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Preface

Panos Pardalos was born to parents Calypso and Miltiades on June 17, 1954, in
Mezilo (now Drossato), Greece. Ever since his grandmother Sophia taught him how
to count in his early childhood, Panos has been fascinated with mathematics. The
remote location of the mountain village and rather unfavorable economic conditions
Panos grew up in did not stop him from pursuing knowledge. When he was 15,
Panos wrote a letter to the Greek Ministry of Education describing his aspirations
and the obstacles he faced in his quest for learning. The government responded by
providing a scholarship to support his studies at Athens University.

After obtaining a bachelor’s degree in mathematics in 1977, Panos continued his
education in the USA. In 1978, he earned a master’s degree in mathematics and com-
puter science from Clarkson University (Potsdam, NY) and started Ph.D. studies in
computer and information sciences at the University of Minnesota. In 1985, Panos
successfully defended his dissertation, which served as the basis for his first book
Constrained Global Optimization: Algorithms and Applications (Springer-Verlag,
1987) coauthored with his Ph.D. advisor, Judah Ben Rosen. This book became a
landmark publication in the emerging field of global optimization and helped Panos
to establish himself as one of the leading researchers in the field. By the time of the
book’s publication he already started his independent academic career as an assis-
tant professor of computer science at Pennsylvania State University.

In 1991, Panos moved to the Department of Industrial and Systems Engineering
at the University of Florida (UF), where he currently holds the position of Distin-
guished Professor and University of Florida Research Foundation Professor. He also
serves as the director of Center for Applied Optimization. At UF, Panos is also an
affiliated faculty of Computer & Information Science & Engineering Department,
Biomedical Engineering Department, McKnight Brain Institute, and the Genetics
Institute.

Panos compiled a very impressive record over the years of his (still very active)
academic career, which includes nearly 20 coauthored books and over 300 journal
articles. He is also an editor of numerous books, including a 7-volume Encyclopedia
of Optimization co-edited with Christodoulos Floudas and published by Springer.
He served as the editor-in-chief and an editorial board member of many highly
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viii Preface

respected journals and as the managing editor of several book series. He has or-
ganized conferences and gave plenary lectures in world leading institutions. Over
50 of his former Ph.D. students enjoy successful careers in academia and industry,
making the impact of his mentoring felt all over the world.

Panos has been honored with a number of awards for his scholastic achieve-
ments. His notable recognitions include the Constantin Carathéodory Prize (2013)
and EURO Gold Medal (2013); Honorary Doctorates from N.I. Lobachevski State
University of Nizhni Novgorod, Russia (2005), V.M. Glushkov Institute of Cy-
bernetics of The National Academy of Sciences of Ukraine (2008), and Wilfrid
Laurier University, Canada (2012); Honorary Professorships from the Graduate
School of Information Technology & Mathematical Sciences, University of Ballarat,
Australia (2010) and from Anhui University of Sciences and Technology, China
(2013). He was elected a Foreign Associate Member of Reial Académia de Doctors,
Spain (1998), a Foreign Member of Lithuanian Academy of Sciences (1999), Petro-
vskaya Academy of Sciences and Arts, Russia (2000), and the National Academy
of Sciences of Ukraine (2003), as well as an Honorary Member of the Mongolian
Academy of Sciences (2005). He is also the recipient of a medal in recognition of
broad contributions in science and engineering of the University of Catania, Italy
(2013).

Ivan V. Sergienko, Academician of the National Academy of Sciences of
Ukraine (NASU), presents the diploma of a foreign member of NASU to
Panos M. Pardalos (2003)

As impressive as his academic accomplishments are, it is safe to say that his
personal qualities and friendship are the primary reasons Panos is so much loved
and respected by his colleagues and students. As he likes to say, “Whatever it is
that we do, we are humans first.” His enthusiasm for science is just a reflection of
his positive, energetic, and happy personality. He always remembers his roots and
knows how to enjoy simple things in life. Many of the readers might have heard the
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following story about Panos that is very characteristic of his caring nature. When
he was a Ph.D. student at the University of Minnesota, Panos planted a grapefruit
seed in a pot, and a tree started growing. When he moved to Penn State a few years
later, he brought the plant with him. The next destination for Panos and the tree
was Gainesville, Florida, where the climate was finally warm enough for planting a
grapefruit tree outside. After some proficient treatment from Panos’s father, the tree
thrived as did Panos’s career at UF, bearing so much highest-quality fruit that it was
plenty not only for the Pardalos family but also for Panos’s colleagues and students
in the department to enjoy.

Panos with his son, Akis, and wife, Rosemary, next to the famous
grapefruit tree, February 1, 2014

On behalf of all the authors of the chapters, we are very pleased to dedicate
this book to Panos Pardalos on the occasion of his 60th birthday, and wish him
many more happy, healthy, and productive years. We would like to thank all the
contributors as well as Razia Amzad and Elizabeth Loew of Springer for making
this publication possible.

Xρ óνια Πoλλά Πάνo!

Athens, Greece Themistocles M. Rassias
Princeton, NJ Christodoulos A. Floudas
College Station, TX Sergiy Butenko
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Piecewise Linear Classifiers Based
on Nonsmooth Optimization Approaches

Adil M. Bagirov, Refail Kasimbeyli, Gürkan Öztürk, and Julien Ugon

1 Introduction

Nonsmooth optimization provides efficient algorithms for solving many machine
learning problems. For example, nonsmooth optimization approaches to the cluster
analysis and supervised data classification problems lead to the design of very eff-
icient algorithms for their solution (see, e.g., [1, 3, 4, 10, 13]). Here our aim is
to demonstrate how nonsmooth optimization algorithms can be applied to develop
efficient piecewise linear classifiers. We use a max–min and a polyhedral conic sep-
arabilities as well as an incremental approach to design such classifiers. This chapter
contains results which are extensions of those obtained in [14–16].

The problem of separating finite sets has many applications in applied mathe-
matics. One such application is the design of supervised data classification algo-
rithms. If convex hulls of the sets do not intersect, then they are linearly separable
and one hyperplane provides complete separation. However, in many real-world
applications this is not the case. In most data sets, classes are disjoint, but their
convex hulls intersect. In this situation, the decision boundary between the classes
is nonlinear. It can be approximated using piecewise linear functions. Over the last
three decades different algorithms to construct piecewise linear decision boundaries
between finite sets have been designed and applied to solve data classification prob-
lems (see, e.g., [2, 10, 11, 18, 19, 24, 27, 31, 39–41]).

Piecewise linear classifiers are very simple to implement and their memory
requirements are very low. Therefore they are suitable for small reconnaissance
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2 A.M. Bagirov et al.

robots, intelligent cameras, imbedded and real-time systems, and portable
devices [27]. In general, the determination of piecewise linear boundaries is a
complex global optimization problem [40]. The objective function in this prob-
lem is nonconvex and nonsmooth. It may have many local minimizers, yet only
global minimizers provide piecewise linear boundaries with the least number of
hyperplanes. Additionally, the number of hyperplanes needed to separate sets is not
known a priori. Newton-like methods cannot be applied to solve such problems.
As a result piecewise linear classifiers require a long training time, which creates
difficulties for their practical application.

In order to reduce the training time most techniques try to avoid solving opti-
mization problems when computing piecewise linear boundaries. Instead they use
some form of heuristics to determine the number of hyperplanes. Most of these
techniques apply fast clustering algorithms (such as k-means) to find clusters in
each class. Then they compute hyperplanes separating pairs of clusters from differ-
ent classes. The final piecewise linear boundary is obtained as a synthesis of those
hyperplanes (see [18, 19, 24, 27, 31, 39–41]). These techniques try to train hyper-
planes locally. Despite the fact that these algorithms are quite fast they do not always
find minimizers, even local ones of the classification error function.

In this chapter, we propose a different approach to design piecewise linear clas-
sifiers. This approach is based on the use of (1) hyperboxes, which can be described
by the very simple piecewise linear functions, to identify data points which are away
from boundaries between pattern classes; (2) polyhedral conic separability to accu-
rately identify data points lying on or near the boundaries between the classes; (3)
max–min separability and an incremental approach to find piecewise linear bound-
aries between pattern classes.

Following these steps first, we approximate classes using hyperboxes and iden-
tify data points which are away from the boundaries between classes. Such points
can be easily classified using only approximating hyperboxes. In the next iteration
we remove all these points from the further consideration and apply the polyhedral
conic separability to more accurately identify data points which are on or close to
boundaries between classes. In this iteration we also identify regions which can be
classified using the polyhedral conic functions (PCFs). Then we remove all data
points from these regions and apply max–min separability to the rest of the data
set to find piecewise linear boundaries between the sets. Piecewise linear bound-
aries are built by gradually adding new hyperplanes until separation is obtained
with respect to some tolerance. Such an approach allows one to significantly reduce
computational effort to train piecewise linear classifiers and considerably improve
their classification accuracy. We apply the proposed classifiers to solve supervised
data classification problems in 12 publicly available data sets, report the results of
numerical experiments, and compare the proposed classifiers with nine other main-
stream classifiers.

The rest of this chapter is organized as follows: In Sect. 2 we give an overview of
existing piecewise linear classifiers. The definition and some results related to max–
min separability are given in Sect. 3. The classification algorithm based on the PCF
is described in Sect. 4. Section 5 presents the incremental max–min separability
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algorithm. The hybrid polyhedral conic and max–min separability (HPCAMS)
algorithm, its implementation, and classification rules are given in Sect. 6. Results
of numerical experiments are presented in Sect. 7. Section 8 concludes the chapter.

2 Review of Piecewise Linear Classifiers

Piecewise linear classifiers have been a subject of study for more than three decades.
Despite the fact that the computation of piecewise linear boundaries is not an easy
task, piecewise linear classifiers are simple to implement, provide a fast (real-time)
classification time and have a low memory requirement. Another advantage of
piecewise linear classifiers is that they do not depend on parameters. The simplicity
of their implementation makes them very suitable for many applications [27].

Existing piecewise linear classifiers can be divided into two classes. The first
class contains classifiers in which each segment of the piecewise linear boundary is
constructed independently. An optimization problem is formulated for each segment
separately. Thus these segments are found as a solution to different optimization
problems. We call such an approach a multiple optimization approach.

The second class contains classifiers in which the problem of finding a piecewise
linear boundary is formulated as an optimization problem. In this case a single opt-
imization problem is solved to find piecewise linear boundaries. We call such an
approach a single optimization approach.

2.1 Classifiers Based on a Multiple Optimization Approach

To the best of our knowledge, the first approach to construct a piecewise linear clas-
sifier was described in [39] (see also [40]). This paper introduces a procedure to
locally train piecewise linear decision boundaries. Correctly classified patterns pro-
vide adjustments only in those segments of the decision boundary that are affected
by those patterns.

The method proposed in [32] is based on the cutting of straight line segments
joining pairs of opposed points (i.e., points from distinct classes) in n-dimensional
space. The authors describe a procedure to nearly minimize the number of hyper-
planes required to cut all of these straight lines. This method does not require par-
ameters to be specified by users, an improvement over methods proposed in [39].
This piecewise linear classifier provides a much faster decision than the k-nearest
neighbors classifier for a similar accuracy. In [28], the piecewise linear classifier is
compared with a neural network classifier. The latter performs slightly better than
the former, but it requires a much longer training time.

In the paper [41] a modification of the method from [32] is proposed. This
method constructs the hyperplanes of a piecewise linear classifier so as to keep
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a correct recognition rate over a threshold for the training set. The threshold is
determined automatically by the Minimum Description Length criterion so as to
avoid overfitting of the classifier to the training set.

The paper [37] presents a learning algorithm which constructs a piecewise linear
classifier for multi-class data classification problems. In the first step of the algo-
rithm linear regression is used to determine the initial positions of the discriminating
hyperplanes for each pair of classes. An error function is minimized by a gradient
descent procedure for each hyperplane separately. A clustering procedure decom-
posing the classes into appropriate subclasses can be applied when the classes are
not linearly separable. This classifier was included in the STATLOG project where
it achieved good classification results on many data sets [29].

The paper [18] proposes an approach to construct a piecewise linear classifier
using neural networks. The training set is split into several linearly separable train-
ing subsets, and the separability is preserved in subsequent iterations. In [27] the
piecewise linear boundary is represented as a collection of segments of hyperplanes
created as perpendicular bisectors of the line segments linking centroids of the
classes or parts of classes.

The paper [31] proposes a piecewise linear classifier which starts with a linear
classifier. If it fails to separate the classes, then the sample space of one of the classes
is divided into two subsample spaces. This sequence of splitting, redesigning, and
evaluating continues until the overall performance is no longer improved.

In [19] the authors propose a linear binary decision tree classifier, where the
decision at each non-terminal node is made using a genetic algorithm. They apply
this piecewise linear classifier to cell classification.

2.2 Classifiers Based on a Single Optimization Approach

There are different approaches to design piecewise linear classifiers based on a
single optimization approach. The notion of the bilinear separation was intro-
duced in [17]. In this approach two hyperplanes were used to separate classes. An
algorithm for finding those hyperplanes was also developed.

The paper [2] introduces the concept of polyhedral separability which is a gen-
eralization of linear separability. In this case one of the sets is approximated by a
polyhedral set and the rest of the space is used to approximate the second set. The
error function is a sum of nonsmooth convex and nonsmooth nonconvex functions.
An algorithm for minimizing the error function is developed where the problem of
finding the descent directions is reduced to a linear programming problem.

The concept of max–min separability was introduced in [10]. In this approach
two sets are separated using a continuous piecewise linear function. Max–min sepa-
rability is a generalization of linear, bilinear, and polyhedral separabilities [11]. It is
proven that any two finite point sets can be separated by a piecewise linear function.
The error function in this case is nonconvex and nonsmooth. An algorithm for
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minimizing the error function is developed. Results presented in [11] demonstrate
that the algorithm based on max–min separability is effective for solving supervised
data classification problems in many large-scale data sets.

Polyhedral conic separability was introduced in [22] where PCFs are used to
separate classes. An algorithm for finding such separating PCFs was also designed.

Incremental learning algorithms are becoming increasingly popular in supervised
and unsupervised data classification. This type of approach breaks up the data set
into observations that can be classified using simple separators, and observations
that require more elaborate ones. This allows one to simplify the learning task by
eliminating the points that can be more easily classified. Furthermore, at each ite-
ration, information gathered during prior iterations can be exploited. In the case of
piecewise linear classifiers, this approach allows us to compute as few hyperplanes
as needed to separate the sets, without any prior information. Additionally, this ap-
proach allows us to reach a near global solution of the classification error function
by using the piecewise linear function obtained at a given iteration as a starting
point for the next iteration. Thus it reduces computational effort and avoids possible
overfitting. Papers [14–16] present different incremental piecewise linear classifiers.
Piecewise linear classifiers introduced in these papers are based in the max–min and
polyhedral conic separabilities. In these classifiers simple piecewise linear separa-
tors such as hyperboxes are used to find the set of easily classifiable points.

3 Max–Min Separability

The approach we propose in this chapter finds piecewise linear boundaries of
classes. These boundaries are determined using max–min separability, a concept
which was introduced in [10] (see also [11]). In this section we briefly recall the
main definitions from these papers.

3.1 Definition and Properties

Let A and B be given disjoint sets containing m and p n-dimensional vectors, re-
spectively:

A = {a1, . . . ,am},ai ∈ R
n, i = 1, . . . ,m,

B = {b1, . . . ,bp},b j ∈ R
n, j = 1, . . . , p.

Consider a collection of hyperplanes H =
{{xi j,yi j}, j ∈ Ji, i ∈ I

}
, where xi j ∈

R
n, yi j ∈ R

1, j ∈ Ji, i ∈ I, and I = {1, . . . , l}, l > 0, Ji �= /0 ∀i ∈ I.
This collection of hyperplanes defines the following max–min function on R

n:

ϕ(z) = max
i∈I

min
j∈Ji

{〈xi j,z〉− yi j
}
, z ∈ R

n. (1)

Here 〈·, ·〉 is an inner product in R
n.
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Definition 1. The sets A and B are max–min separable if there exist a finite number
of hyperplanes {xi j,yi j} with xi j ∈ R

n, yi j ∈ R
1, j ∈ Ji, i ∈ I such that

1. for all i ∈ I and a ∈ A
min
j∈Ji

{〈xi j,a〉− yi j
}
< 0;

2. for any b ∈ B there exists at least one i ∈ I such that

min
j∈Ji

{〈xi j,b〉− yi j
}
> 0.

Remark 1. It follows from Definition 1 that if the sets A and B are max–min separa-
ble then ϕ(a)< 0 for any a ∈ A and ϕ(b)> 0 for any b ∈ B, where the function ϕ is
defined by (1). Thus the sets A and B can be separated by a function represented as a
max–min of linear functions. Therefore this kind of separability is called max–min
separability.

Remark 2. The notions of max–min and piecewise linear separabilities are equiv-
alent. The sets A and B are max–min separable if and only if they are disjoint:
A

⋂
B = /0 [10].

3.2 Error Function

Given any set of hyperplanes {xi j,yi j}, j ∈ Ji, i ∈ I with xi j ∈ R
n, yi j ∈ R

1 an
averaged error function is defined as (see [10, 11])

f (X ,Y ) = f1(X ,Y )+ f2(X ,Y ) (2)

where

f1(X ,Y ) = (1/m)
m

∑
k=1

max

[
0,max

i∈I
min
j∈Ji

{〈xi j,ak〉− yi j +1}
]
,

f2(X ,Y ) = (1/p)
p

∑
t=1

max

[
0,min

i∈I
max
j∈Ji

{−〈xi j,bt〉+ yi j +1}
]
,

and X = (x11, . . . ,xlql ) ∈ R
nL, Y = (y11, . . . ,ylql ) ∈ R

L, L = ∑i∈I qi, qi = |Ji|, i ∈
I = {1, . . . , l}. |Ji| denotes the cardinality of the set Ji. It is clear that f (X ,Y )≥ 0 for
all X ∈ R

nL and Y ∈ R
L.

Remark 3. The error function (2) is nonconvex and if the sets A and B are max–min
separable with the given number of hyperplanes, then the global minimum of this
function f (X∗,Y∗) = 0 and the global minimizer is not always unique. Moreover,
X = 0 ∈ R

nL cannot be an optimal solution [10].

The problem of max–min separability is reduced to the following mathematical
programming problem:
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minimize f (X ,Y ) subject to (X ,Y ) ∈ R
(n+1)L (3)

where the objective function f is described by Eq. (2).
In the paper [11], an algorithm for solving problem (3) is presented. This

algorithm exploits special structures of the error function such as piecewise par-
tial separability (for the definition of piecewise partial separability, see [12]). In this
algorithm it is assumed that the number of hyperplanes is known a priori. However
this information is not always available. The classification accuracy is highly depen-
dent on this number. A large number of hyperplanes may lead to overfitting of the
training set. It is therefore imperative to calculate as few hyperplanes as needed to
separate classes with respect to a given tolerance. An incremental approach can be
applied to solve this problem.

The complexity of the error function (2) computation depends on the number of
data points. For data sets containing tens of thousands of points the error function
becomes expensive to compute, and the algorithms proposed in [10, 11] become
very time consuming. In most large data sets not all data points contribute to the
piecewise linear functions separating classes. Such points are away from the bound-
aries between classes. Identification of such data points is decisive to reduce (and
sometimes significantly) computational effort to evaluate the error function. An inc-
remental approach allows one to reduce the number of points at each iteration by
eliminating points easily classified using simpler piecewise linear separators calcu-
lated at previous iterations. Also, this scheme allows us to reduce the risk of overfit-
ting by only considering the data points that are relevant.

4 Classification Algorithms Based on PCFs

In this section we describe classification algorithms based on the separation via
PCFs.

It is impossible to overestimate the importance of theorems on the existence of a
separating hyperplane for two disjoint convex sets. A large number of methods for
solving single-objective optimization problems are based on these theorems. In con-
vex vector optimization, it is a common practice to characterize efficient points of
sets as support points by positive or strictly positive linear support functionals. Many
classification algorithms are based on the linear separation theorems. Unfortunately
convex hulls of many data sets encountered in classification problems are not dis-
joint and therefore the linear separation theorems of convex analysis used in data
classification problems leads to difficulties. The simple reason is that, for disjoint
nonconvex sets a separating hyperplane may not exist. Therefore, nonconvex anal-
ysis requires special separation theorems.

The main reason of difficulties arising when passing from the convex analysis to
the nonconvex one is that the nonconvex cases may arise in many different forms
and each case may require a special approach. Some problems of nonconvex opt-
imization, in more generalized form, have been studied in the framework of the
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abstract convexity (see [30, 33–36, 38]). Abstract convexity suggests variety of app-
roaches which can be used to analyze different nonconvex problems. It generalizes
the existing supporting philosophy for convex sets and suggests different ways to
support nonconvex sets by using a suitable class of real functions alternatively to the
class of linear functions used in convex analysis. These investigations demonstrate
the importance of finding a specific class of functions defining special nonlinear
supporting surfaces which are suitable to analyze the given nonconvex problem.

In [20] Gasimov suggested a special type of PCFs and with their help obtained
characterization theorems for Benson properly efficient points in vector optimiza-
tion without any convexity and boundedness conditions. By using the same class of
PCFs, recently Kasimbeyli [25] proved a nonlinear separation theorem for noncon-
vex cones.

In the following subsection we present the class of PCFs. The subsequent sub-
section demonstrates how the separation technique based on PCFs is used in non-
convex nonsmooth optimization and then we give the corresponding classification
algorithms.

4.1 Polyhedral Conic Functions

The class of PCFs that we consider in this subsection consists of functions g(w,ξ ,γ ,a):
R

n → R defined as:

g(w,ξ ,γ ,a)(x) = 〈w,x−a〉+ξ ‖x−a‖1 − γ , (4)

where w,a ∈ R
n, ξ ,γ ∈ R, and ‖x‖1 = |x1|+ · · ·+ |xn| is an l1-norm of the vector

x ∈ R
n.

Lemma 1. A graph of the function g(w,ξ ,γ ,a) defined in Eq. (4) is a polyhedral cone
with vertex at (a,−γ) ∈ R

n ×R.

Proof. To prove the lemma we show that:

1. A graph of the function is a cone with vertex at (a,−γ) ∈ R
n ×R, and

2. Each sublevel set of this function is a convex polyhedron.

To prove the first part, consider a set graph(g(w,ξ ,γ ,a))− (a,−γ):

graph(g(w,ξ ,γ ,a))− (a,−γ) = {(x−a,α + γ) : 〈w,x−a〉+ξ ‖x−a‖1 − γ = α}.

By letting x−a = y, α + γ = β this set can be written also as

graph(g(w,ξ ,γ ,a))− (a,−γ) = {(y,β ) : 〈w,y〉+ξ ‖y‖1 = β}. (5)

It is obvious that this set is a cone with vertex at the origin. Indeed if (y,β ) ∈
graph(g(w,ξ ,γ ,a))− (a,−γ) then
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〈w,y〉+ξ ‖y‖1 = β .

Hence, for any λ > 0 we have:

λ 〈w,y〉+λξ ‖y‖1 = λβ ,

or

〈w,λy〉+ξ ‖λy‖1 = λβ ,

which implies that (λy,λβ ) also belongs to graph(g(w,ξ ,γ ,a))−(a,−γ) and therefore
this set is a cone with vertex at the origin.

Now we show the second part of the proof. Let α be a real number. Then the
sublevel set of the function g(w,ξ ,γ ,a) given by (4) is:

Sα =
{

x ∈ R
n : g(w,ξ ,γ ,a)(x) = 〈w,x−a〉+ξ ‖x−a‖1 − γ ≤ α

}
.

By using a definition of l1-norm, this set can equivalently be written as

Sα = {x ∈ R
n : 〈w̃,x−a〉− γ ≤ α} ,

where

〈w̃,x−a〉=
n

∑
i=1

(wi +ξ sgn(xi −ai))(xi −ai).

This means that the sublevel set Sα is an intersection of utmost 2n half spaces and
therefore is a convex polyhedron. The proof is completed. �
Definition 2. A function g : Rn →R is called polyhedral conic if its graph is a cone
and all its sublevel sets

Sα = {x ∈ R
n : g(x)≤ α} ,

for α ∈ R, are polyhedrons.

It follows from Lemma 1 that each function of the form (4) is a PCF.

4.2 Conical Supporting Surfaces in Nonsmooth Optimization

By using the PCFs, Azimov and Gasimov introduced the notion of the weak subdif-
ferential, which is a generalization of the classic subdifferential [6, 7]. With the help
of this notion, a collection of zero duality gap conditions for a wide class of noncon-
vex and nonsmooth optimization problems was derived. In this subsection we give
some important properties of the weak subdifferentials and study some relationships
between the weak subdifferentials and the directional derivatives in the nonconvex
case. We recall the concept of the supporting cones and the weak subdifferentials
(see [6, 7, 21, 23, 26]).

Let (X ,‖·‖X ) be a real normed space, and let X∗ be the topological dual of X . Let
(x∗,c) ∈ X∗ ×R+, where R+ is the set of nonnegative real numbers. We define the
conic surface C(x;x∗,c)⊂ X with vertex at x ∈ X as follows:
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C(x;x∗,c) = {x ∈ X : 〈x∗,x− x〉− c‖x− x‖= 0}. (6)

Then the corresponding upper- and lower-conic halfspaces are, respectively,
defined as

C+(x;x∗,c) = {x ∈ X : 〈x∗,x− x〉− c‖x− x‖ ≤ 0} (7)

and

C−(x;x∗,c) = {x ∈ X : 〈x∗,x− x〉− c‖x− x‖ ≥ 0}. (8)

Note that if c = 0, the conic surface C(x;x∗,c) becomes a hyperplane. Hence the
supporting cone defined below is a simple generalization of the supporting hyper-
plane.

Definition 3. C(x;x∗,c) is called the supporting cone to the set S ⊂ X if S ⊂
C+(x;x∗,c) (or S ⊂C−(x;x∗,c)) and cl(S)∩C(x;x∗,c) �= /0.

It is clear that the lower-conic halfspace C−(x;x∗,c) is a convex cone with vertex
at x.

Definition 4. Let F : X → R be a single-valued function, and let x ∈ X be the given
point where F(x) is finite. A pair (x∗,c) ∈ X∗ ×R+ is called the weak subgradient
of F at x if

F(x)−F(x)≥ 〈x∗,x− x〉− c‖x− x‖ for all x ∈ X . (9)

The set

∂ wF(x) = {(x∗,c) ∈ X∗ ×R+ : F(x)−F(x)≥ 〈x∗,x− x〉− c‖x− x‖ for all x ∈ X}

of all weak subgradients of F at x is called the weak subdifferential of F at x.
If ∂ wF(x) �= /0, then F is called weakly subdifferentiable at x. If (9) is satisfied
only for x ∈ S, where S ⊂ X , then we say that F is weakly subdifferentiable at x
on S. The weak subdifferential of F at x on S will be denoted by ∂ w

S F(x).

Remark 4. It is obvious that, when F is subdifferentiable at x (in the classical sense),
then F is also weakly subdifferentiable at x; that is, if x∗ ∈ ∂F(x), then by definition
(x∗,c) ∈ ∂ wF(x) for every c ≥ 0. It follows from Definition 4 that the pair (x∗,c) ∈
X∗ ×R+ is a weak subgradient of F at x ∈ X if there is a continuous (superlinear)
concave function

g(x) = 〈x∗,x− x〉+F(x)− c‖x− x‖ (10)

such that g(x) ≤ F(x) for all x ∈ X and g(x) = F(x). The set hypo(g) = {(x,α) ∈
X ×R : g(x)≥ α} is a closed convex cone in X ×R with vertex at (x,F(x)). Indeed,

hypo(g)− (x,F(x))

= {(x− x,α −F(x)) ∈ X ×R : 〈x∗,x− x〉− c‖x− x‖ ≥ α −F(x)}
= {(u,β ) ∈ X ×R : 〈x∗,u〉− c‖u‖ ≥ β} .

Thus, it follows from (9) and (10) that

graph(g) = {(x,α) ∈ X ×R : g(x) = α}
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is a conic surface which is a supporting cone to

epi(F) = {(x,α) ∈ X ×R : F (x)≤ α}

at the point (x,F(x)) in the sense that

epi(F)⊂ epi(g), and cl(epi(F))∩graph(g) �= /0.

For presentation of the main theorem of this section, we use the following stan-
dard assumption.

Assumption 1 Let

• function F : Rn → R be directionally differentiable at x ∈ R
n,

• the directional derivative F ′(x) of F at x be bounded from below on some neigh-
borhood of 0Rn , and

• the following apply:

F(x)−F(x)≥ F ′(x)(x− x) for all x ∈ R
n. (11)

Theorem 1. Let Assumption 1 be satisfied for function F :Rn →R. Then F is weakly
subdifferentiable at x ∈ R

n and

F ′(x)(h) = sup{〈x∗,h〉− c‖h‖ : (x∗,c) ∈ ∂ wF(x)} for all h ∈ R
n, (12)

where F ′(x)(h) denotes the directional derivative of F at x in the direction h.

The following theorem gives necessary and sufficient optimality conditions in
the nonconvex case. First we give a definition of the starshaped set.

Definition 5. A nonempty subset S of a real linear space is called starshaped with
respect to some x ∈ S if for all x ∈ S,

λx+(1−λ )x ∈ S ∀λ ∈ [0,1]. (13)

Theorem 2. Let S be a nonempty subset of Rn starshaped with respect to x ∈ S, and
let F : Rn →R be a given function. Suppose that F has a directional derivative at x
in every direction x− x with arbitrary x ∈ S and that

F(x)−F(x)≥ F ′(x)(x− x) for all x ∈ S.

(a) If x ∈ S is a minimal point of F on S, then

sup{〈x∗,x− x〉− c‖x− x‖ : (x∗,c) ∈ ∂ w
S F(x)} ≥ 0 for all x ∈ S. (14)

(b) If for some x ∈ S the inequality (14) is satisfied, then x is a minimal point of F
on S.
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4.3 PCF Algorithm

We state now our algorithm for solving the separation problem. Since the algorithm
is based on PCFs we will call it PCF Algorithm [22].

We consider the problem of separation of two nonempty finite point sets A and
B in R

n. An iterative algorithm generating a nonlinear separating function by using
PCFs and therefore called a PCF algorithm is developed. This algorithm is based
on solutions of linear programming subproblems. A solution of these subproblems
at each iteration results in the PCF which separates a certain part of the set A from
the whole set B. By excluding these points from A, algorithm passes to the next
iteration and so on. The resulting separation function is defined as a point-wise
minimum of all the functions generated. We show that the algorithm terminates in
a finite number of iterations and the maximum number of iterations required for
separating two arbitrary finite point sets does not exceed the number of elements in
one of these sets. An illustrative example has been constructed and application on
classification problems has been implemented.

Let A and B be two given sets in R
n:

A = {ai ∈ R
n : i ∈ I},B = {b j ∈ R

n : j ∈ J}
where I = {1, . . . ,m}, J = {1, . . . , p}. The algorithm presented below generates at
each iteration a function of the form (4) by calculating the parameters w,ξ and γ as
a solution of a certain linear programming (LP) subproblem. These parameters are
used to define a PCF whose sublevel set divides the whole space into two parts such
that all the points of B remain “outside,” and as many points of A as possible remain
“inside” of this sublevel set. By excluding these latter points from A, algorithm
passes to the next iteration and generates new separating function for this modified
set. The process continues until an empty set is obtained. The resulting separating
function is defined as a point-wise minimum of all functions so generated. We will
prove that the algorithm terminates in finite steps.

Algorithm 1. PCFs classification algorithm

Initialization Step: Set I1 := I,A1 := A, and l := 1.

Step 1: Let al be an arbitrary point of Al . Solve subproblem Pl :

(Pl) min

( 〈y,em〉
m

)
(15)

subject to

〈w,ai −al〉+ξ
∥
∥
∥ai −al

∥
∥
∥

1
− γ +1 ≤ yi, ∀i ∈ Il , (16)

−〈w,b j −al〉−ξ
∥
∥
∥b j −al

∥
∥
∥

1
+ γ +1 ≤ 0, ∀ j ∈ J, (17)

y = (y1, . . . ,ym) ∈ R
m
+,w ∈ R

n,ξ ∈ R,γ ≥ 1. (18)
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Let wl ,ξ l ,γ l ,yl be a solution of (Pl). Set

gl(x) := g(wl ,ξ l ,γ l ,al)(x) (19)

and go to Step 2.

Step 2: Set Il+1 := {i ∈ Il : gl(ai)+ 1 > 0},Al+1 := {ai ∈ Al : i ∈ Il+1}, l := l + 1.
If Al �= /0 then go to Step 1.

Step 3: Define the function g(x) (separating the sets A and B ) as

g(x) = min
l

gl(x) (20)

and stop.

At each iteration l, the algorithm arbitrarily chooses some element al from the
set Al and calculates parameters (wl ,ξ l ,γ l) by solving a linear subproblem (Pl). All
these parameters are then used in (19) for defining the function gl . It follows from
Lemma 1 that the graph of the function gl consisting of points (x,z) ∈ R

n ×R with
z = gl(x) is a cone with vertex at (al ,−γ l). A constraint γ ≥ 1 stated in constraint
set (18) ensures that the vertex of this cone has to be placed “under” the hyperplane
z = 0, that is in the half-space R

n × (0,−∞). The constraint set (16) ensures that
the point al and all the points of the set Al which are “close” to al have to be in
the polyhedron corresponding to the sublevel set {x : gl(x) ≤ −1}. The closeness
of these points of Al to al is defined by the optimal value of the objective function
(15) in (Pl). That is the sublevel set {x : gl(x)≤−1} will include as much elements
of Al (besides of al) as the value of this objective function is close to zero. Thus
the objective function (15) and the constraint sets (16) and (18) ensure that all the
elements of Al will be enclosed to the sublevel set {x : gl(x) ≤ −1} of gl if this
minimum is zero. On the other hand the constraint set (17) ensures that all the ele-
ments of the set B have to be remained outside of the sublevel set {x : gl(x) < 1}
at each iteration. Note that such a “separability” at each iteration becomes possible
due to the characteristics of PCFs described in Lemma 1. We will call the method
of separation described in the algorithm the PCF separation.

The following theorem proves that the presented algorithm terminates in a finite
number of iterations and the resulting function g defined by (20) separates arbitrary
disjoint sets A and B consisting of finite number of elements in Rn.

Theorem 3. PCF Algorithm terminates in a finite number of iterations and the func-
tion g : Rn → R defined by (20) strictly separates the sets A and B in the sense that

g(a)< 0, ∀a ∈ A, (21)

g(b)> 0, ∀b ∈ B. (22)

Proof. First show that the problem (Pl) has a solution(wl ,ξl ,γl) ∈R
n ×R+× [1,∞)

such that the corresponding function gl separates at least one element, (say al) of Al

and the whole set B. By taking wl = 0,γl = 1 we obtain a function gl(x) = ξ‖x−
al‖1 −1, for which we have gl(al) =−1 < 0 and gl(b j) = ξ‖b j −al‖1 −1,∀ j ∈ J.
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Since b j ∈ B we have ‖b j −al‖1 > 0,∀ j ∈ J. Therefore when ξ is sufficiently large,
the term ξ‖b j − al‖1 can be made large enough. Then for ξ sufficiently large, we
have gl(b j) > 0,∀ j ∈ J which means that the function gl(x) = ξl‖x−al‖1 −1 sep-
arates al and the set B in the sense that gl(al)< 0 and gl(b)> 0, ∀b ∈ B.

Let Ãl be the subset of Al consisting of elements which are separated from B by
the function gl formed using the solution of the problem (Pl) at the lth iteration, and
let Al+1 be the subset of Al consisting of the elements which could not be separated
from B by gl . If this set is not empty the algorithm will be continued. Since the
set A has a finite number of elements, the process will be terminated after the finite
number of iterations. Thus we will have a partition Ã1, Ã2, . . . , ÃL of the set A and
functions g1,g2, . . . ,gL with properties:

A =
⋃

Ãl ,

gl(a)< 0,∀a ∈ Ãl ,

gl(b)> 0,∀b ∈ B, l = 1, . . . ,L.

Then the function g(x) = min
l

{gl(x)} will obviously have the properties (21)

and (22). Indeed, since for every a ∈ A there exists l ∈ {1,2, . . . ,L} such that a ∈ Ãl ,
we have gl(a) < 0 and therefore g(a) = min

l
{gl(a)} < 0. On the other hand, since

gl(b)> 0 for all l ∈ {1,2, . . . ,L}, b ∈ B, we have g(b)> 0. �

Corollary 1. Let A and B be two arbitrary sets consisting of finite number of points
in R

n. Then

1. there exists a partition of A : A =
⋃

Ãl such that, coÃl ∩B = /0 and functions
gl(x)= 〈wl ,x〉+ξl‖x‖1−γl , for l = 1,2, . . ., with gl(a)< 0,∀a ∈ coÃl ,gl(b)>0,
∀b ∈ B, and

2. the function g(x) = min
l

gl(x) separates A and B in the sense of (21) and (22).

Here co stands for convex hull of a set.

Proof. 1. The existence of a partition A : A =
⋃

Ãl and functions gl(x) with a
property

gl(a)< 0,∀a ∈ Ãl , gl(b)> 0,∀b ∈ B,

follows from the proof of Theorem 3. Let Cl = {x ∈ R
n : gl(x) ≤ 0}. Then

Ãl ⊂C,B ⊂ {x ∈ R
n : gl(x)> 0}, and C∩B = /0 by construction. By Lemma 1,

Cl is a convex polyhedron. Since it contains Ãl , it contains also coÃl—the
smallest convex set containing Ãl . Thus, (coÃl)∩B = /0.

2. Is obvious. �

Example 1. Consider two finite point sets A and B in R
2 shown in Fig. 1. Note that

the set A is taken to consist of two isolated parts. The coordinates x1 and x2 of the
points described in this figure are given in Table 1.
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Fig. 1 Two finite point sets A and B in R
2

Table 1 Coordinates of data points

A 1 2 3 4 5 6 7 8 9 10 11 12
x1 −2 −2 −2 −2 −0.5 −0.5 0.5 0.5 2 2 2 2
x2 0.5 −0.5 2 −2 2 −2 2 −2 0.5 −2 −0.5 2

13 14 15 16 17 18 19 20 21 22 23 24
12 12 12 12 13.5 13.5 14.5 14.5 16 16 16 16
2 −2 0.5 −0.5 2 −2 2 −2 −0.5 0.5 2 −2

B 1 2 3 4 5 6 7 8 9 10 11 12
x1 8 6 20 6 15 20 1 −1 −6 20 −6 −6
x2 −6 −1 6 −6 6 1 6 6 1 −6 −1 −6

13 14 15 16 17 18 19 20 21 22 23 24
8 13 20 6 15 13 8 −1 −6 6 8 1
−1 6 −1 1 −6 −6 1 −6 6 6 6 −6

This example has been solved by PCF algorithm. The geometrical interpretations
for separation function obtained by PCF algorithm are presented in Fig. 2.

PCF Algorithm is applied for constructing a separation function. GAMS/CPLEX
solver is used for solving the LP subproblems. Algorithm has been terminated in
seven iterations. The subsets Ãl , l = 1, . . . ,7 partitioning the set A and the corre-
sponding PCFs gl separating these sets from B at each iteration are presented below:

g1(x) = 0.06(x1 −14.5)+0.11(x2 −2)+0.34(|x1 −14.5|+ |x2 −2|)−1,

g2(x) = −0.06(x1 +0.5)+0.11(x2 −2)+0.34(|x1 +0.5|+ |x2 −2|)−1,

g3(x) = −0.05(x1 −2)+0.23(x2 −0.5)+0.46(|x1 −2|+ |x2 −0.5|)−1,

g4(x) = 0.11(x1 −16)+0.02(x2 +0.5)+0.34(|x1 −16|+ |x2 +0.5|)−1,

g5(x) = −0.02(x1 −0.5)−0.11(x2 +2)+0.34(|x1 −0.5|+ |x2 +2|)−1,

g6(x) = −0.11(x1 +2)−0.06(x2 +0.5)+0.34(|x1 +2|+ |x2 +0.5|)−1,

g7(x) = −0.07(x1 −12)−0.26(x2 +2)+0.53(|x1 −12|+ |x2 +2|)−1.7.



16 A.M. Bagirov et al.

Ã1(x) = {(16,2),(14.5,2),(16,0.5),(12,2),(13.5,2),(14.5,−2)},
Ã2(x) = {(2,2),(0.5,2),(−2,2),(−0.5,2),(−2,0.5),(−0.5,−2)},
Ã3(x) = {(2,0.5),(2,−2),(2,−0.5)},
Ã4(x) = {(16,−2),(16,−0.5),(12,−0.5)},
Ã5(x) = {(0.5,−2),(−2,−2)},
Ã6(x) = {(−2,−0.5)},
Ã7(x) = {(12,0.5),(12,−2),(13.5,−2)}.
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Fig. 2 Two-dimensional and three-dimensional views of polyhedral functions
obtained by the first way
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5 Incremental Max–Min Separability

In this section we describe an incremental algorithm for finding piecewise linear
boundaries between finite sets. We assume that we are given a data set A with q
classes: A1, . . . ,Aq. At each iteration of the algorithm we solve problem (3) with a
preset number of hyperplanes to find a piecewise linear boundary between a given
class and the rest of the data set. This is done for all classes using the one vs all
approach. After computing piecewise linear boundaries for all classes we define data
points which can be easily classified using the piecewise linear boundaries from this
iteration. Then all these points are removed before the next iteration.

The algorithm stops when there are no sets to separate (the remaining points, if
any, belong to only one set). For each set the improvement in classification accuracy
and the objective function value compared to the previous iteration is used as a
stopping criterion for the final piecewise linear boundary between this set and the
rest of the data set.

For the sake of simplicity we split the incremental algorithm into two parts:
Algorithm 2 (outer) and Algorithm 3 (inner). Algorithm 2 contains the main steps
of the method. These steps are the initialization of starting points, the number of
hyperplanes, and the update of the set of undetermined points. Algorithm 3 is called
at each iteration of Algorithm 2. It computes the piecewise linear boundaries for
a given set; refines the set of undetermined points; updates starting points and the
number of hyperplanes for the next iteration of Algorithm 2.

5.1 Algorithm

First, we describe the outer algorithm. Let ε0 > 0 be a tolerance.

Algorithm 2. An incremental algorithm.

1: (Initialization) Set A1
u := Au, Q1

u := /0, u = 1, . . . ,q. Select any starting point
(x,y) such that x ∈ R

n,y ∈ R
1, and set

X1u := x,Y1u := y,∀ u = 1, . . . ,q.

Set

C1 := {1, . . . ,q}, I1u := {1},J1u
1 := {1},r1u := 1,s1

1u := 1, u = 1, . . . ,q,

the number of hyperplanes for class u: l1u := 1 and iteration counter k := 1.

2: (Stopping criterion) If |Ck| ≤ 1 then stop. Otherwise go to Step 3.
3: (Computation of piecewise linear functions) For each u∈Ck apply Algorithm 3.

This algorithm generates a piecewise linear boundary (Xku∗,Yku∗), the set of
indices Ik+1,u, Jk+1,u

i , i ∈ Ik+1,u, a number of hyperplanes lk+1,u, a starting
point (Xk+1,u,Yk+1,u) ∈ R

(n+1)lk+1,u for class u, the set Ak+1
u containing “und-

etermined” points, and the set Qk
u of easily separated points from class u.
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4: (Refinement of set Ck) Refine the set Ck as follows:

Ck+1 = {u ∈Ck : |Ak+1
u |> ε0|Au|}.

Set k := k+1 and go to Step 2.

We will now present the inner algorithm for separating class Au, u ∈ {1, . . . ,q}
from the rest of the data set. At each iteration k of Algorithm 2 we get the subset
Ak

u ⊆ Au of the set u ∈Ck which contains points from this class which are not easily
separated using piecewise linear functions from previous iterations. Let

Q
k
u =

⋃

j=1,...,k

Q j
u

be a set of all points removed from the set Au during the first k > 0 iterations. We
denote

Dk =
⋃

t=1,...,q

(
At \Q

k
t

)
, Ak

u =
⋃

t=1,...,q,t �=u

(
At \Q

k
t

)
.

Algorithm 3 finds a piecewise linear function separating the sets Ak
u and Ak

u. Let
ε1 > 0,ε2 > 0,ε3 > 0 be given tolerances and σ ≥ 1 be a given number.

Algorithm 3. Computation of piecewise linear functions.

Input: Starting points (Xku,Yku) ∈ R
(n+1)lku , the set of indices Iku, Jku

i , i ∈ Iku,
and the number of hyperplanes lku at iteration k of Algorithm 2.

Output: A piecewise linear boundary (Xku∗,Yku∗) ∈R
(n+1)lku , the set of indices

Ik+1,u, Jk+1,u
i , i ∈ Ik+1,u, a number of hyperplanes lk+1,u, a starting point

(Xk+1,u,Yk+1,u) ∈ R
(n+1)lk+1,u for class u, a set of undetermined points Ak+1

u ,
and a set Qk+1

u of easily separated points from class u.

1: (Finding a piecewise linear function) Solve problem (3) over the set Dk starting
from the point (Xku,Yku) ∈ R

(n+1)lku . Let (Xku∗,Yku∗) be the solution to this
problem, f ∗ku be the corresponding objective function value, and f ∗1,ku and f ∗2,ku
be the values of functions f1 and f2, respectively. Let Eku be the error rate for
separating the sets Ak

u and Au
k at iteration k over the set A, that is

Eku =
|{a ∈ Ak

u : ϕk
u(a)> 0}∪{b ∈ Ak

u : ϕk
u(b)< 0}|

|A| ,

where
ϕk

u(a) = max
i∈Iku

min
j∈Jku

i

(〈xi j∗,a〉− yi j∗
)
.

2: (The first stopping criterion) If max{ f ∗1,ku, f ∗2,ku}≤ ε1 then set Ak+1
u = /0, Qk+1

u =

Au \Q
k
u and stop. (Xku∗,Yku∗) is the piecewise linear boundary for set Au.
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3: (The second stopping criterion) If k ≥ 2 and f ∗k−1,u− f ∗ku ≤ ε2 then set Ak+1
u = /0,

Qk+1
u = /0, and stop. (Xku∗,Yku∗) where Xku∗ = Xk−1,u∗,Yku∗ = Yk−1,u∗ is the

piecewise linear boundary for the set Au.

4: (The third stopping criterion) If Eku ≤ ε3 then set Ak+1
u = /0, Qk+1

u = Au \Q
k
u,

and stop. (Xku∗,Yku∗) is the piecewise linear boundary for the set Au.

5: (Refinement of sets of undetermined points) Compute

fku,min = min
a∈Ak

u

ϕk
u(a)

and the following set of easily classified points by the function ϕk
u :

Qk+1
u =

{
a ∈ Ak

u : ϕk
u(a)< σ fku,min

}
.

Refine the set of undetermined points from the set Au as follows:

Ak+1
u = Ak

u \Qk+1
u .

6: (Adding new hyperplanes)

1. If f ∗1,ku > ε1 then set

si
k+1,u = si

ku +1,Jk+1,u
i = Jku

i ∪{si
k+1,u}

for all i ∈ Iku. Set

xi j = xi, j−1,∗,yi j = yi, j−1,∗, i ∈ Iku, j = si
k+1,u.

2. If f ∗2,ku > ε1 then set

rk+1,u = rku +1, Ik+1,u = Iku ∪{rk+1,u},Jk+1,u
rk+1,u

= Jku
rku
.

Set
xi j = xi−1, j,∗,yi j = yi−1, j,∗, i = rk+1,u, j ∈ Jku

rku
.

7: (New starting point) Set

Xk+1,u = (Xku∗,xi j, i ∈ Ik+1,u, j ∈ Jk+1,u
i ),

Yk+1,u = (Yku∗,yi j, i ∈ Ik+1,u, j ∈ Jk+1,u
i ),

lk+1,u = ∑
i∈Ik+1,u

|Jk+1,u
i |.

and go to Step 1.
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5.2 Explanations to the Algorithms

The following explains Algorithm 2 in more detail. In Step 1 we initialize the
starting points, the number of hyperplanes for each class, and the collection C1

of sets to be separated. Step 2 is the stopping criterion verifying that the collec-
tion Ck contains at least two sets to separate. In the third step Algorithm 3 is called
and returns piecewise linear boundaries for each set, the subsets of points not yet
separated by these piecewise linear boundaries, and updated starting points for the
next iteration of Algorithm 2. In Step 4 we refine the set Ck by removing sets fully
separated using piecewise linear boundaries from previous and current iterations.

The following explanations clarify Algorithm 3. In Step 1 we compute a piece-
wise linear function with a preselected number of hyperplanes using the starting
point provided by Algorithm 2. It also computes the separation error rate between
a given class u and the rest of the data set. The algorithm contains three stopping
criteria which are given in Steps 2–4.

• The algorithm terminates if both values f ∗1,ku, f ∗2,ku for class u is less than a given
tolerance ε1 > 0. The last piecewise linear function for this class is accepted as a
boundary between this class and the rest of the data set (Step 2).

• If k ≥ 2 and the difference between values of the error function (for class u) in
two successive iterations is less than a given tolerance ε2 > 0 then the algorithm
terminates. The piecewise linear function from the previous iteration is accepted
as the boundary between this class and the rest of the data set (Step 3).

• Finally, if the error rate is less than a threshold ε3 > 0 then the algorithm termi-
nates and the piecewise linear function from the last iteration is accepted as the
boundary between this class and the rest of the data set (Step 4).

If none of these stopping criteria is met, then in Step 5 we refine the set of und-
etermined points by removing points easily separated using the piecewise linear
functions from the current iteration. In Step 6, depending on the values of the error
function on both sets, we may add new hyperplanes. Finally in Step 7 we update the
starting point and the number of hyperplanes.

As an illustration Fig. 3 shows the result of the first iteration of Algorithm 2
for a data set with three classes A1, A2, and A3. At this iteration we compute one
hyperplane for each set. The data set in its original form is illustrated in Fig. 3a.
We select any starting point in Step 1 of Algorithm 2 and then call Algorithm 3 in
Step 3. Algorithm 3 computes one linear function for each class using one vs all
strategy. A hyperplane given in Fig. 3b presents the linear function separating the
class A1 from the rest of the data set with the minimum error function value. This
hyperplane is computed in Step 1 of Algorithm 3. Then in Step 5 of Algorithm 3
we compute a hyperplane (with dashed lines in Fig. 3c, here σ = 1) by translating
the best hyperplane so that beyond this dashed line only points from the class A1 lie.
We remove all points from the class A1 which lie beyond this line before the next ite-
ration (Step 5 of Algorithm 3) and do not consider them in the following iterations.
These data points can be easily classified using linear separation. We repeat the
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Fig. 3 The first iteration of Algorithm 2 for three sets A1, A2, and A3

same computation for other classes A2 and A3 and remove all data points which can
be classified using linear functions (see Fig. 3d). Then we compute all data points
which lie in the grey area in Fig. 3e. These points cannot be determined by linear
separators and we use only these points to compute piecewise linear boundaries in
the next iteration of Algorithm 2.

6 The HPCAMS Algorithm

Algorithm 2 allows one to find piecewise linear boundaries between pattern classes.
At each iteration the function (2) is minimized. The complexity of the computation
of this function depends on the number of data points. However, in large data sets
many data points lie far away from other classes. Therefore they are not relevant
to the computation of the boundary between their class and other classes. In this
section we propose Algorithm 4 where one PCF is used for each class in order to
eliminate those irrelevant data points before applying Algorithm 2. First, we will
explain each step of Algorithm 4 and then formulate it at the end of this section.

If we fix the point c, then the finding one PCF is a linear programming problem.
Furthermore, if this point is not fixed, then the PCF may eliminate points which are
close to other classes. It is preferable to select a data point which is far away from
the boundary of its associated class as c. In order to find such a point we propose to
use hyperboxes approximating classes. We select c lying inside only one hyperbox
when possible (Step 1) and then we solve the problem (15)–(18). As a result we find
a PCF approximating the interior of the classes (Step 2). Then we eliminate those
points from the data set and apply Algorithm 2 to the remaining points (Step 3).

In the sequel we explain each step of Algorithm 4 in more detail.
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6.1 Computation of Vertices of Polyhedral Conic Sets

In Step 1 of Algorithm 4 we approximate each class by one hyperbox.
Assume that we are given data set A with q ≥ 2 classes A1, . . . ,Aq. For each class

Ai we compute:

ᾱ i
j = min

a∈Ai
a j, β̄ i

j = max
a∈Ai

a j, j = 1, . . . ,n, i = 1, . . . ,q

and define vectors ᾱ i = (ᾱ i
1, . . . , ᾱ

i
n), β̄ i = (β̄ i

1, . . . , β̄
i
n), i = 1, . . . ,q which in turn

define the following hyperboxes in n-dimensional space R
n for i = 1, . . . ,q:

H̄(Ai) = [ᾱ i, β̄ i] ≡ {
x ∈ R

n : ᾱ i
j ≤ x j ≤ β̄ i

j, j = 1, . . . ,n
}
.

All points from the i-th class belong to the hyperbox H̄(Ai).
To ensure that the first components of the vertices of the polyhedral conic sets

lie inside the classes we take a sufficiently small η > 0 and consider the following
extended hyperbox for each class Ai, i = 1, . . . ,q:

H(Ai) = [α i,β i] ≡ {
x ∈ R

n : α i
j ≤ x j ≤ β i

j, j = 1, . . . ,n
}
,

where for j = 1, . . . ,n

α i
j = ᾱ i

j −η(β̄ i
j − ᾱ i

j), β i
j = β̄ i

j +η(β̄ i
j − ᾱ i

j).

The hyperbox H(Ai) can be described as

H(Ai) = {x ∈ R
n : ψi(x)≤ 0},

where the piecewise linear function ψi(x) is defined as follows:

ψi(x) = max
{

α i
j − x j,x j −β i

j, j = 1, . . . ,n
}
.

In order to find the vertex for the i-th polyhedral conic set we define the set

Ri =

{
a ∈ Ai : min

k=1,...,q, k �=i
ψk(a)> 0

}
.

This set contains all points from the i-th class which are outside hyperboxes of
all other classes. First we consider the case when the set Ri �= /0. Figures 4 and 5
illustrate this case. We compute

Q̄1 = min
a∈Ri

ψi(a)

and choose ci as follows:

ci ∈ Ri,ψi(c
i) = Q̄1.
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Fig. 4 Identification of the vertices of the polyhedral conic sets for the two classes
A1 and A2 using hyperboxes
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Fig. 5 Identification of the vertices of the polyhedral conic sets for the three classes
A1, A2, and A3 using hyperboxes

If Ri = /0 then for any a ∈ Ai

min
k=1,...,q, k �=i

ψk(a)≤ 0.

In this case we compute

Q̄2 = max
a∈Ai

min
k=1,...,q, k �=i

ψk(a)

and choose ci as follows:

ci ∈ Ai, min
k=1,...,q, k �=i

ψk(c
i) = Q̄2.
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6.2 Identification of Boundary Points

To identify boundary points we solve the problem (15)–(18). After solving it we find
the values for the vector wi and scalars ξi, γi which define PCFs gi for each class
i = 1, . . . ,q. Then for a given class i ∈ {1, . . . ,q} we compute the following:

δ̄i = min
j=1,...,q, j �=i

min
b∈A j

gi(b).

Consider the level sets of the function gi, i = 1, . . . ,q:

Si(δ ) = {x ∈ R
n : gi(x)≤ δ} , δ ∈ R.

If δ̄i > 0 then the set Si(0) does not contain points from any other classes, it only con-
tains points from the i-th class. If δ̄i ≤ 0 then the set Si(0) also contains points from
other classes. Therefore we replace δ̄i by δ̂i = min{0, δ̄i}. To ensure that boundary
points are not removed, δ̂i is again replaced by the following number:

δi = δ̂i −θ(|γi|− δ̂i)

where θ > 0 is a sufficiently small number. For each class i we can define the fol-
lowing sets:

Di = {a ∈ Ai : gi(a)≤ δi} , i = 1, . . . ,q. (23)

The set Di approximates the interior of the i-th class and it does not contain points
from other classes. We then define the set of boundary points as follows:

Bi = Ai \Di, i = 1, . . . ,q. (24)

Let σ ∈ (0,1) be a sufficiently small number. For each class i = 1, . . . ,q we
introduce the following number:

ri = |Bi|/|Ai|
and then we consider the set

P = {i = 1, . . . ,q : ri > σ} . (25)

If P = /0 then classes Ai, i = 1, . . . ,q can be approximated by their corresponding
sets Di with the sufficiently small error σ . Otherwise we can apply Algorithm 2 over
sets Bi, i ∈ P to find piecewise linear boundaries between classes.

6.3 Outline of the Algorithm

In summary an algorithm for finding piecewise linear boundaries between classes
Ai, i = 1, . . . ,q can be formulated as follows:
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Algorithm 4. Computation of piecewise linear boundaries.

1: (Finding a vertex of a polyhedral conic set) Approximate each class i = 1, . . . ,q
with the hyperbox H(Ai) and compute the point ci of the corresponding poly-
hedral conic set (see Sect. 6.1).

2: (Identifying boundary points) Compute polyhedral conic sets by solving the
problem (15)–(18) and using the points ci, i = 1, . . . ,q. Find the sets Di, i =
1, . . . ,q using (23) and the sets Bi, i = 1, . . . ,q of boundary points using (24)
(see Sect. 6.2). Compute the set P using (25). If |P| ≤ 1 then stop. Otherwise go
to Step 3.

3: (Finding piecewise linear boundaries) Apply Algorithm 2 over sets Bi, i ∈ P to
find piecewise linear boundaries between classes (see Sect. 5).

Algorithm 4 is illustrated in Fig. 6.
We call this algorithm the HPCAMS algorithm. This algorithm generates one

PCF gi for each class i = 1, . . . ,q. It also generates piecewise linear functions ϕi for
classes i ∈ P when |P| > 1. If i �∈ P then we set ϕi(x) ≡ +∞. If |P| ≤ 1 then we set
ϕi(x) ≡ +∞ for all i = 1, . . . ,q. Then the function Ψi separating the i-th class from
the rest of the data set can be computed as follows:

Ψi(x) = min{gi(x), ϕi(x)} , i = 1, . . . ,q. (26)

6.4 Implementation of the Algorithm

In this subsection we describe the conditions for the implementation of Algorithm 4.
As mentioned earlier this algorithm consists of two stages. In the first stage we
compute PCFs approximating classes (Steps 1 and 2). There are three tolerances in
this stage, in Step 1 η > 0 and in Step 2 θ > 0 and σ > 0. We take η = 0.1, θ = 0.05,
and σ = 0.01.

In the second stage we apply Algorithm 2 to find piecewise linear boundaries
(Step 3). This algorithm contains one tolerance ε0 ≥ 0. We choose ε0 = 0.01. The
following conditions have been chosen for the implementation of Algorithm 3.

1. The values of tolerances ε1 > 0,ε2 > 0, and ε3 > 0 are:

ε1 = 0.005, ε2 = f ∗1 /100, ε3 = 0.001,

where f ∗1 is the optimal value of the objective function for linear separation.
2. We restrict the number of hyperplanes to 10.
3. In Step 1 of Algorithm 3 we use the discrete gradient method of [8, 9] as modi-

fied in [11] to solve minimization problem (3).

We implemented the algorithm in Fortran 95 and compiled it using the Lahey
Fortran compiler on a 1.83 GHz Intel Pentium IV CPU with 1 GB of RAM running
Windows XP.
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Fig. 6 Algorithm 4 for three sets A1, A2, and A3

6.5 Classification Rules

To compute piecewise linear boundaries between classes we use the one vs all strat-
egy, that is, for each class i we consider this class as one class and the rest of the
data set as a second class. Then we apply Algorithm 4 to separate the i-th class from
the rest of the data set. This means that for each class i Algorithm 4 generates the
separating function Ψi defined in (26). Then we can apply the following classifi-
cation rule to classify new data points (observations). If the new point v belongs
to the set Di then we classify it to the i-th class. If this point does not belong
to any of the sets Di, i = 1, . . . ,q then we compute the values Ψ1(v), . . . ,Ψq(v)
and classify this point to the class i associated with the minimum function value:
i = argmin{Ψ1(v), . . . ,Ψq(v)}.
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7 Computational Results

We tested the HPCAMS algorithm on medium sized and large-scale real-world data
sets readily available from the UCI machine learning repository [5]. The selected
data sets contain either continuous or integer attributes and have no missing values.
Table 2 contains a brief description of the characteristics of the data sets. This table
contains the number of data points in training and test sets. The class attribute is
included in the number of attributes in this table.

Table 2 Brief description of data sets

Data sets (Train, test) No. of No. of
attributes classes

Shuttle control (SH) (43,500, 14,500) 10 7
Letter recognition (LET) (15,000, 5,000) 17 26

Landsat satellite
image (LSI) (4,435, 2,000) 37 6

Pen-based recognition of
handwritten digits (PD) (7,494, 3,498) 17 10

Page blocks (PB) (4,000, 1,473) 11 5
Optical recognition of

handwritten digits (OD) (3,823, 1,797) 65 10
Spambase (SB) (3,682, 919) 58 2
Abalone (AB) (3,133, 1,044) 9 3

DNA (2,000, 1,186) 180 3
Isolet (ISO) (6,238, 1,559) 618 26

Phoneme CR (PHON) (4,322, 1,082) 6 2
Texture CR (TEXT) (4,400, 1,100) 41 11

In our experiments we used some classifiers from WEKA (Waikato Environment
for Knowledge Analysis) for a comparison. WEKA is a popular machine learn-
ing suite for data mining tasks written in Java and developed at the University
of Waikato, New Zealand (see for details [42]). We chose representatives of each
type of classifier from WEKA: Naive Bayes (with kernel) (NB kernel), Logistic,
Multi-Layer Perceptron (MLP), Linear LIBSVM (LIBSVM (LIN)), support vec-
tor machines classifier SMO with normalized polynomial kernel (SMO (NPOL)),
SMO (PUK), a decision tree classifier J48 (which is an implementation of the C4.5
algorithm), and a rule-based classifier PART. The classifiers chosen produced an
overall better accuracy than other classifiers. We also include the original incremen-
tal max–min separability algorithm (CIMMS) from Sect. 5 in our experiments.

We apply all algorithms from WEKA with the default parameter values. We put
the following limits: 3 h of CPU time (for training and testing) and 1 GB of memory
usage. In the tables a dash line shows that an algorithm exceeded one of these limits.
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Tables 3 and 4 contain test set accuracy on different data sets using different
classifiers. One can see that in most of the data sets (except Optical recognition of
handwritten digits, Phoneme CR, Landsat satellite image, Isolet and Page blocks)
the classification accuracy achieved over the test set by the HPCAMS algorithm is
either the best or comparable with the best accuracy.

Table 3 Test set accuracy for different classifiers

Data set AB DNA LSI LET OD PD
Classifier

NB(kernel) 57.85 93.34 82.10 74.12 90.32 84.13
Logistic 64.27 88.36 83.75 77.40 92.21 92.85

MLP 63.51 93.68 88.50 83.20 96.55 89.85
LIBSVM (LIN) 60.73 93.09 85.05 82.40 96.55 95.00
SMO (NPOL) 60.25 95.36 79.60 82.34 96.66 96.86
SMO (PUK) 64.18 57.93 91.45 – 96.61 97.88

J48 60.15 92.50 85.35 87.70 85.75 92.05
PART 57.95 91.06 85.25 87.32 89.54 93.65

CIMMS 65.80 93.42 88.15 91.90 94.27 96.63
HPCAMS 66.09 94.18 87.15 91.04 93.10 96.57

Table 4 Test set accuracy for different classifiers (cont.)

