called overlap. The overlap of a string
with itself is called self-overlap, and notice that it is not limited to half the total
string length. The merge string of s; and s; is the concatenation of these two strings
with the overlap string appearing only once, that is the shortest join string between
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them. It is denoted by m(s;,s;). We have |m(s;,s;)| = |si| + |s;| — |o(si,s;)|. The
length of the prefix of s; before the overlap string with s; is called distance from s;
to s; and is denoted by d(s;,s;).

Example 1. Suppose that we have the strings s; = bbacb and s, = bcabbcabb over
the alphabet {a,b,c}, so |s;] =5 and |s2| = 9. The one-letter string b is a proper
suffix of s; and a proper prefix of s,. Moreover, it is the longest such string, and
thus the overlap string between them, o(s;,s,) = b, with overlap 1. The coverage
strings between s, and s; are b and bb, and so o(sy,s1) = bb with overlap 2. The
self-overlap of the first string is |o(sy,s1)| = 1, while |o(s2,s2)| = 5. The corre-
sponding merge strings are m(sy,s2) = bbacbcabbcabb, m(sy,s1) = bcabbcabbacb,
m(sy,s1) = bbacbbacb, and m(sy,s2) = becabbcabbcabb. The distance from s; to 57
is d(s1,s2) =4, while d(s2,51) =7, d(s1,51) =4, and d(s2,s2) = 4. Finally, the set
of all join strings is J, s,y = {bbacbbcabbcabb, bcabbcabbbbacb,bbacbcabbcabb,
bcabbcabbbach, bcabbcabbach}. a

Given a finite set S of strings over an alphabet X, the sum of lengths of the strings
in S is defined as ||S|| = Y cs|s|. The orbit size of a letter / € X is the number of its
occurrences in the strings of S.

An instance of the SSP is specified by a finite set S = {s1,52,...,5,} of strings.
A string s is a superstring of S, if it is a superstring of all 5; € S. A multiset is a
generalization of the notion of the set where elements are allowed to appear more
than once. Without loss of generality, S is defined to be a set since if S is a multiset,
then S has exactly the same superstrings as the set {s: s € S}. Also, it is assumed that
S is a substring-free set, i.e., no string s; € S is a substring of any other string s; € S.
This assumption can be made without loss of generality, since for any set of strings
there exists a unique substring-free set that has the same superstrings, obtained by
removing any string is a substring of another.

Given a set S = {s1,52,...,5,} of strings over an alphabet X, the SSP is the
problem of finding a minimum length superstring of S. Note that such a string may
not be unique. The length of a shortest superstring of S is denoted by opt;(S), while
the corresponding achieved compression is defined as opt,(S) = ||S]| — opt;(S). The
decision version of the SSP is described as follows. Given a set S of strings and a
k € N, is there a superstring s of S such that |s| = k?

Example 2. Suppose that we have the multiset S’ = {s1,s2,53,54,55,5¢} of strings
over the alphabet {a,b,c}, where s; = bababbc, s, = bbccaac, s3 = bbcaaabb, s4 =
acabb, s5 = bcaaab, and s = acabb. The corresponding substring-free set is S =
{s1,52,53,54} with |S| =4 and ||S|| = 27. The orbit size of the letter a in S is 9, of
the letter b is 12, and of the letter ¢ is 6. These are the two shortest superstrings of S:
s = bababbccaacabbcaaabb and s' = bababbcaaabbccaacabb, with opt;(S) = |s| =
|s'| =19 and opt,.(S) = 7. O

Let I, be the finite set {1,2,...,n}, and IT, be the set of all permutations of the
set I,. Any solution for the SSP of n strings can be represented as a permutation
p € I1,, indicating the order in which strings must be merged to get the superstring.
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It is implied that the shortest superstrings are derived only by string merges. If this
is not the case, there would be parts of the superstring that do not correspond to any
string, or some consecutive strings would not exploit their longest coverage string
and could be joined by a larger coverage. In both cases there would be a shorter
superstring. The elements of a permutation p € IT, are denoted by p(i), i € I,,, where
i indicates the order of each element in p such that p = (p(1), p(2),...,p(n)).

Given an order of strings (s1,s2,...,s,) the superstring s = (s1,...,s,) is defined
to be the string m(sy,m(s2,...m(s,—1,8,)...)). In such an order, the first string s;
is denoted by first(s) and the last string s, is denoted by last(s). Notice that s is the
shortest string such that sy, s3,...,s, appear in this order as substrings.

For a set S = {s1,s2,...,5,} of strings and a permutation p € IT,, the corre-
sponding superstring is defined as strSp(S, p) = (s,(1),5p(2)s- - - »Sp(n)) - For any SSP
instance S = {s1,s2,...,5,}, there exists a permutation p € I, such that strSp(S, p)
is an optimal solution. For any p € IT,, the length of the superstring strSp(S, p) is
given by [strSp(S,p)| = 30, |si| — X1 [0(Sp(i)>Sp(it1)) |- Therefore, the SSP can
be formulated as

n n—1
i il — i) Sp(i : !
FEi & 91 2 oo o) o

The shortest superstrings that correspond to the permutation p of the optimal solu-
tion have length equal to opt;(S). A superstring of the minimum length is achieved
when the sum of the overlaps between consecutive strings, in the order defined by
P, 1s maximized.

There are two ways to assess the solution quality of a non-exact algorithm for
the SSP: the length measure and the overlap or compression measure. According
to the first measure, a superstring is better when its length is shorter. In this case,
the SSP is described as a minimization problem. According to the second measure,
a superstring is better when the achieved compression is greater. In this case, the
problem is described as a maximization problem. The two measures are equivalent
when applied to exact solutions, but they give different results when they measure
the relative preciseness of non-exact solutions obtained by approximation or heuris-
tic algorithms. A good algorithm with respect to one of the above measures is not
necessarily a good algorithm with respect to the other measure.

Example 3. For the substring-free set S = {s1,52,53,54} of Example 2 and the two
shortest superstrings of it, s = (s1,52,54,53) and s’ = (s1,53,52,54), we have first(s) =
first(s") = s1, last(s) = s3, and last(s") = s4.

Let s” = strSp(S,p) for the permutation p = (3,4,2,1), which is a super-
string of length |s”| = 24. According to the length measure the solution s” is
(|s”| — opt;(S)) /opt;(S) = 26.3% far from the optimal length, while according to
the compression measure is (opt,.(S) — (||S|| — |s”|)) /opt.(S) = 71.4 % far from the
optimal compression. a

A directed graph G is defined by a vertex set V(G) and an arc set E(G) which
contains ordered pairs of vertices and is denoted by G = (V,E). For an arc e = (u,v),
u is called the tail of e, and v the head of e. We say that e is incident to both vertices,
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while for v the arc e is an incoming arc, and for « is an outgoing arc. An arc with
the same tail and head is called a loop. For a vertex v € V, the number of incoming
arcs of v is denoted by deg™(v), and the number of outgoing arcs of v is denoted
by deg™ (v). The overall number of the incident arcs to a vertex v regardless of their
direction is the degree of v. The degree of a graph is the maximum degree between
its vertices. Graph G is complete if there is an arc (u,v) for any vertex pair u,v € V,
u # v. For a weight function w : E — N, we denote by G = (V,E,w) a weighted
directed graph. When there is no confusion we denote by w;; the weight of arc
e = (v;,vj) € E. If the elements of set E have no direction, then they are called
edges and the corresponding graph is called undirected. An undirected graph is
called bipartite if its vertex set can be partitioned into two subsets, V| and V;, such
that every edge is incident to a vertex of V| and to a vertex of V,. If the arc set
contains ordered tuples instead of pairs of vertices then we have a multigraph.

Given a set S = {s1,52,...,5,} of strings, the complete directed weighted graph
G = (V,E,w) with

o vertex set V = {s1,82,...,81},
e arcset E = {(s;,s;):8;,5; € V,i# j}, and
e weight function w: E — N, with w;; = |o(s;,s;)|,

is called the overlap graph of S and is denoted by G,(S). If the arc weight function
depends on the distance instead of the overlap between the string pairs, that is w;; =
d(si,s;j), then the corresponding graph is called the distance graph of S, and is
denoted by G,4(S). Notice that all weights on both graphs are non-negative integers.
In the following, it is assumed that the overlap and distance graphs have no loops,
unless otherwise stated. For any set A C E of arcs on both graph, we denote by 0(A)
the sum of weights of the arcs on G,(S), that is their total overlap, and by d(A)
the sum of weights of the arcs on G,4(S), that is their total distance. For each arc
e = (s,5") on both graphs, we have

|s| = o({e}) +d({e}). 2

Example 4. For the substring-free set S = {s1,52,53,54} of Example 2 the associated
overlap and distance graphs are depicted in the next figure.

For the arc set A = {(s1,52),(53,54)}, we have o(A) =3 and d(A) = 12. O
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A walk on a directed graph is a sequence of arcs where the head of each arc
except the last one is the tail of the next arc. A walk can be specified either by its
vertices or its arcs in the order of appearance in it. A path on a directed graph is
a walk with no repeating vertices. On an undirected graph, a path is a sequence of
consecutive edges that connect no repeating vertices. A walk is called Eulerian if it
contains all the arcs of the graph, while a path is called Hamiltonian if it contains
all the vertices of the graph. A cycle is a path where the first and the last vertices
are the same. A cycle with k arcs is called a k-cycle. For a string set S and the
associated overlap and distance graphs, consider a cycle ¢ on them, a string s € S
corresponds to a vertex of ¢, and let s’ be the unique previous string of s in c. The
superstring (s,...,s’) where the strings are in the order around c is called the cycle
superstring of ¢ with respect to s and is denoted by strC(c,s). The superstring
(s,...,s',s) where the strings are in the order around c is called the extended cy-
cle superstring of ¢ with respect to s and is denoted by strC*(c,s). Notice that
strC " (c,s) = m(strC(c,s),s).

Example 5. For the substring-free set S = {s1,s2,53,54} of Example 2 and the as-
sociated overlap and distance graphs presented in Example 4, consider the cy-
cle ¢ = (s1,52,54,51). We have strC(c,s1) = bababbccaacabb, and strC* (c,s1) =
bababbccaacabbababbc. O

Some combinatorial optimization problems are closely related to the SSP due to
their nature and are used in the establishment of many results of the SSP. A match-
ing on a directed graph is a set of arcs, no two of which are incident to the same
vertex. A maximum matching on a weighted graph is a matching with the largest
total weight, while the Matching Problem (MP) looks for a maximum matching
on a weighted directed graph. The MP is defined similarly on undirected weighted
graphs. A directed matching is a set of arcs, no two of which have the same tail
or the same head. In other words, it is a set of disjoint paths and cycles on a graph.
The Directed Matching Problem (DMP) looks for a maximum directed matching.
Both MP and DMP can be solved in polynomial time (see, e.g., [42, 59]). A cycle
cover on a directed graph is a set of cycles such that each vertex of the graph is in
exactly one cycle. The Cycle Cover Problem (CCP) on a weighted directed graph
consists in finding a cycle cover with maximum total weight. The CCP is solvable
in polynomial time by reduction to the MP on bipartite graphs (see, e.g., [42]).

The Hamiltonian Path Problem (HPP) on a weighted directed graph consists
in finding an optimal Hamiltonian path according to its total weight. If the objec-
tive is to minimize the total weight, then the Min-HPP is considered, while if the
objective is to maximize the total weight, then the Max-HPP is considered. The de-
cision HPP on a directed graph G asks for the existence of a Hamiltonian path on
G. Similarly, we have the maximization and the minimization Hamiltonian Cycle
Problem, which are also known as Traveling Salesman Problems (Min-TSP and
Max-TSP). Both HPP and TSP are NP-hard problems [30]. There is a simple rela-
tion between these problems. The HPP on a graph G can be transformed to the TSP
on a graph G’ obtained from G by adding a new vertex u and zero-weighted arcs
from u to each vertex of G and from each vertex of G to u.
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3 Computational Complexity

The results described in this section concern the computational complexity of the
SSP, and justify the fact that there are only few exact algorithms, and on the other
hand so many approximation algorithms for it. The SSP cannot be solved efficiently
to optimality in polynomial time. It can be approximated within a constant ratio,
whereas this ratio has a bound.

3.1 Complexity of Exact Solution

Given a string set S and a string s, there is a polynomial time algorithm for checking
if s is a superstring of S, and therefore the decision SSP belongs in class NP.

A string is primitive if no letter appears more than once into it. Next theorem
establishes the NP-completeness of the decision SSP.

Theorem 1 ([15]). The decision SSP is NP-complete. Furthermore, this problem is
NP-complete even if for any integer m > 3 the restriction is made that all strings in
set S are primitive and of length m.

The proof is based on a polynomial time transformation from the decision HPP on
directed graphs with the following additional restrictions:

e there is a designated start vertex s with deg™ (s) = 0 and a designated end vertex
t with deg™ () =0,
e for each v # ¢, we have deg™® (v) > 1.

A set S of specific strings of length 3 is constructed, and each string is corresponding
to a vertex of a directed graph G = (V, E) that satisfies the above restrictions. Graph
G has a Hamiltonian path if and only if set S has a superstring of length 2|E|+3|V|.
Therefore, there is no efficient algorithm for solving the SSP, unless P = NP.

Due to the nature of the SSP, several parameters can be considered fixed in or-
der to define restricted cases of the problem. Besides the length of the strings and
the primitiveness that were mentioned previously, the cardinality of the alphabet,
the orbit size of the letters, and the form of the strings were also examined for the
conservation or not of the NP-completeness.

The decision SSP remains NP-complete when it is restricted to an alphabet of
cardinality 2 as proved in [15]. A restricted version of the SSP concerning both the
alphabet cardinality and the string length is also studied and the result is stated in the
next theorem. Let bizs(n) denote the number of bits that are necessary to represent
n in binary, for any n € N.

Theorem 2 ([15]). The decision SSP is NP-complete even if for any real h > 1, the
strings in set S are written over the alphabet {0,1} and have length [h bits(||S||)].
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The proof is based on Theorem 1 and on the encoding of each letter of the initial
alphabet with letters of the alphabet {0, 1} such that no relative changes yielded to
the overlaps between the strings after the new encoding.

In [38, 39], NP-completeness results are proved for some special cases of the
decision SSP. For a set S of strings over an alphabet X, these complexity results can
be briefly presented as follows. The decision SSP is NP-complete even if

e all strings in S are of length 3 and the maximum orbit size of each letter in X is 8.

e all strings in S are of length 4 and the maximum orbit size of each letter in X is 6.

e X ={0,1} and each string in S is of the form 0710710"1 or 10710710", where
p,q,r € N.

e > =1{0,1} and all strings in S are of the form 107109, where p,q € N.

e > =1{0,1,2} and each string contains a fixed number of each letter.

3.2 Complexity of Approximation

Since the SSP is a hard problem to be solved to optimality, a huge amount of effort is
made to develop approximation algorithms. The theoretical framework for the com-
plexity of this aspect establishes that although the SSP is easy to be approximated
within some constant ratio, it is hard to be approximated within any constant ratio.
The linear reduction (L-reduction) is necessary for what follows.

Definition 1 ([43]). Let A and B be two optimization problems. Problem A L-
reduces to B if there are two polynomial time algorithms F and G and real constants
o, 3 > 0 such that

e given an instance a of A, algorithm F produces an instance b =F(a) of B such
that opt(b) is at most & x opt(a), where opt(a) and opt(b) are the costs of the
optimal solution of instances a and b respectively, and

e given any solution of b with cost ¢/, algorithm G produces in polynomial time a
solution of a with cost ¢ such that |c — opt(a)| < B|c¢’ — opt(b)|.

For two optimization problems A and B and the constants o and 8 of the Defini-
tion 1, the following theorem establishes the basic usage of L-reduction.

Theorem 3 ([43]). If problem A L-reduces to problem B and there is a polynomial
time approximation algorithm for B with worst-case error €, then there is a polyno-
mial time approximation algorithm for A with worst-case error o.€.

Therefore, if problem B has a polynomial time approximation scheme (PTAS), then
so does problem A.

The class Max-SNP is a class of optimization problems defined syntactically
in [43]. Every problem in Max-SNP can be approximated in polynomial time within
some constant ratio. A problem is Max-SNP-hard if any other problem in Max-SNP
L-reduces to it.
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Theorem 4 ([8]). The SSP is Max-SNP-hard.

The proof is based on an L-reduction from the Min-HPP, where the degree of the
associated directed graph is bounded, and all the weights are either 1 or 2, which
is Max-SNP-hard [44]. The reduction from this problem to the SSP is similar to
the one used to show the NP-completeness of the decision SSP in Theorem 1, with
the extra establishment that it is an L-reduction. The strings that are considered
for the above L-reduction have bounded lengths, and so the same reduction can be
applied to the maximization version of the superstring problem with respect to the
compression measure, and concludes to the same hardness result.

Corollary 1 ([8]). Maximizing the total compression of a string set is Max-SNP-
hard.

In [5], it is proved that if a Max-SNP-hard problem has a PTAS, then P = NP.
Therefore, there is no PTAS for the SSP, unless P = NP, which means that there
exists an € > 0 such that it is NP-hard to approximate the SSP within a ratio of
1+4e¢.

The L-reduction described in [8] for the proof of the Max-SNP-hardness of
the SSP produces instances with arbitrarily large alphabets. More precisely, each
instance of the special Min-HPP with n vertices is transformed to an SSP instance
over an alphabet with 2n + 1 letters. However, the SSP is APX-hard even if the
alphabet contains just two letters as stated in the next theorem.

Theorem 5 ([41]). The SSP is APX-hard both with respect to the length measure and
the compression measure, even if the alphabet has cardinality 2 and every string is
of the form 10" 1010”410 or 0107107 19010107 1°01, where m,n, p,q,r,s > 2.

4 Polynomially Solvable Cases

Since the SSP is NP-hard, special cases of the problem that can be solved in poly-
nomial time constitute an interesting aspect. Various additional restrictions on the
problem’s parameters, similar to these described in Sect. 3 lead to polynomial al-
gorithms revealing the boundaries between hard and easily solvable cases of the
problem.

Obviously, if the cardinality of the alphabet is equal to 1 or all the strings in
the given set are of length 1, then the SSP is trivial. Also, if the number of the
strings in the set is fixed, then the SSP is polynomially solvable by enumerating
all the different string orders. However, there are more interesting and complicated
polynomial cases of the SSP.

Since Theorem 1 establishes the NP-completeness of the SSP for string lengths
greater than 2, the question is what happens in the remaining cases. The answer is
given by the next theorem.
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Theorem 6 ([37]). For a string set S = {s1,52,...,5,} and an integer k, if |s;| <2,i €
I, then there is a linear time and space algorithm to decide if S has a superstring
of length k.

A path decomposition of a directed graph G is a partition of E(G) into edge-disjoint
paths. Such a decomposition is minimum if it contains the minimum number of
paths. The linear algorithm in Theorem 6 is based on a minimum path decomposi-
tion of a graph associated with the string set S. Besides the algorithm for the deci-
sion problem mentioned in Theorem 6, there is also a linear algorithm that finds a
shortest superstring for strings of length at most 2.

A fixed maximum orbit size for the letters in the alphabet leads to a special case
of the SSP that is also solvable in polynomial time. Assume a set S of strings over
alphabet X and let m = max{|s| : s € S}.

Theorem 7 ([61]). If the orbit size of each letter in X is at most 2 in S, then a shortest
superstring for S is found in polynomial time O(|Z|*m).

Another special case of the SSP concerns the fixed difference between the sum
of string lengths and the cardinality of the alphabet as cited in [61]. Given a set S of
strings over an alphabet X, for a fixed difference ||S|| — |X|, the SSP is solvable in
polynomial time by a special exhaustive enumeration. The difference ||S|| — |Z| is
mentioned as a measure of dissimilarity of the strings in S.

In [38], restricted cases of the SSP are studied, and a string form that induces
polynomial cases is found.

Theorem 8 ([38]). The SSP over the alphabet {0,1} is polynomial time solvable if
each given string contains at most one 1.

Ascited in [61], a particular case of the SSP in which § is the set of all three-letter
strings over an alphabet X is known as the Code Lock Problem. In this case, the
possible overlaps between the strings are 1 and 2. This problem is reducible to the
Eulerian Walk Problem, where the existence of a walk that contains all the arcs of
a directed graph is sought, and hence, according to [16] it is solvable in polynomial
time.

5 Exact Solutions

There are only few exact algorithms in the literature for the SSP. This is due to
the computational complexity of the problem, and the lack of necessity for optimal
solutions at its main applications in computational molecular biology. In the DNA
sequencing practice, the biological properties of a genome molecule can be usually
expressed also by a superstring of its fragments that is not the shortest one, but its
length is close to the optimum.
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5.1 Exhaustive Enumeration

The SSP can be trivially solved by exhaustive enumeration of all possible arrange-
ments of the strings. The merge of the strings in some of these orders would
correspond to a shortest superstring. Given a set S of n string, the examination of
the superstrings of S that correspond to all permutations in I, is enough to find
a shortest one. The exhaustive examination of all permutations can be executed in
time O(n!||S]|), or by a different implementation that also exhaustively enumerates
the possible solutions, in time O(n||S||"*!) as mentioned in [61]. Optimal solutions
for small SSP instances taken by the exhaustive algorithm are used in [24, 25] to
compare the compression achieved by the viruses to their genome with the largest
possible compression of their genes.

5.2 Integer Programming Formulation

Given an SSP instance specified by a set S of n strings, consider the associated
overlap graph G,(S). An optimal solution to the SSP instance can be obtained by
an optimal solution to the Max-HPP on G,(S), since a maximum Hamiltonian path
contains all the vertices (strings) ordered in a single path such that it has the max-
imum total overlap. Due to the relation between the HPP and the TSP described
in Sect. 2, these solutions can be obtained by an optimal solution to the Max-TSP.
According to these transformations, optimal solutions for the SSP can be derived by
any integer programming formulation for the Max-TSP using branch and bound or
cutting plane algorithms. In [17], a benchmark set of instances with known optimal
solutions was constructed using the integer program of [40] for the Max-TSP and
used to compare the solutions of a heuristic for the SSP with the optimal ones.

6 Approximation Algorithms

The fact that the SSP is Max-SNP motivates many researches to develop approxi-
mation algorithms for it. As mentioned in Sect. 2, there are two ways to assess the
solution of an approximation algorithm: the length measure considering the SSP
as a minimization problem, and the compression measure considering the SSP as a
maximization problem.

For a string set S, and any algorithm ALG for the SSP, we use the notation ALg;(S)

to denote the length of the superstring of S obtained by ALG, and ALG.(S) to denote
ALG(S) >
opy(S) =

with respect to the length measure means that ALG;(S) < € x opt;(S) for all instances,
ALG.(S
0ptc((5))
sure means that ALG.(S) > € x opt,(S) for all instances. Although the two measures

the corresponding achieved compression. An approximation ratio € =

while an approximation ratio € = < 1 with respect to the compression mea-
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are equivalent regarding the optimal solution, they differ regarding the approximate
solutions of the problem. The existence of an algorithm with a constant approx-
imation ratio for the one measure has in general no approximation performance
guarantee for the other measure.

In this section, the approximation algorithms for the SSP both with respect to the
length and the compression measure are presented, revealing the special features of
the superstrings in each case.

6.1 Approximation of Compression

The compression measure counts the number of letters gained in comparison with
the simply concatenation of all strings. Algorithms that approximate this gain are
presented here.

6.1.1 The Natural Greedy Algorithm

A very well known, simply implemented, and widely used algorithm for the SSP
is the natural greedy algorithm. It is routinely used in DNA sequencing practice. It
starts with the string set S and repeatedly merges a pair of distinct strings with the
maximum possible overlap until only one string remains in S. Next algorithm shows
the pseudo-code of the natural greedy for the SSP.

Algorithm: GREEDY

input : string set S = {s1,52,...,8,}
output: a superstring of S

1. fori=1ton—1do

2. L={(si,sj) :si,s; €S,i # j}

3. k= max{\o si,8j)| : (si,85) € L}

4, let (s;,s";) € L be a pairs such that |o(s},s;)| = k
5. S=(S—{si,s;H) U{m(s;, )}

6. end

7. lets be the only string in S

8. returns

The operation of the GREEDY algorithm on the string set S is equivalent to the cre-
ation of a Hamiltonian path on the overlap graph G, (S). In general directed weighted
graphs, the total weight of the Hamiltonian path obtained by the greedy approach
is at least one third the weight of a maximum path [26]. In the case of the over-
lap graphs, a stronger result can be obtained by exploiting their properties. A basic
lemma that concerns the form of these graphs is restated here in terms of strings.
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Lemma 1 ([58]). Let s1,52,53, and s4 be strings, not necessarily distinct, such that
lo(s3,82)] > |o(s1,82)| and |o(s3,52)| > |o(s3,54)|- Then |o(s1,s4)| > |o(s1,52)| +
|o(s3,54)| — [0(s3,52)|-

The proof can be derived directly from the next figure, where the alignment of the
four strings according to their overlaps is presented.

A

53 :

S4 -

Notice that, if s; and s4 are not distinct, then the result of Lemma 1 concerns the
self-overlap of the string s;.

The following theorem establishes the approximation performance of the GREEDY
algorithm based on the corresponding analysis of the greedy approach for the Max-
HPP and on Lemma 1.

Theorem 9 ([58]). For a string set, the compression achieved by the GREEDY algo-
rithm is at least half the compression achieved by a shortest superstring.

Next example, presented in [58], shows that the result of the Theorem 9 is the best
possible.

Example 6. For the string set {ab*,b**! bka}, k > 1, over the alphabet {a,b},
GREEDY may produce the superstring ab*ab**! or the superstring b**'ab*a that
achieves compression k, whereas the shortest superstring is ab**'a and achieves
compression 2k. Notice that GREEDY can also give the shortest superstring depend-
ing on how it breaks ties. O

6.1.2 Approximation Based on Matchings

Apart from GREEDY, two other %—approximation algorithms for the compression of a
superstring based on the MP and the DMP are presented in [62]. For an SSP instance
S, consider the associated overlap graph G,(S). In both algorithms, a matching al-
gorithm is repeatedly applied to G,(S), to produce a Hamiltonian path.

For the description of the first algorithm the notion of the arc contraction is
necessary. Given a weighted directed graph G and an arc e = (u,v) € E(G), the
contraction of e is denoted by G/e and gives a new graph obtained from G where
the vertices u, v and their incident arcs are replaced by a new vertex w which has as
incoming arcs the incoming arcs of u and as outgoing arcs the outgoing arcs of v with
the same weights as on G. The March algorithm initially finds a maximum matching
on G,(S), and then contracts the arcs of the matching. This process is repeated on
the new graph until a graph with no arcs comes up. G,(S) = (V,E,w) is the initial
overlap graph which remains unchanged, whereas G denotes the graph obtained in
each iteration after the arc contractions. Initially, G = G,(S). Let maxm(G) be a
maximum matching on graph G.
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Algorithm: MaTcH

input : string set S = {s1,52,...,81}
output: a superstring of S

1. construct the graph G,(S)
2. P=0
3. G=G,(S)
4. while |E(G)| # 0 do
5. M = maxm(G)
6. P = PU {the arcs of E(G,(S)) that correspond to M}
7. foreach (u,v) € M do
8. G=G/(u,v)
9. end
10.  end

11.  let s be the superstring that corresponds to P
12.  returns

The approximation performance of the MarcH algorithm is based on the observa-
tion that any matching on an overlap graph can be extended to a Hamiltonian path
on it, since overlap graphs are complete. Moreover, a maximum matching has total
weight at least half the weight of a maximum Hamiltonian path. This can easily be
shown by considering each Hamiltonian path as two matchings with distinct arcs,
constructed by taking alternate arcs from the path. These results imply that the com-
pression achieved by the MatcH algorithm is at least half the optimal compression.

The second algorithm with the same approximation ratio for the SSP is based on
the slightly different DMP. Remember that a directed matching on a graph is a set of
disjoint paths and cycles. For the description of this algorithm, the notion of the arc
contraction is extended naturally to paths. Given a weighted directed graph G and
a path p = (vi,v2,...,v,) on it, defined by its vertices, the contraction of p gives a
new graph obtained from G where the vertices vy, ..., v, and their incident arcs are
replaced by a new vertex w which has as incoming arcs, the incoming arcs of v;
and as outgoing arcs the outgoing arcs, of v, with the same weights as on G. The
DiMartcH algorithm described also in [62] operates exactly as MATCH except that it
finds a directed matching of each step, opens each cycle of it by deleting an arc with
the smallest weight, and finally contracts the paths into vertices. The compression
achieved by the DiMatcH algorithm is at least half the optimal compression.

6.1.3 Approximation Based on the TSP

Any approximation algorithm for the Max-TSP is also an approximation algorithm
for the SSP with respect to the compression measure, or equivalently for the Max-
HPP, with the same ratio due to the transformation from the TSP to the HPP. For both
problems, it is implied that they are asymmetric, which means that they applied on
directed graphs, and that the weight of an arc (u,v) is not necessarily equal to the
weight of the arc (v,u).
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In [7, 31], two approximation algorithms for the Max-TSP are presented. In
both cases, procedures with complementary worst cases run on directed graphs with
even number of vertices. The best result among them is a Hamiltonian cycle whose
weight is at least % times the weight of a maximum weight Hamiltonian cycle for
the first algorithm, and % for the second. Both algorithms achieve their approxi-
mation performance without utilizing any special structure of the strings. In both
algorithms is required that the complete input graph G has an even number of ver-
tices. In general, for an SSP instance of n strings, the above algorithms achieve ap-
proximation ratios %(1 — %) and %(1 — %), respectively. Finally, an approximation
algorithm for the Max-TSP is also designed in [29], achieving the best ratio until
now, namely % It operates by decomposing a special form of directed multigraphs,
where the elements of the arc set are ordered triples of the vertex set.

6.2 Approximation of Length

A plethora of approximation algorithms with respect to the length measure have
been developed for the SSP using different variations of the greedy strategy. The
best one among them finds a string whose length is at most 2% times the length of
the optimal string.

6.2.1 Naive Approximation Algorithm

A naive algorithm for the SSP is used in [8] for comparison reasons in relative
performance of other approximation algorithms. Its approximation performance is
not remarkable but the idea is quite simple, showing that it is easy to develop an
algorithm for the SSP, but it is not so easy to achieve a good approximation ratio.
For a string set S, the algorithm arbitrarily chooses a string from $ considering it as
the initial current string, and then repeatedly updates the current string by merging it
with a remaining string from § that yields the maximum overlap. The performance
of this algorithm highly depends on the random choice of the initial point, and it
is possible to produce superstrings whose length grows quadratically in the optimal
length.

6.2.2 Approximation Algorithm Used in a Learning Process

The first attempt to approximate the shortest superstring of a set was made in [34],
where the DNA sequencing procedure is modelled as a string learning process from
randomly drawn substrings of it. Under certain restrictions, this may be viewed
as a string learning process in Valiant’s distribution free learning model [63]. The
efficiency of the learning method depends on the solution of an algorithm which
approximates the length of a superstring, and seeks in each step for an appropriate
join string among the candidate ones.
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Given a string set S = {s1,52,...,5,} and a string s, we denote by subSs(S,s) the
set of the strings in S that are substrings of s.