Data set PHON SH TEXT ISO PB SB
Classifier

NB(kernel) 76.53 98.32 81.00 – 88.39 76.17
Logistic 74.58 96.83 99.64 – 91.72 92.06

MLP 81.52 99.75 99.91 – 92.80 92.06
LIBSVM (LIN) 77.54 – 99.18 96.02 87.03 90.97
SMO (NPOL) 78.74 96.81 97.27 – 89.48 92.60
SMO (PUK) 83.27 99.50 99.55 – 88.53 93.04

J48 85.67 99.95 93.91 83.45 93.55 92.93
PART 82.72 99.98 93.82 82.81 92.46 91.40

CIMMS 81.05 99.84 99.82 95.19 87.10 93.80
HPCAMS 80.13 99.86 99.36 93.52 89.55 93.47

Table 5 presents pairwise comparison of the HPCAMS classifier with other clas-
sifiers using test set accuracy. The table contains the number of data sets and their
proportion where the HPCAMS algorithm achieved better testing accuracy. These
results demonstrate that the HPCAMS algorithm performs well on test set in com-
parison with other classifiers. Comparison with the CIMMS algorithm shows that
on some data sets boundary between classes is highly nonlinear and application of
PCFs may remove some points from the boundary. In such cases CIMMS algorithm
achieves better accuracy than the HPCAMS algorithm. However, in most cases the
difference in accuracy is less than 1 %.
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Table 4 presents training and testing time for the HPCAMS algorithm and train-
ing time for the CIMMS algorithm. Results demonstrate that the use of PCFs allows
us to significantly reduce training time on data sets with a large number of data
points. However, the HPCAMS algorithm still requires a longer training time than
most of the other tested classifiers. The proposed algorithm is very fast in testing
phase for all data sets. Results show that testing of the new algorithm is similar to
that of Neural Network classifier MLP, Logistic classifier, and CIMMS. Decision
tree and rule-based classifiers use more testing time than the proposed algorithm.
SVM algorithms use 1–2 order more testing time than the HPCAMS algorithm.

Table 5 Pairwise comparison of the HPCAMS classifier with others using testing
accuracy

Classifier No. of data sets Proportion (%)
NB(kernel) 12 100

Logistic 10 83.33
MLP 7 58.33

LIBSVM(LIN) 10 83.33
SMO (NPOL) 9 75.00
SMO (PUK) 7 58.33

J48 9 75.00
PART 8 75.00

CIMMS 4 33.33

Table 6 Training and testing time (in seconds)

Data set Training time Training time Testing time
CIMMS HPCAMS HPCAMS

AB 27.22 37.03 0.00
DNA 32.06 42.27 0.03
LSI 523.28 451.67 0.03
LET 9,941.34 7,389.73 0.16
OD 81.88 106.31 0.05
PD 203.02 158.91 0.03

PHON 34.75 39.13 0.00
SH 782.47 731.70 0.03

TEXT 47.28 55.33 0.02
ISO 3,927.3 2,994.64 1.86
PB 27.63 89.55 0.02
SB 295.23 240.20 0.02

It should be noted that in order to implement the HPCAMS classifier it is suf-
ficient to save in memory one polyhedral conic and one piecewise linear functions
for each class. Therefore the memory usage of the HPCAMS classifier is very low.
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8 Conclusion

In this chapter we have developed a new algorithm for the computation of piece-
wise linear boundaries between pattern classes. This algorithm consists of two main
stages. In the first stage we compute one PCF for each class in order to identify data
points which lie on or close to the boundaries between classes. In the second stage
we apply the max–min separability algorithm to find piecewise linear boundaries
using only those data points. Such an approach allows us to reduce the training time
of the max–min separability algorithm from [10] on large data sets by 3–10 times.
The new algorithm provides almost instantaneous testing and has a low memory us-
age. We present the results of numerical experiments. These results demonstrate that
the proposed algorithm consistently produces a good test set accuracy on most data
sets when comparing with a number of other mainstream classifiers. However, the
proposed algorithm requires more training time than most of the other classifiers.
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Variational Inequality Models Arising
in the Study of Viscoelastic Materials

Oanh Chau, Daniel Goeleven, and Rachid Oujja

1 Thermo-Viscoelastic Models

Because of their considerable impact in everyday life and their multiple open
problems, contact mechanics still remain a rich and fascinating domain of challenge.
The literature devoted to various aspects of the subject is considerable, it concerns
the modelling, the mathematical analysis as well as the numerical approximation of
the related problems.

For example, many food materials used in process engineering are viscoelastic
[18] and consequently, mathematical models can be very helpful in understanding
various problems related to the product development, packing, transport, shelf life
testing, thermal effects, and heat transfer. It is thus important to study mathematical
models that can be used to describe the dynamical behavior of a given viscoelastic
material subjected to various highly nonlinear and even non-smooth phenomena like
contact, friction, and thermal effects.

A panoply of tools and approaches are needed to face the multiple difficul-
ties of the problems. Abstract functional nonlinear analysis could be found in
[5, 7, 14, 20, 26]. An early attempt at the study of contact problems for elastic
and viscoelastic materials within the applied mathematical analysis framework was
introduced in the pioneering reference works [12, 13, 19, 22]. For the error esti-
mates analysis and numerical approximation, the reader can refer to [11, 15, 17].
Further extensions to non-convex contact conditions with non-monotone and possi-
ble multi-valued constitutive laws led to the active domain of non-smooth mechanic
within the framework of the so-called hemivariational inequalities, for a mathemat-
ical as well as mechanical treatment we refer to [16, 23]. Finally, the mathematical,
mechanical, and numerical state of the art can be found in the proceedings [25].
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The basic mechanical contact problem is the following. We consider a
deformable body which occupies a bounded domain Ω ⊂ R

d (d = 1 or 2 or 3),
with a Lipschitz boundary Γ and let ν denote the unit outer normal on Γ . The
body is acted upon by given forces and tractions. As a result, its mechanical state
evolves over the time interval [0,T ], T > 0. We assume that the boundary Γ of Ω is
partitioned into three disjoint measurable parts Γ1, Γ2, and Γ3. The body is clamped
on Γ1 × (0,T ). Here, we are interested in various natures of Γ1. In case of classical
fixed condition, the property meas(Γ1) > 0 holds (see [1, 3, 8, 10]), which allows
to use the well-known Korn’s inequality. In case of a free boundary, we consider
meas(Γ1) = 0, where Γ1 is reduced to one point or eventually may be an empty
set. This last case presents a source of additional difficulties and new approach is
necessary (see [2, 10]). We suppose also that surface tractions of density f 2 act on
Γ2 × (0,T ). The solid is in frictional contact with a rigid obstacle on Γ3 × (0,T ),
where various contact conditions may be considered. Moreover, a volume force of
density f 0 acts on the body in Ω × (0,T ) (see Fig. 1).

In this paper, u = (ui) denotes the displacement field, σ = (σi j) is the stress field,
and ε(u) = (εi j(u)) denotes the linearized strain tensor.

In what follows, for simplification, we don’t indicate explicitly the dependence
of functions with respect to x ∈ Ω ∪Γ and t ∈ [0,T ]. Everywhere in the sequel,
the indexes i and j run from 1 to d, summation over repeated indices is implied,
and the index that follows a comma represents the partial derivative with respect to
the corresponding component of the independent variable. Moreover the dot above
represents the time derivative, i.e.,

u̇ =
du
dt

, ü =
d2u
dt2 .

Let us denote the mass density by ρ : Ω −→R+. The dynamical evolution of the
body is described by the following equation of motion

ρ ü =Div σ + f 0 in Ω × (0,T ).

Here ü represents the acceleration of the dynamical process.

ν

Γ3

f0
Γ1 Γ2

Ω

f2

Fig. 1 The mechanical contact problem
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1.1 Thermo-Viscoelastic Constitutive Law

For viscoelastic materials, the body follows a constitutive law of Kelvin–Voigt’s
type in the form

σ(t) =Aε(u̇(t))+Gε(u(t)),

where A and G are generally nonlinear functions, A represents the viscosity opera-
tor, and G the elasticity operator.

In the case of linear Kelvin–Voigt constitutive law, we have

σi j = ai jkl εkl(u̇)+gi jkl εkl(u),

where A= (ai jkl) is the viscosity tensor and G= (gi jkl) the elasticity tensor.
This last law is qualified as of short memory, for it is instantaneous and takes

place at each time t.
The long memory viscoelastic constitutive law is defined by

σ(t) =Aε(u̇(t))+Gε(u(t))+
∫ t

0
B(t − s)ε(u(s))ds in Ω .

Here B is the so-called tensor of relaxation which defines the long memory
behavior of the material. The above convolution term represents a kind of sum of all
the elasticity of the body through the past, from the initial time to the present time.
Of course, as a particular case, when B≡ 0, we recover the usual visco-elasticity of
short memory.

In order to complete the last law with some additional thermal effects, we con-
sider the following Kelving–Voigt’s long memory thermo-viscoelastic constitutive
law

σ(t) =Aε(u̇(t))+Gε(u(t))+
∫ t

0
B(t − s)ε(u(s))ds−θ(t)Ce in Ω ,

where Ce := (ci j) represents the thermal expansion tensor and θ is the temperature
field.

1.2 The Temperature Field

We suppose that the evolution of the temperature field θ is governed by the heat
equation (see [7, 8]) obtained from the conservation of energy and defined by the
following differential equation

θ̇ −div(K ∇θ) = r(u̇(t))+q(t),
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where K = (ki j) represents the thermal conductivity tensor, div(K ∇θ) = (ki jθ, j),i,
q(t) the density of volume heat sources, and r(u̇(t)) a nonlinear function of the
velocity. Usually, the following linear function is used

r(u̇(t)) =−ci ju̇i, j(t).

The associated temperature boundary condition on Γ3 is described by

ki j θ,i n j =−ke (θ −θR) on Γ3 × (0,T ),

where θR is the temperature of the foundation and ke is the heat exchange coefficient
between the body and the obstacle.

1.3 Subdifferential Contact Condition

Let us here describe the surface contact condition on Γ3. We model the frictional
contact with a general subdifferential boundary condition of the form

u ∈U, ϕ(v)−ϕ(u̇)≥ −σν (v− u̇) ∀v ∈U. (1)

In this condition, U represents the set of contact admissible test functions, σν
denotes the Cauchy stress vector on the contact boundary, and ϕ : Γ3 ×R

d −→ R

is a given convex function. The inequality in (1) holds almost everywhere on the
contact surface. Various situations may be modeled by such a condition. Examples
and detailed explanations of inequality problems in contact mechanics which lead
to boundary conditions of this form can be found in [9, 23].

Here we present some examples of contact and dry friction laws which lead to
such subdifferential inequality.

Example 1. Bilateral contact with Tresca’s friction law. This contact condition can
be found in [13, 23]. It is written in the form of the following boundary condition:

⎧
⎨

⎩

uν = 0, |στ | ≤ g,
|στ |< g =⇒ u̇τ = 0, on Γ3 × (0,T ).
|στ |= g =⇒ u̇τ =−λστ , λ ≥ 0

(2)

Here g ≥ 0 represents the friction bound, i.e., the magnitude of the limiting friction
traction at which slip begins. The contact is assumed to be bilateral, i.e., there is no
loss of contact during the process.

The set of admissible test functions U consists of those elements of H1 whose
normal component vanishes on Γ3.

Moreover, it is straightforward to show that if {u,σ} is a pair of regular functions
satisfying (1) then

σ ν(v− u̇)≥ g|u̇τ |−g|vτ | ∀v ∈U,
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a.e. on Γ3 × (0,T ). We get the following contact functional

ϕ(v) = g|vτ |.

Example 2. Viscoelastic contact with Tresca’s friction law. We consider the contact
problem with the boundary conditions

⎧
⎨

⎩

−σν = k|u̇ν |r−1u̇ν , |στ | ≤ g,
|στ |< g =⇒ u̇τ = 0, on Γ3 × (0,T ).
|στ |= g =⇒ u̇τ =−λστ , λ ≥ 0

(3)

Here g,k ≥ 0 and the normal contact stress depends on a power of the normal speed
(this condition may describe the motion of a body, say a wheel, on a fine granular
material, say the sand on a beach). We have U = H1, 0 < r ≤ 1, and

ϕ(v) =
k

r+1
|vν |r+1 +g|vτ |.

Example 3. Viscoelastic contact with friction. Here, the body is moving on sand or
a granular material and the normal stress is proportional to a power of the normal
speed, while the tangential shear is proportional to a power of the tangential speed.
We choose the following boundary conditions:

−σν = k|u̇ν |r−1u̇ν , στ =−μ |u̇τ |p−1u̇τ on Γ3 × (0,T ). (4)

Here μ ∈ L∞(Γ3) and k ∈ L∞(Γ3) are positive functions and 0 < p, r ≤ 1. We choose
U = H1, V = { v ∈ H1 | v = 0 on Γ1 }, and

ϕ(v) =
k

r+1
|vν |r+1 +

μ
p+1

|vτ |p+1.

Remark 1. In the examples above, the normal pressure as well as the tangential stress
is related to powers of the normal and tangential speeds. This is dictated by the
structure of the functional ϕ which depends only on the surface velocity.

1.4 Notation and Functional Spaces

In this short section, we present the notations we shall use and some preliminary
materials for functional spaces. For further details, we refer the reader to [13].

We denote by Sd the space of second order symmetric tensors on R
d (d = 2,3),

while “ · ” and | · | will represent the inner product and the Euclidean norm on Sd

and R
d . Let Ω ⊂ R

d be a bounded domain with a Lipschitz boundary Γ and let ν
denote the unit outer normal on Γ . We also use the following notation:
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H = {u = (ui) | ui ∈ L2(Ω)}, H = {σ = (σi j) | σi j = σ ji ∈ L2(Ω)},

H1 = {u ∈ H | ε(u) ∈H}, H1 = {σ ∈H |Div σ ∈ H }.
Here ε : H1 −→ H and Div : H1 −→ H are the deformation and the divergence
operators respectively defined by:

ε(u) = (εi j(u)), εi j(u) =
1
2
(ui, j +u j,i), Div σ = (σi j, j).

The spaces H, H, H1, and H1 are real Hilbert spaces endowed with the cannonical
inner products given by:

〈u,v〉H =
∫

Ω
uivi dx, 〈σ ,τ〉H =

∫

Ω
σi jτi j dx,

〈u,v〉H1 = 〈u,v〉H + 〈ε(u),ε(v)〉H, 〈σ ,τ〉H1 = 〈σ ,τ〉H+ 〈Div σ ,Div τ〉H .

The associated norms on the spaces H, H, H1, and H1 are denoted by | · |H , | · |H,
| · |H1 and | · |H1 , respectively.

Let HΓ = H
1
2 (Γ )d and let γ : H1 −→ HΓ be the trace map. For every element

u ∈ H1, we also use the notation u to denote the trace γu of u on Γ and we denote
by uν and uτ the normal and the tangential components of u on Γ given by:

uν = u ·ν , uτ = u−uν ν . (5)

Let H ′
Γ be the dual of HΓ and let < ·, ·> denote the duality pairing between H ′

Γ and
HΓ . For every σ ∈H1, σν can be defined as the element in H ′

Γ which satisfies:

〈σν ,γu〉= 〈σ ,ε(u)〉H+ 〈Div σ ,u〉H ∀u ∈ H1. (6)

Let also σν and στ denote the normal and tangential traces of σ , respectively. If σ
is a smooth function, e.g., σ ∈C1, then

〈σν ,γu〉=
∫

Γ
σν ·uda ∀u ∈ H1 (7)

where da is the surface measure element and

σν = (σν) ·ν, στ = σν −σν ν . (8)

Finally, we recall that C([0,T ];X) is the space of continuous functions from [0,T ]
to X ; while Cm([0,T ];X) (m ∈ N

∗) is the set of m times differentiable functions.
Then D(Ω) denotes the set of infinitely differentiable real functions with compact
support in Ω . We will also use the Lesbesgue spaces Lp(0,T ;X); and the Sobolev
spaces:

W m,p(0,T ;X), Hm
0 (Ω) := {w ∈W m,2(Ω), w = 0 on Γ },

where m ≥ 1 and 1 ≤ p ≤+∞.



Variational Inequality Models Arising in the Study of Viscoelastic Materials 39

2 Dynamic Contact Problems with Clamped Condition

In this section, we present the results obtained in [1, 3, 8, 10] with the usual fixed
condition. In [8], the authors (Chau and Awbi) analyze a problem which describes
the frictional contact between a short memory thermo-viscoelastic body and a rigid
foundation. The process is assumed to be quasistatic and the contact is modeled
by a normal damped response condition with friction law. Moreover, heat exchange
condition has been taken into account on the contact surface. The mechanical model
is described as a coupled system of a variational elliptic equality for the displace-
ments and a differential heat equation for the temperature. Then the authors present
a variational formulation of the problem and establish the existence and unique-
ness of weak solution in using general results on evolution equations with mono-
tone operators and fixed point arguments. In [1], the constitutive law has been ex-
tended to a long memory viscoelastic type and the contact has been modeled by a
general subdifferential condition on the velocity. The authors (K. Addi, O. Chau,
and D. Goeleven) derive weak formulations for the models and establish existence
and uniqueness results. The proofs are based on evolution variational inequalities,
in the framework of monotone operators and fixed point methods. The quasistatic
evolution in these two latter works has been then extended to dynamic process for
long memory thermo-viscoelastic materials in [3]. Finally, the authors (O. Chau, D.
Goeleven, and R. Oujja) complete the study by numerical approximations in [10],
where analysis of error order estimate and various simulations have been provided.
The dynamic mechanical problem for long memory thermo-viscoelastic materials
subjected to subdifferential contact condition and to clamped condition is then for-
mulated as follows.

Problem Q : Find a displacement field u : Ω × [0,T ] −→ R
d , a stress field σ :

Ω × [0,T ] −→ Sd , and a temperature field θ : Ω × [0,T ] −→ R+ such that for a.e.
t ∈ (0,T ):

σ(t) =Aε(u̇(t))+Gε(u(t))+
∫ t

0
B(t − s)ε(u(s))ds−θ(t)Ce in Ω , (9)

ü(t) = Divσ(t)+ f 0(t) in Ω , (10)

u(t) = 0 on Γ1, (11)

σ(t)ν = f 2(t) on Γ2, (12)

u(t) ∈U, ϕ(w)−ϕ(u̇(t))≥ −σ(t)ν · (w− u̇(t)) ∀w ∈U on Γ3, (13)

θ̇(t)−div(Kc ∇θ(t)) =−ci j
∂ u̇i

∂ x j
(t)+q(t) on Ω , (14)

− ki j
∂ θ
∂ x j

(t)ni = ke (θ(t)−θR) on Γ3, (15)
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θ(t) = 0 on Γ1 ∪Γ2, (16)

θ(0) = θ0 in Ω , (17)

u(0) = u0, u̇(0) = v0 in Ω . (18)

Here, we suppose that meas(Γ1) > 0 and the mass density ρ ≡ 1. We suppose also
that the set of contact admissible test functions verifies

D(Ω)d ⊂U ⊂ H1.

Finally, u0, v0, θ0 represent, respectively, the initial displacement, velocity, and tem-
perature.

To obtain the variational formulation of the mechanical problems (9)–(18) we
need additional notations. Thus, let V denote the closed subspace of H1 defined by

D(Ω)d ⊂V = {v ∈ H1 | v = 0 on Γ1 }∩U.

We set

E = {η ∈ H1(Ω), η = 0 on Γ1 ∪Γ2}, F = L2(Ω).

Since meas Γ1 > 0, Korn’s inequality holds, i.e., there exists CK > 0 which depends
only on Ω and Γ1 such that

‖ε(v)‖H ≥CK ‖v‖H1 ∀v ∈V.

A proof of Korn’s inequality may be found in [21, p. 79].
On V we consider the inner product given by

(u,v)V = (ε(u),ε(v))H ∀u, v ∈V,

and let ‖ · ‖V be the associated norm, i.e.,

‖v‖V = ‖ε(v)‖H ∀v ∈V.

It follows that ‖ ·‖H1 and ‖ ·‖V are equivalent norms on V and therefore (V,‖ ·‖V ) is
a real Hilbert space. Moreover, by the Sobolev’s trace theorem, we have a constant
C0 > 0 depending only on Ω , Γ1, and Γ3 such that

‖v‖L2(Γ3)
≤ C0 ‖v‖V ∀v ∈V.

In the study of the mechanical problem (9)–(18), we assume the following condi-
tions (see e.g. [3, 20]).
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The viscosity operator A : Ω ×Sd −→ Sd satisfies:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) there exists LA > 0 such that
|A(x,ε1)−A(x,ε2)| ≤ LA|ε1 − ε2|
∀ε1, ε2 ∈ Sd , a.e. x ∈ Ω ,

(b) there exists mA > 0 such that
(A(x,ε1)−A(x,ε2)) · (ε1 − ε2)≥ mA |ε1 − ε2|2
∀ε1, ε2 ∈ Sd , a.e. x ∈ Ω ,

(c) x �−→A(x,ε) is Lebesgue measurable on Ω ,∀ε ∈ Sd ,

(d) the mapping x �−→A(x,0) ∈H.

(19)

The elasticity operator G : Ω ×Sd −→ Sd satisfies:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(a) there exists LG > 0 such that
|G(x,ε1)−G(x,ε2)| ≤ LG|ε1 − ε2|
∀ε1, ε2 ∈ Sd , a.e. x ∈ Ω ,

(b) x �−→ G(x,ε) is Lebesgue measurable on Ω ,∀ε ∈ Sd ,

(c) the mapping x �−→ G(x,0) ∈H.

(20)

The relaxation tensor B : [0,T ] × Ω × Sd −→ Sd , (t,x,τ) �−→ (Bi jkh(t,x)τkh)
satisfies

⎧
⎪⎨

⎪⎩

(i) Bi jkh ∈W 1,∞(0,T ;L∞(Ω)),

(ii) B(t)σ · τ = σ ·B(t)τ
∀σ ,τ ∈ Sd , a.e. t ∈ (0,T ), a.e. in Ω .

(21)

We suppose that the body forces and surface tractions satisfy

f 0 ∈W 1,2(0,T ;H), f 2 ∈W 1,2(0,T ;L2(Γ2)
d). (22)

We assume that the thermal tensor and the heat source density satisfy the conditions:

Ce = (ci j), ci j = c ji ∈ L∞(Ω), q ∈W 1,2(0,T ;L2(Ω)). (23)

The boundary thermic data are supposed to satisfy the regularity condition:

ke ∈ L∞(Ω ; R+), θR ∈W 1,2(0,T ;L2(Γ3)). (24)

We suppose that the thermal conductivity tensor verifies the usual symmetry and
ellipticity properties, i.e., for some ck > 0 and for all (ξi) ∈ R

d :

Kc = (ki j), ki j = k ji ∈ L∞(Ω), ki j ξiξ j ≥ ck ξiξi. (25)

We assume that the initial data satisfy the conditions

u0 ∈ V, v0 ∈ V, θ0 ∈ E. (26)

On the contact surface, the following frictional contact function

ψ(w) :=
∫

Γ3

ϕ(w)da
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is assumed to verify

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) ψ : V −→ R is well defined, continuous, and convex,

(ii) there exists a sequence of differentiable convex functions

(ψn) : V −→ R such that ∀w ∈ L2(0,T ;V ),
∫ T

0
ψn(w(t))dt −→

∫ T

0
ψ(w(t))dt, n −→+∞,

(iii) for all sequence (wn) and w in W 1,2(0,T ;V ) such that

wn ⇀ w, w′
n ⇀ w′ weakly in L2(0,T ;V ),

then liminf
n−→+∞

∫ T

0
ψn(wn(t))dt ≥

∫ T

0
ψ(w(t))dt,

(iv) if w ∈V, w = 0 on Γ3, then ∀n ∈ N, ψ ′
n(w) = 0V ′ .

(27)

Here ψ ′
n(v) denotes the Fréchet derivative of ψn at v.

Using Green’s formula, we obtain the variational formulation of the mechanical
problem Q as follows.

Problem QV : Find u : [0,T ]→V , θ : [0,T ]→ E satisfying a.e. t ∈ (0,T ):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈ü(t)+Au̇(t)+Bu(t)+C θ(t), w− u̇(t)〉V ′×V

+

(∫ t

0
B(t − s)ε(u(s))ds,ε(w)− ε(u̇(t))

)

H

+ψ(w)−ψ(u̇(t)),

≥ 〈 f (t), w− u̇(t)〉V ′×V ∀w ∈V,

θ̇(t)+K θ(t) = Ru̇(t)+Q(t) in E ′,
u(0) = u0, u̇(0) = v0, θ(0) = θ0.

Here the operators and functions A, B : V −→ V ′, C : E −→ V ′, ψ : V −→ R,
K : E −→ E ′, R : V −→ E ′, f : [0,T ] −→ V ′, and Q : [0,T ] −→ E ′ are defined by
∀v ∈V , ∀w ∈V , ∀τ ∈ E, ∀η ∈ E:

〈Av,w〉V ′×V = (A(εv),εw)H,

〈Bv,w〉V ′×V = (G(εv),εw)H,

〈Cτ ,w〉V ′×V =−(τ Ce, εw)H,

〈 f (t),w〉V ′×V = ( f 0(t),w)H +( f 2(t),w)(L2(Γ2))d ,

〈Q(t),η〉E ′×E =
∫

Γ3

ke θR(t)η dx+
∫

Ω
q(t)η dx,

〈K τ ,η〉E ′×E =
d

∑
i, j=1

∫

Ω
ki j

∂τ
∂x j

∂η
∂xi

dx+
∫

Γ3

ke τ ·η da,

〈Rv,η〉E ′×E =−
∫

Ω
ci j

∂vi

∂x j
η dx.

Let us recall now the following main mathematical result (see for details [3]):
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Theorem 1. Assume that (19)–(27) hold. Then there exists an unique solution {u,θ}
to problem QV with the regularity:

{
u ∈W 2,2(0,T ;V )∩W 2,∞(0,T ;H),

θ ∈W 1,2(0,T ;E)∩W 1,∞(0,T ;F).

2.1 Analysis of a Numerical Scheme

In this section, we study a fully discrete numerical approximation scheme of the
variational problem QV (see [10]). For this purpose, we suppose in the following
that the conditions on the data (19)–(27) of Theorem 1 are satisfied. In particular,
we have

f ∈C([0,T ];V ′), Q ∈C([0,T ];E ′).

Let {u,θ} be the unique solution of the problem QV and let us introduce the velocity
variable

v(t) = u̇(t), ∀t ∈ [0,T ].

Then

u(t) = u0 +
∫ t

0
v(s)ds, ∀t ∈ [0,T ].

From Theorem 1 we see that {v,θ} verify for all t ∈ [0,T ]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈v̇(t)+Av(t)+Bu(t)+C θ(t),w− v(t)〉V ′×V

+

(∫ t

0
B(t − s)ε(u(s))ds,ε(w)− ε(u̇(t))

)

H

+ψ(w)−ψ(v(t))

≥ 〈 f (t), w− v(t)〉V ′×V , ∀w ∈V.

(28)

〈θ̇(t),η〉F + 〈K θ(t),η〉E ′×E = 〈Rv(t),η〉E ′×E + 〈Q(t),η〉E ′×E , ∀η ∈ E. (29)

u(0) = u0, v(0) = v0, θ(0) = θ0, (30)

with the regularity:
{

v ∈W 1,2(0,T ;V )∩W 1,∞(0,T ;H),

θ ∈W 1,2(0,T ;E)∩W 1,∞(0,T ;F).
(31)

In this section, we make the following additional assumptions on the solution and
contact function:

v ∈W 2,2(0,T ;H), (32)

θ ∈W 2,2(0,T ;F), (33)

ψ is Lipschitz continuous on V. (34)
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Let V h ⊂ V and Eh ⊂ E be a family of finite dimensional subspaces, with h > 0
a discretization parameter. We divide the time interval [0,T ] into N equal parts:
tn = nk, n = 0,1, . . . ,N, with the time step k = T/N. For a continuous function
w ∈C([0,T ];X) with values in a space X , we use the notation wn = w(tn) ∈ X . Then
from (28) and (29) we introduce the following fully discrete scheme.

Problem Phk. Find vhk = {vhk
n }N

n=0 ⊂V h, θ hk = {θ hk
n }N

n=0 ⊂ Eh such that

vhk
0 = vh

0, θ hk
0 = θ h

0 (35)

and for n = 1, . . . ,N,

(
vhk

n − vhk
n−1

k
, wh − vhk

n

)

H

+ 〈Avhk
n , wh − vhk

n 〉V ′×V + 〈Buhk
n−1, wh − vhk

n 〉V ′×V

+ 〈C θ hk
n−1, wh − vhk

n 〉V ′×V +ψ(wh)−ψ(vhk
n )

+

(

k
n−1

∑
m=0

B(tn − tm)ε(uhk
m ), ε(wh)− ε(vhk

n )

)

H

≥ 〈 f n, wh − vhk
n 〉V ′×V , ∀wh ∈V h,

(36)

(
θ hk

n −θ hk
n−1

k
, ηh

)

F

+ 〈K θ hk
n , ηh〉E ′×E

= 〈Rvhk
n , ηh〉E ′×E + 〈Qn,ηh〉E ′×E , ∀ηh ∈ Eh,

(37)

where
uhk

n = uhk
n−1 + k vhk

n , uhk
0 = uh

0. (38)

Here uh
0 ∈V h, vh

0 ∈V h, θ h
0 ∈ Eh are suitable approximations of the initial values u0,

v0, θ0.
For n= 1, . . . ,N, suppose that uhk

n−1, vhk
n−1, θ hk

n−1 are known. We may then calculate
vhk

n by (36), θ hk
n by (37), and uhk

n by (38). Hence the discrete solution vhk ⊂ V h,
θ hk ⊂ Eh exists and is unique.

We now turn to an error analysis of the numerical solution. The main result of
this section is the following one (see for details [10]).

Theorem 2. We keep the assumptions of Theorem 1. Under the additional assump-
tions (32)–(33), then for the unique solution vhk ⊂ V h, θ hk ⊂ Eh of the discrete
problem Phk, we have the following error estimate
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max
1≤n≤N

‖vn − vhk
n ‖2

H +

(

k
N

∑
n=1

‖vn − vhk
n ‖2

V

)

+ max
1≤n≤N

‖θn −θ hk
n ‖2

F +

(

k
N

∑
n=1

‖θn −θ hk
n ‖2

E

)

≤ c‖u0 −uh
0‖2

V + c‖v0 − vhk
0 ‖2

H + c‖θ0 −θ h
0 ‖2

F + c max
1≤n≤N

‖vn −wh
n‖H

+ c max
1≤n≤N

‖θn −ηh
n‖2

F + ck
N

∑
j=1

‖v j −wh
j‖2

V + ck
N

∑
j=1

‖θ j −ηh
j ‖2

E

+ c

(
N−1

∑
j=1

‖(v j −wh
j)− (v j+1 −wh

j+1)‖H

)2

+ c

(
N−1

∑
j=1

‖θ j −ηh
j − (θ j+1 −ηh

j+1)‖F

)2

+ ck2 + ck
N

∑
j=1

‖v j −wh
j‖V ,

(39)

where for j = 1, . . . ,N, wh
j ∈V h, ηh

j ∈ Eh are arbitrary.

The inequality (39) is a basis for error estimates for particular choice of the finite-
dimensional subspace V h and under additional data and solution regularities.

As a typical example, let us consider Ω ⊂ R
d , d ∈ N

∗, a polygonal domain. Let
Th be a regular finite element partition of Ω . Let V h ⊂ V and Eh ⊂ E be the finite
element space consisting of piecewise polynomials of degree ≤ m−1, with m ≥ 2,
according to the partition Th. Denote by Π h

V : Hm(Ω)d → V h and Π h
E : Hm(Ω)→

Eh the corresponding finite element interpolation operator. Recall (see, e.g., [11])
that: {‖w−Π h

V w‖Hl(Ω)d ≤ chm−l |w|Hm(Ω)d , ∀w ∈ Hm(Ω)d ,

‖η −Π h
Eη‖Hl(Ω) ≤ chm−l |η |Hm(Ω), ∀η ∈ Hm(Ω),

where l = 0 (for which H0 = L2) or l = 1.
In the following we assume the additional data and solution regularities

⎧
⎪⎨

⎪⎩

u0 ∈ Hα+1(Ω)d ,

v ∈C([0,T ];H2α+1(Ω)d), v̇ ∈ L1(0,T ;Hα(Ω)d),

θ ∈C([0,T ];Hα+1(Ω)), θ̇ ∈ L1(0,T ;Hα(Ω)).

(40)

Here
α = m−1 ≥ 1.

We remark that the previous properties already hold for α = 1, except for

v ∈C([0,T ];H3(Ω)d) and θ ∈C([0,T ];H2(Ω)).

Then we choose in (39) the elements

uh
0 = Π h

V u0, vh
0 = Π h

V v0, θ h
0 = Π h

E θ0,

and

wh
j = Π h

V v j, ηh
j = Π h

E θ j, j = 1, . . . ,N.
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From the assumptions (40), we have:

‖u0 −uh
0‖V ≤ chα , ‖e0‖H ≤ chα , ‖ε0‖F ≤ chα ,

A0 ≤ chα , B0 ≤ ch2α ,

A3 ≤ chα , B3 ≤ chα ,

k A2 ≤ ch2α , k B2 ≤ ch2α , k B̂2 ≤ ch2α .

Using these estimates in (39), we conclude to the following error estimate result.

Theorem 3. We keep the assumptions of Theorem 2. Under the additional assump-
tions (40), we obtain the error estimate for the corresponding discrete solution vhk

n ,
θ hk

n , n = 1, . . . ,N:

max
0≤n≤N

‖vn − vhk
n ‖H +

(

k
N

∑
n=0

‖vn − vhk
n ‖2

V

)1/2

+ max
0≤n≤N

‖θn −θ hk
n ‖F +

(

k
N

∑
n=0

‖θn −θ hk
n ‖2

E

)1/2

≤ c(hα + k).

In particular, for α = 1, we have

max
0≤n≤N

‖vn − vhk
n ‖H +

(

k
N

∑
n=0

‖vn − vhk
n ‖2

V

)1/2

+ max
0≤n≤N

‖θn −θ hk
n ‖F +

(

k
N

∑
n=0

‖θn −θ hk
n ‖2

E

)1/2

≤ c(h+ k).

2.2 Numerical Computations

Here we consider two typical examples of thermal contact problems with Tresca’s
friction law, the first one is bilateral and the second one obeys a normal damped
response condition (see [3, 10]). We provide numerical simulations for the discrete
schemes in Sect. 3 in using Matlab computation codes.

Example 4. Thermal bilateral contact problem with Tresca’s friction law.
The contact condition on Γ3 is bilateral, and satisfies (see e.g. [13, 22]):

⎧
⎨

⎩

uν = 0, |στ | ≤ g,
|στ |< g =⇒ u̇τ = 0,
|στ |= g =⇒ u̇τ =−λστ , for some λ ≥ 0,

on Γ3 × (0,T ).
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Here g represents the friction bound, i.e., the magnitude of the limiting friction
traction at which slip begins, with g ∈ L∞(Γ3), g ≥ 0 a.e. on Γ3. The corresponding
admissible displacement space is:

V := {w ∈ H1, with w = 0 on Γ1, wν = 0 on Γ3},

and the subdifferential contact function is given by:

ϕ(x,y) = g(x)|yτ(x)| ∀x ∈ Γ3, y ∈ R
d ,

where yτ(x) := y− yν(x)ν(x), yν(x) := y ·ν(x), with ν(x) denoting the unit normal at
x ∈ Γ3. Then the function

ψ(v) :=
∫

Γ3

g |vτ |da, ∀v ∈V

is well defined on V and is Lipschitz continuous on V (see [3, 10]).

For our computations, we consider a rectangular open set, linear elastic and long
memory viscoelastic operators. We set:

Ω = (0,L1)× (0,L2),

Γ1 = ({0}× [0,L2]), Γ2 = [0,L1]×{L2}∪ ({L1}× [0,L2]), Γ3 = [0,L1]×{0},
(Gτ)i j =

E κ
1−κ2 (τ11 + τ22)δi j +

E
1+κ

τi j, 1 ≤ i, j ≤ 2, τ ∈ S2,

(Aτ)i j = μ (τ11 + τ22)δi j +η τi j, 1 ≤ i, j ≤ 2, τ ∈ S2,

(B(t)τ)i j = B1(t)(τ11 + τ22)δi j +B2(t)τi j, 1 ≤ i, j ≤ 2, τ ∈ S2, t ∈ [0,T ].

Here E is the Young’s modulus, κ is the Poisson’s ratio of the material, δi j denotes
the Kronecker symbol, and μ , η are viscosity constants.

We use spaces of continuous piecewise affine functions V h ⊂ V and Eh ⊂ E
as families of approximating subspaces. For our computations, we considered the
following data (IS unity):

L1 = L2 = 1, T = 1,
μ = 10, η = 10, E = 2, κ = 0.1,
f 0(x, t) = (0,−t), f 2(x, t) = (1, 0), ∀t ∈ [0,T ],
ci j = ki j = ke = 1, 1 ≤ i, j ≤ 2, q = 1,
B1(t) = B2(t) = 10−2 e−t , ∀t ∈ [0,T ],
u0 = (0,0), v0 = (0,0), θ0 = 0.

The initial configuration is represented in Fig. 2.

Then we show in Fig. 3 the deformed configurations at final time, where the
relaxation coefficients are positive and decreasing for the two different types of
Tresca’s friction bounds. For small friction bound, where g(x,0) = x

2 , 0 ≤ x ≤ 1,
we observe on the contact surface a slip phenomena in the direction of the surface
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Γ2

f2

f0 Ω
Thermal Contact

Γ1

Γ3

Γ2

Fig. 2 Initial configuration
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Fig. 3 Deformed configurations at final time, θR(t) = 1, 0 ≤ t ≤ 1

fraction on Γ2. That means that the friction bound has been obtained in the zone of
the values of x near to 1. Whereas for large friction bound, e.g., for g(x,0) = 10x,
0 ≤ x ≤ 1, then slip in the direction of the traction could not be realized. In Fig. 4,
we compute the Von Mise norm, which gives a global measure of the stress in the
body. The maxima of the norm could be seen in the neighborhood of the point
(0,1) for small friction bounds and in the neighborhood of the point (1,0) for large
friction bounds. In Fig. 5, we show the influence of the different temperatures of the
foundation on the temperature field of the body. We observe larger deformations of
the body for greater temperature of the foundation.

Example 5. Thermal contact problem with normal damped response and Tresca’s
friction law.

The normal damped response contact condition with Tresca’s friction law is
defined by:
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⎧
⎨

⎩

−σν = k0 |u̇ν |r−1u̇ν , |στ | ≤ g,
|στ |< g =⇒ u̇τ = 0,
|στ |= g =⇒ u̇τ =−λστ , for some λ ≥ 0,

on Γ3 × (0,T ).

Here 0 < r < 1 and g, k0 ∈ L∞(Γ3), g ≥ 0, k0 ≥ 0. The coefficient k0 represents the
hardness of the foundation and g is the friction threshold.

The admissible displacement space is given by:

V := {w ∈ H1, with w = 0 on Γ1}

and the subdifferential contact function is:

ϕ(x,y) =
1

r+1
k0(x) |yν(x)|r+1 +g(x)|yτ(x)| ∀x ∈ Γ3, y ∈ R

d .



Variational Inequality Models Arising in the Study of Viscoelastic Materials 51

Then setting p := r+1, we have the contact function well defined on V by

ψ(v) :=
∫

Γ3

k0

p
|vν |p da,+

∫

Γ3

g |vτ |da, ∀v ∈V.

We verify also that ψ is Lipschitz continuous on V (see [3, 10]).
For our computations, we take again the previous rectangular open set, with lin-

ear elasticity and visco-elasticity, and used the following data (IS unity):

L1 = L2 = 1, T = 1,
μ = 10, η = 10, E = 2, κ = 0.1,
f 0(x, t) = (0,−t), f 2(x, t) = (1, 0), ∀t ∈ [0,T ],
ci j = ki j = ke = 1, 1 ≤ i, j ≤ 2, q = 1,
g(x,0) = x

2 , 0 ≤ x ≤ 1, r = 0.5,
B1(t) = B2(t) = 10−2 e−t , ∀t ∈ [0,T ],
u0 = (0,0), v0 = (0,0), θ0 = 0.

We show in Fig. 6 the deformed configurations at final time, and through the body
for different normal damped response coefficients k0, we verify that the penetrabil-
ity of the foundation depends on its coefficient of hardness. In Fig. 7 we compute
the Von Mise norm. Larger stress near the contact surface is then observed for hard
obstacle. Finally in Fig. 8, we find again the influence of the temperature of the foun-
dation on the temperature field of the body and on the final deformed configurations.

3 Dynamic Contact Problems with Free Boundary Condition

We present here a class of dynamic thermal subdifferential contact problems with
friction for long memory visco-elastic materials and without the clamped condition.
The boundary Γ of the body Ω is partitioned into three disjoint measurable parts Γ1,
Γ2, and Γ3, with meas(Γ1) = 0.

The model leads to a system defined by a second order evolution inequality, cou-
pled with a first order evolution equation. We establish an existence and uniqueness
result. Finally a fully discrete scheme for numerical approximations is provided and
corresponding various numerical computations in dimension two will be given for
the cases where Γ1 is reduced to one point or is an empty set (see [2, 10]).

The dynamic mechanical problem for long memory thermo-viscoelastic materi-
als subjected to subdifferential contact condition and to non-clamped condition is
then formulated as follows.

Problem Q : Find a displacement field u : Ω × [0,T ] −→ R
d and a stress field

σ : Ω × [0,T ] −→ Sd and a temperature field θ : Ω × [0,T ] −→ R+ such that for
a.e. t ∈ (0,T ):

σ(t) =Aε(u̇(t))+Gε(u(t))+
∫ t

0
B(t − s)ε(u(s))ds−θ(t)Ce in Ω , (41)
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ü(t) = Divσ(t)+ f 0(t) in Ω , (42)

σ(t)ν = f 2(t) on Γ2, (43)

u(t) ∈U, ϕ(w)−ϕ(u̇(t))≥ −σ(t)ν · (w− u̇(t)) ∀w ∈U on Γ3, (44)

θ̇(t)−div(Kc ∇θ(t)) =−ci j
∂ u̇i

∂ x j
(t)+q(t) on Ω , (45)

− ki j
∂ θ
∂ x j

(t)ni = ke (θ(t)−θR) on Γ3, (46)

θ(t) = 0 on Γ2, (47)

θ(0) = θ0 in Ω , (48)

u(0) = u0, u̇(0) = v0 in Ω . (49)

It is worth to notice that the new feature here is due to the absence of the usual
claimed condition. However, there is coerciveness with regard to the temperature
by (46).

To derive the variational formulation of the mechanical problems (41)–(49), let
us introduce the spaces V and E defined by

D(Ω)d ⊂V = H1 ∩U,

E = {η ∈ H1(Ω), η = 0 on Γ2}, F = L2(Ω).

On V , we consider the inner product given by

(u,v)V = (ε(u),ε(v))H+(u,v)H ∀u, v ∈V,

and the associated norm

‖v‖2
V = ‖ε(v)‖2

H+‖v‖2
H ∀v ∈V.

It follows that ‖ · ‖H1 and ‖ · ‖V are equivalent norms on V and therefore (V,‖ · ‖V )
is a real Hilbert space.

In the study of the mechanical problem (41)–(49), we put again the analogous
assumptions as in Sect. 2 on the different operators and data.

The viscosity operator A : Ω ×Sd −→ Sd , (x,τ) �−→ (ai jkh(x)τkh) is linear on the
second variable and satisfies the usual properties of ellipticity and symmetry, i.e.,

⎧
⎪⎪⎨

⎪⎪⎩

(i) ai jkh ∈W 1,∞(Ω),
(ii) Aσ · τ = σ ·Aτ ∀σ ,τ ∈ Sd , a.e. in Ω ,
(iii) there exists mA > 0 such that

Aτ · τ ≥ mA |τ |2 ∀τ ∈ Sd , a.e. in Ω .

(50)



Variational Inequality Models Arising in the Study of Viscoelastic Materials 53

The elasticity operator G : Ω ×Sd −→ Sd satisfies:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(i) there exists LG > 0 such that
|G(x,ε1)−G(x,ε2)| ≤ LG|ε1 − ε2|
∀ε1, ε2 ∈ Sd , a.e. x ∈ Ω ,

(ii) x �−→ G(x,ε) is Lebesgue measurable on Ω ,∀ε ∈ Sd ,

(iii) the mapping x �−→ G(x,0) ∈H.

(51)

The relaxation tensor B : [0,T ] × Ω × Sd −→ Sd , (t,x,τ) �−→ (Bi jkh(t,x)τkh)
satisfies

⎧
⎪⎨

⎪⎩

(i) Bi jkh ∈W 1,∞(0,T ;L∞(Ω)),

(ii) B(t)σ · τ = σ ·B(t)τ
∀σ ,τ ∈ Sd , a.e. t ∈ (0,T ), a.e. in Ω .

(52)

We suppose the body forces and surface tractions satisfy

f 0 ∈W 1,2(0,T ;H), f 2 ∈W 1,2(0,T ;L2(ΓF)
d). (53)

For the thermal tensors and the heat sources density, we suppose that

Ce = (ci j), ci j = c ji ∈ L∞(Ω), q ∈W 1,2(0,T ;L2(Ω)). (54)

The boundary thermal data satisfy

ke ∈ L∞(Ω ; R+), θR ∈W 1,2(0,T ;L2(Γ3)). (55)

The thermal conductivity tensor verifies the usual symmetry end ellipticity: for some
ck > 0 and for all (ξi) ∈ R

d ,

Kc = (ki j), ki j = k ji ∈ L∞(Ω), ki j ξiξ j ≥ ck ξiξi. (56)

Finally we have to put technical assumptions on the initial data and the sub-
differential condition on the contact surface as to use classical results on first order
set valued evolution equations. Here we use a general theorem taken in [20, p. 46],
in a simplified case, which is enough for our proposal and applications.

We assume that the initial data satisfy the conditions

u0 ∈ V, v0 ∈ V ∩H2
0 (Ω)d , θ0 ∈ E ∩H2

0 (Ω). (57)

On the contact surface, the following frictional contact function

ψ(w) :=
∫

Γ3

ϕ(w)da
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Fig. 9 Initial configuration

verifies
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) ψ : V −→ R is well defined, continuous, and convex,

(ii) there exists a sequence of differentiable convex functions

(ψn) : V −→ R such that ∀w ∈ L2(0,T ;V ),
∫ T

0
ψn(w(t))dt −→

∫ T

0
ψ(w(t))dt, n −→+∞,

(iii) for all sequence (wn) and w in W 1,2(0,T ;V ) such that

wn ⇀ w, w′
n ⇀ w′ weakly in L2(0,T ;V ),

then liminf
n−→+∞

∫ T

0
ψn(wn(t))dt ≥

∫ T

0
ψ(w(t))dt,

(iv) if w ∈V and w = 0 on Γ3, then ∀n ∈ N, ψ ′
n(w) = 0V ′ .

(58)

The weak formulation of the mechanical problem Q is then formulated as follows.

Problem QV : Find u : [0,T ]→V , θ : [0,T ]→ E satisfying a.e. t ∈ (0,T ):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈ü(t)+Au̇(t)+Bu(t)+C θ(t), w− u̇(t)〉V ′×V

+

(∫ t

0
B(t − s)ε(u(s))ds,ε(w)− ε(u̇(t))

)

H

+ψ(w)−ψ(u̇(t))

≥ 〈 f (t), w− u̇(t)〉V ′×V ∀w ∈V,

θ̇(t)+K θ(t) = Ru̇(t)+Q(t) in E ′,
u(0) = u0, u̇(0) = v0, θ(0) = θ0.

The different operators are here defined as in Sect. 2. Then we obtain our main
existence and uniqueness result stated as below (see for details [2]):
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Fig. 10 Deformed configurations at final time, θR(t) = 0, 0 ≤ t ≤ 1
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Fig. 11 Von Mises’ norm in deformed configurations, θR(t) = 0, 0 ≤ t ≤ 1

Theorem 4. Assume that (50)–(58) hold, then there exists an unique solution {u,θ}
to problem QV with the regularity:

{
u ∈W 2,2(0,T ;V )∩W 2,∞(0,T ;H),

θ ∈W 1,2(0,T ;E)∩W 1,∞(0,T ;F).
(59)

3.1 Numerical Simulations A

Here, Γ1 is reduced to one point (see [10]). We take again the two typical examples
and the analogous data as in Sect. 2, except the followings:
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Fig. 12 Temperature field at final time, g(x,0) = x
2 , 0 ≤ x ≤ 1
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Fig. 13 Deformed configurations at final time, θR(t) = 0, 0 ≤ t ≤ 1
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Fig. 15 Temperature field at final time, k0(x,0) = 10, 0 ≤ x ≤ 1

Ω = (0,L1)× (0,L2),

Γ1 = {(0,0)}; Γ2 = ({0}×]0,L2])∪ (]0,L1]×{L2})∪ ({L1}× [0,L2]),

Γ3 =]0,L1[×{0},
f 2(x, t) = (0, 0), ∀x ∈ ({0}×]0,L2]), ∀t ∈ [0,T ],

f 2(x, t) = (1, 0), ∀x ∈ (]0,L1]×{L2})∪ ({L1}× [0,L2]), ∀t ∈ [0,T ].

Similar conclusions as in Sect. 2 can be stated. See also Figs. 9, 10, 11, 12, 13, 14,
and 15.

3.2 Numerical Simulations B

Here Γ1 = /0, ΓF = Γ2, f F = f 2, Γu = Γ3 (see [2]). We take again the two typical
examples as in Sect. 2 with the following data:

Ω = (0,L1)× (0,L2),

ΓF = ({0}× [0,L2])∪ ([0,L1]×{L2})∪ ({L1}× [0,L2]), Γu =]0,L1[×{0},
f 2(x, t) = (0, 0), ∀x ∈ {0}× [0,L2], ∀t ∈ [0,T ],

f 2(x, t) = (1, 0), ∀x ∈ (]0,L1]×{L2})∪ ({L1}× [0,L2]), ∀t ∈ [0,T ].

Analogous conclusions as in Sect. 2 can be stated. See also Figs. 16, 17, 18, 19,
20, 21, and 22.
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Fig. 17 Deformed configurations at final time, θR(t) = 10, 0 ≤ t ≤ 1

4 A Duality Numerical Method

The fully discrete scheme (36) is equivalent to the variational inequality

〈Avhk
n , wh − vhk

n 〉+ψ(wh)−ψ(vhk
n )≥ 〈L, wh − vhk

n 〉V ′×V ,∀wh ∈V h (60)

where operator A : V →V ′ is defined by

〈Av, w〉=
(v

k
, w

)

H
+ 〈Av, w〉V ′×V , ∀w ∈V h, (61)

and L : V → R is defined by

〈L,w〉= 〈vhk
n−1

k
−Buhk

n−1 −C θ hk
n−1 + f (tn), w〉V ′×V

−
(

k
n−1

∑
m=0

B(tn − tm)ε(uhk
m ), ε(w)

)

H

, ∀w ∈V h.

(62)

For clearness we drop the indexes and consider in the sequel the problem:
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Fig. 18 Von Mises’ norm in deformed configurations, θR(t) = 10, 0 ≤ t ≤ 1
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Fig. 22 Temperature field at final time, k0(x,0) = 15, 0 ≤ x ≤ 1

Find v ∈V h such that

〈Av, w− v〉+ψ(w)−ψ(v)≥ 〈L, w− v〉V ′×V , ∀w ∈V h. (63)

Numerical approach of (63) can be placed in the frame of duality methods for
variational inequalities [4]. These methods are based on some classical results for
monotone maps given in [6, 24] for instance. For convenience, we give first a brief
introduction to the monotonous maximal operator theory.

Let G be a maximal monotone multivalued map on a Hilbert space H, and let
λ be a nonnegative parameter. It can be proved that for all f ∈ H there exists a
unique y ∈ H such that f ∈ (I +λG)(y). The single-valued map JG

λ = (I +λG)−1

is a well defined and contraction map on H, and its called the resolvent operator of
G (see [6]).

The map

Gλ =
I − JG

λ
λ
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is called the Moreau–Yosida approximation of G. It is a maximal monotone,
single-valued, and 1

λ -Lipschitz continuous map. Moreover, Gλ satisfies the follow-
ing important property on which is based our method.

Lemma 1. Let be G a maximal monotone map on a Hilbert space H and Gλ , with
λ > 0, its Yosida approximation. Then for all y and u in H, we have

u ∈ G(y) ⇐⇒ u = Gλ (y+λu). (64)

Proof. Let be u = Gλ (x). Then

u =
I − JG

λ
λ

x ⇐⇒ λu = x− Jλ x

⇐⇒ Jλ x = x−λu

⇐⇒ x ∈ (I +λG)(x−λu) = x−λu+λG(x−λu)

⇐⇒ λu ∈ λG(x−λu)

⇐⇒ u ∈ G(x−λu)

and by taking x−λu = y we get: u ∈ G(y)⇐⇒ u = Gλ (y+λu) ��
Now returning to problem (63), the frictional contact function ψ is continuous and
convex , and therefore its subdifferential ∂ψ is a maximal monotone operator in Vh,
and (63) can be written using the subdifferential operator:

Find v ∈V h such that
{ 〈Av, w〉+(γ ,v)L2(Γ3)

= 〈L, w〉V ′×V , ∀w ∈V h,

γ ∈ ∂ψ(v).
(65)

Using relation (64), we obtain equivalently:
Find v ∈V h such that

{ 〈Av, w〉+(γ ,w)L2(Γ3)
= 〈L, w〉V ′×V , ∀w ∈V h,

γ = (∂ψ)λ (v+λγ), (66)

where λ > 0 and (∂ψ)λ is the Yosida approximation of ∂ψ .
Thereby, we apply the following algorithm to solve (66).

(0) Start with some arbitrary value of the multiplier γ0.

(1) For γ j known, compute v j solution to

〈Av j, w〉+(γ j,w)L2(Γ3)
= 〈L, w〉V ′×V , ∀w ∈V h. (67)
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(2) Update multiplier γ j as

γ j+1 = (∂ψ)λ (v
j +λγ j). (68)

(3) Go to (1) until stop criterion is reached.

Theorem 5. If A is an elliptic operator and λ > 1
2α , where α is the elliptic constant

of A, we have
lim
j→∞

‖v j − v‖= 0.

Proof. The mapping (∂ψ)λ is
1
λ

-Lipschitz and thus

‖γ − γ j+1‖2 = ‖(∂ψ)λ (v+λγ)− (∂ψ)λ (v
j +λγ j)‖2

≤ 1
λ 2 ‖(v+λγ)− (v j +λγ j)‖2

=
1

λ 2 ‖(v− v j)+λ (γ − γ j)‖2

=
1

λ 2 ‖v− v j‖2 +
2
λ
((v− v j),(γ − γ j))+‖γ − γ j‖2.

Therefore

‖γ − γ j‖2 −‖γ − γ j+1‖2 ≥ − 1
λ 2 ‖v− v j‖2 − 2

λ
((v− v j),(γ − γ j)) (69)

Using now (66) and (67), we obtain

〈A(v− v j), w〉+(γ − γ j,w) = 0, ∀w ∈V h.

Thus

α‖v− v j‖2 ≤ 〈A(v− v j),(v− v j)〉
= −(γ − γ j,v− v j).

Substituting in (69) we get

‖γ − γ j‖2 −‖γ − γ j+1‖2 ≥ − 1
λ 2 ‖v− v j‖2 +

2α
λ

‖v− v j‖2

=
1
λ
(2α − 1

λ
)‖v− v j‖2.

Recalling that λ >
1

2α
, we obtain

‖γ − γ j‖2 −‖γ − γ j+1‖2 ≥ ‖v− v j‖2 ≥ 0.
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The sequence (‖γ − γ j‖2) j≥0 is decreasing and positive, therefore

lim
j→∞

‖γ j − γ‖2 = 0

and finally
lim
j→∞

‖v j − v‖2 = 0. ��
Remark 2. Under symmetric property of operator A and if ψ is differentiable this
algorithm is the Uzawa one to reach the sadlle-point of the Lagrangien:

L(v,q) =
1
2
〈Av, v〉−〈L, w〉+(q,ψ(v))

L(u,q)≤ L(u, p)≤ L(v, p).

Now we turn out to determine the Yosida approximation (∂ψ)λ . Note first that

(∂ψ)λ = ((∂ψ)−1 +λ I)−1. (70)

Indeed, ∀u,x ∈V we have from (64):

u = (∂ψ)λ (x) ⇐⇒ u ∈ (∂ψ)(x−λu)

⇐⇒ (x−λu) ∈ (∂ψ)−1(u)

⇐⇒ x ∈ (λ I +(∂ψ)−1)(u)

⇐⇒ u = (λ I +(∂ψ)−1)−1(x).

And from (70) we note that the Yosida approximation of (∂ψ) and the resolvent of
(∂ψ)−1 are linked by

(∂ψ)λ (x) = J∂ψ−1

1/λ

( x
λ

)
. (71)

Let be u,x ∈V , we have

u = (∂ψ)λ (x) ⇐⇒ u = ((∂ψ)−1 +λ I)−1(x)

⇐⇒ x ∈ ((∂ψ)−1 +λ I)(u)

⇐⇒ x
λ

∈
(

1
λ
(∂ψ)−1 + I

)
(u)

⇐⇒ u =

(
1
λ
(∂ψ)−1 + I

)−1

(x/λ ) = J∂ψ−1

1/λ (x/λ ).

Definition 1. The map

ψ∗ : V −→ R

x �−→ sup
y∈V

{(x,y)L2(Γ3)
−ψ(y)}

is the Fenchel conjugate of ψ .
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Theorem 6. The Fenchel conjugate ψ∗ is well defined, continuous and convex.
Its subdifferential is the inverse subdifferential (∂ψ)−1 of ψ , and we have

y ∈ (∂ψ)(x) ⇐⇒ x ∈ (∂ψ∗)(y). (72)

From (71) and (72), we get the equality linking the resolvent of ∂ψ and the Yosida
approximation of (∂ψ∗),

J∂ψ
λ (x) = (∂ψ∗) 1

λ
(λx). (73)

Let us set:

K = { f ∈ L2(Γ3) : ( f ,w)−ψ(w)≤ 0, ∀w ∈ L2(Γ3)}.

Theorem 7. The Fenchel conjugate ψ∗ satisfies

ψ∗ = IK , on L2(Γ3), (74)

where IK is the indicator function of K.

Proof. Let f ∈ L2(Γ3) be given. There are two possibilities. If there exists w∈ L2(Γ3)
such that

( f ,w)−ψ(w)> 0,

then for r > 0:
( f ,rw)−ψ(rw) = r

(
( f ,w)−ψ(w)

)
,

and
ψ∗( f ) = sup

w∈L2(Γ3)

{( f ,y)−ψ(w)}=+∞.

If such a w does not exist then

( f ,w)−ψ(w)≤ 0, ∀w ∈ L2(Γ3),

but this quantity vanishes for w = 0, so that:

ψ∗( f ) = 0 ��
Consequently, we can compute (∂ψ∗) as (∂ IK) and we obtain

(∂ψ∗)(y) = (∂ IK)(y) = NK(y), ∀y ∈ K, (75)

where
NK(y) = { f ∈ L2(Γ3) : ( f ,w− y)≤ 0, ∀w ∈ K}.

is the normal cone of K in y.
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On the other hand, we can easily prove that the Yosida approximation of (∂ IK) is

(∂ IK)λ =
I −PK

λ
, (76)

where PK is the projection operator on K.
Now, taking into account (73), (75), and (76) we have for all x ∈V

J∂ψ
λ (x) = (∂ψ∗) 1

λ
(λx)

= (∂ IK) 1
λ
(λx)

= λ (I −PK)(λx)

= λ 2x−λPK(λx).

We get finally

(∂ψ)λ (x) =
I − J∂ψ

λ
λ

(x)

=
x−λ 2x+λPK(λx)

λ

=
1−λ 2

λ
x+PK(λx).

Therefore the multiplier γ j in (68) is updated by the formula

γ j+1 =
1−λ 2

λ
(v j +λγ j)+PK(λv j +λ 2γ j). (77)
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Neighboring Local-Optimal Solutions
and Its Applications

Hsiao-Dong Chiang and Tao Wang

1 Introduction

Local-optimal solutions are of fundamental importance to the study of nonlinear
optimization, which also closely resemble some concepts in biochemistry and elec-
trical power engineering. The present work on local-optimal solutions is closely
related to the various studies of complexity. Indeed, an effective tool for our study
is provided by Sperner’s lemma [1–4], which is stated as follows.

Theorem 1 (Sperner’s Lemma). Every Sperner labeling of a triangulation of an
n-dimensional simplex contains a fully labeled cell that is labeled with a complete
set of the labels.

This lemma yields the Brouwer fixed point theorem [5] and plays an important
role in the proof of Monsky’s theorem [6] that a square cannot be cut into an odd
number of equal-area triangles. On the finite covering by non-polyhedral closed sets,
there are also many interesting corollaries [7, 8] derived from Sperner’s lemma, and
a proposition (see [7, Lemma 2–26]) is rephrased below.

Theorem 2. Consider an n-dimensional simplex Ω ∗, and (n + 1) closed sets
Vk ⊆ R

n,0 ≤ k ≤ n. Let {vk;0 ≤ k ≤ n} be the set of vertices of Ω ∗, and Qk

be the (n − 1)-dimensional face of Ω ∗ opposite to the vertex vk. Suppose that
Ω ∗ ⊆ ⋃n

i=0 Vn, and (Qk ∩Vk) = /0 with vk ∈ Vk for all 0 ≤ k ≤ n. Then, the intersec-
tion (

⋂n
k=0 Vk) �= /0.

On a proof of Theorem 2, the key ingredient (see Fig. 1) is that every point in Vk is
labeled by Lk, and under the specified conditions the Sperner’s lemma yields the ex-
istence of a fully labeled cell in an arbitrary finite triangulation of S. By making the
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Fig. 1 Theorem 2 can be proved by Sperner’s lemma, and the fully labeled cells are
indicated by bold dots in the triangulations

triangulation smaller and smaller, one can easily show that the collection of fully
labeled cells contains a convergent subsequence whose limit is a common point
shared by Vk’s. Indeed, Sperner’s lemma and Theorem 2 can be alternatively inter-
preted in engineering design and nonlinear optimization, and motivate the study of
the algebraic structure of the collection of local-optimal solutions.

The present work is devoted to estimating the number of neighboring local-
optimal solutions, which provides an important index for evaluating the com-
plexity of nonlinear systems in biochemistry and electrical engineering, and the
computational complexity of solution methods for nonlinear optimization. First of
all, we show that there are at least 2n local-optimal solutions neighboring to the
given solution, if the corresponding gradient system of the optimization problem
is spatially periodic in R

n. Here the gradient is called spatially periodic, if it repeats
the values in regular intervals or periods along n linearly independent directions.
On the lower bound, it is expected that an improved estimation n(n+ 1) can be
obtained by investigating the local-independence of a collection of neighboring
local-optimal solutions. The local-independence has been proved for n = 2, which
is followed by an example for validating the derived bounds. Moreover, some engi-
neering applications are elaborated at last, for interpreting Sperner’s lemma and the
present study.

2 Mathematical Preliminaries

2.1 Nonlinear Optimization and Local-Optimal Solution

We consider an optimization (minimization) problem of the form

minx∈Rn f (x), (1)

where the function f : Rn �→ R is differentiable over Rn. By convention, a point x∗
is called a local-optimal solution of (1) if there is a neighborhood U ⊆ R

n of x∗
such that f (x) ≥ f (x∗) for all x ∈ U . It should be apparent that any unconstrained
maximization problem can be directly converted to the form (1), by negating the obj-
ective function. In addition, the gradient ∇ f (x) = 0, at a local-optimal solution x∗.
When the determinant of Hessian matrix det(∇2 f ) �= 0 at a point x∗, one has that
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the point x∗ is a local-optimal solution for (1), if and only if the point x∗ is a stable
equilibrium point of the gradient system ẋ =−∇ f (x(t)).

Therefore, we can use the term “local-optimal solution” and “stable equilibrium
point” interchangeably, without causing any confusion. Moreover, two local-optimal
solutions are called neighboring to each other, if their stability regions of the gradi-
ent system intersect on the boundary. For the constrained problems, we shall exam-
ine the projected gradient system [9–11].

2.2 Gradient System and Equilibrium Point

To define the neighboring solutions, we must introduce the gradient system of (1),
say

ẋ(t) = F(x(t)) =−∇ f (x(t)) ∈ R
n, (2)

where the state vector x = (x1, . . . ,xn) ∈R
n, and F(x) = (F1(x), . . . ,Fn(x)). Here, Fi

is a scalar function, for all 1 ≤ i ≤ n. The solution of (2) starting from x0 ∈ R
n at

t = 0 is called a trajectory and denoted by φ(·,x0) : R �→ R
n.

A state vector x∗ ∈ R
n is called an equilibrium point of (2), if F(x∗) = 0. In

addition, an equilibrium point x∗ ∈R
n is hyperbolic, if the Jacobian matrix of F(·) at

x∗ has no eigenvalues with zero real part, which implies det(∇2 f (x∗)) �= 0. Further-
more, a type-k equilibrium point refers to a hyperbolic equilibrium point at which
the Jacobian has exactly k eigenvalues with positive real part. In particular, a hyp-
erbolic equilibrium point is called a (asymptotically) stable equilibrium point if at
the point each eigenvalue of the Jacobian has negative real part, while it is called an
unstable equilibrium point if all the eigenvalues have a positive real part, which are
an equilibrium point of type-0 and of type-n respectively.

Given a type-k equilibrium point x∗, its stable manifold W s(x∗) and unstable
manifold W u(x∗) are defined as,

W s(x∗) .
= {x ∈ R

n : limt→∞ φ(t,x) = x∗},
W u(x∗) .

= {x ∈ R
n : limt→−∞ φ(t,x) = x∗}

where the dimension of W u(x∗) and W s(x∗) are k and (n − k), respectively. The
stability region (or region of attraction) of stable equilibrium point xs is

A(xs)
.
= {x ∈ R

n : limt→∞ φ(t,x) = xs}.
As mentioned earlier, there is a one-to-one correspondence between the stable equi-
librium points of (2) and the local-optimal solutions of (1) under the hyperbolic
assumption, and then the neighboring solutions are well defined as follows. Con-
sider two local-optimal solutions x′s and xs of the problem (1), we say that the point
x′s is a local-optimal solution neighboring to xs, if the closure of stability region
A(xs) intersects that of A(x′s), i.e., the set (A(x′s)∩ A(xs)) �= /0. Accordingly, such
A(x′s) is called a stability region neighboring to A(xs). Here A denotes the closure
of A. Apparently, a stability region is uniquely determined by a stable equilibrium
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point. We thus can just estimate the number of neighboring stability regions when
necessary.

Nevertheless, the structure of stability boundary ∂A(xs) for the nonlinear system
(2) is complex in general, and the quasi-stability boundary is commonly studied
instead. Indeed, the quasi-stability boundary ∂Ap(xs) of a stable equilibrium point
xs is defined by ∂A(xs), and the quasi-stability region Ap(xs) is the open set
int(A(xs)), where int(·) refers to the interior. It is known that the quasi-stability
region Ap(xs)⊆ Ap(xs)⊆ A(xs), and the quasi-stability boundary ∂Ap(xs)⊆ ∂A(xs).
We shall show that the neighboring local-optimal solutions can be equivalently
defined by quasi-stability boundaries, which relies on a general proposition [12].

Proposition 1 (Intersection of Quasi-Stability Boundary). Let xs,x′s ∈ R
n be two

distinct stable equilibrium points of (2). On the quasi-stability boundary, one has
(∂Ap(xs)∩∂Ap(x′s)) = (A(xs)∩A(x′s)).

Proof : See Appendix.

Proposition 1 suggests an equivalent definition of the neighboring solution.

Remark 1. Given two distinct local-optimal solutions xs,x′s of (1), the solution x′s is
neighboring to xs, if and only if (∂Ap(xs)∩∂Ap(x′s)) �= /0.

Hence, a stability boundary will always refer to the quasi-stability boundary ∂Ap,
without causing any confusion.

2.3 Characterization of Stability Boundary

Prior to introducing the characterization of stability boundary, we recall that a
set K ⊆ R

n is invariant regarding the dynamics at (2), if every trajectory of (2)
starting in K stays in K for all t ∈ R. By the definition, the stable manifold is
always invariant. Moreover, for two submanifolds M1 and M2 of a manifold M,
they meet the transversality condition, if either (1) (M1 ∩M2) = /0, or (2) at every
point y ∈ (M1 ∩M2), the tangent spaces of M1 and M2 span the tangent spaces of
M at y.

On the stability boundary, we make the following assumptions.

(A1) All the equilibrium points are hyperbolic and are finite in number on a stability
boundary.

(A2) The stable and unstable manifolds of equilibrium points on the stability
boundary satisfy the transversality condition.

(A3) Every trajectory approaches an equilibrium point as t →+∞.

Here (A1) and (A2) are generic properties [13] for nonlinear dynamical systems.
Moreover, (A3) is not generic; however, it is satisfied by a large class of nonlinear
dynamical systems, as the electric power system. To study the neighboring solutions,
we need the characterization theorems.
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Theorem 3. (Theorem 4.2 [14]: Complete Characterization of Quasi-Stability
Boundary) Consider a stable equilibrium point xs of the nonlinear dynamical sys-
tem (2) satisfying the assumptions (A1)–(A3). Let xi

e, i ∈N be the equilibrium points
on the quasi-stability boundary ∂Ap(xs). Then, the quasi-stability boundary

∂Ap(xs) =
⋃

xi
e∈∂Ap(xs)

W s(xi
e).

This implies that the intersection of stability boundaries is also the union of stable
manifolds of the equilibrium points in the intersection.

2.4 Spatially Periodic Dynamical Systems

A function F = (F1,F2, . . . ,Fm) : Rn �→ R
m is called spatially periodic [15–19], if

there exist n constants pi > 0 for 1 ≤ i ≤ n, such that Fj(x) = Fj(x+ piei) for all
x ∈ R

n and 1 ≤ j ≤ m. It is worthwhile noting that Fj is a scalar function, and ei

denotes the vector in R
n with 1 in the ith coordinate and 0’s elsewhere. In addition,

given a spatially periodic function F(x), an n-tuple p∗ = (p∗
1, p∗

2, . . . , p∗
n) is called the

spatial periods, if each p∗
i > 0 is the minimum positive number pi such that Fj(x) =

Fj(x+ piei) for all x ∈ R
n,1 ≤ j ≤ m. In literature, there have been many reports

on the applications of spatially periodic dynamics and systems [15–19] in physics,
chemistry, and electrical engineering, etc. Moreover, the dynamical system (2) is
spatially periodic if the gradient ∇ f is spatially periodic.

Indeed, a spatially periodic function with p∗
i �= 2π can be transformed into a

function having p∗
i ≡ 2π for all 1 ≤ i ≤ n. More precisely, given a spatially per-

iodic function f1(x) with spatial periods p∗, it is easy to check that the function
f2(x) = f1(x⊗ p∗/2π) .

= f1(x1 p∗
1/2π, . . . ,xn p∗

n/2π) is also spatially periodic, with
the spatial period = 2π for all xi’s. This suggests, without loss of generality we can
assume p∗

i = 2π for all 1 ≤ i ≤ n, if the system is spatially periodic.
Additional hypotheses are imposed on the system (2).

(A4) The system (2) is spatially periodic with the spatial period p∗
i = 2π for 1 ≤

i ≤ n. Moreover, there is at most one stable equilibrium point in each region
of the form Π n

i=1[xi,xi +2π)⊆ R
n, for all x = (x1, . . . ,xn) ∈ R

n.

In other words, if xs is a stable equilibrium point of (2), then any stable equilibrium
point x̃s ∈ R

n can be represented by x̃s = xs + ζ , for some ζ ∈ P. By the condition
(A4), we can write the set P

.
= 2πZn, where Z

n is the n-dimensional integer lattice.
Moreover, a vector ζ ∈ P is called a (spatial-) period vector, and the set P is
the collection of period vectors.

(A5) Every stability region A(xs) is bounded.

The boundedness assumption in (A5) ensures that all the stability regions are
uniformly bounded for the given spatially periodic gradient system.
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3 Symmetry and Number of Neighboring
Local-Optimal Solutions

In this section, we derive a lower bound on the number of neighboring local-optimal
solutions [12]. The key propositions are presented below, and their proof and other
intermediate results are contained in the appendix. It should be noted that the fol-
lowing analysis and propositions are presented under the hypotheses (A1)–(A5),
until specified otherwise.

We introduce the translation operator Tζ (x)
.
= x+ ζ , for x,ζ ∈ R

n and denote
by S the set of all local-optimal solutions of (1). It is straightforward to see that
the inverse T−1

ζ = T−ζ , and the set S coincides with the collection of all stable
equilibrium points of (2). To begin with, the spatial-periodicity of (2) manifestly
leads to the following proposition, and the proof is omitted.

Proposition 2 (Spatial-Periodicity of Equilibrium Points). Let ζ ∈ P be a spatial-
period vector, and xe be an equilibrium point of (2). Then, Tζ (xe) is also an equilib-
rium point of (2), and Tζ (W

s(xe)) is the stable manifold of Tζ (xe). Moreover, the set

(Tζ (W
s(xe))∩W s(xe)) = /0, and the closure Tζ (W s(xe)) = Tζ (W s(xe)).

By Proposition 2, the spatial-periodicity of the gradient system (2) yields the
periodicity of local-optimal solutions in S and also that of the corresponding
stability regions of (2). With the properties of extreme points on a convex hull [20,
Corollaries 18.3.1 and 18.5.3], one can easily derive the proposition below.

Proposition 3 (Existence of Extreme Point). For an arbitrary finite point set E =
{xi; 1 ≤ i ≤ q} ⊆ R

n, there always is a point x∗ ∈ E (Fig. 2), such that

{Tζ (x
∗), T−1

ζ (x∗)}\E �= /0,

for all nonzero ζ ∈ R
n. Here, such x∗ is called an extreme element of the set E.

As an important application, the extreme element in Proposition 3 will serve as
the center of symmetry in the derivation of the proposed lower bound.

By the definition, there is a one-to-one correspondence between the (neighbor-
ing) local-optimal solutions of (1) and the (neighboring) stability regions of (2).
To estimate the number of neighboring solutions, we here estimate the number of

Fig. 2 An illustration for Proposition 3, where the dots are the points in E
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neighboring stability regions, as presented in Proposition 4. This proposition fol-
lows from the Sperner’s lemma and Theorem 2, by constructing the closed sets Vk,
0 ≤ k ≤ n.

Indeed, by Proposition 2 the collection A of all distinct stability regions of (2)
must be countable and can be described as

A = {Ai; i ∈ N} = {Tζ (As); ζ ∈ P},

where the set As is any given stability region of (2). Moreover, we denote by xi
s ∈ S

the unique stable equilibrium point satisfying Ai = A(xi
s).

Proposition 4 (Existence of Neighboring Stability Regions). There exist
(n+1) distinct stability regions {Aik ; 0 ≤ k ≤ n} ⊆ A , such that the intersection
(
⋂n

k=0 Aik) �= /0.

Proof : See Appendix.

This proposition shows that any given stability region must have at least n neigh-
boring stability regions. Based on this intermediate result, we will further prove
at Theorem 4 that 2n gives a general lower bound on the number of neighboring
solutions. Without loss of generality, we assume that ik = k for 0 ≤ k ≤ n at Propo-
sition 4, and x0

s is an extreme point in {xk
s ; 0 ≤ k ≤ n} satisfying the property at

Proposition 3. Clearly, A0 is an extreme element in the collection

An
.
= {Ai; 0 ≤ i ≤ n}. (3)

Besides, we denote by ζi ∈ P the vector such that Tζi
(Ai) = A0, or to say T−1

ζi
(A0) =

Ai for 1 ≤ i ≤ n, with ζ0 = 0.

Proposition 5. The elements in the augmented collection

A ∗
n

.
= {T−1

ζi
(A0); 1 ≤ i ≤ n}∪{Tζi

(A0); 1 ≤ i ≤ n} (4)

are pairwise different, and (A∩A0) �= /0 for all A ∈ A ∗
n .

Proof : See Appendix.

The assertion on the augmented collection (4) directly shows that, for any local-
optimal solution xs of the problem (1), the stability region A(xs) has at least 2n
neighboring stability regions. Thus, we are ready to state a theorem on the lower
bound for the number of neighboring local-optimal solutions [24].

Theorem 4 (Estimation Obtained by Symmetry). Consider an optimization prob-
lem minx∈Rn f (x) at (1), such that the objective f is twice-differentiable and the
dynamical system ẋ = −∇ f (x) at (2) satisfies the conditions (A1)–(A5). Then, any
local-optimal solution xs of (1) has no less than 2n neighboring local-optimal
solutions.
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Proof : Apparently, the number of neighboring stability regions gives a lower bound
on the neighboring local-optimal solutions. In the remainder of the proof, we esti-
mate the number of neighboring stability regions.

In light of Propositions 4 and 5, there are (n+ 1) stability regions, say An =
{Ai; 0 ≤ i ≤ n} as defined at (3), such that

⋂n
i=0 Ai �= /0, and A0 is an extreme el-

ement in An. By taking A0 as the center of symmetry, we obtain an augmented
collection of stability regions A ∗

n at (4). As showed in Proposition 5, there are 2n
distinct elements in A ∗

n , and (A∩A0) �= /0 for all A ∈ A ∗
n . This implies that A0 has

at least 2n neighboring stability regions. In other words, the solution x0
s has at least

2n neighboring local-optimal solutions {T−1
ζi

(x0
s ); 1 ≤ i ≤ n}∪{Tζi

(x0
s ); 1 ≤ i ≤ n},

where Tζi
(xi

s) = x0
s for all 0 ≤ i ≤ n. Proposition 2 suggests that any local-optimal

solution xs and the solution x0
s must have exactly the same number of neighboring

local-optimal solutions. The proof is completed. �

4 Local-Independence and Proof for Planar Case

By Theorem 4, there are at least 4 = 2n neighboring local-optimal solutions for the
optimization problems in R

2. In fact, for the planar problems, we can derive an im-
proved bound on the number of neighboring local-optimal solutions, by investigat-
ing the local-independence of the collection Θ .

= {ζi; 0 ≤ i ≤ n}, where ζ0 = 0 and
ζi’s are defined at (4) for i ≥ 1. Here the collection Θ is called locally independent,
if the vector difference of any two distinct vectors in Θ is unique. Note that the col-
lection of neighboring solutions obtained by symmetry at (4) and Theorem 4 forms
a subset of the collection of neighboring solutions obtained by vector differences
(of the vectors in Θ ) at Theorem 5. The main result is stated below.

Theorem 5 (Estimation Obtained by Local-Independence). Consider a planar
optimization problem minx∈R2 f (x) at (1), such that f is twice-differentiable and
the dynamical system ẋ = −∇ f (x) at (2) satisfies the conditions (A1)–(A5). Then,
the collection Θ is locally independent for n = 2, and any local-optimal solution xs

of (1) has at least six neighboring local-optimal solutions.

To show the local-independence of Θ , we need an auxiliary proposition on the
collinear stability regions.

Proposition 6 (Separation of Collinear Elements). The set (A0∩T−1
αζ (A0)) = /0, for

all ζ ∈Θ \{ζ0}, α > 1 satisfying αζ ∈ P (Fig. 3).

Proof : See Appendix.

Proposition 6 shows that, for any three collinear stability regions, the middle
region must separate the other two. It also implies that the vectors in Θ \ {ζ0} are
linearly independent, which yields the local-independence of Θ . Now we are ready
to give a complete proof of the theorem on the improved bound.
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Fig. 3 An illustration of Proposition 6, where the point x0
l = xl and x0

u = xu

Proof of Theorem 5: In light of Proposition 4, there are three distinct stability regions
{Ai0 ,Ai1 ,Ai2}, such that (

⋂2
q=0 Aiq) �= /0. The collection Θ is defined by Θ = {ζq; 0 ≤

q ≤ 2}, where the vector ζq ∈ P is uniquely determined by Tζq
(Aiq) = A0. Now we

consider the collection of vector differences

Θ ∗ .
= {ζ j1 −ζ j2 ; ζ j1 ,ζ j2 ∈Θ , j1 �= j2}.

To complete the proof, we will show that T−1
ζ (A0)∩A0 �= /0 for all ζ ∈ Θ ∗, and the

collection Θ ∗ consists of six distinct nonzero vectors.

(i) We begin by showing T−1
ζ (A0)∩A0 �= /0 for all ζ ∈ Θ ∗. To fix the ideas, we

consider a vector ζ ∈Θ ∗, and by the construction there must be distinct vectors
ζ ′,ζ ′′ ∈Θ with ζ ′ �= ζ ′′, such that ζ = (ζ ′ −ζ ′′). From the choice of Θ , one has

A0 ∩T−1
ζ ′ (A0)∩T−1

ζ ′′ (A0) �= /0, (5)

no matter whether the zero vector 0 ∈ {ζ ′,ζ ′′}. Then, the set

T−1
ζ (A0)∩A0 = T−1

ζ ′−ζ ′′(A0)∩A0 = Tζ ′′
(
T−1

ζ ′ (A0)∩T−1
ζ ′′ (A0)

)

⊇ Tζ ′′
(
A0 ∩T−1

ζ ′ (A0)∩T−1
ζ ′′ (A0)) �= /0

owing to (5) and the fact that the translation Tζ ′′(·) preserves the set cardinality.
The claim that T−1

ζ (A0)∩A0 �= /0 for all ζ ∈Θ ∗ has been justified.
(ii) It remains to prove that Θ ∗ contains six distinct vectors, or to say, the vector

difference of any two distinct vectors in Θ is unique. First, one trivially has
−ζ ′ �=−ζ ′′ and (ζ ′ −ζ ′′) �= (ζ ′′ −ζ ′), if ζ ′ �= ζ ′′ ∈ Θ . Two more claims need
to be clarified.

• First, we claim ζ ′ �=−ζ ′′ if ζ ′ �= ζ ′′. On the contrary, if ζ ′ =−ζ ′′, then

A0 ∩T−1
ζ ′ (A0)∩T−1

ζ ′′ (A0) = A0 ∩Tζ ′′(A0)∩T−1
ζ ′′ (A0)

= Tζ ′′
(
T−1

ζ ′′ (A0)∩A0 ∩T−1
2ζ ′′(A0)

) ⊆ Tζ ′′
(
A0 ∩T−1

2ζ ′′(A0)
)
= /0

(6)

in light of Proposition 6. However, this contradicts the property (5). We have
ruled out the case that ζ ′ =−ζ ′′. Consequently, ζ ′ �=−ζ ′′ if ζ ′ �= ζ ′′ ∈Θ .
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• Next, we claim (ζ ′
1 − ζ ′′

1 ) �= (ζ ′
2 − ζ ′′

2 ), if ζ ′
1,ζ ′′

1 ,ζ ′
2,ζ ′′

2 ∈ Θ with ζ ′
1 �∈ {ζ ′′

1 ,ζ ′
2}

and ζ ′′
1 �∈ {ζ ′

1,ζ ′′
2 }. Clearly, there must be a nonzero vector in {ζ ′

1,ζ ′′
1 ,ζ ′

2,ζ ′′
2 },

in view of ζ ′
1 �∈ {ζ ′′

1 ,ζ ′
2} and ζ ′′

1 �∈ {ζ ′
1,ζ ′′

2 }. One can suppose without loss of
generality that ζ ′ = ζ ′

1 �= 0. Since Θ only contains two nonzero vectors at n = 2,
we thus can denote by ζ ′′ the unique nonzero vector in Θ \{ζ ′

1}. Consequently,
{ζ ′′

1 ,ζ ′
2} ⊆ {0,ζ ′′}.

To prove the assertion by contradiction, we assume on the contrary that
the difference (ζ ′

1 − ζ ′′
1 ) = (ζ ′

2 − ζ ′′
2 ) for some such ζ ′

1,ζ ′′
1 ,ζ ′

2,ζ ′′
2 ∈ Θ . Then

ζ ′
1 = ζ ′′

1 +(ζ ′
2 −ζ ′′

2 ) = (ζ ′′
1 +ζ ′

2)−ζ ′′
2 . By recalling that {ζ ′′

1 ,ζ ′
2} ⊆ {0,ζ ′′}, one

must have the vector (ζ ′′
1 +ζ ′

2) = αζ ′′ for some α ∈ [0,2]. Now we examine the
vector ζ ′′

2 .
• If ζ ′′

2 ∈ {0,ζ ′′}, then ζ ′ = ζ ′
1 = α ′ζ ′′ for some α ′ ∈ [−1,2]. We observe that

α ′ �∈ {−1,0,1}; otherwise, a contradiction can be derived similar to (6). When
α ′ ∈ (−1,0), an application of Proposition 6 leads to

T−1
ζ ′ (A0)∩T−1

ζ ′′ (A0) = T−1
ζ ′

(
A0 ∩T−1

(1−α ′)ζ ′′(A0)
)
= /0 (7)

due to (1−α ′) > 1. When α ′ ∈ (0,1), the vector ζ ′′ = ζ ′/α ′, and by analogy
we have

A0 ∩T−1
ζ ′′ (A0) = A0 ∩T−1

(1/α ′)ζ ′(A0) = /0 (8)

in view of 1/α ′ > 1. When α ′ ∈ (1,2), it also turns out that

A0 ∩T−1
ζ ′ (A0) = A0 ∩T−1

α ′ζ ′′(A0) = /0. (9)

Obviously, (7)–(9) all contradict the property (5) satisfied by the vectors in Θ .

• Otherwise, if ζ ′′
2 = ζ ′

1, it leads to that ζ ′ = ζ ′
1 = α/2 · ζ ′′, where α/2 ∈ [0,1].

A contradiction can be derived, by an argument analogous to (8).

A contradiction always arises if (ζ ′
1 − ζ ′′

1 ) = (ζ ′
2 − ζ ′′

2 ). Hence, the claim (ζ ′
1 −

ζ ′′
1 ) �= (ζ ′

2 −ζ ′′
2 ) must be true, for all ζ ′

1,ζ ′′
1 ,ζ ′

2,ζ ′′
2 ∈Θ with ζ ′

1 �∈ {ζ ′′
1 ,ζ ′

2} and ζ ′′
1 �∈

{ζ ′
1,ζ ′′

2 }. This claim shows that the vector difference of any two distinct vectors in
Θ is unique. That is, we have justified the local-independence of Θ .

To sum up, Θ is locally independent for n = 2. Moreover, the collection Θ con-
tains three distinct vectors, and then there are 6 = 3 · 2 nonzero difference vectors,
as collected in Θ ∗. The verified claims suggest that the collection Θ ∗ includes six
distinct vectors, and T−1

ζ (A0)∩A0 �= /0 for all ζ ∈ Θ ∗. In other words, the stability
region A0 has at least six neighboring stability regions, so does any stability region
A(xs), in light of the spatial-periodicity by Proposition 2. As a consequence, the
solution xs must have at least six neighboring local-optimal solutions. The proof is
completed. �
Example: To validate the derived bound, we consider a nonlinear optimization
problem minx∈R2 f (x), say

f (x) =−3cos(x1)− cos(x2)− cos(x1 − x2)−0.04x1 −0.06x2. (10)
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A simple computation shows that the gradient −∇ f (x) = (F1(x),F2(x)) with

F1(x) =−3sinx1 − sin(x1 − x2)+0.04, F2(x) =−sinx2 − sin(x2 − x1)+0.06.

One can easily check that the gradient ∇ f (x) is spatially periodic, but not the objec-
tive function f . The point x0

s = (0.0200,0.0400) is a local-optimal solution to the
problem (10). With reference to Fig. 4 left, the points xi

s for 1 ≤ i ≤ 6 are the neigh-
boring local-optimal solutions of x0

s , by seeing that there is a point x2i−1
e shared by

the stability boundaries ∂Ap(xi
s) and ∂Ap(x0

s ) for 1 ≤ i ≤ 6. They have been summa-
rized in Fig. 4 right. Hence, the solution x0

s has exactly six neighboring local-optimal
solutions.

As proved by Theorem 5, there should be at least 6 = n(n+1) neighboring local-
optimal solutions for x0

s at n = 2. This equals to the actual number of neighboring
local-optimal solutions. Thus, the number 6 = n(n+1) provides the optimal lower
bound on the number of neighboring local-optimal solutions, and this (lower) bound
cannot be improved anymore for the planar optimization problems.

5 Engineering Interpretations

There are a number of engineering applications and interpretations related to the
Sperner’s lemma and the present study of local-optimal solutions.

First of all, Sperner’s lemma has found interesting applications in software engi-
neering [21, 22] and robust machines [23]. Clearly, software systems are of critical
importance in the modern society, and their safety and quality have direct and imm-
ediate effects on our daily lives. In the manufacture and quality assurance process,
an important element is the testing of software and hardware systems, to prevent
the catastrophic consequences caused by software failure. In the industry, an aff-
ordable approach is to use the test suites generated from combinatorial designs,
which involves identifying parameters that define the space of possible test scenar-
ios, then selecting test scenarios to cover all the pairwise interactions between these
parameters and their values. This process is called the construction of efficient com-
binatorial covering suites, and lower bounds on the size of covering suites [21, 22]
have been derived by using the Sperner’s lemma.

Furthermore, it should be noted that some concepts in power engineering [24],
chemical engineering [25, 26], and molecular biology [27] resemble the local-
optimal solutions in nonlinear optimization. Take the protein folding [27] as an
example, the proteins are chains of amino acids and must self-assemble into well-
defined conformations before fulfilling their biological functions, which can be
achieved through a myriad of conformational changes (see Fig. 5). By convention,
a conformation refers to a possible structure of the protein, and a conformational
change is a transition between conformations. The resulting structure of folded pro-
tein is called the native state, determined by the sequence of amino acids, which can
be interpreted as the state attaining the global minimum of the Gibbs free energy.
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Fig. 4 Left: The stability region Ap(x0
s ) is the area enclosed by the bold curve

that the points xk
e, 1 ≤ k ≤ 12 lie on. Moreover, the local-optimal solution xi

s is
neighboring to the solution x0

s , for 1 ≤ i ≤ 6. Right: A summary of the neighboring
local-optimal solutions, e.g., x1

s = (−6.2632,0.0400) ∈ R
2

The protein folding has a multi-state nature, and there can be many meta-stable
states that can trap the folding and hinder the progress toward the native state. In
this spontaneous optimization process, the meta-stable states play the role of local-
optimal solutions, which may pertain to severe mammalian diseases.

Besides, the present work sheds light on the study of feasible components of the
optimal power flow problem. In a typical power flow model [24], the power balance
equations for the real and reactive power at node k ∈ {1,2, . . . ,N} are described by

H2k−1
.
= (PG

k −PL
k )−∑N

i=1 VkVi(Gki cos(θk −θi)+Bki sin(θk −θi)) = 0,
H2k

.
= (QG

k −QL
k )−∑N

i=1 VkVi(Gki sin(θk −θi)−Bki cos(θk −θi)) = 0.

A solution θ = (θ1,θ2, . . . ,θN)∈R
N to the above equations (fixing PG

k , PL
k , QG

k , QL
k ,

Vk) must be a local-optimal solution of the minimization problem: minθ∈RN
1
2‖H‖2,

where the vector function H
.
= (H1,H2, . . . ,H2N) ∈ R

2n, and an associated gradient
system is given by θ̇ = −∇θ H ·H. The task of finding the local-optimal solutions
of the minimization problem minθ∈RN

1
2‖H‖2 thus is transformed to seek the sta-

ble equilibrium manifolds of the gradient system, where the stable manifolds of the
stable equilibrium manifold are defined by [24]. Hence, the number of neighboring
stable equilibrium manifolds can be estimated similar to Theorem 4, if the associ-
ated gradient system satisfies the recast conditions in terms of stable equilibrium
manifolds, corresponding to (A1)–(A5).
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Fig. 5 The energy landscape of protein folding

6 Concluding Remarks

We have developed lower bounds for the number of neighboring local-optimal
solutions for a class of nonlinear optimization problems. By the symmetry of the
neighboring solutions, it is shown that there are at least 2n local-optimal solutions
neighboring to a given one, where n is the dimensional of the state space. Moreover,
for the planar problems, we can obtain an improved lower bound 6 = n(n+ 1) >
4 = 2n at n = 2. This is derived from the local-independence of the (n+ 1) neigh-
boring elements at Proposition 4. Nevertheless, it remains unclear whether n(n+1)
also provides an optimal lower bound on the number of neighboring local-optimal
solutions for the optimization problems in R

n with n ≥ 3.
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Appendix

A Proof of Proposition 1

Proof : It should be apparent that (A(xs)∩ A(x′s)) = /0, owing to xs �= x′s. By the
definition ∂Ap(xs)

.
= ∂A(xs), the task can be equivalently converted to show (A(xs)∩

A(x′s)) = (∂A(xs)∩∂A(x′s)). The remaining analysis is given by examining the two
possibilities of the intersection of closures.
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• If (A(xs)∩A(x′s)) = /0, it is straightforward to see that (∂A(xs)∩∂A(x′s)) = /0. The
conclusion is true.

• Otherwise, (A(xs)∩ A(x′s)) �= /0. Due to (A(xs)∩ A(x′s)) = /0, one has (A(xs)∩
A(x′s))⊆ (∂A(xs)∩A(x′s))∪(∂A(x′s)∩A(xs))⊆ (∂A(xs)∪∂A(x′s)). Recalling that
A(xs) is open, we thus have the set (int(A(xs)) \ ∂A(xs)) ⊆ (A(xs) \ ∂A(xs)) =
A(xs), so is at the point x′s.

To prove by contradiction, we assume on the contrary that there is a point y� ∈
(A(xs)∩A(x′s)), with either y� �∈ ∂A(xs) or y� �∈ ∂A(x′s). To fix the ideas, we suppose
y� �∈ ∂A(xs). This implies the point y� ∈ int(A(xs)). Then, an open ball Bε(y�) exists
in R

n, with the center at y� and the radius ε > 0, such that Bε(y�)⊆ int(A(xs)).
Since y� ∈ (A(xs)∩A(x′s))⊆ A(x′s), there must be a convergent sequence of points

yk ∈ A(x′s), k ≥ 1 with y� = limk→∞ yk. Recalling that A(x′s) is an open set, one thus
can choose εk > 0 for k ≥ 1, such that Bεk(yk)⊆ A(x′s) and limk→∞ εk = 0. The choice
of yk’s ensures Bεk(yk)⊆ Bε(y�) for all k sufficiently large. From the construction of
Bε(y�), it yields Bεk(yk)⊆ int(A(xs))∩A(x′s), for all large ks.

Let dim(·) be the dimension [28] of a set in a Euclidean space. One can eas-
ily check that dim(Bεk(yk)) = n for all k ≥ 1. Meanwhile, dim(∂A(xs)) = (n− 1)
with dim(A(xs)) = dim(A(xs)) = n, so are the sets for x′s. This leads to (Bεk(yk) \
∂A(xs)) �= /0, owing to dim(Bεk(yk)) > dim(∂A(xs)). Then, for k ≥ 1 sufficiently
large,

A(xs)∩A(x′s) ⊇ (int(A(xs))\∂A(xs))∩A(x′s)
⊇ (Bεk(yk)\∂A(xs))∩Bεk(yk) = (Bεk(yk)\∂A(xs)) �= /0.

As a consequence, (A(xs)∩A(x′s)) �= /0. However, it violates the fact that the stability
regions are disjoint for distinct stable equilibrium points. So the point y� must belong
to ∂A(xs) and also belong to ∂A(x′s) by analogy. This is valid for every point y� ∈
(A(xs)∩A(x′s)). We thus can conclude that (A(xs)∩A(x′s)) = (∂A(xs)∩∂A(x′s)). �

B Proof of Proposition 4

Toward the proof of Proposition 4, first of all we need the existence of local-optimal
solution (i.e., stable equilibrium point of (2)), which is stated below.

Proposition B.1 (Existence of Local-Optimal Solution). Let X
.
= {xe; xe ∈ R

n}
be the set of all equilibrium points of (2). Then, there exists at least one stable
equilibrium point of (2) in X .

Proof : From the condition (A1), the equilibrium points are all hyperbolic, which
yields det(∇F) �= 0 for all equilibrium points of (2). Then, the equilibrium points
are isolated. It follows that the set of all equilibrium points of (2) in R

n is countable.
In the sequel, we can represent the set of equilibrium points as X = {xq

e ; q ∈ N}.
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To show the conclusion, we assume on the contrary that no point in X is stable.
Clearly, the stable manifold W s(xq

e) is of dimension dim(W s(xq
e)) ≤ (n − 1) < n,

for all q ∈ N. Besides, the stable manifold W s(xq
e) is locally diffeomorphic to a

Euclidean space. Thus, W s(xq
e) is the union of countably many closed discs B j

q with
dim(B j

q) = dim(W s(xq
e))≤ (n−1), j ∈ N. In light of the condition (A3)–(A5), any

point in R
n belongs to the stable manifold of an equilibrium point in X , which

shows the space R
n =

⋃
q∈N

⋃
j∈N B j

q. It follows from Sum Theorem [28, Theorem
1.5.3] that

dim(Rn) ≤ max{dim(B j
q); q, j ∈ N} ≤ (n−1).

However, this contradicts the fact dim(Rn) = n. Hence, the contrary proposition
must be false. In a word, there must be one stable equilibrium point in X ⊆ R

n. �

Remark B.1. By (A4) and Proposition B.1, there is exactly one stable equilibrium
point x∗s in the subset [0,2π)n of the state space R

n, which includes exactly a single
(spatial-) period for each xi, 1 ≤ i ≤ n. Proposition 2 also implies that Tζ (x

∗
s ) is

the only stable equilibrium point in the region Tζ ([0,2π)n), for all ζ ∈ P. More-
over, let xs be a stable equilibrium point in S, and As be the stability region of xs.
Together with Proposition B.1, Proposition 2, and the assumption (A4), one has
S= {Tζ (xs); ζ ∈ P}= Tζ (S), for all ζ ∈ P, which is countable and consists of inf-
initely many points. Besides, the hypotheses (A3)–(A5) guarantee that the entire
space R

n is the union of the closure of the stability regions of the points in S. Or to
say, Rn is the union of closures of the stability regions in A

.
= {Tζ (As); ζ ∈ P}.

When applying the Sperner’s lemma to prove Proposition 4, we need that the
intersection of any compact set with the closures of stability regions in A is a union
of finitely many closed sets, which yields that the union is a close set as well. To this
end, an auxiliary proposition is summarized.

Proposition B.2 (Finite Intersection with Compact Set). For any compact set
Ψ ⊆ R

n, there are only finitely many stability regions in A whose closures inter-
sect Ψ .

Proof : By the condition (A5), each stability region is bounded. Let � be the
diameter of a stability region As, and ‖ · ‖ be the usual Euclidean norm of a
vector. By the triangle inequality, given an arbitrary �δ > 0, if ‖ζ‖ > �δ + �, then
‖x− y‖ ≥ ‖y−T−1

ζ (y)‖−‖x−T−1
ζ (y)‖ ≥ ‖ζ‖− � > �δ , for all points x ∈ As and

y ∈ Tζ (As). Here, the inverse T−1
ζ

.
= T−ζ .

Let ρ > 0 be the diameter of Ψ , and As ∈ A be a stability region such that
(Ψ ∩ As) �= /0. By setting �δ = 2ρ , we thus have ‖y − x‖ > �δ = 2ρ > ρ , for all
x ∈ (As ∩Ψ),y ∈ Tζ (As), ζ ∈ P with ‖ζ‖ > �δ + �. Then, (Tζ (As)∩Ψ) = /0 for all
ζ ∈ P with ‖ζ‖> �+2ρ , due to (Ψ ∩As) �= /0.

In other words, (Tζ (As)∩Ψ) �= /0, only if ζ ∈ P with ‖ζ‖ ≤ �+2ρ . Observe that
there are only finite number of vectors ζ ∈ P satisfying ‖ζ‖ ≤ �+2ρ . The proof is
completed. �
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Remark B.2. In view of (A1) and Lemma B.2, there are only finite number of
equilibrium points in the region [0,2π)n ⊆ R

n.

Proof of Proposition 4: Consider a closed set Ω ∗ in R
n which is the closure of a non-

degenerated simplex, with {Qk; 0 ≤ k ≤ n} being the (n− 1)-dimensional faces of
Ω ∗. Besides, {Vk;0 ≤ k ≤ n} are (n+1) closed sets in R

n such that Ω ∗ = (
⋃n

k=0 Vk),
and (Vk ∩Qk) = /0 for all 0 ≤ k ≤ n, with the vertex opposite to Qk being contained
in Vk. By Sperner’s lemma and Theorem 2, the set (

⋂n
k=0 Vk) �= /0.

To this end, we shall construct such closed sets Vk’s, by using the closures
of stability regions. First of all, we arbitrarily choose a simplex Ω ∗ ∈ R

n with
dim(Ω ∗) = n, where {Qk;0 ≤ k ≤ n} are the (n− 1)-dimensional face set of Ω ∗,
and the point qk is the vertex of Ω ∗ opposite to Qk. Moreover, the simplex can be
selected sufficiently large, such that Ω ∗ contains an open ball Bρ(x∗), where x∗ ∈Ω ∗
and the radius ρ > 0 is the diameter of a stability region. Then, every stability region
Ai doesn’t intersect all the faces of Ω ∗, with either (Ai ∩Qk) = /0 or qk �∈ Ai for each
0 ≤ k ≤ n. In light of Proposition B.2, there are only finitely many Ai’s ∈ A such
that (Ai ∩Ω ∗) �= /0.

The sets Vk’s are obtained by induction as follows. Let A0 be the set of all Ai ∈
A such that (Ai ∩Q0) = /0 with (Ai ∩Ω ∗) �= /0, and V0

.
=

⋃{
(Ai ∩Ω ∗); Ai ∈ A0

}
.

Suppose that the collection A j and the closed set Vj have been obtained, for all
0 ≤ j ≤ k. We denote by Ak+1 the collection of Ai ∈ A such that

Ai �∈ ⋃k
j=0 A j, (Ai ∩Qk+1) = /0 and (Ai ∩Ω ∗) �= /0.

The closed set Vk+1
.
=

⋃{
(Ai ∩Ω ∗); Ai ∈ Ak+1

}
. This process is terminated, once

Vn is obtained. Clearly,
⋃n

k=0 Vk = Ω ∗, and (Vk ∩Qk) = /0 for all 0 ≤ k ≤ n.
Next, we verify that each Vk is not empty. Clearly, V0 �= /0, and we suppose

Vj �= /0 for all j = 0,1, . . . ,k. It remains to show Vk+1 �= /0. Apparently, the ver-
tices {q j; k < j ≤ n} ⊆ ⋂k

j=0 Q j, which implies q j �∈ Ai, for all Ai ∈ ⋃k
j=0 A j and

k < j ≤ n. Since Ω ∗ ⊆ R
n =

⋃
Ai∈A Ai, there must exist one stability region Ai∗

that contains the vertex qk+1. It is straightforward to see that Ai∗ �∈ ⋃k
j=0 A j. More-

over, by the choice of Ω ∗, the set Ai∗ doesn’t intersect the face Qk+1 opposite to
qk+1. Hence, Vk+1 ⊇ (Ai∗ ∩Ω ∗) �= /0. By this inductive argument, we conclude that
Vk �= /0, for all 0 ≤ k ≤ n.

Then, it follows from Theorem 2 that (
⋂n

k=0 Vk) �= /0. Let y∗ be a point in this
nonempty intersection. Since y∗ ∈ Vk, there must be a set Aik ∈ Ak such that y∗ ∈
(Aik ∩Ω ∗)⊆Vk. We thus obtain a finite subset {Aik ; 0 ≤ k ≤ n}⊆A , which satisfies
(
⋂n

k=0 Aik)⊇
⋂n

k=0(Aik ∩Ω ∗)⊇ {y∗} �= /0. The first assertion is proved. �
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C Proof of Proposition 5

Proof : Above all, the vector ζi �= 0, due to x0
s �= xi

s, A0 �= Ai and Tζi
(Ai) = A0 for 1 ≤

i ≤ n. Meanwhile, ζi �= ζ j for all i �= j, in light of Ai �=A j and Tζi
(Ai) =A0 = Tζ j

(A j).

In addition, Tζi
(x0

s ) = xi
s for all 1 ≤ i ≤ n, where the stability region Ai = A(xi

s).
To show that the elements in A ∗

n at (4) are pairwise different, it suffices to only
clarify that Tζi

(A0) �= A j for all 1 ≤ i, j ≤ n, and Tζi
(A0) �= Tζ j

(A0) for all i �= j.

• To justify Tζi
(A0) �= A j, we assume on the contrary that Tζi

(A0) = A j for some
1 ≤ i, j ≤ n. In other words, the corresponding stable equilibrium points satisfy
Tζi

(x0
s ) = x j

s . Observe that Tζi
(xi

s) = x0
s or T−1

ζi
(x0

s ) = xi
s, by the definition of ζi.

Then, xi
s/2+ x j

s/2 = 1/2 ·T−1
ζi

(x0
s )+1/2 ·Tζi

(x0
s ) = x0

s . That is, x0
s can be repre-

sented by a convex combination of two elements in {x1
s , . . . ,x

n
s}. However, this

contradicts the choice of x0
s , which is an extreme point in the point set. A contra-

diction arises. We thus can conclude that Tζi
(A0) �= A j for all 1 ≤ i, j ≤ n.

• Next we show Tζi
(A0) �= Tζ j

(A0), for all i �= j, 1 ≤ i, j ≤ n. To prove by contradic-
tion, we assume on the contrary that Tζi

(A0) = Tζ j
(A0) for some i �= j. Trivially,

it yields A0 = Tζ j−ζi
(A0), and then ζi = ζ j, which violates the choice that ζi �= ζ j

for all i �= j. A contradiction arises. Thus, the contrary proposition must be false.
We have completed the proof of the assertion that Tζi

(A0) �= Tζ j
(A0) for all i �= j

with 1 ≤ i, j ≤ n.
In a word, the elements in A ∗

n are pairwise different. Moreover,
(
Tζi

(A0)∩
A0

)
=

(
Tζi

(A0)∩Tζi
(Ai)

)
= Tζi

(A0 ∩Ai) �= /0, due to (A0 ∩Ai) ⊇ ⋂n
q=0 Aiq �= /0.

Therefore, the set (A∩A0) �= /0, for all A ∈ A ∗
n . The proposition is proved. �

D Proof of Proposition 6

Proposition 6 will be proved by contradiction, which relies on the following result
on the plane geometry and simple curves.

Proposition D.1 (Intersection of Simple Curves). Let v be a unit vector in the
plane, and the line � be defined by �

.
= {λv; λ ∈ R}, with S being an open segment

⊆ �. The set H refers to a connected component of the set (R2 \ �), which is a
half-plane.

Let γ ⊆ H be a simple curve satisfying that the set Γ .
= (γ ∪ S) forms a Jordan

curve, and the length m1(Γ )< ∞. Then, the set

γ ∩Tαv(γ) �= /0, (11)

if the set (S∩Tαv(S)) �= /0 for some α ∈ R.
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Fig. 6 In Proposition D.1, the curve γα must intersect γ , if (S∩Sα) �= /0

Proof : Let x1,x2 be the endpoints of the segment S, and xα
1 ,x

α
2 be that of the segment

Sα , where Sα = Tαv(S) and γα
.
= Tαv(γ) (Fig. 6). Without loss of generality we fix

the point x2 = Tαsv(x1), where αs = ‖S‖> 0 is the length of S. That is, the point x2

lies downstream of x1 on �.
Observe that the set (H ∩ Tαv(S)) ⊆ (H ∩ �) = /0, for all α ∈ R. Clearly,

Γα
.
= Tαv(γ ∪S) = Tαv(Γ ) is a Jordan curve. One can also easily check that, the set

IΓα ⊆ H for all α ∈ R, in view of IΓα = Tαv(IΓ )⊆ H. Here IΓ refers to the bounded
connected component of the set (R2 \Γ ), or to say IΓ is the interior enclosed by the
Jordan curve Γ . The conclusion is obviously true at α = 0. It remains to examine
the case for α �= 0. To fix the ideas, we consider the case that α > 0 in the sequel.

Since x2 = Tαsc(x1) with αs = ‖S‖ > 0, one must have that, the condition
(S∩Sα) �= /0 implies the point x2 ∈ Sα and xα

1 ∈ S, if α > 0. To show (γ ∩ γα) �= /0,
we need to claim that (γ ∩ IΓα ) �= /0, and (γ \ IΓα ) �= /0.

(i) We start by justifying the claim that (γ ∩ IΓα ) �= /0.
First of all, we claim the set (Bε(x2)∩H)⊆ IΓα , for some ε > 0. Observe that the

curve γα ⊆ H and the point x2 ∈ �⊆ (R2 \H). Then, the point x2 �∈ γα , and thereby
(Bε(x2)∩ γα) = /0 for all ε > 0 sufficiently small. Moreover, the set (Bε(x2)∩H)∩
Γα = /0 for all ε > 0 sufficiently small, in view of (Bε(x2)∩ H)∩ � = /0. By the
simple-connectivity of (Bε(x2)∩H), the set

(Bε(x2)∩H)⊆ IΓα or (Bε(x2)∩H)⊆ (R2 \ IΓα ). (12)

It should be apparent that the ball Bε(x2) must intersect IΓα , owing to the point
x2 ∈ Sα ⊆ Γα and Γα is the boundary of IΓα . Then,

(Bε(x2)∩H)∩ IΓα ⊇ (Bε(x2)∩ IΓα )∩ IΓα = (Bε(x2)∩ IΓα ) �= /0

in light of Γα ⊆ H and IΓα ⊆ H by Conway [29, Corollary 13.1.11]. We can conclude
that the set (Bε(x2)∩H)⊆ IΓα for all ε > 0 sufficiently small, in view of (12). The
auxiliary claim is proved.

One can easily check that (γ ∩Bε(x2)) �= /0 for all ε > 0, due to x2 ∈ γ . It turns
out that the set

(γ ∩ IΓα )⊇ γ ∩ (Bε(x2)∩H) = (γ ∩Bε(x2)) �= /0
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for all ε > 0 sufficiently small, owing to γ ⊆ H and the verified auxiliary claim
(Bε(x2)∩H)⊆ IΓα . We complete the proof for the claim (i).

(ii) Next we prove that (γ \ IΓα ) �= /0.
We begin by showing the point x1 �∈ IΓα . Clearly, the point x1 �∈ Sα . By the bound-

edness of the set IΓα , one can easily check that Tλv(x1) doesn’t belong to IΓα , for all
λ ∈ R with |λ | being sufficiently large. Let x∗1 be the point Tλv(x1), for some λ < 0
with |λ | being sufficiently large. It should be apparent that the segment

S∗ .
= {Tλv(x1); λ < λ ′ < 0}

doesn’t intersect S and Sα , in view of α > 0. By recalling that (S∗∩γα)⊆ (S∗∩H) =
/0, we thus obtain the set (S∗ ∩Γα) = /0. That is, either the segment S∗ ⊆ IΓα , or the
set (S∗ ∩ IΓα ) = /0. Hence, the endpoints x∗1 and x1 of the segment S∗ must belong to
a same connected component of the set (R2 \Γα). It turns out that the point x1 �∈ IΓα ,
owing to x∗1 �∈ IΓα . The claim is proved.

Since the set IΓα is closed, there must be an ε > 0 sufficiently small, such that
(Bε(x1)∩ IΓα ) = /0. Clearly, the set (γ ∩Bε(x1)) �= /0 for all ε > 0. Then, the set

(γ \ IΓα )⊇ (γ ∩Bε(x1))\ IΓα = (γ ∩Bε(x1)) �= /0

for all ε > 0 sufficiently small. That is, (γ \ IΓα ) �= /0. Claim (ii) is justified.
At last, the Jordan curve theorem yields (γ ∩Γα) �= /0, in view of the verified

claims (γ ∩ IΓα ) �= /0 and (γ \ IΓα ) �= /0. Evidently, the set (γ ∩ Sα) ⊆ (γ ∩ �) = /0.
Then, the set (γ ∩Tαv(γ)) = (γ ∩ γα) = (γ ∩Γα) �= /0, if (S∩Tαv(S)) �= /0 for some
α > 0.

Similarly, it can be shown that (γ ∩Tαv(γ)) �= /0, if (S∩Tαv(S)) �= /0 with α < 0.
The proof of the proposition is completed. �
Proof of Proposition 6: To prove the conclusion, we will derive a contradiction for
the contrary opposition by applying Proposition D.1. To this end, we construct the
desirable lines and segments as follows (see Fig. 3).

(i) Let n ∈R
2 be a unit vector perpendicular to ζ . We consider an arbitrary point

x∗ ∈ A0 and define a signed distance function by dn(y)
.
= 〈y − x∗, n〉 for y ∈ R

2.
Recalling that the closure A0 is compact, we thus have, there are xl ,xu ∈ A0 such that

dn(xl) = inf{dn(y); y ∈ A0}; dn(xu) = sup{dn(y); y ∈ A0}.

The straight lines are defined by

�l
.
= {xl +λζ ; λ ∈ R}= {T−1

λζ (xl); λ ∈ R}, �u
.
= {xu +λζ ; λ ∈ R}.

It is apparent that the region Ω confined between �l and �u, is a simply connected
set, with dn(xl)< dn(y)< dn(xu) for all y ∈ Ω .

(ii) By the assumption (A5), there is a simple curve γ0 ⊆ A0 satisfying that the
curve γ0 connects the point xl to xu, with the length m1(γ0) < ∞. For convenience
we use γα to refer to the curve T−1

αζ (γ0), where the endpoint xα
l

.
= T−1

αζ (xl) and

xα
u

.
= T−1

αζ (xu). In addition, we fix the point x0
l = xl and x0

u = xu.
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On the set (Ω \ γ1), there are only two connected components, say Ωl and Ωu.
Apparently, the components Ωl ,Ωu ⊆R

2 are simply connected, though they are not
bounded. Without loss of generality we suppose that the ray rl

.
= {T−1

λζ (xl); λ <

1} ⊆ Ω l , and ru
.
= {T−1

λζ (xl); λ > 1} ⊆ Ω u. It can be easily checked that (Ω l ∩
Ω u) = γ1.

(iii) We proceed by claiming that A0 ⊆ Ωl , and T−1
αζ (A0)⊆ Ωu for α > 1.

Observe that the set (A0 ∩γ1)⊆ (A0 ∩T−1
ζ (A0)) = /0 and A0 ∩(�l ∪�u) = /0. Then,

(A0 ∩∂Ωl) = /0, where ∂Ωl ⊆ γ1 ∪ (�l ∪ �u). In other words,

A0 ⊆ Ωl or (A0 ∩Ωl) = /0. (13)

From the construction, we easily observe that the point x0
l ∈ Ωl , and xα

l ∈ Ωu for
all α > 1. In view of (Bαζ (x

0
l )∩ ru) = /0 for αζ

.
= ‖ζ‖ and the point x0

l �∈ �u with

x0
l �∈ γ1, one has (Bε(x0

l )∩ Ω u) = /0, for all ε > 0 sufficiently small. This further
yields

(Bε(x0
l )∩Ωl) = Bε(x0

l )∩ (Ωl ∪ γ1 ∪Ωu) = (Bε(x0
l )∩Ω) �= /0.

On the other hand, (Bε(x0
l )∩A0) �= /0 owing to x0

l ∈ A0. Together with A0 ⊆ Ω , it
implies that

(A0 ∩Ωl)⊇ (A0 ∩Bε(x0
l ))∩ (Bε(x0

l )∩Ωl)
= (A0 ∩Bε(x0

l ))∩ (Bε(x0
l )∩Ω)

= (A0 ∩Ω)∩Bε(x0
l ) = (A0 ∩Bε(x0

l )) �= /0.

for all ε > 0 sufficiently small. Finally, the set A0 ⊆ Ωl , in view of (13). An analo-
gous argument shows that T−1

αζ (A0)⊆ Ωu for α > 1.

(iv) To prove the conclusion, we assume on the contrary that (A0∩T−1
αζ (A0)) �= /0.

By the verified claims, one has (A0 ∩T−1
αζ (A0))⊆ (Ω l ∩Ω u) = γ1. Proposition 1

implies that (A0 ∩T−1
αζ (A0)) = (∂A0 ∩T−1

αζ (∂A0)), for all α �= 0 with αζ ∈P, due to

(A0 ∩T−1
αζ (A0)) = /0. As a consequence, (γ1 ∩A0) = (γ1 ∩T−1

αζ (A0)) = /0 for α > 1,

in view of γ1 ⊆ T−1
ζ (A0) and (γ1 ∩T−1

αζ (A0)) ⊆ (T−1
ζ (A0)∩T−1

αζ (A0)) = /0. It turns

out that the set (A0 ∩T−1
αζ (A0))⊆ (γ1 \ γ1) = {x1

l ,x
1
u}.

To fix the ideas, we suppose the point x1
l ∈ (A0 ∩T−1

αζ (A0)). Then, the points

x1
l ,x

0
l ,x

−α
l ∈ A0, and x2

l ,x
1
l ,x

1−α
l ∈ T−1

ζ (A0).

In light of the condition (A5), there is a simple curve γ ⊆ A0 such that γ joins the
points x−α

l and x1
l . Clearly, the curve T−1

ζ (γ) ⊆ T−1
ζ (A0), whose closure connects

the point x2
l to x1−α

l . Let S be the segment joining the points x1
l and x−α

l , with the line
� = �l . An application of Proposition D.1 yields that (γ ∩T−1

ζ (γ)) �= /0, in view of

(S∩T−1
ζ (S))⊇{x0

l } �= /0. In other words, the set (A0∩T−1
ζ (A0))⊇ (γ ∩T−1

ζ (γ)) �= /0,



Neighboring Local-Optimal Solutions and Its Applications 87

which, however, violates the fact (A0 ∩T−1
ζ (A0)) = /0. The contrary opposition must

be false. We thus can conclude that (A0 ∩ T−1
αζ (A0)) = /0 for α > 1. The proof is

completed. �
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General Traffic Equilibrium Problem
with Uncertainty and Random Variational
Inequalities

Patrizia Daniele, Sofia Giuffrè, and Antonino Maugeri

1 Introduction

In the last decades some papers (see [3–5, 8]) have been devoted to the study of
random variational inequalities or general random equilibrium problems. Particu-
larly Gwinner and Raciti in [5] present a class of linear random variational inequal-
ities on random sets and give measurability, existence, and uniqueness results in
a Hilbert space setting. Moreover in a special case they provide an approximation
procedure. In paper [6] the authors apply the theory of random variational inequali-
ties to study a class of random equilibrium problems on networks in the linear case,
whereas the application to nonlinear random traffic equilibrium problem is treated
in [7]. In paper [9], which is devoted to the study of a general infinite dimensional
complementarity problem, the authors consider a random traffic equilibrium prob-
lem in the framework of generalized complementarity problems.

The aim of this paper is to consider a general random traffic equilibrium problem,
namely a traffic problem where the data are affected by a certain degree of uncer-
tainty, to give a random generalized Wardrop equilibrium condition and to show that
the equilibrium conditions are equivalent to a random variational inequality.

The need to develop a random model of the traffic network arises because the
path flows as well as the travel demand are often variable over time in a non-regular
and predictable manner. Such an uncertainty can be caused not only by several
factors such as the particular hour of the day, the particular day of the week, the
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particular week of the year but also by a sudden accident or a maintenance work.
Moreover, since the demand itself is dynamic and can change randomly, we propose
a framework which is able to handle random constraints.

We choose for our model a Hilbert space setting, which allows us to obtain,
under general assumptions, existence and uniqueness results. The paper is organized
as follows. In Sect. 2 the detailed random traffic equilibrium model is presented, a
random generalized Wardrop equilibrium condition is stated, and a variational char-
acterization of the equilibrium is given. In Sect. 3 we provide the proof of the main
result and in Sect. 4 some existence results are discussed. Finally Sect. 5 summarizes
our results and future work.

2 The Model and Main Results

For the reader’s utility we introduce in detail the model of random traffic equilib-
rium problem (see [2] for the deterministic case). A traffic network consists of a
triple (N,A,W ), where N = (N1,N2, . . . ,Np) is the set of nodes, A = (A1, . . . ,An)
represents the set of the directed arcs connecting couples of nodes, and W =
{w1, . . . ,wl} ⊂ N ×N is the set of the origin–destination (O/D) pairs. The flow on
the arc Ai is denoted by fi and the uncertainty which affects the knowledge of fi is
given by the dependence of fi on ω , namely fi = fi(ω), where ω ∈ Ω and (Ω ,A,P)
is a probability space. We will set f (ω) = ( f1(ω), . . . , fn(ω)). We call a set of con-
secutive arcs a path and assume that each O–D pair w j is connected by r j ≥ 1 paths,
whose set is denoted by R j, j = 1, . . . , l. All the paths in the network are grouped
into a vector (R1, . . . ,Rm). We can describe the arc structure of the path by using the
arc-path incidence matrix Δ = {δir}, i = 1, . . . ,n, r = 1, . . . ,m, whose entries take
the value 1 if Ai ∈ Rr and 0 if Ai /∈ Rr. To each path Rr there corresponds a flow
Fr(ω), ω ∈ Ω , and the path flows are grouped into a vector (F1(ω), . . . ,Fm(ω)),
which is called the path flow vector. The flow fi on the arc Ai is equal to the sum of
the flows on the paths which contain Ai so that f (ω) = ΔF(ω), ω ∈ Ω . Let us now
introduce the unit cost of going through Ai as a function ci( f (ω)) ≥ 0 of the flows
on the network, so that c( f (ω)) = (c1( f (ω)), . . . ,cn( f (ω))) denotes the arc cost on
the network. Analogously C(F(ω)) = (C1(F(ω)), . . . ,Cm(F(ω))) will denote the
cost on the paths. Usually Cr(F(ω)) is given by the sum of the costs on the arcs

building the path: Cr(F(ω)) =
n

∑
i=1

δirci( f (ω)), ω ∈ Ω or C(F(ω)) = ΔT c(ΔF(ω)).

Instead of assuming that the paths have an infinite capacity, we suppose that there
exist two random capacity vectors λ (ω), μ(ω), λ (ω)< μ(ω), such that

0 ≤ λ (ω)≤ F(ω)≤ μ(ω) P-a.s.

For each pair w j there is a given random traffic demand D j(ω) ≥ 0 so that
(D1(ω), . . . ,Dl(ω)) is the demand vector. We require that the so-called traffic con-
servation law is fulfilled, namely that the demand D j(ω) verifies



General Traffic Equilibrium Problem 91

m

∑
r=1

ϕ jrFr(ω) = D j(ω) j = 1, . . . , l P-a.s.,

where Φ = {ϕ jr}, j = 1, . . . , l, r = 1, . . . ,m, is the pair-incidence matrix whose el-
ements ϕ jr are equal to 1, if the path Rr connects the pair w j, and equal 0 other-
wise. In order to guarantee general existence results under minimal assumptions
we set our problem in the framework of a Hilbert space and, precisely, we as-
sume that F(ω) ∈ L2(Ω ,P,Rm), D(ω) ∈ L2(Ω ,P,Rl) and the random cost function
C(F(ω)) : L2(Ω ,P,Rm) → L2(Ω ,P,Rm). By L2(Ω ,P,Rm) we denote the class of
R

m-valued functions defined in Ω , which are square integrable with respect to the
probability measure P, while the symbol 〈·, ·〉 will denote the standard scalar product
in R

m. Moreover we set

〈〈G,F〉〉=
∫

Ω
〈G(ω),F(ω)〉dPω ∀F,G ∈ L2(Ω ,P,Rm).

Then the set of random feasible flows is given by

KP = {F(ω) ∈ L2(Ω ,P,Rm) : λ (ω)≤ F(ω)≤ μ(ω),ΦF(ω) = D(ω)P-a.s.},

which is a closed, bounded, and convex subset of L2(Ω ,P,Rm).
Setting ∀ω ∈ Ω

K(ω) = {F(ω) ∈ R
m : λ (ω)≤ F(ω)≤ μ(ω),ΦF(ω) = D(ω)},

KP may be rewritten as

KP = {F(ω) ∈ L2(Ω ,P,Rm) : F(ω) ∈K(ω)P-a.s.}.

We can give the following definition of equilibrium.

Definition 1. A distribution H ∈ KP is an equilibrium distribution from the user’s
point of view iff

∀w j ∈W, ∀Rq, Rs ∈ R j andP-a.s. there holds (1)

Cq(H(ω))<Cs(H(ω)) =⇒ Hq(ω) = μq(ω) or Hs(ω) = λs(ω).

Now we prove that an equilibrium distribution can be characterized by means of
a variational inequality.

Theorem 1. H ∈KP is an equilibrium flow according to Definition 1 iff it is a solu-
tion to the variational inequality:

〈〈C(H),F −H〉〉=
∫

Ω
〈C(H(ω)),F(ω)−H(ω)〉dPω ≥ 0, ∀F ∈KP, (2)

or, in compact form, using the expectation E p

E p(〈C(H),F −H〉)≥ 0,
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where

E p(〈H1,H2〉) =
∫

Ω
〈H1(ω),H2(ω)〉dPω ∀H1,H2 ∈ L2(Ω ,P,Rm).

Remark 1. In Sect. 3, during the proof of Theorem 1, we implicitly prove that
variational inequality (2): Find H ∈KP such that

∫

Ω
〈C(H(ω)),F(ω)−H(ω)〉dPω ≥ 0, ∀F ∈KP

is equivalent to the pointwise finite dimensional variational inequality (3) with
random parameter:

Find H ∈KP such that P-a.s.

l

∑
j=1

∑
Rr∈R j

Cr(H(ω))(Fr(ω)−Hr(ω))≥ 0, ∀F(ω) ∈K(ω). (3)

In the paper [9] the authors study the problem: Find H(ω) ∈K(ω) such that

l

∑
j=1

∑
Rr∈R j

Cr(H(ω))(Fr(ω)−Hr(ω))≥ 0, ∀F(ω) ∈K(ω)

without a priori assuming that H ∈KP, but looking for conditions which ensure that
H ∈KP. In Remark 1.1 in [9] they give a positive answer under suitable conditions.

Moreover the relationship between the two formulations is further specified in
Proposition 1 in [7] (see also Remark 6.1).

Remark 2. Definition 1 is equivalent to the following condition: for every w j ∈ W
there exists a random variable C j(ω) such that for all Rr ∈ R j and P-a.s.

Cr(H(ω))<C j(ω) =⇒ Hr(ω) = μr(ω)
Cr(H(ω))>C j(ω) =⇒ Hr(ω) = λr(ω)

.

If μr = +∞ for all r, then the above conditions can be rendered as follows: for
every w j ∈W and P-a.s. if C j(ω) := minRr∈R j Cr(H(ω)), then

(Cr(H(ω))−C j(ω))(Hr(ω)−λr(ω)) = 0 ∀Rr ∈ R j P-a.s.

3 Proof of Theorem 1

First, we prove that (1) implies (2). By assumption H ∈KP is an equilibrium distri-
bution and it is enough to prove that P-a.s.

l

∑
j=1

∑
Rr∈R j

Cr(H(ω))(Fr(ω)−Hr(ω))≥ 0, ∀F(ω) ∈K(ω), (4)

because, by integrating in Ω , we get (2).
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Let w j ∈W be an arbitrary O/D pair. We denote by

A j :=
{

Rq ∈ R j : Hq(ω)< μq(ω)
}

and B j :=
{

Rs ∈ R j : Hs(ω)> λs(ω)
}
.

From (1)
Cq(H(ω))≥Cs(H(ω)) for all Rq ∈ A j and Rs ∈ B j.

So, there exists γ j ∈ R such that

inf
Rq∈A j

Cq(H(ω))≥ γ j ≥ sup
Rs∈B j

Cs(H(ω)).

Let F(ω) ∈ Kp be arbitrary. Then, for every Rr ∈ R j, Cr(H(ω)) < γ j implies Rr /∈
A j, hence Hr(ω) = μr(ω), therefore Fr(ω)−Hr(ω)≤ 0 and

(Cr(H(ω))− γ j)(Fr(ω)−Hr(ω))≥ 0.

Likewise, Cr(H(ω))> γ j implies (Cr(H(ω))− γ j)(Fr(ω)−Hr(ω))≥ 0.
Thus,

∑
Rr∈R j

Cr(H(ω))(Fr(ω)−Hr(ω)) ≥ γ j ∑
Rr∈R j

(Fr(ω)−Hr(ω))

= γ j (D(ω)−D(ω)) = 0.