Example 7. Suppose that we have the string set S = {s1,s7, 53}, where s; = caabaa,
s2 = abaaca, and s3 = baacaa are strings over the alphabet {a,b,c}. The set of
all join strings of s; and s, regardless their order is Ji, 5,3 = {caabaaabaaca,
caabaabaaca,caabaaca,abaacacaabaa,abaacaabaa}, while the only join string
5 € Jiy, 5,1 for which subSs(S,s) = S is the string abaacaabaa. O

Given a string set S, the GRour-COMBINE algorithm constructs a superstring of S by
an iterative process. The algorithm begins with a string set and combines the strings
in groups such that all strings in a group are substrings of a join string of two of
them, trying to find as large groups as possible.

Algorithm: GRoUP-COMBINE

input : string set S = {s1,52,...,8,}
output: a superstring of S

T=0
while |S| > 0 do

find s;,5; € S such that minge i) W is minimized
let 5 be the join string that achieves the minimum in step 3
S =8—subSs(S,5)
T =TU{s}
if |S| =0and |T| > 1 then
S=T
end
10. end
11.  let s be the only string in T’

12.  returns
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Next theorem establishes the approximation ratio of the algorithm.

Theorem 10 ([34]). Given a string set, if the length of the optimal superstring is m,
then GROUP-COMBINE produces a superstring of length O(mlogm).

6.2.3 4-Approximation Algorithms

The first approximation algorithm with a constant ratio for the length of a super-
string is described in [8], answering a notorious open problem for the existence of
such an algorithm. The algorithm utilizes a minimum cycle cover on the distance
graph of a string set to derive a superstring with preferable properties that bound
its length. Given an SSP instance S, the CYCLE-CONCATENATION algorithm finds a
minimum cycle cover on the graph G,(S) with loops in polynomial time. Then it
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opens each cycle of the cover by removing an arc chosen randomly, constructs the
superstring that corresponds to the obtained path, and concatenates these strings.

PN W=

Algorithm: CYCLE-CONCATENATION

input : string set S = {s1,52,...,8,}
output: a superstring of S

construct the graph G,(S) with loops
find a minimum cycle cover C = {ci,c2,...,¢p} on G4(S)
foreach ¢; € C do
choose a vertex s; € ¢; randomly
st =strC(ci, ;)
end
let s be the concatenation of the strings s}
return s

Next theorem demonstrates the approximation performance of the algorithm es-
tablishing the first constant approximation ratio for the SSP.

Theorem 11 ([8]). For a string set S, CYCLE-CONCATENATION produces a superstring
of length at most 4 x opt;(S).

Another algorithm for the SSP with the same constant approximation ratio is
MGREEDY which is presented in [8].

XN R LD =

-
e

11.
12.
13.

Algorithm: MGREEDY

input : string set S = {s1,52,...,8,}
output: a superstring of S

T=0
while |S| > 0 do
k = max{|o(s},s})| : 5,5, € S}

let (s;,5;) be a string pair such that lo(si,s;)| =k
if i # j then

S=(S—{si,s;})U{m(si,s;)}

else
S=85-— {S,’}
T=TuU {S,‘}
end
end

let s be the concatenation of the strings in 7'
return s

Notice that at line 3, the two strings of each pair are not necessarily distinct
allowing in this way the self-overlaps. Since the choices at line 4 are made accord-
ing to the overlaps in S, MGREEDY can be thought as choosing arcs from the graph
G, (S) with loops. The choice of the pair (s;,s;) corresponds to the choice of the
arc (last(s;),first(s;)) on G,(S) in each step. Therefore, the algorithm constructs
paths, and closes them into cycles when distinctness is not satisfied at line 4. Thus,
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MGREEDY ends up with a set of disjoint cycles that cover the vertices of G, (S), which
is a cycle cover. The same cycle cover can be thought on graph G4(S) with loops.
For a cycle cover C, by Eq. (2), we have o(C) +d(C) = ||S||, and so a cycle cover
has minimum total weight on G4(S) if and only if it has maximum total weight on
G,(S), and in both cases it is called optimal.

Theorem 12 ([8]). The cover created by MGREEDY is an optimal cycle cover.

Notice that the presence of the loops is a necessary assumption for this result. Since
MGREEDY finds an optimal cycle cover, the superstring that is produced by it is no
longer than the string produced by algorithm CycLE-CONCATENATION. Therefore, the
approximation ratio with respect to the length measure of MGReeDY for the SSP is
also equal to 4. Actually, the superstring of MGREEDY could be shorter than the one
obtained by CYCLE-CONCATENATION since MGREEDY simulates the breaking of each
cycle in the optimal position, that is between the strings with the minimum overlap
in the cycle.

6.2.4 Greepy Isa 3 %-Approximation Algorithm

The GrReepY algorithm has already been presented as an approximation for the com-
pression. A notorious open question is how well GREEDY approximates the length
of a shortest superstring, while a common conjecture states that GREEDY produces
a superstring of length at most two times the length of the optimum [54, 58, 62].
In fact, GREEDY may give a superstring almost twice as long as the optimal one, as
shown in the next example from [8].

Example 8. For the string set {c(ab)¥,(ba)*,(ab)kc}, k > 1, over the alphabet
{a,b,c}, GREEDY may produce the superstring c(ab)¥c(ba)* or the superstring
(ba)*c(ab)*c of length 4k + 2, whereas the shortest superstring is c(ab)!c of
length 2k 4 4. O

In [8], it is proved that GREEDY is a 4-approximation algorithm for the SSP. Next
theorem improves this approximation ratio based on a more careful analysis on spe-
cially formed strings.

Theorem 13 ([28]). The GREEDY algorithm is a 3%-appr0ximati0n algorithm with
respect to the length measure.

6.2.5 A 3-Approximation Algorithm

The algorithm TGREEDY described in [8] operates in the same way as MGREEDY ex-
cept that in the last step it merges the strings in set 7' by running GREEDY on them
instead of simply concatenates them. Next theorem establishes its approximation
performance.



The Shortest Superstring Problem 209

Theorem 14 ([8]). For a string set S, algorithm TGREEDY produces a superstring of
length at most 3 x opt;(S).

In [8], a relative performance comparison between GREEDY, MGREEDY, and
TGREEDY algorithms is presented. TGREEDY always produces better solutions than
MGREEDY since in the last step it greedily merges the strings, whereas MGREEDY
just concatenates them. The approximation performance of TGREEDY is better than
this of GREEDY, but the superiority of one of these algorithms over the other is not
guaranteed as shown in the next example.

Example 9. For the string set {c(ab)¥, (ab)*'a, (ba)*c}, k > 1, over the alphabet
{a,b,c}, GreEDY produces the shortest superstring c¢(ab)*'ac of length 2k + 5,
whereas TGREepY produces the superstring c(ab)*ac(ab)¥'a or the superstring
(ab)**'ac(ab)*ac of length 4k + 6, since the initial maximum overlap is the self-
overlap of the second string.

On the other hand, for the string set {cabk ,abkabka,bkdabk_l}, k > 1, over the
alphabet {a,b,c,d}, TGREEDY produces the shortest superstring cab*dab*ab*a of
length 3k 4 6, since the initial maximum overlap is the self-overlap of the second
string, whereas GREEDY produces the superstring cab*ab*ab*dab*~' or the super-
string b*dab*~' cab*ab*a of length 4k + 5. O

6.2.6 Generic Approximation Based on Cycle Covers

Algorithms MGREEDY and TGREEDY implicitly construct optimal cycle covers on the
associated overlap and distance graphs of a string set, while CYCLE-CONCATENATION
explicitly takes advantage of this construction. A generic algorithm that explains
this basic idea is presented in [11].

For a string set S, let C = {c1,c2,...,c,} be a cycle cover on the graph G4(S).
Suppose that an arbitrary string 7; is picked from each cycle ¢; € C, and these strings
form the representative set R = {r,r2,...,rp}. Let r = (r1,r2,...,r,) be a super-
string of R. By replacing each r, i € I,,, in r with the string strC™ (¢;, r;), we get the
string

(strC* (c1,r1),5trCT (c2,72), ..., strCT (cp,1p)),

which is called the extension string of r with respect to C and is denoted by
ext(r,C). Observe that ext(r,C) is a superstring of S.

For a string set S, the GENERIC-COVER algorithm constructs a minimum cycle
cover C on the graph G,(S), and chooses a random string from each cycle of this
cover to form a set R of representatives. Then, it finds a new minimum cycle cover on
G4(R), opens each cycle of this cover in a random position, and concatenates the re-
sulting cycle superstrings to create a superstring of R. Finally, it returns the extension
string of this superstring with respect to the cycle cover C to take a superstring of S.
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Algorithm: GENERIC-COVER

input : string set S = {s1,52,...,81}
output: a superstring of S

1.  construct the graph G;(S)

2. find a minimum cycle cover C on G,4(S)

3. R=0

4. foreach c¢; € C do

5. choose a string s; of ¢; randomly

6. R=RU {Si}

7. end

8.  create the graph G;(R)

9.  find a minimum cycle cover Cg on G4(R)
10.  foreach cycle ¢; € Cg do
11. let s; be the head of a randomly chosen arc of ¢;
12. st =strC(ci,si)
13. end

14.  let r be the concatenation of the strings s/
15. 7=ext(r,C)
16.  returnF¥

The GENERIC-COVER algorithm has approximation ratio equal to 3. This algorithm
constitutes the base for the design of better approximation algorithms for the SSP
as described below.

6.2.7 Handling 2-Cycles and 3-Cycles Separately

For an SSP instance specified by a string set S, opt,(S) may grow quadratically in
opt;(S) in general. Thus, to take advantage of a compression approximation to de-
sign length approximation algorithms with constant ratio based on GENERIC-COVER
framework, a key is to construct suitable subproblems for which opt,(S) is linear
in opt;(S). The main difficulty in determining such subproblems and so in improv-
ing the length approximation performance of the GENERIC-COVER algorithm appears
in handling k-cycles with small & in the cycle cover Cg. In [60], the compression
achieved by GREEDY is utilized, to design a length approximation algorithm for the
SSP. The algorithm is based on the scheme of GENERIC-COVER handling separately
the 2-cycles in the minimum cycle cover Cg. In this way, the algorithm achieves an
approximation ratio 2%. In [11], an approximation algorithm that handles separately
the 2-cycles and the 3-cycles is developed and gives a superstring of length at most
2% times the length of a shortest superstring.
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6.2.8 Approximation Algorithms Based on the TSP

As cited in [31], a relationship between the SSP and the Max-TSP according to their
approximation is given by the following lemma.

Lemma 2 ([8]). If the Max-TSP has a (1 + €)-approximation, then the SSP has a
(3 — 2€)-approximation with respect to the length measure.

Utilizing this relation, the approximation algorithms for the Max-TSP mentioned
in Sect. 6.1.3 can be used to derive approximation ratios for the SSP with respect to
the length measure. Consider an SSP instance S of n strings and the corresponding
Max-TSP instance G,(S). For even number of strings, the algorithm described
in [31] and achieves an approximation ratio of % for the Max-TSP, gives a 2%-
approximation ratio for the SSP, while the algorithm described in [7] and achieves
an approximation ratio of % for the Max-TSP, gives a 2%-approximation ratio for

1
2(% + %) for the SSP, respectively. The algorithm described in [29] and achieves
an approximation ratio of % for the Max-TSP, gives a 2%-approximation ratio for
the SSP.

the SSP. For odd number of strings the algorithms achieves a ratio of 2(% +-)and

6.2.9 Exploiting the Superstring Structures

The approximation algorithms presented above are largely graph-theoretical, mean-
ing that they sufficiently exploit the structure of overlap and distance graphs, but
they do not take advantage of the structure inside the strings or in general of the
properties not evident in graph representation. In this sense, they solve a more gen-
eral problem than the one at hand.

An algorithm that captures a great deal of the structure of the SSP instances is
presented in [3]. It takes advantage of the structure of strings with large value of
overlap, proving several key properties of such strings. It follows the framework of
the GENERIC-COVER algorithm using a more sophisticated way to choose the repre-
sentatives at line 5 and to open each cycle at line 12. After finding a cycle cover on
the associated distance graph, the key is to exploit the periodic structure of the cycle
superstrings that arise. In this way, the algorithm achieves a bound either to the total
overlap of the rejected arcs at line 12 or to the total additional length of extending
each cycle at line 15. The result is to construct a superstring whose length is no more
than 2% times the length of an optimal superstring.

This algorithm and the 2%-appr0ximati0n algorithm for the Max-TSP that is
mentioned in Sect. 6.2.8 have complementary worst cases, and so a better ratio can
be achieved by their combination. When the worst case of the first algorithm occurs,
the Max-TSP algorithm runs as a subroutine on the set of representatives to take a
better result. Balancing the two algorithms, an approximation ratio of 2% for the
SSP can be achieved [2].

In [4], the study of the key properties is extended to strings that exhibit a
more relaxed form of the periodic structure considered before. Algorithmically,
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the new approach is also based on the framework of the GENERIC-COVER and is a
generalization of the previous one. On the other hand, the analysis is very different
and includes a special structure of 2-cycles. Let ¢ be a 2-cycle in the cycle cover
Cr of the GENERIC-COVER algorithm, consisting of the vertices s; and s, which are
the representatives of the cycles ¢; and c; in the cycle cover C. Without loss of
generality assume that d(c;) > d(c;). The cycle c is a g-HO2-cycle if

min|o(si,s;)|, o(sj,s0)[} = gld(ci) +d(c))-

In the new algorithm, during the selection of the representatives a technique is
used to anticipate the potential of each string to participate in a %—HO2—cycle. Such
strings have a very specific structure, and if there is a string without such a structure
in a cycle, it is chosen as the representative. Otherwise, the knowledge of the struc-
ture of the entire cycle can be used to trade the amount of the lost overlap against
the additional length of extending the representative to include the rest of the cycle.

In this way, a 2%-approximation algorithm for the SSP is designed.

6.2.10 Rotations of Periodic Strings

Two approximation algorithms for the SSP that are based also on the inner structure
of the strings and their periodic properties are presented in [9]. They use the same
framework of the GENERIC-COVER algorithm, but they make use of new bounds on
the overlap between two strings.

Both algorithms pay special attention to the selection of the representatives but
without concentrating on k-cycles with small k. Instead of choosing a string obtained
by opening each cycle, the new idea is to look for superstrings of the strings in
a cycle that are not too long and are guaranteed not to overlap with each other
by too much. Each chosen superstring does not even have to be one of the cycle
superstrings obtained by opening the cycle. Given a cycle ¢; = (s1,52,...,5p,51) of
the cycle cover C of algorithm GENERIC-COVER, a string r, is a candidate to be a
representative of c if for some j

e 1. is asuperstring of strC(s;41) and
e r.is asubstring of strC* (s;).

A sophisticated procedure is used to choose the representatives such that they satisfy
these two conditions and also have an appropriate property to lead to the improved
ratio.

After this step, the two approximation algorithms follow different ways. The
first algorithm after finding the second cycle cover opens each cycle and concate-
nates the cycle superstrings, achieving an approximation ratio of 2%. The second
algorithm constructs a superstring of the representatives using as subroutine an ap-
proximation algorithm with respect to the compression measure for the SSP. As
subroutines, we can use the approximation algorithms cited in Sect. 6.1.3. Using



The Shortest Superstring Problem 213

the %-approximation algorithm described in [31] a length ratio of 2% is achieved,

while using the %-approximation algorithm described in [7] a length ratio of 2% is
achieved.

6.2.11 2%-Appr0ximati0n Algorithms

The best approximation ratio with respect to the length measure for the SSP is the
2% until now. It can be achieved by two different methods, one from the field of the
superstrings and the other from the field of the TSP.

The first algorithm is described in [57]. Given a string set S, the algorithm be-
gins by constructing a minimum cycle cover C on graph G4(S). Then, instead of
choosing representatives, it combines the cycles of C to produce a new cycle cover
C’, and finally opens each cycle in C’ to produce a set of cycle superstrings. The
concatenation of these superstrings yields a superstring of S. The algorithm exploits
the properties of cycles and cycle covers on a special multigraph to achieve the
23-approximation ratio.

The second approach that achieves the same length ratio for the SSP is an approx-
imation algorithm for the Max-TSP described in [29]. It finds a Hamiltonian cycle
whose weight is at least % the weight of a maximum Hamiltonian cycle. Using this
procedure as a subroutine in the algorithm cited in Sect. 6.2.10, a length ratio of 2%
for the SSP can be achieved.

7 Parallelizing the Solving Process

In complexity theory, the class NC consists of the decision problems (languages)
decidable in polylogarithmic parallel time O(logo(1> n) on a parallel computer with
polynomial number 0(n0<1)) processors. In this definition, a parallel random ac-
cess machine (PRAM) is assumed, that is a parallel computer with a central pool of
memory, where any processor can access any bit of memory in constant time. The
class RNC, which stands for random NC, extends NC with access to randomness.
The class RNC consists of the decision problems (languages) that have a random-
ized algorithm which is solvable in polylogarithmic parallel time on polynomially
many processors, and its probability of producing a correct solution is at least %

It is conjectured that there are some tractable problems which are inherently se-
quential and cannot significantly be sped up by using parallelism. For an algorithm,
a common method to show that it is hardly parallelizable is to prove that the algo-
rithm is P-complete for the problem it applied to. The GREEDY algorithm belongs to
this case since the problem of finding a superstring chosen by the GREEDY algorithm
is P-complete [11]. This means that GREEDY is difficult to be parallelized effectively.
In the following, parallel approximation algorithms for the SSP are presented.
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7.1 NC Algorithm with Logarithmic Length Ratio

Given a ground set X of elements and a family Y of subsets of X, a set cover of X
with respect to Y is a subfamily Y/ C Y of sets whose union equals to X. Assigning a
weight w(x) to each element x € X the total weight of each set and family is naturally
defined. The Set Cover Problem (SCP) is to find a set cover of the ground set of
the minimum weight. The SCP can be approximated within a logarithmic ratio by a
parallelizable algorithm [6].

In [11], a similar approach to the one presented in Sect.6.2.2 for grouping is
applied to the SCP. Given a set S of n strings, we define

F = {subSs(S,s) : s € J(5,5,1,8i:5j €S},

that is the family of the sets of substrings of all possible pairwise join strings from
S. Considering S as the ground set and F' as a family of its subsets, they specify an
instance of the SCP. From each set cover C C F of S, a string s¢ can be constructed
by merging the join strings that correspond to the sets of C. Observe that sc is a
superstring of S. Let the weight of each set of F' be the length of the corresponding
join string, and w(C) be the total weight of the set cover C. Because of the merging
of the join strings, |s¢| < w(C). Also, it is proved that the length of the superstring
corresponds to a minimum set cover C* is at most twice the length of an optimal su-
perstring, that is |sc+| < 2 X opt; (). These results combined with the parallelization
of the SCP imply an NC algorithm with logarithmic approximation for the SSP.

Theorem 15 ([11]). For a string set S of n strings, there is an NC algorithm that for
any € > 0, finds a superstring whose length is at most (2 + €)logn times the length
of a shortest superstring.

Observe that each group of strings selected by the GRoup-CoMBINE algorithm is a
set of the family F' as it was described previously, and so this algorithm constructs
implicitly a set cover of S with respect to F. Theorem 15 proves that this result can
also be obtained by a parallelizable procedure letting as open problem the design
of an NC algorithm with a constant approximation ratio with respect to the length
measure for the SSP.

7.2 RNC Algorithm with Constant Length Ratio

An RNC algorithm for the SSP is based on a parallelizable implementation of
the sequential Zg—approximation algorithm mentioned in Sect. 6.2.7. The only non-
trivially parallelizable steps of this algorithm are the computations of the minimum
cycle covers. Remember that, the problem of finding an optimal cycle cover is equiv-
alent to the problem of finding a maximum matching on a bipartite graph. In general,
itis not known if it can be done in either NC or in RNC. However, when the weights
of the graph are given in unary notation, a condition that can be satisfied in the case
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of this algorithm, a maximum matching can be found in RNC (see e.g. [49]), giving
the next theorem for the SSP.

Theorem 16 ([11]). For a string set S, there is an RNC algorithm that finds a super-
string of length at most 2% x opt(S).

7.3 NC Algorithm with Compression Ratio ﬁ

Given a weighted directed graph, a natural greedy approach for finding a maximum
cycle cover is described as follows. Scan the arcs in non-increasing order of weights,
and select an arc that does not have the same head or the same tail with a previously
selected arc. Repeat until the selected arcs form a cycle cover. This approach finds
a cycle cover of weight at least half the weight of a maximum cycle cover [11]. As
mentioned in Sect. 6.2.3, if the graph is an overlap graph with loops then this greedy
approach always finds a maximum weight cycle cover.

For the development of an NC compression approximation algorithm with a con-
stant ratio for the SSP, a slightly different algorithm from the natural greedy for
the CCP is designed. This algorithm achieves a worse approximation ratio, but can
be parallelized. It is based on the idea that the natural greedy algorithm could be
only a bit worse if in each step it chooses instead of the maximum weight arc, one
with a similar weight. The arcs of the graph are partitioned into levels, such that the
weights of all arcs in a level are within a constant factor. Given a graph G and a real
¢ > 1,an arc e € E(G) has c-level equal to k if ¢*~! < w(e) < ¢k, and c-level equal
to 0 if w(e) < 1. The algorithm operates like the natural greedy algorithm assum-
ing that all arcs in each level have the same weight. The usage of this algorithm on
overlap graphs for finding superstrings concludes to the next theorem.

Theorem 17 ([11]). For a set S of n strings, there is an NC algorithm for the SSP
that achieves a compression ratio ﬁ. It runs either in time O(log” nlog, . ||S||)
on a PRAM with ||S|| +n* processors or in time O(log* nlog,_ . ||S||) on a PRAM
using n®> +||S|| processors.

8 Inapproximability Bounds

Both minimization and maximization versions of the superstring problem are Max-
SNP-hard, which means that there exists an € > 0 such that it is NP-hard to approx-
imate the SSP within a ratio of 1 + & with respect to the length measure, or within
a ratio of 1 — & with respect to the compression measure. The practical side of this
theoretical result is expressed by explicit bounds to the approximation ratio in both
cases.

The first work to this direction appears in [41], where inapproximability bounds
are given for a special case of the SSP. Specifically, the result concerns SSP instances
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where the alphabet is {0,1} and every string is of the form 10"1"01"0"**10 or
0107107190107 10"1°01, where m,n, p,q,r,s > 2. This special case is used also in
Theorem 5 that concerns APX-hardness results. Let us refer to this special case as
SSP, for short. The next two theorems establish the inapproximability results.

Theorem 18 ([41]). The SSP, is not approximable within lﬁ with respect to the
length measure, unless P = NP.

Theorem 19 ([41]). For every € > 0, the SSP; is not approximable within 1% —&€
with respect to the compression measure, unless P = NP.

In [64], inapproximability bounds for the SSP restricted to instances with equal
length strings are given. Moreover, these bounds are extended to instances over
alphabets of cardinality 2 improving the previous ones.

Theorem 20 ([64]). For any € > 0, unless P = NP, the SSP on instances with equal
length strings is not approximable in polynomial time within ratio

° 1ﬁ — & with respect to the length measure, and

1070

L4 1071 + € with respect to the compression measure.

A very important result about the relation between the inapproximability of the
SSP over an alphabet of cardinality 2 and over any alphabet is established in the next
theorem. It implies that the alphabet cardinality does not affect the approximability
of the SSP.

Theorem 21 ([64]). Suppose that the SSP can be approximated by a ratio € on
instances over an alphabet of cardinality 2. Then the SSP can be approximated by
a ratio € on instances over any alphabet.

This result holds for both measures, length and compression. Therefore, the bounds
established in Theorem 20 hold also for alphabets of cardinality 2.

The computation of the inapproximability bounds for the SSP reveals the large
gap between these and the best known approximation ratios for the problem both
for the length measure and the compression measure.

9 Heuristics

The design of the approximation algorithms is oriented to the achievement of the
approximation ratio and not to the best possible result. On the other hand, real-
world applications usually need practically good results and not theoretically good
ratios for the result. A heuristic algorithm can satisfy this requirement by giving
solutions to SSP instances that have not approximation performance guarantee but
are experimentally close to the optimum. The greedy strategies seem to perform
much better than their proved approximation ratios both in average and in real-world
cases. In this section, the heuristic algorithms for the SSP are described.
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9.1 A Variant of the Natural Greedy

A problem with the GREEDY algorithm is that it makes choices that may forbid good
overlaps from future selection. In an attempt to eliminate this behaviour, a heuristic
that imitates GREEDY but chooses differently the string pair in each step is described
in [58]. Here, the modification is given in terms of strings instead of arcs in the
associated overlap graph as made in the original work. The selection criterion in
each step is not just the overlap but the overall influence of the choice of each string
pair. Given a string set S and two string s; and s; in it, let

0i(si,s;) = alo(si,s;)|
_max{|0(si/7Sj)|7Si/ S S7i/ 7é l}
—max{|o(si,s;)|,s;7 €S, ) # j}

where a is a parameter that tunes the method. The idea is to take under consideration
also the overlaps that would be eliminated if the pair (s;,s;) is selected. The pseudo-
code of this heuristic algorithm is exactly as the one of GREEDY except that line 3
changes to k = max{oi(s},s) : (s},s;) € L}. In experiments cited in [58] with this
heuristic algorithm, the best results were obtained with parameter a values from 2 to
2.5. In this case, the modified algorithm gives superstrings with average additional
length from the optimum about % the corresponding average additional length of
GREEDY.

9.2 A Heuristic Parametrized by a Learning Process

A three-stage heuristic algorithm for the SSP, named AsSEMBLY, is presented in [20].
It is based on the observation that the set of the remaining strings in the GREEDY
algorithm after a number of merges is very possible to contain only string pairs with
small overlaps. The AsseMBLY algorithm, in a try to avoid mistakes, terminates the
greedy strategy when false merges are expected to occur, a decision based on the
number of remaining strings.

The first stage of the algorithm is similar to the GREEDY algorithm except that it
is terminated when the remaining string set has a cardinality c. The second stage of
the AssemBLY algorithm is also based on greedy choices, although not made among
all the possible overlaps, but only among these that pass a certification procedure.
Given two strings s; and s; in the set of the remaining strings with |o(s;,s;)| > 0,
a third string si is a certificate if its overlap with both s; and s; is greater than 0.
It is experimentally determined that for two strings s; and s; with |o(s;,s;)| > 0,
the existence of a certificate increases the probability their merge string participates
to the shortest superstring. The second stage of the AsseMBLY algorithm has as input
the output string set of the first stage, and utilizes the idea of the certification to boost
the greedy choices to string pairs that are also certified. It is terminated when the
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cardinality of the remaining string set became equal to the parameter b. The third
stage of the AssEmBLY algorithm is a restricted backtracking procedure. Its input
is the output string set of the second stage. It excludes some solutions based on a
learning process, and then performs an exhaustive search through the rest solution
space. In this way, it tries to balance between time efficiency and accuracy.

The AssemBLY algorithm is tested both on domains of random and real-world
SSP instances. The first is taken by random string generators over specific distribu-
tion specifications, and the second is taken by DNA sequence databases. A number
of instances of each domain are used as input to a learning procedure to specify the
parameters b, ¢ and the excluded solutions of the third stage, and the rest is used to
test the AsseMBLy algorithm. Every version of the AsseMBLY algorithm was tested
on the domain that was used for its training, but also to the other domain. The results
show that AssemBLY performs significantly better when trained on the same domain
it was tested, whereas the randomly trained version has poor performance on the
real-world instances. The version of the algorithm that is trained by a successfully
sequenced DNA molecule achieves a very high accuracy and effectiveness to in-
stances of the same domain. This indicates that a successfully sequenced part of a
DNA molecule can be used to significantly speed up the sequencing of the whole
DNA molecule. The sequenced part can act as input to the learning procedure to de-
termine the suitable parameter values, and the whole molecule can then be obtained
by the AssemBLy algorithm with high accuracy and significantly sped up. The run-
ning time of the algorithm mainly depends on the running time of its third stage,
which may be exponential. The tested instances suggest a sub-exponential growth
of search space for this stage, but experiments on larger SSP instances are needed
to conjecture a polynomial growth.

9.3 Genetic Algorithm

Some heuristic algorithms are inspired by evolutionary processes in nature. Genetic
algorithms [22] belong to this class of heuristics. They are search methods that sim-
ulates the evolution process of natural selection, and used in many scientific fields to
solve optimization problems. In a genetic algorithm for an optimization problem, a
population, that is a collection of candidate solutions, called individuals, is evolved
to reach better solutions. The evolution happens in generations that reflect the al-
ternations to the population. During each generation the fitness of each individual
in the population is evaluated proportionally to the suitability of its value for the
objective function of the optimization problem. The most suitable individuals are
selected to perpetuate their kind by recombining their genomes, i.e., their solutions,
in specific points and by possibly randomly mutated. In this way, a new population
is formed and the procedure is repeated for the next generation. Commonly, the al-
gorithm terminates when either a maximum number of generations is produced, or
a satisfactory fitness level is reached.
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A genetic algorithm for the SSP is described in [66]. The input of the algorithm
is a set S of strings specifying the SSP instance. The genome of each individual in
the population is represented as a collection of strings from S in specific order, such
that it is a candidate solution to the SSP instance. A crucial point of the algorithm
is that an individual may not contain all the strings from S or may contain duplicate
copies of the same string. This choice makes the output not a permutation of the
strings in S giving in this way new potentials to the algorithm. The algorithm was
tested to SSP instances over an alphabet of cardinality 2 using specific values for
the parameters of the population size, the number of generations, and the mutation
rates. The input instances were generated randomly following the DNA sequencing
procedure. The experimental results show that when the number of the strings is 50
the genetic algorithm is better than GREEDY, while its dominance is lost when the
number of the strings becomes 80.

9.4 Coevolutionary Algorithm

Coevolutionary algorithms also belong in the class of the biologically inspired
evolutionary procedures. They generalize the idea of the genetic algorithms involv-
ing individuals from more than one species. Coevolution in nature refers to the
simultaneous evolution of two or more species with coupled fitness. There are two
different kinds of coevolution: the competitive one where the purpose is to obtain
exclusivity on a limited resource, and the cooperative one where the purpose is
to gain access to some hard to attain resource. In cooperative coevolutionary al-
gorithms there is a number of independently evolving species representing com-
ponents of potential solutions which together form complex structures to solve an
optimization problem. Complete solutions are obtained by assembling representa-
tive members of each species. The fitness of each individual depends on the quality
of the complete solutions it participates in. Therefore, the fitness function measures
how well an individual cooperates with individuals from other species to solve the
optimization problem.

A cooperative coevolutionary algorithm adjusted to the SSP is presented in [66].
It is based on populations of two species that evolve simultaneously. The first pop-
ulation contains prefixes of candidate solutions of the SSP instance, and the second
population contains candidate suffixes. Each species population evolves separately
and the only interaction between the two populations is through the fitness function.
Computation experiments similar to those for the genetic algorithm show that this
algorithm performs at least as good as the genetic algorithm and that requires less
computation time since the required involved populations are smaller and the con-
vergence is faster. Compared with GREEDY, it reaches better solutions after a number
of generations both in experiments with 50 and 80 input strings.