Hence,

�C(H(ω)),F(ω)−H(ω)�=
l

∑
j=1

∑
Rr∈R j

Cr(H(ω))(Fr(ω)−Hr(ω))≥ 0

∀F(ω) ∈Kp,

and (2) holds true.
Now, we prove that (2) implies (1). Ad absurdum we assume that there exist

w j ∈ W, Rq, Rs ∈ R j and a set E ∈ A with P(E) > 0 such that in E Cq(H(ω)) <
Cs(H(ω)), but Hq(ω)< μq(ω) and Hs(ω)> λs(ω).

We set: δ (ω) = min
{

μq(ω)−Hq(ω),Hs(ω)−λs(ω)
}
> 0 in E.

Consider now the flow F∗(ω) defined as:

F∗(ω) = H(ω) in Ω \E

F∗
r (ω) =

⎧
⎨

⎩

Hr(ω) if r �= q,s
Hq(ω)+δ (ω) if r = q
Hs(ω)−δ (ω) if r = s

in E.
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It is easy to verify that F∗(ω) ∈KP, then we can calculate the variational inequality
(2) in F∗(ω) :

∫

Ω
〈C(H(ω)),F∗(ω)−H(ω))dPω =

∫

E
[Cq(H(ω)−Cs(H(ω)]δ (ω)dPω < 0

which is an absurdity.

4 Existence of Equilibria

There are two standard approaches to the existence of equilibria, namely with and
without a monotonicity requirement (see [10]). We shall employ the following
definitions.

Let E be a reflexive Banach space over the reals, K ⊂ E be a nonempty, closed,
and convex set, A : K→ E∗ be a map to the dual space E∗ equipped with the weak∗
topology.

Definition 2. A mapping A from K to X∗ is called pseudomonotone in the sense of
Brezis (B-pseudomonotone) iff

1. For each sequence un weakly converging to u (in short un ⇀ u) in K and such
that limsupn〈Aun,un −u〉 ≤ 0 it results that:

liminf
n

〈Aun,un − v〉 ≥ 〈Au,u− v〉, ∀v ∈K;

2. For each v ∈ K the function u �→ 〈Au,u− v〉 is lower bounded on the bounded
subsets of K.

The following Theorem holds (see [1, 10])

Theorem 2. Let K be a nonempty convex and weakly compact subset of E and A a
B-pseudomonotone mapping from K to E∗. Then variational inequality

〈Au,v−u〉 ≥ 0, ∀v ∈K

admits solutions.

In our framework, since KP is a nonempty convex and weakly compact subset of
L2(Ω ,P,Rm), Theorem 2 becomes

Theorem 3. If C : L2(Ω ,P,Rm)→ L2(Ω ,P,Rm) is B-pseudomonotone, namely

1. For each sequence Hn weakly converging to H (in short Hn ⇀ H) in KP and
such that limsupn〈〈C(Hn),Hn −H〉〉 ≤ 0 it results that:

liminf
n

〈〈C(Hn),Hn −H〉〉 ≥ 〈〈C(H),H − v〉〉, ∀v ∈KP;
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2. For each v ∈ KP the function H �→ 〈〈C(H),H − v〉〉 is lower bounded on the
bounded subsets of KP,

then variational inequality (2) admits solutions.

In the case of monotone approach, we need the following definitions.

Definition 3. The map A : K → E∗ is said to be pseudomonotone in the sense of
Karamardian (K-pseudomonotone) iff for all u,v ∈K

〈Av,u− v〉 ≥ 0 =⇒ 〈Au,u− v〉 ≥ 0.

Definition 4. A mapping A : K→ E∗ is lower hemicontinuous along line segments,
iff the function

ξ �→ 〈Aξ ,u− v〉
is lower semicontinuous for all u,v ∈K on the line segments [u,v].

The following theorem holds (see [10]).

Theorem 4. If K is convex, closed, and bounded and A is a K-pseudomonotone and
lower hemicontinuous along line segments mapping, then variational inequality

〈Au,v−u〉 ≥ 0, ∀v ∈K

admits solutions.

In our framework, Theorem 4 becomes

Theorem 5. If C : L2(Ω ,P,Rm) → L2(Ω ,P,Rm) is K-pseudomonotone, namely for
all H,v ∈KP

〈〈C(v),H − v〉〉 ≥ 0 =⇒ �C(H),H − v �≥ 0

and lower hemicontinuous along line segments, namely the function

ξ �→ 〈〈C(ξ ),H − v〉〉

is lower semicontinuous for all H,v ∈ KP on the line segments [H,v], then varia-
tional inequality (2) admits solutions.

Let us remark that if we assume that C is continuous and verifies the condition

∃c1 > 0 : ‖C(H(ω))‖ ≤ c1‖H(ω)‖, P-a.s.,

then C results to be lower hemicontinuous along line segments.
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5 Conclusions

In this paper we applied the random approach used in [10] to the traffic network
problem (see also [6]) with capacity constraints on the path flows. Starting from the
generalized Wardrop equilibrium condition governing the dynamic traffic networks
in [2], we considered a model which includes uncertainty on the data, specifically on
the path flows as well as on the travel demand. So we introduced a general random
traffic equilibrium problem, and we gave a random generalized Wardrop equilib-
rium condition and showed that the equilibrium conditions are equivalent to a ran-
dom variational inequality. Moreover we provided some existence theorems. Further
work is to study in this framework the duality theory and to provide an approxima-
tion procedure, but also to extend the random approach to other situations such as
the case of mergers/acquisitions.
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Annales de l’Institut Fourier 18, 115–175 (1968)

2. Daniele, P., Maugeri, A., Oettli, W.: Time-dependent traffic equilibria. J. Optim. Theory Appl.
103(3), 543–555 (1999)

3. Evstigneev, I.V., Taksar, M.I.: Equilibrium states of random economies with locally interacting
agents and solutions to stochastic variational inequalities in 〈L1,L∞〉. Ann. Oper. Res. 114,
145–165(2002)

4. Ganguly, A., Wadhwa, K.: On random variational inequalities. J. Math. Anal. Appl. 206,
315–321 (1997)

5. Gwinner, J., Raciti, F.: On a class of random variational inequalities on random sets. Numer.
Funct. Anal. Optim. 27(56), 619-636 (2006)

6. Gwinner, J., Raciti, F.: Random equilibrium problems on networks. Math. Comput. Model.
43(7–8), 880–891 (2006)

7. Gwinner, J., Raciti, F.: Some equilibrium problems under uncertainty and random variational
inequalities. Ann. Oper. Res. 200(1), 299–319 (2012)
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Computational Complexities of Optimization
Problems Related to Model-Based Clustering
of Networks

Bhaskar DasGupta

1 Introduction

For complex systems of interaction in biology and social sciences, modeled as
networks of pairwise interactions of components, many successful approaches to
mathematical analysis of such networks rely upon viewing them as composed of
subnetworks or modules whose behaviors are simpler and easier to understand.
Coupled with appropriate interconnections, the goal is to deduce emergent proper-
ties of the complete network from the understanding of these simpler subnetworks.
Such modular decomposition of networks appears quite often in the application
domain. For example, in social networks it is a common practice to partition the
nodes of a network into modules called communities such that nodes within each
community are related more closely to each other than to nodes outside the commu-
nity [14, 17, 21, 35–37, 42], and similarly in regulatory networks modular decompo-
sition has been used in studying “monotone” parts of the dynamics of a biological
system [12, 16] and more generally in studying a network in terms of intercon-
nectivity of smaller parts with well-understood behaviors [22, 43]. These problems
are also closely connected to many partitioning problems in graphs based on local
densities studied in other computer science applications. Simplistic definitions of
modules traditionally studied in the computer science literature, such as cliques,
unfortunately do not apply well in the context of biological and social networks and
therefore alternate methodologies are most often used [14, 17, 21, 35–37, 42]. As in
virtually all works on network partitioning and community detection, we consider
a static model of interaction in which the network connections do not evolve over
time. In this chapter we focus on one approach of modular analysis of networks,
namely the model-based approach.
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2 Model-Based Decomposition

In the context of biological or social interaction networks, an important problem
is to partition the nodes into a set of so-called communities or modules of statisti-
cally significant interactions. Such partitions facilitate studying interesting proper-
ties of these graphs in their applications, such as studying the behavioral patterns of
a group of individuals in a society, and serve as important steps towards computa-
tional analysis of these networks. The general model-based decomposition approach
can be described in the following manner:

• We have an appropriate “global null model” G of a background random graph
providing, implicitly or explicitly, the probability pu,v of an edge between two
nodes u and v.

• The general goal is to place nodes in the same module if their interaction patterns
are significantly stronger than those inferred by G and in different modules if their
interaction patterns are significantly weaker than those inferred by G. No a priori
assumptions are made about the number of modules as opposed to some other
traditional graph clustering approaches.

As an example of applicability of the above framework of model-based clustering
framework, consider the following maximization version of the standard {+,−}-
correlation clustering that appears in the computer science literature extensively
[5, 10, 46]:

Input: an undirected graph G = (V,E) with each edge {u,v} ∈ E having
a label �u,v ∈ {1,−1}.

Valid solution: a partition V1, . . . ,Vk of V .

Objective: maximize
k

∑
i=1

∑
u,v∈Vi

�u,v.

The above problem can be placed in the above model-based clustering framework
in the following manner:

• Let H be the graph consisting of all edges labeled 1 in G.
• Let

pu,v =

{
0, if �u,v = 1
1, otherwise

• Let the modularity of a partition Vi be

M(Vi) = ∑
u,v∈Vi

(
au,v − pu,v

)
,

where

au,v =

{
1, if {u,v} is an edge of H
0, otherwise.

• Let the total modularity of the partition V1, . . . ,Vk be defined as ∑k
i=1M(Vi).
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As is well known, every graph decomposition procedure has both pros and cons, and
there exists no universal decomposition procedure that works for every application.
Any decomposition method that relies on a global null model such as the one
currently discussed suffers from the drawback that each node can get attached
to any other node of the graph; for another possible criticism, see [18]. To de-
sign and analyze a model-based decomposition, one faces at least the following
three choices, each being influenced by the appropriateness in the corresponding
applications:

(C1) What should be an appropriate null model G?
(C2) How should we precisely measure the statistical significance (“fitness”) of

an individual module of the given graph?
(C3) How should we combine the fitnesses of individual modules to get a total

fitness value for the entire network?

In this chapter, we begin with a specific choice of (C1)–(C3) that leads us to the
so-called modularity clustering, an extremely popular decomposition method in
practice in the context of both social networks [1, 32, 37, 38] and biological net-
works [22, 43]. Subsequently, we discuss a few other choices for (C1)–(C3). An
algorithm A for a maximization (resp., minimization) problem is said to have an
approximation ratio of ε (or simply an ε-approximation) provided A runs in poly-
nomial time in the size of the input and produces a solution with an objective value
no smaller than 1/ε times (resp., no larger than ε times) the value of the optimum.
We assume that the reader is familiar with standard concepts in algorithmic design
and analysis such as found in textbooks [13, 19, 48].

3 Basic Modularity Clustering

To simplify discussion, suppose that our input is an undirected unweighted graph1

G = (V,E) of n nodes and m edges, let A = [au,v] denote the adjacency matrix of
G, i.e.,

au,v =

{
1, if (u,v) ∈ E
0, otherwise,

and let du denote the degree of node u.

3.1 Definitions

In the basic version of modularity clustering as proposed by Newman and others [21,
32, 35, 36, 38], the following options for (C1)–(C3) were selected.

1 The definitions can be easily generalized for directed and weighted graphs; see Sect. 3.5.
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Choice for (C1): The null model G is dependent on the degree-distribution of the
given graph G and is given by pu,v =

du dv
m with u = v being allowed. Such

a null model preserves the distribution of the degree of each node in the
given graph in expectation, i.e., ∑v∈V pu,v = du.

Choice for (C2): If nodes u and v belong to the same partition, then one would
expect au,v to be significantly higher than pu,v. This is captured by adding
the term au,v − pu,v to the objective value of the decomposition. Thus, for a
subset of nodes V ′ ⊆V , its fitness is given by M(V ′) =∑u,v∈V ′ (au,v − pu,v).

Choice for (C3): A partition S=
{

V1, . . . ,Vk
}

of nodes2 has a total fitness (“mod-
ularity”) of

M(S) =
1

2m

k

∑
i=1

M(Vi) =
1

2m

k

∑
i=1

(

∑
u,v∈Vi

(
au,v − du dv

2m

))

(1)

and our goal is to maximize M(S) over all possible partitions S of V . The 1
2m

factor is introduced only for a min–max normalization of the measure [23]
so that 0 ≤ maxS

{
M(S)

}
< 1.

Formally, the modularity clustering (Mc) problem is defined as follows:

Problem name: modularity clustering (Mc).
Input: an undirected graph G = (V,E).

Valid solution: a partition S=
{

V1, . . . ,Vk
}

of V .

Objective: maximize M(S) =
1

2m

k

∑
i=1

(

∑
u,v∈Vi

(
au,v − du dv

2m

))

.

In the sequel, we use OPT to denote the maximum modularity value maxS
{
M(S)

}

of a given graph G. M(S) can be equivalently represented via simple algebraic
manipulation [8, 15, 37, 38] as

M(S) =
k

∑
i=1

[
mi

m
−

(
Di

2m

)2
]

(2)

where mi is the number of weights of edges whose both endpoints are in the cluster
Vi and Di = ∑v∈Vi

dv is the sum of degrees of the nodes in Vi.
Yet another equivalent way to represent M(S), which was found to be quite useful

in proving NP-completeness when inputs are restricted to graphs with the maximum
degree of any node bounded by a constant, is the following. Let mi j denote the
number of edges one of whose endpoints is in Vi and the other in Vj and Di =∑v∈Vi

dv

denote the sum of degrees of nodes in cluster Vi. Then,

M(Vi) =
1

2m

(

∑
u∈Vi,v �∈Vi

(
dudv

2m
−au,v

))

2 Each Vi is usually called a “cluster”.
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and this gives us the following third equation of modularity (note that now each pair
of clusters contributes to the sum in Eq. (3) exactly once):

M(S) = ∑
Vi,Vj : i< j

(
DiD j

2m2 − mi j

m

)
(3)

An important special case of the Mc problem arises [8, 15] if we restrict the
maximum number of partitions of V to some pre-specified value κ . This special
case, referred to as the modularity κ-clustering (κ-Mc) problem, is thus formally
defined as follows.

Problem name: modularity κ-clustering (κ-Mc).
Input: an undirected graph G = (V,E).

Valid solution: a partition S=
{

V1, . . . ,Vk
}

of V with k ≤ κ .

Objective: maximize M(S) =
1

2m

k

∑
i=1

(

∑
u,v∈Vi

(
au,v − du dv

2m

))

.

In the sequel, we use OPTκ to denote the maximum modularity value of the modu-
larity κ-clustering problem for a given graph. The usefulness of the κ-Mc problem
in designing approximation algorithms for the Mc problem is brought out by the
following lemma.

Lemma 1 ([15]). For any κ ≥ 1, OPTκ ≥ (
1− 1

k

)
OPT.

Thus, in particular, OPT2 ≥ OPT/2 and, for large enough κ , OPTκ approximates
OPT very well.

3.2 Absolute Bounds for OPT and OPTκ

Although it is difficult to specify accurately the range of values that OPT or OPTκ
may take for general graphs, it is possible to derive some bounds when the given
graph G has some specific topologies. For example, bounds of the following kinds
were demonstrated in [8, 15].

• If G is a complete graph, then OPT= 0.
• If G is an union of k disjoint cliques each with n/k nodes, then OPT= 1− 1

k .
• If G is a d-regular graph (i.e., a graph in which every node has a degree of exactly

d), then
OPT> 0.26√

d
, if n > 40d 9

OPT> 0.86
d − 4

n , otherwise

• If G is a graph in which every node has a degree of at most d and d <
5√n

16lnn , then
OPT> 1

8d .
• For any graph G and any κ , 0 ≤ OPTκ ≤ 1− 1

κ .
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3.3 Computational Hardness Results

3.3.1 NP-Hardness Results

It was shown in [8] that computing OPT is NP-complete for sufficiently dense
graphs (graphs in which nodes have degrees roughly Ω (

√
n) for every node) and

this NP-completeness result for dense graphs holds even if one wishes to compute
just OPT2. A basic idea behind many of these reductions is that large size cliques of
the graph are properly contained within a community. The authors in [15] show that
computing OPT2 is NP-complete even if the given graph is G sparse and regular,
namely even if G is a d-regular graph for any fixed d ≥ 9. The NP-completeness
proof in [15] for sparse graphs, motivated by the proof for this case in [8], is
from the graph bisection problem for 4-regular graphs which is known to be
NP-complete [28]. Intuitively, in this reduction an optimal solution for the modular-
ity 2-clustering problem is constrained to have exactly the same number of nodes in
each community.

3.3.2 Beyond NP-Hardness: APX-Hardness Results

A minimization problem is said to be APX-hard if it cannot be approximated within
a factor of 1+ ε for some constant ε > 0 under the assumption of P �= NP. The
authors in [15] showed that computing OPTκ for any κ > 1 is APX-hard for dense
regular graphs, namely for d-regular with d = n − 4. This approximation gap is
derived from the following approximation gap of the maximum independent set
problem for 3-regular graphs [11]:

Problem name: Maximum Independent Set for 3-regular graphs (3-
Mis).

Input: a graph H = (V,E) that is 3-regular, i.e., every node
has a degree of exactly 3.

Valid solution: a subset V ′ ⊂V of nodes such that every pair of nodes
u and v in V ′ is independent, i.e., {u,v} �∈ E.

Objective: maximize |V ′|.
Approximation gap
as derived in [11]

: NP-hard to decide if max
V ′⊆V

{
|V ′|

}
≥ 95

194 |V | or if

max
V ′⊆V

{
|V ′|

}
≤ 94

194 |V |.

The reduction is carried out by providing the edge-complement of the graph H as
the input graph G to the Mc problem, i.e., the input to Mc is G = (V,E) with
E = {{u,v}|u,v ∈V, {u,v} �∈ F}. The reduction was completed in [15] by proving
the following bounds for any κ:
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• If maxV ′⊆V

{
|V ′|

}
≥ 95

194 |V | then OPTκ > 0.9388
|V |−4 .

• If maxV ′⊆V

{
|V ′|

}
≤ 94

194 |V | then OPTκ < 0.9382
|V |−4 .

This provides the desired inapproximability result with ε = 1− 0.9388
0.9382 ≈ 0.0006. The

intuition behind a proof of the above bounds is that, for the type of sparse graphs H
that is considered in the reduction, edge-complements of large-size independent set
of nodes in H must be properly contained within a cluster of G and that OPTκ ≤
OPT2 for any κ > 2.

3.4 Approximation Algorithms

In this section, we review several combinatorial and algebraic method for designing
approximation algorithms for the Mc and κ-Mc problems.

3.4.1 Greedy Heuristics

As a first attempt at designing approximation algorithms for Mc, one may be
tempted to use a greedy approach of the following type that can easily be imple-
mented to run in O

(
n2 logn

)
time [8]:

1. Start with each node being a separate cluster. Let C0 =
{{

v
} |v ∈V

}
be

this initial clustering.
2. for i = 1,2, . . . ,n−1 do

• Merge two clusters of Ci−1 that yield a clustering with the largest
increase or the smallest decrease in modularity.

• Let Ci be the new clustering obtained.
endfor

3. Return max
i

{
M

(
Ci)}

as the solution.

Consider the graph G = (V,E) consisting of the union of two disjoint cliques V1

and V2, each having n/2 nodes, along with n/2 additional edges corresponding to
an arbitrary maximum bipartite matching

{{u,v}|u ∈ V1, v ∈ V2
}

among nodes
in V1 and V2. Brandes et al. [8] observed that the above greedy approach has an
unbounded approximation ratio on this graph by showing that the greedy algorithm
obtains a modularity value of 0 even though OPT is very close to 1/2. Thus, greedy
approaches do not seem very promising in designing algorithms with bounded app-
roximation ratios.
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3.4.2 Linear Programming-Based Approach

It is possible to formulate the modularity clustering problem with arbitrarily many
clusters as an integer linear program (ILP) in the following manner. For every two
distinct nodes u,v ∈V , let xu,v be a Boolean variable defined as:

xu,v =

{
0, if u and v belong to the same cluster
1, otherwise

One constraint of partitioning the nodes into clusters is the so-called triangle
inequality constraint:

if u,v and v,z belong to the same cluster then u,z must also belongs to the same cluster.

This is easily described by the linear (inequality) constraint xu,z ≤ xu,v+xv,z. Noting
that 1−xu,v is the contribution of a pair of distinct nodes u,v to the modularity value
computed by Eq. (1), we arrive as the following equivalent ILP formulation of the
Mc problem [1, 8, 15]:

maximize ∑
u,v∈V : u �=v

(
au,v − dudv

2m

2m

)

(1− xu,v) − ∑
v∈V

d 2
v

2m

subject to
∀u �= v �= z : xu,z ≤ xu,v + xv,z

∀u �= v : xu,v ∈ {0,1}

However, solving an ILP exactly is in general an NP-hard problem. A natural
approach is therefore to consider the linear programming (LP) relaxation of the ILP
obtained by replacing the constraints “∀u �= v : xu,v ∈{0,1}” by ∀u �= v : 0≤ xu,v ≤ 1,
solving this LP in polynomial time [26], and then use some type of “rounding”
scheme to convert fractional values of variables to Boolean values.3 The authors
in [1] used such an LP-relaxation with several rounding schemes for empirical
evaluations.

Unfortunately, [15] showed that this LP-relaxation-based approach, irrespec-
tive of the rounding scheme used, may not be a very good choice for designing
approximation algorithms with good guaranteed approximation ratio in the follow-
ing manner. Let OPT f denote the optimal objective value of the LP obtained from
the ILP. Then, it was shown in [15] that, for every d > 3 and for all sufficiently large
n, there exists a d-regular graph with n nodes such that the integrality gap OPT f/OPT

is Ω(
√

d ), and thus an approximation ratio of o(
√

n) would be impossible to achieve
irrespective of the rounding scheme used.

3 See [48, part II] for further details of such an approach.
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3.4.3 Spectral Partitioning Approach

Spectral partitioning methods for graph decomposition problems are well known
[41, 45]. This approach was first suggested by Newman in [37] for the 2-Mc prob-
lem but a theoretical analysis of the approximation ratio of this approach is not yet
known. Consider the n × n symmetric matrix W = [wu,v] with wu,v = au,v − dudv

2m ,
and suppose that W has an eigenvector ui with a corresponding eigenvalue bi for
i = 1,2, . . . ,n. For every node u ∈V , let xu be a selection variable defined as:

xu =

{−1, if u is assigned to cluster 1 (V1)
1, if u is assigned to cluster 2 (V2 =V \V1)

and let X = [xu] be the 1× n column vector of these selection variables such that
X = ∑n

i=1 aiui with ai = uT
i X . Then, it can be shown that

M(S) =
1

4m

n

∑
i=1

(uT
i X)2bi.

Thus, one would like to select X proportional to the eigenvector with the largest
eigenvalue to maximize M(S). However, such an eigenvector will in general have
entries that are not ±1 but real values. This would therefore require exploring some
nontrivial “rounding scheme” for such an eigenvector to convert the real values of
the components of the eigenvector to ±1 such that the new value of objective does
not decrease too much; currently, no such rounding scheme is known.

This approach can also be applied to the Mc problem by using the same approach
recursively to decompose the clusters V1 and V2 adjusting the objective function
to reflect the fact that certain edges have been deselected by the partitioning, and
continuing in this fashion until the modularity value cannot be improved further.

3.4.4 Quadratic Programming-Based Approach

Using the fact that OPT2 ≥ OPT/2 ≥ OPTκ/2 for any κ > 2, it follows that an
algorithm for 2-Mc having an approximation ratio of ε also provides an algorithm
for κ-Mc having an approximation ratio of 2ε . The quadratic programming-based
approach discussed in this section provides an approximation algorithm for 2-Mc,
thereby also providing an approximation algorithm for κ-Mc for any κ > 2. As in
the previous section, for every u ∈V let xu be a selection variable defined as:

xu =

{−1, if u is assigned to cluster 1 (V1)
1, if u is assigned to cluster 2 (V2 =V \V1)

Then, since ∑
u,v∈V

(
au,v − dudv

2m

)
= 0, Eq. (1) can be rewritten for the 2-Mc problem

as

M(S) =
1

4m

(

∑
u,v∈V

wu,v (1+ xuxv)

)

=
1

4m ∑
u,v∈V

wu,vxuxv = xTWx (4)
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where wu,v =
au,v− dudv

2m
4m , W = [wu,v] ∈ R

n×n is the corresponding symmetric matrix
of wu,v’s and x ∈ {−1,1}n is a column vector of the indicator variables. Note that

the wu,v values can be positive or negative, but wu,u =− d2
u

2m is always negative.
Equation (4) describes a quadratic form with arbitrary real coefficients. As a

first attempt, one might be tempted to use an existing semi-definite programming
(SDP)-based approximation on quadratic forms to obtain an efficient algorithm.
However, a direct application of many previously known results on SDP-based
approximation is not possible. For example, the results in [9] cannot be directly
applied since the diagonal entries wu,u are negative, the results in [40] cannot be
directly applied since the coefficient matrix W is not necessarily positive-
semidefinite, and even the elegant results on Grothendieck’s inequality in [4]
cannot be applied because we do not have a bipartition of the nodes.

However, the authors in [15] were able to adopt the techniques in [4, 9] in
a nontrivial manner to provide a randomized approximation algorithm with an
appoximation ratio of ρ , where

E [ρ ] =

⎧
⎪⎨

⎪⎩

8.4lnd = O(logd), if G is a d-regular graph with d < n
2lnn

O(logdmax) ,
if dmax, the maximum degree over all nodes, is at

most
5√n

16lnn

We briefly outline the proof for the O(logd) bound when G is d-regular with
d < n

2lnn . Consider the matrix W ′ =
[
w′

u,v

]
, where

w′
u,v =

{
0, if u = v
wu,v, otherwise.

First, it is shown that if OPT2 = max
x∈{−1,1}n

xTWx and OPT′
2 = max

x∈{−1,1}n
xTW ′x, then

OPT′
2 > OPT2 − 1

n . Then, the following lower bound on OPT2 is derived:

OPT2 >
0.13/

√
d, if n > 40d 9

0.43
d − 2

n , otherwise

This shows that it suffices to approximate OPT′
2. Note that the diagonal entries of

the matrix W ′ are now zeroes and OPT′
2 = Ω (1/d). Next, we utilize the follow-

ing algorithmic result on quadratic forms proven in [4, 9]. Consider the following
randomized approximation algorithm:
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Randomized approximation algorithm in [4, 9] for computing
OPT′

2 = max
x∈{−1,1}n

xTW′x = max
∀u : xu∈{−1,1} ∑

u,v∈V
w′

u,vxuxv

1. Solve the following maximization problem

maximize ∑
u,v∈V
u �=v

w′
u,v Xu Xv

subject to
∀u ∈V : Xu ∈ R

n

∀u ∈V : Xu is a symmetric positive semi-definite matrix
in polynomial time using the semidefinite programming approach.4

Let the solution vectors be X∗
u for u ∈V .

2. Select a suitable real number T > 1.
3. Let r be a vector selected uniformly over the n-dimensional unit-norm hyper-

sphere.

4. Set xu =

{
1, if Yur > T

−1, if Yur <−T

Otherwise, if −T ≤ Yur ≤ T , set xu =

{
1 with probability 1

2 +
Yur
2T

−1 with probability 1
2 − Yur

2T
5. Return {xu |u ∈V } as the solution.

The bounds in [4, 9] imply that the above algorithm returns a solution satisfying

E

[

∑
u,v∈V

w′
u,vxuxv

]

≥ OPT′
2

T 2 −8e−T 2/2

(

∑
u,v∈V

∣
∣w′

u,v

∣
∣
)

The proof can then be completed by showing that ∑u,v∈V

∣
∣w′

u,v

∣
∣ < 2 and selecting

T =
√

4lnd.

3.4.5 Other Heuristic Approaches

Other approaches for solving the Mc problem include:

• simple heuristics without any guarantee of performance, and
• simulated-annealing type approaches that are exhaustive and slow [22] and there-

fore difficult to apply to large-scale networks with thousands of nodes.

4 See [48, Chap. 26].
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3.5 Extensions to Directed or Weighted Networks

An extension of the basic modularity clustering to a more general weighted directed
network is easy and was done by Leicht and Newman [32] in the following manner.
Suppose that our input is a directed weighted graph G = (V,E,w) of n nodes where
w : E �→ R

+ denotes a function giving a positive weight to every edge in E, and let
A = [au,v] denote the weighted adjacency matrix of G, i.e.,

au,v =

{
w(u,v), if (u,v) ∈ E
0, otherwise.

Let d in
u = ∑

(v,u)∈E

w(v,u) and d out
u = ∑

(u,v)∈E

w(u,v) denote the weighted in-degree and the

weighted out-degree of node u, respectively, and let m= ∑
(u,v)∈E

wu,v denote the sum of

weights of all the edges. Then, Eq. (1) computing the modularity value of a cluster
C ⊆V needs to be modified as

M(C) =
1
m

(

∑
u,v∈C

(
au,v − dout

u din
v

m

))

The authors in [15] showed that with some effort almost all our computational com-
plexity results for modularity clustering on undirected networks can be extended to
directed weighted networks.

4 Other Model-Based Graph Decomposition

In this section we discuss a few other choices for the (C1)–(C3) items for model-
based graph decomposition.

4.1 Alternate Null Models (Alternate Choices for (C1))

A natural objection to the basic modularity clustering is that the background degree-
dependent null model may not be appropriate in all applications. We discuss a few
other choices that have been explored in the literature.

4.1.1 Scale-Free Null Model

The choice of the linear preferential attachment model for the class of scale-free net-
works [6] may not be an appropriate choice since Karrer and Newman [27] showed
that this may not provide a new null model. However, it is still an open question
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as to whether other generative models for scale-free networks, such as the “copy”
model by Kumar et al. [30] in which new nodes choose an existing node at random
and copy a fraction of the links of this node, provide a new and useful null model.

4.1.2 Classical Erdös–Rényi Null Models

A theoretically appealing choice is the classical Erdös–Rényi random graph model,
e.g., the random graph G(n, p) in which each possible edge {u,v} is selected uni-
formly and randomly with a probability of p. Although the Erdös–Rényi model has
a rich and beautiful theory [7] with significant applications in other areas of com-
puter science, it is by now agreed upon that such a model may be inadequate in
many social and biological network applications. Nonetheless, a formal investiga-
tion of such a null model is of independent theoretical interest and may provide
insight regarding the properties that an appropriate null model must satisfy. If p is
selected such that the expected number of edges of the random graph is equal to
the number of edges of the given graph, then maximizing modularity with this new
null model is precisely the same as maximizing modularity in an appropriate regu-
lar graph [15]; otherwise, however, it is not clear what the complexity of computing
this new modularity value is.

4.1.3 Application Specific Null Models

Sometimes null models motivated by specific applications in biology and social
sciences are used by the researchers. Two such null models are described next.

Null Models for Transcriptional and Signaling Biological Networks

One of the most frequently reported topological characteristics of such networks is
the distribution of in-degrees and out-degrees of nodes, which is close to a power law
or a mixture of a power law and an exponential distribution [2, 20, 33]. Specifically,
in biological applications, metabolic and protein interaction networks are heteroge-
neous in terms of node degrees and exhibit a degree distribution that is a mixture
of a power law and an exponential distribution [2, 20, 24, 33, 34], whereas tran-
scriptional regulatory networks exhibit a power law out-degree distribution and an
exponential in-degree distribution [31, 44]. Based on these types of known topo-
logical characterizations, Albert et al. [3] suggested some degree distributions and
network parameters for generating random transcriptional and signaling networks
for the null model. Random networks with prescribed degree distributions can be
generated in a variety of ways, e.g., by using the method suggested by Newman
et al. in [39].
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Markov-Chain Null Model

In this method, a random network for the null model is generated by starting with
the given input network G = (V,E) and repeatedly swapping randomly chosen pairs
of connections in the following manner [25]:

repeat
• Select two edges, {a,b} and {c,d} randomly and uniformly among all

edges in E.
• If a = c or b = d or {a,d} ∈ E or {b,c} ∈ E

then discard this pair of edges
else add the edges {a,d} and {b,c} to E

delete the edges {a,b} and {c,d} from E
until a specified percentage of edges of G has been replaced

4.2 Alternate Fitness Measures (Alternate Choices for (C2)–(C3))

Exact or approximate solutions to the modularity measure as described by (1) may
tend to produce many trivial clusters of single nodes. For example, DasGupta and
Desai in [15] showed that if the maximum node degree dmax of G satisfies dmax <

5√n
16 lnn , then there is a clustering in which every cluster except one consists of a single
node and the modularity value is at least 25 % of the optimal. One reason for such a
consequence is due to the fact that the fitness measure for a modularity clustering is
the sum of fitnesses of individual clusters (i.e., for a clustering S= {V1,V2, . . . ,Vk},
M(S) is the summation of M(Vi)’s), and one moderately large cluster sometimes
over-compensates the negative effects of many small clusters.

Based on these observations, it is reasonable to investigate other suitable choices
of the function that combines the individual fitness values into a global fitness
measure without sacrificing the quality of the optimal decomposition. Some rea-
sonable choices include the max-min objective, namely

Mmax-min(S) = min
Vi∈S

M(Vi),

and the average objective, namely

Maverage(S) =
∑k

i=1M(Vi)

k
.

DasGupta and Desai investigated the max-min objective in [15] and showed that
the max-min objective indeed avoids generating small-size trivial clusters and the
optimal objective value for max-min objective is precisely scaled by a factor of 2
from that of the objective of the basic modularity clustering, thereby keeping the
overall quantitative measure the same.
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5 Conclusion and Further Research

There is still a large gap between the 1.0006 factor inapproximability result and
logarithmic factor approximation algorithm known for modularity clustering
problems. Designing better scalable algorithms for these problems would enable
one to apply this method to much larger networks than that is currently done. A few
interesting directions for future algorithmic research are as follows:

• Is it possible to do a nontrivial analysis of the spectral partitioning approach
discussed in Sect. 3.4.3, perhaps by using the techniques presented in analysis of
the spectral method for MAX-CUT such as in [47]?

• Is it possible to augment the ILP formulation for modularity clustering as dis-
cussed in Sect. 3.4.2 with additional redundant constraints using the cutting plane
approach [29] to decrease the integrality gap substantially and perhaps thereby
obtaining an improved approximation algorithm?

Acknowledgments The author was supported by NSF grant IIS-1160995.
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On Distributed-Lag Modeling Algorithms
by r-Convexity and Piecewise Monotonicity

Ioannis C. Demetriou and Evangelos E. Vassiliou

1 Introduction

A linearly distributed lag model in time series data is used to predict current values
of a dependent variable y based on both the current value of an independent variable
x and lagged values of x. Specifically, the data are the pairs (xt ,yt), t = 1,2, . . . ,n+
m−1, where we assume that yt is given approximately by a weighted sum of xt and
m−1 past values of xt , where m is a prescribed positive number representing the lag
length that is smaller than n. Thus, we have

yt = β1xt +β2xt−1 +β3xt−2 + · · ·+βmxt−m+1 + εt , (1)

where β1,β2, . . . ,βm are the unknown lag coefficients and εt is a random variable
with zero mean and constant variance. Distributed-lag modeling refers to only the
last n observations of yt , t = 1,2, . . . ,m−1,m, . . . ,m+n−1, because m−1 degrees
of freedom are lost due to Eq. (1). With matrix notation, the unconstrained lag dis-
tribution problem is to determine a vector β T = (β1,β2, . . . ,βm) that minimizes the
objective function

F(β ) = (y−Xβ )T (y−Xβ ), (2)

where yT = (ym,ym+1, . . . ,ym+n−1) and X is the n×m matrix of current and lagged
values of xt defined as
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X =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

xm xm−1 · · · x2 x1

xm+1 xm · · · x3 x2

xm+2 xm+1 · · · x4 x3
...

...
. . .

...
...

xm+n−1 xm+n−2 · · · xn+1 xn

⎞

⎟
⎟
⎟
⎟
⎟
⎠
.

We assume that X has full rank. Then the unconstrained minimum of (2) is

β̃ = (XT X)−1XT y. (3)

Such an estimation may give imprecise results, because of the multicollinearity that
usually occurs among the lagged values of the independent variable. Nonetheless,
if we avoid severe inaccuracies in the calculation of the lag coefficients due to (3),
then there appear discernible patterns in the unconstrained estimate, which follow
from the nature of the observations. Hence it may be necessary to assume some
structure for the relation between the lag coefficients and so far there have been
several suggestions in the literature.

The use of distributed lags in Economics and Electrical Engineering is very old.
The paper of Levinson [28] had an important impact on the field directly and indi-
rectly as Kailath [22] notes and several models are considered by [1, 4, 12, 13, 21,
26, 32] and [33], for instance. These models assume that the underlying function of
the lag coefficients can be approximated closely by a form that depends on a few
parameters. Over the years, literature on the subject agrees that some weak repre-
sentation of the lag coefficients is a sensible requirement for a satisfactory model
estimation (see, e.g., [18, 29] and references therein).

In this work we take the view that one knows some properties of an underlying
relation, but one does not have sufficient information to put the relation into any
simple parametric form. We assume that the rth derivative of the underlying relation
allows a certain number of sign changes, which we call “prior knowledge.” The prior
knowledge is conveyed to the calculation through the requirement that the sequence
{Δ r

j β : j = 1,2, . . . ,m− r} has a certain number of sign changes, where Δ r
j β is the

jth difference of order r of the lag coefficients βi, i = j, j+1, . . . , j+ r, whose value
is (see, e.g., [19])

Δ r
j β = (−1)r

(
r
0

)
β j +(−1)r−1

(
r
1

)
β j+1 + · · ·+

(
r

r−2

)
β j+r−2 −

(
r

r−1

)
β j+r−1 +

(
r
r

)
β j+r. (4)

Relation (4) is a linear combination of βi, i = j, j + 1, . . . , j + r, where the
coefficients of successive βi are binomial coefficients prefixed by alternating signs.
An immediate advantage of this approach to lag estimation is that it avoids the
assumption that the relation has a form that depends on a few parameters, which
occurs in many other techniques. Depending on the value of r and the number of
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sign changes in (4), several particular methods may arise from this approach. In this
paper we consider two methods that are both effective in lag modeling estimation
and efficient in computation.

In Sect. 2 we give a brief description of a method for calculating lag coefficients
that minimize (2) subject to nonnegative rth consecutive differences, where r is
smaller than m [34]. It is a quadratic programming algorithm, which solves the
problem very efficiently by taking advantage of certain submatrices of the Toeplitz
matrices that occur during the calculation. An advantage of this method to lag coef-
ficient estimation is that, due to the constraints on β1,β2, . . . ,βm, it obtains particu-
lar properties that occur in a variety of underlying relations of the lag coefficients,
such as monotonicity, convexity, concavity, and r-convexity. It is very useful that
our condition on the lag coefficients allows mathematical descriptions for these nice
properties.

In Sect. 3 we give brief descriptions of two procedures for estimating the lag co-
efficients β1,β2, . . . ,βm subject to the condition that the coefficients have at most
k monotonic sections, where k is a prescribed positive number less than m. They
are iterative algorithms that combine the steepest descent method and the conjugate
gradient method with piecewise monotonicity on the components of β [11]. Start-
ing from an initial estimate of β , each iteration of these methods adjusts the lag
coefficients by solving efficiently a combinatorial optimization calculation that im-
poses piecewise monotonicity constraints on the lag coefficients. An advantage of
this idea to lag coefficient estimation is that piecewise monotonicity gives a property
that occurs to a wide range of underlying relations of the lag coefficients.

In Sect. 4 we present an application of these methods to real quarterly
macroeconomic data derived from the Federal Reserve Bank of St. Louis for
the period 1959:Q2–2013:Q2. Dependent variable is the Annual Rate of Change of
the GDP in United States and independent variable is the Annual Rate of Change
of the Money Supply for United States. The values of m, r, and k were selected to
provide a variety of models in the final lag coefficients. We present sufficient details
of results intended for use as a guide to apply the methods. It is believed that the
illustrative analysis of this section will be helpful for judging possible relations.

In Sect. 5 we present some concluding remarks. Numerical results that demon-
strate the accuracy and the performance of these methods are presented by [10, 11]
and [34].

2 Calculating the Lag Coefficients Subject to r-Convexity

In [34], we seek lag coefficients β1,β2, . . . ,βm that minimize the objective func-
tion (2) subject to the r-convexity constraints

Δ r
j β ≥ 0, j = 1,2, . . . ,m− r. (5)

Ideally, the fitted function of the lag coefficients is to have a nonnegative rth
derivative. Functions like this are called r-convex (see [23] for a definition) and we
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analogously call r-convex a vector whose components satisfy the constraints (5).
Similarly the problem may well be defined for the case where the differences (4) are
nonpositive,

Δ r
j β ≤ 0, j = 1,2, . . . ,m− r, (6)

in which case we call the solution vector r-concave.
The cases r = 1, 2 in (5) allow very important applications. When r = 1, the

constraints are
βi+1 −βi ≥ 0, i = 1,2, . . . ,m−1, (7)

which implies monotonically increasing coefficients (see, e.g., [31] for a general
treatment of the subject of monotonic regression)

β1 ≤ β2 ≤ ·· · ≤ βm. (8)

Analogously, the monotonically decreasing coefficients satisfy the inequalities

β1 ≥ β2 ≥ ·· · ≥ βm. (9)

Inequalities (9) suggest that the lag coefficients become more significant as time
proceeds. These constraints may be seen as a generalization of the method of [13],
where the coefficients βi are imposed to decline arithmetically.

In cases such as in production situations, the assumption r = 2 in (5) implies
that the lag coefficients are subject to the increasing rates of change (see, [20] for a
definition)

β2 −β1 ≤ β3 −β2 ≤ ·· · ≤ βm −βm−1, (10)

which is equivalent to assuming that {βi : i = 1,2, . . . ,m} satisfy the convexity
conditions,

βi+2 −2βi+1 +βi ≥ 0, i = 1,2, . . . ,m−2. (11)

By considering piecewise linear functions it can be proved that if r = 1 and
β is optimal, then there exists a monotonic function that interpolates the points
(i,βi), i = 1,2, . . . ,m. Similarly, if r = 2, then there exists a convex function that in-
terpolates (i,βi), i = 1,2, . . . ,m. These statements do not generalize to larger values
of r as it has been shown by Cullinan and Powell [3], which means that nonnegative
differences of order r ≥ 3 do not imply that there exists a function with a nonnega-
tive rth derivative that interpolates the above points.

We can express the constraints (5) in the matrix form

DT
r β ≥ 0, (12)

where Dr is the m× (m− r) rectangular matrix, whose elements (Dr)i j are defined
by the relation

(Dr)i j =

⎧
⎨

⎩
(−1)r+ j−i

(
r

i− j

)
, j ≤ i ≤ j+ r, j = 1,2, . . . ,m− r

0, otherwise.
(13)
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Now the nonzero components of the jth column of Dr are those that occur in the
differences (4) giving a Toeplitz pattern that depends on the value of r.

Since the constraints on β are linear and consistent and since the second deriva-
tive matrix of (2) with respect to β is twice the positive definite matrix XT X , the
problem of minimizing (2) subject to (12) is a strictly convex quadratic program-
ming problem. It has a unique solution, β̂ say, that is usually straightforward to
calculate by standard quadratic programming methods (see, e.g., [14]). The solu-
tion depends on the Karush–Kuhn–Tucker optimality conditions (see, e.g., [27]),
which state that β = β̂ if and only if the constraints (12) are satisfied and there exist
Lagrange multipliers λi ≥ 0, i ∈A such that the equation

2XT (Xβ − y) = ∑
i∈A

λiai, (14)

holds, where A is the subset {i : Δ r
i β = 0} of active constraint indices and ai ∈ Rm is

the ith column of Dr. We define, λi = 0, for i ∈ [1,m− r]\A and denote the (m− r)-
vector of Lagrange multipliers by λ .

The method of [34] employs a version of the strictly convex quadratic program-
ming calculation of [9]. It generates a sequence of subsets of the constraint indices
{1,2, . . . ,m− r}, where for each subset A the equations

aT
i β = 0, i ∈A (15)

are satisfied and the vector β is obtained by minimizing the objective function (2)
subject to (15). Moreover, unique Lagrange multipliers λi, i ∈ A are defined by
the first order optimality condition (14). An outline of the quadratic programming
method for minimizing (2) subject to (12) is as follows.

Step 0: Set A= {1,2, . . . ,m− r} and calculate the associated β and λ . If any neg-
ative multipliers occur, then start removing the corresponding constraint
indices from A, one at a time, while recalculating each time β and λ ,
until all the multipliers become nonnegative.

Step 1: If the constraints (12) are satisfied, then terminate. Otherwise record μ =

λ , find the most violated constraint, aT
κ β < 0 say, add κ to A and calculate

β and λ .
Step 2: If λi ≥ 0, i ∈A, then branch to Step 1.
Step 3: Seek the greatest value of θ such that the numbers (1−θ)μi+θλi, i ∈A

are nonnegative, which implies 0 ≤ θ < 1. If ρ is the value of i that gives
(1−θ)μi+θλi = 0, then remove ρ from A, replace μ by (1−θ)μ +θλ ,
calculate β and λ and branch to Step 2.

The implementation of this algorithm depends strongly on the Toeplitz structure
of the constraint coefficient matrix (13) for deriving the solution of the equality con-
strained problem that minimizes (2) subject to (15) and the corresponding Lagrange
multipliers that occur during the quadratic programming iterations. In particular, the
following method is highly suitable, if, as it happens in the examples of [34], there
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is a small number of inactive constraints. We express β as a linear combination of
a basis of the subspace of vectors β that satisfy the equality constraints (15). Since
there are no redundant equations in (15), we can find m− p linearly independent
m-vectors {us : s ∈ S} such that ai

T us = 0, s ∈ S, for all i ∈A, where we let p = |A|
be the number of elements of A.

The following basis, proposed by Cullinan [2] and modified by Vassiliou and
Demetriou [34], has the beautiful feature that the matrices that occur are banded
and positive definite. We let the notation �r/2 − = �r/2 if r is odd and �r/2 − =
(�r/2 −1) if r is even, where �q denotes the largest integer that is smaller than q.
Also, we let S be the index set

S = {1, . . . ,�r/2 }∪{ j+ �r/2 : j /∈A}∪{
m−�r/2 − , . . . ,m

}

and the vectors us, for s ∈ S are defined by the equations

(us)t = δst , for s, t ∈ S (16)

and
aT

i us = 0, if i ∈A and s ∈ S, (17)

where δst is the Kronecker’s delta.
Each of the basis vectors is obtained by solving a p × p system of equations,

whose coefficient matrix elements are derived by deleting a column of the p×m
coefficient matrix (17) for each s ∈ S. Let Mr be the matrix so obtained. Depending
on the sign pattern of Dr, Mr is positive definite if (r mod 4 = 0, 3) and nega-
tive definite if (r mod 4 = 1, 2) as it is proved by Demetriou and Lypitakis [7]. In
addition, Mr inherits the bandwidth form of Dr. Hence, the unknown components
{(us)i+�r/2 : i ∈A} can be calculated efficiently and stably by Cholesky factoriza-
tion if r is even and by band LU factorization if r is odd. Since this process has to be
repeated for each s ∈ S in order to generate all the basis elements, we factorize Mr

only once and subsequently use this factorization to derive the components of each
basis vector.

Having defined this basis, we can work with reduced quantities throughout the
calculation. We express any vector β that satisfies (15) in the form

β =Uθ , (18)

where U is the m× (m− p) matrix whose columns are the vectors {us : s ∈ S} and
θ is an m− p vector, whose components are to determined. Working with θ instead
of with the m-vector β provides two advantages. One is that there are much fewer
variables, because A is usually kept large during the quadratic programming itera-
tions and the other is that Eq. (15) are satisfied automatically. By substituting (18)
into (2) we obtain the reduced quadratic function

ψ(θ) = ‖XUθ − y‖2
2, (19)
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whose unique minimizer is calculated by applying Cholesky factorization to the first
order condition

(XU)T (XU)θ = (XU)T y. (20)

Although the value of r is not a restriction to this calculation, the most popular
choices restrict r to values smaller than 7 or 8. Hence, if p is close to m− r, as in the
numerical results of [34], the amount of numerical work required to solve (20) for
θ is quite low.

Once β is available, the corresponding Lagrange multipliers {λi : i ∈A} are de-
fined by the first order conditions (14), which form an overdetermined system with
m− p redundant equations. So p equations may be chosen in order to specify the p
unknowns multipliers and all possible choices will give the same solution, provided
the chosen system is non-singular. In view of the magnitude of the elements of Dr,
the central element (there are two such elements with opposite sign, if r is odd) of
each column of Dr is also the largest in absolute value element of each column.
Thus, by choosing the rows (i+ �r/2 ) ∈ A of (14), we derive a system of equa-
tions whose coefficient matrix has diagonal dominance and is the transpose of the
p× p matrix Mr. Since the factorization of Mr is already available from the calcu-
lation that provided the components of the basis vectors, it is remarkable that this
choice, which has resulted to Mr, is also suitable to the calculation of the Lagrange
multipliers.

3 A Conjugate Gradient Algorithm with Piecewise Monotonicity

In this section we consider the problem of estimating lag coefficients by minimiz-
ing (2) subject to the condition that the lag coefficients β1,β2, . . . ,βm have at most k
monotonic sections, where k is a prescribed positive number that is less than m.

The problem when k = 1 may be solved by the structured quadratic program-
ming calculation that is stated in Sect. 2. The problem when k = 2 concerns the
minimization of (2) subject to the constraints

β1 ≤ β2 ≤ ·· · ≤ βt

βt ≥ βt+1 ≥ ·· · ≥ βm

}
, (21)

where t is one of the variables of the optimization calculation. In order to identify the
value of t that gives the least value of (2), one would solve m−2 separate quadratic
programming problems in m variables, for t = 2,3, . . . ,m−1.

When k > 2, we consider the problem of calculating a vector β that minimizes (2)
subject to the piecewise monotonicity constraints

βts−1 ≤ βts−1+1 ≤ ·· · ≤ βts , if s is odd
βts−1 ≥ βts−1+1 ≥ ·· · ≥ βts , if s is even

}
, (22)

where the integers {ts : s = 0,1, . . . ,k} satisfy the conditions

1 = t0 ≤ t1 ≤ ·· · ≤ tk = m. (23)
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It is quite difficult to develop efficient optimization algorithms for calculating a
solution to this problem, because the integers {ts : s = 2,3, . . . ,k−1} are not known
in advance and they are variables in the optimization calculation. Indeed, the cal-
culation of a global minimum of (2) would require about O(mk) separate quadratic
programming calculations in m variables, which is not practicable.

Therefore, we consider an alternative form of the problem where an iterative
algorithm attempts to minimize (2) by combining the conjugate gradient method
with piecewise monotonicity constraints on the lag coefficients.

We begin the description with the process that involves the steepest descent
method (details for the steepest descent method are given by [16], for instance)
with piecewise monotonicity constraints on the lag coefficients, which we extend
subsequently by the introduction of a term that requires little additional work and
gives the conjugate gradient method. This process starts from an initial estimate
β (0) of β that satisfies the constraints (22) and generates a sequence of estimates

{β ( j) : j = 1,2,3, . . .} to β in two phases. In the first phase it takes a descent direc-
tion from the current estimate to a new estimate of β . In the second phase it replaces
the new estimate by its best piecewise monotonic approximation. In the first phase,
the algorithm calculates a new estimate of the form

β ( j+1) = β ( j) +α jd
( j), (24)

where α j is a step-length and d( j) is the search direction

d( j) = XT (y−Xβ ( j)). (25)

The step-length α j with exact line search is determined by the minimization of the

convex function of one variable F(β ( j) +αd( j)) which gives

α j =
d( j)T

XT (y−Xβ ( j))

‖Xd( j)‖2
2

. (26)

Since (25) involves matrix X only by multiplication, ill-conditioning of X is irrel-
evant here. Having calculated β ( j+1), the algorithm proceeds to the second phase,
which calculates a vector β that minimizes the sum of the squares of the residuals

‖β ( j+1)−β‖2
2 =

m

∑
i=1

(β ( j+1)
i −βi)

2 (27)

subject to (22), while the integers {ts : s = 0,1, . . . ,k} satisfy (23). This is a
formidable combinatorial problem which has been solved efficiently by [8] in only
O(m2 + km log2m) computer operations. Some details of this calculation are given
in this section, after the description of the conjugate gradient process below. The
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algorithm finishes if the vector β found at the second phase satisfies the convergence
condition

‖β −β ( j+1)‖2/‖β‖2 ≤ ε , (28)

where ε is a small positive tolerance. This test is applied at every estimate β ( j+1)

including the first iteration as well. When the test (28) fails, then the algorithm
replaces β ( j+1) by its best piecewise monotonic approximation vector β , increases
j by one and branches to the beginning of the first phase in order to calculate at least
one new vector in the sequence {β ( j) : j = 1,2,3, . . .}. This gives the following
algorithm.

Step 0: Set j = 0 and β (0) = 0.

Step 1: Calculate d( j) = XT (y−Xβ ( j)).

Step 2: Calculate α j and set β ( j+1) = β ( j) +α jd
( j).

Step 3: (Piecewise monotonic approximation) By employing Algorithm 2 of [5]
calculate β , namely a least squares approximation with k monotonic sec-

tions to β ( j+1).

Step 4: If criterion (28) is satisfied then quit, otherwise replace β ( j+1) by β , in-
crease j by one and branch to Step 1.

If we drop Step 3, which provides the best piecewise monotonic approximation to
current β ( j+1), it can be proved that the algorithm terminates at the minimum of (2)
(see, e.g., [17]). By incorporating the piecewise monotonicity constraints into this
algorithm further restricts the solution because the monotonicity algorithm is norm
reducing [31]. By invoking the strict convexity of (2) and the contraction mapping
theorem, it can be proved (the convergence analysis of [25] is suitable to this case)
that this algorithm meets the termination condition for some finite integer j. Thus
it converges to a local minimum of (2) subject to the constraints (22). However, the
numerical results of [10] show that this algorithm is very slow in practice, which
makes it rather inefficient to be useful.

A vast improvement in efficiency is achieved by the method of [11] that combines
the conjugate gradient method of Fletcher and Reeves with exact line searches as
described by [14] with piecewise monotonicity constraints on the components of β .
The only change to the above steepest descent algorithm is that on most iterations
the search direction is altered from (24) to the vector

d( j) = XT (y−Xβ ( j))+ γ jd
( j−1), (29)

except that the last term is omitted if j = 1. The value of γ j is determined by the
Fletcher–Reeves [15] conjugacy condition

γ j =
‖XT (y−Xβ ( j))‖2

2

‖XT (y−Xβ ( j−1))‖2
2

. (30)

Then the algorithm proceeds as in the steepest descent case and is as follows.



124 I.C. Demetriou and E.E. Vassiliou

Step 0: Set j = 0, β (0) = 0, and γ0 = 0.

Step 1: Calculate d( j) = XT (y−Xβ ( j))+ γ jd
( j−1).

Step 2: Calculate α j and set β ( j+1) = β ( j) +α jd
( j).

Step 3: (Piecewise monotonic approximation) By employing Algorithm 2 of [5]
calculate β , namely a least squares approximation with k monotonic sec-

tions to β ( j+1).

Step 4: If criterion (28) is satisfied then quit, otherwise replace β ( j+1) by β , cal-
culate γ j, increase j by one and go to Step 1.

The choice of γ j is suitable, because the conjugate gradient method has the prop-

erty that, if F(.) is a convex quadratic function, if d(1) = XT (y − Xβ (1)), and if
formula (29) is used for all j ≥ 2, then (see [30]) in exact arithmetic the method ter-
minates because XT (y−Xβ ( j)) = 0, for some j ∈ [1,m+ 1]. Hence, if we exclude
Step 3 from the above algorithm, the remaining steps terminate at the unconstrained
minimum of (2). In addition, the Fletcher–Reeves condition (30), in view of our
quadratic function and the exact line searches we use, gives descent [14]. This is im-
portant, because the convergence of this algorithm can be established by arguments
similar to those that follow the steepest descent algorithm above. Furthermore the
numerical results of [11] show a considerably higher convergence speed than the
method that uses the steepest descent.

In the rest of the section we discuss some properties of the piecewise monotonic-
ity method that is employed by Step 3. Given a positive integer k < m, Step 3 seeks
an m-vector β that is closest to β ( j+1) by minimizing (27) subject to the conditions
that the components of β consist of at most k monotonic sections. Without loss of
generality, we specify that the first monotonic section is increasing. The approxi-
mation process is a projection, because if β ( j+1) satisfies the constraints (22), then

β = β ( j+1). Therefore if β ( j+1) consists of more than k monotonic sections, then the

piecewise monotonicity constraints prevent the equation β = β ( j+1), which means
that the integers {ts : s = 2,3, . . . ,k−1} are all different.

The most important property of this calculation is that each monotonic section
in a best piecewise monotonic fit is the optimal approximation to the corresponding
data. Indeed, the components {βi : i = ts−1, ts−1+1, . . . , ts} on [ts−1, ts] minimize the
sum of the squares

ts

∑
i=ts−1

(β ( j+1)
i −βi)

2 (31)

subject to the constraints

βi ≤ βi+1, i = ts−1, . . . , ts −1, if s is odd (32)

and subject to the constraints

βi ≥ βi+1, i = ts−1, . . . , ts −1, if s is even. (33)
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In the former case the sequence {βi : i = ts−1, ts−1 +1, . . . , ts} is the best monotonic

increasing fit to {β ( j+1)
i : i = ts−1, ts−1 + 1, . . . , ts} and in the latter case the best

monotonic decreasing one. Therefore, provided that {ts : s = 2,3, . . . ,k − 1} are
known, the components of β are generated by solving a separate monotonic prob-
lem on each section [ts−1, ts] in only O(ts − ts−1) computer operations. We introduce
the notation α(ts−1, ts) and β (ts−1, ts) for the least value of (31) subject to the con-
straints (32) and (33), respectively. We denote by δ (k,n) the least value of (27) at
the required minimum and, if k is odd, we obtain the expression

δ (k,n) = α(t0, t1)+β (t1, t2)+α(t2, t3)+ · · ·+α(tk−1, tk) (34)

and analogously if k is even, where we replace the last term in this sum by
β (tk−1, tk).

Reversely now, we use separation and, an optimal β associated with the integer
variables {ts : s = 2,3, . . . ,k − 1} can split at tk−1 into two optimal sections. One
section that provides a best fit on [t0, tk−1], which is similar to β with one monotonic
section less, and one section on [tk−1, tk] that is a single monotonic fit to the remain-
ing data, giving δ (k,n) = δ (k− 1, tk−1)+α(tk−1, tk) if k is odd and analogously if
k is even. We note that the value of tk−1 in [tk−2, tk] that gives δ (k,n) is independent
of the integers {t j : 0 ≤ j ≤ tk−3}. Hence, it is proved by [8] that the optimization
problem of Step 3 can be replaced by a problem which is amenable to dynamic
programming.

The implementation of dynamic programming includes several options that are
considered by Demetriou [5] and Demetriou and Powell [8]. Demetriou [6], es-
pecially, has implemented the method of [5] in Fortran and provided a software
package that derives a solution in O(m2ν + kν2) computer operations, where ν is
the number of local extrema of the data and where an integer p is the index of a

local maximum of the sequence β ( j+1)
i , i = 2, . . . ,m − 1, if β ( j+1)

p−1 ≤ β ( j+1)
p and

β ( j+1)
p > β ( j+1)

p+1 , and similarly for a local minimum. Since ν is a fraction of m, the
previous complexity is reduced at least by a factor of 4. In practice, however, the
method is by far more efficient than the theory indicates.

4 Numerical Results from an Example on the USA Inflation Rate

Studies for different time periods suggest that changes in the growth rate of money
are reflected in the inflation rate for a long time period ahead. Among other factors
the nature of the lag is important to the decision of specifying a short or a long-term
policy, as, for example, it is stated by Karlson [24].

In this section some numerical results illustrate the methods of Sects. 2 and 3
by an application to real quarterly macroeconomic data that considers particular
relations for the lags between money and prices. The original source of the data
is the International Monetary Fund. Dependent variable is the Continuously Com-
pounded Annual Rate of Change of the GDP Implicit Price Deflator in United States



126 I.C. Demetriou and E.E. Vassiliou

19
55

-0
1-

01
19

55
-1

1-
01

19
56

-0
9-

01
19

57
-0

7-
01

19
58

-0
5-

01
19

59
-0

3-
01

19
60

-0
1-

01
19

60
-1

1-
01

19
61

-0
9-

01
19

62
-0

7-
01

19
63

-0
5-

01
19

64
-0

3-
01

19
65

-0
1-

01
19

65
-1

1-
01

19
66

-0
9-

01
19

67
-0

7-
01

19
68

-0
5-

01
19

69
-0

3-
01

19
70

-0
1-

01
19

70
-1

1-
01

19
71

-0
9-

01
19

72
-0

7-
01

19
73

-0
5-

01
19

74
-0

3-
01

19
75

-0
1-

01
19

75
-1

1-
01

19
76

-0
9-

01
19

77
-0

7-
01

19
78

-0
5-

01
19

79
-0

3-
01

19
80

-0
1-

01
19

80
-1

1-
01

19
81

-0
9-

01
19

82
-0

7-
01

19
83

-0
5-

01
19

84
-0

3-
01

19
85

-0
1-

01
19

85
-1

1-
01

19
86

-0
9-

01
19

87
-0

7-
01

19
88

-0
5-

01
19

89
-0

3-
01

19
90

-0
1-

01
19

90
-1

1-
01

19
91

-0
9-

01
19

92
-0

7-
01

19
93

-0
5-

01
19

94
-0

3-
01

19
95

-0
1-

01
19

95
-1

1-
01

19
96

-0
9-

01
19

97
-0

7-
01

19
98

-0
5-

01
19

99
-0

3-
01

20
00

-0
1-

01
20

00
-1

1-
01

20
01

-0
9-

01
20

02
-0

7-
01

20
03

-0
5-

01
20

04
-0

3-
01

20
05

-0
1-

01
20

05
-1

1-
01

20
06

-0
9-

01
20

07
-0

7-
01

20
08

-0
5-

01
20

09
-0

3-
01

20
10

-0
1-

01
20

10
-1

1-
01

20
11

-0
9-

01
20

12
-0

7-
01

20
13

-0
5-

01

35

30

25

20

15

10

5

0

−5

−10

12

14

10

8

6

4

2

0

USAGDPDEFQISMEI_CCA MYAGMIUSM052S_CCA_SA

−2

Fig. 1 Time series plots of the quarterly rates of change of the GDP Implicit Price
Deflator in United States (solid line) for the period 1955-04-01–2013-04-01 and the
quarterly rates of change of the M1 for United States (dotted line) for the period
1959-04-01–2013-09-01. Both time series are seasonally adjusted. The right-hand
side secondary axis corresponds to M1 values

and independent variable is the Continuously Compounded Annual Rate of Change
of the Money Supply for United States. The money supply variable is defined of
what is known as “M1.” The data amount to 217 pairs of observations x and y for
the period 1959:Q2–2013:Q2 and are available from the Federal Reserve Bank of
St. Louis (see, http://www.research.stlouisfed.org). Variable x is identified with the
name MYAGM1USM052S and variable y with the name USAGDPDEFQISMEI in
the relevant data base. The data are displayed in Fig. 1.

First we applied the method of Sect. 2 to these data. Specifically, we calculated
the coefficients of the distributed-lag model (1) with m = 17, 21 subject to the con-
straints (5) on the components of β by allowing r = 1,2,3,4,5,6, and 7. We call
r-convex the coefficients so derived. Also, we call r-concave the coefficients derived
by a similar calculation subject to the constraints (6). Occasionally, throughout the
section, we refer to the coefficients with the term “model.”

The actual values of m, r, and the calculated coefficients are given in Tables 1
and 2 for the problems with the r-convex constraints (5) and the r-concave con-
straints (6), respectively. The coefficients are shown in the third (r = 1), fourth
(r = 2) and so on column of each table. The last column of each table displays the

http://www.research.stlouisfed.org
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unconstrained lag coefficients obtained by minimizing (2) for each m. The amount
of CPU time to carry out these calculations in double precision arithmetic in a com-
mon pc is negligible. All the results are presented in four decimal digits of accuracy.
The coefficients of Tables 1 and 2, for r = 2, 3, 4, and 5 for each m are displayed in
Figs. 2, 3, 4, and 5.