An attempt to combine the cooperative coevolutionary approach with natural
greediness concludes to the design of an improved method, which incorporates
both parallelism and greed as described in [66]. The method consists of three
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stages. In the first stage, three parallel and independent runs of the cooperative
coevolutionary algorithm operate, returning as output the populations of the prefixes
and suffixes, instead of the merge string of the best representatives. Also the GREEDY
algorithm runs and its solution is split into a prefix and a suffix. In the second stage,
two new collections of prefixes and suffixes are generated. The first contains the
best % individuals of the prefix population of each cooperative coevolutionary run,
and the prefix of the greedy solution. The second is constructed similarly by the
corresponding suffixes. In the third stage the cooperative coevolutionary algorithm
runs with the two collections constructed in the second stage as initial populations,
instead of random populations. The experimental results show that this algorithm
performs better than the simple cooperative coevolutionary algorithm even if the
cardinality of its populations and the number of its generations in each stage are
quite smaller.

9.5 Preserving Favoured Subsolutions

An extension of the genetic algorithm motivated by the desire to address the failure
of this algorithm in specific domains, is the PuzzLE algorithm described in [67]. It is
designed to improve the performance of the genetic algorithm on relative ordering
problems, i.e., problems where the order between genes is crucial instead of their
global locus in the genome. Corresponding genes to strings and genome to super-
string the SSP is exactly a problem of this kind. The main idea behind the PuzzLE
algorithm is to preserve good subsolutions found by the genetic algorithm by choos-
ing carefully the combination points between two solutions. In this way, it promotes
the assembly of increasingly larger good building blocks from different individuals,
a result that explains also the name of this algorithm.

Two different populations are evolved in the PuzzLE algorithm. A population of
solutions (s-population) and a population of building subsolutions (b-population).
Accordingly, we have the p-individuals and the b-individuals. Notice that this sit-
uation is completely different from the one described for the cooperative coevo-
lutionary algorithm, since here the two populations are not complementary com-
ponents of a complete solution. The interaction between these two populations is
performed differently in each way. The fitness of a b-individual depends on the fit-
ness of the s-individuals that contain it, while the choice of the combination points
in s-individuals is affected by the b-individuals that contain these points.

The PuzzLE algorithm was compared with the genetic algorithm since it is its ex-
tension and with GREepY. Experimental results with SSP instances over alphabet of
cardinality 2 show that the PuzzLE algorithm outperforms both GREEDY and genetic
algorithm, producing shorter superstrings in the average. The result is obtained by
instances with 50 and 80 strings. Comparing with the cooperative coevolutionary
algorithm, PuzzLE is better for instances with 50 strings, whereas it is worse for
instances with 80 strings.
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In [67], two expansions of the PuzzLE algorithm are discussed. The first one
is a direct combination of PuzzLg with cooperative coevolution. The two ideas of
the complementary components in different populations and of the solutions and
subsolutions also in different populations are combined to derive a new algorithm.
During this algorithm four populations are evolved:

1. population of prefixes,

2. population of suffixes,

3. population of building sub-prefixes, and
4. population of building sub-suffixes,

where the interaction between 1 and 2 operates according to cooperative
coevolutionary algorithm, and the interaction between 1, 3 and between 2, 4 op-
erates according to algorithm PuzzLE. The second expansion of PuzzLE involves
ideas from messy genetic algorithms [21]. They are iterative optimization algo-
rithms that use local search techniques, adaptive representation of the genomes, and
decision sampling strategies.

9.6 Discrete Neural Network

In computer science, neural networks are learning programming structures that
simulate the function of biological neural networks as the one constitutes the human
brain. They are composed of artificial neurons and connections between them called
synapses. Neural networks are used for solving artificial intelligence problems as
well as combinatorial optimization problems.

A discrete neural network used for solving the SSP is described in [35]. Dis-
creteness concerns the values that neurons can handle. In general, it is formed by
n neurons, where the state of each neuron i € I, is defined by its output v;. The
vector V = (v, v,...,v,) whose components are the corresponding neuron outputs
is called the state vector. The energy of each state vector is given by the energy
function of the network. The aim of the network is to minimize the energy function
via its learning operation which happens in iterations. The energy function usually
coincides with the objective function of the optimization problem to solve, such that
a local minimum of the former is also a local, and possibly global, optimum to the
latter. In the case of the SSP, and given a string set S, any feasible vector of the neural
network represents an order of the strings in S, utilizing the permutation expression
of the SSP solutions. So, feasible state vectors are those correspond to permuta-
tions, and v; = k means that string s; is placed in the i-th place in the superstring.
Notice that there is an one-to-one correspondence between neurons and strings in
S. In each learning iteration, the neural network searches different solutions using
neuron updating schemes. Given a vector V = (v, vs,...,v,) corresponding to the
current state, and two neurons i and j, 1 <i < j < n, the network considers updates
to the following different states:

o (Vi VisVigdse o3 VjsVidlse V),
b (V],...,Vi,Vj+1,...7Vn,V[+17..~,Vj),
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L] (Vi+la~--7Vj7V17~--;Vi7Vj+1;---7Vn7
© (Viglye oy VisViglseo oy Vi, Vis- ooy Vi),
 (Vitl,-yVn,Vi,eo oy VisVigd,. .., vj), and
® (Vigl,ee oy Vi Vicgds- s Vjy Vi, oo Vi),

that correspond to the combinations of the three parts that the state vector is sepa-
rated into according to the specific two neurons. For each of these candidate solu-
tions the one that decrease mostly the energy function value is selected as the next
network state. This procedure is repeated until convergence is detected, thus a state
vector is found where the updates with all pairs of neurons do not cause any change.
Due to the used update scheme, the network remains in a feasible state along all
iterations. Once the network converges, the stable state represents a local minimum
of the energy function which is equivalent to a local maximum of the total overlap
between the strings in S.

Experimental results are performed with SSP instances for strings of fixed and
variable lengths. The neural network algorithm runs 100 times for each instance
and its results were compared with those of GREEDY. In experiments with fixed string
length, neural network outperforms GREEDY in most cases on average, and always on
best results. In experiments with variable string lengths, neural network outperforms
GREEDY both on average and best results.

9.7 GRASP with Path Relinking

A Greedy Randomized Adaptive Search Procedure (GRASP) is an iterative meta-
heuristic for combinatorial optimization, which is implemented as a multi-start pro-
cedure where each iteration is made up of a construction phase and a local search
phase. The first phase constructs a randomized greedy solution, while the second
phase starts at this solution and applies repeated improvement until a locally op-
timal solution is found. The procedure continues until a termination condition is
satisfied such as a maximum number of iterations. The best solution over all itera-
tions is kept as the final result. GRASP seems to produce good quality solutions for
a wide variety of combinatorial optimization problems. A survey on GRASP can be
found in [47] while an annotated bibliography in [12]. Path Relinking (PR) [19] is
an approach to integrate intensification and diversification strategies in search for
optimal solutions. PR in the context of GRASP is introduced in [32] as a memory
mechanism for utilizing information on previously found good solutions.

In [17], an implementation of GRASP with PR for solving the SSP is presented.
It solves large scale SSP instances of more than 1,000 strings and outperforms the
GREEDY algorithm in the majority of the tested instances. The proposed method is
able to provide multiple near-optimum solutions that is of practical importance for
the DNA sequencing, and admits a natural parallel implementation. Extended com-
putational experiments on a set of SSP instances with known optimal solutions,
produced by using the integer programming formulation presented in Sect. 5.2, in-
dicate that the new method finds the optimum in most of the cases, and its average
error relative to the optimum is close to zero.



The Shortest Superstring Problem 223

10 Asymptotic Behaviour

It can be observed a discrepancy between the theoretical results from the worst-case
analysis and the experimental observations from the approximation and heuristic
algorithms for the SSP. A possible explanation for this fact is given by the average-
case analysis for the problem.

The asymptotic behaviour of the compression achieved by an optimal superstring
is analysed in [1] under a certain probability model for the lengths of the strings and
the letter distribution in them. The average optimal compression of n strings tends
to "}3%, where H, = — ¥ | p(a;)1og p(a;) is the Shannon entropy of the choosing
law u for the letters from the alphabet to construct the strings.

The asymptotic behaviour of some algorithms for the SSP is based on the above
result and explains the good performance of the greedy strategies. In [13], the algo-
rithms GREEDY, MGREEDY, and NAIVE are analysed in a probabilistic framework and
itis proved that they are asymptotically optimal. In [65], the results of the asymptotic
behaviour are extended to the TGREEDY and DIMATcH algorithms, after the observa-
tion that the performance of TGREEDY is never worse than that of MGREEDY, and that
the intermediate result of the maximum directed matching in DIMATCH coincides
actually with the result of MGREEDY (see Theorem 12). The steps of DIMATCH up to
the construction of the maximum directed matching are analysed in a probabilistic
way with the additional assumption that all strings have the same length, and the
asymptotic optimality of these algorithms is established.

By the complexity results in Sect. 3.2, we know that there is not PTAS for the
SSP for both performance measures unless P = NP. In [48], a probabilistic PTAS
for the SSP that achieves a (1 + €)-approximation in expected polynomial time, for
every € > 0, is presented. This algorithm

1. either returns a possibly non-optimal solution, the solution of GREEDY, in poly-
nomial time,

2. or returns an optimal solution, via a maximum Hamiltonian path on the associ-
ated overlap graph, in non-polynomial time.

Under certain conditions in the data of the SSP instance, in the first case GREEDY has
asymptotic approximation ratio 1 4 € with respect to the length measure, and in the
second case the expected running time of finding the maximum Hamiltonian path
can be polynomial, since it depends on the time spent when it is executed and its
execution probability. Analysing these situations, for a random input the algorithm
has approximation ratio 1+ & with respect to the length measure and polynomial
expected running time.

11 Smoothed Analysis

The classical complexity analysis implies that the SSP is a hard problem in the
worst case. The average-case analysis explains the effectiveness of greedy strategies
under suitable probability models which are far from reality. In addition to these two
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frameworks, the latest developed smoothed analysis explains why greed works so
well for the SSP in real-world instances of the DNA sequencing practice. Smoothed
analysis is introduced in [52] to demonstrate the fact that some algorithms like the
simplex algorithm run in exponential time in the worst case, but in practice they are
very efficient.

In [36], the smoothed analysis of the GREEDY algorithm is realized, making the
observation that the asymptotic optimal behaviour of the greedy techniques is due to
the fact that the random strings do not have large overlaps, and so the concatenation
of the strings is not much longer than the shortest common superstring. However, the
practical instances arising from DNA assembly are not random and the input strings
have significantly large overlaps. By defining small and natural perturbations that
represent the mutations of the DNA sequences during evolution, it is proved that for
any given instance S of the SSP, the average approximation ratio of the GREEDY algo-
rithm on a small random perturbation of S is 1+ o(1). This result points out that the
approximation inefficiency of SSP instances indicating by the Max-SNP-hardness
result can be destroyed by a very small perturbation. As very handily noted, if there
had been a hard instance for the DNA assembly problem in history, the hardness
would have likely been destroyed by the random mutations of the DNA sequences
during the evolution. This result makes the SSP a characteristic case where the com-
plexity is different in the worst-case analysis and in the smoothed analysis.

Acknowledgements This research has been funded by the European Union (European Social
Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program:
Thalis. Investing in knowledge society through the European Social Fund.

References

1. Alexander, K.S.: Shortest common superstrings for strings of random letters. In: Crochemore,
M., Gusfield, D. (eds.) Combinatorial Pattern Matching. Lecture Notes in Computer Science,
vol. 807, pp. 164—172. Springer, Berlin (1994)

2. Armen, C,, Stein, C.: Improved length bounds for the shortest superstring problem. In: Akl,
S., Dehne, E,, Sack, J.R., Santoro, N. (eds.) Algorithms and Data Structures. Lecture Notes in
Computer Science, vol. 955, pp. 494-505. Springer, Berlin (1995)

3. Armen, C., Stein, C.: Short superstrings and the structure of overlapping strings. J. Comput.
Biol. 2(2), 307-332 (1995)

4. Armen, C., Stein, C.: A 2%-appr0ximation algorithm for the shortest superstring problem. In:
Hirschberg, D., Myers, G. (eds.) Combinatorial Pattern Matching. Lecture Notes in Computer
Science, vol. 1075, pp. 87-101. Springer, Berlin (1996)

5. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness
of approximation problems. J. ACM 45(3), 501-555 (1998)

6. Berger, B., Rompel, J., Shor, P.W.: Efficient NC algorithms for set cover with applications to
learning and geometry. J. Comput. Syst. Sci. 49(3), 454-477 (1994)

7. Blidser, M.: An 8/13-approximation algorithm for the asymmetric maximum TSP. In: Pro-
ceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
’02), pp. 64-73. Society for Industrial and Applied Mathematics, Philadelphia (2002)



The Shortest Superstring Problem 225

8.

9.

10.

11.

12.

13.

14.
15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Blum, A., Jiang, T., Li, M., Tromp, J., Yannakakis, M.: Linear approximation of shortest
superstrings. J. ACM 41, 630-647 (1994)

Breslauer, D., Jiang, T., Jiang, Z.: Rotations of periodic strings and short superstrings. J. Al-
gorithm. 24, 340-353 (1997)

Chirico, N., Vianelli, A., Belshaw, R.: Why genes overlap in viruses. Proc. R. Soc. B. Biol.
Sci. 277(1701), 3809-3817 (2010)

Czumaj, A., Gasieniec, L., Piotréw, M., Rytter, W.: Sequential and parallel approximation of
shortest superstrings. J. Algorithm. 23, 74-100 (1997)

Festa, P., Resende, M.: GRASP: An annotated bibliography. In: Ribeiro, C., Hansen, P. (eds.)
Essays and Surveys in Metaheuristics. Operations Research/Computer Science, pp. 325-367.
Kluwer Academic, Dordecht (2002)

Frieze, A., Szpankowski, W.: Greedy algorithms for the shortest common superstring that are
asymptotically optimal. Algorithmica 21, 21-36 (1998)

Gallant, J.K.: String compression algorithms. Ph.D. thesis, Princeton (1982)

Gallant, J., Maier, D., Storer, J.A.: On finding minimal length superstrings. J. Comput. Syst.
Sci. 20(1), 50-58 (1980)

Gerver, M.: Three-valued numbers and digraphs. Kvant 1987(2), 32-35 (1987)

Gevezes, T., Pitsoulis, L.: A greedy randomized adaptive search procedure with path relinking
for the shortest superstring problem. J. Comb. Optim. (2013) doi: 10.1007/s10878-013-9622-z
Gingeras, T., Milazzo, J., Sciaky, D., Roberts, R.: Computer programs for the assembly of
DNA sequences. Nucleic Acids Res. 7(2), 529-543 (1979)

Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Norwell (1997)

Goldberg, M.K., Lim, D.T.: A learning algorithm for the shortest superstring problem. In:
Proceedings of the Atlantic Symposium on Computational Biology and Genome Information
and Technology, pp. 171-175 (2001)

Goldberg, D., Deb, K., Korb, B.: Messy genetic algorithms: Motivation, analysis, and first
results. Complex Syst. 3, 493-530 (1989)

Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan
Press, Ann Arbor (1975)

Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proc. Inst.
Radio Eng. 40(9), 1098-1101 (1952)

Ilie, L., Popescu, C.: The shortest common superstring problem and viral genome compres-
sion. Fundam. Inform. 73, 153-164 (2006)

Ilie, L., Tinta, L., Popescu, C., Hill, K.A.: Viral genome compression. In: Mao, C., Yoko-
mori, T. (eds.) DNA Computing. Lecture Notes in Computer Science, vol. 4287, pp. 111-126.
Springer, Berlin (2006)

Jenkyns, T.A.: The greedy travelling salesman’s problem. Networks 9(4), 363-373 (1979)
Jiang, T., Li, M.: Approximating shortest superstrings with constraints. Theor. Comput. Sci.
134(2), 473491 (1994)

Kaplan, H., Shafrir, N.: The greedy algorithm for shortest superstrings. Inf. Process. Lett. 93,
13-17 (2005)

Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation algorithms for asym-
metric TSP by decomposing directed regular multigraphs. J. ACM 52, 602-626 (2005)

Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W.
(eds.) Complexity of Computer Computations, pp. 85-103. Plenum Press, New York (1972)
Kosaraju, S.R., Park, J.K., Stein, C.: Long tours and short superstrings. In: Proceedings of the
35th Annual Symposium on Foundations of Computer Science, pp. 166—177. IEEE Computer
Society, Washington, DC (1994)

Laguna, M., Marti, R.: GRASP and path relinking for 2-layer straight line crossing minimiza-
tion. INFORMS J. Comput. 11, 44-52 (1999)

Lesk, A.M.: Computational Molecular Biology. Sources and Methods for Sequence Analysis.
Oxford University Press, Oxford (1988)

Li, M.: Towards a DNA Sequencing Theory (Learning a String), vol. 1, pp. 125-134. IEEE
Computer Society, Los Alamitos (1990)


10.1007/s10878-013-9622-z

226 T.P. Gevezes and L.S. Pitsoulis

35. Lépez-Rodriguez, D., Mérida-Casermeiro, E.: Shortest common superstring problem with dis-
crete neural networks. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds.) Adaptive and
Natural Computing Algorithms. Lecture Notes in Computer Science, vol. 5495, pp. 62-71.
Springer, Berlin (2009)

36. Ma, B.: Why greed works for shortest common superstring problem. In: Ferragina, P., Landau,
G. (eds.) Combinatorial Pattern Matching. Lecture Notes in Computer Science, vol. 5029, pp.
244-254. Springer, Berlin (2008)

37. Maier, D., Storer, J.A.: A note on the complexity of the superstring problem. Technical Report
233, Computer Science Laboratory, Princeton University, Princeton (1977)

38. Middendorf, M.: More on the complexity of common superstring and supersequence prob-
lems. Theor. Comput. Sci. 125(2), 205-228 (1994)

39. Middendorf, M.: Shortest common superstrings and scheduling with coordinated starting
times. Theor. Comput. Sci. 191(1-2), 205-214 (1998)

40. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling sales-
man problems. J. ACM 7, 326-329 (1960)

41. Ott, S.: Lower bounds for approximating shortest superstrings over an alphabet of size 2.
In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) Graph-Theoretic Concepts in Computer
Science. Lecture Notes in Computer Science, vol. 1665, pp. 55-64. Springer, Berlin (1999)

42. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity.
Prentice-Hall, Englewood Cliffs (1982)

43. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes.
J. Comput. Syst. Sci. 43(3), 425-440 (1991)

44. Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with distances one and
two. Math. Oper. Res. 18(1), 1-11 (1993)

45. Peltola, H., Soderlund, H., Ukkonen, E.: SEQAID: a DNA sequence assembling program
based on a mathematical model. Nucleic Acids Res. 12(1), 307-321 (1984)

46. Pevzner, P.A., Waterman, M.S.: Open Combinatorial Problems in Computational Molecular
Biology, p. 158. IEEE Computer Society, Los Alamitos (1995)

47. Pitsoulis, L., Resende, M.: Greedy randomized adaptive search procedures. In: Pardalos, P.,
Resende, M. (eds.) Handbook of Applied Optimization, pp. 178—183. Oxford University Press,
Oxford (2002)

48. Plociennik, K.: A probabilistic PTAS for shortest common superstring. In: Proceedings of
the 34th International Symposium on Mathematical Foundations of Computer Science 2009
(MFCS ’09), pp. 624-635. Springer, Berlin (2009)

49. Reif, J.H.: Synthesis of Parallel Algorithms, 1st edn. Morgan Kaufmann, San Francisco (1993)

50. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379-423,
623-656 (1948)

51. Shapiro, M.B.: An algorithm for reconstructing protein and RNA sequences. J. ACM 14,
720-731 (1967)

52. Spielman, D., Teng, S.H.: Smoothed analysis of algorithms: Why the simplex algorithm usu-
ally takes polynomial time. In: Proceedings of the Thirty-Third Annual ACM Symposium on
Theory of Computing (STOC ’01), pp. 296-305. ACM, New York (2001)

53. Staden, R.: Automation of the computer handling of gel reading data produced by the shotgun
method of DNA sequencing. Nucleic Acids Res. 10(15), 4731-4751 (1982)

54. Storer, J.A.: Data compression: Methods and theory. Computer Science Press, New York
(1988)

55. Storer, J.A., Szymanski, T.G.: The macro model for data compression (extended abstract). In:
Proceedings of the Tenth Annual ACM Symposium on Theory of Computing (STOC ’78), pp.
30-39. ACM, New York (1978)

56. Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. J. ACM 29, 928-951
(1982)

57. Sweedyk, Z.: A 2%—appr0ximati0n algorithm for shortest superstring. SIAM J. Comput. 29,
954-986 (1999)



The Shortest Superstring Problem 227

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

Tarhio, J., Ukkonen, E.: A greedy approximation algorithm for constructing shortest common
superstrings. Theor. Comput. Sci. 57(1), 131-145 (1988)

Tarjan, R.E.: Data Structures and Network Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia (1983)

Teng, S.H., Yao, F.: Approximating Shortest Superstrings, pp. 158-165. IEEE Computer
Society, Los Alamitos (1993)

Timkovskii, V.G.: Complexity of common subsequence and supersequence problems and re-
lated problems. Cybern. Syst. Anal. 25, 565-580 (1989)

Turner, J.S.: Approximation algorithms for the shortest common superstring problem. Inf.
Comput. 83, 1-20 (1989)

Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 11341142 (1984)
Vassilevska, V.: Explicit inapproximability bounds for the shortest superstring problem. In: Je-
drzejowicz, J., Szepietowski, A. (eds.) Mathematical Foundations of Computer Science 2005.
Lecture Notes in Computer Science, vol. 3618, pp. 793-800. Springer, Berlin (2005)

Yang, E., Zhang, Z.: The shortest common superstring problem: Average case analysis for
both exact and approximate matching. IEEE Trans. Inf. Theory 45(6), 1867-1886 (1999)
Zaritsky, A., Sipper, M.: Coevolving solutions to the shortest common superstring problem.
Biosystems 76(1-3), 209-216 (2004)

Zaritsky, A., Sipper, M.: The preservation of favored building blocks in the struggle for fitness:
The puzzle algorithm. Evol. Comput. 8(5), 443-455 (2004)



Computational Comparison of Convex
Underestimators for Use in a Branch-and-Bound
Global Optimization Framework

Yannis A. Guzman, M.M. Faruque Hasan, and Christodoulos A. Floudas

1 Introduction

Applications that require the optimization of nonlinear functions involving
nonconvex terms include reactor network synthesis, separations design and syn-
thesis, robust process control, batch process design, protein folding, and molecular
structure prediction. Deterministic global optimization algorithms can proceed
to determine the global minimum of a nonconvex nonlinear optimization model
(NLP) through a branch-and-bound framework. Node fathoming occurs through
the assignment of lower and upper bounds over each node’s subdomain. Lower
bounds are generated through convexification to yield a convex NLP at each node.
The tightness of the resulting underestimator depends on the method of convex-
ification and how its strengths align with the characteristics of the function over
the subdomain. In practice, the performance of the algorithm relies on tight lower
bounds to increase the efficiency and frequency of fathoming and pruning for rapid
convergence to the global optimum.

There are certain nonconvex functional forms for which explicit convex en-
velopes are known or can be derived, including bilinear [6, 18], trilinear [19, 20],
and fractional terms [17, 27, 28]. In cases where either the convex envelope or an al-
ternative tight relaxation do not exist, or can only be generated with prohibitive com-
putational cost, a general method for the relaxation and convexification of the func-
tion can be employed. In [16], a novel convexification method was presented that
generates the convex relaxation £(x) of any G2-continuous function f(x) through
the subtraction of a positive quadratic term with an o parameter that is designed to
dominate the nonconvexities of f(x):

L(x):f(x)—aZ(x,U—xi) (x,-—xiL). (1)
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When utilized in a branch-and-bound framework, the method, now called
a-branch-and-bound (oBB), can guarantee £-convergence to the global minimum
within a finite number of iterations [1, 7]. This chapter will explore the convexifi-
cation strength of the nonuniform BB underestimator (Sect.2.1), as well as the
number of competing methods designed to provide tight, convex underestimators,
including:

piecewise BB (P-aBB, Sect.2.2)
generalized aBB (G-aBB, Sect.2.3),
nondiagonal BB (ND-aBB, Sect.2.4),
Brauer BB (B-aBB, Sect. 2.5),
Rohn+E oBB (RE-aBB, Sect. 2.6),

and the moment approach (fy, Sect. 2.7).

Their performance will be gauged via convexification of 20 multivariate, box-
constrained, nonconvex functions whose global minima are known [13]. Section 3
of this chapter outlines implementation details of all the methods, Sect. 4 discusses
the results, and Sect. 5 presents our conclusions.

2 Overview of Methods

2.1 Method 1: Nonuniform Diagonal Perturbation I (0.BB)

Androulakis et al. [7] presented the form of the BB underestimator with nonuni-
form parameters ¢;:

LoBB(X) :f(X)*ZOCi (¥ —x;) (xi —xf), 2

where f(x) is a nonconvex function and £ ypp (X) is the resulting BB underestima-
tor. As previously stated, the structure of the term subtracted from f(x) guarantees
that Lo (x) < f(x) over the entire domain given adequate parameters ¢ > O.
The tightness of £pp (x) relies on determining small but sufficient ¢; parameters
that yield a tight but guaranteed convex underestimator, as the maximum separa-
tion distance dmax between f(x) and Lypp (X) is directly proportional to the o
parameters [16]:

dmax(Laps (X)) = max (f(x)—LaBB<x>)=}LZai(xf’ )

xE [XL,XU]

Utilizing the eigenvalues of the Hessian matrix H as a means to guarantee positive
semidefiniteness and thus convexity, the subtracted positive quadratic term yields a
nonuniform diagonal shift from the original function’s Hessian matrix:

Hp e (X) = Hp(X) + 24, 4)
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where the diagonal elements of A are ¢; and the nondiagonal elements are 0. As
a means of estimating H over the entire domain, Androulakis et al. [7] proposed
utilizing interval arithmetic in deriving bounds on each Hessian term #;;, yielding
an interval Hessian matrix H' of terms /j; = [h;j,hij] and a relaxed problem for
calculating the elements of A that yield the tightest convex underestimator.

Of the many methods for calculating ¢ that are proposed by Adjiman et al. [3]
and explored in [2, 3], computational studies indicated that a scaled method de-
rived from Gershgorin’s Circle Theorem [12], referred to as the scaled Gershgorin
method, showed consistently strong performance in convergence towards the global
optimum with the aBB algorithm:

1 d; )
aimax{ovz <h11;|h;/|di>} Vi, )

where = max { | ﬁij| , |E,-A,-| } There is a degree of freedom when choosing the

B,
J
scaling factors d;; here, d; = xlU —xiL is chosen as suggested and supported in [2, 3].

For a detailed look at theory and applications of the BB method, the reader is
directed to [11].

2.2 Method 2: Piecewise Diagonal Perturbation (P-o.BB)

The oy parameters of the BB method dominate the nonconvexities of f(x) over the
entire domain. A natural extension, introduced by Meyer and Floudas [21], attempts
to produce a tighter underestimator by generating a once-differentiable, piecewise
quadratic underestimator after subdividing each variable x; into &V; subdomains:

Lp.aB(X) = f(X) —g(x), (6)

q(x) = D0 (xf —xi) (i =2 )+ B+ ) forog € [ ],

the kth interval represents [x/ !, x¥], and [x},xV] = [x?,vai]. The system of equations
yielded by requiring ¢(x) to be smooth, continuous, and match f(x) at the vertices
of the domain produces the following analytical form for parameters ﬂik and yf‘

Ni—1
> st =)
Bl=-=r i Vi (7

k=1
BE=B'+ X sl Vik=2,..N ®)
j=1
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=B — ZVJJ Vijk=1,...,N; )

where s = —of (oxF — 1) — o T (AT — xF). Subdividing the domain reduces the
cumulative effects of highly nonconvex regions, thus yielding a spline underesti-
mator Lp_opp(X) that can tighten at each subdomain while meeting continuity and
smoothness requirements.

2.3 Method 3: Nonquadratic Diagonal Perturbation (G-oBB)

With the goal of generating a diagonal perturbation matrix whose resulting underes-
timator is at least as tight as £qpp (X), Akrotirianakis and Floudas [4, 5] introduced
a generalized separable but nonquadratic form for the relaxation term of the BB
underestimator:

LG.0BB (X) _ f(X) _ 2 (1 _ eYi(x,foi)) (1 —eVi(xi*xiL)) (10)

where 7; is selected by solving the system of nonlinear equations

G+ P+ et =D =0, i=1,2,....n. (11)

Here, ¢; < 0 and represents a measure of the nonconvexity of f(x), which can be
estimated via the scaled Gershgorin method and related to ¢o; of Method 1 (aBB):

6= —2a;. (12)

The o; parameters from the BB method provide an upper bound on G-oBB ¢;
parameters and are hence denoted with an overbar. Parameters y; and o; are related
by the equation

~ 2log (1+ /0 (xf —xF) /2)

i U_ L
X —X

13)

The parameters obtained from (11) represent lower bounds on the eventual
parameters of the convex underestimator. While L£g_qpp(X; ) > Lopp(X; @), the
method utilizes a heuristic algorithm that attempts to prove the convexity of a given
L.oBB(X) while updating ¥; (and corresponding o) towards ¥; (@;), whose corre-
sponding underestimator (£qpp (X)) is guaranteed convex. The algorithm is repre-
sented graphically in Fig. 1; if convexity is not proven before the maximum separa-
tion distance of LG opp (X) becomes greater or equal to that of £4pp (x), then the
algorithm defaults to £opp (X).

The text and pseudocode of the convexification algorithm presented in [4]
stated to update all yl’( at every Kth outer-loop iteration. However, this step would
not require comparing the maximum separation distance with the classical «BB
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( START )

e Calculate or; via BB, 7; via (13),¢; via (12),1[ via (11), o via (13)

e K=lLy =paof=0q

K+1 K l
o ¥, T =y 4,| _ _ |
. KoK+l J=1,A ={X)

A

dmax (Lo (x; X))
< dmax (faBB (X;TX))

Choose ZyBB (X; o)

( STOP )

e X, = last element of Ay, Aj = A\ { Xjuse }

e Find lower bounds ¢; on eigenvalues of interval
Hessian [V2.%G.q88 (x; &®)] with x € Xjus

o [ = {i : g,‘ < 0}

A

Bisect all
L U :
[Xi.lusﬂxi,lu:l} with
i€ I and add new
subdomain to A}

J=J+2/-

Choose ZG.onB(x; &)

( STOP )

Fig. 1 Flowchart representing the original G-aBB algorithm (“v1”) for ver-
ifying convexity and parameter selection, where A; is a set of subdomains,
{x} = {[xF,xV],Vi}, and n > 1 is an updating parameter. In the proposed alterna-

tive version (“v2”), the updating step would become yf“ =nyk,viel.

parameters from Method 1, as all (xik will progress towards o; at the same relative
rate and the maximum separation distance criterion will be breached when oX > @;.
In one of the examples Akrotirianakis and Floudas [4] present, it is inferred that
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only some )/IK needed to be updated, as only particular dimensions displayed nega-
tive lower bounds on the corresponding eigenvalues of the underestimator and were
thus preventing the underestimator from being declared convex. This alternative up-
dating scheme, applied whenever the inner loop breaks and according to the most
recently obtained set /_, would necessitate the maximum separation distance check,
and represents an attempt to increase particular o;’s beyond their corresponding o;
so as to obtain a validated convex underestimator with a lower maximum separation
distance than L,pp(x;@). Both of these strategies will be explored in this work,
delineated as G-aBB[v1] and G-aBB[v2] for the explicit and inferred strategies,
respectively.