The values of m, r, and the calculated Lagrange multipliers associated with the
lag coefficients of Tables 1 and 2 are presented in Tables 3 and 4, respectively.
Tables 3 and 4 indicate the dependencies between active constraints and Lagrange
multipliers, because a Lagrange multiplier measures the marginal potential change
of the value of (2) at an optimal β , when the corresponding constraint is changed
ever so slightly. The higher the value of the multiplier, the more sensitive the optimal
value of the objective function is to perturbations of the corresponding constraint.
A zero Lagrange multiplier in these two tables indicates an inactive constraint.

If the lag coefficients satisfy all the constraints (5) as equations, as for example
in the case (m = 17, r = 7) of Table 3 where all Lagrange multipliers are positive,
then all the corresponding coefficients of Table 1 lie on the best fit by a polynomial
of degree at most r−1. If, as it is actually expected, some constraints in (5) are am-
ply satisfied, then the r-convex lag coefficients lie on a piecewise polynomial curve,
where the polynomial pieces are of degree at most r − 1. The results of [34] show
that the r-convex lag coefficients do not deviate far from the polynomial of degree
r − 1 and they do so in a smooth manner alternating above and below the polyno-
mial curve. Hence the r-convex lag model is more flexible than the corresponding
polynomial of degree r−1, which in fact is Almon’s model [1].

We had better look at some details of Table 1 when m = 17. The 1-convex lag co-
efficients, which are presented for r = 1, satisfy the monotonicity constraints (8) and
consist of four sections of different equal components. In view of Table 3, they are
associated with the active constraint indices A = {1,2, . . . ,5,7,9, . . . ,15} and the
zero Lagrange multipliers λ6,λ8, and λ16. The 1-convex model, simple as it is, is no
liable to produce an undulating fit but only a monotonically increasing step function.
The 2-convex coefficients, in view of the Lagrange multipliers in Table 3 for r = 2,
are obtained by minimizing (2) subject to the equations βi − 2βi+1 +βi+2 = 0, i =
2,3, . . . ,14. We see in Fig. 2 that the 2-convex model is a polygonal line with inte-
rior knots at the second and the 16th data point, which are associated with the zero
Lagrange multipliers λ1 and λ15 of Table 3. This polygonal line follows the general
trend of the unconstrained coefficients. The 3-convex coefficients, in view of the La-
grange multipliers for r = 3, are obtained by minimizing (2) subject to the equations
−βi +3βi+1 −3βi+2 +βi+3 = 0, i = 1,2, . . . ,13, while −β14 +3β15 −3β16 +β17 =
0.0167 > 0. Hence, the first 16 coefficients lie on an increasing second degree poly-
nomial on the range [1,16], while the 17th coefficient, β17 = 0.0650, due to the inac-
tive constraint, lies over the polynomial curve toward the coefficient β̃

17
= 0.0819.

The 4-convex coefficients lie on two overlapping cubics that are obtained by min-
imizing (2) subject to βi − 4βi+1 + 6βi+2 − 4βi+3 + βi+4 = 0, i = 2,3, . . . ,10 and
β13 − 4β14 + 6β15 − 4β16 + β17 = 0, while the inactive constraints are associated
with the zero Lagrange multipliers λ1,λ11, and λ12, as we can see in Table 3 for
r = 4. The 5-convex coefficients lie on two overlapping quartics that are obtained
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Table 1 The r-convex and the unconstrained lag coefficients

r-Convex Unconstrained
m βi r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 lag coefficients

β1 0.0231 0.0648 0.0225 0.0685 0.0541 0.0705 0.0642 0.0772
β2 0.0231 0.0116 0.0232 0.0095 0.0263 0.0062 0.0168 −0.0020
β3 0.0231 0.0143 0.0241 0.0090 0.0123 0.0063 0.0056 0.0015
β4 0.0231 0.0170 0.0250 0.0110 0.0084 0.0153 0.0092 0.0190
β5 0.0231 0.0197 0.0261 0.0151 0.0111 0.0184 0.0164 0.0348
β6 0.0231 0.0224 0.0273 0.0204 0.0178 0.0204 0.0227 −0.0025
β7 0.0243 0.0251 0.0286 0.0265 0.0260 0.0240 0.0275 0.0425
β8 0.0243 0.0278 0.0301 0.0327 0.0340 0.0299 0.0315 −0.0020

17 β9 0.0407 0.0305 0.0316 0.0382 0.0405 0.0370 0.0360 0.0728
β10 0.0407 0.0332 0.0333 0.0426 0.0444 0.0434 0.0408 0.0391
β11 0.0407 0.0359 0.0351 0.0451 0.0455 0.0470 0.0450 0.0440
β12 0.0407 0.0386 0.0370 0.0450 0.0438 0.0465 0.0466 0.0203
β13 0.0407 0.0413 0.0390 0.0419 0.0398 0.0418 0.0439 0.0755
β14 0.0407 0.0440 0.0411 0.0349 0.0348 0.0349 0.0371 0.0241
β15 0.0407 0.0467 0.0434 0.0315 0.0326 0.0308 0.0301 0.0269
β16 0.0407 0.0494 0.0458 0.0398 0.0403 0.0380 0.0344 0.0281
β17 0.0656 0.0578 0.0650 0.0681 0.0680 0.0693 0.0718 0.0819
β1 0.0200 0.0269 0.0069 0.0472 0.0361 0.0480 0.0405 0.0527
β2 0.0200 0.0255 0.0132 0.0099 0.0172 0.0080 0.0162 −0.0009
β3 0.0200 0.0254 0.0188 0.0016 0.0091 0.0027 0.0061 −0.0034
β4 0.0200 0.0254 0.0235 0.0081 0.0087 0.0081 0.0061 0.0148
β5 0.0230 0.0254 0.0275 0.0156 0.0134 0.0155 0.0123 0.0341
β6 0.0274 0.0254 0.0307 0.0233 0.0207 0.0236 0.0215 0.0078
β7 0.0274 0.0253 0.0330 0.0307 0.0289 0.0312 0.0310 0.0367
β8 0.0274 0.0253 0.0346 0.0371 0.0364 0.0375 0.0388 0.0067
β9 0.0274 0.0253 0.0354 0.0419 0.0420 0.0418 0.0439 0.0778
β10 0.0274 0.0253 0.0354 0.0444 0.0448 0.0437 0.0454 0.0345

21 β11 0.0274 0.0253 0.0347 0.0440 0.0446 0.0429 0.0436 0.0451
β12 0.0274 0.0252 0.0331 0.0401 0.0413 0.0396 0.0389 0.0267
β13 0.0274 0.0252 0.0307 0.0337 0.0353 0.0340 0.0323 0.0753
β14 0.0274 0.0252 0.0275 0.0261 0.0272 0.0268 0.0249 0.0038
β15 0.0274 0.0252 0.0236 0.0182 0.0183 0.0188 0.0179 −0.0072
β16 0.0274 0.0251 0.0188 0.0113 0.0100 0.0114 0.0122 0.0029
β17 0.0274 0.0251 0.0133 0.0064 0.0041 0.0061 0.0082 0.0445
β18 0.0274 0.0251 0.0070 0.0047 0.0031 0.0047 0.0057 0.0023
β19 0.0274 0.0251 −0.0002 0.0072 0.0095 0.0095 0.0084 −0.0123
β20 0.0274 0.0251 0.0406 0.0397 0.0405 0.0364 0.0342 0.0442
β21 0.1036 0.1098 0.1291 0.1278 0.1277 0.1286 0.1308 0.1351

by minimizing (2) subject to −βi+5βi+1 −10βi+2+10βi+3 −5βi+4+βi+5 = 0, i =
1,2, . . . ,9 and −β12+5β13−10β14+10β15−5β16+β17 = 0. And so on for r = 6, 7.
We see that the r-convex coefficients for r ≥ 4 of Table 1 when m = 17 follow
gently the trend of the unconstrained coefficients, as it is also illustrated in Fig. 2.
The impact of the constraints to the calculation of the coefficients is shown by the
sizes of the multipliers, which in the case r = 4 are smaller than those of the cases
r = 3,5,6,7. It seems that the 4-convex model in this m = 17 experiment is the most
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Table 2 The r-concave and the unconstrained lag coefficients
r-Concave Unconstrained

m βi r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 lag coefficients

β1 0.0334 0.0190 0.0703 0.0362 0.0683 0.0562 0.0709 0.0772
β2 0.0334 0.0209 0.0101 0.0277 0.0130 0.0258 0.0057 −0.0020
β3 0.0334 0.0227 0.0056 0.0223 0.0073 0.0110 0.0062 0.0015
β4 0.0334 0.0246 0.0118 0.0195 0.0084 0.0072 0.0156 0.0190
β5 0.0334 0.0264 0.0176 0.0190 0.0137 0.0108 0.0192 0.0348
β6 0.0334 0.0283 0.0228 0.0203 0.0210 0.0183 0.0199 −0.0025
β7 0.0334 0.0302 0.0274 0.0231 0.0286 0.0271 0.0231 0.0425
β8 0.0334 0.0320 0.0315 0.0269 0.0351 0.0352 0.0295 −0.0020

17 β9 0.0334 0.0339 0.0351 0.0313 0.0397 0.0412 0.0375 0.0728
β10 0.0334 0.0358 0.0382 0.0360 0.0421 0.0442 0.0444 0.0391
β11 0.0334 0.0376 0.0407 0.0405 0.0424 0.0442 0.0477 0.0440
β12 0.0334 0.0395 0.0427 0.0443 0.0410 0.0418 0.0462 0.0203
β13 0.0334 0.0414 0.0442 0.0472 0.0389 0.0382 0.0407 0.0755
β14 0.0334 0.0432 0.0451 0.0487 0.0375 0.0354 0.0341 0.0241
β15 0.0334 0.0451 0.0455 0.0484 0.0387 0.0361 0.0315 0.0269
β16 0.0334 0.0469 0.0454 0.0458 0.0449 0.0439 0.0399 0.0281
β17 0.0334 0.0488 0.0447 0.0407 0.0588 0.0628 0.0677 0.0819
β1 0.0286 0.0186 0.0502 0.0049 0.0474 0.0366 0.0498 0.0527
β2 0.0286 0.0200 0.0136 0.0150 0.0116 0.0181 0.0059 −0.0009
β3 0.0286 0.0214 0.0159 0.0226 0.0043 0.0094 0.0020 −0.0034
β4 0.0286 0.0228 0.0181 0.0280 0.0055 0.0082 0.0090 0.0148
β5 0.0286 0.0241 0.0202 0.0315 0.0121 0.0124 0.0170 0.0341
β6 0.0286 0.0255 0.0221 0.0333 0.0213 0.0197 0.0243 0.0078
β7 0.0286 0.0269 0.0239 0.0337 0.0308 0.0283 0.0308 0.0367
β8 0.0286 0.0283 0.0255 0.0331 0.0391 0.0365 0.0362 0.0067
β9 0.0286 0.0297 0.0270 0.0317 0.0448 0.0429 0.0404 0.0778
β10 0.0286 0.0301 0.0284 0.0298 0.0470 0.0464 0.0428 0.0345

21 β11 0.0286 0.0305 0.0296 0.0276 0.0456 0.0464 0.0432 0.0451
β12 0.0286 0.0309 0.0307 0.0256 0.0407 0.0427 0.0410 0.0267
β13 0.0286 0.0314 0.0317 0.0239 0.0329 0.0356 0.0361 0.0753
β14 0.0286 0.0318 0.0325 0.0229 0.0233 0.0259 0.0285 0.0038
β15 0.0286 0.0322 0.0331 0.0228 0.0137 0.0153 0.0190 −0.0072
β16 0.0286 0.0326 0.0336 0.0240 0.0060 0.0060 0.0092 0.0029
β17 0.0286 0.0330 0.0340 0.0266 0.0029 0.0008 0.0018 0.0445
β18 0.0286 0.0335 0.0343 0.0311 0.0075 0.0037 0.0013 0.0023
β19 0.0286 0.0339 0.0344 0.0376 0.0231 0.0192 0.0140 −0.0123
β20 0.0286 0.0343 0.0343 0.0466 0.0540 0.0529 0.0488 0.0442
β21 0.0286 0.0347 0.0342 0.0581 0.1045 0.1114 0.1175 0.1351

successful choice among the r-convex models in following the trend of the uncon-
strained coefficients. Similar results are obtained for m = 21, except that the method
employs 21 coefficients instead of 17. In this case, it is clear the 4-convex model
gives the best results. Now the 4-convex coefficients lie on a fit that consists of four
overlapping cubics that follow smoothly the trend of the unconstrained coefficients
all over the range, as it is also illustrated in Fig. 3.
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Fig. 2 The unconstrained (plus sign) and the r-convex lag coefficients of Table 1,
when m = 17 and r = 2,3,4, and 5. A piecewise linear interpolant illustrates the
associated coefficients
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Fig. 3 As in Fig. 2, but m = 21

The r-concave coefficients for r ≤ 4 of Table 2 seem unsuccessful in following
this trend, especially at the tails of the unconstrained coefficients. The reason is that
not only the approximation by nonpositive differences is not suitable when r ≤ 4,
but also the inactive constraints that occur at the r-concave fits are so rare that these
fits do not allow more flexibility than that of a polynomial fit of degree r − 1. For
example, all the components of the 1-concave model are equal, as opposed to the
1-convex model; the 2-concave model for m = 17 and m = 21, which is presented in
Figs. 4 and 5, respectively, is a straight line fit as opposed to the 2-convex polygonal
model; the 3-concave model, except at the left end of the range, gave poor results;
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Fig. 4 The unconstrained (plus sign) and the r-concave lag coefficients of Table 2,
when m = 17 and r = 2,3,4, and 5

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

1 2 3 4 5 6 7 8 9 10 11 12

coefr=5r=4r=3r=2

13 14 15 16 17 18 19 20 21

0.00

−0.02

Fig. 5 As in Fig. 4, but m = 21

the 4-concave model failed to follow the trend of the unconstrained coefficients
at the left half of the range and gave poor results for the right half of the range.
However, the r-concave coefficients, for r ≥ 5, are much closer to the components
of β̃ than those for r ≤ 4, because the r-concave fit tends to undulate for larger
values of r. Still, the values of the Lagrange multipliers are kept large.

Next, we applied the conjugate gradient-type method of Sect. 3 to the data
described in the beginning of the section. Therefore we estimated the coefficients
of the distributed-lag model with m = 17, 21 subject to the piecewise monotonicity
constraints (22) on the components of β for k = 1, 2, . . . , 6, where the first mono-
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Table 3 The Lagrange multipliers that correspond to the lag coefficients of Table 1
r-Convex

m λi r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7

λ1 296.58 0 1,634.05 0 6,149.12 1,697.93 71,610.28
λ2 318.98 76.90 4,861.62 49.41 22,266.43 0 366,144.86
λ3 199.50 375.86 8,743.49 1,192.22 41,321.04 0 902,718.82
λ4 134.47 732.77 12,588.86 3,153.40 53,127.46 12,878.60 1,453,646.53
λ5 80.12 1,115.96 15,652.99 4,463.18 53,474.10 31,826.18 1,741,209.45
λ6 0 1,617.83 17,064.43 4,999.97 41,940.12 51,847.92 1,580,571.26
λ7 58.98 1,976.79 16,884.35 3,783.62 27,705.83 50,496.51 1,115,288.38
λ8 0 2,395.58 14,654.00 2,587.10 14,324.94 32,132.68 613,846.77

17 λ9 82.03 2,471.50 11,244.74 1,665.53 4,473.71 15,393.00 249,044.41
λ10 132.08 2,243.72 7,483.21 803.68 0 8,517.42 52,882.99
λ11 150.42 1,783.05 4,018.59 0 0 2,494.36 −
λ12 178.29 1,230.80 1,465.29 0 86.08 − −
λ13 221.67 580.09 300.39 23.29 − − −
λ14 123.17 162.89 0 − − − −
λ15 34.46 0 − − − − −
λ16 0 − − − − − −
λ17 − − − − − − −
λ1 178.66 0 1,520.79 6.36 5,617.82 1,063.93 112,337.53
λ2 173.80 367.40 4,787.05 0 24,097.74 0 654,489.39
λ3 47.26 1,327.38 8,885.78 941.59 53,651.32 15,605.84 1,902,073.32
λ4 0 2,673.06 12,999.04 2,957.46 85,725.13 90,771.01 3,723,747.68
λ5 0 4,210.62 16,378.73 4,740.05 113,230.14 252,693.56 5,502,455.15
λ6 16.09 5,800.62 18,315.51 5,103.94 133,710.17 479,660.33 6,420,797.25
λ7 119.44 7,201.96 18,557.30 3,094.40 151,648.22 678,318.38 6,071,823.25
λ8 172.27 8,462.07 16,536.60 1,044.23 163,510.59 763,000.22 4,624,195.67
λ9 477.13 9,046.76 13,048.99 0 164,431.73 694,166.97 2,721,109.06
λ10 754.75 8,988.84 8,830.08 657.58 149,367.38 501,655.02 1,110,351.23

21 λ11 1,021.84 8,272.88 4,791.60 2,588.90 117,277.33 267,402.70 237,879.61
λ12 1,227.38 7,012.41 1,817.45 4,879.08 73,098.98 90,975.31 0
λ13 1,352.69 5,347.66 557.68 5,204.32 32,177.45 12,267.54 14,858.87
λ14 1,233.82 3,757.00 364.70 3,329.33 7,528.65 0 20,205.95
λ15 1,029.78 2,411.41 366.66 1,009.03 0 2,301.89 −
λ16 802.72 1,352.58 170.93 0 54.85 − −
λ17 590.81 538.09 0 67.56 − − −
λ18 346.62 53.88 9.76 − − − −
λ19 67.76 0 − − − − −
λ20 0 − − − − − −
λ21 − − − − − − −

tonic section of the fit is increasing. Also we estimated coefficients, where we al-
lowed the first monotonic section to be decreasing. The amount of CPU time to
carry out these calculations in single precision arithmetic is negligible.

The tolerance for the termination criterion (28) in Step 4 was set to 10−6. The
actual values of m, k, and the calculated coefficients with the increasing option
are given in Table 5, while the coefficients with the decreasing option are given
in Table 6. The coefficients are shown in the third (k = 1), fourth (k = 2), and so
on column of each table. The last column of each table displays the unconstrained
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Table 4 The Lagrange multipliers that correspond to the lag coefficients of Table 2
r-Concave

m λi r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7

λ1 76.51 653.07 0 4,041.46 0 30,641.37 14,430.64
λ2 455.65 1,382.08 0 14,603.60 1,406.95 136,046.25 17,553.30
λ3 981.14 1,853.82 214.43 30,428.76 10,973.84 312,424.60 0
λ4 1,434.64 2,112.71 442.54 48,758.00 32,745.41 497,491.78 8,058.22
λ5 1,841.09 2,109.29 534.64 66,170.59 61,169.00 615,835.25 47,007.34
λ6 2,198.91 1,803.41 821.42 78,654.88 87,255.56 610,712.40 129,036.51
λ7 2,371.01 1,448.50 1,153.21 84,255.25 97,070.86 500,875.99 161,218.23
λ8 2,555.75 859.09 2,116.72 80,253.22 88,742.28 336,025.61 104,777.13

17 λ9 2,439.73 469.75 3,140.85 67,388.58 67,084.79 174,025.68 27,566.27
λ10 2,251.48 269.84 3,772.34 48,926.32 40,249.24 60,824.27 3,022.83
λ11 2,013.19 209.83 3,721.74 29,293.46 16,598.38 11,490.81 −
λ12 1,725.58 289.84 3,092.94 12,901.62 3,755.66 − −
λ13 1,406.44 456.18 1,838.81 3,260.96 − − −
λ14 1,169.72 419.65 632.85 − − − −
λ15 873.55 217.14 − − − − −
λ16 486.74 − − − − − −
λ17 − − − − − − −
λ1 59.00 456.66 0 7,036.82 0 33,927.71 10,655.22
λ2 376.54 881.22 449.63 28,537.02 2,079.81 172,036.14 0
λ3 820.74 997.01 2,263.46 67,499.85 16,793.68 456,105.85 0
λ4 1,173.21 934.50 5,733.88 122,916.97 55,911.40 854,672.23 237,572.29
λ5 1,452.29 760.16 10,782.88 189,891.40 120,597.74 1,279,736.53 1,037,984.91
λ6 1,677.55 494.11 17,341.48 259,823.15 199,140.55 1,632,523.87 2,570,050.48
λ7 1,775.89 293.92 24,858.56 322,698.03 268,188.21 1,868,054.30 4,469,092.13
λ8 1,904.41 0 33,258.33 366,002.78 313,905.99 1,960,403.04 6,013,750.04
λ9 1,745.24 96.85 41,043.27 381,826.35 329,370.07 1,899,263.75 6,510,991.70
λ10 1,554.97 559.44 46,832.45 367,461.26 315,230.01 1,686,421.42 5,704,141.80

21 λ11 1,367.95 1,301.65 49,537.66 325,462.15 276,942.31 1,342,042.44 3,933,275.53
λ12 1,195.70 2,236.97 48,618.74 263,660.49 223,403.24 911,134.06 2,016,305.28
λ13 1,056.27 3,229.46 43,815.49 193,808.72 159,611.75 489,767.11 680,876.45
λ14 1,084.41 3,873.47 36,113.20 126,459.39 93,854.36 183,118.29 110,027.36
λ15 1,115.68 4,105.97 26,752.69 69,871.66 39,704.26 34,778.82 −
λ16 1,136.72 3,910.86 17,092.21 29,516.89 8,716.24 − −
λ17 1,155.57 3,266.40 8,612.74 7,146.94 − − −
λ18 1,123.22 2,250.31 2,575.12 − − − −
λ19 1,045.03 948.85 − − − − −
λ20 658.89 − − − − − −
λ21 − − − − − − −

lag coefficients. The underlined numbers indicate the positions of the local extrema,
maxima, and minima. The coefficients of Tables 5 and 6, for k = 1, 2, 3, 4, 5, and 6,
for each m are displayed in Figs. 6, 7, 8, and 9.

The results of Table 5 are as follows. The monotonically increasing components
when (m = 17,21; k = 1) consist of four sections of different equal components.
The lag coefficients for k = 1,3,5, apart from slight differences in the fourth deci-
mal place of sporadic values, are the same with the lag coefficients for k = 2,4,6,
respectively. The user may specify whether the first monotonic section in (22) is in-
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Table 5 The piecewise monotonic lag coefficients where the first monotonic section
is increasing and the unconstrained lag coefficients

Unconstrained
m βi k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 lag coefficients

β1 0.0227 0.0227 0.0708 0.0708 0.0704 0.0704 0.0772
β2 0.0227 0.0227 0.0120 0.0120 0.0108 0.0108 −0.0020
β3 0.0227 0.0227 −0.0034 −0.0034 −0.0036 −0.0036 0.0015
β4 0.0227 0.0227 0.0197 0.0197 0.0200 0.0200 0.0190
β5 0.0227 0.0227 0.0197 0.0197 0.0200 0.0200 0.0348
β6 0.0227 0.0227 0.0197 0.0197 0.0200 0.0200 −0.0025
β7 0.0245 0.0245 0.0251 0.0251 0.0200 0.0200 0.0425
β8 0.0245 0.0245 0.0251 0.0251 0.0200 0.0200 −0.0020

17 β9 0.0408 0.0408 0.0411 0.0411 0.0578 0.0578 0.0728
β10 0.0408 0.0408 0.0411 0.0411 0.0435 0.0435 0.0391
β11 0.0408 0.0408 0.0411 0.0411 0.0435 0.0435 0.0440
β12 0.0408 0.0408 0.0411 0.0411 0.0435 0.0435 0.0203
β13 0.0408 0.0408 0.0411 0.0411 0.0435 0.0435 0.0755
β14 0.0408 0.0408 0.0411 0.0411 0.0328 0.0328 0.0241
β15 0.0408 0.0408 0.0411 0.0411 0.0281 0.0281 0.0269
β16 0.0408 0.0408 0.0411 0.0411 0.0401 0.0401 0.0281
β17 0.0670 0.0670 0.0627 0.0627 0.0696 0.0696 0.0819
β1 0.0199 0.0199 0.0165 0.0165 0.0483 0.0483 0.0527
β2 0.0199 0.0199 0.0165 0.0165 0.0100 0.0100 −0.0009
β3 0.0199 0.0199 0.0165 0.0165 −0.0082 −0.0082 −0.0034
β4 0.0199 0.0199 0.0165 0.0165 0.0149 0.0149 0.0148
β5 0.0236 0.0235 0.0215 0.0215 0.0229 0.0229 0.0341
β6 0.0274 0.0274 0.0218 0.0218 0.0229 0.0229 0.0078
β7 0.0274 0.0274 0.0224 0.0224 0.0229 0.0229 0.0367
β8 0.0274 0.0274 0.0224 0.0224 0.0229 0.0229 0.0067
β9 0.0274 0.0274 0.0604 0.0604 0.0611 0.0611 0.0778
β10 0.0274 0.0274 0.0441 0.0441 0.0438 0.0438 0.0345

21 β11 0.0274 0.0274 0.0441 0.0441 0.0438 0.0438 0.0451
β12 0.0274 0.0274 0.0441 0.0441 0.0438 0.0438 0.0267
β13 0.0274 0.0274 0.0441 0.0441 0.0438 0.0438 0.0753
β14 0.0274 0.0274 0.0116 0.0116 0.0118 0.0118 0.0038
β15 0.0274 0.0274 0.0116 0.0116 0.0118 0.0118 −0.0072
β16 0.0274 0.0274 0.0116 0.0116 0.0118 0.0118 0.0029
β17 0.0274 0.0274 0.0116 0.0116 0.0118 0.0118 0.0445
β18 0.0274 0.0274 0.0116 0.0116 0.0118 0.0118 0.0023
β19 0.0274 0.0274 −0.0081 −0.0081 −0.0087 −0.0087 −0.0123
β20 0.0274 0.0274 0.0458 0.0458 0.0484 0.0484 0.0442
β21 0.1033 0.1033 0.1330 0.1330 0.1286 0.1286 0.1351

creasing or decreasing, but the algorithm can give β2 < β1, as for example occurs in
Table 5 for k = 3,4,5,6 when m = 17, by regarding the first monotonic component
β1 as the first monotonic section. Thus in Table 5, we have underlined the number
β1 for k = 3,4,5,6 when m = 17 and for k = 5,6 when m = 21. When m = 17, a
minimum occurs at β3 for k = 3,4,5,6, a maximum at β9 for k = 5,6, and a mini-
mum at β15 for k = 5,6. It is noticeable that each fit preserves the positions of the
extrema as k increases. Similar results are observed when m = 21. We see also that
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Table 6 The piecewise monotonic lag coefficients where the first monotonic section
is decreasing and the unconstrained lag coefficients

Unconstrained
m βi k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 lag coefficients

β1 0.0335 0.0708 0.0708 0.0704 0.0704 0.0699 0.0772
β2 0.0335 0.0120 0.0120 0.0108 0.0108 0.0103 −0.0020
β3 0.0335 −0.0035 −0.0034 −0.0036 −0.0036 −0.0008 0.0015
β4 0.0335 0.0197 0.0197 0.0200 0.0200 0.0179 0.0190
β5 0.0335 0.0197 0.0197 0.0200 0.0200 0.0179 0.0348
β6 0.0335 0.0197 0.0197 0.0200 0.0200 0.0179 −0.0025
β7 0.0335 0.0251 0.0251 0.0200 0.0200 0.0392 0.0425
β8 0.0335 0.0251 0.0251 0.0200 0.0200 0.0004 −0.0020

17 β9 0.0335 0.0411 0.0411 0.0578 0.0578 0.0618 0.0728
β10 0.0335 0.0411 0.0411 0.0435 0.0435 0.0438 0.0391
β11 0.0335 0.0411 0.0411 0.0435 0.0435 0.0438 0.0440
β12 0.0335 0.0411 0.0411 0.0435 0.0435 0.0438 0.0203
β13 0.0335 0.0411 0.0411 0.0435 0.0435 0.0438 0.0755
β14 0.0335 0.0411 0.0411 0.0328 0.0328 0.0322 0.0241
β15 0.0335 0.0411 0.0411 0.0281 0.0281 0.0285 0.0269
β16 0.0335 0.0411 0.0411 0.0401 0.0401 0.0394 0.0281
β17 0.0335 0.0628 0.0627 0.0696 0.0696 0.0705 0.0819
β1 0.0286 0.0528 0.0528 0.0483 0.0483 0.0480 0.0527
β2 0.0286 0.0125 0.0125 0.0100 0.0100 0.0101 −0.0009
β3 0.0286 −0.0073 −0.0073 −0.0082 −0.0082 −0.0070 −0.0034
β4 0.0286 0.0197 0.0198 0.0149 0.0149 0.0119 0.0148
β5 0.0286 0.0275 0.0275 0.0229 0.0229 0.0244 0.0341
β6 0.0286 0.0275 0.0275 0.0229 0.0229 0.0244 0.0078
β7 0.0286 0.0275 0.0275 0.0229 0.0229 0.0318 0.0367
β8 0.0286 0.0275 0.0275 0.0229 0.0229 0.0076 0.0067
β9 0.0286 0.0275 0.0275 0.0611 0.0611 0.0660 0.0778
β10 0.0286 0.0275 0.0275 0.0438 0.0438 0.0439 0.0345

21 β11 0.0286 0.0275 0.0275 0.0438 0.0438 0.0439 0.0451
β12 0.0286 0.0275 0.0275 0.0438 0.0438 0.0439 0.0267
β13 0.0286 0.0275 0.0275 0.0438 0.0438 0.0439 0.0753
β14 0.0286 0.0275 0.0275 0.0118 0.0118 0.0115 0.0038
β15 0.0286 0.0275 0.0275 0.0118 0.0118 0.0115 −0.0072
β16 0.0286 0.0275 0.0275 0.0118 0.0118 0.0115 0.0029
β17 0.0286 0.0275 0.0275 0.0118 0.0118 0.0115 0.0445
β18 0.0286 0.0275 0.0275 0.0118 0.0118 0.0115 0.0023
β19 0.0286 0.0275 0.0275 −0.0087 −0.0087 −0.0050 −0.0123
β20 0.0286 0.0275 0.0275 0.0484 0.0484 0.0468 0.0442
β21 0.0286 0.0999 0.0999 0.1286 0.1286 0.1280 0.1351

the last monotonic section for (m = 17,21; k = 2,4,6) has degenerated to the last
component βm.

The results of Table 6 are as follows. The monotonically decreasing components
when (m = 17,21; k = 1) are all equal, which indicates that this model is less suc-
cessful than the corresponding model of Table 5. The lag coefficients for k = 2,4,
apart from slight differences, are the same with the lag coefficients for k = 3,5, re-
spectively. When m = 17, the coefficients have a minimum at β3 for k = 2,3,4,5,6,
a maximum at β9 and a minimum at β15 for k = 4,5,6, and a maximum at β7 as well
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as a minimum at β8 for k = 6. Similar results are observed when m= 21. We see also
that the last monotonic section when (m = 17,21; k = 3,5) has degenerated to βm.

It is remarkable that the extrema {βt j : j = 1,2, . . . ,k−1} of the piecewise mono-
tonic coefficient estimates approach k − 1 out of the m unconstrained coefficients.
If a suitable value of k is not known in advance, then the user may apply the piece-
wise monotonicity constraints that are incorporated in the conjugate gradient algo-
rithm for a sequence of integers k. On the other hand, it would have been sensible
to give k a value, after there had been derived some information from the uncon-
strained lag coefficients. Further, we should note that the cases (m = 17;k = 2,4)
and (m= 21,k = 4) of Table 6, apart from slight differences, present the same results
as the cases (m = 17;k = 3,5) and (m = 21,k = 5) of Table 5, respectively. This re-
mark suggests that the piecewise monotonic constraints can be employed either with
the increasing or with the decreasing option for the first monotonic section, because
as k increases the piecewise monotonicity algorithm through the course may allow
a monotonic section to degenerate to a single component, which in turn can remedy
an initially unsuccessful choice of the first monotonic section.

Fig. 6 With m = 17, the unconstrained (plus sign) and the piecewise monotonic lag
coefficients (first section is increasing) with k = 1(2), k = 3(4), and k = 5(6) of
Table 5

A comparison of the k = 1 case of Tables 5 and 6 with the r = 1 case of Tables 1
and 2 respectively shows that the monotonic coefficients of Tables 5 and 6, obtained
by the conjugate gradient type method of Sect. 3 when k = 1, are quite close to the
monotonic coefficients of Tables 1 and 2 obtained by the method of Sect. 2 when
r = 1.
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Fig. 7 With m = 21, the unconstrained (plus sign) and the piecewise monotonic lag
coefficients (first section is increasing) with k = 1(2), k = 3(4), and k = 5(6) of
Table 5

Fig. 8 With m = 17, the unconstrained (plus sign) and the piecewise monotonic lag
coefficients (first section is decreasing) with k = 1,3(2) and k = 5(4) of Table 6
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Fig. 9 With m = 21, the unconstrained (plus sign) and the piecewise monotonic lag
coefficients (first section is decreasing) with k = 1,3(2) and k = 5(4) of Table 6

5 Discussion

We have considered two methods for calculating distributed-lag coefficients subject
to sign conditions on consecutive differences of the coefficient estimates and have
presented an application of these methods to real macroeconomic data on money
and prices that gives attention to particular relations for the lag coefficients. Further,
we have included some relations that suggest conflicting strategies, in order to shed
light to the behavior of these methods and help decide for suitable relations.

The first method is a strictly convex quadratic programming calculation subject
to nonnegative differences of order r of the lag coefficients. The method is efficient
computationally, because the matrices that occur are banded and positive definite
due to the Toeplitz structure of the constraint functions. Two important practical
questions concern the size of m and the choice of r. The size of m can be selected
by statistical methods. The choice of order r should depend on properties of the
underlying relation. If, however, the choice of r is a matter of experimentation, the
user may try iteratively some values of r, as suggested by Cullinan [2] and Vassil-
iou and Demetriou [34]. Some modeling advantages of using this method are that
it achieves a rather weak representation of the lag coefficients, it obtains well rec-
ognized structures which take the form of monotonicity, convexity, and r-convexity
for r ≥ 3, and it provides estimations of higher rates of change of the underlying re-
lation. In the example considered, the r-convex lag coefficients were able to follow
the general trend of the (unknown) unconstrained lag coefficients in a rather smooth
manner.
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The second method estimates piecewise monotonic lag coefficients by an itera-
tive procedure that combines the conjugate gradient method with a piecewise mono-
tonicity data approximation method. The procedure is both efficient computationally
and competent to its modeling task. In addition, it overcomes the multicollinearity
problem that frequently occurs in the practice of distributed-lag calculations. The
obtained piecewise monotonicity model provides a weak, nonetheless very realistic
representation of the lag coefficients, a property that is highly desirable by the ex-
perts. Moreover, the choice of the prior knowledge parameter k gives the estimation
of the lag coefficients valuable flexibility.

The authors have developed Fortran versions of the algorithms that would be
helpful for obtaining particular relations in real problem applications. Furthermore,
there is room for much empirical analysis as well as for comparisons with other
distributed-lag methods. Our methods may be useful, because they are driven by
properties such as r-convexity and piecewise monotonicity that allow a wide range
of assumptions about the lags. Besides, these properties do not occur in other
distributed-lag methods.
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Poincaré-Type Inequalities for Green’s Operator
on Harmonic Forms

Shusen Ding and Yuming Xing

1 Introduction

The purpose of this paper is to derive the Poincaré-type inequalities with unbounded
factors for Green’s operator applied to the solutions of the nonlinear elliptic dif-
ferential equation d�A(x,du) = B(x,du), which is called the nonhomogeneous
A-harmonic equation for differential forms in IRn, n≥ 2, where A and B are operators
satisfying certain conditions. Furthermore, we prove both local and global Poincaré
inequalities with Orlicz norms for Green’s operator applied to differential forms in
Lϕ(m)-averaging domains. Our new results are extensions of Lp norm inequalities
for Green’s operator and can be used to estimate the norms of differential forms
or the norms of other operators, such as the projection operator. The Poincaré-type
inequalities have been widely studied and used in PDEs, analysis, and the related
areas, and different versions of the Poincaré-type inequalities have been established
during the recent years, see [1, 4–6, 8–12]. We all know that Green’s operator is
one of the key operators which is widely used in many areas, such as analysis and
PDEs. The study of the above equation just started in recent years, see [1, 6, 8, 16].
However, the investigation of the homogeneous A-harmonic equation has been well
developed and many applications in the related fields, including potential theory and
nonlinear elasticity, have been found, see [13–15, 20–23]. In many situations, we
often need to evaluate the integrals with unbounded factors. For instance, if the
object P1 with mass m1 is located at the origin and the object P2 with mass m2 is
located at (x,y,z) in IR3, then, Newton’s Law of Gravitation states that the magnitude
of the gravitational force between two objects P1 and P2 is |F|= m1m2G/d2(P1,P2),
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where d(P1,P2) =
√

x2 + y2 + z2 is the distance between P1 and P2, and G is
the gravitational constant. Hence, we need to deal with an integral whenever the
integrand contains |F| as a factor and the integral domain includes the origin.
Moreover, in calculating an electric field, we will evaluate the integral E(y) =

1
4πε0

∫
D ρ(x) y−x

‖y−x‖3 dx, where ρ(x) is a charge density and x is the integral variable.

The integrand is unbounded if y ∈ D. This is our motivation to prove the Poincaré-
type inequalities for Green’s operator G with unbounded factors.

In this paper, we always assume that M is a bounded, convex domain and B
is a ball in IRn, n ≥ 2. Let σB be the ball with the same center as B and with
diam(σB) = σdiam(B), σ > 0. We do not distinguish the balls from cubes in
this paper. We use |E| to denote the Lebesgue measure of the set E. We say w
is a weight if w ∈ L1

loc(IR
n) and w > 0 a.e. Differential forms are extensions of

functions in IRn. For example, the function u(x1,x2, . . . ,xn) is called a 0-form. A
differential k-form u(x) is generated by {dxi1 ∧ dxi2 ∧ ·· ·dxik}, k = 1,2, . . . ,n, that
is, u(x) = ∑I uI(x)dxI = ∑ui1i2···ik(x)dxi1 ∧dxi2 ∧· · ·∧dxik , where I = (i1, i2, . . . , ik),
1 ≤ i1 < i2 < · · · < ik ≤ n. Let ∧l = ∧l(IRn) be the set of all l-forms in IRn,
D′(M,∧l) be the space of all differential l-forms on M, and Lp(M,∧l) be the
l-forms u(x) = ∑I uI(x)dxI on M satisfying

∫
M |uI |p < ∞ for all ordered l-tuples I,

l = 1,2, . . . ,n. We denote the exterior derivative by d : D′(M,∧l) → D′(M,∧l+1)
for l = 0,1, . . . ,n−1, and define the Hodge star operator � : ∧k → ∧n−k as follows.
If u = ui1i2···ik(x1,x2, . . . ,xn)dxi1 ∧ dxi2 ∧ ·· · ∧ dxik = uIdxI , i1 < i2 < · · · < ik is a
differential k-form, then �u = �(ui1i2···ik dxi1 ∧ dxi2 ∧ ·· · ∧ dxik) = (−1)∑(I)uIdxJ ,

where I = (i1, i2, . . . , ik), J = {1,2, . . . ,n} − I, and ∑(I) = k(k+1)
2 + ∑k

j=1 i j.

The Hodge codifferential operator d� : D′(M,∧l+1) → D′(M,∧l) is given by
d� = (−1)nl+1 � d� on D′(M,∧l+1), l = 0,1, . . . ,n − 1. We write ‖u‖s,M =

(
∫

M |u|s)1/s and ||u||s,M,w = (
∫

M |u|sw(x)dx)1/s , where w(x) is a weight. Let
W(∧lΩ) = {u ∈ L1

loc(∧lΩ) : u has generalized gradient}. As usual, the har-
monic l-field is defined by H(∧lΩ) = {u ∈ W(∧lΩ) : du = d�u = 0,u ∈
Lp for some 1 < p < ∞}. The orthogonal complement of H in L1 is defined
by H⊥ = {u ∈ L1 :< u,h >= 0 for all h ∈ H}. Green’s operator G is defined
as G : C∞(∧lΩ) → H⊥ ∩C∞(∧lΩ) by assigning G(u) be the unique element of
H⊥ ∩C∞(∧lΩ) satisfying Poisson’s equation ΔG(u) = u−H(u), where H is either
the harmonic projection or sometimes the harmonic part of u and Δ is the Laplace–
Beltrami operator, see [18, 21] for more properties of Green’s operator. We always
use G to denote Green’s operator in this paper.

We consider the nonhomogeneous A-harmonic equation for differential forms

d�A(x,du) = B(x,du), (1)

where the mappings A(x,ξ ) : M ×∧l(IRn) → ∧l(IRn) and B(x,ξ ) : M ×∧l(IRn) →
∧l−1(IRn) are measurable with respect to x and ξ , and satisfy the conditions:

|A(x,ξ )| ≤ a|ξ |p−1, A(x,ξ ) ·ξ ≥ |ξ |p and |B(x,ξ )| ≤ b|ξ |p−1 (2)

for almost every x ∈ M and all ξ ∈ ∧l(IRn), where a,b > 0 are constants and 1 <
p < ∞ is a fixed exponent associated with (1). A solution to (1) is an element of



Poincaré-Type Inequalities 143

the Sobolev space W 1,p
loc (M,∧l−1) such that

∫
M A(x,du) · dϕ +B(x,du) ·ϕ = 0 for

all ϕ ∈ W 1,p
loc (M,∧l−1) with compact support. Let A : M ×∧l(IRn) → ∧l(IRn) be

defined by A(x,ξ ) = ξ |ξ |p−2 with p > 1. Then, A satisfies the required conditions
and d�A(x,du) = 0 reduces to the p-harmonic equation

d�(du|du|p−2) = 0 (3)

for differential forms. In case that u is a function (0-form), (3) becomes the usual
p-harmonic equation div(∇u|∇u|p−2) = 0. A differential form u is called a har-
monic form if u satisfies some version of the A-harmonic equation. Much progress
has been made recently in the investigation of different versions of the A-harmonic
equations, see [5, 6, 8, 13, 15–17].

The operator Ky with the case y = 0 was first introduced by Cartan in [3]. Then,
it was extended to the following version in [14]. To each y ∈ M there corresponds a
linear operator Ky : C∞(M,∧l) → C∞(M,∧l−1) defined by (Kyu)(x;ξ1, . . . ,ξl−1) =∫ 1

0 tl−1u(tx+ y − ty;x − y,ξ1, . . . ,ξl−1)dt. A homotopy operator T : C∞(M,∧l) →
C∞(M,∧l−1) is defined by Tu =

∫
M φ(y)Kyudy, where φ ∈C∞

0 (M) is normalized so
that

∫
M φ(y)dy = 1. The l-form uM ∈ D′(M,∧l) is defined by

uM = |M|−1
∫

M
u(y)dy, l = 0, and uM = d(Tu), l = 1,2, . . . ,n (4)

for all u ∈ Lp(M,∧l), 1 ≤ p < ∞. Furthermore, we have

u = d(Tu)+T (du), (5)

‖Tu‖s,M ≤C(s,n,M)diam(M)‖u‖s,M (6)

for any differential form u.

2 Local Inequalities

We first introduce the following lemmas that will be used in this paper.

Lemma 1 ([8]). Let u be a solution to the nonhomogeneous A-harmonic equa-
tion (1) in M and let σ > 1, 0 < s, t < ∞. Then, there exists a constant C, depending
only on σ ,n,a,b,s, and t, such that

‖du‖s,B ≤C(n,M)|B|(t−s)/st‖du‖t,σB

for all balls or cubes B with σB ⊂ M.

Using the same method developed in the proof of Propositions 5.15 and 5.17 in [18],
we can prove that for any closed ball B = B∪∂B, we have

‖dd∗G(u)‖s,B +‖d∗dG(u)‖s,B +‖dG(u)‖s,B +‖d∗G(u)‖s,B +‖G(u)‖s,B ≤C(s)‖u‖s,B. (7)
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Note that for any Lebesgue measurable function f defined on a Lebesgue
measurable set E with |E| = 0, we have

∫
E f dx = 0. Thus, ‖u‖s,∂B = 0 and

‖dd∗G(u)‖s,∂B + ‖d∗dG(u)‖s,∂B + ‖dG(u)‖s,∂B + ‖d∗G(u)‖s,∂B + ‖G(u)‖s,∂B = 0
since |∂B|= 0. Therefore, we obtain

‖dd∗G(u)‖s,B +‖d∗dG(u)‖s,B +‖dG(u)‖s,B +‖d∗G(u)‖s,MB +‖G(u)‖s,B

= ‖dd∗G(u)‖s,B +‖d∗dG(u)‖s,B +‖dG(u)‖s,B +‖d∗G(u)‖s,B +‖G(u)‖s,B

≤C(s)‖u‖s,B

=C(s)‖u‖s,B.

Hence, we have the following lemma.

Lemma 2. Let u be a smooth differential form defined in M and 1 < s < ∞. Then,
there exists a positive constant C =C(s), independent of u, such that

‖dd∗G(u)‖s,B+‖d∗dG(u)‖s,B+‖dG(u)‖s,B+‖d∗G(u)‖s,MB+‖G(u)‖s,B ≤C(s)‖u‖s,B

for any ball B ⊂ M.

Now, we prove the following local elementary Poincaré-type inequality for
Green’s operator applied to differential forms.

Lemma 3. Let u ∈ Ls
loc(M,∧l), l = 1,2, . . . ,n, 1 < s < ∞ and G be Green’s operator.

Then, there exists a constant C =C(n,s,M), independent of u, such that

‖G(u)− (G(u))B‖s,B ≤C(n,s,M)diam(B)‖du‖s,B

for all balls B with B ⊂ M.

Proof. Replacing u by G(u) in (5), then using (6) over a ball B, we obtain

‖G(u)− (G(u))B‖s,B = ‖T (d(G(u)))‖s,B ≤C1(s,n,Ω)diam(B)‖d(G(u))‖s,B (8)

for any differential form u. Since G commutes with d (see [13]), using Lemma 2,
we have

‖d(G(u))‖s,B = ‖G(d(u))‖s,B ≤C2(s)‖du‖s,B. (9)

Combining (8) and (9), we have

‖G(u)− (G(u))B‖s,B ≤C3(s,n,Ω)diam(B)‖du‖s,B.

we have completed the proof of Lemma 3.

Theorem 1. Let du ∈ Ls
loc(Ω ,∧l), l = 1,2, . . . ,n, 1< s<∞, be a solution of the non-

homogeneous A-harmonic equation in a bounded domain Ω , G be Green’s operator.
Then, there exists a constant C, independent of u, such that

(∫
B |G(u)− (G(u))B|s 1

|x−xB|α dx
)1/s ≤C(n,s,α ,λ ,Ω)|B|γ

(∫
σB |du|s 1

|x−xB|λ dx
)1/s

(10)
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for all balls B with σB ⊂ Ω and any real numbers α and λ with α > λ ≥ 0, where
γ = 1

n − α−λ
ns and xB is the center of ball B and σ > 1 is a constant.

Proof. Choose ε ∈ (0,1) such that εn<α −λ and let B ⊂ Ω be any ball with center
xB and radius rB. Set t = s/(1−ε), then, t > s. Write β = t/(t − s), from the Hölder
inequality and Lemma 3, we have

(∫

B

(
|G(u)− (G(u))B|

)s 1
|x− xB|α dx

)1/s

=
(∫

B

(
|G(u)− (G(u))B| 1

|x− xB|α/s

)s
dx

)1/s

≤ ‖G(u)− (G(u))B‖t,B

(∫

B

( 1
|x− xB|

)tα/(t−s)
dx

)(t−s)/st

= ‖G(u)− (G(u))B‖t,B

(∫

B
|x− xB|−αβ dx

)1/β s

≤C1(n,s,Ω)diam(B)‖du‖t,νB‖|x− xB|−α‖1/s
β ,B, (11)

where ν > 1 is a constant. We may assume that xB = 0. Otherwise, we just move the
center of the ball to the origin by a simple transformation. Therefore, for any x ∈ B,
|x− xB| ≥ |x|− |xB|= |x|. Using the polar coordinate substitution, we have

∫

B
|x− xB|−αβ dx ≤C2(n,s,α)

∫ rB

0
ρ−αβ ρn−1dρ ≤ C2(n,s,α)

n−αβ
(rB)

n−αβ . (12)

Select m = nst/(ns+αt − λ t), then 0 < m < s. By the reverse Hölder inequality
(Lemma 1), we find that

‖du‖t,νB ≤C3(n,s,α,λ ,Ω)|B|m−t
mt ‖du‖m,σB, (13)

where σ > ν > 1 is a constant. Using the Hölder inequality again yields

‖du‖m,σB =

(∫

σB

(
|du||x− xB|−λ/s|x− xB|λ/s

)m
dx

)1/m

≤
(∫

σB

(
|du||x− xB|−λ/s

)s
dx

)1/s (∫

σB

(
|x− xB|λ/s

) ms
s−m

dx

) s−m
ms

≤
(∫

σB
|du|s|x− xB|−λ dx

)1/s

C4(n,s,α,Ω)(σrB)
λ/s+n(s−m)/ms

≤ C5(n,s,α,Ω)

(∫

σB
|du|s|x− xB|−λ dx

)1/s

(rB)
λ/s+n(s−m)/ms. (14)

Note that
diam(B) · |B|1+ 1

t − 1
m = |B| 1

n+
1
t − ns+αt−λ t

nst = |B| 1
n − α−λ

ns . (15)
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Substituting (12)–(14) in (11) and using (15), we have

(∫
B (|G(u)− (G(u))B|)s 1

|x−xB|α dx
)1/s ≤C5(n,s,α ,λ ,Ω)|B|γ (∫

σB |du|s|x− xB|−λ dx
)1/s

.

We have completed the proof of Theorem 1.

Since 1
d(x,∂Ω) ≤ 1

rB−|x| for any x ∈ B, where rB is the radius of ball B ⊂ Ω , using
the same method developed in the proof of Theorem 1, we obtain the following
Poincaré-type inequality for Green’s operator with unbounded factors.

Theorem 2. Let du ∈ Ls
loc(Ω ,∧l), l = 1,2, . . . ,n, 1< s<∞, be a solution of the non-

homogeneous A-harmonic equation in a bounded domain Ω , G be Green’s operator.
Then, there exists a constant C, independent of u, such that

(∫
B |G(u)− (G(u))B|s 1

dα (x,∂Ω)dx
)1/s ≤C(n,s,α ,λ ,Ω)|B|γ

(∫
σB |du|s 1

|x−xB|λ dx
)1/s

(16)

for all balls B with σB ⊂ Ω and any real numbers α and λ with α > λ ≥ 0, where
γ = 1

n − α−λ
ns and xB is the center of ball B and σ > 1 is a constant.

3 Inequalities in John Domains

Finally, we are ready to prove the global Poincaré-type inequalities for Green’s
operator with unbounded factors in John domains.

Definition 1. A proper subdomain Ω ⊂ IRn is called a δ -John domain, δ > 0, if
there exists a point x0 ∈ Ω which can be joined with any other point x ∈ Ω by a
continuous curve γ ⊂ Ω so that

d(ξ ,∂Ω)≥ δ |x−ξ |
for each ξ ∈ γ . Here d(ξ ,∂Ω) is the Euclidean distance between ξ and ∂Ω .

Lemma 4 (Covering Lemma [17]). Each Ω has a modified Whitney cover of cubes
V= {Qi} such that

∪iQi = Ω , ∑
Qi∈V

χ√
5
4 Qi

≤ NχΩ

and some N > 1, and if Qi ∩Q j �= /0, then there exists a cube R (this cube need not
be a member of V) in Qi ∩Q j such that Qi ∪Q j ⊂ NR. Moreover, if Ω is δ -John,
then there is a distinguished cube Q0 ∈ V which can be connected with every cube
Q ∈ V by a chain of cubes Q0,Q1, . . . ,Qk = Q from V and such that Q ⊂ ρQi,
i = 0,1,2, . . . ,k, for some ρ = ρ(n,δ ).

Theorem 3. Let u ∈ D
′
(Ω ,∧0) be a solution of the nonhomogeneous A-harmonic

equation (1) and s be a fixed exponent associated with the nonhomogeneous
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A-harmonic equation. Then, there exists a constant C(n,N,s,α,λ ,Q0,Ω),
independent of u, such that

(∫
Ω |G(u)− (G(u))Q0 |s 1

dα (x,∂Ω)dx
)1/s ≤C(n,N,s,α ,λ ,Q0,Ω)(

∫
Ω |du|sg(x)dx)1/s (17)

for any bounded and convex δ -John domain Ω ⊂ IRn, where g(x) = ∑i χQi
1

|x−xQi
|λ .

Here α and λ are constants with 0 ≤ λ < α < min{n,s+λ −n}, s+λ > n, and the
fixed cube Q0 ⊂ Ω , the cubes Qi ⊂ Ω , and the constant N > 1 appeared in Lemma 4,
xQi is the center of Qi.

Proof. Assume that μ(x) and μ1(x) are the Radon measures induced by dμ =
1

dα (x,∂Ω)dx and dμ1(x) = g(x)dx, respectively. We have

μ(Q) =

∫

Q

1
dα(x,∂Ω)

dx ≥
∫

Q

1
(diam(Ω))α dx = M(n,α,Ω)|Q|, (18)

where M(n,α,Ω) is a positive constant. Using the elementary inequality (a+b)s ≤
2s(|a|s + |b|s), s ≥ 0, we find that

(∫
Ω |G(u)− (G(u))Q0 |s 1

dα (x,∂Ω)dx
)1/s

=
(∫

∪Q |G(u)− (G(u))Q0 |sdμ
)1/s

≤
(

∑Q∈V
(

2s ∫
Q |G(u)− (G(u))Q|sdμ +2s ∫

Q |(G(u))Q − (G(u))Q0 |sdμ
))1/s

≤ C1(s)
((

∑Q∈V
∫

Q |G(u)− (G(u))Q|sdμ
)1/s

+
(

∑Q∈V
∫

Q |(G(u))Q − (G(u))Q0 |sdμ
)1/s

(19)

for a fixed Q0 ⊂ Ω . The first sum in (19) can be estimated by using Theorem 2

∑
Q∈V

∫

Q
|G(u)− (G(u))Q|sdμ

≤C2(n,s,α,λ ,Ω) ∑
Q∈V

|Q|γs
∫

ρQ
|du|sdμ1

≤C3(n,s,α,λ ,Ω)|Ω |γs ∑
Q∈V

∫

Q

(
|du|sdμ1

)
χQ

≤C4(n,s,α,λ ,Ω)|Ω |γs
∫

Ω
|du|sdμ1

≤C5(n,s,α,λ ,Ω)

∫

Ω
|du|sdμ1. (20)

To estimate the second sum in (19), we use the property of δ -John domain. Fix a
cube Q ∈ V and let Q0,Q1, . . . ,Qk = Q be the chain in Lemma 4

|(G(u))Q − (G(u))Q0 | ≤
k−1

∑
i=0

|(G(u))Qi − (G(u))Qi+1 |. (21)
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The chain {Qi} also has property that, for each i, i= 0,1, . . . ,k−1, with Qi∩Qi+1 �=
/0, there exists a cube Di such that Di ⊂ Qi∩Qi+1 and Qi∪Qi+1 ⊂ NDi, N > 1. Then,

|Di| ≤ |Qi ∩Qi+1| ≤ max{|Qi|, |Qi+1|} ≤ |Qi ∪Qi+1| ≤ |NDi| ≤C6(N)|Di|

which gives

max{|Qi|, |Qi+1|}
|Qi ∩Qi+1| ≤ max{|Qi|, |Qi+1|}

|Di| ≤C6(N).

For such D j, j = 0,1, . . . ,k−1, set D = min{|D0|, |D1|, . . . , |Dk−1|}. Then

max{|Qi|, |Qi+1|}
|Qi ∩Qi+1| ≤ max{|Qi|, |Qi+1|}

|D| ≤C7(N). (22)

Using (18), (22), and Theorem 2, we obtain

|(G(u))Qi − (G(u))Qi+1 |s

=
1

μ(Qi ∩Qi+1)

∫

Qi∩Qi+1

|(G(u))Qi − (G(u))Qi+1 |s
dx

dα(x,∂Ω)

≤C8(n,α,Ω)
1

|Qi ∩Qi+1|
∫

Qi∩Qi+1

|(G(u))Qi − (G(u))Qi+1 |s
dx

dα(x,∂Ω)

≤C8(n,α,Ω)
C7(N)

max{|Qi|, |Qi+1|}
∫

Qi∩Qi+1

|(G(u))Qi − (G(u))Qi+1 |sdμ

≤C9(n,N,α,Ω)
i+1

∑
j=i

1
|Q j|

∫

Q j

|G(u)− (G(u))Q j |sdμ

≤C10(n,N,s,α,λ ,Ω)
i+1

∑
j=i

|Q j|γs

|Q j|
∫

ρQ j

|du|sdμ1

=C10(n,N,s,α,λ ,Ω)
i+1

∑
j=i

|Q j|γs−1
∫

ρQ j

|du|sdμ1. (23)

Since Q ⊂ NQ j for j = i, i+1, 0 ≤ i ≤ k−1, from (23), we have

(G(u))Qi − (G(u))Qi+1 |sχQ(x)

≤ C11(n,N,s,α,λ ,Ω)
i+1

∑
j=i

χNQ j(x)|Q j|γs−1
∫

ρQ j

|du|sdμ1

≤ C12(n,N,s,α,λ ,Ω)
i+1

∑
j=i

χNQ j(x)|Ω |γs−1
∫

ρQ j

|du|sdμ1. (24)
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We know that |Ω |γ−1/s < ∞ since Ω is bounded and γ − 1
s = 1

n +
λ
ns − 1

s − α
ns >

0 when α < s + λ + n(s − 1). Thus, from (a + b)1/s ≤ 21/s(|a|1/s + |b|1/s), (21)
and (24), it follows that

|(G(u))Q − (G(u))Q0 |χQ(x)≤C13(n,N,s,α,λ ,Ω) ∑
D∈V

(∫

ρD
|du|sdμ1

)1/s·χND(x)

for every x ∈ IRn. Then,

∑
Q∈V

∫

Q
|(G(u))Q − (G(u))Q0 |sdμ

≤ C13(n,N,s,α,λ ,Ω)
∫

IRn

∣
∣
∣ ∑
D∈V

(∫

ρD
|du|sdμ1

)1/s
χD(x)

∣
∣
∣
s
dμ .

Notice that

∑
D∈V

χD(x)≤ ∑
D∈V

χρD(x)≤ NχΩ (x).

Using elementary inequality |∑M
i=1 ti|s ≤ Ms−1 ∑M

i=1 |ti|s, we finally have

∑
Q∈V

∫

Q
|(G(u))Q − (G(u))Q0 |sdμ

≤C14(n,N,s,α,λ ,Ω)
∫

IRn

(
∑

D∈V

(∫

ρD
|du|sdμ1

)
χD(x)

)
dμ

=C14(n,N,s,α,λ ,Ω) ∑
D∈V

(∫

ρD
|du|sdμ1

)

≤C15(n,N,s,α,λ ,Ω)
∫

Ω
|du|sdμ1. (25)

Substituting (20) and (25) in (19), we have proved Theorem 3.

4 Inequalities with Orlicz Norms

In this section, we first prove the local Poincaré inequalities for Green’s operator
applied to differential forms. Then, we extend the local Poincaré-type inequalities
into the global cases in the Lϕ(m)-averaging domains, which are the extension of
John domains and Ls-averaging domain, see [7, 19]. A continuously increasing func-
tion ϕ : [0,∞)→ [0,∞) with ϕ(0) = 0 is called an Orlicz function. The Orlicz space

Lϕ(Ω) consists of all measurable functions f on Ω such that
∫

Ω ϕ
( | f |

λ

)
dx < ∞ for

some λ = λ ( f )> 0. Lϕ(Ω) is equipped with the nonlinear Luxemburg functional

‖ f‖ϕ(Ω) = inf {λ > 0 :
∫

Ω
ϕ

( | f |
λ

)
dx ≤ 1}. (26)
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A convex Orlicz function ϕ is often called a Young function. If ϕ is a Young
function, then ‖ ·‖ϕ defines a norm in Lϕ(Ω), which is called the Luxemburg norm.

Definition 2 ([2]). We say a Young function ϕ lies in the class G(p,q,C), 1 ≤ p <
q < ∞, C ≥ 1, if (i) 1/C ≤ ϕ(t1/p)/Φ(t) ≤ C and (ii) 1/C ≤ ϕ(t1/q)/Ψ(t) ≤ C for
all t > 0, where Φ is a convex increasing function and Ψ is a concave increasing
function on [0,∞)

From [2], each of ϕ,Φ , and Ψ in above definition is doubling in the sense that its
values at t and 2t are uniformly comparable for all t > 0, and the consequent fact that

C1tq ≤Ψ−1(ϕ(t))≤C2tq, C1t p ≤ Φ−1(ϕ(t))≤C2t p, (27)

where C1 and C2 are constants. Also, for all 1 ≤ p1 < p < p2 and α ∈ IR, the func-
tion ϕ(t) = t p logα

+ t belongs to G(p1, p2,C) for some constant C =C(p,α, p1, p2).
Here log+(t) is defined by log+(t) = 1 for t ≤ e; and log+(t) = log(t) for t > e.
Particularly, if α = 0, we see that ϕ(t) = t p lies in G(p1, p2,C), 1 ≤ p1 < p < p2.

We first prove the following generalized Poincaré inequality that will be used to
establish the global inequality.

Theorem 4. Let ϕ be a Young function in the class G(p,q,C), 1 ≤ p< q<∞, C ≥ 1,
Ω be a bounded domain and q(n − p) < np. Assume that u ∈ D′(Ω ,∧l) is any
differential l-form, l = 0,1, . . . ,n−1, and ϕ(|du|) ∈ L1

loc(Ω ,m). Then, there exists a
constant C, independent of u, such that

∫

B
ϕ (|G(u)− (G(u))B|)dm ≤C

∫

B
ϕ (|du|)dm (28)

for all balls B with B ⊂ Ω .

Proof. Using Jensen’s inequality for Ψ−1, (8), and noticing that ϕ and Ψ are dou-
bling, we obtain

∫

B
ϕ

(
|G(u)− (G(u))B|

)
dm = Ψ

(
Ψ−1

(∫

B
ϕ (|G(u)− (G(u))B|)dm

))

≤ Ψ
(∫

B
Ψ−1

(
ϕ (|G(u)− (G(u))B|)

)
dm

)

≤ Ψ
(

C7

∫

B
|G(u)− (G(u))B|qdm

)

≤ C8ϕ
((

C7

∫

B
|G(u)− (G(u))B|qdm

)1/q)

≤ C9ϕ
((∫

B
|G(u)− (G(u))B|qdm

)1/q)
. (29)
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If 1 < p < n, by assumption, we have q < np
n−p . Using the Poincaré-type inequality

for differential forms G(u)

(∫

B
|G(u)− (G(u))B|np/(n−p)dm

)(n−p)/np

≤C2

(∫

B
|d(G(u))|pdm

)1/p

≤C2

(∫

B
|G(du)|pdm

)1/p

≤C2

(∫

B
|du|pdm

)1/p

, (30)

we find that

(∫

B
|G(u)− (G(u))B|qdm

)1/q

≤C3

(∫

B
|du|pdm

)1/p

. (31)

Note that the Lp-norm of |G(u)− (G(u))B| increases with p and np
n−p → ∞ as p → n,

and it follows that (31) still holds when p ≥ n. Since ϕ is increasing, from (28)
and (31), we obtain

∫

B
ϕ

(
|G(u)− (G(u))B|

)
dm ≤C1ϕ

(
C3

(∫

B
|du|pdm

)1/p)
. (32)

Applying (32), (i) in Definition 2, Jensen’s inequality, and noticing that ϕ and Φ are
doubling, we have

∫

B
ϕ

(
|G(u)− (G(u))B|

)
dm ≤ C1ϕ

(
C3

(∫

B
|du|pdm

)1/p)

≤ C1Φ
(

C4

(∫

B
|du|pdm

))

≤ C5

∫

B
Φ(|du|p)dm. (33)

Using (i) in Definition 2 again yields
∫

B
Φ(|du|p)dm ≤C6

∫

B
ϕ(|du|)dm. (34)

Combining (33) and (34), we obtain
∫

B
ϕ

(
|G(u)− (G(u))B|

)
dm ≤C7

∫

B
ϕ(|du|)dm. (35)

The proof of Theorem 4 has been completed.
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Since each of ϕ,Φ , and Ψ in Definition 2 is doubling, from the proof of
Theorem 4 or directly from (28), we have

∫

B
ϕ

( |G(u)− (G(u))B|
λ

)
dm ≤C

∫

σB
ϕ

( |du|
λ

)
dm (36)

for all balls B with σB ⊂ Ω and any constant λ > 0. From (26) and (36), the fol-
lowing Poincaré inequality with the Luxemburg norm

‖G(u)− (G(u))B‖ϕ(B) ≤C‖du‖ϕ(σB) (37)

holds under the conditions described in Theorem 4.
Using Lemma 3.7.2 with w(x) = 1 in [1], we have the following Poincaré-type

inequality for the composition of Δ and G.

Lemma 5. Let u ∈ D′(Ω ,∧l), l = 0,1, · · · ,n−1, be an A-harmonic tensor
on Ω . Assume that ρ > 1 and 1< s<∞. Then, there exists a constant
C, independent of u, such that

‖ΔG(u)− (ΔG(u))B‖s,B ≤Cdiam(B)‖du‖s,ρB (38)

for any ball B with ρB ⊂ Ω .

Using Lemma 5 and the method developed in the proof of Theorem 4, we can prove
the following version of Poincaré-type inequality for the composition of Δ and G.

Theorem 5. Let ϕ be a Young function in the class G(p,q,C), 1 ≤ p< q<∞, C ≥ 1,
Ω be a bounded domain and q(n − p) < np. Assume that u ∈ D′(Ω ,∧l) is any
differential l-form, l = 0,1, . . . ,n−1, and ϕ(|du|) ∈ L1

loc(Ω ,m). Then, there exists a
constant C, independent of u, such that

∫

B
ϕ (|ΔG(u)− (ΔG(u))B|)dm ≤C

∫

B
ϕ (|du|)dm (39)

for all balls B with B ⊂ Ω .

Now we extend Theorem 1 into the global cases in the following Lϕ(m)-
averaging domains.

Definition 3 ([7]). Let ϕ be an increasing convex function on [0,∞) with ϕ(0) = 0.
We call a proper subdomain Ω ⊂ IRn an Lϕ(m)-averaging domain, if m(Ω)< ∞ and
there exists a constant C such that

∫

Ω
ϕ(τ |u−uB0 |)dm ≤C sup

B⊂Ω

∫

B
ϕ(σ |u−uB|)dm (40)

for some ball B0 ⊂ Ω and all u such that ϕ(|u|) ∈ L1
loc(Ω ,m), where τ ,σ are

constants with 0 < τ < ∞, 0 < σ < ∞ and the supremum is over all balls B ⊂ Ω .
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From the above definition we see that Ls-averaging domains and Ls(m)-averaging
domains are special Lϕ(m)-averaging domains when ϕ(t) = ts in Definition 3. Also,
uniform domains and John domains are very special Lϕ(m)-averaging domains, see
[1, 7, 19] for more results about domains.

Theorem 6. Let ϕ be a Young function in the class G(p,q,C), 1 ≤ p< q<∞, C ≥ 1,
Ω be a bounded Lϕ(m)-averaging domain and q(n − p) < np. Assume that u ∈
D′(Ω ,∧0) and ϕ(|du|) ∈ L1(Ω ,m). Then, there exists a constant C, independent of
u, such that

∫

Ω
ϕ

(|G(u)− (G(u))B0 |
)

dm ≤C
∫

Ω
ϕ (|du|)dm, (41)

where B0 ⊂ Ω is some fixed ball.

Proof. From Definition 3, (28) and noticing that ϕ is doubling, we have
∫

Ω
ϕ

(|G(u)− (G(u))B0 |
)

dm ≤ C1 sup
B⊂Ω

∫

B
ϕ (|G(u)− (G(u))B|)dm

≤ C1 sup
B⊂Ω

(
C2

∫

σB
ϕ (|du|)dm

)

≤ C1 sup
B⊂Ω

(
C2

∫

Ω
ϕ (|du|)dm

)

≤ C3

∫

Ω
ϕ (|du|)dm. (42)

We have completed the proof of Theorem 6.

Similar to the local case, the following global Poincaré inequality with the Orlicz
norm

‖G(u)− (G(u))B0‖ϕ(Ω) ≤C‖du‖ϕ(Ω) (43)

holds if all conditions in Theorem 6 are satisfied.
Choosing ϕ(t) = t p logα

+ t in Theorem 6, we obtain the following Poincaré
inequalities with the Lp(logα

+ L)-norms.

Corollary 1. Let ϕ(t) = t p logα
+ t, 1 ≤ p1 < p < p2 and α ∈ IR and Ω be a bounded

Lϕ(m)-averaging domain and p2(n − p1) < np1. Assume that u ∈ D′(Ω ,∧0) and
ϕ(|du|) ∈ L1(Ω ,m). Then, there exists a constant C, independent of u, such that
∫

Ω
|G(u)− (G(u))B0 |p logα

+

(|G(u)− (G(u))B0 |
)

dm ≤C
∫

Ω
|du|p logα

+ (|du|)dm,

(44)
where B0 ⊂ Ω is some fixed ball.

Note that (43) can be written as the following version with the Luxemburg norm

‖G(u)− (G(u))B0‖Lp(logα
+ L)(Ω) ≤C‖du‖Lp(logα

+ L)(Ω)

provided the conditions in Corollary 1 are satisfied.
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Remark (i) If u is a differential function (0-form) in a domain Ω ⊂ IRn, (1) for
differential forms reduces to

divA(x,∇u) = B(x,∇u), x ∈ Ω (45)

which is called the nonhomogeneous A-harmonic equation for functions. If the
operator B = 0, (45) becomes

divA(x,∇u) = 0, x ∈ Ω (46)

which is called the homogeneous A-harmonic equation for functions. In the case that
the operator A(x,ξ ) = ξ |ξ |p−2 in (46) with p > 1, the homogeneous A-harmonic
equation (46) reduces to the usual p-harmonic equation for functions

div(∇u|∇u|p−2) = 0. (47)

Let p = 2 in (47), we obtain the Laplace equation Δu = 0 for functions in Ω ⊂ IRn.
Hence, each of Eqs. (45)–(47) and the equation Δu = 0 is the special case of the
nonhomogeneous A-harmonic equation (1). All results obtained in this paper are still
true for solutions of (45)–(47), that is, each theorem proved in this paper holds for
A-harmonic functions and p-harmonic functions. Especially, in Sect. 4, u does not
need to be a solution of any version of the A-harmonic equations. (ii) When dealing
with the integral of the vector field F = ∇ f , we will face the singular integral if
the potential function f contains a singular factor, such as the potential energy in
physics. We believe that the Poincaré-type inequalities with singular factors will
find more applications in many fields in mathematics and physics.
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The Robustness Concern in Preference
Disaggregation Approaches for Decision Aiding:
An Overview

Michael Doumpos and Constantin Zopounidis

1 Introduction

Managers, analysts, policy makers, and regulators are often facing multiple
technical, socio-economic, and environmental objectives, goals, criteria, and con-
straints, in a complex and ill-structured decision-making framework, encountered in
all aspects of the daily operation of firms, organizations, and public entities. Coping
with such a diverse and conflicting set of decision factors poses a significant burden
to the decision process when ad hoc empirical procedures are employed.

Multiple criteria decision aid (MCDA) has evolved into a major discipline in
operations research/management science, which is well-suited for problem struc-
turing, modeling, and analysis in this context. MCDA provides a wide arsenal of
methodologies and techniques that enable the systematic treatment of decision prob-
lems under multiple criteria, in a rigorous yet flexible manner, taking into consider-
ation the expertise, preferences, and judgment policy of the decision makers (DMs)
involved. The MCDA framework is applicable in a wide range of different types
of decision problems, including deterministic and stochastic problems, static and
dynamic problems, as well as in situations that require the consideration of fuzzy
and qualitative data of either small or large scale, by a single DM or a group of
DMs. A comprehensive overview of the recent advances in the theory and practice
of MCDA can be found in the book of Zopounidis and Pardalos [68].
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Similarly to other OR and management science modeling approaches, MCDA
techniques are also based on assumptions and estimates on the characteristics of the
problem, the aggregation of the decision criteria, and the preferential system of the
DM. Naturally, such assumptions and estimates incorporate uncertainties, fuzziness,
and errors, which affect the results and recommendations provided to the DM. As a
result, changes in the decision context, the available data, or a reconsideration of the
decision criteria and the goals of the analysis, may ultimately require a very different
modeling approach leading to completely different outputs. Thus, even if the results
may be judged satisfactory when modeling and analyzing the problem, their actual
implementation in practice often leads to new challenges not taken previously into
consideration.

In this context, robustness analysis has emerged as a major research issue in
MCDA. Robustness analysis seeks to address the above issues through the introduc-
tion of a new modeling paradigm based on the idea that the multicriteria problem
structuring and criteria aggregation process should not be considered in the context
of a well-defined, strict set of conditions, assumptions, and estimates, but rather to
seek to provide satisfactory outcomes even in cases where the decision context is
altered.

Vincke [61] emphasized that robustness should not be considered in the restric-
tive framework of stochastic analysis (see also [34] for a discussion in the context of
discrete optimization) and distinguished between robust solutions and robust meth-
ods. He further argued that although robustness is an appealing property, it is not a
sufficient condition to judge the quality of a method or a solution. Roy [45], on the
other hand, introduced the term robustness concern to emphasize that robustness is
taken into consideration a priori rather than a posteriori (as is the case of sensitivity
analysis). In the framework of Roy, the robustness concern is raised by vague ap-
proximations and zones of ignorance that cause the formal representation of a prob-
lem to diverge from the real-life context, due to: (1) the way imperfect knowledge
is treated, (2) the inappropriate preferential interpretation of certain types of data
(e.g., transformations of qualitative attributes), (3) the use of modeling parameters
to grasp complex aspects of reality, and (4) the introduction of technical parameters
with no concrete meaning. An recent example of robustness in the context of multi-
objective linear programming can be found in Georgiev et al. [18]. The framework
for robust decision aid has some differences compared to the traditional approach
to robustness often encounter in other OR areas. A discussion of these differences
(and similarities) can be found in Hites et al. [28].

The robustness concern is particularly important in the context of the preference
disaggregation approach of MCDA, which is involved with the inference of pref-
erential information and decision models from data. Disaggregation techniques are
widely used to facilitate the construction of multicriteria evaluation models, based
on simple information that can the DM can provide [30], without requiring the
specification of complex parameters whose concept is not clearly understood by
the DMs. In this chapter we provide an overview of the robustness concern in the
preference disaggregation context, covering the issues and factors that affect the
robustness of disaggregation methods, the approaches that have been proposed to
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deal with robustness in this area, and the existing connections with concepts and
methodologies from the area of statistical learning.

The rest of the chapter is organized as follows. Section 2 presents the context
of preference disaggregation analysis (PDA) with examples from ordinal regression
and classification problems. Section 3 discusses the concept of robustness in dis-
aggregation methods and some factors that affect it, whereas Sect. 4 overviews the
different approaches that have been proposed to obtain robust recommendations and
models in PDA. Section 5 presents the statistical learning perspective and discusses
its connections to the MCDA disaggregation framework. Finally, Sect. 6 concludes
the chapter and proposes some future research directions.

2 Preference Disaggregation Analysis

2.1 General Framework

A wide class of MCDA problems requires the evaluation of a discrete set of alter-
natives (i.e., ways of actions, options) X = {x1,x2, . . .} described on the basis of
n evaluation criteria. The DM may be interested in choosing the best alternatives,
ranking the alternatives from the best to the worst, or classifying them into prede-
fined performance categories.

In this context, the construction of an evaluation model that aggregates the per-
formance criteria and provides recommendations in one of the above forms, requires
some preferential information by the DM (e.g., the relative importance of the cri-
teria). This information can be specified either through interactive, structured com-
munication sessions between the analyst and the DM or it can be inferred from a
sample of representative decision examples provided by the DM. PDA adopts the
latter approach, which is very convenient in situations where, due to cognitive or
time limitations, the DM is unwilling or unable to provide the analyst with spe-
cific information on a number of technical parameters (which are often difficult to
understand) required to formulate the evaluation model.

PDA provides a general methodological framework for the development of mul-
ticriteria evaluation models using examples of decisions taken by a DM (or a group
of DMs), so that DM’s system of preferences is represented in the models as ac-
curately as possible. The main input used in this process is a reference set of al-
ternatives evaluated by the DM (decision examples). The reference set may consist
of past decisions, a subset of the alternatives under consideration, or a set of fic-
titious alternatives which can be easily judged by the DM [30]. Depending on the
decision problematic, the evaluation of the reference alternatives may be expressed
by defining an order structure (total, weak, partial, etc.) or by classifying them into
appropriate classes.

Formally, let D(X ′) denote the DM’s evaluation of a set X ′ consisting of m refer-
ence alternatives described over n criteria (the description of alternative i on criterion
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k will henceforth be denoted by xik). The DM’s evaluation is assumed to be based
(implicitly) on a decision model fβ defined by some parameters β , which repre-
sent the actual preferential system of the DM. Different classes of models can be
considered. Typical examples include:

• Value functions defined such that V (xi)>V (x j) if alternative i is preferred over
alternative j and V (xi) =V (x j) in cases of indifference [33]. The parameters of a
value function model involve the criteria trade-offs and the form of the marginal
value functions.

• Outranking relations defined such that xi Sx j if alternative i is at least as good
as alternative j. The parameters of an outranking model may involve the weights
of the criteria, as well as preference, indifference, and veto thresholds, etc. (for
details see [44, 60]).

• “If . . . then . . . ” decision rules [19]. In this case the parameters of the model
involve the conditions and the conclusions associated to each rule.

The objective of PDA is to infer the “optimal” parameters β̂ ∗ that approximate,
as accurately as possible, the actual preferential system of the DM as represented in
the unknown set of parameters β , i.e.:

β̂ ∗ = arg min
β̂∈A

‖β̂ −β‖ (1)

where A is a set of feasible values for the parameters β̂ . With the obtained
parameters, the evaluations performed with the corresponding decision model fβ̂ ∗
will be consistent with the evaluations actually performed by the DM for any set of
alternatives.

Problem (1), however, cannot be solved explicitly because β is unknown. In-
stead, an empirical estimation approach is employed using the DM’s evaluation of
the reference alternatives to proxy β . Thus, the general form of the optimization
problem is expressed as follows:

β̂ ∗ = arg min
β̂∈A

L[D(X ′),D̂(X ′)] (2)

where D̂(X ′) denotes the recommendations of the model fβ̂ for the alternatives in

X ′ and L(·) is a function that measures the differences between D(X ′) and D̂(X ′).

2.2 Inferring Value Function Models for Ordinal Regression and
Classification Problems

The general framework of PDA is materialized in several MCDA methods that en-
able the development of decision models in different forms [14, 50, 67]. To facilitate
the exposition we shall focus on functional models expressed in the form of additive
value functions, which have been widely used in MCDA.
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A general multiattribute value function aggregates all the criteria into an overall
performance index V (global value) defined such that:

V (xi)>V (x j)⇔ xi $ x j

V (xi) =V (x j)⇔ xi ∼ x j
(3)

where $ and ∼ denote the preference and indifference relations, respectively.
A value function may be expressed in different forms, depending on the criteria
independence conditions [33]. Due to its simplicity, the most widely used form of
value function is the additive one:

V (xi) =
n

∑
k=1

wkvk(xik) (4)

where wk is the (nonnegative) trade-off constant of criterion k (the trade-offs are
often normalized to sum up to one) and vk(·) is the marginal value functions of the
criterion, usually scaled such that vk(xk∗) = 0 and vk(x∗k) = 1, where xk∗ and x∗k are
the least and the most preferred levels of criterion k, respectively.

Such a model can be used to rank a set of alternatives or to classify them in pre-
defined groups. In the ranking case, the relationships (3) provide a straightforward
way to compare the alternatives. In the classification case, the simplest approach is
to define an ordinal set of groups G1,G2, . . . ,Gq on the value scale with the follow-
ing rule:

t� <V (xi)< t�−1 ⇔ xi ∈ G� (5)

where t1 > t2 · · · > tq−1 are thresholds that distinguish the groups. Alternative clas-
sification rules can also be employed such as the example-based approach of Greco
et al. [21] or the hierarchical model of Zopounidis and Doumpos [66].

The construction of a value function from a set of reference examples can be per-
formed with mathematical programming formulations. For example, in an ordinal
regression setting, the DM’s defines a weak-order of the alternatives in the reference
set, by ranking them from the best (alternative x1) to the worst one (alternative xm).
Then, the general form of the optimization problem for inferring a decision model
from the data can be expressed as in the case of the UTA method [29] as follows:

min σ1 +σ2 + · · ·+σm

s.t.
n

∑
k=1

wk[vk(xik)− vk(xi+1,k)]+σi −σi+1 ≥ δ ∀xi $ xi+1

n

∑
k=1

wk[vk(xik)− vk(xi+1,k)]+σi −σi+1 = 0 ∀xi ∼ xi+1

w1 +w2 + · · ·+wn = 1

vk(xik)− vk(x jk)≥ 0 ∀xik ≥ x jk

vk(xk∗) = 0, vk(x
∗
k) = 1 k = 1, . . . ,n

wk, vk(xik), σi ≥ 0, ∀ i,k

(6)
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where x∗ = (x∗1, . . . ,x
∗
n) and x∗ = (x1∗, . . . ,xn∗) represent the ideal and anti-ideal

alternatives, respectively. The solution of this optimization problem provides a value
function that reproduces the DM’s ranking of the reference alternatives as accu-
rately as possible. The differences between the model’s recommendations and the
DM’s weak-order are measured by the error variables σ1, . . . ,σm, which are defined
through the first two constraints (with δ being a small positive constant). The third
constraint normalizes the trade-off constants, whereas the fourth constraint ensures
that the marginal value functions and non-decreasing (assuming that the criteria are
expressed in maximization form).

For classification problems, the optimization formulation for inferring a classifi-
cation model from the reference examples using the threshold-based rule (5) can be
expressed as follows:

min
q

∑
�=1

1
m�

∑
xi∈G�

(σ+
i +σ−

i )

s.t.
n

∑
k=1

wkvk(xik)+σ+
i ≥ t�+δ ∀xi ∈ G�, �= 1, . . . ,q−1

n

∑
k=1

wkvk(xik)−σ−
i ≤ t�−δ ∀xi ∈ G�, �= 2, . . . ,q

t�− t�+1 ≥ ε �= 1, . . . ,q−2

w1 +w2 + · · ·+wn = 1

vk(xik)− vk(x jk)≥ 0 ∀xik ≥ x jk

vk(xk∗) = 0, vk(x
∗
k) = 1 k = 1, . . . ,n

wk, σ+
i , σ−

i ≥ 0 ∀ i, k

(7)

The objective function minimizes the total weighted classification error, where the
weights are defined on the basis of the number of reference alternatives from each
class (m1, . . . ,mq). The error variables σ+ and σ− are defined through the first two
constraints as the magnitude of the violations of the classification rules, whereas the
third constraint ensures that the class thresholds are non-increasing (with ε being a
small positive constant).

For the case of an additive value function, the above optimization problems can
be re-expressed in linear programming form with a piecewise linear modeling of the
marginal values function (see for example [29]).

3 Robustness in Preference Disaggregation Approaches

The quality of models resulting from disaggregation techniques is usually described
in terms of their accuracy, which can be defined as the level of agreement be-
tween the DM’s evaluations and the outputs of the inferred model. For instance,
in ordinal regression problems rank correlation coefficients (e.g., the Kendall’s τ
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or Spearman’s ρ) can be used for this purpose, whereas in classification problems
the classification accuracy rate and the area under the receiver operating charac-
teristic curve are commonly used measures. Except for accuracy-related measures,
however, the robustness of the inferred model is also a crucial feature. Recent ex-
perimental studies have shown that robustness and accuracy are closely related [59].
However, accuracy measurements are done ex-post and rely on the use of additional
test data, while robustness is taken into consideration ex-ante, thus making it an im-
portant issue that is taken into consideration before a decision model is actually put
into practical use.

The robustness concern in the context of PDA arises because in most cases mul-
tiple alternative decision models can be inferred in accordance with the information
embodied in the set of reference decision examples that a DM provides. This is
particularly true for reference sets that do not contain inconsistencies, but it is also
relevant when inconsistencies do exist (in the PDA context, inconsistencies are usu-
ally resolved algorithmically or interactively with the DM before the final model
is built; see for instance [41]). With a consistent reference set, the error variables
in formulations (6)–(7) become equal to zero and consequently these optimization
models reduce to a set of feasible linear constraints. Each solution satisfying these
constraints corresponds to a different decision model and even though all the cor-
responding feasible decision models provide the same outputs for the reference set,
their recommendations can differ significantly when the models are used to perform
evaluations for other alternatives.

For instance, consider the example data of Table 1 for a classification problem
where a DM classified six references alternatives in two categories, under three
evaluation criteria. Assuming a linear weighted average model of the form V (xi) =
w1xi1+w2xi2+w3xi3, with w1+w2+w3 = 1 and w1,w2,w3 ≥ 0, the model would be
consistent with the classification of the alternatives if V (xi)≥ V (x j)+δ for all i =
1,2,3 and j = 4,5,6, where δ is a small positive constant (e.g., δ = 0.01). Figure 1
illustrates graphically the set of values for the criteria trade-offs that comply with
the classification of the reference alternatives (the shaded area defined by the corner
points A–E). It is evident that very different trade-offs provide the same results
for the reference data. For example, the trade-off w1 of the first criterion may vary
anywhere from zero to one, whereas w2 may vary from zero up to 0.7.

The size of the polyhedron defined by a set of feasible constraints of formulations
such as (6) and (7) depends on a number of factors, but the two most important can
be identified to be the adequacy of set of reference examples and the complexity
of the selected decision modeling form. The former is immediately related to the
quality of the information on which model inference is based. Vetschera et al. [59]
performed an experimental analysis to investigate how the size of the reference set
affects the robustness and accuracy of the resulting multicriteria models in classifi-
cation problems. They found that small reference sets (e.g., with a limited number of
alternatives with respect to the number of criteria) lead to decision models that are
neither robustness nor accurate. Expect for its size other characteristics of the refer-
ence set are also relevant. These may involve the existence of noisy data, outliers,
the existence of correlated criteria, etc. [12].
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Table 1 An illustrative classification problem

Criteria

Alternatives x1 x2 x3 Classification

x1 7 1 8 G1

x2 4 5 8 G1

x3 10 4 2 G1

x4 2 4 1 G2

x5 4 1 1 G2

x6 1 2 5 G2
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Fig. 1 The feasible set for the criteria trade-offs that are compatible with the classi-
fication of the example data of Table 1

The complexity of the inferred decision model is also an issue that is related
to its robustness. Simpler models (e.g., a linear value function) are more robust
compared to more complex nonlinear models. The latter are defined by a larger
number of parameters and as a result the inference procedure becomes less robust
and more sensitive to the available data. For instance, Fig. 2 illustrates a two-class
classification problem with two criteria (which correspond to the axes of the figure).
The linear classification model (green line) is robust; with the available data only
marginal changes can be made in this model (separating line) without affecting its
classification results for the data shown in the figure. On the other hand, a nonlinear
model (blue line) is not robust, particularly in the areas where the data are sparse
(i.e., the upper left and lower right parts of the graph). Therefore, care should be
given to the selection of the appropriate modeling taking into account both the DM’s
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Fig. 2 A linear vs a nonlinear classification model

system of preferences as well as the available data. This issue has been studied
extensively in areas such as the statistical learning theory [47, 56, 57].

4 Robust Disaggregation Approaches

The research in the area of building robust multicriteria decision models and obtain-
ing robust recommendations with disaggregation techniques can be classified into
three main directions. The first involves approaches that focus on describing the
set of feasible decision models with analytic or simulation techniques. The second
direction focuses on procedures for formulating robust recommendations through
multiple acceptable decision models, whereas a third line of research has focused
on techniques for selecting the most characteristic (representative) model from the
set of all models compatible with the information provided by the reference set. The
following subsections discuss these approaches in more detail.

4.1 Describing the Set of Acceptable Decision Models

The DM’s evaluations for the reference alternatives provide information on the set
of acceptable decision models that comply with these evaluations. Searching for
different solutions within this feasible set and measuring its size provides useful in-
formation on the robustness of the results. Analytic and simulation-based techniques
have been used for this purpose, focusing on convex polyhedral sets for which
the analysis is computationally feasible. As explained in the previous section, for
decision models which are linear with respect to their parameters (such as additive
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value functions) the set of acceptable decision models is a convex polyhedron. The
same applies to the other types of decision models with some simplifications on the
parameters that are inferred (see, for example, [40]).

Jacquet-Lagrèze and Siskos [29] were the first to emphasize that the inference of
a decision model through optimization formulations such as the ones described in
Sect. 2.2 may not be robust thus suggesting that the existence of multiple optimal
solutions (or even alternative near-optimal ones in the cases of inconsistent refer-
ence sets) should be carefully explored. The approach they suggested was based
on a heuristic post-optimality procedure seeking to identify some characteristic
alternative models corresponding to corner points of the feasible polyhedron. In the
context of inferring an ordinal regression decision model, this approach is imple-
mented in two phases. First, problem (6) is solved and its optimal objective function
value F∗ (total sum of errors) is recorded. In the second phase, 2n additional opti-
mization problems are solved by maximizing and minimizing the trade-offs of the
criteria (one at a time), while ensuring that the new solutions do not yield an overall
error larger than F∗(1+α), where α is a small percentage of F∗. While this heuris-
tic approach does not fully describe the polyhedron that defines the parameters of
the decision model, it does give an indication of how much the relative importance
of the criteria deviates within the polyhedron. Based on this approach, Grigoroudis
and Siskos [24] developed a measure to assess the stability and robustness of the
inferred model as the normalized standard deviation of the results obtained from the
post-optimality analysis.

Despite their simplicity, post-optimality techniques provide only a limited partial
view of the complete set of models that are compatible with the DM’s preferences.
A more thorough analysis requires the implementation of computationally intensive
analytic or simulation approaches. Following the former direction, Vetschera [58]
developed a recursive algorithm for computing the volume of the polyhedron that is
derived from preferential constraints in the case of a linear evaluation model, but the
algorithm was applicable to rather small problems (e.g., up to 20 alternatives and 6
criteria). Similar, but computationally more efficient algorithms, are available in the
area of computational geometry, but they have not yet been employed in the context
of MCDA. For instance, Lovász and Vempala [38] presented a fast algorithm for
computing the volume of a convex polyhedron, which combines simulated anneal-
ing with multi-phase Monte Carlo sampling.

The computational difficulties of analytic techniques have led to the adoption of
simulation approaches, which have gained much interest in the context of robust
decision aiding. Originally used for sensitivity analysis [7] and decision aiding in
stochastic environments [37], simulation techniques have been recently employed to
facilitate the formulation of robust recommendations under different decision mod-
eling forms. For instance, Tervonen et al. [52] used such an approach in order to
formulate robust recommendations with the ELECTRE TRI multicriteria classifica-
tion method [16], whereas Kadziński and Tervonen [31, 32] used a simulation-based
approach to enhance the results of robust analytic techniques obtained with additive
value models in the context of ranking and classification problems.
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Simulation-based techniques were first based on rejection sampling schemes. Re-
jection sampling is a naı̈ve approach under which a random model is constructed
(usually from a uniform distribution [46]) and tested against the DM’s evaluations
for the reference alternatives. The model is accepted only if it is compatible with
the DM’s evaluations and rejected otherwise. However, the rejection rate increases
rapidly with the dimensionality of the polyhedron (as defined by the number of
the model’s parameters). As a result the sampling of feasible solutions becomes in-
tractable for problems of realistic complexity. Hit-and-run algorithms [35, 53] are
particularly useful in reducing the computational burden, thus enabling the efficient
sampling from high-dimensional convex regions.

4.2 Robust Decision Aid with a Set of Decision Models

Instead of focusing on the identification of different evaluation models that can be
inferred from a set of reference decision examples through heuristic, analytic, or
simulation approaches, a second line of research has been concerned with how
robust recommendations can be formulated by aggregating the outputs of differ-
ent models and exploiting the full information embodied in a given set of decision
instances.

Siskos [49] first introduced the idea of building preference relations based on
a set of decision models inferred with a preference disaggregation approach for
ordinal regression problems. In particular, he presented the construction of a fuzzy
preference relation based on the results of a post-optimality procedure. The fuzzy
preference relation allows the evaluation of the alternatives through the aggregation
of the outputs of multiple characteristic models (additive value functions) inferred
from a set of decision instances.

Recently, this idea has been further extended to consider not only a subset of ac-
ceptable models but all models that can be inferred from a given reference set (with-
out actually identifying them). Following this approach and in an ordinal regression
setting, Greco et al. [20] defined necessary and possible preference relations on the
basis of the DM’s evaluations on a set of reference alternatives, as follows:

• Weak necessary preference relation: xi �N x j if V (xi) ≥ V (x j) for all deci-
sion models V (·) compatible with the DM’s evaluations on a set of reference
alternatives.

• Weak possible preference relation: xi �P x j if V (xi) ≥ V (x j) for at least one
decision model V (·) compatible with the DM’s evaluations on a set of reference
alternatives.

From these basic relations preference, indifference, and incomparability relations
can be built allowing the global evaluation of any alternative using the full infor-
mation provided by the reference examples. The above relations can be checked
through the solution of simple optimization formulations, without actually requir-
ing the enumeration of all decision models that can be inferred from the reference
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examples. This approach was also used for multicriteria classification problems [21]
as well as for outranking models [10, 22] and nonadditive value models [1].

4.3 Selecting a Representative Decision Model

Having an analytic or simulation-based characterization of all compatible models
(e.g., with approaches such as the ones described in the previous subsections) pro-
vides the DM with a comprehensive view of the range of possible recommendations
that can be formed on the basis of a set of models implied from some decision ex-
amples. On the other hand, a single representative model is easier to use as it only
requires the DM to “plug-in” the data for any alternative into a functional, relational,
or symbolic model. Furthermore, the aggregation of all evaluation criteria in a single
decision model enables the DM to get insight into the role of the criteria and their
effect on the recommendations formulated through the model [23].

In the above context several approaches have been introduced to infer a single
decision model that best represents the information provided by a reference set of
alternatives. Traditional disaggregation techniques such as the family of the UTA
methods [50] use post-optimality techniques based on linear programming in order
to build a representative additive value function defined as an average solution of
some characteristic models compatible with the DM’s judgments, defined by maxi-
mizing and minimizing the criteria trade-offs. Such an averaging approach provides
a proxy of the center of the feasible region.

However, given that only a very few number of corner points are identified with
this heuristic post-optimality process (at most 2n corner points), it is clear that the
average solution is only a very rough “approximation” of the center of the polyhe-
dron. Furthermore, the optimizations performed during the post-optimality analysis
may not lead to unique results. For instance, consider again the classification ex-
ample discussed in Sect. 3 and its graphical illustration in Fig. 1 for the feasible set
for the criteria trade-offs which are compatible with the DM’s classification of the
reference alternatives (Table 1). The maximization of the trade-off constant w1 leads
to corner point C, the maximization of w2 leads to point A, whereas the maximiza-
tion of w3 (which corresponds to the minimization of w1 +w2) leads to point D.
However, the minimization of the two trade-offs does not lead to uniquely defined
solutions. For instance, the minimization of w1 may lead to point A or point E, the
minimization of w2 leads either to C or D, and the minimization of w3 (i.e., the
maximization of w1 +w2) may lead to points B or C. Thus, depending on which
corner solutions are obtained, different average decision models can be constructed.
Table 2 lists the average criteria trade-offs corresponding to different centroid so-
lutions. It is evident that the results vary significantly depending on the obtained
post-optimality results.

A number of alternative approaches have been proposed to address the ambiguity
in the results of the above post-optimality process. Beuthe and Scannella [4] pre-
sented different post-optimality criteria in an ordinal regression setting to improve
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Table 2 The post-optimality approach for constructing a centroid model within the
polyhedron of acceptable models for the data of Table 1

Post-optimality solutions

max w1 C C C C C C C C
min w1 E A E A E A E A
max w2 A A A A A A A A
min w2 D D C C D D C C

max w3 (min w1 +w2) D D D D D D D D
min w3 (max w1 +w2) B B B B C C C C

Centroid solutions

w1 0.31 0.31 0.44 0.44 0.42 0.42 0.54 0.54
w2 0.32 0.34 0.32 0.34 0.22 0.23 0.22 0.23
w3 0.37 0.35 0.24 0.23 0.37 0.35 0.24 0.23

the discriminatory power of the resulting evaluating model. Similar criteria were
also proposed by Doumpos and Zopounidis [12] for classification problems.

Alternative optimization formulations have also been introduced allowing the
construction of robust decision models without requiring the implementation of
post-optimality analyses. Following this direction, Doumpos and Zopounidis [13]
presented simple modifications of traditional optimization formulations (such as the
ones discussed in Sect. 2.2) on the grounds of the regularization principle which is
widely used in data mining and statistical learning [57]. Experimental results on ar-
tificial data showed that new formulations can provide improved results in ordinal
regression and classification problems. On the other hand, Bous et al. [5] proposed
a nonlinear optimization formulation for ordinal regression problems that enables
the construction of an evaluation model through the identification of the analytic
center of the polyhedron form by the DM’s evaluations on some reference decision
instances. Despite its nonlinear character, the proposed optimization model is easy
to solve with existing iterative algorithms. In a different framework, Greco et al.
[23] considered the construction of a representative model through an interactive
process, which is based on the grounds of preference relations inferred from the full
set of models compatible with the DM’s evaluations [20]. During the proposed in-
teractive process, different targets are formulated, which can be used by the DM as
criteria for specifying the most representative evaluation model.
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5 Connections with Statistical Learning

5.1 Principles of Data Mining and Statistical Learning

Similarly to disaggregation analysis, statistical learning and data mining are also
involved with learning from examples [25, 26]. Many advances have been made
within these fields for regression, classification, and clustering problems. Recently
there has been a growing interest among machine learning researchers towards pref-
erence modeling and decision-making. Some interest has also been developed by
MCDA researchers on exploiting the advances in machine learning.

Hand et al. [25] define data mining as “the analysis of (often large) observational
data sets to find unsuspected relationships and to summarize the data in novel ways
that are both understandable and useful to the data owner.” Statistical learning plays
an important role in the data mining process, by describing the theory that under-
lies the identification of such relationships and providing the necessary algorithmic
techniques. According to Vapnik [56, 57] the process of learning from examples
includes three main components:

1. A set X of data vectors x drawn independently from a probability distribution
P(x). This distribution is assumed to be unknown, thus implying that there is no
control on how the data are observed [51].

2. An output y from a set Y , which is defined for every input x according to an
unknown conditional distribution function P(y | x). This implies that the rela-
tionship between the input data and the outputs is unknown.

3. A learning method (machine), which is able to assign a function fβ : X → Y ,
where β are some parameters of the unknown function.

The best function fβ is the one that best approximates the actual outputs, i.e., the
one that minimizes: ∫

L[y, fβ (x)]dP(x,y) (8)

where L[y, fβ (x)] is a function of the differences between the actual output y and
the estimate fβ (x),1 and P(x,y) = P(x)P(y | x) is the joint probability distribution
of x and y. However, this joint distribution is unknown and the only available infor-
mation is contained in a training set of m objects {(x1,y1), . . . ,(xm,ym)}, which are
assumed to be generated independently from this unknown distribution. Thus, the
objective (8) is substituted by an empirical risk estimate:

1
m

m

∑
i=1

L[yi, fβ (xi)] (9)

1 The specification of the loss function L depends on the problem under consideration. For instance,
in a regression setting it may correspond to the mean squared error, whereas in a classification
context it may represent the accuracy rate.
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For a class of functions fβ of a given complexity, the minimization of (9) leads
to the minimization of an upper bound for (8).

A comparison of (2) and (9) shows that PDA and statistical learning are con-
cerned with similar problems from different perspectives and focus (for a discussion
of the similarities and differences of the two fields see [14, 62]).

5.2 Regularization and Robustness in Learning Machines

In the context of data mining and statistical learning, robustness is a topic of fun-
damental importance and is directly linked to the theory in these fields. Robustness
in this case has a slightly different interpretation compared to its use in MCDA.
In particular, from a data mining/statistical learning perspective robustness involves
the ability of a prediction model (or learning algorithm) to retain its structure and
provide accurate results in cases where the learning process is based on data that
contain imperfections (i.e., errors, outliers, noise, missing data, etc.). Given that the
robustness of a prediction model is related to its complexity, statistical learning has
been founded on a rigorous theoretical framework that connects robustness, com-
plexity, and the empirical risk minimization approach.

The foundations of this theoretical framework are based on Tikhonov’s regu-
larization principle [54], which involves systems of linear equations of the form
Ax = b. When the problem is ill-posed, such a system of equations may not have
a solution and the inverse of matrix A may exhibit instabilities (i.e., A may be
singular or ill-conditioned). In such cases, a numerically robust solution can be
obtained through the approximate system Ax ≈ b, such that the following function
is minimized:

‖Ax−b‖2 +λ‖x‖2 (10)

where λ > 0 is a regularization parameter that defines the trade-off between the
error term ‖Ax− b‖2 and the “size” of the solution (thus controlling the solution
for changes in A and b).

With the introduction of statistical learning theory Vapnik [56] developed a gen-
eral framework that uses the above idea to relate the complexity and accuracy of
learning machines. In particular, Vapnik showed that under a binary loss function2,
the expected error E(β ) of a decision model defined by some parameters β , is
bounded (with probability 1−α) by:

E(β )≤ Eemp(β )+
√

h[log(2m/h)+1]− log(α/4)
m

(11)

where Eemp is the empirical error of the model as defined by Eq. (9) and h is the
Vapnik–Chervonenkis dimension, which represents the complexity of the model.

2 Although this is not a restricted assumption, as the theory is general enough to accommodate
other loss functions as well.
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When the size of the training data set in relation to the complexity of the model is
large (i.e., when m/h � 1), then the second term in the left-hand side of (11) de-
creases and the expected error is mainly defined by the empirical error. On the other
hand, when m/h � 1 (i.e., the number of training observations is too low compared
to the model’s complexity), then the second term increases and thus becomes rele-
vant for the expected error of the model.

This fundamental result constitutes the basis for developing decision and predic-
tion models in classification, regression, and clustering tasks. For instance, assume
a binary classification setting where a linear model f (x) = wx − γ should be de-
veloped to distinguish between a set of positive and negative observations. In this
context, it can be shown that if the data belong in a ball of radius R, the complex-
ity parameter h of a model with ‖w‖ ≤ L (for some L > 0) is bounded as follows
[56, 57]:

h ≤ min{L2R2, n}+1 (12)

Thus, with a training set consisting of m positive and negative observations (y = 1
and yi =−1, respectively), the optimal model that minimizes the expected error can
be obtained from the solution of the following convex quadratic program:

min
1
2
‖w‖2 +C

m

∑
i=1

σi

s.t. yi(wxi − γ)+σi ≥ 1 ∀ i = 1, . . . ,m

σi ≥ 0 ∀ i = 1, . . . ,m

w, γ ∈ R

(13)

The objective function of this problem is in accordance with the Tikhonov regu-
larization function (10). In particular, the sum of classification errors σ1, . . . ,σm is
used as a substitute for the error term ‖Ax−b‖2 in (10), whereas the regularization
parameter λ in (10) is set equal to 0.5/C. The minimization of ‖w‖2 in the objective
function of the above problem corresponds to the minimization of the complexity
bound (12), which in turn leads to the minimization of the second term in the error
bound (11). On the other hand, the minimization of the sum of the classification
errors corresponds to the minimization of the empirical error Eemp.

This framework is not restricted to linear models, but it also extends to nonlin-
ear models of arbitrary complexity and it is applicable to multi-class problems [6],
regression problems [9, 39], and clustering problems [2]. Similar, principles and ap-
proaches have also been used for other types of data mining models such as neural
networks [17].

The development of data mining and statistical learning models with optimiza-
tion with mathematical programming techniques has received much attention [43].
In this context, robust model building has been considered from the perspective of
robust optimization. Bertsimas et al. [3] expressed a robust optimization model in
the following general form:
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min f (x)

s.t. gi(x, ui)≤ 0 ∀ui ∈ Ui, i = 1, . . . ,m

x ∈ R

(14)

where x is the vector of decision variables, ui ∈ R
k are perturbation vectors associ-

ated with the uncertainty in the parameters that define the constraints, and Ui ⊆ R
k

are uncertainty sets in which the perturbations are defined (for an overview of the
theory and applications of robust optimization in design problems see [36]). For
instance, a robust linear program can be expressed as follows:

min c%x

s.t. a%
i x ≤ bi ∀ai ∈ Ui, i = 1, . . . ,m

x ∈ R

(15)

where the coefficients of the decision variables in the constraints take values from
the uncertainty sets Ui ⊆R

n. Thus, a constraint a%
i x ≤ bi is satisfied for every ai ∈Ui

if and only if maxai∈Ui{a%
i x} ≤ bi.

The framework of robust optimization has been used to develop robust decision
and prediction models in the context of statistical learning. For instance, assuming
that the data for observation i are subject to perturbations defined by a stochastic
vector δi from some distribution, bounded such that ‖δi‖2 ≤ ηi, the constraints of
problem (13) can be re-written as:

yi[w(xi +δi)− γ ]+σi ≥ 1 (16)

Such methodologies for developing robust learning machines have been presented
in several works (see, for instance, [48, 55, 63, 65]). Caramanis et al. [8] as well
as Xu and Mannor [64] provide comprehensive overviews of robust optimization in
the context of statistical learning and data mining.

5.3 Applications in MCDA Disaggregation Approaches

The principles and methodologies available in the areas of data mining and statis-
tical/machine learning have recently attracted interest for the development of en-
hanced approaches in MCDA. In this context, Herbrich et al. [27] explored how
the modeling approach described in the previous section can be used to develop
value function models in ordinal regression problems and analyzed the generaliza-
tion ability of such models in relation to the value differences between alternatives
in consecutive ranks.

Evgeniou et al. [15] also examined the use of the statistical learning paradigm in
an ordinal regression setting. They showed that the development of a linear value
function model of the form V (x) = wx that minimizes ‖w‖2 leads to robust results,
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as the obtained model corresponds to the center of the largest sphere that can be
inscribed by preferential constraints of the form w(xi −x j)≥ 1 for pairs of alterna-
tives such that xi $ x j.

Doumpos and Zopounidis [13] followed a similar approach for the development
of additive functions using the L1 norm for the vector of parameters. Thus, they
augmented the objective function of problems (6)–(7) considering not only the error
variables, but also the complexity of the resulting value function. Through this ap-
proach, they described the relationship between the accuracy of the decision model
and the quality of the information provided by the reference data. Empirical anal-
yses on ranking and classification problems showed that the new formulations pro-
vide results that best describe the DM’s preferences, are more robust to changes of
the reference data, and have higher generalization performance compared to exist-
ing PDA approaches. A similar approach for constructing additive value functions
was also proposed by Dembczynski et al. [11] who combined a statistical learning
algorithm with a decision rule approach for classification problems.

Except for functional decision models, similar approaches have also been used
for relational models, which are based on pairwise comparisons between the alter-
natives. For instance, Waegeman et al. [62] used a kernel approach for constructed
outranking decision models and showed that such an approach is general enough to
accommodate (as special cases) a large class of different types of decision models,
including value functions and the Choquet integral. Pahikkala et al. [42] extended
this approach to intransitive decision models.

6 Conclusions and Future Perspectives

PDA techniques greatly facilitate the development of multicriteria decision aiding
models, requiring the DM to provide minimal information without asking for the
specification of complex technical parameters which are often not well-understood
by DMs in practice. However, using such a limited amount of data should be done
with care in order to derive meaningful and really useful results.

Robustness is an important issue in this context. Addressing the robustness con-
cern enables the formulation of recommendations and results that are valid under
different conditions with respect to the modeling conditions and the available data.
In this chapter we discussed the main aspects of robustness in PDA techniques and
provided an up-to-date overview of the different lines of research and the related
advances that have been introduced in this area. We also discussed the statistical
learning perspective for developing robust and accurate decision models, which has
adopted a different point of view in the analysis of robustness compared to MCDA.

Despite their different philosophies, PDA and statistical learning share common
features and their connections could provide further improved approaches to robust
decision aiding. Future research should also focus on the further theoretical and em-
pirical analysis of the robustness properties of PDA formulations, the introduction
of meaningful measures for assessing robustness, and the development of method-
ologies to improve the robustness of models and solutions in decision aid.
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16. Figueira, J.R., Greco, S., Roy, B., Słowiński, R.: ELECTRE methods: main features and recent
developments. In: Zopounidis, C., Pardalos, P.M. (eds.) Handbook of Multicriteria Analysis,
pp. 51–89. Springer, New York (2010)

17. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma.
Neural Comput. 4(1), 1–58 (1992)

18. Georgiev, P.G., The Luc, D., Pardalos, P.M.: Robust aspects of solutions in deterministic
multiple objective linear programming. Eur. J. Oper. Res. 229(1), 29–36 (2013)
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Separation of Finitely Many Convex Sets
and Data Pre-classification

Manlio Gaudioso, Jerzy Grzybowski, Diethard Pallaschke, and Ryszard Urbański

1 Introduction

Separation of sets has been for long time an interesting research area for
mathematicians. Basic concepts of classification theory are linear separability
of sets, separation margin, and kernel transformations. They have provided the
theoretical background in constructing powerful classification tools such as SVM
(Support Vector Machine) and extensions.

Starting from the pioneering works by Rosen [20] and Mangasarian [15, 16] and
under the impulse of Vapnik’s theory [25], many scientists from the Mathematical
Programming community have given in recent years valuable contributions. Accu-
rate presentations of the field can be found in the books by Cristianini and Shawe-
Taylor [6, 7] and by Schölkopf et al. [23].

More recent techniques based on non-smooth optimization have been studied by
Bagirov et al. [3, 4], Astorino and Gaudioso [1, 2], Demyanov et al. [8, 9], and
Rubinov [21].

A different approach to the separation of two sets was proposed by Grzybowski
et al. [11] and Astorino and Gaudioso [1] and Gaudioso et al. [10] which leads to
a non-smooth optimization problem. It is based on the method of separating two
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compact convex sets by an other one. In this paper we generalize these results to the
case of finitely many convex sets.

The paper is organized as follows. We begin with a survey on basic properties
of the family of bounded closed convex sets in a topological vector space. Then we
prove a separation theorem for closed bounded convex sets and present a generaliza-
tion of the Demyanov difference in locally convex vector spaces. Finally we show
an application of the separation theorem to data classification.

2 The Semigroup of Closed Bounded Convex Sets

For a Hausdorff topological vector space (X ,τ) let us denote by A(X) the set
of all nonempty subsets of X , by B∗(X) the set of all nonempty bounded sub-
sets of X , by C(X) the set of all nonempty closed convex subsets of X , by
B(X) = B∗(X) ∩ C(X) the set of all bounded closed convex sets of X , and by
K(X) the set of all nonempty compact convex subsets of X . (Note that we consider
only vector spaces over the reals). Recall that for A,B ∈A(X) the algebraic sum is
defined by A+B = {x = a+b | a ∈ A and b ∈ B}, and for λ ∈ R and A ∈ A(X)
the multiplication is defined by λA = {x = λa | a ∈ A}.

The Minkowski sum for A,B ∈A(X) is defined by

A �B = cl({x = a+b | a ∈ A and b ∈ B}),

where cl(A)= Ā denotes the closure of A⊂X with respect to τ . For compact convex
sets, the Minkowski sum coincides with the algebraic sum, i.e., for A,B ∈K(X) we
have A �B = A+B. In quasidifferential calculus of Demyanov and Rubinov [8]
pairs of bounded closed convex sets are considered. More precisely: For a Hausdorff
topological vector space X two pairs (A,B),(C,D) ∈ B2(X) = B(X)×B(X) are

called equivalent if B
·
+ C = A

·
+ D holds and [A,B] denotes the equivalence class

represented by the pair (A,B) ∈ B2(X). An ordering among equivalence classes is
given by [A,B] ≤ [C,D] if and only if A � D ⊂ B � C. This is the ordering on
the Minkowski–Rådström–Hörmander space and is independent of the choice of the
representatives.

For A ∈ B(X) we denote by ext(A) the set of its extreme points and by exp(A)
the set of its exposed points (see [18]). Next, for A,B ∈ A(X) we define: A∨B =
cl conv(A∪B), where conv(A∪B) denotes the convex hull of A∪B. We will use
the abbreviation A �B∨C for A � (B∨C) and C + d instead of C + {d} for all
bounded closed convex sets A,B,C ∈A(X) and a point d ∈ X .

A distributivity relation between the Minkowski sum and the maximum operation
is expressed by the Pinsker Formula (see [19]) which is stated in a more general
form in [18] as:
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Proposition 1. Let (X ,τ) be a Hausdorff topological vector space, A,B,C ∈ A(X)
and C be a convex set. Then

(A �C)∨ (B �C) =C � (A∨B).

The Minkowski–Rådström–Hörmander Theorem on the cancellation property for
bounded closed convex subsets in Hausdorff topological vector spaces states that
for A,B,C ∈ B(X) the inclusion A �B ⊆ B �C implies A ⊆ C. A generalization
which is due to Urbański [24] (see also [18]) states:

Theorem 1. Let X be a Hausdorff topological vector space. Then for any A ∈
A(X), B ∈B∗(X), and C ∈ C(X) the inclusion

A+B ⊆C �B implies A ⊆C. ( olc)

This implies that B(X) endowed with the Minkowski sum “ �” and the ordering
induced by inclusion is a commutative ordered semigroup (i.e., an ordered set en-
dowed with a group operation, without having inverse elements), which satisfies the
order cancellation law and contains K(X) as a sub-semigroup.

3 The Separation Law for Closed Bounded Convex Sets

The separation of two bounded closed convex sets by an other bounded closed set
is extensively explained in [18]. In this section we discuss this separation concept
more detailed and generalize it to the case of finitely many bounded closed convex
sets. We begin with a general principle for the separation concepts of sets.

3.1 The Separation Concept of Martinez-Legaz and Martinón

Although any separation concept for two sets is intuitively clear, this is not so ob-
vious for the separation of arbitrary finitely many sets. The following fundamental
principle for a separation concepts had been recently formulated by Martinez-Legaz
and Martinón in [17], namely

A subset S separates a finite family of nonempty subsets (Ai)i∈I if S separates the sets Ai

and A j for every i, j ∈ I with i �= j.

Now a general separation concept which satisfies this principle is given by a slight
modification of the definition of set separation as stated in [18, Defintion 4.5.1]:

Definition 1. Let X be a topological vector space, I a finite index set, and S,Ai ∈
B(X), i ∈ I. Then we say that the set S properly separates the sets Ai, i ∈ I if
and only if for every collection ai ∈ A, i ∈ I there exist real numbers 0 < αi with

∑
i∈I

αi = 1 and ∑
i∈I

αiai ∈ S.
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An obvious weakening of the proper separation concept leads to:

Definition 2. Let X be a topological vector space, I a finite index set, and S,Ai ∈
B(X), i ∈ I. We say that the set S separates the sets Ai, i ∈ I if and only if
(conv{ai | i ∈ I})∩S �= /0 for every collection ai ∈ A, i ∈ I (Fig. 1).

Fig. 1 Proper separation of two sets (left) and proper separation of three sets (right)

Now we prove that the concept of proper separation of sets satisfies the funda-
mental principle on set-separation of Martinez-Legaz and Martinón [17]:

Proposition 2. Let X be a topological vector space, I a finite index set, and S,Ai ∈
B(X), i ∈ I. If S properly separates the sets Ai and A j for every i, j ∈ I with i �= j,
then S properly separates the sets Ai, i ∈ I.

Proof. Let S,Ai ∈B(X), i ∈ I be given, where I consists of k elements and assume
that S properly separates all pairs of sets Ai and A j with i, j ∈ I and i �= j. Then
there exist for every ai ∈ Ai and a j ∈ A j real numbers αi j > 0 with zi j = αi jai +
(1−αi j)a j ∈ S. Put σ = 1

(k
2)

then the convex combination σ ∑
i, j∈I
i �= j

zi j ∈ S has only

nonzero coefficients, i.e., S properly separates the sets Ai, i ∈ I.

3.2 The Algebraic Separation Law

We will use the notation
∨

i∈I {ai} for conv{ai | i ∈ I} and write

k

∑
i=1

Ai = A1 �A2 � · · ·�Ak.

For the weaker concept of separation we have the following algebraic
characterization:
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Theorem 2. Let X be a topological vector space, I a finite index set, and S,Ai ∈
B(X), i ∈ I. Then S separates the sets Ai, i ∈ I if and only if

∑
i∈I

Ai ⊂
∨

i∈I

(

∑
k∈I\{i}

Ak

)

� S.

Proof. Necessity: Let ai ∈ Ai, i ∈ I be given. Then there exist αi ≥ 0, ∑
i∈I

αi = 1

such that ∑
i∈I

αiai ∈ S. Therefore,

∑
i∈I

ai = ∑
i∈I

(

∑
k∈I\{i}

αk

)

ai + ∑
i∈I

αiai

= ∑
i∈I

αi

(

∑
k∈I\{i}

ak

)

+ ∑
i∈I

αiai

∈
∨

i∈I

(

∑
k∈I\{i}

Ak

)

� S,

which proves the necessity.

Sufficiency: Now fix any ai ∈ Ai, i ∈ I. Then it follows from the assumption

∑
i∈I

Ai ⊂
∨

i∈I

(

∑
k∈I\{i}

Ak

)

� S

that for every i ∈ I

ai + ∑
k∈I\{i}

Ak ⊂
∨

i∈I

(

∑
k∈I\{i}

Ak

)

� S,

which means:

∑
k∈I\{i}

Ak ⊂
∨

i∈I

(

∑
k∈I\{i}

Ak

)

� (S−ai) , i ∈ I.

From the Pinsker rule we get:

∨

i∈I

(

∑
k∈I\{i}

Ak

)

⊂
∨

i∈I

[
∨

i∈I

(

∑
k∈I\{i}

Ak

)

� (S−ai)

]

=
∨

i∈I

(

∑
k∈I\{i}

Ak

)

�
∨

i∈I

(S−ai)

and gives by the order cancellation law that 0 ∈
∨

i∈I

(S−ai) .
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Now again by the Pinsker rule we get 0 ∈
∨

i∈I

(S−ai) = S �
∨

i∈I

{−ai} , which

implies that (conv{ai | i ∈ I})∩S �= /0.

Remark 1. For the sake of completeness, let us add the following two items:

• Parallel to the notation of separation the notation of shadowing is also used (see
[18, pp. 67 and 77]) to express the same property. Namely the physical interpre-
tation of the separation by sets is as follows: if the sets A,B,S are considered
as celestial and A shines, then S separates A and B if and only if B lies in the
shadow of S (see Fig. 2).

• In [12] the following equivalence is proved:
Let X be a topological vector space, I a finite index set, and S,Ai ∈ B(X), i ∈
I. Then S separates the sets Ai, i ∈ I if and only if infi∈I [Ai,0] ≤ [S,0] in the
sense of the ordering among equivalence classes in the Minkowski–Rådström–
Hörmander space.

sa

sa

a

0

S

Ca

B

Fig. 2 Illustration to Remark 1

4 The Demyanov Difference

Demyanov original subtraction A−̈B (see [22]) of compact convex subsets in finite
dimensional space is defined with the help of the Clarke subdifferential (see [5]) of
the difference of support functions, i.e.,

A−̈B = ∂ cl(pA − pB)
∣
∣
∣
0
,

where pA and pB are the support functions of A and B, i.e., pA(x) = max
a∈A

〈a,x〉
This can be equivalently formulated by

A−̈B = conv{a−b|a ∈ A,b ∈ B,a+b ∈ exp(A+B)},

where exp(A+B) are the exposed points of A+B. For the proof see [22] and note
that every exposed point of A+B is the unique sum of an exposed point of A with
an exposed point of B.
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To extend the definition of the difference A−̈B to locally convex vector spaces,
the set of exposed points will be replaced by the set of extremal points.

Definition 3. Let (X ,τ) be a locally convex vector space and K(X) the family of all
nonempty compact convex subsets of X . Then for A,B ∈K(X), the set

A−̈B = conv{a−b|a ∈ A,b ∈ B,a+b ∈ ext(A+B)} ∈K(X)

is called the Demyanov difference of A and B.

This is a canonical generalization of the above definition, because for every A,B ∈
K(X) every extremal point z ∈ ext(A+B) has a unique decomposition z= x+y into
the sum of two extreme points x ∈ ext(A) and y ∈ ext(B) (see [14, Proposition 1]).

Since in the finite dimensional case the exposed points are dense in the set of
extreme points of a compact convex set, this definition coincides with the original
definition of the Demyanov difference in finite dimensional spaces.

The Demyanov difference in finite dimensional spaces possesses many important
properties. Some of them hold also for its generalization (see [13]):

Proposition 3. Let X be a locally convex vector space and A,B,C ∈ K(X). The
Demyanov difference has the following properties:

(D1) If A = B+C, then C = A−̈B.
(D2) (A−̈B)+B ⊇ A.
(D3) If B ⊆ A, then 0 ∈ A−̈B.
(D4) (A−̈B) =−(B−̈A).
(D5) A−̈C ⊂ (A−̈B)+(B−̈C).

From property (D2) of the above proposition follows immediately:

Theorem 3. Let X be a locally convex vector space, I a finite index set, and S,Ai ∈
K(X), i ∈ I. Then the Demyanov difference

S =
(
∑
i∈I

Ai
) −̈

∨

i∈I

(
∑

k∈I\{i}
Ak

)

separates the sets Ai, i ∈ I.

Corollary 1. Let A1,A2, . . . ,Ak ∈ K(Rn) be given. Then for the Demyanov differ-
ence holds

( k

∑
i=1

Ai
) −̈

k∨

i=1

( k

∑
j=1
j �=i

A j
)
= ∂ clP

∣
∣
0,

where ∂ clP
∣
∣
0 is the Clarke subdifferential of P = min

{
pA1 , pA1 , . . . , pAk

}
, at 0 ∈R

n,
i.e., the minimum of the support functions of the sets Ai.
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Proof. This follows immediately from the definition of the Demyanov difference
for the finite dimensional case (see [22]) and the formula

(
k

∑
i=1

pA1

)

− max

⎧
⎪⎨

⎪⎩

k

∑
j=1
j �=i

pA1 | i ∈ {1, . . . ,k}

⎫
⎪⎬

⎪⎭
= min

{
pA1 , pA1 , . . . , pAk

}
,

which completes the proof.

5 Data Pre-classification

The separation law for finitely many convex sets gives a possibility to classify the
elements of A1,A2, . . . ,Ak ∈K(Rn) by (k+1) different types as:

• TYPE 1) −−−− the elements of the set Ai \S for i ∈ {1, ..,k},
• TYPE (k+1)) −−−− the set S∩

(
k⋃

i=1

Ai

)

,

where S ∈K(Rn) is a separating set for A1,A2, . . . ,Ak ∈K(Rn)
This is illustrated in Fig. 3 for k = 3 and n = 2.

Fig. 3 A separating rectangle S of minimal volume for the sets A1,A2, and A3
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Now, by the separation law S ∈ K(Rn) separates the set A1,A2, . . . ,Ak ∈ K(Rn)
if and only if

k

∑
i=1

Ai ⊂
k∨

i=1

⎛

⎜
⎝

k

∑
j=1
j �=i

A j

⎞

⎟
⎠ � S

holds, which is in finite dimension equivalent to

(
k

∑
i=1

pA1

)

− max

⎧
⎪⎨

⎪⎩

k

∑
j=1
j �=i

pA1 | i ∈ {1, . . . ,k}

⎫
⎪⎬

⎪⎭
≤ pS

and finally equivalent to

min
{

pA1 , pA1 , . . . , pAk

} ≤ pS. (∗)

For the case of polytopes, this gives a possibility of constructing separating sets
with the help of convex optimization problems, as for instance:

Let us assume that A1,A2, . . . ,Ak ∈K(Rn) are polytopes given by

Ar = conv
{

ar
1, . . . ,a

r
lr

}
,r ∈ {1, . . . ,k}

and that we are looking for a separating set of the form S = conv
{

s1, . . . ,sp
}
.

Since pAr(x) = max1≤ j≤lk〈ak
j,x〉, r ∈ {1, ..,k} and pS(x) = max1≤ j≤p〈s j,x〉 equa-

tion (∗) implies, that for every point x ∈ R
n the following inequality hold:

min
{

max
1≤ j≤l1

〈a1
j ,x〉, max

1≤ j≤l2
〈a2

j ,x〉, . . . , max
1≤ j≤lk

〈ak
j,x〉

}
≤ max

1≤ j≤p
〈s j,x〉

holds.
One way to construct a convex optimization problem consists in finding a suitable

finite point set T ⊂ R
n called a test set for the constraints. Then for the determina-

tion of a separating set S with minimal volume the following optimization problem
can be used:

min Vol(S) = Φ(s1, . . . ,sr)
under

min
{

max
1≤ j≤l1

〈a1
j ,x〉, max

1≤ j≤l2
〈a2

j ,x〉, . . . , max
1≤ j≤lk

〈ak
j,x〉

}
≤ max

1≤ j≤p
〈s j,x〉, x ∈ T.
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The Shortest Superstring Problem

Theodoros P. Gevezes and Leonidas S. Pitsoulis

An alphabet is a finite non-empty set whose elements are called letters. A string
is a sequence of letters. Given two strings si and s j, the second is a substring of the
first if si contains consecutive letters that match s j exactly. We say that si is a super-
string of s j. The Shortest (common) Superstring Problem (SSP) is a combinato-
rial optimization problem that consists in finding a shortest string which contains as
substrings all of the strings in a given set. The strings of the set may be overlapping
inside the superstring exploiting their common data.

1 Applications

The SSP has several important applications in various scientific domains and this is
the reason why it has attracted the interest of many researchers. In computational
molecular biology, the DNA sequencing procedure via fragment assembly can be
formulated as SSP. In virology, the SSP models the compression of viral genome.
In information technology, the SSP can be used to achieve data compression. In
scheduling, SSP solutions can be used to schedule operations in machines with
coordinated starting times. In the field of data structures, efficient storage can be
achieved in specific cases using the solutions of the SSP.

T.P. Gevezes (�) • L.S. Pitsoulis
Faculty of Engineering, School of Electrical and Computer Engineering, Aristotle University
of Thessaloniki, 54124 Thessaloniki, Greece
e-mail: theogev@gen.auth.gr; pitsouli@gen.auth.gr

T.M. Rassias et al. (eds.), Optimization in Science and Engineering: In Honor
of the 60th Birthday of Panos M. Pardalos, DOI 10.1007/978-1-4939-0808-0 10,
© Springer Science+Business Media New York 2014

189

mailto:theogev@gen.auth.gr
mailto:pitsouli@gen.auth.gr


190 T.P. Gevezes and L.S. Pitsoulis

1.1 DNA Sequencing

The molecule of the DNA encodes the genetic information used in the develop-
ing and functioning of living beings. DNA is a double-stranded sequence of four
types of nucleotides: adenine, cytosine, guanine and thymine, and thereby it can be
viewed as a string over the alphabet {a,c,g, t}. In the field of molecular biology,
the DNA sequencing procedure determines the sequence of a DNA molecule, that
is the precise order of the nucleotides within it. DNA sequencing highly accelerates
biological and medical research.