2.4 Method 4: Nondiagonal Perturbation Elements I (ND-o.BB)

The underestimator methods presented in Sects.2.1 and 2.2 use a separable
quadratic term that yields a guaranteed convex underestimator by shifting the
Hessian matrix with diagonal perturbations. A natural extension to this idea is
to search for a tighter underestimator by applying a perturbation matrix that con-
tains nondiagonal elements. Skjil et al. [25] presented criteria for when nondiagonal
terms would represent a possible improvement over diagonal perturbations alone, as
well as two methods for obtaining a Hessian perturbation matrix with nondiagonal
terms. The perturbation matrix H” replaces A, and the form of the underestimator
is given as

LND-oBB (X Zaz( P — )(Xi*xiL)+22(ﬁisz‘xj‘+|ﬁij|2ij), (14)
i j>i

where
XX X xj = X,
if B;; <0
max U, U Uu 1 Pij
XiXj +X7Xj— X X;
fx,-xL-fox,'+x- XL-, fﬁ 0
max if p;; >0,
_x, xLx]+xLx Y

which can be modeled by following inequality constraints [25]:

Zij =

2ij > xixs 4 xpx; — xpx; Vijij>iBi<0 (15)
L] ]>LpP <
Zij le-x(.] +x(-/x, xlle]] ’ s Pij

> x,ij—x Xj +xeL

Vi, j:j>i,Bi;>0. 16
> xx xLxJerLx } a ﬁj (16)
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The symmetric perturbation matrix

200 Bip - Pin
HP — Bir :

: . . anl,n
Bl,n ﬁnfl,n 2O‘n

is chosen such that the convexity of the resulting underestimator is guaranteed.
Using this requirement as a constraint, the maximum underestimation error is
minimized as per the following NLP:

min %0 ey 3 Bl )

b5 i j>i
st hi+205 =3 i+ Bij| > 0 i (17
J#
0 =0 vi
Bij=Bii Vi,jij>i.

Skjil et al. [25] provided a decision tree by which H” can be calculated without
solving problem (17). First, if all off-diagonal elements of H' are centered on 0,
that is, if

mid(h;) =0 Vi,j:j>i,
where mid(h;;) = (hij+h; ;) /2, then the classical nonuniform diagonal perturbation

is a unique optimal solution to problem (17) and should be chosen (i.e., Method 1—
aBB). Second, if the condition

by — Y rad(hj;) <0 Vi,
J#

where rad(h;;) = (hij — h;;) / 2, holds, then an optimal solution to problem (17) is
given by

J#i
Bij= —mid(hgj) Vi, j. (19)

0 = _% (h,-,. - Zrad(hﬁj)> vi (18)

As a last resort, problem (17) has the same optimal solutions as the following linear
program (LP):
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min ;ai (=) /a3 3 By (¥ ) (Y k) /4

i j>i
jei
+ 20 2 By (5 =) (5 —xj) /4
i j>i
jer”
st hy+203— Y, (hij+Byj) + X (hy+By) =0 Vi (20)
J#i J#
jelt jel;r
o > 0 Vi
Bij = Bji Vi,j:j>i
min {0, —mid(h};) } < B;; < max {0, —mid(h;;) } Vi, j,

whereJ;“:{] J # i, mid(hj;) > O}and] {j:j;éi,mid(hgj)<0}.

2.5 Method 5: Nonuniform Diagonal Perturbation Il (B-o.BB)

The novel methods presented by Skjidl and Westerlund [24] utilize alternatives to
the scaled Gershgorin method as a means for guaranteeing the convexity of the re-
sulting underestimator via determining lower bounds on eigenvalues of H' and thus
proving positive semidefiniteness. The first of two new methods utilizes an eigen-
value inclusion set developed by Brauer [9] similar to Gershgorin’s Circle Theorem.
By using an extension of Brauer’s method towards interval matrices and minimizing
the maximum underestimation error, the following convex NLP gives an alternative
diagonal perturbation matrix:

ZOCi (xlU—le)z/4

st hy+20;>0 Vi
o> 0 Vi

RiR;
'l <1 Vij:j>i,R>0,R;>0,
(i +20u) (hjj +20) '

21

; are used with the quadratic BB

where R; =3;; |
underestimator form in Eq. (2).
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2.6 Method 6: Nondiagonal Perturbation Elements Il (RE-0.BB)

The second method applied by Skjil and Westerlund [24] for bounding the eigenval-
ues of a matrix was specifically developed for interval matrices by Rohn [23]. The
application of Rohn’s method yields another symmetric nondiagonal perturbation
matrix H” with the same form as in Sect. 2.4. By minimizing the separation error of
the resulting underestimator and modeling the constraints given by Rohn’s method
as a semidefinite programming constraint, elements ¢; and f3;; of the underestima-
tor form given by (14) are obtained by solving the following semidefinite program
(SDP):

min Y oy (¥ —xb)? /o1 + 3 Y bij (F — k) (oY —ab) /2

a.p.b

i i j>i
st mid(H))+E+H" = p (rad(H)) + |E|)
>0 Vi (22)
By — B Vi jij>i
b > By Vi jij>i
by > By Vi jij>i,

where p (A) denotes the spectral radius of matrix A and terms /j; ; of H| are

defined as

y hﬁj ifisj

o [j by ]if i = .

There is a degree of freedom in choosing ¢| and ¢;. By choosing ¢ = (6,12), the
objective minimizes the average separation error. Here we use ¢ = (4,4), which
minimizes the maximum separation error as per the original presentation of the un-
derestimator for ND-aBB (which itself could be similarly modified to minimize
the average separation error). There is also a degree of freedom in choosing an ap-
propriate matrix E for (22), with options E = 0 and E = diag(rad(H')) provided
by Adjiman et al. [3]. Both options are explored here, denoted as RE-aBB[0] and
RE-aBB[1], respectively.

2.7 Method 7: Using Putinar’s Positivstellansatz ( f;;)

The only method to diverge from utilization of the features of H' as a method to
guarantee convexity of the underestimator is that of Lasserre and Thanh [15]. The
moment approach is only applicable to polynomial functions, and searches for a
polynomial function f;(x), i.e., constrained to degree d, that is both guaranteed
convex and meets the criterion f;(x) < f(x). It should be emphasized that f;(x)
fully represents the underestimator and is not subtracted from f(x) as was seen in
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the other methods. This method is also the only one that does not constrain the
underestimator to match the endpoints of f(x). Key to the method is utilization of
Putinar’s Positivstellansatz [22] to guarantee convexity of f;(x) and underestima-
tion of f(x). For Archimedian quadratic modules

%:{iwﬁmh%q®eﬂﬂj=Lzmm} (23)
Jj=0

where B = [0,1]", gj(x) = (xy ij) (x'fxf) ,j=12,...,n, g0 =1, and Z[x]
represents the cone of sum of squares, Putinar states that every strictly positive

polynomial on B belongs to Op. The constraint for convexity is given as
YViax)y=20  vxex"x"lyeR":|y| <1. (24)

The underlying mechanism behind Method 7 is to subtract from f(x) a positive
polynomial over B (guaranteeing underestimation) while constraining the result to
be convex. The subtracted polynomial 3.}_, 0;(x)g;(x) is constructed from positive
quadratics g;(x) multiplied by polynomials selected from X[x], thus guaranteeing
its positivity. A hierarchy of SDPs can be constructed, parametrized by integer
k > max{[d/2],[(degf)/2]}, to construct the underestimator fu(x), i.e., from
program k and constrained to degree d. Higher values of k represent a higher
complexity in guaranteeing positivity, and as k — oo the tightest possible f;(x)
is obtained. Alongside the general formulation, Lasserre and Thanh [15] present
a considerably simplified SDP formulation for obtaining the underestimator by
restricting fz;(x) to be quadratic (d = 2):

max b-+a'y+(AA)
b,a,A

st. f(x)=b+a'x+x'A+ zn: 0;(x)g;(x) Vx
=0 (25

>

—

>0
G()(X) S Z[X]
Gj(X) ex

k
[X}k,] j:]72a"',na

where X[x]; denotes the cone of sum of squares of degree at most 2k. Parameters ¥
and A;; are members of the moment matrix of order 1 of the normalized Lebesgue

measure A on B,
[t
Ml - |:,}/ A :| I
and evaluate to
i:/mﬂ Vi (26)
B

Aijz/x,-xjdz Vii=12..n @27
B
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The parameter k is chosen here to be its minimum value, i.e.,

max {[d /2],[(degf) /2]},

as the complexity of the SDP problem explodes with large k. Solving the program
yields f;(x) =b+aTx+x"Ax.

Problem (25) is still difficult to implement as written due to symbolic represen-
tation of the sum of squares search space. Thus, the first constraint is rewritten on
the monomial basis:

fo=ha+ Y (Z/,CL) Vo e Ny, (28)
j=0

where oo € N, represents the monomial basis of the ring of polynomials R[x]»
such that Y;0; < 2k, that is, the degree of each monomial is at most 2k. With
the selection of k as stated above, k is no smaller than degf, and thus each f;
represents the coefficient of f(x) of the corresponding monomial x* : o € Ngegf.
Each variable /g, is the corresponding variable coefficient of x* from fy(x); for
example, with variable coefficients b, a, and A of problem (25) and n = 2, vector
(he) = [b,aT,AlhAlz —|—A21,A22]T. Each variable matrix Z/ is constrained to be
symmetric and positive semidefinite:

Z7-0 j=0,1,...,n, (29)

while each coefficient matrix Cé is defined as

goXvi(xve(x)T = 3, Cox* (30)
oeNg,
gV (x)T= Y Cx*  j=12,...n (31)
oeNg,

where the vector v, = (x" Toe NI’Z) Solving the equalities for each Cé yields
n- (”J;zk) many coefficient matrices of size (”Hr‘l_l) X ("H:l_l) forCl,j=1,2,....n,

and (') many matrices of size ("*) x ("*¥) for C3.

3 Implementation Details

3.1 General Implementation Details

We compared the methods under a general implementation that would be utilized in
an automated workflow to construct the underestimator for any function. Automatic
differentiation was employed to construct all Hessian matrices. Second-order au-
tomatic differentiation was performed via reverse accumulation and then forwards
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accumulation of operators using C++ template headers provided by Bendtsen and
Stauning [8] and overloaded for interval objects. Interval arithmetic was imple-
mented using header files from the Boost C++ Interval Arithmetic Library (http://
www.boost.org, version 1.53), although it should be noted that the final version of
the interval object was heavily modified from the original implementation due to
difficulties with transcendental functions and rational exponents. All convex NLPs
that resulted from obtaining a convex underestimator were solved via external calls
to local NLP solver CONOPT [10] through GAMS. Recorded times include all as-
pects of creating and minimizing the underestimator, except in the case of fy; as
noted below, and exclude the overhead of any external calls.

3.2 Method-Specific Implementation Details

To make the implementation of P-aBB general for any selected number of subdo-
mains, a recursive algorithm was implemented for variable domain division. Both
2 and 4 intervals per each x; are tested here, denoted as P-aBB[2] and P-aBB[4],
respectively. The resulting piecewise function from P-aBB was minimized with
CONOPT by directly interacting with the solver using a precompiled external mod-
ule with a GAMS front-end.

To initiate the G-aBB method, the nonlinear system of equations in (11) was
solved via an external call to MATLAB and by using 7; as an initial guess to the
solution. The convexification algorithm was prevented from proceeding when the
bounds of a dimension of a subdomain in A| (see Fig. 1) spanned less than 5 x 1079,
Updating parameter 1 was chosen to be 1.1, as suggested by Akrotirianakis and
Floudas [4].

The LP from ND-aBB in (20) and the NLP from B-aBB in (21) were solved
via external calls to GAMS with CPLEX (ILOG 2012, v12.4) and CONOPT, re-
spectively. It should be noted that the allowable domain in problem (21) does not
prevent the final constraint from having a zero denominator, a fact which can cause
premature termination in NLP solvers such as CONOPT and required special atten-
tion and constraint rearrangements in a few cases.

The SDP in problem (22) for the RE-aBB method could not be solved through
GAMS and was solved via MATLAB toolbox CVX [14, v1.22] calling the SeDuMi
SDP solver [26, v1.1R3].

The moment approach (fz;) was by far the most difficult to implement. Due to the
enormous amount of matrices being generated in the formulation of the problem, for
which some scheme that would take advantage of their sparsity could be developed,
all times reported only include the SDP solve time. Formulated SDPs were solved
via CVX calling SeDuMi.
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4 Results and Discussion

The optimal values for every method applied to all 20 cases are shown in Table 1. It
should be noted that the coefficient of the third term of function 5 in [13] should be
corrected to 1/3 from 1/6 and was implemented as such here. There are some differ-
ences between the baseline oBB results here and those presented by Gounaris and
Floudas [13], as they derived each Hessian matrix symbolically instead of through
automatic differentiation. The tightness of aBB-based methods is sensitive to the
bounds of the interval Hessian matrices; a few of the cases displayed improved
oBB results using automatic differentiation to derive H', but cases 8a and 8b show
markedly looser underestimators due to the inability of automatic differentiation to
reduce the number of accumulated operations by taking advantage of cancellation
of terms along the diagonal, which is exploited by symbolic differentiation.

The aBB method was by far the easiest method to implement, and it compares
favorably to the other methods which employed much higher levels of sophistication
in derivation and implementation. This indicates that, as suggested by Adjiman et
al. [2, 3], the diagonal perturbation method driven by the scaled Gershgorin method
is already a high performing method that is difficult to improve upon. It is also
apparent that there is a high degree of similarity between many of the methods
regarding their reliance on the tightness of H' and Gershgorin’s Circle Theorem for
proving convexity. The BB method can be easily employed in a branch-and-bound
algorithm with little computational cost.

Among the six quadratic subtraction methods (Methods 1-6), P-aBB showed
by far the most consistent results with the test cases, and was in general the best
performing method. It was the only method that took advantage of the diagonal
structure of functions 7 and 14 to provide tighter underestimators than the other
five methods (dramatically so in cases 14a—c). Utilization of 4 intervals per x; often
resulted in substantial gains in tightness, most dramatically with functions 12-14
which contain sharp differences in character across different subdomains. The P-
aBB underestimators were rapidly generated here, but would not scale particularly
well with very high dimensionality, as dividing » variables into N intervals would
yield N" subdomains. A more careful implementation of the method could subdivide
only those dimensions with highly nonconvex characteristics.

The G-oBB algorithm in general produced similar results to aBB; in fact, the
explicit algorithm (G-aBB[v1]) produced identical results in all cases except 5,
10, and 11. The suggested alteration to G-otBB, denoted as G-aBB[v2], either ob-
tained identical results or outperformed G-oBB[v1] in all cases except 11, where
it obtained a slightly looser underestimator. In particular, G-cBB[v2] was the only
algorithm that was able to improve upon the very loose lower bounds found by the
other methods with cases 8a and 8b, suggesting it took advantage of differences
in nonconvexities between the dimensions. The ¢; parameters obtained by G-ocBB
in cases 8a and 8b showed large differences in the order of magnitude between o
and o;,1 # 1, reflecting the dimensionality of the nonconvexities of those problems.
As expected, G-aBB[v2] was able to exploit this in cases 8a and 8b by further re-
ducing ¢ while increasing all ¢;,i # 1, and producing an underestimator with a
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lower maximum separation distance and higher minimum. It should be noted that
the G-aBB method often displayed long execution times (see Table 2) due to re-
quiring an algorithm for proving convexity; to execute either version at each node
of a branch-and-bound algorithm for problems of large dimensionality would likely
be impractical.

The ND-oBB method, which was the earliest method in this report that attempted
to introduce nondiagonal terms, largely reproduced the results of aBB. Although the
decision tree did include the option to utilize the classical «BB parameters under
certain conditions, it is interesting to note that the ND-aBB method recreated very
similar results while only using classical BB for functions 6, 8, 9, and 13. The
most common outcome of the decision tree was utilization of explicit Egs. (18) and
(19) for calculating diagonal and nondiagonal perturbation terms. The LP model
(20) was utilized only in cases 10 and 11, and the optimal parameters were identical
to the diagonal shift matrix of oBB with all B;; = 0. As is observed and suggested
in [25], the ND-aBB method likely results in more substantial improvements over
aBB with greater disparity between variable bounds.

The B-oBB and RE-aBB methods use alternatives to the scaled Gershgorin the-
orem as a convexity constraint with identical to mixed results. The results of the
B-oBB underestimators, where parameters were obtained by solving an NLP, were
identical to that of aBB. Skjil and Westerlund [24] state that the union of Brauer
ovals is a subset of the union of Gershgorin disks; in these test cases, the Brauer
subsets seemed not to be a proper subset of the Gershgorin unions. RE-aBB[0] pro-
duced a slightly tighter underestimator than BB in cases 2, 3b, and 11. However,
RE-aBBJ[0] otherwise performed identically to BB or worse as in cases 3a, 4,
and 9-13. Other than in case 11, where RE-oBB[1] outperformed RE-aBB[0], the
RE-aBB[1] method either matched the results of RE-aBB[0] or produced looser
underestimators, sometimes dramatically so. The underestimators of RE-aBB[1] in
cases 5, 10, 12, and 13 would have resulted in an extremely loose underestimator
and would have delayed convergence by a large degree; it can be concluded that the
performance of RE-aBB[1] did not justify the computational expense of solving an
SDP for obtaining the underestimator.

It is difficult to judge the utility of the f,;; method, which was applied to all poly-
nomial cases. As seen in Table 1, all of the fz; underestimators produced were the
tightest of all seven methods. However, both the formulation of the SDP and deter-
mination of its solution were computationally expensive. Lasserre and Thanh [15]
report that the SDP of a typical example of degf = 4 and n = 5 took less than a
second to be solved; for problems of similar size, this was observed here as well.
It would be nontrivial for an algorithm traversing the branch-and-bound tree of a
model of appreciable size to repeatedly solve the SDP. There also remain concerns
about implementation of the SDP formulation stage; the number and size of matrices
that needs to be generated is staggering and would be impractical for larger prob-
lems, regardless of whether or not sparse objects are used to represent the various
two-dimensional parameter matrices. A problem of degree 6 with 50 variables, still
a small optimization problem, would require the generation of 1.6 billion matrices
of size 1,326 x 1,326 and 32.5 million matrices of size 23,426 x 23,426. Lasserre
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and Thanh [15] recommended applying the method to each individual nonconvex
term, though a loss of tightness would result and a SDP would need to be solved
(with nonnegligible computational cost) for each polynomial nonconvex term at
each node. This method also did not constrain the endpoints of the underestima-
tor to match the original function; it is unclear what consequences this would have
on convergence of a branch-and-bound algorithm, especially as subdomains become
increasingly tight. It remains to be seen if the method can be efficiently applied to
problems of any appreciable dimensionality and degree.

5 Conclusions

The determination of tight, convex lower bounds in a branch-and-bound algorithm
is crucial for the global optimization of models spanning numerous applications
and fields. We explored the performance of a variety of competing methods across
a diverse test suite of nonconvex functions. The moment approach (fz;) generated
very tight underestimators for polynomial functions at high computational cost, and
the P-oBB method greatly improved upon the BB underestimator in cases where
sharp differences in subdomain characteristics could be exploited. The results also
confirm the excellent performance of the classical nonuniform BB formulation and
the strength and low computational cost of the scaled Gershgorin method, as other
methods of increasing sophistication and computational complexity often did not
appreciably improve upon the results of aBB. Methods similar to BB that moved
away from the scaled Gershgorin method did not display superior performance and
often produced inferior results. Furthermore, the P-oBB, G-aBB, RE-aBB, and f;
methods face serious challenges in efficient implementation and application towards
problems of high dimensionality, with f;; also facing rising computational costs in
problems of high polynomial degree. The most intractable constraint of the under-
estimator generation problem is the requirement of convexity; the relative utility of
new convexification methods for general terms will likely hinge on the performance
and computational cost of their treatment of this constraint with respect to the scaled
Gershgorin method.
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A Quasi Exact Solution Approach
for Scheduling Enhanced Coal Bed Methane
Production Through CO, Injection

Yuping Huang, Anees Rahil, and Qipeng P. Zheng

1 Introduction

For unminable coals, enhanced coal bed methane (ECBM) production via CO; in-
jection (CO,-ECBM) is a promising way to further extend the economic value. With
the advancement of this technology and wide presence of unminable coals, CO,-
ECBM technology has been implemented in various coal mines and locations (e.g.,
[11]). In addition to the profits made from the extracted methane (the major compo-
nent of natural gas), this also allows the natural gas production company to get CO,
credits by storing CO; in the coal bed seam. With increasing demand of natural gas
(due to the growing presence of natural gas fired electricity generators) and envi-
ronmental concerns over excessive CO, emission, CO>-ECBM is becoming more
profitable and applicable.

CO; level in our atmosphere has been in a nonstop increasing trend since the
industrial revolution and reached a record level. Our human society has taken many
actions to combat this trend. One of the major efforts is to deal with the ever-
growing CO, emissions from the electrical power sector. The actions to this respect
include introduction of renewable resources, more environmentally friendly genera-
tion technologies (e.g., combined cycle gas turbine CCCT, close cycle gas turbine),
and CO; storage and sequestration, etc. Due to these new features and require-
ments, many research on scheduling in power systems and CO; storage and seques-
tration have been conducted in recent years. These include generation scheduling
with wind power (e.g., [14]), unit commitment with both traditional and quick-start
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generators (e.g., [18]), and investment, development, and strategies on carbon stor-
age and sequestration (e.g., [6, 17]). In addition, as an important resource of energy,
natural gas has been receiving a lot of research attention, including its production,
transportation, trading, and usage (e.g., [15, 16]). To our best knowledge, this is the
first paper, which is sitting in the crossing point between research efforts on carbon
storage and sequestration, and natural gas production and trading.

Compared to CO,-ECBM, enhanced oil recovery with CO, (CO,-EOR) is more
mature technology and has been demonstrated to increase medium and light oil
production effectively [1, 2, 8]. Although the mechanisms of CO, on oil recovery
enhancement and methane recovery enhancement are different, the operations of
CO,-ECBM are analogous to CO,-EOR but rely less on pure CO; [5]. The eco-
nomic evaluations of CO,-EOR indicate that the project feasibility depends largely
on oil prices and carbon credit prices, where oil price is the main driver for CO,
storage investment [3, 9]. Learning from the experience of CO,-EOR, natural gas
(NG) prices and carbon credit prices are two major factors to affect the CO,-ECBM
implementation. However, since the NG prices are more volatile in historical prices,
which makes the project a more risky investment, the only revenue from NG sales
hardly offsets the routine O&M costs and CO; storage costs. Therefore, benefits
of environmental policies, e.g. CO, credits and allowances, are also considered to
promote CO,-ECBM projects smoothly. Additionally, coal bed methane recovery
is subject to the physical environment and reactions and further impacts the gas
production. We thus have a strong motivation to explore the CO,-ECBM profit-
maximization scheduling for project’s economic analysis and long-term operation
management.

The model proposed in [7] is a nonlinear multi-stage optimization problem. It is
a computationally demanding nonlinear program due to the large number of vari-
ables and constraints. In this paper, we are proposing a quasi exact solution ap-
proach, where the nonlinear terms are discretized and linearized as in [12]. This is
in contrast to using other global optimization methods (e.g., [4]). Using this quasi
exact approach, the original nonlinear program is transformed to a mixed integer
linear programming (MILP) problem. Due to the way the fractional number (small
number, and usually less than 1) is represented in computer, the MILP problem is
equivalent to the original problem when we have enough binary variables to repre-
sent the fractional number. Because there are many easy-to-use and advanced MILP
solvers (e.g., CPLEX, GUROBI, XPRESS, etc.), the new problem can be solved
more conveniently.

In the following, we will first present the model and its descriptions in Sect. 2;
then we will discuss the quasi exact method used to solve the nonlinear program
and show the equivalent MILP formulation after discretization and linearization in
Sect. 3; based on the proposed method, we will show our numerical experiments in
Sect. 4; we will conclude the paper and discuss future research in Sect. 5.
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2 Problem Description
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Fig. 1 Schematic diagram of single well CO; injection as shown in [7]

The main purpose of this paper is to provide a convenient and efficient method
to solve the nonlinear programming models proposed in the paper [7]. The model
is from the original paper, and hence we will not focus on the discussion of model
itself. But the following will give a brief introduction of the model and discuss the
difficulty to solve it.

Enhance Coal Bed Methane production through CO; injection is an effective
technology to get additional value from the unminable coal mines. The whole pro-
cess starts with injecting CO; into the unminable coal seams through the injection
well. The absorption rate of CO; in coal seam is usually about twice the rate of CHy,
mainly depending on the type of the coal bed. With the new absorption of CO,, the
coal seam will release CH4 (the major component of natural gas) which is adsorbed
to the surface of coal. On the other side, the mixture of CO, and CHy4 will be drawn
from the production well. A separation process follows to separate the extracted
mixture to CO;, and CHy4. The CHy will be sent to generate more profits (either by
selling to the spot market or power generation plants); and the CO, will be sent to
the injection well again. The general picture of the whole process is shown in Fig. 1
which is from [7]. The main variables used to model the whole process is linked to
the process as shown in Fig. 2 also from [7], where one period of process are pre-
sented. To facilitate the description of the model, indices, parameters, variables, and
the deterministic model are presented in the next following two subsections.
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CO, Injection Gas Content in Coal Gases in the Sorbed Phase
CO,H »| CH, (w}) and CO, (w}) CH, (x}) and CO, (x§)

|

Gases in the Free Gas Phase Gas Extraction
— CH, (x{) and CO, (x}) CH, (v{) and CO,(v},)

v

| |
t t+1

Fig. 2 Production operations for CO,-ECBM recovery as shown in [7]

2.1 General Nomenclature

This paper is focusing on the solution method. We only list the indices, parameters
and variables used in the model in the following. For detailed description and expla-
nation of the variables, parameters, indices, and rationale of the model, please refer
to the paper [7].

Indices

t Time period(days, months or years)
i Time period, i =t

1* CHy

2* CO,

* For convenience, variables with subscript 1 usually are referring to a value related
to CHy, and 2 for CO».
Variables

v’l The amount of CHy extracted at time ¢ (MMcf /day)

v, The amount of CO, injected at time ¢ (MMcf/day)

V724 » The amount of CO; extracted at time ¢t (MMcf/day)

x| The molar fraction of component CHy in sorbed phase at time ¢

x, The molar fraction of component CO, in sorbed phase at time ¢

¥} The molar fraction of component CHy in gas phase at time ¢

¥, The molar fraction of component CO, in gas phase at time ¢

wi The gas content of component CHy on the coal at time ¢ (Mcf/mton)
w5 The gas content of component CO, on the coal at time ¢ (scf/ton)

Parameters

P Wellhead price for CHy sold at time ¢ (US$/MMcf)

P4 Unit price for CO, credits trading at time 7 (US$/MMcf)
C|  Gas production cost at time ¢ (US$/MMcf)

Cg CO; operation cost at time ¢ (US$/MMcf)

G5, CO, removal cost at time ¢ (US$/MMcf)

NS’2 The CO; supply amount at time ¢+ (MMcf/Month)

Q' The actual flow rate at time ¢ (MMcf/Month)

GIP The total amount of reserve for a CBM well (MMcf)

M, The coal mass(mmton)

The percentage of CO; reinjection amount

The separation rate of methane

Time interval

The minimum methane molar fraction for allowable production

R DA
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2.2 Optimization Model

In this paper, we are trying to use a quasi exact method to solve the most basic case
of the ECBM scheduling problem, the general deterministic programming model.
The model is shown as follows:

T T T T T
[Pl: max ¥ Pivi+ Y P~ ¥ (v +vh,) — 3 Civh = . Ch v, (1)
t=0 t=0 t=0 t=0

t=0
st. v <NSy b r=1,..T (1b)
T
Y 0'8y) <GIP, (1c)
t=0
Wtfl
Wi W,
Xy=1-x, t=0,1,...,T (le)
X
t 1
=1 s=0,1,..T 1
yl 9+(1—9)Xt]’ s Ly ) (f)
yt2:17ytla t:()ala"'aT (lg)
Mw) =MW = 'Sy, t=1,...,T (1h)
Mowh =My 4V —Q'8Ys, t=1,...,T (19)
t t—1
V<Y 08 =D v, t=1,...,T 1j)
i=0 i=0
vtyt
vh, =2 t=1,....T (1K)
)
yi>y, t=1,...,T (11)
vt]avt27 Vt2,r7 xtlvxt2a ytlvyéthlawtzzovt:Oala"',T (1m)

The objective is to maximize the total profit, which is composed of five parts: the
profit from CHy, the profit from CO,, gas extraction cost, CO injection cost, and
CO; removal cost respectively shown in (1a). Constraint (1b) is the constraint on
total CO, supply. Constraint (1c) is defining the CH4 supply limit. Constraints (1d)
and (le) are used to model the composition of sorbed-phase gases. Constraints (1f)
and (1g) are used to model the composition of gas-phase CO;, and CHy. Constraints
on the variations of gas contents are defined by (1h) and (1i). Constraints (1j) and
(1k) model the CH4 and CO, extraction limits and extracted gas composition. A
lower bound of CH4 gas molar fraction is presented in (11). All variables are con-
tinuous and nonnegative as shown in (1m). The major difficulty of this optimization
problem comes from three nonlinear constraints, (1d), (1f), and (1k). These three
constraints can be easily reformed to have bilinear terms instead of fractional non-
linear function. Computational times are relatively long and sometimes it is even
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hard to converge, as is reported in [7]. In this paper we will take advantage of the
specific characteristics of this formulation and transform it to mixed integer linear
programs, which generally have easy-to-use and advanced solvers.

3 The MILP Solution Method

By constraints (1d) and (1e), it is clear that x; and x; are fractional numbers which
only can chose between 0 and 1 because w; and w, are nonnegative variables. To-
gether with constraints (1f) and (1g), it can be shown that y; and y, are nonnegative
fractional numbers less or equal to 1. If we divide x; on both the denominator and
numerator of the right-hand side of constraint (1f), the numerator becomes 1 and
denominator becomes % + (1 —6), which is always greater or equal to 1 because
% > 0. In modern computer systems, a fractional number is represented by a series
of binary numbers (bits). Hence, we can utilize this fact to treat a fractional variable
by a series of binary variables.

Note also that (1d), (1f), and (1k) are equivalent to constraints with bilinear terms
by multiplying the denominators of their right sides. The corresponding resulting
bilinear constraints are shown as follows:

AW e dw = =1, T (2a)
0yi+(1—0)y\xi =x,, t=0,1,....T (2b)
Vo i =vivh, t=1,...,T (2¢)

As in the above equations, all bilinear terms involve the fractional variables. Also,
we know that the fractional variable can be represented by binary variables. Hence
if we replace them, the resulting bilinear terms will involve one binary variable and
one continuous variable. It is well-known that such kind of bilinear terms can be
linearized by introducing additional constraints and a big number. Hence, we can
transform the original nonlinear optimization problem to a MILP problem. This
method is also used in [12]. In the following subsection, we will explain in details
how the problem is converted to an MILP.

3.1 Discretization-Linearization Procedure to Eliminate
Nonlinear Terms

Three nonlinear terms appear in the current deterministic model of ECBM produc-
tion as in constraints (1d), (1f), and (1k). Firstly, we can transform them to bilinear
constraints as shown in (2a)—(2c). Secondly, replace the fractional variables by com-
bination of binary variables. Thirdly, we linearize the bilinear term with exactly one
binary variable and one continuous variable. Then we get a MILP optimization prob-
lem. We refer this procedure to Discretization-Linearization procedure as discussed
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in [12]. The validity and accuracy to the original model is mainly controlled by
the number of binary variables introduced to replace each fractional variable. For
example, we would like to replace variable x by a series of binary variables (i.e.,
z;, L =1,...), and the formulation is shown as follows:

L
x= Z 27121 3)
=0

Say, if we require a degree of accuracy € = 107 where p > 0 and z; € {0,1}. The
number of binary variables needed, L, for the binary representation is

log 10
L= 4
{p logzl “)

In the next three subsubsections, we will discuss how each of the three nonlinear
constraints are linearized by the discretization-linearization procedure.

3.1.1 Linearization of Composition of Sorbed Phase Constraints

The first nonlinear term appears in the expression of composition of sorbed phase

as follows: |
P

r_ W1
xl =

t=1 T.

1 PR

L)
which can be converted to an equlvalent bilinear constraints as in (2a). First, we use
binary representation to replace x} as follows:

L
=327, t=1,..T (5)

where z; € {0,1}, [ =0,...,L. After applying the new replacement in the bilinear
constraint (2a), we have the following new bilinear constraints

< 1 1
ror—
2 2- ZZWI
=0

22 lawh 1]— wil=01=1,...,T. (6)

The new bilinear terms include exactly one binary variable and one continuous non-
negatlve Vanable We introduce A/ and @] to assist linearize the bilinear terms zjw/~ !
and Zjwh~ ! above, respectively. Let

M=wld t=1,...T, [=0,...,L (7a)
ol =whlzd, t=1,....,T, I=0,...,L (7b)
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Then we need to introduce the following constraints to have equivalent transforma-
tion (the standard linearization technique as in [10])

0<A <w™' t=1,...,T,1=0,...,L (8a)
W —R(1-2) <A <Rz, t=1,....,T, [=0,....L (8b)
0<¢ <wh!' t=1,...,T,1=0,....L (8¢)
Wil —R(1-2) <@ <Rz, t=1,....,T, 1=0,...,L (8d)

where R; is a large number to bound the variables. Instead, the bilinear constraint
(6) is then replaced as follows:

t—1 _
wy o =

7'M+ @), t=1,...,T, 9)

M=

-
I

1

Then the final linear formulation only includes constraints (5), (8a)—(8d), and (9).

3.1.2 Linearization of Composition of Gas Phase Constraints
By using the extended Langmuir isotherm, the composition of free gas y; can be
obtained. The fraction of CO,/CHy4 in the gas phase is represented as follows,

The gas molar fraction of CHy:
' X

N (1-0)x
The gas molar fraction of CO;:
Yo=1-y

The key is to make the first constraint linearized. Note that the bilinear terms for the
reformulated first constraint (2b) involve also x}. Since we have already discretized
x| while linearizing composition of sorbed phase constraints, we keep using the
binary representation of (5). The new bilinear constraints are shown as follows:

L
=01+ Y (1-0)27"2y, t=0,1,....T (10
=0

To linearize the above constraint, we introduce a new variable {/ to replace the
bilinear term z}y}. Using the same technique as in the last subsubsection, we need to
introduce the following new constraints:

0<¢ <y, t=0,...,T, 1=0,...,L (11a)
W—Ri(1-2) < <Rz, 1=0,...,T, [=0,....L (11b)
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where R; is a large number to bound the variables. Instead, the bilinear constraint
(10) is then replaced by the following equation:
L
=0y +Y(1-0)27¢, t=0,1,....T (12)
=0

Then the final linear formulation only includes constraints (5), (11a), (11b),
and (12).
3.1.3 Linearization of CO, Extraction Constraints

The third nonlinear term appears as the expression for the amount of CO, extraction.
According to Dalton’s Law of partial pressure, we have the following constraints:

tot
Viy

t o _ 7172 _

V27r— 7 ,t—l,...,T
N1

The equivalent bilinear constraints (2c) include two bilinear terms, which include
two sets of completely different variables. However, we know y, = 1 —) and can
then reduce the number of variables involved in bilinear terms. After make the sub-
stitution, we get the following:

Vi=yiva, +yph, t=1,....T (13)

We already know that y} is a fractional number as well. In addition, it appears in both
of the bilinear terms of (13). Hence it is convenient if we use binary representation
to replace it as follows:

L
V=32 i=1,T (14)
=0

After introducing the above binary representation, we obtain the following new bi-
linear constraints:

L
Vi = [ZTlm’vtz,r +
1=0

L
Sonph|, t=1,...,T (15)
=0
Then we introduce two new nonnegative continuous variables to replace the bilinear

terms in (15). Let

v, =vinl, t=1,....T, 1=0,...,L (16a)
Wy =i, t=1,...,T, [=0,...,L (16b)

Using the same standard linearization technique as in the previous two subsubsec-
tions, we need to introduce the following new constraints:
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o<y, <V, t=1,....,T, 1=0,...,L (17a)
0<wyy <vh,, t=1,...,T, [=0,...,L (17b)
Vi—R(1—-n)) <y, <Rm|, t=1,...,T, =0,...,L (17¢)
vy, —Ri(1=m)) <wy <Rmj, t=1,....T, 1=0,..., (17d)

where R; is a large number to bound the variables. Instead, the bilinear constraint
(15) is then replaced by the following equation:

27Ny ) t=1,...,T (18)

V=

M

=0

Then the final linear formulation only includes constraints (14), (17a)—(17d), and

(18).

3.2 Linear Optimization Model

After the nonlinear/bilinear terms are discretized and therefore linearized, the new
linear deterministic model is obtained. In order to clarify the mixed integer linear
program, we show all constraints and variables of the model as follows:

[MILP]:

T T T T T
max Y P+ 3 Pvh = X M +9h,) — X Chvh— Y G v, (19)
=0 =0 =0 ' =0 =0
st b <NS -+ r=1,...,T (19b)
T
>, 0'8y, <GIP, (19¢)
t=0
L
A=Y2", t=1,..T (19d)
=0
0<A <w™' t=1,..,T, 1=0,...,L (19¢)
W —R(1-2) <N <R, t=1,....,T, 1=0,....L (190
0<eql<wh!', t=1,...,T, I=0,...,L (19g)
wh ' —R(1-Z2) <@ <R, t=1,....,T, 1=0,...,L (19h)
L
wi =Y 27 +ef), t=1,....T, (19i)
=1
Xy=1-x}, t=01,...,T (19))
0<¢g <y, t=1,....,T, =0,...,L (19k)

Vi —R(1-2) < <R, t=0,....,T, 1=0,...,L (191)
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L
A=0yi+Y(1-0)27¢, t=01,..T (19m)
=0
Vo=1—y,, t=1,...,T (19n)
Mwy =M —Q'8y,, t=1,...,T (190)
Mewh = Mowh 0 — '8y, t=1,...,T (19p)
t t—1
vl‘ISZQISyl]_ZVllv t:lavT (19Q)
i=0 i=0
L
Yi=Y2"n, t=1,...T (19r)
=0
o<wyi <V, t=1,...,T, 1=0,...,L (19s)
0< ) <vh,, t=1,..T, 1=0,..L (191)

Vi—R(1-n))<wi, <Rm, t=1,....,T, [=0,....L  (19u)
Vo, —Ri(1=m)) <yy <Rmj, t=1,....,T, 1=0,....L (19v)

L
vi= Y27yl ), t=1,....T (19w)
=0
Yy >y t=0,..T (19x)
vtlavt23vt27raxtlax123ytlayt2’Wt]ﬂwtbl]t,(pltvCltvll/ilvll/él Z 07
t=0,1,...,T,1=0,...,L (19y)
&mie{0,1}, t=1,...,T,1=0,1,...,L (192)

where 2z, 7] are the two sets of binary variables. As in the previous discussion, the
degree of accuracy of this program is largely dependent on the number of binary
variables introduced to represent the two sets of continuous variables x| and y}.
However, the more the binary variable introduced, the more the computational de-
manding becomes the new MILP problem. In the next section, we will report our
computational experiments based on the MILP formulation.

4 Numerical Experiments

The linearized CO,-ECBM model is programmed in C++ and solved by CPLEX
12.2. All experiments are implemented on a PC Dell Vostro with Intel Pentium
CPU at 2.80 GHz and 3 GB memory. The experiment results are compared with the
original results that were gained through solving the original model in GAMS with
the commercial solver BARON.

The linearized model is applied to a 12-period case studies. This case selected is
to illustrate the impacts of economical factors such as prices and operational costs
on the production scheduling when the technical parameters are given and the max-
imum extraction rate for a single well is fixed, shown in Table 1. This case is based
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Table 1 Technical parameters

Parameter Value
GIP 1,200,000 MMcf
0 1.2
Y 0.1
T 0.55
M, 4,000 million tons

Max. extr. rate 30 MMcf/month

—@— Methane Prices | I | |—#&— Gas Production Costs
—&— CO, Credit Prices 1 1 | |—#— CO, Injection Costs
! ! 1_ |—+— CO, Removal Costs

Prices ($/MMcf)

Months Months

Fig. 3 The trends of prices and costs (T = 12). (a) Methane wellhead prices and
CO;, trading prices. (b) Gas production costs, CO; injection costs and CO; removal
costs

on a l-year horizon, where the methane wellhead prices are selected from US EIA,
starting in January 2008 and ending in December 2008. CO, credit price for each
period is generated within the range of historical prices [13]. Figure 3 shows two
types of prices (Fig.3a) and three types of costs (Fig. 3b), respectively. The total
CO; supply amount in each period is forecasted and shown in Fig.4. Due to the
continuity of production planning, it is assumed 30 work days in a month.

Table 2 lists the computing times of four different period projects given to a series
of numbers of required binary variables (L) for each discretization and a fixed large
number (R;). We specify all results under the situation of R; = 1,000. For above
four cases, they have the same starting period, but different ending periods which
are employed to describe the relationship between a project period and the compu-
tation time. As the project period increased, under the condition with same L, the
computation time also grows significantly. For example, the computation time for
annual planning is at least ten times of time for half-year planning, yet the compu-
tation time is still within a feasible range. Moreover, we tested many instances with
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Available CO, Injection Amount (MMcf/Month)

Months

Fig. 4 CO; supply amount (7 = 12)

more than 12 periods, whereas no feasible solution is obtained in less than 3 h, and
then generally the solving process was terminated.

As can be seen in Table 2, there exists the minimum number of binary variables
(L) required for each discretization based on the length of a project. In general,
a larger number of binary variables (L) are required when the longer schedule is
made. If the number of integer variable is reduced below a threshold, solving the
corresponding case only yields an infeasible solution. We observed the four cases
individually and found that the computation times fluctuate within the same order
of magnitude in spite of number of binary variables increased. However, the com-
putation time for 12-period case even has a larger variance, which means that the
computation could be costly in some instances due to the number of binary variables
needed.

In addition, for the solution deviation, we take an example of a half-year case
with L = 50 to compare the solutions solved by BARON using the original model
and by CPLEX using the linearized MILP model, respectively. Table 3 shows that
the percentage of deviation (%A) on gas production rate v, CO; injection rate v,
and CO, removal amount v,,. Most percentage deviations are lower than 1 %, which
indicates that the discretization-linearization technique not only helps solve the non-
linear CO,-ECBM problems successfully but also is applicable to small-size and
median-size cases.
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Table 2 Number of binary variables and computation time for four cases

L
Case Period 15 20 25 30 40 50 60 70 80 90 100

I T =3 inf. 6599 115.83 393 126 2.88 8.63 10.03 8.16 571 11.86
1I T =6 inf. inf. inf. 1948 85.63 5396 74.68 50.09 4839 41.03 55.57
I T=9 inf. inf. inf. 137.5239.95 339.97 702.07 179.96 1,071.99 110.4 703.77
IV T=12inf. inf. inf. inf. 610.71 1891.25 900.63 490.59 16,187.54 588.50 273.41

Table 3 Comparison of solutions from original model and linearized MILP model

V1 V2 Var
Period Org. Lnz. %A Org. Lnz. %A Org. Lnz. YA
29.8805 29.8790 0.005 0 0 0.000 0.1195 0.1210 1.251
29.8805 29.8726 0.026 0 0 0.000 0.1195 0.1274 6.594

29.8805 29.8757 0.016 21,565.07 21,565.1 0.000 0.1195 0.1243 4.003
29.2521 29.2527 0.002 20,170.07 20,170.1 0.000 0.7479 0.7473 0.086
28.6878 28.6812 0.023 19,993.41 19,9934 0.000 13122 1.3188 0.504
28.1495 28.1382 0.040 20,327.72 20,327.7 0.000 1.8505 1.8618 0.608

AN N RN

5 Conclusion

This paper discusses an ECBM scheduling problem through CO; injection. The
original model is proposed in Huang et al. [7], which takes into account the profits
from both natural gas sales and CO, credits, and chemical/physical reaction details
of the process. It is a management problem including a great amount of real tech-
nical details in practice. However, the model is a nonlinear optimization problem
and is computationally very challenging. The main contribution of this paper is
the use of a quasi exact reformulation, which is a mixed integer linear program, to
solve the original model. Both discretization and linearization techniques are used
to construct the MILP reformulation. Accuracy of the reformulation is dependent
on the number binary variables used to discretize the fractional variables in the
original model. Computational experiments show that the results (obtained in rea-
sonable computing times) from the reformulation are almost as same as the exact
solutions. With the popularity and advancement of integer/MILP software packages
(e.g., CPLEX, EXPRESS, GUROBI, etc.), the reformulation approach will be more
accessible to general users and provide efficient and effective solutions. This paper
uses the reformulation to solve the deterministic models from [7]. Future research
in this direction would be solving the multi-stage stochastic models, which will be
very difficult, because the number of introduced binary variables will grow exponen-
tially. Advanced and specifically devised decomposition algorithms will be required
to handle these cases. In addition, including transportation constraints (given multi-
ple locations of resources) on both natural gas and CO; will be more interesting to
higher level decision makers.
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A Stochastic Model of Oligopolistic Market
Equilibrium Problems

Baasansuren Jadamba and Fabio Raciti

1 Introduction

We provide a stochastic formulation of the classical deterministic oligopolistic
market equilibrium, a la Cournot [2] in this short note. Equilibria of this kind
are particular cases of Nash equilibria, and it is well known (see, e.g., [1] for the
general Hilbert space case, and [4] for a finite-dimensional framework close to oper-
ations research problems) that under standard hypotheses solutions can be obtained
by solving a variational inequality. Thus, we can apply the theory of random (or
stochastic) variational inequalities in Lebesgue spaces to our model. This approach
has been proposed quite recently to study many stochastic equilibrium problems
arising from applied sciences and operations research [5-8, 10]. Other approaches
to stochastic variational inequalities have been proposed by other authors. Here we
cite only the very recent paper [13] which also contains applications to Nash equi-
librium problems.

The paper is structured in four sections. In the remainder of this introduction
we briefly recall the connection between Nash equilibrium problems and variational
inequalities in the deterministic, finite-dimensional setting; in Sect. 2 we introduce
random data in the deterministic oligopolistic market model; in Sect.3 we present
the Lebesgue-space formulation of the stochastic model; in Sect. 4 we study a par-
ticular class of utility functions, and use them to illustrate our model by means of a
numerical example.
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Consider m players each acting in a selfish manner in order to maximize their
individual welfare. Each player i has a strategy vector ¢; = (gi1,.--,qin) € X;, where
X; C R" is a convex and closed set, and a utility (or welfare) function w; : Xj X
Xy x -+ x X, — R. He/she chooses his/her strategy vector ¢; so as to maximize
w;, given the moves (g;);+; of the other players. We will use the notation g_; =

(qla"'7qi715qi+17"'an) andq: (qiaqfi)

Definition 1. A Nash equilibrium is a vector ¢* = (¢7,...,q},) € X, such that:
Wl(Qz*vq*—z) > Wi(qivq*—i)? VQt € Xi>Vi € {13 s am}'

The following theorem (see e.g. [12, Chap. 6]) relates Nash equilibrium problems
and variational inequalities.

Theorem 1. Let w; € C'(X),Vi, and concave with respect to g;. Let F : R™ — R™"
be the mapping built with the partial gradients of the utility functions as follows:

F(q) = (_Dqlwl (q)v"'a_quWm(CI))'

Then, q* € X is a Nash equilibrium if and only if it satisfies the variational
inequality:

mn
Y F(q") (g —q;) >0,Yge X
r=1

2 The Stochastic Oligopoly Model

We consider here the model in which m players are the producers of the same
commodity. The quantity produced by firm i is denoted by ¢; so that g € R™
denotes the global production vector. Let (€2, P) be a probability space and for every
i €{l,...,m} consider functions fj : @ xR - Rand p: Q xR" — R.

More precisely, for almost every @ € €2, (i.e. P-almost surely in probabilistic
language), fi(®,q;) represents the cost of producing the commodity by firm i, and
is assumed to be nonnegative, increasing, concave, and C ! while p(o,qg1++qm)
represents the demand price associated with the commodity. For almost every @ €
€, p is assumed nonnegative, increasing, convex w.r.t. g;, and C!. We also assume
that all these functions are random variables w.r.t. m, i.e. they are measurable with
respect to the probability measure P on 2. In this way, we have introduced the
possibility that both the production cost and the demand price are affected by a
certain degree of uncertainty or randomness.

Thus, the welfare (or utility) function of player i is given by:

wi(@,91,....qm) = p(®,q1+ -+ qm)qi — fi(®,q;). ey
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Although many authors assume no bounds on the production, in a more realistic
model the production capability is bounded from above and we allow also for the
upper bound being a random variable: 0 < ¢; < g;(o).

Thus, the specific Nash equilibrium problem associated with this model takes the
following form. For a.e. w € Q, find ¢* () = (¢} (®),...,q},(0)):

wi(q" (w)) = max {p(w,qi +2,4;(0))a; —fi(w,qi)} , Vi )

0<g;i<g;(w) i

In order to write the equivalent variational inequality, consider the closed and convex
subset of R™:

K(w)={(q1,---,qm) : 0 < ¢ < G;(w), Vi}

for each @ and define the functions

dofi(w,q;) (@37 q)) i
F(w,q):= P aqj i~ p ﬂhjg,lqj' . (3)

The Nash problem is then equivalent to the following variational inequality: for a.e.
o € Q, find ¢*(0) € K(w) such that

3 Filo.4°(0))(g) — 43(@)) > 0, Vg € K(a). @
=1

Since F(w,-) is continuous, and K (®) is convex and compact, problem (4) is solv-
able for almost every m € €2, due to the Stampacchia’s theorem. Moreover, we
assume that F(,-) is monotone, i.e.:

(Fi(w,q9) — Fi(0,4"))(gi—q;) >0 Yo € Q,Yq,4' e R™.

s

Il
—_

F is said to be strictly monotone if the equality holds only for ¢ = ¢’ and in this case
(4) has a unique solution. In the sequel the following uniform strong monotonicity
property will be useful:

Ja>0: Y (F(w,.q) —F(0.9))(g—q) > allg—4|* Yo € Q,%,4 €R™. (5)

i=1

Although the uniform strong monotonicity property is quite demanding, nonetheless
it is verified by some classes of utility functions frequently used in the literature (see,
e.g., Sect. 4).
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3 The Lebesgue Space Formulation

Now we are interested in computing statistical quantities associated with the
solution ¢*(®), in particular its mean value. For this purpose we introduce a
Lebesgue space formulation of problems (2) and (4). Moreover, in view of the
numerical approximation of the solution, from now on, we assume that the random
and the deterministic part of the operator can be separated. Thus, let:

wi(w,q) =p <i qj) + () — a(o)fi(q:) — gi(q:)
j=1

where o, 3 are real random variables, with 0 < o < (@) < @, and the part of
the cost which is affected by uncertainty is denoted now by f; (with an abuse of
notation). As a consequence, the operator F takes the form:

(. A m ap 2’]’_1: q}
Fi(w,q) = a(w)8f,(q,) + 98i(d:) -p (Z q,-) —B(w)— M
=1

dqi dqi dqi -

The separation of variables allows us to use the approximation procedure developed
in [6]. Furthermore, we assume that F is uniformly strongly monotone according to
(5) and satisfies the following growth condition:

Fi(@,q)| < c(1+q]).Vq € R", Yoo € 2, Vi ©)

and w;(®,0) € L'(). Moreover, we shall assume that o € L*(Q), while f8,7; €
L?(Q). Under these assumptions the following Nash equilibrium problem can be
derived (see [9] or [3] for a similar derivation which can be easily extended to our
functional setting):

Find u* € L?(Q,P,R™) such that, Vi

[ wil@ @)dro = max [ wio, wl)u (@)dPo, D)
Q 0<u;<q; JQ
where we used the notation: (u;,u*;) := (uj,...,u;j_, u;, uj,,...,uy). Then, we

define a closed and convex set Kp by
Kp={uc*>(Q,PR"):0<u(w)<g(on),Pas.,Vi}

and consider the variational inequality formulation of (7): Find u* € Kp such that
m
/QZﬂ(wm*(w))(uj(a))—u*(a))) > 0,Vu € Kp. @®)
j=1

The relation between problems (7) and (8) is clarified by the following theorem.

Theorem 2. u* is a solution of (7) if and only if it is a solution of (8).
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Proof. The proof can be obtained along the same lines as in [3], with minor
modifications. O

Since the stochastic oligopolistic market problem will be studied through (8), we
ensure its solvability by the following:

Theorem 3. Let fi(-,q:),p(-,X}-1 q;) be measurable, and fi(®,),di(®,-) are of
class C'. Let F be uniformly strongly monotone and satisfy the growth condition (6).
Then (8) admits a unique solution.

Proof. Under our assumption F :  x R™ — R™ is a Carathéodory function and
it is well known that for each measurable function u(®), the function F(®,u(w))
is also measurable. Under the growth condition (6) the superposition operator N :
u(w) — F(w,u(w)) maps L?(Q,P,R™) in L*>(2,P,R™) and is continuous, being
P a probability measure. Moreover the uniform strong monotonicity of F implies
the strong monotonicity of Nr. The set Kp is convex, closed, and (norm) bounded,
hence weakly compact. Then, monotone operator theory applies (see, e.g., [11] for
a recent survey on existence theorems) and (8) admits a unique solution. a

Remark 1. The Lebesgue formulation is the natural one for our stochastic problem,
in that the solution of (8) is a function which, by definition, admits finite mean value
and variance. If the unique solution of (4) is square integrable, then it also satisfies
(8) (see also Proposition 1 in [8]).

Let us note that we worked with the abstract probability space (£2,P) up to this
point, and this was sufficient in providing the general formulation of our problem in
Lebesgue spaces in a concise manner. However, in concrete applications the sample
space €2 is not known. On the other hand, one can measure the distributions of the
real valued random variables that are involved in the model. Hence, it is natural
to work with the probability distributions induced on the images of the functions:
A=o0(w),B=B(w),0; =7;(®). Thus, lety = (A, B, Q) and consider the probabil-
ity space (R?,P) with d = 2+ m. In order to formulate the problem (8) in the image
space we introduce the closed convex set Kp by:

Kp = {uec L*(R),P,R™): 0 < u;(A,B,Q) < Q;,Vi,P-as.}

and consider the following problem: Find u* € Kp such that Vu € Kp

o [ 0A0) | s (&,
/Rdi;[A G S p<zu,-<y>>3

op (T ()
- dqi

u] (ui(y) —ui (v))dP(y) > 0. (9)

We assume that all the random variables are independent. Moreover, as it
is verified in most applications, we assume that each probability distribution
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is characterized by its density ¢. Thus, we have P = Py @ Pz @ Py, dPy(A) =
0o (A)dA, dPﬁ (B) = @p(B)dB, dPz(Q) = ¢z(Q)dQ, where we used the compact

notation @, (X H ¢y, (X;). Hence, we can write (8) using the Lebesgue measure:

gl (g )

o Rn l J=1

8p< '}Lluj(A,B,Q)) ur )
- a0 (i(y) — 1} () 9e(A) 95 (B) 97(Q)dAdBAQ > 0

(10)

for all u € Kp. The advantage of this formulation is that it is suitable for an app-
roximation procedure based on discretization and truncation. The approximation
method is applied to the example presented in Sect. 4.1, for the details of the method
we refer the interested reader to [6, 8]. The outcome of the above mentioned pro-
cedure is a sequence of simple functions (u ), which converges in L? to the exact
solution u* when k — oo (see [8, Theorem 4.2]). We can then use this sequence to
approximate the mean value of the solution, which is defined in the standard way as

W)= [ ()aPw)

4 A Class of Utility Functions

In this section we consider a random version of a class of utility functions widely
used in the literature (see, e.g., [12, Chap. 6]) and show that these functions satisfy
the theoretical requirements stated in the preceding section.

Thus, let

=
e
~
Il
B
2
<
n
S
=
+
o

where 0 < a < a(®) <@, a € L*(Q), e € L*(Q), and a;,b;,d, c; are positive real
numbers. Thus, wi(®,q) = —[a(®) aig? + bigi + ¢i] + (—d 3", g + e(®))q;, and

F(0,q) = [2a(w)a;+2d]gi+d Y, q; + b — e(®) (11)
J#i

For each @ the operator F consists of a linear part and a constant vector. The follow-
ing theorem shows that F(®,q) satisfies the monotonicity requirement mentioned
in the previous section.
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Theorem 4. Let F : Q2 x R™ — R™ defined as in (11). Then F is strongly monotone,
uniformly with respect to @.

Proof. Let T be the matrix associated to the linear part of F. A straightforward
computation gives that the diagonal elements of T are 2a(®) a; + 2d while its off
diagonal elements are all equal to d. Now let us decompose 7 as the sum of three
matrices:

T =2a(w)diag(ay,az,...,an)+dl,+d (12)

The first matrix is a diagonal matrix which as a(®) min;{a;} as its minimum eigen-
value. Given that 0 < g < a(w) this matrix is positive definite, uniformly with
respect to @. The second matrix is a scalar matrix, and because d is strictly positive
this matrix is positive definite. The third matrix, d, has each entry equal to d, hence
it is positive semidefinite. Hence, T is positive definite, uniformly with respect to ,
and as a consequence, F' is strongly monotone, uniformly with respect to ®. a

4.1 Numerical Example

We consider the random version of a classical oligopoly problem presented in [12]
where three producers are involved in the production of a homogeneous commodity.
The cost f; of producing the commodity by firm i and the demand function p are
given by

a(®)qi +q1+1
fr(0,q2) = 0.5a(0)q5 +4q2 +2
f(0,q3) = a(0)g3 +0.5¢3 +5

3 3
p (@Z) = _;‘Zi+e(w)

i=1

where a(w) and e(®) are random parameters that follow truncated normal
distributions:

a~05<N(1,025)<15
e~45<N(5025) <55

Although we do not put upper bounds on the production capabilities, the existence
of the solution is ensured because of the coercivity of the operator generated by
f and p. Solution of the nonrandom problem (g1, ¢2,¢3) = (23/30,0, 14/15) where
a(w) =1, e(w) =5 is given in [12]. We use the following approximation proce-
dure to evaluate mean value of g (see [6] for a detailed description of the method).
First, we choose a discretization of the parameter domain [0.5,1.5] x [4.5,5.5] using
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N X N, points and solve the problem for each pair (a(i),e(j)) using an extragradient
method. Then we evaluate the mean value of g by using appropriate probability
distribution functions. Approximate mean values of g,¢>, and g3 are shown in
Table 1.

Table 1 Mean value of ¢ = (q1,92,93)
Ny =100,N, =100  N; =200,N, =200 N; = 400,N, = 400

(1)  0.76935 0.77154 0.77262
(g2) 2.903E—08 2.9109E-08 2.9185E—-08
(g3)  0.94103 0.9436 0.94487

5 Conclusions and Future Developments

We used the theory of random variational inequalities to incorporate uncertain data
in an oligopolistic market model. The model presented makes use of quadratic
cost functions and a linear demand price, which yields to a linear random varia-
tional inequality. In future work we plan to treat other classes of functions which
yield to nonlinear variational inequalities and to perform more extended numerical
experiments.
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Computing Area-Tight Piecewise Linear
Overestimators, Underestimators and Tubes
for Univariate Functions

Josef Kallrath and Steffen Rebennack

1 Introduction

The motivation for this publication is to follow-up on a previous work by Rebennack
and Kallrath [11] to construct over- and underestimators for one-dimensional func-
tions. These over- and underestimators are used to replace non-linear expressions by
piecewise linear ones with the idea to approximate a non-linear (and non-convex)
core and to place it into a large mixed-integer linear programming (MILP) problem.
If the approximations of the feasible region and/or the objective function are con-
structed carefully, then the resulting MILP problem yields a lower bound (for min-
imization problems). In some applications, it is important to detect infeasibility of
the original non-convex mixed-integer non-linear programming problem (MINLP).
Again, careful use of over- and underestimators allows for the safe conclusion of
infeasibility of the original MINLP from the infeasibility of the approximate MILP
problem; cf. [11, Sect. 3.3].

The concept of approximating non-linear functions by piecewise linear ones has
been around for some time. However, new developments in efficient representation
of the resulting breakpoint systems [15] have lead to more interest in piecewise
linear approximators. Recently, Misener and Floudas [8, 9] utilize such approxi-
mators for relaxations (underestimators) when solving mixed-integer quadratically-
constrained quadratic programs.

The automatic computation of optimal breakpoint systems, however, received
very little treatment in the literature. The seminal work by Rosen and Pardalos [13]
and Pardalos and Rosen [10, Chap. 8] uses a system of equidistant breakpoints to
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achieve a predefined maximal deviation between a concave quadratic function and
the piecewise linear approximator. Geifller [1] and GeiBler et al. [2] can compute
piecewise linear approximators (over- and underestimators) automatically when cer-
tain assumptions on the functions are satisfied. For more than one dimension, Mis-
ener and Floudas [7] utilize piecewise linear formulations via simplices; Rebennack
and Kallrath [12] use triangulations.

In Rebennack and Kallrath [11], we minimize the number of breakpoints used to
achieve a maximal deviation of 0 between the piecewise linear approximator and the
original function. Furthermore, we constructed tight approximators by minimizing
the maximal vertical distance between the approximator and the original function,
for a given number of breakpoints. In this paper, we utilize an area-based tightness
definition: allowing a maximal deviation of 6 > 0 and B € N > 2 breakpoints, we
seek a piecewise linear, continuous approximator which minimizes the area between
the approximator and the original function. Minimizing the error between the ap-
proximator and the original function through an area-based measure is expected to
produce better results (e.g., tighter bounds) when replacing non-linear functions by
piecewise linear ones, compared to approaches which ignore any tightness measure.