Due to laboratory equipment constraints, only parts of DNA up to few hundred
nucleotides can be read reliably, while the length of the DNA molecule in many
species is quite longer. To recognize a long DNA sequence, many copies of the
DNA molecule are made and cut into smaller overlapping pieces, named fragments,
that can be read at once. Each fragment is chosen from an unknown location of the
molecule. To reconstruct the initial DNA molecule, these fragments must be re-
assembled in their initial order, a procedure known as the DNA assembly problem.
Due to the huge amount of data generated by the fragment sequencing methods, an
automated procedure supported by a computer software is necessary for the assem-
bly process. Intuitively, shortest superstrings of the sequenced fragments preserve
important biological structures [33, 46, 53], and in practice they are proved to be
good representations of the original DNA molecule [27, 34]. Therefore, the SSP
can be considered as an abstraction of the assembly problem, and consequently
many researchers developed assembly methods based on it [18, 45, 51]. The most
widely used of them, the shotgun sequencing, is essentially the natural greedy al-
gorithm for the SSP. Similar assembly problems arise during reconstruction of RNA
molecules or proteins from sequenced fragments.

1.2 Data Compression

In the fields of computer science, information technology and data transmission, a
crucial issue is the size of the stored or transferred data. Data compression is the pro-
cess of encoding data using fewer bits than their original representation. According
to whether the compressed data is exactly as the original data or not, we distinguish
the lossless compression and the lossy compression, respectively (see [50]).

Considering data as text over an alphabet, an intuitive method of lossless com-
pression is based on the idea of dividing the text into strings and representing it by
a superstring of these strings with pointers to their original positions. Based on this
principle, several macro schemes concerning the nature of the pointers are taken un-
der consideration in [55, 56], leading in general applications of the SSP in the field
of textual substitution. In programming languages, each alphanumerical string in
the code may be represented as a pointer to a common string stored in the memory.
Therefore, the target of the compiler is to arrange the alphanumerical strings in such
a way that they overlap as much as possible [15, 37]. Other general applications of
the SSP on data compression are discussed in [14, 54].
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1.3 Modelling the Viral Genome Compression

Viruses are forced to reduce their genome size by environmental factors such as the
need for quick replication and the small amount of nucleic acid that can be incor-
porated in them. One way to compress their genome is by overlapping their genes.
Genes are the parts of the DNA that specify all proteins in living beings. Between
genes there are generally long sequences of nucleotides that do not be coded into
proteins. On the other hand, overlapping genes are common in viruses. Therefore,
in most virus species, two or more proteins are coded by the same nucleotide se-
quence, allowing viruses to increase their repertoire of proteins without increasing
their genome length, as indicated in [10].

In [24, 25], the SSP is used to model the viral genome compression. The genes
are considered as strings and the purpose is to find a shortest superstring that con-
tains them all. The computational results show that the amount of compression
achieved by the viruses in the real world is the same or very close to the one obtained
by the algorithms in all the examples considered in [24, 25]. Another conclusion
from these computations is that the average compression ratio of viruses is remark-
ably high considering the fact that the DNA molecules are very difficult to compress
in general. Finally, by modelling the viral genome compression as SSP, any exact
solution or lower bound of the corresponding SSP instance provides a bound on the
real size of a viral genome with a given set of genes.

1.4 Scheduling with Coordinated Starting Times

The Flow Shop Problem (FSP) and the Open Shop Problem (OSP) concern the
scheduling of operations in machines and have particular applications in scheduling
and planning of experiments. Given a set of k machines M1, M2, . . . ,Mk the problem
is to schedule a set of jobs on them, where each job consists of k operations and the
i-th operation has to be assigned on the machine Mi. A machine can process at most
one operation at a time, and any two operations of a job cannot be processed simul-
taneously. In the FSP, the operation on Mi has to be finished before the operation on
Mi+1 can start for each job, whereas in the OSP there is not such commitment. In
the no-wait versions of these problems, it is required the operations of a job to be
processed directly one after the other. The optional constraint of coordinated start-
ing times necessitates an operation starting on one machine only when each of the
other machines is either idle or also starts an operation. In all these cases, the task is
to find a schedule such that the overall processing time is minimized.

The FSP and the OSP on two machines, and their corresponding no-wait versions
are polynomially solvable in general, but this is not always true when the machines
have to coordinate the starting times of operations. In [39], this additional constraint
is considered. Each instance of the no-wait version of these problems under the
additional constraint of the coordinated starting times can be transformed into an
SSP instance, where all strings are of a special form. The NP-completeness of these
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problem versions is proved using this transformation. Apart from the computational
complexity, this transformation can be applied for solving the constrained FSP and
OSP. Each exact and heuristic algorithm for the SSP can be applied to these prob-
lems too. Also, the special case of the SSP can be used to derive approximation
algorithms for the constrained shop problems.

1.5 Data Structure Storage

In [15], a special case of the SSP is considered, where all the strings are of length
at most two. It is proved that this version of the SSP is solvable in polynomial time.
This SSP case has applications to the storage of data structures, and specifically to
the Huffman trees [23] that encode pairs of letters, which are used to an entropy
encoding algorithm for lossless data compression, and for efficient representation of
directed graphs in memory.

2 Definitions and Notations

Let N be the set of natural numbers including 0. All the numbers in this chapter
are natural, unless otherwise stated. For a real x, 'x( denotes the smaller integer
greater than or equal to x. For a letter l, the notation l ∈ Σ means that l belongs to
alphabet Σ , while for a string s, if all letters of s belong to Σ , we say that s is over
the alphabet Σ . If s is a string, then |s| denotes its length, that is the number of its
letters, while if S is a set, then |S| denotes its cardinality. For a string s and i, j ∈ N

such that 1 ≤ i ≤ j ≤ |s|, the substring of s from i-th to j-th letter is denoted by s[i, j].
Any substring s[1, j] is a prefix of s, and if j < |s|, then it is called a proper prefix.
Similarly, any substring s[i,|s|] is a suffix of s, and if i > 1, then it is called a proper
suffix.

The placement of two or more strings one next to the other denotes their con-
catenation, e.g. sis j is the concatenation of si and s j. A coverage string between
strings si and s j, in this specific order, is a string v such that si = uv and s j = vw,
for some non-empty strings u,w. In other words, v is a string that is a proper suffix
of si and a proper prefix of s j. The length of the coverage string is called coverage
between the corresponding strings and is a non-negative integer. A join string of
si and s j is the concatenation of these two strings with a coverage string appearing
only once, that is uvw. We use J{si,s j} to denote the set of all join strings of si and s j

regardless their order.
The overlap string between si and s j is their longest coverage string, and is

denoted by o(si,s j). Its length |o(si,s j)| is called overlap. The overlap of a string
with itself is called self-overlap, and notice that it is not limited to half the total
string length. The merge string of si and s j is the concatenation of these two strings
with the overlap string appearing only once, that is the shortest join string between
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them. It is denoted by m(si,s j). We have |m(si,s j)| = |si|+ |s j| − |o(si,s j)|. The
length of the prefix of si before the overlap string with s j is called distance from si

to s j and is denoted by d(si,s j).

Example 1. Suppose that we have the strings s1 = bbacb and s2 = bcabbcabb over
the alphabet {a,b,c}, so |s1| = 5 and |s2| = 9. The one-letter string b is a proper
suffix of s1 and a proper prefix of s2. Moreover, it is the longest such string, and
thus the overlap string between them, o(s1,s2) = b, with overlap 1. The coverage
strings between s2 and s1 are b and bb, and so o(s2,s1) = bb with overlap 2. The
self-overlap of the first string is |o(s1,s1)| = 1, while |o(s2,s2)| = 5. The corre-
sponding merge strings are m(s1,s2) = bbacbcabbcabb, m(s2,s1) = bcabbcabbacb,
m(s1,s1) = bbacbbacb, and m(s2,s2) = bcabbcabbcabb. The distance from s1 to s2

is d(s1,s2) = 4, while d(s2,s1) = 7, d(s1,s1) = 4, and d(s2,s2) = 4. Finally, the set
of all join strings is J{s1,s2} = {bbacbbcabbcabb,bcabbcabbbbacb,bbacbcabbcabb,
bcabbcabbbacb,bcabbcabbacb}. ��

Given a finite set S of strings over an alphabet Σ , the sum of lengths of the strings
in S is defined as ||S||= ∑s∈S |s|. The orbit size of a letter l ∈ Σ is the number of its
occurrences in the strings of S.

An instance of the SSP is specified by a finite set S = {s1,s2, . . . ,sn} of strings.
A string s is a superstring of S, if it is a superstring of all si ∈ S. A multiset is a
generalization of the notion of the set where elements are allowed to appear more
than once. Without loss of generality, S is defined to be a set since if S is a multiset,
then S has exactly the same superstrings as the set {s : s ∈ S}. Also, it is assumed that
S is a substring-free set, i.e., no string si ∈ S is a substring of any other string s j ∈ S.
This assumption can be made without loss of generality, since for any set of strings
there exists a unique substring-free set that has the same superstrings, obtained by
removing any string is a substring of another.

Given a set S = {s1,s2, . . . ,sn} of strings over an alphabet Σ , the SSP is the
problem of finding a minimum length superstring of S. Note that such a string may
not be unique. The length of a shortest superstring of S is denoted by optl(S), while
the corresponding achieved compression is defined as optc(S) = ||S||−optl(S). The
decision version of the SSP is described as follows. Given a set S of strings and a
k ∈ N, is there a superstring s of S such that |s|= k?

Example 2. Suppose that we have the multiset S′ = {s1,s2,s3,s4,s5,s6} of strings
over the alphabet {a,b,c}, where s1 = bababbc, s2 = bbccaac, s3 = bbcaaabb, s4 =
acabb, s5 = bcaaab, and s6 = acabb. The corresponding substring-free set is S =
{s1,s2,s3,s4} with |S| = 4 and ||S|| = 27. The orbit size of the letter a in S is 9, of
the letter b is 12, and of the letter c is 6. These are the two shortest superstrings of S:
s = bababbccaacabbcaaabb and s′ = bababbcaaabbccaacabb, with optl(S) = |s|=
|s′|= 19 and optc(S) = 7. ��

Let In be the finite set {1,2, . . . ,n}, and Πn be the set of all permutations of the
set In. Any solution for the SSP of n strings can be represented as a permutation
p ∈ Πn, indicating the order in which strings must be merged to get the superstring.
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It is implied that the shortest superstrings are derived only by string merges. If this
is not the case, there would be parts of the superstring that do not correspond to any
string, or some consecutive strings would not exploit their longest coverage string
and could be joined by a larger coverage. In both cases there would be a shorter
superstring. The elements of a permutation p ∈ Πn are denoted by p(i), i ∈ In, where
i indicates the order of each element in p such that p = (p(1), p(2), . . . , p(n)).

Given an order of strings (s1,s2, . . . ,sn) the superstring s = 〈s1, . . . ,sn〉 is defined
to be the string m(s1,m(s2, . . .m(sn−1,sn) . . .)). In such an order, the first string s1

is denoted by first(s) and the last string sn is denoted by last(s). Notice that s is the
shortest string such that s1,s2, . . . ,sn appear in this order as substrings.

For a set S = {s1,s2, . . . ,sn} of strings and a permutation p ∈ Πn, the corre-
sponding superstring is defined as strSp(S, p) = 〈sp(1),sp(2), . . . ,sp(n)〉. For any SSP
instance S = {s1,s2, . . . ,sn}, there exists a permutation p ∈ Πn such that strSp(S, p)
is an optimal solution. For any p ∈ Πn, the length of the superstring strSp(S, p) is
given by |strSp(S, p)| = ∑n

i=1 |si| − ∑n−1
i=1 |o(sp(i),sp(i+1))|. Therefore, the SSP can

be formulated as

min
p∈Πn

n

∑
i=1

|si|−
n−1

∑
i=1

|o(sp(i),sp(i+1))|. (1)

The shortest superstrings that correspond to the permutation p of the optimal solu-
tion have length equal to optl(S). A superstring of the minimum length is achieved
when the sum of the overlaps between consecutive strings, in the order defined by
p, is maximized.

There are two ways to assess the solution quality of a non-exact algorithm for
the SSP: the length measure and the overlap or compression measure. According
to the first measure, a superstring is better when its length is shorter. In this case,
the SSP is described as a minimization problem. According to the second measure,
a superstring is better when the achieved compression is greater. In this case, the
problem is described as a maximization problem. The two measures are equivalent
when applied to exact solutions, but they give different results when they measure
the relative preciseness of non-exact solutions obtained by approximation or heuris-
tic algorithms. A good algorithm with respect to one of the above measures is not
necessarily a good algorithm with respect to the other measure.

Example 3. For the substring-free set S = {s1,s2,s3,s4} of Example 2 and the two
shortest superstrings of it, s= 〈s1,s2,s4,s3〉 and s′ = 〈s1,s3,s2,s4〉, we have first(s)=
first(s′) = s1, last(s) = s3, and last(s′) = s4.

Let s′′ = strSp(S, p) for the permutation p = (3,4,2,1), which is a super-
string of length |s′′| = 24. According to the length measure the solution s′′ is
(|s′′| − optl(S))/optl(S) = 26.3% far from the optimal length, while according to
the compression measure is (optc(S)− (||S||− |s′′|))/optc(S) = 71.4% far from the
optimal compression. ��

A directed graph G is defined by a vertex set V (G) and an arc set E(G) which
contains ordered pairs of vertices and is denoted by G= (V,E). For an arc e= (u,v),
u is called the tail of e, and v the head of e. We say that e is incident to both vertices,
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while for v the arc e is an incoming arc, and for u is an outgoing arc. An arc with
the same tail and head is called a loop. For a vertex v ∈ V , the number of incoming
arcs of v is denoted by deg−(v), and the number of outgoing arcs of v is denoted
by deg+(v). The overall number of the incident arcs to a vertex v regardless of their
direction is the degree of v. The degree of a graph is the maximum degree between
its vertices. Graph G is complete if there is an arc (u,v) for any vertex pair u,v ∈V ,
u �= v. For a weight function w : E → N, we denote by G = (V,E,w) a weighted
directed graph. When there is no confusion we denote by wi j the weight of arc
e = (vi,v j) ∈ E. If the elements of set E have no direction, then they are called
edges and the corresponding graph is called undirected. An undirected graph is
called bipartite if its vertex set can be partitioned into two subsets, V1 and V2, such
that every edge is incident to a vertex of V1 and to a vertex of V2. If the arc set
contains ordered tuples instead of pairs of vertices then we have a multigraph.

Given a set S = {s1,s2, . . . ,sn} of strings, the complete directed weighted graph
G = (V,E,w) with

• vertex set V = {s1,s2, . . . ,sn},
• arc set E = {(si,s j) : si,s j ∈V, i �= j}, and
• weight function w : E → N, with wi j = |o(si,s j)|,
is called the overlap graph of S and is denoted by Go(S). If the arc weight function
depends on the distance instead of the overlap between the string pairs, that is wi j =
d(si,s j), then the corresponding graph is called the distance graph of S, and is
denoted by Gd(S). Notice that all weights on both graphs are non-negative integers.
In the following, it is assumed that the overlap and distance graphs have no loops,
unless otherwise stated. For any set A ⊆ E of arcs on both graph, we denote by o(A)
the sum of weights of the arcs on Go(S), that is their total overlap, and by d(A)
the sum of weights of the arcs on Gd(S), that is their total distance. For each arc
e = (s,s′) on both graphs, we have

|s|= o({e})+d({e}). (2)

Example 4. For the substring-free set S = {s1,s2,s3,s4} of Example 2 the associated
overlap and distance graphs are depicted in the next figure.
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For the arc set A = {(s1,s2),(s3,s4)}, we have o(A) = 3 and d(A) = 12. ��
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A walk on a directed graph is a sequence of arcs where the head of each arc
except the last one is the tail of the next arc. A walk can be specified either by its
vertices or its arcs in the order of appearance in it. A path on a directed graph is
a walk with no repeating vertices. On an undirected graph, a path is a sequence of
consecutive edges that connect no repeating vertices. A walk is called Eulerian if it
contains all the arcs of the graph, while a path is called Hamiltonian if it contains
all the vertices of the graph. A cycle is a path where the first and the last vertices
are the same. A cycle with k arcs is called a k-cycle. For a string set S and the
associated overlap and distance graphs, consider a cycle c on them, a string s ∈ S
corresponds to a vertex of c, and let s′ be the unique previous string of s in c. The
superstring 〈s, . . . ,s′〉 where the strings are in the order around c is called the cycle
superstring of c with respect to s and is denoted by strC(c,s). The superstring
〈s, . . . ,s′,s〉 where the strings are in the order around c is called the extended cy-
cle superstring of c with respect to s and is denoted by strC+(c,s). Notice that
strC+(c,s) = m(strC(c,s),s).

Example 5. For the substring-free set S = {s1,s2,s3,s4} of Example 2 and the as-
sociated overlap and distance graphs presented in Example 4, consider the cy-
cle c = (s1,s2,s4,s1). We have strC(c,s1) = bababbccaacabb, and strC+(c,s1) =
bababbccaacabbababbc. ��

Some combinatorial optimization problems are closely related to the SSP due to
their nature and are used in the establishment of many results of the SSP. A match-
ing on a directed graph is a set of arcs, no two of which are incident to the same
vertex. A maximum matching on a weighted graph is a matching with the largest
total weight, while the Matching Problem (MP) looks for a maximum matching
on a weighted directed graph. The MP is defined similarly on undirected weighted
graphs. A directed matching is a set of arcs, no two of which have the same tail
or the same head. In other words, it is a set of disjoint paths and cycles on a graph.
The Directed Matching Problem (DMP) looks for a maximum directed matching.
Both MP and DMP can be solved in polynomial time (see, e.g., [42, 59]). A cycle
cover on a directed graph is a set of cycles such that each vertex of the graph is in
exactly one cycle. The Cycle Cover Problem (CCP) on a weighted directed graph
consists in finding a cycle cover with maximum total weight. The CCP is solvable
in polynomial time by reduction to the MP on bipartite graphs (see, e.g., [42]).

The Hamiltonian Path Problem (HPP) on a weighted directed graph consists
in finding an optimal Hamiltonian path according to its total weight. If the objec-
tive is to minimize the total weight, then the Min-HPP is considered, while if the
objective is to maximize the total weight, then the Max-HPP is considered. The de-
cision HPP on a directed graph G asks for the existence of a Hamiltonian path on
G. Similarly, we have the maximization and the minimization Hamiltonian Cycle
Problem, which are also known as Traveling Salesman Problems (Min-TSP and
Max-TSP). Both HPP and TSP are NP-hard problems [30]. There is a simple rela-
tion between these problems. The HPP on a graph G can be transformed to the TSP
on a graph G′ obtained from G by adding a new vertex u and zero-weighted arcs
from u to each vertex of G and from each vertex of G to u.
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3 Computational Complexity

The results described in this section concern the computational complexity of the
SSP, and justify the fact that there are only few exact algorithms, and on the other
hand so many approximation algorithms for it. The SSP cannot be solved efficiently
to optimality in polynomial time. It can be approximated within a constant ratio,
whereas this ratio has a bound.

3.1 Complexity of Exact Solution

Given a string set S and a string s, there is a polynomial time algorithm for checking
if s is a superstring of S, and therefore the decision SSP belongs in class NP.

A string is primitive if no letter appears more than once into it. Next theorem
establishes the NP-completeness of the decision SSP.

Theorem 1 ([15]). The decision SSP is NP-complete. Furthermore, this problem is
NP-complete even if for any integer m ≥ 3 the restriction is made that all strings in
set S are primitive and of length m.

The proof is based on a polynomial time transformation from the decision HPP on
directed graphs with the following additional restrictions:

• there is a designated start vertex s with deg−(s) = 0 and a designated end vertex
t with deg+(t) = 0,

• for each v �= t, we have deg+(v)> 1.

A set S of specific strings of length 3 is constructed, and each string is corresponding
to a vertex of a directed graph G = (V,E) that satisfies the above restrictions. Graph
G has a Hamiltonian path if and only if set S has a superstring of length 2|E|+3|V |.
Therefore, there is no efficient algorithm for solving the SSP, unless P = NP.

Due to the nature of the SSP, several parameters can be considered fixed in or-
der to define restricted cases of the problem. Besides the length of the strings and
the primitiveness that were mentioned previously, the cardinality of the alphabet,
the orbit size of the letters, and the form of the strings were also examined for the
conservation or not of the NP-completeness.

The decision SSP remains NP-complete when it is restricted to an alphabet of
cardinality 2 as proved in [15]. A restricted version of the SSP concerning both the
alphabet cardinality and the string length is also studied and the result is stated in the
next theorem. Let bits(n) denote the number of bits that are necessary to represent
n in binary, for any n ∈ N.

Theorem 2 ([15]). The decision SSP is NP-complete even if for any real h > 1, the
strings in set S are written over the alphabet {0,1} and have length 'h bits(||S||)(.
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The proof is based on Theorem 1 and on the encoding of each letter of the initial
alphabet with letters of the alphabet {0,1} such that no relative changes yielded to
the overlaps between the strings after the new encoding.

In [38, 39], NP-completeness results are proved for some special cases of the
decision SSP. For a set S of strings over an alphabet Σ , these complexity results can
be briefly presented as follows. The decision SSP is NP-complete even if

• all strings in S are of length 3 and the maximum orbit size of each letter in Σ is 8.
• all strings in S are of length 4 and the maximum orbit size of each letter in Σ is 6.
• Σ = {0,1} and each string in S is of the form 0p10q10r1 or 10p10q10r, where

p,q,r ∈ N.
• Σ = {0,1} and all strings in S are of the form 10p10q, where p,q ∈ N.
• Σ = {0,1,2} and each string contains a fixed number of each letter.

3.2 Complexity of Approximation

Since the SSP is a hard problem to be solved to optimality, a huge amount of effort is
made to develop approximation algorithms. The theoretical framework for the com-
plexity of this aspect establishes that although the SSP is easy to be approximated
within some constant ratio, it is hard to be approximated within any constant ratio.
The linear reduction (L-reduction) is necessary for what follows.

Definition 1 ([43]). Let A and B be two optimization problems. Problem A L-
reduces to B if there are two polynomial time algorithms F and G and real constants
α,β > 0 such that

• given an instance a of A, algorithm F produces an instance b =F(a) of B such
that opt(b) is at most α × opt(a), where opt(a) and opt(b) are the costs of the
optimal solution of instances a and b respectively, and

• given any solution of b with cost c′, algorithm G produces in polynomial time a
solution of a with cost c such that |c−opt(a)| ≤ β |c′ −opt(b)|.

For two optimization problems A and B and the constants α and β of the Defini-
tion 1, the following theorem establishes the basic usage of L-reduction.

Theorem 3 ([43]). If problem A L-reduces to problem B and there is a polynomial
time approximation algorithm for B with worst-case error ε , then there is a polyno-
mial time approximation algorithm for A with worst-case error αβε .

Therefore, if problem B has a polynomial time approximation scheme (PTAS), then
so does problem A.

The class Max-SNP is a class of optimization problems defined syntactically
in [43]. Every problem in Max-SNP can be approximated in polynomial time within
some constant ratio. A problem is Max-SNP-hard if any other problem in Max-SNP
L-reduces to it.
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Theorem 4 ([8]). The SSP is Max-SNP-hard.

The proof is based on an L-reduction from the Min-HPP, where the degree of the
associated directed graph is bounded, and all the weights are either 1 or 2, which
is Max-SNP-hard [44]. The reduction from this problem to the SSP is similar to
the one used to show the NP-completeness of the decision SSP in Theorem 1, with
the extra establishment that it is an L-reduction. The strings that are considered
for the above L-reduction have bounded lengths, and so the same reduction can be
applied to the maximization version of the superstring problem with respect to the
compression measure, and concludes to the same hardness result.

Corollary 1 ([8]). Maximizing the total compression of a string set is Max-SNP-
hard.

In [5], it is proved that if a Max-SNP-hard problem has a PTAS, then P = NP.
Therefore, there is no PTAS for the SSP, unless P = NP, which means that there
exists an ε > 0 such that it is NP-hard to approximate the SSP within a ratio of
1+ ε .

The L-reduction described in [8] for the proof of the Max-SNP-hardness of
the SSP produces instances with arbitrarily large alphabets. More precisely, each
instance of the special Min-HPP with n vertices is transformed to an SSP instance
over an alphabet with 2n + 1 letters. However, the SSP is APX-hard even if the
alphabet contains just two letters as stated in the next theorem.

Theorem 5 ([41]). The SSP is APX-hard both with respect to the length measure and
the compression measure, even if the alphabet has cardinality 2 and every string is
of the form 10m1n01m0n+410 or 01m0n10p1q01m0n10r1s01, where m,n, p,q,r,s ≥ 2.

4 Polynomially Solvable Cases

Since the SSP is NP-hard, special cases of the problem that can be solved in poly-
nomial time constitute an interesting aspect. Various additional restrictions on the
problem’s parameters, similar to these described in Sect. 3 lead to polynomial al-
gorithms revealing the boundaries between hard and easily solvable cases of the
problem.

Obviously, if the cardinality of the alphabet is equal to 1 or all the strings in
the given set are of length 1, then the SSP is trivial. Also, if the number of the
strings in the set is fixed, then the SSP is polynomially solvable by enumerating
all the different string orders. However, there are more interesting and complicated
polynomial cases of the SSP.

Since Theorem 1 establishes the NP-completeness of the SSP for string lengths
greater than 2, the question is what happens in the remaining cases. The answer is
given by the next theorem.
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Theorem 6 ([37]). For a string set S= {s1,s2, . . . ,sn} and an integer k, if |si| ≤ 2, i ∈
In, then there is a linear time and space algorithm to decide if S has a superstring
of length k.

A path decomposition of a directed graph G is a partition of E(G) into edge-disjoint
paths. Such a decomposition is minimum if it contains the minimum number of
paths. The linear algorithm in Theorem 6 is based on a minimum path decomposi-
tion of a graph associated with the string set S. Besides the algorithm for the deci-
sion problem mentioned in Theorem 6, there is also a linear algorithm that finds a
shortest superstring for strings of length at most 2.

A fixed maximum orbit size for the letters in the alphabet leads to a special case
of the SSP that is also solvable in polynomial time. Assume a set S of strings over
alphabet Σ and let m = max{|s| : s ∈ S}.

Theorem 7 ([61]). If the orbit size of each letter in Σ is at most 2 in S, then a shortest
superstring for S is found in polynomial time O(|Σ |2m).

Another special case of the SSP concerns the fixed difference between the sum
of string lengths and the cardinality of the alphabet as cited in [61]. Given a set S of
strings over an alphabet Σ , for a fixed difference ||S||− |Σ |, the SSP is solvable in
polynomial time by a special exhaustive enumeration. The difference ||S|| − |Σ | is
mentioned as a measure of dissimilarity of the strings in S.

In [38], restricted cases of the SSP are studied, and a string form that induces
polynomial cases is found.

Theorem 8 ([38]). The SSP over the alphabet {0,1} is polynomial time solvable if
each given string contains at most one 1.

As cited in [61], a particular case of the SSP in which S is the set of all three-letter
strings over an alphabet Σ is known as the Code Lock Problem. In this case, the
possible overlaps between the strings are 1 and 2. This problem is reducible to the
Eulerian Walk Problem, where the existence of a walk that contains all the arcs of
a directed graph is sought, and hence, according to [16] it is solvable in polynomial
time.

5 Exact Solutions

There are only few exact algorithms in the literature for the SSP. This is due to
the computational complexity of the problem, and the lack of necessity for optimal
solutions at its main applications in computational molecular biology. In the DNA
sequencing practice, the biological properties of a genome molecule can be usually
expressed also by a superstring of its fragments that is not the shortest one, but its
length is close to the optimum.
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5.1 Exhaustive Enumeration

The SSP can be trivially solved by exhaustive enumeration of all possible arrange-
ments of the strings. The merge of the strings in some of these orders would
correspond to a shortest superstring. Given a set S of n string, the examination of
the superstrings of S that correspond to all permutations in Πn is enough to find
a shortest one. The exhaustive examination of all permutations can be executed in
time O(n!||S||), or by a different implementation that also exhaustively enumerates
the possible solutions, in time O(n||S||n+1) as mentioned in [61]. Optimal solutions
for small SSP instances taken by the exhaustive algorithm are used in [24, 25] to
compare the compression achieved by the viruses to their genome with the largest
possible compression of their genes.

5.2 Integer Programming Formulation

Given an SSP instance specified by a set S of n strings, consider the associated
overlap graph Go(S). An optimal solution to the SSP instance can be obtained by
an optimal solution to the Max-HPP on Go(S), since a maximum Hamiltonian path
contains all the vertices (strings) ordered in a single path such that it has the max-
imum total overlap. Due to the relation between the HPP and the TSP described
in Sect. 2, these solutions can be obtained by an optimal solution to the Max-TSP.
According to these transformations, optimal solutions for the SSP can be derived by
any integer programming formulation for the Max-TSP using branch and bound or
cutting plane algorithms. In [17], a benchmark set of instances with known optimal
solutions was constructed using the integer program of [40] for the Max-TSP and
used to compare the solutions of a heuristic for the SSP with the optimal ones.

6 Approximation Algorithms

The fact that the SSP is Max-SNP motivates many researches to develop approxi-
mation algorithms for it. As mentioned in Sect. 2, there are two ways to assess the
solution of an approximation algorithm: the length measure considering the SSP
as a minimization problem, and the compression measure considering the SSP as a
maximization problem.

For a string set S, and any algorithm ALG for the SSP, we use the notation ALGl(S)
to denote the length of the superstring of S obtained by ALG, and ALGc(S) to denote

the corresponding achieved compression. An approximation ratio ε = ALGl(S)
optl(S)

≥ 1

with respect to the length measure means that ALGl(S)≤ ε×optl(S) for all instances,

while an approximation ratio ε = ALGc(S)
optc(S)

≤ 1 with respect to the compression mea-

sure means that ALGc(S)≥ ε ×optc(S) for all instances. Although the two measures



202 T.P. Gevezes and L.S. Pitsoulis

are equivalent regarding the optimal solution, they differ regarding the approximate
solutions of the problem. The existence of an algorithm with a constant approx-
imation ratio for the one measure has in general no approximation performance
guarantee for the other measure.

In this section, the approximation algorithms for the SSP both with respect to the
length and the compression measure are presented, revealing the special features of
the superstrings in each case.

6.1 Approximation of Compression

The compression measure counts the number of letters gained in comparison with
the simply concatenation of all strings. Algorithms that approximate this gain are
presented here.

6.1.1 The Natural Greedy Algorithm

A very well known, simply implemented, and widely used algorithm for the SSP
is the natural greedy algorithm. It is routinely used in DNA sequencing practice. It
starts with the string set S and repeatedly merges a pair of distinct strings with the
maximum possible overlap until only one string remains in S. Next algorithm shows
the pseudo-code of the natural greedy for the SSP.

Algorithm: GREEDY

input : string set S = {s1,s2, . . . ,sn}
output: a superstring of S

1. for i = 1 to n−1 do
2. L = {(si,s j) : si,s j ∈ S, i �= j}
3. k = max{|o(si,s j)| : (si,s j) ∈ L}
4. let (s′i,s′j) ∈ L be a pairs such that |o(s′i,s′j)|= k
5. S = (S−{s′i,s′j})∪{m(s′i,s′j)}
6. end
7. let s be the only string in S
8. return s

The operation of the GREEDY algorithm on the string set S is equivalent to the cre-
ation of a Hamiltonian path on the overlap graph Go(S). In general directed weighted
graphs, the total weight of the Hamiltonian path obtained by the greedy approach
is at least one third the weight of a maximum path [26]. In the case of the over-
lap graphs, a stronger result can be obtained by exploiting their properties. A basic
lemma that concerns the form of these graphs is restated here in terms of strings.
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Lemma 1 ([58]). Let s1,s2,s3, and s4 be strings, not necessarily distinct, such that
|o(s3,s2)| ≥ |o(s1,s2)| and |o(s3,s2)| ≥ |o(s3,s4)|. Then |o(s1,s4)| ≥ |o(s1,s2)|+
|o(s3,s4)|− |o(s3,s2)|.
The proof can be derived directly from the next figure, where the alignment of the
four strings according to their overlaps is presented.

s1 :

s2 :

s3 :

s4 :

. . .

. . .

. . .

. . .

|o(s1, s2)|
|o(s3, s2)|

|o(s3, s4)|

]

[

]

[

Notice that, if s1 and s4 are not distinct, then the result of Lemma 1 concerns the
self-overlap of the string s1.

The following theorem establishes the approximation performance of the GREEDY

algorithm based on the corresponding analysis of the greedy approach for the Max-
HPP and on Lemma 1.

Theorem 9 ([58]). For a string set, the compression achieved by the GREEDY algo-
rithm is at least half the compression achieved by a shortest superstring.

Next example, presented in [58], shows that the result of the Theorem 9 is the best
possible.

Example 6. For the string set {abk,bk+1,bka}, k ≥ 1, over the alphabet {a,b},
GREEDY may produce the superstring abkabk+1 or the superstring bk+1abka that
achieves compression k, whereas the shortest superstring is abk+1a and achieves
compression 2k. Notice that GREEDY can also give the shortest superstring depend-
ing on how it breaks ties. ��

6.1.2 Approximation Based on Matchings

Apart from GREEDY, two other 1
2 -approximation algorithms for the compression of a

superstring based on the MP and the DMP are presented in [62]. For an SSP instance
S, consider the associated overlap graph Go(S). In both algorithms, a matching al-
gorithm is repeatedly applied to Go(S), to produce a Hamiltonian path.

For the description of the first algorithm the notion of the arc contraction is
necessary. Given a weighted directed graph G and an arc e = (u,v) ∈ E(G), the
contraction of e is denoted by G/e and gives a new graph obtained from G where
the vertices u, v and their incident arcs are replaced by a new vertex w which has as
incoming arcs the incoming arcs of u and as outgoing arcs the outgoing arcs of v with
the same weights as on G. The MATCH algorithm initially finds a maximum matching
on Go(S), and then contracts the arcs of the matching. This process is repeated on
the new graph until a graph with no arcs comes up. Go(S) = (V,E,w) is the initial
overlap graph which remains unchanged, whereas G denotes the graph obtained in
each iteration after the arc contractions. Initially, G = Go(S). Let maxm(G) be a
maximum matching on graph G.
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Algorithm: MATCH

input : string set S = {s1,s2, . . . ,sn}
output: a superstring of S

1. construct the graph Go(S)
2. P = /0
3. G = Go(S)
4. while |E(G)| �= /0 do
5. M = maxm(G)
6. P = P∪{the arcs of E(Go(S)) that correspond to M}
7. foreach (u,v) ∈ M do
8. G = G/(u,v)
9. end

10. end
11. let s be the superstring that corresponds to P
12. return s

The approximation performance of the MATCH algorithm is based on the observa-
tion that any matching on an overlap graph can be extended to a Hamiltonian path
on it, since overlap graphs are complete. Moreover, a maximum matching has total
weight at least half the weight of a maximum Hamiltonian path. This can easily be
shown by considering each Hamiltonian path as two matchings with distinct arcs,
constructed by taking alternate arcs from the path. These results imply that the com-
pression achieved by the MATCH algorithm is at least half the optimal compression.

The second algorithm with the same approximation ratio for the SSP is based on
the slightly different DMP. Remember that a directed matching on a graph is a set of
disjoint paths and cycles. For the description of this algorithm, the notion of the arc
contraction is extended naturally to paths. Given a weighted directed graph G and
a path p = (v1,v2, . . . ,vr) on it, defined by its vertices, the contraction of p gives a
new graph obtained from G where the vertices v1, . . . ,vr and their incident arcs are
replaced by a new vertex w which has as incoming arcs, the incoming arcs of v1

and as outgoing arcs the outgoing arcs, of vr with the same weights as on G. The
DIMATCH algorithm described also in [62] operates exactly as MATCH except that it
finds a directed matching of each step, opens each cycle of it by deleting an arc with
the smallest weight, and finally contracts the paths into vertices. The compression
achieved by the DIMATCH algorithm is at least half the optimal compression.

6.1.3 Approximation Based on the TSP

Any approximation algorithm for the Max-TSP is also an approximation algorithm
for the SSP with respect to the compression measure, or equivalently for the Max-
HPP, with the same ratio due to the transformation from the TSP to the HPP. For both
problems, it is implied that they are asymmetric, which means that they applied on
directed graphs, and that the weight of an arc (u,v) is not necessarily equal to the
weight of the arc (v,u).
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In [7, 31], two approximation algorithms for the Max-TSP are presented. In
both cases, procedures with complementary worst cases run on directed graphs with
even number of vertices. The best result among them is a Hamiltonian cycle whose
weight is at least 38

63 times the weight of a maximum weight Hamiltonian cycle for
the first algorithm, and 8

13 for the second. Both algorithms achieve their approxi-
mation performance without utilizing any special structure of the strings. In both
algorithms is required that the complete input graph G has an even number of ver-
tices. In general, for an SSP instance of n strings, the above algorithms achieve ap-
proximation ratios 38

63 (1− 1
n ) and 8

13 (1− 1
n ), respectively. Finally, an approximation

algorithm for the Max-TSP is also designed in [29], achieving the best ratio until
now, namely 2

3 . It operates by decomposing a special form of directed multigraphs,
where the elements of the arc set are ordered triples of the vertex set.

6.2 Approximation of Length

A plethora of approximation algorithms with respect to the length measure have
been developed for the SSP using different variations of the greedy strategy. The
best one among them finds a string whose length is at most 2 1

2 times the length of
the optimal string.

6.2.1 Naive Approximation Algorithm

A naive algorithm for the SSP is used in [8] for comparison reasons in relative
performance of other approximation algorithms. Its approximation performance is
not remarkable but the idea is quite simple, showing that it is easy to develop an
algorithm for the SSP, but it is not so easy to achieve a good approximation ratio.
For a string set S, the algorithm arbitrarily chooses a string from S considering it as
the initial current string, and then repeatedly updates the current string by merging it
with a remaining string from S that yields the maximum overlap. The performance
of this algorithm highly depends on the random choice of the initial point, and it
is possible to produce superstrings whose length grows quadratically in the optimal
length.

6.2.2 Approximation Algorithm Used in a Learning Process

The first attempt to approximate the shortest superstring of a set was made in [34],
where the DNA sequencing procedure is modelled as a string learning process from
randomly drawn substrings of it. Under certain restrictions, this may be viewed
as a string learning process in Valiant’s distribution free learning model [63]. The
efficiency of the learning method depends on the solution of an algorithm which
approximates the length of a superstring, and seeks in each step for an appropriate
join string among the candidate ones.
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Given a string set S = {s1,s2, . . . ,sn} and a string s, we denote by subSs(S,s) the
set of the strings in S that are substrings of s.

Example 7. Suppose that we have the string set S = {s1,s2,s3}, where s1 = caabaa,
s2 = abaaca, and s3 = baacaa are strings over the alphabet {a,b,c}. The set of
all join strings of s1 and s2 regardless their order is J{s1,s2} = {caabaaabaaca,
caabaabaaca,caabaaca,abaacacaabaa,abaacaabaa}, while the only join string
s ∈ J{s1,s2} for which subSs(S,s) = S is the string abaacaabaa. ��
Given a string set S, the GROUP-COMBINE algorithm constructs a superstring of S by
an iterative process. The algorithm begins with a string set and combines the strings
in groups such that all strings in a group are substrings of a join string of two of
them, trying to find as large groups as possible.

Algorithm: GROUP-COMBINE

input : string set S = {s1,s2, . . . ,sn}
output: a superstring of S

1. T = /0
2. while |S|> 0 do
3. find si,s j ∈ S such that mins∈J{si,s j}

|s|
||subSs(S,s)|| is minimized

4. let s be the join string that achieves the minimum in step 3
5. S = S− subSs(S,s)
6. T = T ∪{s}
7. if |S|= 0 and |T |> 1 then
8. S = T
9. end

10. end
11. let s be the only string in T
12. return s

Next theorem establishes the approximation ratio of the algorithm.

Theorem 10 ([34]). Given a string set, if the length of the optimal superstring is m,
then GROUP-COMBINE produces a superstring of length O(m logm).

6.2.3 4-Approximation Algorithms

The first approximation algorithm with a constant ratio for the length of a super-
string is described in [8], answering a notorious open problem for the existence of
such an algorithm. The algorithm utilizes a minimum cycle cover on the distance
graph of a string set to derive a superstring with preferable properties that bound
its length. Given an SSP instance S, the CYCLE-CONCATENATION algorithm finds a
minimum cycle cover on the graph Gd(S) with loops in polynomial time. Then it
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opens each cycle of the cover by removing an arc chosen randomly, constructs the
superstring that corresponds to the obtained path, and concatenates these strings.

Algorithm: CYCLE-CONCATENATION

input : string set S = {s1,s2, . . . ,sn}
output: a superstring of S

1. construct the graph Gd(S) with loops
2. find a minimum cycle cover C = {c1,c2, . . . ,cp} on Gd(S)
3. foreach ci ∈C do
4. choose a vertex si ∈ ci randomly
5. s′i = strC(ci,si)

6. end
7. let s be the concatenation of the strings s′i
8. return s

Next theorem demonstrates the approximation performance of the algorithm es-
tablishing the first constant approximation ratio for the SSP.

Theorem 11 ([8]). For a string set S, CYCLE-CONCATENATION produces a superstring
of length at most 4×optl(S).

Another algorithm for the SSP with the same constant approximation ratio is
MGREEDY which is presented in [8].

Algorithm: MGREEDY

input : string set S = {s1,s2, . . . ,sn}
output: a superstring of S

1. T = /0
2. while |S|> 0 do
3. k = max{|o(s′i,s′j)| : s′i,s′j ∈ S}
4. let (si,s j) be a string pair such that |o(si,s j)|= k
5. if i �= j then
6. S = (S−{si,s j})∪{m(si,s j)}
7. else
8. S = S−{si}
9. T = T ∪{si}

10. end
11. end
12. let s be the concatenation of the strings in T
13. return s

Notice that at line 3, the two strings of each pair are not necessarily distinct
allowing in this way the self-overlaps. Since the choices at line 4 are made accord-
ing to the overlaps in S, MGREEDY can be thought as choosing arcs from the graph
Go(S) with loops. The choice of the pair (si,s j) corresponds to the choice of the
arc (last(si),first(s j)) on Go(S) in each step. Therefore, the algorithm constructs
paths, and closes them into cycles when distinctness is not satisfied at line 4. Thus,
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MGREEDY ends up with a set of disjoint cycles that cover the vertices of Go(S), which
is a cycle cover. The same cycle cover can be thought on graph Gd(S) with loops.
For a cycle cover C, by Eq. (2), we have o(C)+ d(C) = ||S||, and so a cycle cover
has minimum total weight on Gd(S) if and only if it has maximum total weight on
Go(S), and in both cases it is called optimal.

Theorem 12 ([8]). The cover created by MGREEDY is an optimal cycle cover.

Notice that the presence of the loops is a necessary assumption for this result. Since
MGREEDY finds an optimal cycle cover, the superstring that is produced by it is no
longer than the string produced by algorithm CYCLE-CONCATENATION. Therefore, the
approximation ratio with respect to the length measure of MGREEDY for the SSP is
also equal to 4. Actually, the superstring of MGREEDY could be shorter than the one
obtained by CYCLE-CONCATENATION since MGREEDY simulates the breaking of each
cycle in the optimal position, that is between the strings with the minimum overlap
in the cycle.

6.2.4 GREEDY Is a 3 1
2 -Approximation Algorithm

The GREEDY algorithm has already been presented as an approximation for the com-
pression. A notorious open question is how well GREEDY approximates the length
of a shortest superstring, while a common conjecture states that GREEDY produces
a superstring of length at most two times the length of the optimum [54, 58, 62].
In fact, GREEDY may give a superstring almost twice as long as the optimal one, as
shown in the next example from [8].

Example 8. For the string set {c(ab)k,(ba)k,(ab)kc}, k ≥ 1, over the alphabet
{a,b,c}, GREEDY may produce the superstring c(ab)kc(ba)k or the superstring
(ba)kc(ab)kc of length 4k + 2, whereas the shortest superstring is c(ab)k+1c of
length 2k+4. ��

In [8], it is proved that GREEDY is a 4-approximation algorithm for the SSP. Next
theorem improves this approximation ratio based on a more careful analysis on spe-
cially formed strings.

Theorem 13 ([28]). The GREEDY algorithm is a 3 1
2 -approximation algorithm with

respect to the length measure.

6.2.5 A 3-Approximation Algorithm

The algorithm TGREEDY described in [8] operates in the same way as MGREEDY ex-
cept that in the last step it merges the strings in set T by running GREEDY on them
instead of simply concatenates them. Next theorem establishes its approximation
performance.
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Theorem 14 ([8]). For a string set S, algorithm TGREEDY produces a superstring of
length at most 3×optl(S).

In [8], a relative performance comparison between GREEDY, MGREEDY, and
TGREEDY algorithms is presented. TGREEDY always produces better solutions than
MGREEDY since in the last step it greedily merges the strings, whereas MGREEDY

just concatenates them. The approximation performance of TGREEDY is better than
this of GREEDY, but the superiority of one of these algorithms over the other is not
guaranteed as shown in the next example.

Example 9. For the string set {c(ab)k,(ab)k+1a,(ba)kc}, k ≥ 1, over the alphabet
{a,b,c}, GREEDY produces the shortest superstring c(ab)k+1ac of length 2k + 5,
whereas TGREEDY produces the superstring c(ab)kac(ab)k+1a or the superstring
(ab)k+1ac(ab)kac of length 4k+ 6, since the initial maximum overlap is the self-
overlap of the second string.

On the other hand, for the string set {cabk,abkabka,bkdabk−1}, k ≥ 1, over the
alphabet {a,b,c,d}, TGREEDY produces the shortest superstring cabkdabkabka of
length 3k+ 6, since the initial maximum overlap is the self-overlap of the second
string, whereas GREEDY produces the superstring cabkabkabkdabk−1 or the super-
string bkdabk−1cabkabka of length 4k+5. ��

6.2.6 Generic Approximation Based on Cycle Covers

Algorithms MGREEDY and TGREEDY implicitly construct optimal cycle covers on the
associated overlap and distance graphs of a string set, while CYCLE-CONCATENATION

explicitly takes advantage of this construction. A generic algorithm that explains
this basic idea is presented in [11].

For a string set S, let C = {c1,c2, . . . ,cp} be a cycle cover on the graph Gd(S).
Suppose that an arbitrary string ri is picked from each cycle ci ∈C, and these strings
form the representative set R = {r1,r2, . . . ,rp}. Let r = 〈r1,r2, . . . ,rp〉 be a super-
string of R. By replacing each ri, i ∈ Ip, in r with the string strC+(ci,ri), we get the
string

〈strC+(c1,r1),strC
+(c2,r2), . . . ,strC

+(cp,rp)〉,
which is called the extension string of r with respect to C and is denoted by
ext(r,C). Observe that ext(r,C) is a superstring of S.

For a string set S, the GENERIC-COVER algorithm constructs a minimum cycle
cover C on the graph Gd(S), and chooses a random string from each cycle of this
cover to form a set R of representatives. Then, it finds a new minimum cycle cover on
Gd(R), opens each cycle of this cover in a random position, and concatenates the re-
sulting cycle superstrings to create a superstring of R. Finally, it returns the extension
string of this superstring with respect to the cycle cover C to take a superstring of S.
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Algorithm: GENERIC-COVER

input : string set S = {s1,s2, . . . ,sn}
output: a superstring of S

1. construct the graph Gd(S)
2. find a minimum cycle cover C on Gd(S)
3. R = /0
4. foreach ci ∈C do
5. choose a string si of ci randomly
6. R = R∪{si}
7. end
8. create the graph Gd(R)
9. find a minimum cycle cover CR on Gd(R)

10. foreach cycle ci ∈CR do
11. let si be the head of a randomly chosen arc of ci

12. s′i = strC(ci,si)

13. end
14. let r be the concatenation of the strings s′i
15. r = ext(r,C)
16. return r

The GENERIC-COVER algorithm has approximation ratio equal to 3. This algorithm
constitutes the base for the design of better approximation algorithms for the SSP
as described below.

6.2.7 Handling 2-Cycles and 3-Cycles Separately

For an SSP instance specified by a string set S, optc(S) may grow quadratically in
optl(S) in general. Thus, to take advantage of a compression approximation to de-
sign length approximation algorithms with constant ratio based on GENERIC-COVER

framework, a key is to construct suitable subproblems for which optc(S) is linear
in optl(S). The main difficulty in determining such subproblems and so in improv-
ing the length approximation performance of the GENERIC-COVER algorithm appears
in handling k-cycles with small k in the cycle cover CR. In [60], the compression
achieved by GREEDY is utilized, to design a length approximation algorithm for the
SSP. The algorithm is based on the scheme of GENERIC-COVER handling separately
the 2-cycles in the minimum cycle cover CR. In this way, the algorithm achieves an
approximation ratio 2 8

9 . In [11], an approximation algorithm that handles separately
the 2-cycles and the 3-cycles is developed and gives a superstring of length at most
2 5

6 times the length of a shortest superstring.
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6.2.8 Approximation Algorithms Based on the TSP

As cited in [31], a relationship between the SSP and the Max-TSP according to their
approximation is given by the following lemma.

Lemma 2 ([8]). If the Max-TSP has a ( 1
2 + ε)-approximation, then the SSP has a

(3−2ε)-approximation with respect to the length measure.

Utilizing this relation, the approximation algorithms for the Max-TSP mentioned
in Sect. 6.1.3 can be used to derive approximation ratios for the SSP with respect to
the length measure. Consider an SSP instance S of n strings and the corresponding
Max-TSP instance Go(S). For even number of strings, the algorithm described
in [31] and achieves an approximation ratio of 38

63 for the Max-TSP, gives a 2 50
63 -

approximation ratio for the SSP, while the algorithm described in [7] and achieves
an approximation ratio of 8

13 for the Max-TSP, gives a 2 10
13 -approximation ratio for

the SSP. For odd number of strings the algorithms achieves a ratio of 2( 50
63 +

1
n ) and

2( 10
13 +

1
n ) for the SSP, respectively. The algorithm described in [29] and achieves

an approximation ratio of 2
3 for the Max-TSP, gives a 2 2

3 -approximation ratio for
the SSP.

6.2.9 Exploiting the Superstring Structures

The approximation algorithms presented above are largely graph-theoretical, mean-
ing that they sufficiently exploit the structure of overlap and distance graphs, but
they do not take advantage of the structure inside the strings or in general of the
properties not evident in graph representation. In this sense, they solve a more gen-
eral problem than the one at hand.

An algorithm that captures a great deal of the structure of the SSP instances is
presented in [3]. It takes advantage of the structure of strings with large value of
overlap, proving several key properties of such strings. It follows the framework of
the GENERIC-COVER algorithm using a more sophisticated way to choose the repre-
sentatives at line 5 and to open each cycle at line 12. After finding a cycle cover on
the associated distance graph, the key is to exploit the periodic structure of the cycle
superstrings that arise. In this way, the algorithm achieves a bound either to the total
overlap of the rejected arcs at line 12 or to the total additional length of extending
each cycle at line 15. The result is to construct a superstring whose length is no more
than 2 3

4 times the length of an optimal superstring.
This algorithm and the 2 50

63 -approximation algorithm for the Max-TSP that is
mentioned in Sect. 6.2.8 have complementary worst cases, and so a better ratio can
be achieved by their combination. When the worst case of the first algorithm occurs,
the Max-TSP algorithm runs as a subroutine on the set of representatives to take a
better result. Balancing the two algorithms, an approximation ratio of 2 50

69 for the
SSP can be achieved [2].

In [4], the study of the key properties is extended to strings that exhibit a
more relaxed form of the periodic structure considered before. Algorithmically,
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the new approach is also based on the framework of the GENERIC-COVER and is a
generalization of the previous one. On the other hand, the analysis is very different
and includes a special structure of 2-cycles. Let c be a 2-cycle in the cycle cover
CR of the GENERIC-COVER algorithm, consisting of the vertices si and s j, which are
the representatives of the cycles ci and c j in the cycle cover C. Without loss of
generality assume that d(ci)≥ d(c j). The cycle c is a g-HO2-cycle if

min{|o(si,s j)|, |o(s j,si)|} ≥ g(d(ci)+d(c j)).

In the new algorithm, during the selection of the representatives a technique is
used to anticipate the potential of each string to participate in a 2

3 -HO2-cycle. Such
strings have a very specific structure, and if there is a string without such a structure
in a cycle, it is chosen as the representative. Otherwise, the knowledge of the struc-
ture of the entire cycle can be used to trade the amount of the lost overlap against
the additional length of extending the representative to include the rest of the cycle.
In this way, a 2 2

3 -approximation algorithm for the SSP is designed.

6.2.10 Rotations of Periodic Strings

Two approximation algorithms for the SSP that are based also on the inner structure
of the strings and their periodic properties are presented in [9]. They use the same
framework of the GENERIC-COVER algorithm, but they make use of new bounds on
the overlap between two strings.

Both algorithms pay special attention to the selection of the representatives but
without concentrating on k-cycles with small k. Instead of choosing a string obtained
by opening each cycle, the new idea is to look for superstrings of the strings in
a cycle that are not too long and are guaranteed not to overlap with each other
by too much. Each chosen superstring does not even have to be one of the cycle
superstrings obtained by opening the cycle. Given a cycle ci = (s1,s2, . . . ,sp,s1) of
the cycle cover C of algorithm GENERIC-COVER, a string rc is a candidate to be a
representative of c if for some j

• rc is a superstring of strC(s j+1) and
• rc is a substring of strC+(s j).

A sophisticated procedure is used to choose the representatives such that they satisfy
these two conditions and also have an appropriate property to lead to the improved
ratio.

After this step, the two approximation algorithms follow different ways. The
first algorithm after finding the second cycle cover opens each cycle and concate-
nates the cycle superstrings, achieving an approximation ratio of 2 2

3 . The second
algorithm constructs a superstring of the representatives using as subroutine an ap-
proximation algorithm with respect to the compression measure for the SSP. As
subroutines, we can use the approximation algorithms cited in Sect. 6.1.3. Using
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the 38
63 -approximation algorithm described in [31] a length ratio of 2 25

42 is achieved,
while using the 8

13 -approximation algorithm described in [7] a length ratio of 2 15
26 is

achieved.

6.2.11 2 1
2 -Approximation Algorithms

The best approximation ratio with respect to the length measure for the SSP is the
2 1

2 until now. It can be achieved by two different methods, one from the field of the
superstrings and the other from the field of the TSP.

The first algorithm is described in [57]. Given a string set S, the algorithm be-
gins by constructing a minimum cycle cover C on graph Gd(S). Then, instead of
choosing representatives, it combines the cycles of C to produce a new cycle cover
C′, and finally opens each cycle in C′ to produce a set of cycle superstrings. The
concatenation of these superstrings yields a superstring of S. The algorithm exploits
the properties of cycles and cycle covers on a special multigraph to achieve the
2 1

2 -approximation ratio.
The second approach that achieves the same length ratio for the SSP is an approx-

imation algorithm for the Max-TSP described in [29]. It finds a Hamiltonian cycle
whose weight is at least 2

3 the weight of a maximum Hamiltonian cycle. Using this
procedure as a subroutine in the algorithm cited in Sect. 6.2.10, a length ratio of 2 1

2
for the SSP can be achieved.

7 Parallelizing the Solving Process

In complexity theory, the class NC consists of the decision problems (languages)
decidable in polylogarithmic parallel time O(logO(1) n) on a parallel computer with
polynomial number O(nO(1)) processors. In this definition, a parallel random ac-
cess machine (PRAM) is assumed, that is a parallel computer with a central pool of
memory, where any processor can access any bit of memory in constant time. The
class RNC, which stands for random NC, extends NC with access to randomness.
The class RNC consists of the decision problems (languages) that have a random-
ized algorithm which is solvable in polylogarithmic parallel time on polynomially
many processors, and its probability of producing a correct solution is at least 1

2 .
It is conjectured that there are some tractable problems which are inherently se-

quential and cannot significantly be sped up by using parallelism. For an algorithm,
a common method to show that it is hardly parallelizable is to prove that the algo-
rithm is P-complete for the problem it applied to. The GREEDY algorithm belongs to
this case since the problem of finding a superstring chosen by the GREEDY algorithm
is P-complete [11]. This means that GREEDY is difficult to be parallelized effectively.
In the following, parallel approximation algorithms for the SSP are presented.
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7.1 NC Algorithm with Logarithmic Length Ratio

Given a ground set X of elements and a family Y of subsets of X , a set cover of X
with respect to Y is a subfamily Y ′ ⊆Y of sets whose union equals to X . Assigning a
weight w(x) to each element x ∈ X the total weight of each set and family is naturally
defined. The Set Cover Problem (SCP) is to find a set cover of the ground set of
the minimum weight. The SCP can be approximated within a logarithmic ratio by a
parallelizable algorithm [6].

In [11], a similar approach to the one presented in Sect. 6.2.2 for grouping is
applied to the SCP. Given a set S of n strings, we define

F = {subSs(S,s) : s ∈ J{si,s j},si,s j ∈ S},

that is the family of the sets of substrings of all possible pairwise join strings from
S. Considering S as the ground set and F as a family of its subsets, they specify an
instance of the SCP. From each set cover C ⊆ F of S, a string sC can be constructed
by merging the join strings that correspond to the sets of C. Observe that sC is a
superstring of S. Let the weight of each set of F be the length of the corresponding
join string, and w(C) be the total weight of the set cover C. Because of the merging
of the join strings, |sC| ≤ w(C). Also, it is proved that the length of the superstring
corresponds to a minimum set cover C∗ is at most twice the length of an optimal su-
perstring, that is |sC∗ | ≤ 2×optl(S). These results combined with the parallelization
of the SCP imply an NC algorithm with logarithmic approximation for the SSP.

Theorem 15 ([11]). For a string set S of n strings, there is an NC algorithm that for
any ε > 0, finds a superstring whose length is at most (2+ ε) logn times the length
of a shortest superstring.

Observe that each group of strings selected by the GROUP-COMBINE algorithm is a
set of the family F as it was described previously, and so this algorithm constructs
implicitly a set cover of S with respect to F . Theorem 15 proves that this result can
also be obtained by a parallelizable procedure letting as open problem the design
of an NC algorithm with a constant approximation ratio with respect to the length
measure for the SSP.

7.2 RNC Algorithm with Constant Length Ratio

An RNC algorithm for the SSP is based on a parallelizable implementation of
the sequential 2 5

6 -approximation algorithm mentioned in Sect. 6.2.7. The only non-
trivially parallelizable steps of this algorithm are the computations of the minimum
cycle covers. Remember that, the problem of finding an optimal cycle cover is equiv-
alent to the problem of finding a maximum matching on a bipartite graph. In general,
it is not known if it can be done in either NC or in RNC. However, when the weights
of the graph are given in unary notation, a condition that can be satisfied in the case
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of this algorithm, a maximum matching can be found in RNC (see e.g. [49]), giving
the next theorem for the SSP.

Theorem 16 ([11]). For a string set S, there is an RNC algorithm that finds a super-
string of length at most 2 5

6 ×optl(S).

7.3 NC Algorithm with Compression Ratio 1
4+ε

Given a weighted directed graph, a natural greedy approach for finding a maximum
cycle cover is described as follows. Scan the arcs in non-increasing order of weights,
and select an arc that does not have the same head or the same tail with a previously
selected arc. Repeat until the selected arcs form a cycle cover. This approach finds
a cycle cover of weight at least half the weight of a maximum cycle cover [11]. As
mentioned in Sect. 6.2.3, if the graph is an overlap graph with loops then this greedy
approach always finds a maximum weight cycle cover.

For the development of an NC compression approximation algorithm with a con-
stant ratio for the SSP, a slightly different algorithm from the natural greedy for
the CCP is designed. This algorithm achieves a worse approximation ratio, but can
be parallelized. It is based on the idea that the natural greedy algorithm could be
only a bit worse if in each step it chooses instead of the maximum weight arc, one
with a similar weight. The arcs of the graph are partitioned into levels, such that the
weights of all arcs in a level are within a constant factor. Given a graph G and a real
c > 1, an arc e ∈ E(G) has c-level equal to k if ck−1 < w(e)≤ ck, and c-level equal
to 0 if w(e) ≤ 1. The algorithm operates like the natural greedy algorithm assum-
ing that all arcs in each level have the same weight. The usage of this algorithm on
overlap graphs for finding superstrings concludes to the next theorem.

Theorem 17 ([11]). For a set S of n strings, there is an NC algorithm for the SSP
that achieves a compression ratio 1

4+ε . It runs either in time O(log2 n log1+ε ||S||)
on a PRAM with ||S||+ n4 processors or in time O(log3 n log1+ε ||S||) on a PRAM
using n2 + ||S|| processors.

8 Inapproximability Bounds

Both minimization and maximization versions of the superstring problem are Max-
SNP-hard, which means that there exists an ε > 0 such that it is NP-hard to approx-
imate the SSP within a ratio of 1+ ε with respect to the length measure, or within
a ratio of 1− ε with respect to the compression measure. The practical side of this
theoretical result is expressed by explicit bounds to the approximation ratio in both
cases.

The first work to this direction appears in [41], where inapproximability bounds
are given for a special case of the SSP. Specifically, the result concerns SSP instances
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where the alphabet is {0,1} and every string is of the form 10m1n01m0n+410 or
01m0n10p1q01m0n10r1s01, where m,n, p,q,r,s ≥ 2. This special case is used also in
Theorem 5 that concerns APX-hardness results. Let us refer to this special case as
SSP2 for short. The next two theorems establish the inapproximability results.

Theorem 18 ([41]). The SSP2 is not approximable within 1 1
17245 with respect to the

length measure, unless P = NP.

Theorem 19 ([41]). For every ε > 0, the SSP2 is not approximable within 1 1
11216 −ε

with respect to the compression measure, unless P = NP.

In [64], inapproximability bounds for the SSP restricted to instances with equal
length strings are given. Moreover, these bounds are extended to instances over
alphabets of cardinality 2 improving the previous ones.

Theorem 20 ([64]). For any ε > 0, unless P = NP, the SSP on instances with equal
length strings is not approximable in polynomial time within ratio

• 1 1
1216 − ε with respect to the length measure, and

• 1070
1071 + ε with respect to the compression measure.

A very important result about the relation between the inapproximability of the
SSP over an alphabet of cardinality 2 and over any alphabet is established in the next
theorem. It implies that the alphabet cardinality does not affect the approximability
of the SSP.

Theorem 21 ([64]). Suppose that the SSP can be approximated by a ratio ε on
instances over an alphabet of cardinality 2. Then the SSP can be approximated by
a ratio ε on instances over any alphabet.

This result holds for both measures, length and compression. Therefore, the bounds
established in Theorem 20 hold also for alphabets of cardinality 2.

The computation of the inapproximability bounds for the SSP reveals the large
gap between these and the best known approximation ratios for the problem both
for the length measure and the compression measure.

9 Heuristics

The design of the approximation algorithms is oriented to the achievement of the
approximation ratio and not to the best possible result. On the other hand, real-
world applications usually need practically good results and not theoretically good
ratios for the result. A heuristic algorithm can satisfy this requirement by giving
solutions to SSP instances that have not approximation performance guarantee but
are experimentally close to the optimum. The greedy strategies seem to perform
much better than their proved approximation ratios both in average and in real-world
cases. In this section, the heuristic algorithms for the SSP are described.
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9.1 A Variant of the Natural Greedy

A problem with the GREEDY algorithm is that it makes choices that may forbid good
overlaps from future selection. In an attempt to eliminate this behaviour, a heuristic
that imitates GREEDY but chooses differently the string pair in each step is described
in [58]. Here, the modification is given in terms of strings instead of arcs in the
associated overlap graph as made in the original work. The selection criterion in
each step is not just the overlap but the overall influence of the choice of each string
pair. Given a string set S and two string si and s j in it, let

oi(si,s j) = a|o(si,s j)|
−max{|o(si′ ,s j)|,si′ ∈ S, i′ �= i}
−max{|o(si,s j′)|,s j′ ∈ S, j′ �= j}.

where a is a parameter that tunes the method. The idea is to take under consideration
also the overlaps that would be eliminated if the pair (si,s j) is selected. The pseudo-
code of this heuristic algorithm is exactly as the one of GREEDY except that line 3
changes to k = max{oi(s′i,s′j) : (s′i,s′j) ∈ L}. In experiments cited in [58] with this
heuristic algorithm, the best results were obtained with parameter a values from 2 to
2.5. In this case, the modified algorithm gives superstrings with average additional
length from the optimum about 1

5 the corresponding average additional length of
GREEDY.