The idea of minimizing the area between a function is briefly mentioned in Geyer
et al. [3]. However, their paper does not further follow this idea but rather prefers
a curvature-based approach pointing out that this is of similar quality than using
vertical distances or an area-based approach. Different to our approach, they cannot
guarantee the computation of an optimal breakpoint system.

The contributions of this article are as follows. For univariate functions, we de-
velop methodologies to compute over- and underestimators as well as tubes which
are (1) continuous, (2) do not deviate more than a given tolerance § > 0 from the
original function, (3) stay above (for overestimators), below (for underestimators)
or a combination of both (for tubes) and are (4) area-minimizing. Thus, it is the first
paper to describe a framework to automatically compute (optimal) area-minimizing
breakpoint systems for univariate functions.

The remainder of the paper is organized as follows: in Sect. 2, we provide vari-
ous definitions in the context of piecewise linear approximators. We treat over- and
underestimators in Sect. 3, tubes in Sect. 4 and approximators in Sect. 5. Section 6
contains our computational results. We conclude with Sect. 7.

2 Definitions

The original (non-linear, non-convex, continuous, and real) function to be approxi-
mated is f(x) over the compactum [X ~,X ] C R. We denote by £(x) : [X ", XT] > R
a function approximating f(x).

We start with the definition of a §-approximator for univariate functions.

Definition 1 (5-Approximator, [11]). Let f(x) : [X~,X"] — R be a univari-
ate function and let scalar 8 > 0. A piecewise linear, continuous function £(x) :
[X~,X "] — Ris called a §-approximator for f(x), if the following property holds
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max |[{(x) — f(x)] < 6. (1)

XEX—.XT]

We require for the piecewise linearity property of a function that the function is
non-differentiable at a finite number of points. §-Over- and §-underestimators are
d-approximators with the additional requirement to stay above or below function
f(x) in the domain [X ~, X *]. This is formalized in

Definition 2 (5-Overestimator/5-Underestimator, [11]). We call a piecewise lin-
ear, continuous function ¢*(x) : [X~,X"] — R a &-overestimator for function
f(x):[X7,X"] — R, if condition (1) is satisfied along with

(x) > f(x), Yxe[X ,XT]. 2)

We call a piecewise linear, continuous function £~ (x) a d-underestimator of func-
tion f(x), if —¢~ (x) is a 0-overestimator of — f(x).

We continue with the definition of a d-tube.

Definition 3 (8-Tube). We call any combination of a piecewise linear, continu-
ous §-overestimator ¢* (x) for function f(x) and a piecewise linear, continuous 8-
underestimator ¢~ (x) for f(x) a 8-tube for f(x).

The definitions of J-approximators, d-overestimators, d-underestimators, and 8-
tubes require piecewise linearity and continuity. Thus, we will no longer mention
these function properties explicitly in the remainder of the paper, except if we want
to emphasis these two properties.

Given univariate function f(x) over a compactum and the O-tolerance, we
have two desires on an automatic procedure: (1) it computes d-approximators,
d-overestimators and/or §-underestimators and (2) the number of required break-
points (i.e., discontinuities) is minimal. This has been achieved already [11]. Their
approach can easily be extended to compute d-tubes which require the minimal
number of breakpoints; in most cases, such optimal §-tubes exhibit the property that
the breakpoint systems of the §-overestimator and §-underestimator are identical,
i.e., both the §-overestimator and d-underestimator share the same discontinuities.

Vice-versa, one can provide the number of breakpoints and ask for the “tightest”
possible §-approximator, §-overestimator, d-underestimator, and &-tube. In [11],
the authors use an absolute function deviation error tolerance criterion as a tightness
definition:

Definition 4 (Absolute-Error-Tolerance-Tightness (AETT), [11]). A §-approxi-
mator, §-overestimator, d-underestimator, or §-tube with B breakpoints for function
f(x) is called tighter (in the absolute-error-tolerance sense) than a ¥-approximator,
U-overestimator , ¥-underestimator, or ¥-tube, respectively, with B breakpoints for
function f(x), if 6 < ¥. A d-approximator, d-overestimator, §-underestimator or
J-tube with B breakpoints is called fight (in the absolute-error-tolerance sense) for
f(x), if there is no tighter ¥-approximator, ¥-overestimator, ¥¥-underestimator, or
¥-tube for f(x).
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In this paper, we utilize an area-based tightness definition:

Definition 5 (Area-Tightness (AT)). Let ¢(x) be a §-approximator, §-overestimator,
d-underestimator, or §-tube with B breakpoints for function f(x). Further, let A;
be the area between /(x) and f(x) over the compactum [X~,X*]. Another §-
approximator, §-overestimator, d-underestimator, or §-tube with B breakpoints for
function f(x) and area A; is called fighter (in the area sense) than £(x) for function
f(x),if Ay < Aj. £(x) is called tight (in the area sense) for f(x), if there is no tighter
d-approximator, d-overestimator, §-underestimator, or §-tube with B breakpoints
for function f(x).

To compute an area-tight §-approximator, d-overestimator, d-underestimator, or
O-tube, we treat the error-tolerance, 6, and the number of breakpoints, B, as in-
put parameters. Thus, we more precisely call them (8, B)-approximator, (8,B)-
overestimator, (8, B)-underestimator, or (8, B)-tube.

Interestingly, AETT is preserved when shifting an absolute-error-tolerance-tight
(8, B)-approximator to obtain a (8, B)-overestimator or (8, B)-underestimator.

Corollary 1 ([11]). Let £(x) : X ,X"] — R be an absolute-error-tolerance-
tight (8,B)-approximator for f(x) and let € = 25. Then £+ (x) := £(x) + & and
£~ (x) := {(x) — 6 define an absolute-error-tolerance-tight (€,B)-underestimator
and an absolute-error-tolerance-tight (&,B)-overestimator, respectively, for f(x)
with the same number of breakpoints B.

For AETT, it therefore suffice to develop one single algorithm to compute optimal
(8, B)-approximators, (0, B)-overestimators and/or (8, B)-underestimators; a differ-
ent procedure is required for absolute-error-tolerance-tight (8, B)-tubes. Unfortu-
nately, AT is not preserved through (careful) shifting.

We present algorithms to compute area-tight (0, B)-overestimators and (0, B)-
underestimators in Sect. 3, area-tight (8, B)-tubes in Sect.4 and area-tight (8, B)-
approximators in Sect. 5. However, before we proceed with the methodology, we
discuss how to choose the two parameters: the absolute-error tolerance, &, and the
number of breakpoints, B. Dependent on the application, we might want to follow
one of the following two paths.

If we desire to compute an approximate solution to the original MINLP problem
with a specific tolerance guarantee in mind (e.g., a safe gap of € > 0) via piecewise
linear approximations, one needs to compute §-approximators, d-overestimators,
d-underestimators or §-tubes with a certain absolute tolerance 6 and apply them
appropriately; cf. [11, Sect. 3.3]. In this case, we might want to proceed as follows:

1. first, compute the minimum number of breakpoints, B*, needed to obtain a given
d-approximation (as discussed in [11]),

2. second, compute an absolute-error-tolerance-tight approximator—(1},B*)-ap-
proximator, (1,B*)-overestimator, (1,B*)-underestimator, or (1,B*)-tube—
using B* breakpoints (9 < J; as discussed in [11]), and

3. third, compute an area-tight approximator—(#,B*)-approximator, (¢%,B*)-over-
estimator, (1%,B*)-underestimator, or (1%,B*)-tube.
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Instead of pre-defining the tolerance (6 dependent on €) to achieve a good lower
bound for minimization problems, we might provide the number of breakpoints,
B, to be spend on the piecewise linear approximators. The number of breakpoints
directly affect the model size in the MILP framework. Thus, we might want to
choose the number of breakpoints in such a way that the resulting MILP problem
remains efficiently solvable with (standard) solvers. Another reason for pre-defining
the number of breakpoints are the use of logarithmic representations in the number
of breakpoints (both in the number of binary variables and constraints involved) of
the resulting breakpoint system; it is efficient to choose B as a power of 2. Given B,
we would skip the first step above and compute an absolute-error-tolerance-tight ap-
proximator yielding the tolerance 8. This allows for the computation of an area-tight
approximator using 6 and B.

3 Computing Area-Tight (5, B)-Overestimators
and (6, B)-Underestimators

We are given the absolute-error tolerance & (i.e., maximal vertical absolute differ-
ence between the function f(x) and the approximator ¢(x)) and the number of break-
points, B, for the univariate function f(x) along with the closed interval [X~,X].
We seek to automatically compute area-tight (8, B)-overestimators. The case of
area-tight (0, B)-underestimators follows the same logic; we discuss it in brief at
the end of the section as well.

For the following discussions, we require:

e f(x)—6>0forallxe[X,X'], and
e X~ >0.

Both requirements can be achieved through a shift in either the function value direc-
tion (f(x) attains a minimum in [X~, X ], cf. Extreme Value Theorem) or the x-axis
direction.

For our derivations, we assume that the primitive of f(x) exists and we denote
it by F(x), for x € [X~,X]. We do not require its existence for our computations,
though. We are interested in minimizing the area between function f(x) and the
piecewise linear function £ (x); let L™ (x) denote the primitive of £ (x). Therefore,
we need to compute the area between the two functions. Let x; € [X~,X "] denote
the x-value (i.e., footpoint) of the bth breakpoint and let £ (x;,) be its corresponding
function value. Then, the area between f(x) and £ (x) can be calculated as

X+
|- st
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B—-1
= > (L (p41) = L* (%)) + F (x1) — F (xp)

B—1
% Z £+ xb+1 +f (xb))(bu —xb) +F(X1) —F(XB).

Note that the first identity is true because the approximator, £*(x), never crosses the
function f(x), cf. requirement (2).

We define x; := X~ and xp := X implying that both F(x;) and F(xp) are fixed,
i.e., they are constants. Thus, we are interested in minimizing the non-linear expres-
sion

B-1

> (xpgr) 7 (xp)) (o1 —xp).
=1

Notice that we do not require the primitive (or its existence) of function f(x) any-

more; the numerical value of | ;‘j S (x)dx suffices.

Next, we need to model the decisions on the placement of the B breakpoints, via
decision variables x, (xp € [X™,X "], xp11 > xp, b=2,...,B— 1), and the func-
tion values of ¢ (x) at the breakpoints, via the shit variables s, (s, € [—8, 6],
b=1,...,B) with respect to f(x). In this context, we define

O(xp) == f(xp) +5p, Yb=1,...,B 3)

which equals £7 (x;). The approximator £7 (x) is then the corresponding interpolator
between the values of ¢ (xp).

Further, we need to ensure conditions (1) and (2). Both requirements lead to
semi-infinite programming problems because an infinite number of (non-linear, non-
convex) constraints need to hold; cf. Hettich and Kortanek [4] or Lopez and Still [5].
We follow the idea of formulation OBSD as described in [11] and discretize each
interval (x,_1,xp) into I equidistant grid points. Conditions (1) and (2) need then to
hold on this finite grid; we increase the number of grid points dynamically until a
pre-defined tolerance has been reached.

This leads us to the following (non-convex) non-linear programming (NLP) prob-
lem, computing an area-tight (8, B)-overestimator for the continuous function f(x)
on the interval [X—, X ]

AT(8,B,I,M) :=
min Z( O (xp 41 +<P(xb)> (xb+1—xb> “)
1
S.t. xb—xb,lzﬁ, Vb=2,...,B ®)

Xpi = Xp_ 1+H_—1(xb—x;, 1) Vb=2,....B, i=1,...,1 (6)
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M(

i = ¢ (xp—1) + Xpi —Xp—1),
Xp — Xp—1

Vb=2,...,B, i=1,...., (1)
Li—f(xp) <8, Yb=2,....B, i=1,...,1 (8)
Ii> fxp), Vb=2,...,B, i=1,....1 9)
x=X", xp=X" (10)
xp €X,XT], Vb=2,....B—1 (11)
xpi €X,XT], Vb=2,...,B, i=1,...,1 (12)
Iy free, Yb=2,....B, i=1,....1 (13)
sp€[0,8], VYb=1,...,B. (14)

The logic of the constraint set (5)—(14) is as follows. Constraints (5) ensure the sort-
ing of the breakpoints and that no two breakpoints can be identical. This becomes
numerically important to avoid a division by zero when calculating the slope of the
approximator £*(x). The value of the constant M needs to be chosen carefully in
order to avoid exclusion of an optimal distribution of the breakpoints. Actually, it is
non-trivial to mathematical (and computational) safely conclude what a sufficiently
large value for M is. Constraints (6) model the I grid points, x3;, for the interval
(xp—1,xp). These grid points are the discretization introduced in order to ensure that
(I) the maximal vertical distance between function f(x) and the approximator £* (x)
is at most 8, as required in (1) and modeled via (7) and (8), and that (II) approxima-
tor £7(x) stays above function f(x) as required in (2) and modeled via (7) and (9).
Constraints (10)—(14) model the variables’ domain.

The mathematical model (4)—(14) is non-linear, non-convex and continuous: It
consists of 2B+2(B— 1)I — 2 continuous variables and B+4(B— 1) — 1 constraints;
the objective function (4) as well as constraints (7)—(9) is non-convex.

If the NLP (4)—(14) is infeasible, then there are two possibilities: either M is too
small or the combination of 0 and B does not allow for the existence of a (5, B)-
overestimator.

The idea of the objective function (4) is intuitive: We minimize the area of the
approximator ¢ (x) and the x-axis; constraints (9) ensure that " (x) always stays
above function f(x). Given a sufficiently large value for M denoted by M*, we can
recover a lower bound A™ on the area A between the approximator £ (x) and the
original function f(x) via

A" = JAY(8,B,I,M")+F(x1) — F(x). 5)

Equation (15) constitutes a lower bound on the area A because both conditions (1)
and (2) are relaxed; they hold only on a finite number of (grid) points.

After solving (4)-(14) to (local or global) optimality, we solve (to global opti-
mality)

+ . + . + o
pon) = max (1) = max xeff,f‘fx,,](g (x) = f(x)) (16)
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in order to compute the maximal vertical deviation between f(x) and the computed
approximator £* (x) in the interval [X~, X *]. If

ur(n <, (a7

then condition (1) holds true and the computed £ (x) defines a (8, B)-approximator
for f(x).

We further need to check if £* (x) is below function f(x) somewhere in the inter-
val (X~,X ™). Therefore, we solve (to global optimality)

+ - : + R + _
yo)=, min v, (1) := ,in xe[ifl?xb](g (x) = f(x)). (18)
If
y(I) =0, (19)

then condition (2) holds true. If both (17) and (19) are satisfied, then £* (x) defines
an area-tight (8, B)-overestimator for f(x) withA =A™,

If (17) or (19) are violated by more than a pre-defined tolerance 1 > 0, then we
increase the number of grid points, 7, and re-solve (4)—(14) as well as (16) and (18).
For any desired precision 1 > 0, this process, of increasing /, is finite (granted that
the NLP problems can be solved to global optimality).

Corollary 2. Let f(x) be a continuous function on [X~,X"], § >0and BE N> 2
be fixed. Then, for each 1 > 0, there exists a finite I*, such that u(I*) < 6 +n and
y(I*) > —n, given that there exists a (8, B)-overestimator for f(x).

The proof of Corollary 2 is based on the continuity of f(x) over a compactum and
follows from Rebennack and Kallrath [11, Corollary 6].

Following the same logic as for the area-tight (8, B)-overestimator, we compute
an area-tight (8, B)-underestimator, £~ (x), for f(x) on the interval [X—,X"]:

A (8,B,I,M) :=
max Z O(xpr1) + O (xp)) (Xp11 —Xp) (20
s.t. (5)7(7) . (10)—(13) 1)
f(xbl')—lbi§57 Vb:2,...,B7 i:1,...,1 (22)
i < fxpi), Vb=2,....B, i=1,....I (23)
s, €[-6,0, Vb=1,...,B. (24)

Analogously, the condition (1) reads for underestimators

o= max ()=, max xefﬁf‘fx,,](f(x) — 0 (x)) (25)
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and (2) is

vy (I):= min y, (I):= min  min (f(x)—¢ (x)). (26)

b=2,...B b=2,....B xE[xp_1 )]

Function ¢~ (x) defines an area-tight (0, B)-underestimator for f(x) with area
A=1A"(8,B,1,M)+F(x;)—F(xp),

if both
p (<8 and  y (I)>0. @7)

Corollary 2 reads now

Corollary 3. Let f(x) be a continuous function on [X~,X*], § >0and BE N> 2
be fixed. Then, for each 1 > O, there exists a finite I, such that u=(I*) < § + 1 and
v~ (I*) > —n, given that there exists a (0,B)-underestimator for f(x).

4 Computing an Area-Tight (6, B)-Tube: (5, B)-Overestimators
and (6, B)-Underestimators Sharing the Same Breakpoint
System

Recall that the purpose of piecewise linear approximations of functions is to re-
place a non-liner system of constraints or objective function by MILP constructs
to be placed in a MILP framework. Therefore, consider a non-convex, continuous,
univariate function f(x) which appears as an equation

flx)=b, xe[X ,XT]

in the constraints of the MINLP problem to be approximated. In this case, one
would compute an area-tight (8, B)-overestimator, £ (x), and an area-tight (8, B)-
underestimator, £~ (x), for f(x). When doing so, there is no guarantee that the break-
point systems of 7 (x) and £~ (x) are identical. Most likely, we would require 2(B —
1) breakpoints for the resulting -tube. Notice that the resulting tube might not be an
area-tight (6,2B —2)-tube. For a given number of breakpoints, B, an are-tight (5, B)-
tube can be calculated when the (8, B)-overestimator and the (8, B)-underestimator
share the same breakpoint system. Notice that the resulting (8, B)-overestimator and
(8, B)-underestimator might not be area-tight, even though the (0, B)-tube is.
Just like in the previous section, for notational convenience, we assume that

e f(x)—8>0forallxe[X ,X"],and
e X~ >0.
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For (6,B)-overestimator, " (x), and (8,B)-underestimator, £~ (x), sharing the
same B breakpoints at x;, the area of the resulting (8, B)-tube is derived through

B—1
= YL (x)—L (1))
b—1
B-1
= > (L (1) =LF () =L (xp41) + L7 (xp))
b=1
lel
=5 (0 (1) + €7 () (g1 — %)
b=1
lel
) D (7 (1) €7 () (X1 — ).
b=1

Similar to (3), we define
ot (xp) = f(xb)—l—s; and ¢ (xp) := f(xp)+s,, Vb=1,...,B.

Following the idea of formulation (4)—(14), we obtain the following continuous,
non-convex NLP problem, computing an area-tight (8, B)-tube for the continuous
function f(x) on the interval [X—,X"]:

A%(8,B,1,.M) :=
lel
min 3 2 (O (Cprt) + 0T (xp) — 0 (xpr1) — 0~ () (Xp1 — Xp) (28)
b=1
s.t. (5),(6), (10)—(12) (29)
+ +
ot (s ) =0T (1) .
i =0 (xp-1) + o (Xpi = Xp—1)
Vb=2,....B, i=1,....1 (30)
L= fp) <8, Yb=2,...B, i=1,..I 31)
L > f(xe), VYb=2,...,B, i=1,...,1 (32)
_ _ “(Xp) — O (Xp—
by=¢ (xb71)+¢ ) — 0 o 1)(xb,~—xb,1)7
Xp = Xp—1
Vb=2,....B, i=1,....1 (33)
FOm) =l <8, Vb=2,...B, i=1,..1I (34)
I < fo), Yb=2,...B, i=1,...I (35)
L L, free, Vb=2,...B i=1,..1 (36)

s; €10,8], s, €[-6,0], Vb=1,...,B. 37)
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Constraint group (29) models the breakpoint system, constraints (30)—(32) model
the overestimator and (33)—(35) the underestimator.

The computed ¢ (x) defines a (8, B)-overestimator, if both (17) and (19) hold
true; £_(x) is a (0,B)-underestimator, if both conditions in (27) hold. If all four
conditions are satisfied, then £*(x) and £~ (x) define an area-tight (&, B)-tube for
f(x) on [X~,X*] with area A*(8,B,I,M); otherwise, if at least one of the four
conditions is violated, then the grid size I needs to be increased.

We also have a finite convergence argument for tubes.

Corollary 4. Let f(x) be a continuous functionon X~ ,X "], § >0and B€ N> 2 be
fixed. Then, for eachn > 0, there exists a finite I*, such that max{u™ (I*),u~ (I*)} <
6+ 1 and min{y* (I*),y~ (I*)} > —n, given that there exists a (8,B)-tube for
f().

5 Computing Area-Tight (3, B)-Approximators

J-Approximators play the central role in the methodology developed by Rebennack
and Kallrath [11], because they allow for the efficient computation of AETT §-
overestimators and §-underestimators via a simple function value shift; minimality
in the number of breakpoints required is preserved as well. The case for area-tight
(8, B)-approximators is different: AT is not preserved after a shifting operation.

Over-, underestimators and tubes are important constructs when replacing NLP
problems; approximators are not equally important, as they do not allow for the
computation of safe bounds and do not allow for infeasibility detection. Thus, we
leave it at a sketch of the idea on how to compute an area-tight (8, B)-approximator.

Approximators can intersect with the function f(x), unlike over- and underesti-
mators. This poses a challenge, when calculating the area between the approximator
and the function. We use the following idea: given that we are working with a grid
(the I discrete points) on the x-axis, we evaluate the relative position of the ap-
proximator £(x) to the function f(x) at these grid points by introducing the binary
decision variables p; with

_S(I_Ybi)Sf(xbi)_lbiﬁaybh Vb:za"'7B7 i=1,...,L

If f(x) is above (below) the approximator £(x) at point xp;, i.e., f(xp;) > Lpi (f (xpi) <
lpi), then % = 1 (Yp; = 0).

We consider only the case in which the primitive of function of f exists. We
distinguish three cases on the relative position of the approximator to the function
f(x), to calculate an approximation of the area between f(x) and ¢(x)

Ly =M1 =1
F(xpip1) — F(xpi) — L(xp,i1) + L(xpi)

this formula is precise if f(x) > £(x) for all x € [xp;,xpj11]
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I %i = Y,iv1 =0
—F (xpiy1) +F (xpi) + L(xp,iv1) — L(xpi)

this formula is precise if f(x) < £(x) for all x € [xp;,xp,j11]
HI: i # W.i+1  the approximator £ intersects with the function f at least once in
the interval x € [x;;, X5 ;41], We assign the area a value of 0.

The three cases above are restricted to the intervals [x1,xp], b =2,...,B, and do
neither consider the interval [x,_1,xp1] nor [xp;,x,] located around the breakpoints,
b=1,...,B. Therefore, we introduce the binary decision variable ¥, with

*5(1*Yb)§5b§5'}/b, vb=1,...,B.

and derive the area of the intervals using the three cases above analogously.

The resulting mathematical programming problem is a MINLP, which is non-
convex. The number of binary variables depends on the number of breakpoints, B,
and the grid size, I. Therefore, we expect that the computation of area-tight (8, B)-
approximators is computationally much harder than the computation of area-tight
(8, B)-overestimators or area-tight (8, B)-underestimators.

After the resulting MINLP has been solved, we check if the continuums-
condition (1) is satisfied, via the solution of the global optimization problem

+
I):= max I):= max max
H ( ) b=2,..., Bub( ) b=2,...B x&[xy_ %)

0 - £

If u(I) > &, then we increase I and start-over; otherwise, £(x) is a (8, B)-approxi-
mator. The area computed as described above defines a lower bound on the area of
an area-tight (8, B)-approximator; an upper bound is obtained by evaluating the area
between the calculated ¢(x) and f(x). If the lower and the upper bound on the area
are close enough together, then we stop, otherwise we increase [ further.

6 Computational Results

We execute our computational tests on an Intel(R) i7 @ 2.40 GHz with 8 GB RAM
running 64-bit Windows 7. We use GAMS version 23.8 and solve all non-convex
NLP problems with the global solver LindoGLOBAL [14] to an absolute gap (i.e.,
upper bound minus lower bound) of 1077.
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Table 1 One-dimensional test functions taken from Rebennack and Kallrath [11]

# f(x) X_  X; | Comment

01 x? —3.5 3.5 | Convex function; axial symmet-
ricatx =10

02 Inx 1 32 | Concave function

03 sinx 0 2z | Point symmetric atx = 7

04 tanh(x) —5 5 | Strictly monotonically increas-
ing; point symmetric at x = 0

05 S";ﬂ 1 12 | For numerical stability reason
we avoid the removable singu-
larity and the oscillation at 0, the
two local minima have an abso-
Iute function value difference of
~0.126

06 2x% 423 —2.5 2.5 | In (—oo,00), there is one local
minimum at x = 0 and one local
maximum at x = %

07 e *sin(x) —4 4 | One global minimum (x, ~
—2.356 with f(x,) = —7.460)

08 ¢~ 100(:=2)? 0 3 | A normal distribution with a
sharp peak at x =2

09 1.036‘100("_1'2)2 +e—100(x—2)2 0 3 | The sum of two Gaussians, with
two slightly different maxima
(their absolute function value
difference is =~ 0.030)

10 Maranas and Floudas [6] 0  2m | Three local minima (the absolute

function value difference of the
two smallest local minima is ~
0.031)

For our computational tests, we made the following selection for the parameters
I,M and n. We start with a grid size of I = 2 and update the number of grid points
according to the following formula

max{|1.51],]+1}.

We choose M = 1072 as well as n = 0.001. We use the ten univariate functions,
taken from the literature, as summarized in Table 1.

Table 2 summarized the computational results for area-tight (8, B)-overestima-
tors. We make the following observations: (I) area-tight (8, B)-overestimators can
only be computed for a few number of breakpoints; (II) the number of discretization



286 J. Kallrath and S. Rebennack

points (i.e., I) required to ensure a maximal violation of 0.001 of condition (2) (II.1)
varies widely among the tested functions: if the function is convex (e.g., function
01), then any discretization suffices, and (I.2) decreases with an increase in the
number of breakpoints; (III) the computational time tends to increase exponentially
in the number of breakpoints.

Table 2 Area-tight (8, B)-overestimators for the functions provided in Table 1

# B 6 AT yr ut I Sec.
01 3 3.10 14.2917 0.0000000 3.063 2 0.19
4 1.50 6.3519 0.0000000 1.361 2 0.91
5 1.10 3.5729 0.0000000 0.766 2 24.35
6 1.10 2.2867 0.0000000 0.490 2 329.53
7 0.40 1.5880 0.0000000 0.340 2 0.78
8 0.40 - - - 2 3,600.072
02 3 1.00 2.4186 —0.0005192 0.900 9 438
4 0.85 1.1780 —0.0005961 0.494 9 154.21
5 0.45 - - - 2 3,600.102
03 3 1.50 3.4820 —0.0005656 1.365 28 12.37
4 0.40 0.7448 —0.0002769 0.278 28 50.67
5 0.40 0.4484 —0.0004956 0.311 28 1,348.89
6 0.40 0.2958 —0.0006979 0.125 13 5,965.65
7 0.40 - - - 3 7,081.382
04 3 1.00 3.2294 —0.0002624 0.958 13 4.07
4 0.30 0.4874 —0.0007642 0.192 3 3.42
5 0.20 0.2660 —0.0002292 0.172 13 136.22
6 0.20 0.1819? —0.0010273* - 19 7,808.392
05 3 1.00 1.4856 —0.0007117 0.301 42 30.76
4 0.40 0.5659 —0.0004862 0.106 13 28.47
5 0.40 0.3583 —0.0002181 0.102 13 412.04
6 0.40 0.1849 —0.0007009 0.049 9 1,650.26
7 0.40 0.13952 —0.00414072 - 6 6,894.492
06 3 5.00 8.4034 —0.0004046 3.959 28 11.81
4 4.50 4.5613 0.0000000 4.369 63 1,035.67
5 450 3.14922 —0.0027268? - 42 9,040.392
07 3 30.00 17.0289 —0.0005812 7.490 94 87.63
4 10.00 11.9770 —0.0002707 9.569 42 846.74
5 4.00 4.8733 —0.0003621 3.603 28 5,184.76
6 4.00 2.79092 —0.0053520? - 3 5,223.90%
08 3 1.00 1.3130° —0.0110870° - 141 562.27°
4 1.00 0.4476 0.0000000 0.785 63 6,338.37
5 1.00 0.0626 —0.0006100 0.237 13 622.74
6 1.00 0.0376* —0.00168322 - 28 6,845.492
09 3 1.00 1.9998P —0.0077818° - 141 1,262.31°
4 1.00 1.3293% —0.08627322 - 42 7,569.87%
10 3 4.00 10.2380P —0.0069331° - 141 4,376.43P
4 4.00 8.61882 —0.19710542 - 19 9,491.132

20ut of time (time limit per model is 3,600 s)
"Model size exceeds license limits
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The computational results for area-tight (8, B)-underestimators are provided in
Table 3. The concavity of function 02 makes it possible to compute area-tight (5, B)-
underestimators for up to 15 breakpoints within the time limit. Functions 08 and 09
are difficult to tightly underestimate: the value of M needs to be chosen carefully;
local solvers might easily miss a global optimum for (20)—(24).

Results for area-tight (8, B)-tubes for the ten test functions are given in Table 4.
The column labeled “A* 4+ A~ reports on the sum of the area of the correspond-
ing area-tight (8, B)-overestimator and area-tight (8, B)-underestimator, which is a
lower bound on the area of a (§,B)-tube. Further, u* := max{u™, "} provides
the maximal absolute vertical deviation of the tube to the original function f(x).
Interestingly, the area of an area-tight (8, B)-tube is only marginally larger (if at all),
for the tested functions, compared to the area provided by combining an area-tight
(8, B)-overestimator with an area-tight (8, B)-underestimator, while the number of

Table 3 Area-tight (8, B)-underestimators for the functions provided in Table 1

# B i) A~ (7 u- 1 Sec.
01 3 3.10 7.1458 —0.0001151 3.100 3 0.73
4 1.50 3.1759 —0.0000429 1.376 9 41.06
5 1.10 1.78012 —0.0009104* - 28  4,542.38%
02 3 1.00 5.9903 0.0000000 0.564 2 0.33
4 0.85 2.6130 0.0000000 0.319 2 2.03
5 0.45 1.4598 0.0000000 0.205 2 28.95
6 0.45 0.9312 0.0000000 0.143 2 5.80
7 0.25 0.6455 0.0000000 0.106 2 51.80
8 0.25 0.4738 0.0000000 0.081 2 61.68
9 0.25 0.3625 0.0000000 0.064 2 44.42
10 0.25 0.2863 0.0000000 0.052 2 67.59
11 0.25 0.2318 0.0000000 0.043 2 8.77
12 0.25 0.1915 0.0000000 0.036 2 299.95
13 0.25 0.1609 0.0000000 0.031 2 380.18
14 0.25 0.1371 0.0000000 0.027 2 858.85
15 0.25 0.1182 0.0000000 0.023 2 526.15
16 0.25 - - - 2 3,601.02%
03 3 1.50 3.4820 —0.0005656 1.365 28 13.46
4 0.40 0.7448 —0.0002769 0.278 28 62.06
5 0.40 0.4484 —0.0004956 0.311 28  1,118.99
6 0.40 0.2958% —0.00274972 - 13 7,059.87%
04 3 1.00 3.2294 —0.0002941 0.958 13 3.03
4 0.30 0.4874 —0.0007642 0.192 3 3.06
5 0.20 0.2661 —0.0000696 0.180 19 202.68
6 0.20 0.1819* —0.0010272? - 19  6,774.00%

(continued)
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Table 3 (continued)

# B o A™ v u- I Sec.
05 3 1.00 10176~ —0.0006447  0.285 9 271
4040 03514  —-0.0008220  0.157 13 56.77
5 040 02615  —0.0002037  0.150 19 185452
6 040 - - - 3 656L11°
06 3 500 7.1298  —0.0005952  3.779 3 1.39
4 450 40965  —0.0007573 4351 63  1319.01
5 450 2.0713*  —0.0048858" - 28 7,504.65°
07 3 30.00 20.1332°  —0.0085689" - 14 196.96°
4 10.00 6.3694*  —0.0016387 - 9% 688037
08 3 1.00 0.1772 0.0000000  1.000 3 0.86
4 1.00 0.1764  —0.0009344  0.997 4 67.11
5 1.00 0.0205 0.0000000  0.108 6 42571
6 100 0.0142  —0.0000999  0.106 4 35425
7 1.00 0.0142  —0.0000999  0.106 4 73174
8 1.00 0.0109*  —0.0066468" - 9 605035
0 3 1.00 0.3598 0.0000000  1.030 6 481
4 1.00 03597  —0.0001966  1.030 9  646.77
5 1.00 0.1984 0.0000000  1.000 6 183271
6  1.00 0.1966  —0.0004934  1.030 4 2752.09
7 100 - - - 2 3,601.98°
10 3 400 7.9921°  —0.0017494 - 141 584436¢"
4 400 6.218%  —0.2982953" - 13 586430°

2Qut of time (time limit per model is 3,600 s)
bModel size exceeds license limits

breakpoints for the area-tight (8, B)-tubes is almost half compared to the combina-
tion of an area-tight (8, B)-overestimator with an area-tight (8, B)-underestimator.
Computing area-tight (8, B)-tubes is computationally more challenging than com-
puting area-tight (0, B)-overestimators and area-tight (8, B)-underestimators. How-
ever, it remains computational tractable to compute area-tight (8, B)-tubes for a
small number of breakpoints.

Figure 1 shows plots of the ten test functions together with an area-tight (8, B)-
overestimator, (8, B)-underestimator or (8, B)-tube. The presented over-, underesti-
mators and tubes correspond to the results of Tables 2, 3 and 4.
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Table 4 Area-tight (8, B)-tubes for the functions provided in Table 1
#B & AT +¢r| AT yt v ut I Sec.

013 3.10 21.4375|21.4375  0.0000000 —0.0001148 3.100 3 1.40
4 1.50 9.5278 | 9.5278  0.0000000 —0.0000105 1.369 9 178.39
5 1.10 ¢l 5.3594* 0.0000000* —0.0156250? - 93,707.36

023 1.00 8.4089 | 8.4292 —0.0008616  0.0000000 0.788 13  19.56
4 085 3.7910 | 3.7946 —0.0004650  0.0000000 0.449 9 257.74
5 045 ¢l 2.1479 —0.0003956  0.0000000 0.282 9 437.53
6 045 ¢l 1.3279* —0.0016468* 0.0000000? — 4 3833.89?

033 1.50 6.9639 | 7.3622 —0.0000396 —0.0004090 1.500 42  91.53
4 040 1.4896 | 1.5018 —0.0006088 —0.0006088 0.257 19 141.01
5 040 0.8967 | 1.0616* —0.0020084* —0.0088723% - 94516.01°

043 1.00 6.4588 | 7.9908 —0.0006473 —0.0002773 1.000 42  85.96
4 030 09748 | 0.9967 —0.0006409 —0.0006409 0.154 6 42.62
5 020 0.5321 | 0.7070 —0.0002143 —0.0006732 0.174 13 1,858.18
6 0.20 ¢ - - - - 23,600.117

053 1.00 25032 | 2.6914 —0.0006133 —0.0003608 0.453 42  70.57
4 040 09173 | 0.9235 —0.0006387  0.0000000 0.157 13 115.89

5 040 0.6198 | 0.61922 —0.0028052% —0.0007355% - 13 5,500.06*
063 5.00 15.5331 | 15.6470 —0.0007989 —0.0008506 4.466 63 131.09
4 450 8.6578 | 10.2935*  0.0000000* —0.00390282 - 63 5,896.67%
07 3 30.00 ¢| 37.492Y —0.0006538P —0.0073744° -141 494.11°
4 10.00 ©119.2815 —0.0003845 —0.0009017 10.000 42 3,810.09
5 4.00 °|  8.518* —0.0241269* —0.0248196? - 13 9,022.88%
083 1.00 ©| 1.4903> —0.0110513®>  0.0000000° -141 3,660.14°
4 1.00 0.6249 | 0.6221* —0.1077110*  0.0000000? — 42 3,889.132
093 1.00 ¢l 2.3596* —0.0152941*  0.0000000? — 94 5,729.482
4 1.00 ¢l 1.7519* —0.0862732%  0.0000000? — 42 7,235.232
103 4.00 ©| 18.6457* —0.0125147* —0.0071669? - 94 8,319.972
4 4.00 1 13.1937% —1.0792070* —0.0033989% - 94397.01%

20ut of time (time limit per model is 3,600 s)
"Model size exceeds license limits
¢Over- and/or underestimator problem was not solved to global optimality

7 Conclusions

In this paper, we extend the literature on methodologies which automatically com-
pute optimal piecewise linear overestimators, underestimators and tubes for uni-
variate functions. The computed approximators are optimal among all piecewise
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linear, continuous functions in the sense that they minimize the area between
the function and the approximator. Our methodology for computing area-tight
(8, B)-overestimators, (8, B)-underestimators and (8, B)-tubes require the solution
of a series of continuous, non-linear, and non-convex mathematical programming
problems.

The computational tests reveal that it is worth-while to compute area-tight
(8, B)-tubes which share the same breakpoint system, rather than computing (8, B)-
overestimators and (8, B)-underestimators individually, if tubes are desired.
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Fig. 1 The ten univariate functions together with computed (8, B)-overestimator,
(8,B)-underestimator, or (8,B)-tube; (black lines) original function f(x), (gray
lines) approximator function £*(x), £~ (x), or £*(x). (a) Ol: area-tight (0.4,8)-
overestimator, (b) 02: area-tight (0.25,15)-underestimator, (¢) 03: area-tight
(0.4,4)-tube, (d) 04: area-tight (0.2,5)-overestimator, (e) 05: area-tight (0.4,4)-
underestimator, (f) 06: area-tight (5,3)-tube, (g) 07: area-tight (10,4)-tube, (h) 08:
area-tight (1,5)-overestimator, (i) 09: area-tight (1,5)-underestimator, (j) 10: no area-
tight approximation
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Market Graph and Markowitz Model

Valery Kalyagin, Alexander Koldanov, Petr Koldanov, and Viktor Zamaraev

1 Introduction

Market graph is an important part of market network. The concept of the market
graph was introduced in [3, 5]. Since, different aspects of the market graph approach
(threshold method) were developed in the literature. We mention here some of the
references. Dynamics of the US market graphs was studied in [6]. Complexity of
the US market graph associated with significant correlations is investigated in [7].
Peculiarity of different financial markets is emphasized in [2, 8, 11, 19, 24]. Market
graphs with different measures of similarity were studied in [1, 2, 10, 22]. Statistical
procedures for the market graph construction are discussed in [15, 16]. Some effi-
cient algorithms related to the calculation of isolated cliques in a market graph are
presented in [9, 12]. The power law phenomenon first observed for US stock market
in [5] was then developed in [4, 11, 23].

Markowitz model is the most popular tool for practical portfolio selection and
optimization [21]. The main concept of portfolio optimization in the framework
of Markowitz model is the efficient frontier of sets of stocks. For a given set of
stocks its efficient frontier is the curve in the plane associated with Pareto optimal
portfolios according to two criteria: expected return — max, risk — min. The choice
of particular portfolio on the efficient frontier is then determined by the value of risk
aversion of investor. However in practice investor is interested to limit the number
of stocks in his optimal portfolio. We call it stocks selection problem. Criteria of
selection can be different. It can be the stock return, i.e. one selects the stocks with
the highest return, it can be the stock volume of trading, i.e. one selects the stocks
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with the highest volume, it can be the stock liquidity, i.e. one selects the stocks with
the highest liquidity or other criteria. One needs to make this first selection without
big loss of information on efficient portfolios.

In the present paper we investigate a connection between characteristics of the
market graph and classical Markowitz portfolio theory. More precisely we consider
cliques and independent sets of the market graph. Cliques are sets of highly inter-
connected stocks and usually are composed by stocks attractive by their return and
liquidity [23, 24]. Independent sets are sets of stocks without connections in the
market graphs. Independent sets were conjectured in [5] to be useful for the con-
struction of diversified portfolio. Our main result is the following: effective frontier
of the market can be well approximated by the effective frontier of the maximum
independent set (MIS) of the market graph constructed on the sets of stocks with
the highest Sharp ratio. This allows to reduce the number of stocks for portfolio
optimization without the loss of quality of obtained portfolio. On the other hand we
show that despite some attractiveness the cliques are not suitable for the portfolio
optimization. Note that some relations of market network analysis with portfolio
theory were already mentioned in [13, 17, 20].

The paper is organized as follows. In Sect.2 we recall some notions related to
market graph and Markowitz theory. In Sect. 3 we discuss some statistical proce-
dures for the stock selection problem. In Sect. 4 we study efficient frontiers of ind-
ependent sets and cliques for different market graphs and different stock markets.
Finally in Sect. 5 we give some comments for the obtained results.

2 Market Graph and Markowitz Theory

Let S be a subset of stocks on financial market, N be the number of stocks in S,
and let n be the number of observations. Denote by p;(¢)the price of the stock i
for the day ¢, (i=1,...,N; t = 1,...,n) and define the daily return of the stock
i for the period from day ¢ — 1 to day 7 as r;(¢) = In(p;(¢)/pi(t — 1)). We assume
r;(¢) to be a realization of the random variable R;(¢). We consider standard assump-
tions: the random variables R;(r),r = 1,...,nare independent with fixed i, have all
the same distribution as a random variable R;(i = 1,...,N), and the random vector
(R1,R»,...,Ry)has a multivariate distribution with the covariance matrix || o; ;||. Let

Oi,j
0,0

pi.j=

where 67 = 0;;, 67 =

'+ = 0j,; Matrix of correlations [|p; j[|is the matrix for market
graph construction. Each node of the graph corresponds to a stock from S. The edge
between two nodes i and j is included in the market graph, if p; ; > po(where pois
a threshold). Clique in a graph is a subset of nodes connected to each other. Max-
imum clique (MC) is the clique with the maximal number of nodes. Independent

set in a graph is a subset of nodes with no connections. MIS is the independent set
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with maximal number of nodes. Cliques are sets of highly interconnected stocks.
Independent sets are sets of stocks without connections in the market graphs. As it
was mentioned above independent sets were conjectured in [5] to be suitable for the
construction of diversified portfolio.

Portfolio of stocks from S is defined by the vector f = (f1,f2,...,fy), Where
fi > 0 s the portion of capital invested in the stock i, i = 1,2,...,N and Zﬁ.v:] fi=1
Return of the portfolio f is a random variable R = Z{-V:] fiR;. Mean-variance theory
of Markowitz is based on two characteristics: expected return E(R)

N
E(R) = ;fiE(Ri)

and risk o (R)

N N
2
o*(R) =2, . 0ififi
i=1 j=1
Efficient frontier of the market is the set of Pareto optimal points in the plane (E, o)
with respect to two criteria

E(R) — max,c(R) — min

Investor according to his preferences (utility function, risk aversion, or others) can
choose an efficient portfolio associated with a point of the efficient frontier. Efficient
frontier of any set of nodes is defined in the same way.

3 Stocks Selection Problem

In this section we discuss the stock selection problem from statistical point of view.
Our approach follows the paper [18]. For the set of stocks S = {1,...,N} we would
like to select a subset according to some criteria. Let x;(7) be the observation of
some characteristic of stock i (return, volume of trading, liquidity or other) for
the time 7, t = 1,...,n, i = 1,...,N. We assume x;(f) to be a realization of the
random variable X;(t). We consider standard assumptions: the random variables
X;(t),t = 1,...,nare independent with fixed i, have all the same distribution as a
random variable X;(i = 1,...,N). We assume X; to be a random variable of the class
N(a;,06?). Let us consider the following selection criteria according to the quality
of stocks:

1. the quality of the i-th stock is characterized by parameter a;, and a stock is said
to be positive (or good) if a; > agp, and is said to be negative (or bad) if a; < ag.
2. the quality of the i-th stock is characterized by parameter o;, and a stock is said
to be positive (or good) if 0; < 0y, and is said to be negative (or bad) if 6; > 0y.
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3. the quality of the i-th stock is characterized by parameter sh; = %, and a stock

is said to be positive (or good) if sh; > shg, and is said to be negat;'ve (or bad) if
sh; < shy.

For the case of return the criteria 1 gives the selection of the most profitable stocks,
the criteria 2 gives the selection of the least risky stocks, and the criteria 3 gives the
selection of the best stocks according to the Sharp ratio. For the case of liquidity
the criteria 1 gives the most liquid stocks. All formulated selection problems can be
considered as multiple hypothesis testing problems. For each statistical procedure
of stock selection there are two possible sources of error. There is the possibility of
false positives, that is, stocks which are selected although they are negative, and of
false negatives, that is, populations which are not selected although they are positive.
Instead of false negatives we shall focus our attention on frue positives, that is, on
those positive stocks which are included in the selected group.

For measuring how well a statistical procedure carries out its task of identifying
the positive stocks we consider:

(a) The expected number of true positives.

(b) The expected proportion of true positives, that is, the quantity (a) divided by the
total number of positives.
For measuring how well a procedure carries out its task of identifying the neg-
ative stocks we consider:

(c) The expected number of false positives.

(d) The expected proportion of false positives, that is, the quantity (c) divided by
the total number of negatives.

As a generic notation for any one of the quantities (a), (b) we shall use S(6,98)
where 0 is an element of the parametric space €2, and 9 is the statistical procedure.
Similarly, we shall let R(6,0) denote the quantity (c) or (d). With these definitions
of R and S, it is desirable to have (0, 8) as large and R(0, 0) as small as possible.

A selection procedure is a partition of the sample space into the sets D;, . ;,
of those sample points for which the selected group consists of the stocks with
subscripts iy, ..., i and no others. To these must be added the set Dy for which none
of the stocks is selected. If the number of stocks is N, the number of sets D is 2V.
Let E; be the set of sample points for which the i-th stock is included in the selected
group. Then each of the two systems of sets {D} and {E} is uniquely expressed in
terms of the other. In fact, E; is the union of all those sets D which have i as one of
their subscripts. Conversely,

i =Ey0...NE;,NE; ...NEj, ,

where ji,..., jy_k are the subscripts different from iy, ..., i and E denotes the com-
plement of E. Each E; is then represented by its characteristic function y;(x). Then
selection statistical procedure is characterized by the vector ¥ = (y1,..., Wy).
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In the case of independent random variables (independent returns, volume or
liquidity) it is shown in [18] that there exists a statistical procedure of the type

_ la Tl > Ci
which is optimal in the following min—max sense:
subject to ing(G,é) >y onehas supR(6,0) — min (2)
6

In particular if quality of stocks is characterized by the parameter a then optimal
statistical procedure for the stock selection is given by:

o 17)?1'261'
%_{Qm<a 3

where X; = Z xi(t

If the quahty of stocks is characterized by the parameter o, then the optimal
statistical procedure for the stock selection is given by:

O,SZ'ZZC,'
lI/"_{l,sl<2<c,- “)

n
= 2
t=1

If the quality of stocks is characterized by the parameter e , then the optimal

:\'—‘

where s

statistical procedure for the stock selection is given by:

11 Zci

Vi= ®)

0, < ¢

Aol H30] &

The assumption of independence of random variables X; (returns, volume, lig-
uidity) is not realistic for the financial market. Therefore it is important to construct
optimal statistical procedures for the stock selection problem for more general cases.
The first result in this direction is obtained in [14] where it is shown that the statis-
tical procedure (3) remains optimal in the sense of multiple hypothesis testing for
multivariate normal distributions. In what follows we use the tests (3), (4), (5) for
the first stage of the stock selection.
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4 Efficient Frontiers of Independent Sets and Cliques

In our study of market graphs from the point of view of the portfolio theory we use a
two-stage procedure. At the first stage we select a “good” stocks by fixing some cri-
teria and a critical value of the “goodness.” At the second stage we construct the
market graphs with the selected stocks as nodes with different thresholds of inter-
connections. We calculate maximum cliques and MISs of the constructed market
graphs and study the efficient frontiers of these sets of stocks. Our main goal is to
find a small sets of “good” stocks such that the efficient frontiers associated with
this sets of stocks are close to the efficient frontier of the entire market. Such sets of
stocks can be a basis of the construction of “diversified” portfolios. Our main finding
is the following (empirical) conclusion: independent sets are suitable for portfolio
optimization in the case when at the first stage one selects the stocks with the high-
est Sharp ratio. The selection of stocks with highest returns, lowest risk or highest
liquidity does not give independent sets with this property. This phenomenon is new
and needs a deeper investigation. The situation for the cliques is different. In many
markets cliques represent a sets of stocks which dominate market and therefore are
attractive for investment. However as it is shown below cliques are not appropriate
for portfolio optimization. This result is in some sense expected by the well known
principle “don’t put all eggs in the same basket” but what is interesting is the fact
that the stocks in the maximum cliques produce a very limited efficient frontier in
both directions: expected return and risk. Moreover efficient frontiers of the maxi-
mum cliques are generated by a very small number of stocks in the clique.

We use data from two stock markets: Nasdaq market (USA), daily returns for the
period November 2011 to October 2013 and Moscow interbank currency exchange
MICEX (Russian Federation), daily returns for the period October 2008 to October
2010. To make the conclusions more general we take at random 250 stocks from
Nasdaq market and 151 stocks from MICEX market. Next we apply the selection
procedure according to some criteria, construct the market graphs for the three val-
ues of thresholds 0.1, 0.3, 0.4, calculate cliques and independent sets, and compare
the efficient frontiers of obtained sets with the efficient frontier of 250 stocks for
Nasdaq and 151 stocks for MICEX markets. The results are stable with respect to
random choice, similar for both markets and are presented in Figs. 1, 2, 3, 4, 5, 6, 7,
8,9, and 10. Each figure has some interesting meaning which is described below.

Figure 1 shows the efficient frontiers for three sets of stocks for US market: ran-
domly selected 250 stocks (thick line), MIS (66 stocks) for the market graph con-
structed on the set of 125 highest Sharp ratio stocks for threshold 0.3 (dashed line),
MIS (90 stocks) for the market graph constructed on the set of 125 highest Sharp
ratio stocks for threshold 0.4 (thin line). It is clear that efficient frontier of the mar-
ket (250 stocks) is well approximated by the efficient frontiers of the independent
sets (66 and 90 stocks).

The conclusion for Fig. 1 is confirmed in Fig. 2 where only 16 stocks are selected
according to the Sharp ratio. Despite a small number of stocks in independent sets
(11 and 13 stocks) the approximation of the efficient frontier is still good.
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Figure 3 shows the efficient frontiers for three sets of stocks for RF market:
randomly selected 151 stocks (thick line), MIS (29 stocks) for the market graph
constructed on the set of 76 highest Sharp ratio stocks for threshold 0.3 (dashed
line), MIS (40 stocks) for the market graph constructed on the set of 76 highest
Sharp ratio stocks for threshold 0.4 (thin line). One can see that the behavior of two
market is different but the phenomenon of good approximation is the same.

Figure 4 shows the stocks of MIS in the plane (E, o) for US (17 stocks) market
for the market graphs with threshold 0.1. The stocks in the independent set are
enumerated according to their Sharp ratio. One can observe that in fact the efficient
frontiers of independent set are constructed only using the stocks number 1, 2, 3,
9, 10. The same conclusion is valid for the values of threshold 0.3, 0.4 (we use here
the threshold 0.1 for simplicity of presentation).

The same observation is valid for RF market. Figure 5 shows the stocks of MIS
in the plane (E, o) for RF (eight stocks) market for the market graphs with threshold
0.1. The stocks in the independent sets are enumerated according to their Sharp ratio.
One can observe that in fact as for US market the efficient frontiers of independent
set are constructed only using the stocks number 1, 2, 4, 6. The same conclusion is
valid for the values of threshold 0.3, 0.4.

The phenomenon of good approximation of the efficient frontiers is not observed
for another selection criteria. Typical results are Figs. 6 and 7 where the efficient
frontiers of independent sets for the selection of the most liquid stocks for the market
graph construction are presented.

Our experiments allow to conclude that cliques are not suitable for portfolio opt-
imization. Typical results are given in Figs. 8 and 9. Figure 8 shows the efficient
frontiers for three sets of stocks for US market: selected 100 most liquid stocks of
the market (thick line), maximum clique (6 stocks) for the market graph constructed
on the set of 100 most liquid stocks for threshold 0.5 (dashed line), maximum clique
(13 stocks) for the market graph constructed on the set of 100 most liquid stocks for
threshold 0.4 (thin line). Figure 9 shows the efficient frontiers for analogous sets of
stocks for RF market. Note that for RF market the number of stocks in the cliques
is 16 and 21, respectively.

Composition of cliques has some interesting phenomena too. Figure 10 shows the
cloud of 21 stocks of the maximum clique of the RF market graph with threshold 0.1
constructed from the set of 100 most liquid stocks. One can observe that in fact only
three stocks define the efficient frontier of the maximum clique. This phenomenon
is general for the maximum cliques in different situations.
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5 Concluding Remarks

The paper presents some empirical results in the study of connections between
market graph approach and Markowitz portfolio theory for financial markets. It is
observed that independent sets of the market graphs are suitable for portfolio opti-
mization in the case when at the first stage one selects the stocks with the highest
Sharp ratio. The situation for the cliques is different. Despite the fact that in many
situations the cliques dominate the market, they are not appropriate for portfolio
optimization.
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Nonconvex Generalized Benders Decomposition

Xiang Li, Arul Sundaramoorthy, and Paul I. Barton

1 Introduction

This chapter is devoted to mixed-integer nonlinear programs (MINLPs) in the fol-
lowing form:

min f(x,y)
xy

s.t. g(x,y) <0, (P)
xeX, yey,

where X = {x = (xp,xc) € {0,1}"™ X I, : p(x) < 0}, I, C R™c is convex,
Y ={ye{0,1}»:q(y) <0}, f:[0,1]™ x II,, x [0,1]" = R, g : [0,1]™» x IT,, X
[0,1]Y = R™, p:[0,1]"™» x IT,, — R™, g : [0,1]"> — R™4. Here the subdomains of
the functions for binary variables are intervals [0, 1] instead of discrete sets {0,1},
because the functions often need to be defined on these intervals for practical so-
lution of Problem (P) (e.g., via branch-and-bound). y is a vector of complicating
variables in the sense that Problem (P) is a much easier optimization problem for
a fixed y. For example, when Problem (P) is a stochastic program, it may be de-
composed into a large number of smaller and easier optimization problems for a
fixed y.

X. Li
Department of Chemical Engineering, Queen’s University, Kingston, ON, Canada K7L 3N6
e-mail: xiang.li@chee.queensu.ca

A. Sundaramoorthy
Praxair, Inc., Business and Supply Chain Optimization, Tonawanda, NY 14150, USA
e-mail: Arul_Sundaramoorthy @Praxair.com

P.I. Barton (D<)

Process Systems Engineering Laboratory, Department of Chemical Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA

e-mail: pib@mit.edu

T.M. Rassias et al. (eds.), Optimization in Science and Engineering: In Honor 307
of the 60th Birthday of Panos M. Pardalos, DOI 10.1007/978-1-4939-0808-0_16,
© Springer Science+Business Media New York 2014


mailto:xiang.li@chee.queensu.ca
mailto:Arul_Sundaramoorthy@Praxair.com
mailto:pib@mit.edu

308 X. Lietal.

The structure of Problem (P) indicates that it may be beneficial to solve the
problem by searching the y-space and then the x-space in an iterative manner (in-
stead of searching the xy-space directly). The concept of projection can be used to
facilitate this solution strategy, specifically, Problem (P) can be projected onto the
y-space as:

min v(y)
' (Pproj)
st.ye¥Yny,

where v(y) = infc frex.g(xy)<0y f(X,¥) and V = {y: Ix € X, g(x,y) <0}. When f, g
are affine functions and X is a convex polyhedral set, function v and set V' in the pro-
jected problem can be approximated by cutting planes generated in a dual space, and
Problem (P) can be solved by the solution of a sequence of linear programming (LP)
and mixed-integer linear programming (MILP) subproblems. This solution method
is known as Benders decomposition [1] in the literature. The cutting plane approx-
imation of v and V is also valid when f and g are nonlinear functions that satisfy
certain convexity conditions and set X is convex; in this case, Problem (P) can be
typically addressed by the solution of a sequence of nonlinear programming (NLP)
and MINLP/MILP subproblems, and the solution method is called generalized Ben-
ders decomposition (GBD) [2]. However, when functions f, g or set X are noncon-
vex, neither BD nor GBD can guarantee convergence to the optimal solution due to
the loss of strong duality.

This chapter presents an extension of BD/GBD, called nonconvex generalized
Benders decomposition (NGBD), to deal with nonconvexity in Problem (P) rigor-
ously. By introducing convex relaxations of nonconvex functions and continuous
relaxations of non-complicating binary variables, NGBD can obtain an €-optimal
solution for Problem (P) in finite time. To simplify the discussion, the following
assumptions are made for Problem (P).

Assumption 1 Sets X, Y are nonempty.
Assumption 2 Problem (P) either has a minimum or is infeasible for any y € Y.

Remark 1. Assumption 2 is to exclude the situation in which Problem (P) is feasible
but does not have a minimum. This is a mild assumption as it holds when set X is
compact and functions f, g are continuous on I1, for any feasible x;, y.

This chapter is organized as follows. The decomposition strategy of NGBD along
with the resulting subproblems is introduced in Sect. 2, and important properties of
the subproblems are proved in Sect.3. Then, the NGBD algorithm is given with
a proof of the finite convergence property in Sect.4. In Sect. 5, the application of
NGBD to a class of stochastic MINLPs is discussed. The computational advantage
of NGBD is demonstrated via case studies of several industrial optimization prob-
lems in Sect. 6 and the chapter ends with concluding remarks in Sect. 7.
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2 Reformulation and the Subproblems

NGBD is a result of applying the framework of concepts presented by Geoffrion for
the design of large-scale mathematical programming techniques [3, 4]. The frame-
work includes two groups of concepts: problem manipulations and solution strate-
gies. Problem manipulations, including projection, dualization, inner and outer lin-
earization, restate a given problem in an alternative form more amenable to solution.
Solution strategies, including relaxation and restriction, reduce a complicated prob-
lem to a related sequence of simpler subproblems. The following subsections give
details on the construction of the NGBD subproblems with the concepts of problem
manipulations and solution strategies.

2.1 Convex and Continuous Relaxations: Lower
Bounding Problem

One difficulty in decomposing Problem (P) is that dualization does not usually gen-
erate an equivalent reformulation for this nonconvex problem. To cope with this
difficulty, a surrogate for Problem (P) for which strong duality holds, is constructed
via convex relaxations of nonconvex functions and continuous relaxations of non-
complicating binary variables in Problem (P). This new problem, called the lower
bounding problem, provides a lower bound for Problem (P), and it can be solved via
a procedure similar to GBD. The lower bounding problem can be expressed in the
following form:

min uy(x,e,y)

x,y,e

s.t. ug(x,e,y) <0, (LBP-NS)
(x,e)eD, y€ey,

where D = {(x,e) € [0,1]"™ x IT, X IT, : u,(x,e) <0, u.(x,e) <0}, I, is convex,
functions uy : [0, 1] X Iy, x IT, x [0,1]" = R, ug : [0,1]"% x IT,, x IT, x [0, 1] —
R™, u, : [0, 1] x IT,, x IT, = R, u, : [0,1]"™% x I, x IT, — R™ are all convex
on their domains. In addition, the convex functions satisfy the relaxation property,
ie., VX €[0,1]™ x T, and Vy € [0, 1], 3¢ € I1, such that:
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Note that the domain of any binary variable in x has been relaxed into the in-
terval [0, 1], and nonconvex functions f, g, p have been replaced with their convex
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relaxations uy, ug, u,. The additional variables e and constraints u, (x,e) <0 may be
needed if smooth convex relaxations are desired. Standard convex relaxation tech-
niques include McCormick’s relaxations [5], outer linearization [6] and aBB [7],
and readers can refer to [8] for more discussions on convex relaxation techniques.

Assumption 3 The relaxed set D is compact.

Problem (LBP-NS) cannot be practically solved by GBD unless Property P is
satisfied [2]. Property P is a strong condition in general, but it trivially holds if the
functions in Problem (LBP-NS) are separable in x and y. Therefore, for NGBD to
be practical, Problem (LBP-NS) needs to be further relaxed into the following form
(if it is not already in this form):

min ug(xe) +uro(y)

st ug(x,e) +uga(y) <0, (LBP)
(x,e) €D, yeY,
where functions uy ;@ [0,1]" X IT,, X IT, = R, ug2 : [0,1] = R, ug :[0,1]™> x

IT,, x IT, = R™, ug» : [0,1]™ — R™ are convex on their domains. In addition,
V(%,8,9) € [0,1]™ x I, x I, x [0, 1],

(@)

If functions uy and u, are continuous, functions uy 1, s, it 1, Ug> can always be
obtained through outer linearization using their gradient or subgradient information
[9, 10].

Assumption 4 Functions uy 1, Uy, Ug 1, Ug2 are CONLINUOUS.

Remark 2. Assumptions 3 and 4 imply that Problem (LBP) has a compact feasible
set and a continuous objective function, so Problem (LBP) either has finite optimal
objective value or is infeasible.

Assumption 5 Problem (LBP) satisfies Slater’s condition for y fixed to those ele-
ments inY for which Problem (LBP) is feasible.

Remark 3. Assumption 5 implies that strong duality holds for Problem (LBP) for y
fixed to those elements in Y for which Problem (LBP) is feasible. This validates the
dualization manipulation of the problem in the next subsection.

2.2 Projection/Dualization: Master Problem

Direct solution of Problem (LBP) is generally difficult, as complicating variables
y are still present and coupled with non-complicating variables x. Therefore, it is
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solved in NGBD via a decomposition procedure that is very similar to classical
GBD method. The first step of the decomposition is to project the problem to the y
space (as explained in Sect. 1), and then express the objective function and feasible
set with the cutting planes in a dual space. Readers can refer to [2] for details on
the dualization manipulation. The resulting problem is called the master problem,
which can be written in the following form:

I%lil’l n
Y
st.n> inf [ug(xe) +ATug, (x,€)] +ur2(y) +ATugH(y), YA >0,
(x,e)eD (MP1)
0> ( iI;fD.uTug,l (x,e) "".uTug,Z(Y)v Vu e Ml,
x,e)e
yeY,nekR,

where A,u € R™ and M1 = {u € R" : u > 0,%, u; = 1}. For convenience in
establishing valid subproblems later, Problem (MP1) is further reformulated into
the following form (by replacing set M1 with set M):

I%in n
¥
st.n> inf [upi(xe)+ATugi(x,e)] +ura(y) +ATuga(y), VA >0,
(x,e)eD (MP)
0> inf plug(x,e)+uugs(y), VYueM,
(x,e)eD ' '
yEY, neR,

where M = {u € R" : u > 0,37 | ; > 0}. The equivalence of Problems (MP1)
and (MP) is proved in the next section.

2.3 Restriction: Primal Problem, Primal Bounding Problem
and Feasibility Problem

The primal problem is obtained through restricting y in Problem (P) to an element
y) in ¥, where the superscript / enumerates the sequence of integer realizations vis-
ited by the primal problem (i.e. the integer realizations for which the primal problem
is constructed and solved). This problem can be written as follows:

objep (")) =min f(x,y")

st g(x,y") <o, (PP)
xeX,
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where objPP(y(l)) denotes the optimal objective value of Problem (PP!) (which
depends on the integer realization y(!)).

Remark 4. Problem (PP!) is a NLP, MILP or MINLP, which can be solved to
e-optimality in finite time by state-of-the-art solvers, such as CPLEX [11] or
BARON [6], provided suitable convex underestimators of the participating func-
tions can be constructed.

Similarly, the primal bounding problem is obtained through restricting y in Prob-
lem (LBP) to an element y(k) in Y, where the superscript k enumerates the sequence
of integer realizations visited by the primal bounding problem. This problem can be
written as follows:

ObjPBP(y(k)) :rg_ie“ ur1(x,e)+ ”f,Z(y(k))

k
st ug1(x,e) —|—ug72(y(k)) <0, (PBP")

(x,e) € D,

where objpgp () denotes the optimal objective value of Problem (PBPX). If Prob-
lem (PBPX) is infeasible, the following feasibility problem is solved:

by (4¥) ~min [
k
s.t. g1 (x,e)+ ”g,2(y(k)) <z (FP%)

(x,e)eD, z€eZ,

where objgp(y(¥)) denotes the optimal objective value of Problem (FPX), ||z|| denotes
an arbitrary norm of the slack variable vector z, set Z C {z € R™ : z > 0} and it has
three additional properties:

1. Z is a convex set;

2. Zis apointed cone, i.e., 0 € Z, and Va > 0,z € Z implies oz € Z;

3. There exists Z € Z such that Z > 0 (therefore the cone Z is unbounded from above
in each dimension).

Each component of z measures the violation of a constraint, so the norm of z is
minimized for minimum violation of the constraints. Since any norm function is
convex, Problem (FP¥) is convex.

Remark 5. 1f the convex subproblems (PBP¥) and (FP¥) are smooth, they can be
solved by gradient-based optimization solvers such as CONOPT [12], SNOPT [13],
CPLEX [11] (only for linear programs, convex quadratic programs and convex
quadratically constrained programs). Otherwise, they may be solved by nonsmooth
optimization methods such as bundle methods [14].
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2.4 Relaxation: Relaxed Master Problem

The master problem (MP) is difficult to solve directly because of the infinite number
of constraints involved. Therefore, it is relaxed by only keeping a finite number of
constraints. The resulting subproblem is called the relaxed master problem; at the
kth iteration, this subproblem can be written in the following form:

min N
n.y

A\ T N\ T
st > inf [uf,l(x,e>+(a<f>) ug,l(x,eﬂ Tug20)+ (M) uga(v), Ve T,

(xe)eD

: \" @\" ok
Oz(xler;gD(u ) ug,l(xve)"'(“ ) ugo(y), Viess,
Zyr_zyr§|Rt]|_l7 VteTkUSk7
rer) reR;
yeEY, nER,

(RMP1%)

where the index sets

TF = {j€{l,...,k} : Problem (PBP) is feasible for y = y(j)},

sk ={ie{1,...,k} : Problem (PBP) is infeasible for y = y(},

Ri={re{l,...n}:y" =1},

Ri={re{l,...n}:y" =0}.
AU) denotes Lagrange multipliers for Problem (PBP/), which form an optimality
cut for iteration j € T*. u(i) denotes Lagrange multipliers for Problem (FP’), which

form a feasibility cut for iteration i € S¥. To be precise, the definition of a Lagrange
multiplier is given below.

Definition 1. 1* is a Lagrange multiplier for the optimization problem

min f(x)
st g(x) <0,
xeX,

if A* >0 and f(x*) = infyex [f(x)+ (A*)"g(x)], where x* denotes an optimal so-
lution of the problem.

Remark 6. Definition 1 for Lagrange multipliers follows from [15] in the context of
duality theory (where they are called geometric multipliers instead). This definition
is consistent with the one used by Geoffrion for the GBD method [2] and dual-
ity theory [16] (where they are called optimal multipliers). Note that the Lagrange
multipliers defined here are in general different from the multipliers that satisfy the
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Karush—Kuhn—Tucker (KKT) conditions, which are usually called KKT multipliers.
However, for convex program (PBPX) or (FP*), KKT multipliers are also Lagrange
multipliers, as implied by the theorem on [17, p. 211]. State-of-the-art optimization
solvers, such as CONOPT, SNOPT, CPLEX, return such multiplier values at a so-
lution, so there is no need to develop an additional algorithm to obtain the Lagrange
multipliers for Problem (PBP¥) or (FP) in NGBD.

The third group of constraints in Problem (RMP1¥), which does not appear in
the master problem (MP), represents a set of canonical integer cuts that prevent the
previously examined integer realizations from becoming a solution [18].

When T* = 0, Problem (RMP1¥) is unbounded; in this case, the following feasi-
bility relaxed master problem is solved instead:

y

min Zy,-

Y=l

; )" @\" ok

st. 0> (;ggl) (.U i ) ug1(x,e)+ (.U i ) ugr(y), Vies, (FRMP1)

zyrfzyr§|Rtl|717 VtESk,

rER“I rERf)

yev.

The inner optimization problems in Problems (RMPlk) and (FRMPlk) can be
replaced by the solution information of the previously solved primal bounding prob-
lems and feasibility problems (which is to be explained in the next section). As a
result, Problem (RMP1*) is equivalent to the following single-level optimization
problem:

min 7N
n.y
st. nz= ObjPBP(y(j)) +upa(y) — “f,z(y(j))
A\ T ,
+(29) (g2 g2 (6 ) V) € T,
. A\ T ;
0> objrp(r) + (1) (20 —u201)), Vi S,
Dovr— X v <IR|-1, vieTfUs,

! !
reRr| rERO

(RMP¥)

yeY, nelk

and Problem (FRMP1%) is:
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ny
min z Vi
i=1

Yy

. N\ T .
st 0> objpp(y?) + (u(”) (ug,z(y) — ug.z(y(’))) , Viest,  (FRMPY
Z)’r_Z)’rS‘RH_l; Vteskv

t t
reRr| reR;

yeY.

Remark 7. Problem (RMPX) or (FRMP¥) is a convex MINLP or a MILP. Commer-
cial solvers are available for solving these problems, such as DICOPT [19] (for
convex MINLP), CPLEX (for MILP).

This section details the reformulation of the original MINLP into a collection
of subproblems through convex and continuous relaxations, projection, dualization,
restriction and relaxation. The subproblems to be solved directly in NGBD include
Problems (PP!), (PBP¥), (FPX), (RMP¥) and (FRMP¥). The lower bounding prob-
lem and the master problem are also generated in the reformulation, but they are not
solved directly in the NGBD procedure. In the next section, a set of propositions
regarding the properties and the relationships of the subproblems are presented and
proved. Based on these results, the NGBD algorithm is developed with a conver-
gence proof in Sect. 4.

3 Properties of the Subproblems

Proposition 1. The optimal objective value of Problem (LBP) represents a lower
bound on the optimal objective value of Problem (P).

Proof. Let (%,9) be a minimum of Problem (P). Then £ € [0,1]"% x IT,, and J €
[0,1]™. According to (1), 3¢ € I, such that

So point (£,é,¥) is feasible for Problem (LBP-NS), and the objective value of
Problem (LBP-NS) at this point is no larger than the optimal objective value of
Problem (P).

According to (2), (£,8,9) also satisfy



316 X. Lietal.

So this point is also feasible for Problem (LBP) and the objective value of
Problem (LBP) at this point is also no larger than the optimal objective value
of Problem (P). Therefore, the optimal objective value of Problem (LBP) is no
larger than that of Problem (P). O

Proposition 2. Problems (LBP) and (MP1) are equivalent in the sense that:

(1) Problem (LBP) is feasible iff Problem (MP1) is feasible;

(2) The optimal objective values of Problems (LBP) and (MP1) are the same;

(3) The optimal objective value of Problem (LBP) is attained with an integer re-
alization iff the optimal objective value of Problem (MP1) is attained with the
same integer realization.

Proof. Given Assumption 5, the results follow immediately from Theorems 2.1, 2.2
and 2.3 in [2]. O

Proposition 3. Problems (MP1) and (MP) are equivalent in the sense that:

(1) Problem (MP1) is feasible iff Problem (MP) is feasible;

(2) The optimal objective values of Problems (MP1) and (MP) are the same;

(3) The optimal objective value of Problem (MP1I) is attained with an integer real-
ization iff the optimal objective value of Problem (MP) is attained with the same
integer realization.

Proof. The results can be proved by showing that Problems (MP1) and (MP) have
the same feasible set. Denote the feasible regions of Problems (MP1) and (MP) by
Fvp1 and Fyp, respectively. Fyip; = Fyvp can be proved by showing Fyip C Fyvpy and
Fuvp1 C Fvp.
First, for any (§,7) € Fup,
0

> infDuTug’I (x,e) +ulugr(9), VueM,

(x,e)€
SO
0> inf pTug(x,e)+uTuga(9), YueMl,
(x,e)eD ’

because M1 C M. Therefore, Fpp C Fuvpi -
Second, for any (§,1) € Fuvp1,

0> (xiggD wlug 1 (x,e) +uTugr(9), YueMl. 3)

For such (§,1), consider any f1 € M,

M=

Qi > 0. “)
i=1

So [i can be used to define new multipliers
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fi=/ Y 0, Vie{l,...,m}, )
i=1
then
= (... fim) € M1. (6)
From (3) and (6),
inf fTug 1 (x,e) + [ ugn(9) <0. (7

(x,e)eD

Considering (4), (5) and (7)

inf
(x,e)eD

b
5

2,1 (x,€) +/~1 Ug, 2(9)

3 ) o 3

inf [ g (x,e) + [ ug (9 ))
xe )eD

] M§

[ Ms

<0
Therefore,
inf gy (x,e) +puTug»(9) <0, YueM,
(x,e)eD
and ()77 ﬁ) € Fup too. So Fypr C Fuvp. O

Proposition 4. For y fixed to any element in Y, if Problem (PP') is feasible, its opti-
mal objective value is no less than the optimal objective value of Problem (P).

Proof. This result trivially holds due to the construction of Problem (PP') and the
principle of restriction. ad

Proposition 5. If the primal problem (PPX) is feasible, the corresponding primal
bounding problem (PBP¥) is feasible as well. In this case, the optimal objective
value of Problem (PP*) is no less than that of Problem ( PBP*).

Proof. This can be proved according to the construction of these problems in the
same way to prove Proposition 1. a

Remark 8. Proposition 5 implies that, if the optimal objective value of Problem
(PBP¥) is worse than that of Problem (P), there is no need to solve Problem (PP')
because y = y(k) cannot lead to an optimum of Problem (P). This property will be
exploited in the NGBD algorithm to reduce the number of the primal problems to be
solved, since obtaining a global optimum for the primal problem is computationally
expensive.

Proposition 6. Problem (FPX) satisfies Slater’s condition and it always has a
minimum.
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Proof. According to Assumption 5, set D has at least one Slater point, say (£,¢).
Due to the continuity of functions ug 1, ug 2, ug 1 (£,&) + g2 (y™*)) is finite, so there
exists 2 € Z such that ug 1 (£,6) +ug2(y*)) < 2. Then (%, ¢, 2) is a Slater point of Prob-
lem (FPX). In addition, Problem (FP) has a closed feasible set and ||z|| is continuous
and coercive on Z, so Problem (FPX) has a minimum according to Weierstrass’ The-
orem [15]. O

Proposition 7. Let 11* be Lagrange multipliers of Problem (FP*). If Problem (PBP¥)
is infeasible, inf(, ,)cp {(,LL*)T Uug1(x,e)+ ug.’z(y(@))} is a finite positive value and
i1 i > 0.
Proof. As Lagrange multipliers,
w0, ®)

Let (x*,e*,z*) be a minimum of Problem (FRMP1¥), then due to strong duality
(implied by Proposition 6 and the convexity of the problem),

*|| — H *\T (k) —
leli=nt [l )T (s () 26 =) N
_ T : «\T (k)
ing [lll = ()] inf ()T (g () +52 0 )]

First, inf(, ,cp {(u*)T (ug,l (x,e)+ ug,z(y<k)))] is finite due to the compactness
of the feasible set and continuity of the objective function of the problem.

Second, we will show that inf,cz [||z]| — (u*)"z] = 0 by contradiction. Suppose
that

inf —(u)TZ] <0 10
inf [[]2l] - (1)"4] <0, (10)
then 3¢ > 0 such that
inf —(u*)T —¢. 11
;gZ[IIZH (u)'z] < —e (1)
Hence, Vo > 0,
inf —(uHT — 12
a;gZ[IIZH (u)'z] < —oe, (12)
which is
inf [[|oz]| — (u*)Teez] < —ae. (13)
z

Since Vz € Z, oz € Z as well,
inf —(u ] = inf T B ”
inf [[[2]] = (u") ] = inf [[|ezl| = (") (@2)] < —xe (14)

and therefore
inf —(u*)Tz] = —oo. 15
inf [[|zl] - (1) (15)
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According to (9), (15) and finiteness of inf(, ,cp [(,u*)T (ug_J (x,e) +ug,2(y<k))>}

[|z*]| = —oe, which contradicts the definition of a norm. Therefore, (10) is not
true and

inf —(uH) ] >o0. 1

inf [[[2]] - (k)"2] = 0 (16)
On the other hand, when z =0 (€ 2), ||z]| — (1*)Tz =0, so

inf —(uH)T] <o. 17

inf [|[¢] — ()] < (17
Inequalities (16) and (17) imply

inf [||z]| — (u*)"z] = 0. 18

inf [|[2l] — (k)] (18)

Finally, according to (9) and (18),

ot |00 (e () g2 0 ) | = el (19)

If Problem (PBPF) is infeasible, z* # 0 and therefore ||z*|| > 0, then (19) implies

im0 (g1 (e0) g6 ) | > 0)

which further implies

wr 0. @1
So according to (8) and (21),
Y uf > 0. (22)
i=1
O

Proposition 8. Problem (RMPI*) is a relaxation of the master problem (MP)
when (MP) is augmented with the relevant canonical integer cuts excluding the
previously examined integer realizations.

Proof. As Lagrange multipliers, AW >0, vjeTk According to Proposition 7,
/,L(i) eEM,Vie Sk Therefore, Problem (RMPI¥) is a relaxation of the master prob-
lem (MP) excluding all the previously examined integer variables (i.e. the master
problem augmented with the integer cuts). a

Proposition 9. Problems (RMP1 k) and (RMP*) are equivalent.

Proof. This follows from the separability of the functions in the continuous and the
integer variables. Detailed proof can be found in [2]. a

Corollary 1. Problem (RMP*) or (FRMP*) never generates the same integer solu-
tion twice.



320 X. Lietal.

Corollary 2. The optimal objective value of Problem (RMP) is a valid lower bound
for the lower bounding problem (LBP) (or the master problem (MP)) augmented
with the relevant canonical integer cuts and the original problem (P) augmented
with the relevant canonical integer cuts.

4 NGBD Algorithm

4.1 Algorithm

Initialize:

1. Tteration counters k =0,/ = 1 and the index sets T =0, 5 =0, U° = 0.

2. Upper bound for Problem (P) UBD = oo, upper bound for Problem (LBP)
UBDPB = +-<o, lower bound for Problems (LBP) and (P) LBD = —oo

3. Tolerance ¢ is set and initial integer realization y(!) is given.

repeat
if k = 0 or (Problem (RMP¥) is feasible and LBD < UBDPB and LBD < UBD —¢)
then

repeat

Setk=k+1

1. Solve Problem (PBPX). If Problem (PBPF) is feasible and has Lagrange
multipliers 2 Y, add an optimality cut to Problem (RMP¥) with 1), set
T =TK1yU {k} If objpgp (v¥)) < UBDPB, update UBDPB = objpgp(y™*)),
v =y¥® k* =k

2. If Problem (PBPF) is infeasible, set S = S¥~1 U {k}. Then, solve Problem
(FPX) and obtain the corresponding Lagrange multipliers ,u( ). Add a feasi-
bility cut to Problem (RMP¥) with ).

3. If T = 0, solve Problem (RMP¥); otherwise, solve Problem (FRMP*). In
the former case, set LBD to the optimal objective value of Problem (RMP¥)
if Problem (RMP¥) is feasible. In either case, set y*™1 to the y value at the
solution of either problem.

until LBD > UBDPB or (Problem (RMP¥) or (FRMP¥) is infeasible).
end if
if UBDPB < UBD — ¢

1. Solve Problem (PP*) (i.e., for y = y *) to -optimality, set U/ = U'~1U {k*}.
If Problem (PP*) has a minimum x* and objpp(y*) < UBD, update UBD =
objpp(y*) and set yj, = y*, x), = x*.

2. f TF\U! = 0, set UBDPB = +-oo.

3.If TR\ U' # 0, plck i € TF\ U' such that objpgp(y)) =
minjeTk\Uz{objpo( ))}. Update UBDPB = objpgp(y\), y* = y{0,
k*=i Setl=1+1.
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end if
until UBDPB > UBD — ¢ and (Problem (RMP¥) or (FRMP¥) is infeasible
or LBD > UBD —¢).

Problem (P) has an g-optimal solution (x’;

7> ¥p) or it is infeasible.

4.2 Finite Convergence

Assumption 6 Compared to Problem (PP'), Problems (PBPX) and (FP*) (which
are convex NLPs or LPs) and Problems (RMP*) and (FRMP*) (which are convex
MINLPs or MILPs) can be solved with a much tighter tolerance, which is then neg-
ligible for the discussion of the €-optimality of the NGBD algorithm.

Assumption 7 The optimal objective value of a problem returned by a global opti-
mizer is worse than or equal to the real optimal objective value.

Remark 9. Note that UBDPB is neither the upper bound, nor the lower bound for
Problem (P). UBDPB has two functions in the algorithm. One is to control the “in-
ner loop” of the algorithm (which is a GBD-like procedure). The other is to prevent
solving Problem (PP) for any integer realization that will not lead to a global solu-
tion of Problem (P), and this is explained in the following Lemma 1.

Lemma 1. If the NGBD algorithm terminates finitely with a feasible solution of
Problem (P), this feasible solution is an €-optimal solution of Problem (P).

Proof. Note that the algorithm terminates with “UBDPB > UBD — ¢ and (Prob-
lem (RMPX) or Problem (FRMP¥) is infeasible” or “LBD > UBD — ¢)”. First, it
is demonstrated that this termination condition ensures that an integer realization
which leads to an e-optimal solution of Problem (P) has been visited by Problem
(PBP). Second, it is demonstrated that if one such integer realization has been vis-
ited by Problem (PBP), the termination condition ensures that y = y;, is one such
integer realization and UBD is an €-optimal objective value of Problem (P).

Consider the case in which Problem (RMPX) or (FRMPX) is infeasible. Since
Problem (P) is feasible, Problem (FRMP¥) cannot be infeasible and the infeasibility
of Problem (RMP¥) implies that all the feasible integer realizations have been visited
by Problem (PBP), so any integer realization leading to an e-optimal solution of
Problem (P) has been visited by Problem (PBP).

Consider the case in which LBD > UBD — €. Denote the real optimal objective
value of the original problem (P) by (;l;jp. Denote the real optimal objective value

of Problem (PP) for y =y}, by (;Ej}tp and the one returned by the solver by objpp.
Obviously,

objpp > objp. (23)

According to Assumption 7,

UBD = objsp > objpp. (24)
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From (23) and (24), _
UBD > objp. (25)

Assume any integer realization that leads to an €-optimal solution of Problem (P)
has not been visited by Problem (PBP), then any such integer realization has not
been excluded by the canonical integer cuts in Problem (RMP¥). According to
Corollary 2,

objp > LBD > UBD —¢. (26)

Inequalities (25) and (26) imply that y = y;, obtained at the termination of the al-
gorithm leads to an g€-optimal solution of Problem (P) and this integer realization
has been visited by Problem (PBP), which contradicts the assumption. Therefore, in
the case in which LBD > UBD — &, at least one integer realization that leads to an
e-optimal solution of Problem (P) has been visited by Problem (PBP) as well.
Finally, the algorithm ensures that U BDPB equals the minimum optimal objec-
tive value of Problem (PBP) for those integer realizations that have been visited by
Problem (PBP) but not by Problem (PP) (and UBDPB = +- if no such integer re-
alizations exist). Then at the termination when UBDPB > UBD — € always holds,
such integer realizations cannot lead to a global optimal solution of Problem (P) due
to Proposition 5. Therefore, an integer realization that leads to an €-optimal solu-
tion of Problem (P) has been visited by Problem (PP), which has been recorded by
y=y,and UBD = objpp is an g-optimal objective value of Problem (P).

Theorem 1. If all the subproblems can be solved to €-optimality in a finite number
of steps, then the NGBD algorithm terminates in a finite number of steps with an
e-optimal solution of Problem (P) or an indication that Problem (P) is infeasible.

Proof. Notice that all the integer realizations are generated by solving Problem
(RMP*) or (FRMPX) in the algorithm. According to Corollary 1, no integer real-
izations will be generated twice. Since the cardinality of set Y is finite by definition
and all the subproblems are terminated in finite number of steps, the algorithm ter-
minates in a finite number of steps.

Lemma 1 shows that if Problem (P) is feasible, the algorithm terminates with
its e-optimal solution. If Problem (P) is infeasible, the algorithm terminates with
UBD = 4o because UBD can only be updated with an €-optimal solution of Prob-
lem (PP), which is infeasible for any integer realization in Y (and therefore UBD is
never updated).

5 Application to Stochastic MINLPs

MINLP is widely adopted to model problems that involve discrete and continu-
ous decisions and nonlinearities. Over the past several decades there has been a
tremendous amount of work on the development and solution of MINLP models in
various engineering areas [20, 21], from product and process design to process op-
eration and control [22]. While these problems have been traditionally solved with



Nonconvex Generalized Benders Decomposition 323

deterministic MINLP models, recently more attention has been paid to including
uncertainty considerations in the model, typically using a stochastic programming
approach [23]. This section discusses the application of NGBD to scenario-based,
two-stage stochastic MINLPs in the following form:

h=1
s.t. gh(xh,y)go, Vhe{l,...,s}, (P-SMIP)
xp €X,, Vhe{l,... s},
yey,

where X, = {x; € {0,1}" x I, : py(x;) < 0}, I, C R™e is convex, ¥ = {y €
{0,1} 1 q(y) <O}, fr: [0, 1) x I, x [0, 1] = R, g5 : [0,1]™> x [T, x [0, 1] —
R™, py : [0, 1] x II,, — R™, gy, : [0, 1] — R™4. Here uncertainties are character-
ized by s different uncertainty realizations, also called scenarios [23, 24], which are
indexed by 4. y involves binary variables representing first-stage decisions that are
made before realization of the uncertainties. x;, involves binary and/or continuous
variables presenting second-stage decisions made after the outcome of scenario 4.
Sn(xp,y) in the objective function is related to a cost associated with the realization
of scenario /. Problem (P-SMIP) is assumed to satisfy all assumptions made for
Problem (P), so it is a special case of Problem (P) and inherits all the properties of
Problem (P).

The size of Problem (P-SMIP) depends on the number of scenarios (s) addressed.
When s is large, Problem (P) is a large-scale MINLP even if the model with one
scenario is small. Obviously, y is a vector of complicating variables for Problem (P-
SMIP), as the problem can naturally be decomposed into s subproblems if y is fixed.
General-purpose deterministic global optimization methods, such as branch-and-
reduce [6], SMIN-aBB and GMIN-aBB [25], and nonconvex outer approximation
[26], cannot fully exploit the decomposable structure of Problem (P-SMIP). These
methods have to solve a sequence of subproblems whose sizes grow with the number
of scenarios in the problem, so they are usually not practical for Problem (P-SMIP)
with large numbers of scenarios.

It is not difficult to find that Problem (P-SMIP) can be solved by NGBD. Primal
problem, primal bounding problem, and feasibility problem for Problem (P-SMIP)
can all be decomposed over the scenarios. The decomposed primal subproblem,
primal bounding subproblem and feasibility subproblem are given below as Prob-
lem (PP!-SMIP), Problem (PBPX-SMIP), Problem (FP}-SMIP) for any scenario h.

objpp, (v')) =min f; (x,,y"))

[
s.t. gh(xh,y(l)) <0, (PPh-SMIP)

xp € X
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objpgp, ®) = )Ic],men wp1 (s en) + up2n(y™)

k_
st g 1 p(xnen) +ug2n (M) <0, (PBP},-SMIP)

(xh,eh) € Dy,.

. k .
objgp, ™) = min l|zal|

k-
S.t. ug_rl’h(xh,eh) +ug,2,h(y(k)> <z, (FPh SMIP)

(Xn,en) € D,z € Zy.

Note that functions uy 1 s, Us 2 1, Ug 14> Ug 2, and sets Dy, are obtained through con-
vex and continuous relaxations as described in Sect. 2. Problem (PPZ-SMIP) needs
to be solved to &,-optimality to ensure €-optimality of the NGBD algorithm, where
221:1 & <E.

It is also easy to derive customized (RMPk) and (FRMPk) for Problem (P-SMIP).
They are given below as Problem (RMP"-SMIP) and Problem (FRMP’,;-SMIP).

i
w11 3 obipur, 07) 2400012407+ () (w2020 )|
) Vje Tk,

0> hzl [objpp,, 00+ (1) (ne24) —ug,z,h@“))ﬂ . vies,

Z y:— Z v, < IRy -1, YteTFUSsk,

reRl  reR)

yeY, neRr. (RMP*-SMIP)

myin %yi

s.L. Zj‘, {ObJFPh (N;, >)T (Mg,z,h()’) - ”g,2,h(y(i))>] , Vie Sk,

S oyv— Y v <IR|-1, Viest,
rer) reRy
yeY.
(FRMP-SMIP)

Note that A}EJ ), /.L}(ll) are Lagrange multipliers for Problem (PBP’;-SMIP) and Prob-
lem (FPﬁ-SMIP), respectively.

Obviously, the sizes of the subproblems to be solved in NGBD for Problem (P-
SMIP) are all independent of the number of scenarios. This brings tremendous com-
putational advantage for problems with large numbers of scenarios. On the one hand,
the number of subproblems to be solved in NGBD grows linearly with s, so the
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NGBD solution time grows roughly linearly with s if the total number of iterations
does not change significantly with s. On the other hand, the computational com-
plexity of a general-purpose optimization method is usually worse than linear, e.g.
polynomial for linear programs and some convex programs, worst-case exponential
for (global optimization of) nonconvex and/or mixed-integer programs. So the solu-
tion times of these methods usually increase with s much faster than NGBD does.
This is demonstrated in the case study results in the next section. In addition, the
primal subproblems in one iteration can be solved simultaneously, because the so-
lution of one of the subproblems is not dependent on the solution of the others. The
primal bounding and feasibility subproblems have the same feature. Therefore, the
NGBD solution time can be readily reduced through parallel computation.

A large number of stochastic MINLPs in the literature arise from integrated sys-
tem design and operation problems, in which y represents design decisions that are
related to the development of the infrastructure of the system, and x;, represents op-
erational decisions that are related to the operation of the system for scenario 4. In
this case, functions f}, g5 in Problem (P-SMIP) are often separable in y and x;, and
affine in y. In other words, Problem (P-SMIP) can be expressed in the following
form:

S

min Z Su(xn) —l—cZy

X1y XssY

h=1
st. galxa) +By <0, Vhe{l,...s}, (P-SMIP-S)
xp € Xp, VhE{l,...,S},
yeY.

The application of NGBD to Problem (P-SMIP-S) is a lot easier than the general
case. As y and x;, are already separable in Problem (P-SMIP-S), the lower bound-
ing problem (LBP) can be constructed without the construction of the intermediate
problem (LBP-NS). In addition, Problems (RMP¥) and (FRMP]‘) are always MILPs
(that are usually easier to solve than MINLPs).

Furthermore, when all functions in Problem (P-SMIP) are affine, the problem
becomes a MILP and it can be solved by NBGD via the solution of a sequence of
MILP and LP subproblems. Note that this MILP cannot be solved by BD or GBD
in general, as set Xj, is nonconvex due to the binary variables involved.

6 Case Studies

6.1 Case Study Problems

Three industrial problems are studied here to demonstrate the computational advan-
tage of NGBD over state-of-the-art commercial solvers. Brief descriptions of the
case study problems are given below.
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6.1.1 Pump Network Configuration Problem

This problem is to find the optimal configuration of a centrifugal pump network that
achieves a prespecified pressure rise based on a given total flow rate. The objective
of the optimization is to minimize annualized cost. The deterministic version of
the problem was initially presented in [27] and then updated in [25] with a set of
additional linear constraints for tighter relaxation in global optimization. Here the
problem is further reformulated to reduce the number of nonlinear functions and
then it is extended into a two-stage stochastic problem which explicitly addresses the
uncertainty in the pump performance models and minimizes an expected annualized
cost. More details of the problem can be found in [28].

6.1.2 Sarawak Gas Production Subsystem Design Problem

This problem comes from a real industrial system, the Sarawak Gas Production Sys-
tem (SGPS) [29]. In [30], optimal operation of a subsystem of the SGPS is studied.
This problem is extended into an integrated design and operation problem under un-
certainty. The uncertainties in the system include gas product demand, gas product
price and the pressure-flow relationship in a pipeline. The objective of the opti-
mization is to maximize the expected net present value while satisfying the demand
constraints at the end node over the scenarios of consideration. More details of the
problem can be found in [28].

6.1.3 Capacity Planning Problem

This is a capacity planning problem in continuous pharmaceutical manufacturing
under clinical trials uncertainty [31, 32]. The problem considers the building of
new facilities or expansion of existing facilities for future manufacturing of new
drugs that are still in the clinical trial stages. The problem is modelled as a two-
stage stochastic MILP to achieve the best expected profits. The first-stage decisions
are to determine the timing of facility develop