9.2 A Heuristic Parametrized by a Learning Process

A three-stage heuristic algorithm for the SSP, named ASSEMBLY, is presented in [20].
It is based on the observation that the set of the remaining strings in the GREEDY

algorithm after a number of merges is very possible to contain only string pairs with
small overlaps. The ASSEMBLY algorithm, in a try to avoid mistakes, terminates the
greedy strategy when false merges are expected to occur, a decision based on the
number of remaining strings.

The first stage of the algorithm is similar to the GREEDY algorithm except that it
is terminated when the remaining string set has a cardinality c. The second stage of
the ASSEMBLY algorithm is also based on greedy choices, although not made among
all the possible overlaps, but only among these that pass a certification procedure.
Given two strings si and s j in the set of the remaining strings with |o(si,s j)| > 0,
a third string sk is a certificate if its overlap with both si and s j is greater than 0.
It is experimentally determined that for two strings si and s j with |o(si,s j)| > 0,
the existence of a certificate increases the probability their merge string participates
to the shortest superstring. The second stage of the ASSEMBLY algorithm has as input
the output string set of the first stage, and utilizes the idea of the certification to boost
the greedy choices to string pairs that are also certified. It is terminated when the
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cardinality of the remaining string set became equal to the parameter b. The third
stage of the ASSEMBLY algorithm is a restricted backtracking procedure. Its input
is the output string set of the second stage. It excludes some solutions based on a
learning process, and then performs an exhaustive search through the rest solution
space. In this way, it tries to balance between time efficiency and accuracy.

The ASSEMBLY algorithm is tested both on domains of random and real-world
SSP instances. The first is taken by random string generators over specific distribu-
tion specifications, and the second is taken by DNA sequence databases. A number
of instances of each domain are used as input to a learning procedure to specify the
parameters b, c and the excluded solutions of the third stage, and the rest is used to
test the ASSEMBLY algorithm. Every version of the ASSEMBLY algorithm was tested
on the domain that was used for its training, but also to the other domain. The results
show that ASSEMBLY performs significantly better when trained on the same domain
it was tested, whereas the randomly trained version has poor performance on the
real-world instances. The version of the algorithm that is trained by a successfully
sequenced DNA molecule achieves a very high accuracy and effectiveness to in-
stances of the same domain. This indicates that a successfully sequenced part of a
DNA molecule can be used to significantly speed up the sequencing of the whole
DNA molecule. The sequenced part can act as input to the learning procedure to de-
termine the suitable parameter values, and the whole molecule can then be obtained
by the ASSEMBLY algorithm with high accuracy and significantly sped up. The run-
ning time of the algorithm mainly depends on the running time of its third stage,
which may be exponential. The tested instances suggest a sub-exponential growth
of search space for this stage, but experiments on larger SSP instances are needed
to conjecture a polynomial growth.

9.3 Genetic Algorithm

Some heuristic algorithms are inspired by evolutionary processes in nature. Genetic
algorithms [22] belong to this class of heuristics. They are search methods that sim-
ulates the evolution process of natural selection, and used in many scientific fields to
solve optimization problems. In a genetic algorithm for an optimization problem, a
population, that is a collection of candidate solutions, called individuals, is evolved
to reach better solutions. The evolution happens in generations that reflect the al-
ternations to the population. During each generation the fitness of each individual
in the population is evaluated proportionally to the suitability of its value for the
objective function of the optimization problem. The most suitable individuals are
selected to perpetuate their kind by recombining their genomes, i.e., their solutions,
in specific points and by possibly randomly mutated. In this way, a new population
is formed and the procedure is repeated for the next generation. Commonly, the al-
gorithm terminates when either a maximum number of generations is produced, or
a satisfactory fitness level is reached.
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A genetic algorithm for the SSP is described in [66]. The input of the algorithm
is a set S of strings specifying the SSP instance. The genome of each individual in
the population is represented as a collection of strings from S in specific order, such
that it is a candidate solution to the SSP instance. A crucial point of the algorithm
is that an individual may not contain all the strings from S or may contain duplicate
copies of the same string. This choice makes the output not a permutation of the
strings in S giving in this way new potentials to the algorithm. The algorithm was
tested to SSP instances over an alphabet of cardinality 2 using specific values for
the parameters of the population size, the number of generations, and the mutation
rates. The input instances were generated randomly following the DNA sequencing
procedure. The experimental results show that when the number of the strings is 50
the genetic algorithm is better than GREEDY, while its dominance is lost when the
number of the strings becomes 80.

9.4 Coevolutionary Algorithm

Coevolutionary algorithms also belong in the class of the biologically inspired
evolutionary procedures. They generalize the idea of the genetic algorithms involv-
ing individuals from more than one species. Coevolution in nature refers to the
simultaneous evolution of two or more species with coupled fitness. There are two
different kinds of coevolution: the competitive one where the purpose is to obtain
exclusivity on a limited resource, and the cooperative one where the purpose is
to gain access to some hard to attain resource. In cooperative coevolutionary al-
gorithms there is a number of independently evolving species representing com-
ponents of potential solutions which together form complex structures to solve an
optimization problem. Complete solutions are obtained by assembling representa-
tive members of each species. The fitness of each individual depends on the quality
of the complete solutions it participates in. Therefore, the fitness function measures
how well an individual cooperates with individuals from other species to solve the
optimization problem.

A cooperative coevolutionary algorithm adjusted to the SSP is presented in [66].
It is based on populations of two species that evolve simultaneously. The first pop-
ulation contains prefixes of candidate solutions of the SSP instance, and the second
population contains candidate suffixes. Each species population evolves separately
and the only interaction between the two populations is through the fitness function.
Computation experiments similar to those for the genetic algorithm show that this
algorithm performs at least as good as the genetic algorithm and that requires less
computation time since the required involved populations are smaller and the con-
vergence is faster. Compared with GREEDY, it reaches better solutions after a number
of generations both in experiments with 50 and 80 input strings.

An attempt to combine the cooperative coevolutionary approach with natural
greediness concludes to the design of an improved method, which incorporates
both parallelism and greed as described in [66]. The method consists of three
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stages. In the first stage, three parallel and independent runs of the cooperative
coevolutionary algorithm operate, returning as output the populations of the prefixes
and suffixes, instead of the merge string of the best representatives. Also the GREEDY

algorithm runs and its solution is split into a prefix and a suffix. In the second stage,
two new collections of prefixes and suffixes are generated. The first contains the
best 1

3 individuals of the prefix population of each cooperative coevolutionary run,
and the prefix of the greedy solution. The second is constructed similarly by the
corresponding suffixes. In the third stage the cooperative coevolutionary algorithm
runs with the two collections constructed in the second stage as initial populations,
instead of random populations. The experimental results show that this algorithm
performs better than the simple cooperative coevolutionary algorithm even if the
cardinality of its populations and the number of its generations in each stage are
quite smaller.

9.5 Preserving Favoured Subsolutions

An extension of the genetic algorithm motivated by the desire to address the failure
of this algorithm in specific domains, is the PUZZLE algorithm described in [67]. It is
designed to improve the performance of the genetic algorithm on relative ordering
problems, i.e., problems where the order between genes is crucial instead of their
global locus in the genome. Corresponding genes to strings and genome to super-
string the SSP is exactly a problem of this kind. The main idea behind the PUZZLE

algorithm is to preserve good subsolutions found by the genetic algorithm by choos-
ing carefully the combination points between two solutions. In this way, it promotes
the assembly of increasingly larger good building blocks from different individuals,
a result that explains also the name of this algorithm.

Two different populations are evolved in the PUZZLE algorithm. A population of
solutions (s-population) and a population of building subsolutions (b-population).
Accordingly, we have the p-individuals and the b-individuals. Notice that this sit-
uation is completely different from the one described for the cooperative coevo-
lutionary algorithm, since here the two populations are not complementary com-
ponents of a complete solution. The interaction between these two populations is
performed differently in each way. The fitness of a b-individual depends on the fit-
ness of the s-individuals that contain it, while the choice of the combination points
in s-individuals is affected by the b-individuals that contain these points.

The PUZZLE algorithm was compared with the genetic algorithm since it is its ex-
tension and with GREEDY. Experimental results with SSP instances over alphabet of
cardinality 2 show that the PUZZLE algorithm outperforms both GREEDY and genetic
algorithm, producing shorter superstrings in the average. The result is obtained by
instances with 50 and 80 strings. Comparing with the cooperative coevolutionary
algorithm, PUZZLE is better for instances with 50 strings, whereas it is worse for
instances with 80 strings.
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In [67], two expansions of the PUZZLE algorithm are discussed. The first one
is a direct combination of PUZZLE with cooperative coevolution. The two ideas of
the complementary components in different populations and of the solutions and
subsolutions also in different populations are combined to derive a new algorithm.
During this algorithm four populations are evolved:

1. population of prefixes,
2. population of suffixes,
3. population of building sub-prefixes, and
4. population of building sub-suffixes,

where the interaction between 1 and 2 operates according to cooperative
coevolutionary algorithm, and the interaction between 1, 3 and between 2, 4 op-
erates according to algorithm PUZZLE. The second expansion of PUZZLE involves
ideas from messy genetic algorithms [21]. They are iterative optimization algo-
rithms that use local search techniques, adaptive representation of the genomes, and
decision sampling strategies.

9.6 Discrete Neural Network

In computer science, neural networks are learning programming structures that
simulate the function of biological neural networks as the one constitutes the human
brain. They are composed of artificial neurons and connections between them called
synapses. Neural networks are used for solving artificial intelligence problems as
well as combinatorial optimization problems.

A discrete neural network used for solving the SSP is described in [35]. Dis-
creteness concerns the values that neurons can handle. In general, it is formed by
n neurons, where the state of each neuron i ∈ In is defined by its output vi. The
vector V = (v1,v2, . . . ,vn) whose components are the corresponding neuron outputs
is called the state vector. The energy of each state vector is given by the energy
function of the network. The aim of the network is to minimize the energy function
via its learning operation which happens in iterations. The energy function usually
coincides with the objective function of the optimization problem to solve, such that
a local minimum of the former is also a local, and possibly global, optimum to the
latter. In the case of the SSP, and given a string set S, any feasible vector of the neural
network represents an order of the strings in S, utilizing the permutation expression
of the SSP solutions. So, feasible state vectors are those correspond to permuta-
tions, and vi = k means that string sk is placed in the i-th place in the superstring.
Notice that there is an one-to-one correspondence between neurons and strings in
S. In each learning iteration, the neural network searches different solutions using
neuron updating schemes. Given a vector V = (v1,v2, . . . ,vn) corresponding to the
current state, and two neurons i and j, 1 ≤ i < j ≤ n, the network considers updates
to the following different states:

• (v1, . . . ,vi,vi+1, . . . ,v j,v j+1, . . . ,vn),
• (v1, . . . ,vi,v j+1, . . . ,vn,vi+1, . . . ,v j),
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• (vi+1, . . . ,v j,v1, . . . ,vi,v j+1, . . . ,vn),
• (vi+1, . . . ,v j,v j+1, . . . ,vn,v1, . . . ,vi),
• (v j+1, . . . ,vn,v1, . . . ,vi,vi+1, . . . ,v j), and
• (v j+1, . . . ,vn,vi+1, . . . ,v j,v1, . . . ,vi),

that correspond to the combinations of the three parts that the state vector is sepa-
rated into according to the specific two neurons. For each of these candidate solu-
tions the one that decrease mostly the energy function value is selected as the next
network state. This procedure is repeated until convergence is detected, thus a state
vector is found where the updates with all pairs of neurons do not cause any change.
Due to the used update scheme, the network remains in a feasible state along all
iterations. Once the network converges, the stable state represents a local minimum
of the energy function which is equivalent to a local maximum of the total overlap
between the strings in S.

Experimental results are performed with SSP instances for strings of fixed and
variable lengths. The neural network algorithm runs 100 times for each instance
and its results were compared with those of GREEDY. In experiments with fixed string
length, neural network outperforms GREEDY in most cases on average, and always on
best results. In experiments with variable string lengths, neural network outperforms
GREEDY both on average and best results.

9.7 GRASP with Path Relinking

A Greedy Randomized Adaptive Search Procedure (GRASP) is an iterative meta-
heuristic for combinatorial optimization, which is implemented as a multi-start pro-
cedure where each iteration is made up of a construction phase and a local search
phase. The first phase constructs a randomized greedy solution, while the second
phase starts at this solution and applies repeated improvement until a locally op-
timal solution is found. The procedure continues until a termination condition is
satisfied such as a maximum number of iterations. The best solution over all itera-
tions is kept as the final result. GRASP seems to produce good quality solutions for
a wide variety of combinatorial optimization problems. A survey on GRASP can be
found in [47] while an annotated bibliography in [12]. Path Relinking (PR) [19] is
an approach to integrate intensification and diversification strategies in search for
optimal solutions. PR in the context of GRASP is introduced in [32] as a memory
mechanism for utilizing information on previously found good solutions.

In [17], an implementation of GRASP with PR for solving the SSP is presented.
It solves large scale SSP instances of more than 1,000 strings and outperforms the
GREEDY algorithm in the majority of the tested instances. The proposed method is
able to provide multiple near-optimum solutions that is of practical importance for
the DNA sequencing, and admits a natural parallel implementation. Extended com-
putational experiments on a set of SSP instances with known optimal solutions,
produced by using the integer programming formulation presented in Sect. 5.2, in-
dicate that the new method finds the optimum in most of the cases, and its average
error relative to the optimum is close to zero.
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10 Asymptotic Behaviour

It can be observed a discrepancy between the theoretical results from the worst-case
analysis and the experimental observations from the approximation and heuristic
algorithms for the SSP. A possible explanation for this fact is given by the average-
case analysis for the problem.

The asymptotic behaviour of the compression achieved by an optimal superstring
is analysed in [1] under a certain probability model for the lengths of the strings and
the letter distribution in them. The average optimal compression of n strings tends
to n logn

Hμ
, where Hμ =−∑m

i=1 p(ai) log p(ai) is the Shannon entropy of the choosing
law μ for the letters from the alphabet to construct the strings.

The asymptotic behaviour of some algorithms for the SSP is based on the above
result and explains the good performance of the greedy strategies. In [13], the algo-
rithms GREEDY, MGREEDY, and NAIVE are analysed in a probabilistic framework and
it is proved that they are asymptotically optimal. In [65], the results of the asymptotic
behaviour are extended to the TGREEDY and DIMATCH algorithms, after the observa-
tion that the performance of TGREEDY is never worse than that of MGREEDY, and that
the intermediate result of the maximum directed matching in DIMATCH coincides
actually with the result of MGREEDY (see Theorem 12). The steps of DIMATCH up to
the construction of the maximum directed matching are analysed in a probabilistic
way with the additional assumption that all strings have the same length, and the
asymptotic optimality of these algorithms is established.

By the complexity results in Sect. 3.2, we know that there is not PTAS for the
SSP for both performance measures unless P = NP. In [48], a probabilistic PTAS
for the SSP that achieves a (1+ ε)-approximation in expected polynomial time, for
every ε > 0, is presented. This algorithm

1. either returns a possibly non-optimal solution, the solution of GREEDY, in poly-
nomial time,

2. or returns an optimal solution, via a maximum Hamiltonian path on the associ-
ated overlap graph, in non-polynomial time.

Under certain conditions in the data of the SSP instance, in the first case GREEDY has
asymptotic approximation ratio 1+ ε with respect to the length measure, and in the
second case the expected running time of finding the maximum Hamiltonian path
can be polynomial, since it depends on the time spent when it is executed and its
execution probability. Analysing these situations, for a random input the algorithm
has approximation ratio 1+ ε with respect to the length measure and polynomial
expected running time.

11 Smoothed Analysis

The classical complexity analysis implies that the SSP is a hard problem in the
worst case. The average-case analysis explains the effectiveness of greedy strategies
under suitable probability models which are far from reality. In addition to these two
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frameworks, the latest developed smoothed analysis explains why greed works so
well for the SSP in real-world instances of the DNA sequencing practice. Smoothed
analysis is introduced in [52] to demonstrate the fact that some algorithms like the
simplex algorithm run in exponential time in the worst case, but in practice they are
very efficient.

In [36], the smoothed analysis of the GREEDY algorithm is realized, making the
observation that the asymptotic optimal behaviour of the greedy techniques is due to
the fact that the random strings do not have large overlaps, and so the concatenation
of the strings is not much longer than the shortest common superstring. However, the
practical instances arising from DNA assembly are not random and the input strings
have significantly large overlaps. By defining small and natural perturbations that
represent the mutations of the DNA sequences during evolution, it is proved that for
any given instance S of the SSP, the average approximation ratio of the GREEDY algo-
rithm on a small random perturbation of S is 1+o(1). This result points out that the
approximation inefficiency of SSP instances indicating by the Max-SNP-hardness
result can be destroyed by a very small perturbation. As very handily noted, if there
had been a hard instance for the DNA assembly problem in history, the hardness
would have likely been destroyed by the random mutations of the DNA sequences
during the evolution. This result makes the SSP a characteristic case where the com-
plexity is different in the worst-case analysis and in the smoothed analysis.
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35. López-Rodrı́guez, D., Mérida-Casermeiro, E.: Shortest common superstring problem with dis-
crete neural networks. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds.) Adaptive and
Natural Computing Algorithms. Lecture Notes in Computer Science, vol. 5495, pp. 62–71.
Springer, Berlin (2009)

36. Ma, B.: Why greed works for shortest common superstring problem. In: Ferragina, P., Landau,
G. (eds.) Combinatorial Pattern Matching. Lecture Notes in Computer Science, vol. 5029, pp.
244–254. Springer, Berlin (2008)

37. Maier, D., Storer, J.A.: A note on the complexity of the superstring problem. Technical Report
233, Computer Science Laboratory, Princeton University, Princeton (1977)

38. Middendorf, M.: More on the complexity of common superstring and supersequence prob-
lems. Theor. Comput. Sci. 125(2), 205–228 (1994)

39. Middendorf, M.: Shortest common superstrings and scheduling with coordinated starting
times. Theor. Comput. Sci. 191(1–2), 205–214 (1998)

40. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling sales-
man problems. J. ACM 7, 326–329 (1960)

41. Ott, S.: Lower bounds for approximating shortest superstrings over an alphabet of size 2.
In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) Graph-Theoretic Concepts in Computer
Science. Lecture Notes in Computer Science, vol. 1665, pp. 55–64. Springer, Berlin (1999)

42. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity.
Prentice-Hall, Englewood Cliffs (1982)

43. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes.
J. Comput. Syst. Sci. 43(3), 425–440 (1991)

44. Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with distances one and
two. Math. Oper. Res. 18(1), 1–11 (1993)
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Computational Comparison of Convex
Underestimators for Use in a Branch-and-Bound
Global Optimization Framework

Yannis A. Guzman, M.M. Faruque Hasan, and Christodoulos A. Floudas

1 Introduction

Applications that require the optimization of nonlinear functions involving
nonconvex terms include reactor network synthesis, separations design and syn-
thesis, robust process control, batch process design, protein folding, and molecular
structure prediction. Deterministic global optimization algorithms can proceed
to determine the global minimum of a nonconvex nonlinear optimization model
(NLP) through a branch-and-bound framework. Node fathoming occurs through
the assignment of lower and upper bounds over each node’s subdomain. Lower
bounds are generated through convexification to yield a convex NLP at each node.
The tightness of the resulting underestimator depends on the method of convex-
ification and how its strengths align with the characteristics of the function over
the subdomain. In practice, the performance of the algorithm relies on tight lower
bounds to increase the efficiency and frequency of fathoming and pruning for rapid
convergence to the global optimum.

There are certain nonconvex functional forms for which explicit convex en-
velopes are known or can be derived, including bilinear [6, 18], trilinear [19, 20],
and fractional terms [17, 27, 28]. In cases where either the convex envelope or an al-
ternative tight relaxation do not exist, or can only be generated with prohibitive com-
putational cost, a general method for the relaxation and convexification of the func-
tion can be employed. In [16], a novel convexification method was presented that
generates the convex relaxation L(x) of any C2-continuous function f (x) through
the subtraction of a positive quadratic term with an α parameter that is designed to
dominate the nonconvexities of f (x):

L(x) = f (x)−α ∑
i

(
xU

i − xi
)(

xi − xL
i

)
. (1)
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When utilized in a branch-and-bound framework, the method, now called
α-branch-and-bound (αBB), can guarantee ε-convergence to the global minimum
within a finite number of iterations [1, 7]. This chapter will explore the convexifi-
cation strength of the nonuniform αBB underestimator (Sect. 2.1), as well as the
number of competing methods designed to provide tight, convex underestimators,
including:

• piecewise αBB (P-αBB, Sect. 2.2)
• generalized αBB (G-αBB, Sect. 2.3),
• nondiagonal αBB (ND-αBB, Sect. 2.4),
• Brauer αBB (B-αBB, Sect. 2.5),
• Rohn+E αBB (RE-αBB, Sect. 2.6),
• and the moment approach ( fdk, Sect. 2.7).

Their performance will be gauged via convexification of 20 multivariate, box-
constrained, nonconvex functions whose global minima are known [13]. Section 3
of this chapter outlines implementation details of all the methods, Sect. 4 discusses
the results, and Sect. 5 presents our conclusions.

2 Overview of Methods

2.1 Method 1: Nonuniform Diagonal Perturbation I (αBB)

Androulakis et al. [7] presented the form of the αBB underestimator with nonuni-
form parameters αi:

LαBB(x) = f (x)−∑
i

αi
(
xU

i − xi
)(

xi − xL
i

)
, (2)

where f (x) is a nonconvex function and LαBB(x) is the resulting αBB underestima-
tor. As previously stated, the structure of the term subtracted from f (x) guarantees
that LαBB(x) ≤ f (x) over the entire domain given adequate parameters αi ≥ 0.
The tightness of LαBB (x) relies on determining small but sufficient αi parameters
that yield a tight but guaranteed convex underestimator, as the maximum separa-
tion distance dmax between f (x) and LαBB (x) is directly proportional to the αi

parameters [16]:

dmax(LαBB (x)) = max
x∈[xL,xU ]

( f (x)−LαBB (x)) =
1
4 ∑

i
αi

(
xU

i − xL
i

)2
. (3)

Utilizing the eigenvalues of the Hessian matrix H as a means to guarantee positive
semidefiniteness and thus convexity, the subtracted positive quadratic term yields a
nonuniform diagonal shift from the original function’s Hessian matrix:

HLαBB(x) = Hf (x)+2Δ, (4)
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where the diagonal elements of Δ are αi and the nondiagonal elements are 0. As
a means of estimating H over the entire domain, Androulakis et al. [7] proposed
utilizing interval arithmetic in deriving bounds on each Hessian term hi j, yielding
an interval Hessian matrix H ′ of terms h′

i j =
[
hi j,hi j

]
and a relaxed problem for

calculating the elements of Δ that yield the tightest convex underestimator.
Of the many methods for calculating αi that are proposed by Adjiman et al. [3]

and explored in [2, 3], computational studies indicated that a scaled method de-
rived from Gershgorin’s Circle Theorem [12], referred to as the scaled Gershgorin
method, showed consistently strong performance in convergence towards the global
optimum with the αBB algorithm:

αi = max

{

0,−1
2

(

hii −∑
j �=i

∣
∣h′

i j

∣
∣ d j

di

)}

∀i, (5)

where
∣
∣
∣h′

i j

∣
∣
∣ = max

{∣
∣hi j

∣
∣ ,

∣
∣hi j

∣
∣}. There is a degree of freedom when choosing the

scaling factors di; here, di = xU
i − xL

i is chosen as suggested and supported in [2, 3].
For a detailed look at theory and applications of the αBB method, the reader is
directed to [11].

2.2 Method 2: Piecewise Diagonal Perturbation (P-αBB)

The αi parameters of the αBB method dominate the nonconvexities of f (x) over the
entire domain. A natural extension, introduced by Meyer and Floudas [21], attempts
to produce a tighter underestimator by generating a once-differentiable, piecewise
quadratic underestimator after subdividing each variable xi into Ni subdomains:

LP-αBB(x) = f (x)−q(x), (6)

where

q(x) = ∑
i
(αk

i (x
k
i − xi)(xi − xk−1

i )+β k
i xi + γk

i ) for xi ∈ [xk−1
i ,xk

i ],

the kth interval represents [xk−1
i ,xk

i ], and [xL
i ,x

U
i ] = [x0

i ,x
Ni
i ]. The system of equations

yielded by requiring q(x) to be smooth, continuous, and match f (x) at the vertices
of the domain produces the following analytical form for parameters β k

i and γk
i :

β 1
i =−

Ni−1

∑
k=1

sk
i (x

U
i − xk

i )

xU
i − xL

i

∀i (7)

β k
i = β 1

i +
k−1

∑
j=1

s j
i ∀i,k = 2, . . . ,Ni (8)
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γk
i =−β 1

i x0
i −

k−1

∑
j=1

s j
i x j

i ∀i,k = 1, . . . ,Ni (9)

where sk
i =−αk

i (x
k
i −xk−1

i )−αk+1
i (xk+1

i −xk
i ). Subdividing the domain reduces the

cumulative effects of highly nonconvex regions, thus yielding a spline underesti-
mator LP-αBB(x) that can tighten at each subdomain while meeting continuity and
smoothness requirements.

2.3 Method 3: Nonquadratic Diagonal Perturbation (G-αBB)

With the goal of generating a diagonal perturbation matrix whose resulting underes-
timator is at least as tight as LαBB (x), Akrotirianakis and Floudas [4, 5] introduced
a generalized separable but nonquadratic form for the relaxation term of the αBB
underestimator:

LG-αBB(x) = f (x)−∑
i

(
1− eγi(xU

i −xi)
)(

1− eγi(xi−xL
i )

)
(10)

where γi is selected by solving the system of nonlinear equations

�i + γ2
i + γ2

i eγi(xU
i −xL

i ) = 0, i = 1,2, . . . ,n. (11)

Here, �i ≤ 0 and represents a measure of the nonconvexity of f (x), which can be
estimated via the scaled Gershgorin method and related to αi of Method 1 (αBB):

�i =−2α i. (12)

The αi parameters from the αBB method provide an upper bound on G-αBB αi

parameters and are hence denoted with an overbar. Parameters γi and αi are related
by the equation

γi =
2log

(
1+

√
αi

(
xU

i − xL
i

)
/2

)

xU
i − xL

i

. (13)

The parameters obtained from (11) represent lower bounds on the eventual
parameters of the convex underestimator. While LG-αBB(x;α) ≥ LαBB(x;α), the
method utilizes a heuristic algorithm that attempts to prove the convexity of a given
LG-αBB(x) while updating γi (and corresponding αi) towards γ i (α i), whose corre-
sponding underestimator (LαBB (x)) is guaranteed convex. The algorithm is repre-
sented graphically in Fig. 1; if convexity is not proven before the maximum separa-
tion distance of LG-αBB (x) becomes greater or equal to that of LαBB (x), then the
algorithm defaults to LαBB (x).

The text and pseudocode of the convexification algorithm presented in [4]
stated to update all γK

i at every Kth outer-loop iteration. However, this step would
not require comparing the maximum separation distance with the classical αBB



Comparison of Convex Underestimators 233

START

• Calculate a i via aBB,g i via (13), �i via (12), g
i
via (11), ai via (13)

• K = 1, g K
i = gi, aK

i = a i

• g K+1
i = hg K

i
• K = K+1

J = 1, Λ1 = {X}

dmax G-aBB x;aK
))

< dmax ( aBB (x;a ))
FALSE

STOP
TRUE

• Xlast = last element of Λ1, Λ1 = Λ1 \{Xlast}
• Find lower bounds �i on eigenvalues of interval

Hessian
[
∇2

G-aBB x;aK
)]

withx∈ Xlast
• I− = {i : �i < 0}

I− = ∅
FALSE • Bisect all

[xL
i,last,x

U
i,last] with

i ∈ I− and add new
subdomain to Λ1

• J = J+2|I−|
TRUE

J = J−1

Λ1 = ∅
TRUE

STOPFALSE

J ≤ 2n +1
FALSE

TRUE

Choose aBB (x;a )

Choose G-aBB x;aK
)

Fig. 1 Flowchart representing the original G-αBB algorithm (“v1”) for ver-
ifying convexity and parameter selection, where Λ1 is a set of subdomains,
{X}= {

[xL
i ,x

U
i ],∀i

}
, and η > 1 is an updating parameter. In the proposed alterna-

tive version (“v2”), the updating step would become γK+1
i = ηγK

i , ∀i ∈ I−

parameters from Method 1, as all αK
i will progress towards α i at the same relative

rate and the maximum separation distance criterion will be breached when αK
i ≥ α i.

In one of the examples Akrotirianakis and Floudas [4] present, it is inferred that



234 Y.A. Guzman et al.

only some γK
i needed to be updated, as only particular dimensions displayed nega-

tive lower bounds on the corresponding eigenvalues of the underestimator and were
thus preventing the underestimator from being declared convex. This alternative up-
dating scheme, applied whenever the inner loop breaks and according to the most
recently obtained set I−, would necessitate the maximum separation distance check,
and represents an attempt to increase particular αi’s beyond their corresponding α i

so as to obtain a validated convex underestimator with a lower maximum separation
distance than LαBB(x;α). Both of these strategies will be explored in this work,
delineated as G-αBB[v1] and G-αBB[v2] for the explicit and inferred strategies,
respectively.

2.4 Method 4: Nondiagonal Perturbation Elements I (ND-αBB)

The underestimator methods presented in Sects. 2.1 and 2.2 use a separable
quadratic term that yields a guaranteed convex underestimator by shifting the
Hessian matrix with diagonal perturbations. A natural extension to this idea is
to search for a tighter underestimator by applying a perturbation matrix that con-
tains nondiagonal elements. Skjäl et al. [25] presented criteria for when nondiagonal
terms would represent a possible improvement over diagonal perturbations alone, as
well as two methods for obtaining a Hessian perturbation matrix with nondiagonal
terms. The perturbation matrix HP replaces Δ, and the form of the underestimator
is given as

LND-αBB(x) = f (x)−∑
i

αi
(
xU

i − xi
)(

xi − xL
i

)
+∑

i
∑
j>i

(
βi jxix j +

∣
∣βi j

∣
∣zi j

)
, (14)

where

zi j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max

{
xix

L
j + xL

i x j − xL
i xL

j ,

xix
U
j + xU

i x j − xU
i xU

j

}

if βi j < 0

max

{−xix
L
j − xU

i x j + xU
i xL

j ,

−xix
U
j − xL

i x j + xL
i xU

j

}

if βi j > 0,

which can be modeled by following inequality constraints [25]:

zi j ≥ xix
L
j + xL

i x j − xL
i xL

j

zi j ≥ xix
U
j + xU

i x j − xU
i xU

j

}

∀i, j : j > i,βi j < 0 (15)

zi j ≥ −xix
L
j − xU

i x j + xU
i xL

j

zi j ≥ −xix
U
j − xL

i x j + xL
i xU

j

}

∀i, j : j > i,βi j > 0. (16)
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The symmetric perturbation matrix

HP =

⎡

⎢
⎢
⎢
⎢
⎣

2α1 β1,2 · · · β1,n

β1,2
. . .

. . .
...

...
. . .

. . . βn−1,n

β1,n · · · βn−1,n 2αn

⎤

⎥
⎥
⎥
⎥
⎦

is chosen such that the convexity of the resulting underestimator is guaranteed.
Using this requirement as a constraint, the maximum underestimation error is
minimized as per the following NLP:

min
α ,β

∑
i

αi

4
(xU

i − xL
i )

2 +∑
i

∑
j>i

∣
∣βi j

∣
∣

4
(xU

i − xL
i )(x

U
j − xL

j )

s.t. hii +2αi −∑
j �=i

∣
∣h′

i j +βi j
∣
∣ ≥ 0 ∀i

αi ≥ 0 ∀i

βi j = β ji ∀i, j : j > i.

(17)

Skjäl et al. [25] provided a decision tree by which HP can be calculated without
solving problem (17). First, if all off-diagonal elements of H ′ are centered on 0,
that is, if

mid(h′
i j) = 0 ∀i, j : j > i,

where mid(h′
i j) = (hi j +hi j)/2, then the classical nonuniform diagonal perturbation

is a unique optimal solution to problem (17) and should be chosen (i.e., Method 1—
αBB). Second, if the condition

hii −∑
j �=i

rad(h′
i j)≤ 0 ∀i,

where rad(h′
i j) = (hi j − hi j) / 2, holds, then an optimal solution to problem (17) is

given by

αi =−1
2

(

hii −∑
j �=i

rad(h′
i j)

)

∀i (18)

βi j =−mid
(
h′

i j

) ∀i, j. (19)

As a last resort, problem (17) has the same optimal solutions as the following linear
program (LP):
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min
α ,β

∑
i

αi
(
xU

i − xL
i

)2
/4−∑

i
∑
j>i

j∈J+i

βi j
(
xU

i − xL
i

)(
xU

j − xL
j

)
/4

+∑
i

∑
j>i

j∈J−i

βi j
(
xU

i − xL
i

)(
xU

j − xL
j

)
/4

s.t. hii +2αi − ∑
j �=i

j∈J+i

(
hi j +βi j

)
+ ∑

j �=i
j∈J−i

(
hi j +βi j

) ≥ 0 ∀i

αi ≥ 0 ∀i

βi j = β ji ∀i, j : j > i

min
{

0,−mid(h′
i j)

} ≤ βi j ≤ max
{

0,−mid(h′
i j)

} ∀i, j,

(20)

where J+i =
{

j : j �= i,mid(h′
i j)≥ 0

}
and J−

i =
{

j : j �= i,mid(h′
i j)< 0

}
.

2.5 Method 5: Nonuniform Diagonal Perturbation II (B-αBB)

The novel methods presented by Skjäl and Westerlund [24] utilize alternatives to
the scaled Gershgorin method as a means for guaranteeing the convexity of the re-
sulting underestimator via determining lower bounds on eigenvalues of H ′ and thus
proving positive semidefiniteness. The first of two new methods utilizes an eigen-
value inclusion set developed by Brauer [9] similar to Gershgorin’s Circle Theorem.
By using an extension of Brauer’s method towards interval matrices and minimizing
the maximum underestimation error, the following convex NLP gives an alternative
diagonal perturbation matrix:

min
α ∑

i
αi

(
xU

i − xL
i

)2
/4

s.t. hii +2αi ≥ 0 ∀i

αi ≥ 0 ∀i

RiR j

(hii +2αi)
(
h j j +2α j

) ≤ 1 ∀i, j : j > i,Ri > 0,R j > 0,

(21)

where Ri = ∑ j �=i

∣
∣
∣h′

i j

∣
∣
∣. The resulting parameters αi are used with the quadratic αBB

underestimator form in Eq. (2).



Comparison of Convex Underestimators 237

2.6 Method 6: Nondiagonal Perturbation Elements II (RE-αBB)

The second method applied by Skjäl and Westerlund [24] for bounding the eigenval-
ues of a matrix was specifically developed for interval matrices by Rohn [23]. The
application of Rohn’s method yields another symmetric nondiagonal perturbation
matrix HP with the same form as in Sect. 2.4. By minimizing the separation error of
the resulting underestimator and modeling the constraints given by Rohn’s method
as a semidefinite programming constraint, elements αi and βi j of the underestima-
tor form given by (14) are obtained by solving the following semidefinite program
(SDP):

min
α ,β ,b

∑
i

αi
(
xU

i − xL
i

)2
/ c1 +∑

i
∑
j>i

bi j
(
xU

i − xL
i

)(
xU

j − xL
j

)
/ c2

s.t. mid(H ′
0)+E +HP ) ρ

(
rad(H ′

0)+ |E|)

αi ≥ 0 ∀i

βi j = β ji ∀i, j : j > i

bi j ≥ βi j ∀i, j : j > i

bi j ≥ −βi j ∀i, j : j > i,

(22)

where ρ (A) denotes the spectral radius of matrix A and terms h′
0,i j of H ′

0 are
defined as

h′
0,i j =

{
h′

i j if i �= j
[
hi j,hi j

]
if i = j.

There is a degree of freedom in choosing c1 and c2. By choosing c = (6,12), the
objective minimizes the average separation error. Here we use c = (4,4), which
minimizes the maximum separation error as per the original presentation of the un-
derestimator for ND-αBB (which itself could be similarly modified to minimize
the average separation error). There is also a degree of freedom in choosing an ap-
propriate matrix E for (22), with options E = 0 and E = diag(rad(H ′)) provided
by Adjiman et al. [3]. Both options are explored here, denoted as RE-αBB[0] and
RE-αBB[1], respectively.

2.7 Method 7: Using Putinar’s Positivstellansatz ( fdk)

The only method to diverge from utilization of the features of H ′ as a method to
guarantee convexity of the underestimator is that of Lasserre and Thanh [15]. The
moment approach is only applicable to polynomial functions, and searches for a
polynomial function fd(x), i.e., constrained to degree d, that is both guaranteed
convex and meets the criterion fd(x) ≤ f (x). It should be emphasized that fd(x)
fully represents the underestimator and is not subtracted from f (x) as was seen in
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the other methods. This method is also the only one that does not constrain the
underestimator to match the endpoints of f (x). Key to the method is utilization of
Putinar’s Positivstellansatz [22] to guarantee convexity of fd(x) and underestima-
tion of f (x). For Archimedian quadratic modules

QB =

{
n

∑
j=0

σ j(x)g j(x) : σ j(x) ∈ Σ[x] j = 1,2, . . . ,n

}

, (23)

where B = [0,1]n, g j(x) =
(

xU
j − x j

)(
x j − xL

j

)
, j = 1,2, . . . ,n, g0 = 1, and Σ[x]

represents the cone of sum of squares, Putinar states that every strictly positive
polynomial on B belongs to QB. The constraint for convexity is given as

yT∇2 fd(x)y ≥ 0 ∀x ∈ [xL,xU ],y ∈ R
n : ‖y‖ ≤ 1. (24)

The underlying mechanism behind Method 7 is to subtract from f (x) a positive
polynomial over B (guaranteeing underestimation) while constraining the result to
be convex. The subtracted polynomial ∑n

j=0 σ j(x)g j(x) is constructed from positive
quadratics g j(x) multiplied by polynomials selected from Σ[x], thus guaranteeing
its positivity. A hierarchy of SDPs can be constructed, parametrized by integer
k ≥ max{'d /2(,'(deg f )/2(}, to construct the underestimator fdk(x), i.e., from
program k and constrained to degree d. Higher values of k represent a higher
complexity in guaranteeing positivity, and as k → ∞ the tightest possible fd(x)
is obtained. Alongside the general formulation, Lasserre and Thanh [15] present
a considerably simplified SDP formulation for obtaining the underestimator by
restricting fdk(x) to be quadratic (d = 2):

max
b,a,A

b+aTγ + 〈A,Λ〉

s.t. f (x) = b+aTx+xTA+
n

∑
j=0

σ j(x)g j(x) ∀x

A ) 0

σ0(x) ∈ Σ[x]k
σ j(x) ∈ Σ[x]k−1 j = 1,2, . . . ,n,

(25)

where Σ[x]k denotes the cone of sum of squares of degree at most 2k. Parameters γi

and Λi j are members of the moment matrix of order 1 of the normalized Lebesgue
measure λ on B,

Mλ =

[
1 γT
γ Λ

]
,

and evaluate to

γi =
∫

B
xi dλ ∀i (26)

Λi j =
∫

B
xix j dλ ∀i, j = 1,2, . . . ,n. (27)
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The parameter k is chosen here to be its minimum value, i.e.,

max{'d /2(,'(deg f )/2(} ,

as the complexity of the SDP problem explodes with large k. Solving the program
yields fdk(x) = b+aTx+xTAx.

Problem (25) is still difficult to implement as written due to symbolic represen-
tation of the sum of squares search space. Thus, the first constraint is rewritten on
the monomial basis:

fα = hα +
n

∑
j=0

〈Z j,C j
α〉 ∀α ∈ N

n
2k, (28)

where α ∈ N
n
2k represents the monomial basis of the ring of polynomials R[x]2k

such that ∑i αi ≤ 2k, that is, the degree of each monomial is at most 2k. With
the selection of k as stated above, k is no smaller than deg f , and thus each fα
represents the coefficient of f (x) of the corresponding monomial xα : α ∈ N

n
deg f .

Each variable hα is the corresponding variable coefficient of xα from fdk(x); for
example, with variable coefficients b, a, and A of problem (25) and n = 2, vector
(hα) =

[
b,aT,A11,A12 +A21,A22

]T
. Each variable matrix Z j is constrained to be

symmetric and positive semidefinite:

Z j ) 0 j = 0,1, . . . ,n, (29)

while each coefficient matrix C j
α is defined as

g0(x)vk(x)vk(x)
T = ∑

α∈Nn
2k

C0
αxα (30)

g j(x)vk−1vk−1(x)
T = ∑

α∈Nn
2k

C0
αxα j = 1,2, . . . ,n (31)

where the vector vk =
(
xα : α ∈ N

n
k

)
. Solving the equalities for each C j

α yields

n · (n+2k
n

)
many coefficient matrices of size

(n+k−1
n

)×(n+k−1
n

)
for C j

α, j = 1,2, . . . ,n,

and
(n+2k

n

)
many matrices of size

(n+k
n

)× (n+k
n

)
for C0

α.

3 Implementation Details

3.1 General Implementation Details

We compared the methods under a general implementation that would be utilized in
an automated workflow to construct the underestimator for any function. Automatic
differentiation was employed to construct all Hessian matrices. Second-order au-
tomatic differentiation was performed via reverse accumulation and then forwards
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accumulation of operators using C++ template headers provided by Bendtsen and
Stauning [8] and overloaded for interval objects. Interval arithmetic was imple-
mented using header files from the Boost C++ Interval Arithmetic Library (http://
www.boost.org, version 1.53), although it should be noted that the final version of
the interval object was heavily modified from the original implementation due to
difficulties with transcendental functions and rational exponents. All convex NLPs
that resulted from obtaining a convex underestimator were solved via external calls
to local NLP solver CONOPT [10] through GAMS. Recorded times include all as-
pects of creating and minimizing the underestimator, except in the case of fdk as
noted below, and exclude the overhead of any external calls.

3.2 Method-Specific Implementation Details

To make the implementation of P-αBB general for any selected number of subdo-
mains, a recursive algorithm was implemented for variable domain division. Both
2 and 4 intervals per each xi are tested here, denoted as P-αBB[2] and P-αBB[4],
respectively. The resulting piecewise function from P-αBB was minimized with
CONOPT by directly interacting with the solver using a precompiled external mod-
ule with a GAMS front-end.

To initiate the G-αBB method, the nonlinear system of equations in (11) was
solved via an external call to MATLAB and by using γ i as an initial guess to the
solution. The convexification algorithm was prevented from proceeding when the
bounds of a dimension of a subdomain in Λ1 (see Fig. 1) spanned less than 5×10−6.
Updating parameter η was chosen to be 1.1, as suggested by Akrotirianakis and
Floudas [4].

The LP from ND-αBB in (20) and the NLP from B-αBB in (21) were solved
via external calls to GAMS with CPLEX (ILOG 2012, v12.4) and CONOPT, re-
spectively. It should be noted that the allowable domain in problem (21) does not
prevent the final constraint from having a zero denominator, a fact which can cause
premature termination in NLP solvers such as CONOPT and required special atten-
tion and constraint rearrangements in a few cases.

The SDP in problem (22) for the RE-αBB method could not be solved through
GAMS and was solved via MATLAB toolbox CVX [14, v1.22] calling the SeDuMi
SDP solver [26, v1.1R3].

The moment approach ( fdk) was by far the most difficult to implement. Due to the
enormous amount of matrices being generated in the formulation of the problem, for
which some scheme that would take advantage of their sparsity could be developed,
all times reported only include the SDP solve time. Formulated SDPs were solved
via CVX calling SeDuMi.

http://www.boost.org
http://www.boost.org
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4 Results and Discussion

The optimal values for every method applied to all 20 cases are shown in Table 1. It
should be noted that the coefficient of the third term of function 5 in [13] should be
corrected to 1/3 from 1/6 and was implemented as such here. There are some differ-
ences between the baseline αBB results here and those presented by Gounaris and
Floudas [13], as they derived each Hessian matrix symbolically instead of through
automatic differentiation. The tightness of αBB-based methods is sensitive to the
bounds of the interval Hessian matrices; a few of the cases displayed improved
αBB results using automatic differentiation to derive H ′, but cases 8a and 8b show
markedly looser underestimators due to the inability of automatic differentiation to
reduce the number of accumulated operations by taking advantage of cancellation
of terms along the diagonal, which is exploited by symbolic differentiation.

The αBB method was by far the easiest method to implement, and it compares
favorably to the other methods which employed much higher levels of sophistication
in derivation and implementation. This indicates that, as suggested by Adjiman et
al. [2, 3], the diagonal perturbation method driven by the scaled Gershgorin method
is already a high performing method that is difficult to improve upon. It is also
apparent that there is a high degree of similarity between many of the methods
regarding their reliance on the tightness of H ′ and Gershgorin’s Circle Theorem for
proving convexity. The αBB method can be easily employed in a branch-and-bound
algorithm with little computational cost.

Among the six quadratic subtraction methods (Methods 1–6), P-αBB showed
by far the most consistent results with the test cases, and was in general the best
performing method. It was the only method that took advantage of the diagonal
structure of functions 7 and 14 to provide tighter underestimators than the other
five methods (dramatically so in cases 14a–c). Utilization of 4 intervals per xi often
resulted in substantial gains in tightness, most dramatically with functions 12–14
which contain sharp differences in character across different subdomains. The P-
αBB underestimators were rapidly generated here, but would not scale particularly
well with very high dimensionality, as dividing n variables into N intervals would
yield Nn subdomains. A more careful implementation of the method could subdivide
only those dimensions with highly nonconvex characteristics.

The G-αBB algorithm in general produced similar results to αBB; in fact, the
explicit algorithm (G-αBB[v1]) produced identical results in all cases except 5,
10, and 11. The suggested alteration to G-αBB, denoted as G-αBB[v2], either ob-
tained identical results or outperformed G-αBB[v1] in all cases except 11, where
it obtained a slightly looser underestimator. In particular, G-αBB[v2] was the only
algorithm that was able to improve upon the very loose lower bounds found by the
other methods with cases 8a and 8b, suggesting it took advantage of differences
in nonconvexities between the dimensions. The αi parameters obtained by G-αBB
in cases 8a and 8b showed large differences in the order of magnitude between α1

and αi, i �= 1, reflecting the dimensionality of the nonconvexities of those problems.
As expected, G-αBB[v2] was able to exploit this in cases 8a and 8b by further re-
ducing α1 while increasing all αi, i �= 1, and producing an underestimator with a
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lower maximum separation distance and higher minimum. It should be noted that
the G-αBB method often displayed long execution times (see Table 2) due to re-
quiring an algorithm for proving convexity; to execute either version at each node
of a branch-and-bound algorithm for problems of large dimensionality would likely
be impractical.

The ND-αBB method, which was the earliest method in this report that attempted
to introduce nondiagonal terms, largely reproduced the results of αBB. Although the
decision tree did include the option to utilize the classical αBB parameters under
certain conditions, it is interesting to note that the ND-αBB method recreated very
similar results while only using classical αBB for functions 6, 8, 9, and 13. The
most common outcome of the decision tree was utilization of explicit Eqs. (18) and
(19) for calculating diagonal and nondiagonal perturbation terms. The LP model
(20) was utilized only in cases 10 and 11, and the optimal parameters were identical
to the diagonal shift matrix of αBB with all βi j = 0. As is observed and suggested
in [25], the ND-αBB method likely results in more substantial improvements over
αBB with greater disparity between variable bounds.

The B-αBB and RE-αBB methods use alternatives to the scaled Gershgorin the-
orem as a convexity constraint with identical to mixed results. The results of the
B-αBB underestimators, where parameters were obtained by solving an NLP, were
identical to that of αBB. Skjäl and Westerlund [24] state that the union of Brauer
ovals is a subset of the union of Gershgorin disks; in these test cases, the Brauer
subsets seemed not to be a proper subset of the Gershgorin unions. RE-αBB[0] pro-
duced a slightly tighter underestimator than αBB in cases 2, 3b, and 11. However,
RE-αBB[0] otherwise performed identically to αBB or worse as in cases 3a, 4,
and 9–13. Other than in case 11, where RE-αBB[1] outperformed RE-αBB[0], the
RE-αBB[1] method either matched the results of RE-αBB[0] or produced looser
underestimators, sometimes dramatically so. The underestimators of RE-αBB[1] in
cases 5, 10, 12, and 13 would have resulted in an extremely loose underestimator
and would have delayed convergence by a large degree; it can be concluded that the
performance of RE-αBB[1] did not justify the computational expense of solving an
SDP for obtaining the underestimator.

It is difficult to judge the utility of the fdk method, which was applied to all poly-
nomial cases. As seen in Table 1, all of the fdk underestimators produced were the
tightest of all seven methods. However, both the formulation of the SDP and deter-
mination of its solution were computationally expensive. Lasserre and Thanh [15]
report that the SDP of a typical example of deg f = 4 and n = 5 took less than a
second to be solved; for problems of similar size, this was observed here as well.
It would be nontrivial for an algorithm traversing the branch-and-bound tree of a
model of appreciable size to repeatedly solve the SDP. There also remain concerns
about implementation of the SDP formulation stage; the number and size of matrices
that needs to be generated is staggering and would be impractical for larger prob-
lems, regardless of whether or not sparse objects are used to represent the various
two-dimensional parameter matrices. A problem of degree 6 with 50 variables, still
a small optimization problem, would require the generation of 1.6 billion matrices
of size 1,326× 1,326 and 32.5 million matrices of size 23,426× 23,426. Lasserre
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and Thanh [15] recommended applying the method to each individual nonconvex
term, though a loss of tightness would result and a SDP would need to be solved
(with nonnegligible computational cost) for each polynomial nonconvex term at
each node. This method also did not constrain the endpoints of the underestima-
tor to match the original function; it is unclear what consequences this would have
on convergence of a branch-and-bound algorithm, especially as subdomains become
increasingly tight. It remains to be seen if the method can be efficiently applied to
problems of any appreciable dimensionality and degree.

5 Conclusions

The determination of tight, convex lower bounds in a branch-and-bound algorithm
is crucial for the global optimization of models spanning numerous applications
and fields. We explored the performance of a variety of competing methods across
a diverse test suite of nonconvex functions. The moment approach ( fdk) generated
very tight underestimators for polynomial functions at high computational cost, and
the P-αBB method greatly improved upon the αBB underestimator in cases where
sharp differences in subdomain characteristics could be exploited. The results also
confirm the excellent performance of the classical nonuniform αBB formulation and
the strength and low computational cost of the scaled Gershgorin method, as other
methods of increasing sophistication and computational complexity often did not
appreciably improve upon the results of αBB. Methods similar to αBB that moved
away from the scaled Gershgorin method did not display superior performance and
often produced inferior results. Furthermore, the P-αBB, G-αBB, RE-αBB, and fdk

methods face serious challenges in efficient implementation and application towards
problems of high dimensionality, with fdk also facing rising computational costs in
problems of high polynomial degree. The most intractable constraint of the under-
estimator generation problem is the requirement of convexity; the relative utility of
new convexification methods for general terms will likely hinge on the performance
and computational cost of their treatment of this constraint with respect to the scaled
Gershgorin method.
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A Quasi Exact Solution Approach
for Scheduling Enhanced Coal Bed Methane
Production Through CO2 Injection

Yuping Huang, Anees Rahil, and Qipeng P. Zheng

1 Introduction

For unminable coals, enhanced coal bed methane (ECBM) production via CO2 in-
jection (CO2-ECBM) is a promising way to further extend the economic value. With
the advancement of this technology and wide presence of unminable coals, CO2-
ECBM technology has been implemented in various coal mines and locations (e.g.,
[11]). In addition to the profits made from the extracted methane (the major compo-
nent of natural gas), this also allows the natural gas production company to get CO2

credits by storing CO2 in the coal bed seam. With increasing demand of natural gas
(due to the growing presence of natural gas fired electricity generators) and envi-
ronmental concerns over excessive CO2 emission, CO2-ECBM is becoming more
profitable and applicable.

CO2 level in our atmosphere has been in a nonstop increasing trend since the
industrial revolution and reached a record level. Our human society has taken many
actions to combat this trend. One of the major efforts is to deal with the ever-
growing CO2 emissions from the electrical power sector. The actions to this respect
include introduction of renewable resources, more environmentally friendly genera-
tion technologies (e.g., combined cycle gas turbine CCCT, close cycle gas turbine),
and CO2 storage and sequestration, etc. Due to these new features and require-
ments, many research on scheduling in power systems and CO2 storage and seques-
tration have been conducted in recent years. These include generation scheduling
with wind power (e.g., [14]), unit commitment with both traditional and quick-start

Y. Huang • Q.P. Zheng (�)
Department of Industrial Engineering and Management Systems,
University of Central Florida, Orlando, FL, USA
e-mail: yuping.huang@knights.ucf.edu; Qipeng.Zheng@ucf.edu

A. Rahil
Department of Industrial and Management Systems Engineering, West Virginia University,
Morgantown, WV, USA
e-mail: arahil@mix.wvu.edu

T.M. Rassias et al. (eds.), Optimization in Science and Engineering: In Honor
of the 60th Birthday of Panos M. Pardalos, DOI 10.1007/978-1-4939-0808-0 12,
© Springer Science+Business Media New York 2014

247

mailto:yuping.huang@knights.ucf.edu
mailto:Qipeng.Zheng@ucf.edu
mailto:arahil@mix.wvu.edu


248 Y. Huang et al.

generators (e.g., [18]), and investment, development, and strategies on carbon stor-
age and sequestration (e.g., [6, 17]). In addition, as an important resource of energy,
natural gas has been receiving a lot of research attention, including its production,
transportation, trading, and usage (e.g., [15, 16]). To our best knowledge, this is the
first paper, which is sitting in the crossing point between research efforts on carbon
storage and sequestration, and natural gas production and trading.

Compared to CO2-ECBM, enhanced oil recovery with CO2 (CO2-EOR) is more
mature technology and has been demonstrated to increase medium and light oil
production effectively [1, 2, 8]. Although the mechanisms of CO2 on oil recovery
enhancement and methane recovery enhancement are different, the operations of
CO2-ECBM are analogous to CO2-EOR but rely less on pure CO2 [5]. The eco-
nomic evaluations of CO2-EOR indicate that the project feasibility depends largely
on oil prices and carbon credit prices, where oil price is the main driver for CO2

storage investment [3, 9]. Learning from the experience of CO2-EOR, natural gas
(NG) prices and carbon credit prices are two major factors to affect the CO2-ECBM
implementation. However, since the NG prices are more volatile in historical prices,
which makes the project a more risky investment, the only revenue from NG sales
hardly offsets the routine O&M costs and CO2 storage costs. Therefore, benefits
of environmental policies, e.g. CO2 credits and allowances, are also considered to
promote CO2-ECBM projects smoothly. Additionally, coal bed methane recovery
is subject to the physical environment and reactions and further impacts the gas
production. We thus have a strong motivation to explore the CO2-ECBM profit-
maximization scheduling for project’s economic analysis and long-term operation
management.

The model proposed in [7] is a nonlinear multi-stage optimization problem. It is
a computationally demanding nonlinear program due to the large number of vari-
ables and constraints. In this paper, we are proposing a quasi exact solution ap-
proach, where the nonlinear terms are discretized and linearized as in [12]. This is
in contrast to using other global optimization methods (e.g., [4]). Using this quasi
exact approach, the original nonlinear program is transformed to a mixed integer
linear programming (MILP) problem. Due to the way the fractional number (small
number, and usually less than 1) is represented in computer, the MILP problem is
equivalent to the original problem when we have enough binary variables to repre-
sent the fractional number. Because there are many easy-to-use and advanced MILP
solvers (e.g., CPLEX, GUROBI, XPRESS, etc.), the new problem can be solved
more conveniently.

In the following, we will first present the model and its descriptions in Sect. 2;
then we will discuss the quasi exact method used to solve the nonlinear program
and show the equivalent MILP formulation after discretization and linearization in
Sect. 3; based on the proposed method, we will show our numerical experiments in
Sect. 4; we will conclude the paper and discuss future research in Sect. 5.
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2 Problem Description

Unmineable Coal Bed

Production Well Injection Well

Gas Flow

CO2

CO2

CH4

CO2 CH4

CO2 Recycle

Fig. 1 Schematic diagram of single well CO2 injection as shown in [7]

The main purpose of this paper is to provide a convenient and efficient method
to solve the nonlinear programming models proposed in the paper [7]. The model
is from the original paper, and hence we will not focus on the discussion of model
itself. But the following will give a brief introduction of the model and discuss the
difficulty to solve it.

Enhance Coal Bed Methane production through CO2 injection is an effective
technology to get additional value from the unminable coal mines. The whole pro-
cess starts with injecting CO2 into the unminable coal seams through the injection
well. The absorption rate of CO2 in coal seam is usually about twice the rate of CH4,
mainly depending on the type of the coal bed. With the new absorption of CO2, the
coal seam will release CH4 (the major component of natural gas) which is adsorbed
to the surface of coal. On the other side, the mixture of CO2 and CH4 will be drawn
from the production well. A separation process follows to separate the extracted
mixture to CO2 and CH4. The CH4 will be sent to generate more profits (either by
selling to the spot market or power generation plants); and the CO2 will be sent to
the injection well again. The general picture of the whole process is shown in Fig. 1
which is from [7]. The main variables used to model the whole process is linked to
the process as shown in Fig. 2 also from [7], where one period of process are pre-
sented. To facilitate the description of the model, indices, parameters, variables, and
the deterministic model are presented in the next following two subsections.
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CO2 Injection
CO2

Gas Content in Coal
CH4  and CO2

Gases in the Sorbed Phase
CH4  and CO2

Gases in the Free Gas Phase
CH4  and CO2

Gas Extraction
CH4  and CO2

Fig. 2 Production operations for CO2-ECBM recovery as shown in [7]

2.1 General Nomenclature

This paper is focusing on the solution method. We only list the indices, parameters
and variables used in the model in the following. For detailed description and expla-
nation of the variables, parameters, indices, and rationale of the model, please refer
to the paper [7].

Indices

t Time period(days, months or years)
i Time period, i = t
1∗ CH4
2∗ CO2

∗ For convenience, variables with subscript 1 usually are referring to a value related
to CH4, and 2 for CO2.

Variables

vt
1 The amount of CH4 extracted at time t (MMcf /day)

vt
2 The amount of CO2 injected at time t (MMcf/day)

vt
2,r The amount of CO2 extracted at time t (MMcf/day)

xt
1 The molar fraction of component CH4 in sorbed phase at time t

xt
2 The molar fraction of component CO2 in sorbed phase at time t

yt
1 The molar fraction of component CH4 in gas phase at time t

yt
2 The molar fraction of component CO2 in gas phase at time t

wt
1 The gas content of component CH4 on the coal at time t (Mcf/mton)

wt
2 The gas content of component CO2 on the coal at time t (scf/ton)

Parameters

Pt
1 Wellhead price for CH4 sold at time t (US$/MMcf)

Pt
2 Unit price for CO2 credits trading at time t (US$/MMcf)

Ct
1 Gas production cost at time t (US$/MMcf)

Ct
2 CO2 operation cost at time t (US$/MMcf)

Ct
2,r CO2 removal cost at time t (US$/MMcf)

NSt
2 The CO2 supply amount at time t (MMcf/Month)

Qt The actual flow rate at time t (MMcf/Month)
GIP The total amount of reserve for a CBM well (MMcf)
Mc The coal mass(mmton)
τ The percentage of CO2 reinjection amount
θ The separation rate of methane
δ Time interval
γ The minimum methane molar fraction for allowable production
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2.2 Optimization Model

In this paper, we are trying to use a quasi exact method to solve the most basic case
of the ECBM scheduling problem, the general deterministic programming model.
The model is shown as follows:

[P]: max
T

∑
t=0

Pt
1vt

1 +
T

∑
t=0

Pt
2vt

2 −
T

∑
t=0

Ct
1(v

t
1 + vt

2,r)−
T

∑
t=0

Ct
2vt

2 −
T

∑
t=0

Ct
2,rv

t
2,r (1a)

s.t. vt
2 ≤ NSt

2 + τvt−1
2,r , t = 1, . . . ,T (1b)

T

∑
t=0

Qtδyt
1 ≤ GIP, (1c)

xt
1 =

wt−1
1

wt−1
1 +wt−1

2

, t = 1, . . . ,T (1d)

xt
2 = 1− xt

1, t = 0,1, . . . ,T (1e)

yt
1 =

xt
1

θ +(1−θ)xt
1
, t = 0,1, . . . ,T (1f)

yt
2 = 1− yt

1, t = 0,1, . . . ,T (1g)

Mcwt
1 = Mcwt−1

1 −Qtδyt
1, t = 1, . . . ,T (1h)

Mcwt
2 = Mcwt−1

2 + vt
2 −Qtδyt

2, t = 1, . . . ,T (1i)

vt
1 ≤

t

∑
i=0

Qiδyi
1 −

t−1

∑
i=0

vi
1, t = 1, . . . ,T (1j)

vt
2,r =

vt
1yt

2

yt
1
, t = 1, . . . ,T (1k)

yt
1 ≥ γ , t = 1, . . . ,T (1l)

vt
1, vt

2, vt
2,r, xt

1, xt
2, yt

1, yt
2, wt

1, wt
2 ≥ 0, t = 0,1, . . . ,T (1m)

The objective is to maximize the total profit, which is composed of five parts: the
profit from CH4, the profit from CO2, gas extraction cost, CO2 injection cost, and
CO2 removal cost respectively shown in (1a). Constraint (1b) is the constraint on
total CO2 supply. Constraint (1c) is defining the CH4 supply limit. Constraints (1d)
and (1e) are used to model the composition of sorbed-phase gases. Constraints (1f)
and (1g) are used to model the composition of gas-phase CO2 and CH4. Constraints
on the variations of gas contents are defined by (1h) and (1i). Constraints (1j) and
(1k) model the CH4 and CO2 extraction limits and extracted gas composition. A
lower bound of CH4 gas molar fraction is presented in (1l). All variables are con-
tinuous and nonnegative as shown in (1m). The major difficulty of this optimization
problem comes from three nonlinear constraints, (1d), (1f), and (1k). These three
constraints can be easily reformed to have bilinear terms instead of fractional non-
linear function. Computational times are relatively long and sometimes it is even
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hard to converge, as is reported in [7]. In this paper we will take advantage of the
specific characteristics of this formulation and transform it to mixed integer linear
programs, which generally have easy-to-use and advanced solvers.

3 The MILP Solution Method

By constraints (1d) and (1e), it is clear that x1 and x2 are fractional numbers which
only can chose between 0 and 1 because w1 and w2 are nonnegative variables. To-
gether with constraints (1f) and (1g), it can be shown that y1 and y2 are nonnegative
fractional numbers less or equal to 1. If we divide x1 on both the denominator and
numerator of the right-hand side of constraint (1f), the numerator becomes 1 and
denominator becomes θ

x1
+(1− θ), which is always greater or equal to 1 because

θ
x1

≥ θ . In modern computer systems, a fractional number is represented by a series
of binary numbers (bits). Hence, we can utilize this fact to treat a fractional variable
by a series of binary variables.

Note also that (1d), (1f), and (1k) are equivalent to constraints with bilinear terms
by multiplying the denominators of their right sides. The corresponding resulting
bilinear constraints are shown as follows:

xt
1wt−1

1 + xt
1wt−1

2 = wt−1
1 , t = 1, . . . ,T (2a)

θyt
1 +(1−θ)yt

1xt
1 = xt

1, t = 0,1, . . . ,T (2b)

vt
2,ry

t
1 = vt

1yt
2, t = 1, . . . ,T (2c)

As in the above equations, all bilinear terms involve the fractional variables. Also,
we know that the fractional variable can be represented by binary variables. Hence
if we replace them, the resulting bilinear terms will involve one binary variable and
one continuous variable. It is well-known that such kind of bilinear terms can be
linearized by introducing additional constraints and a big number. Hence, we can
transform the original nonlinear optimization problem to a MILP problem. This
method is also used in [12]. In the following subsection, we will explain in details
how the problem is converted to an MILP.

3.1 Discretization-Linearization Procedure to Eliminate
Nonlinear Terms

Three nonlinear terms appear in the current deterministic model of ECBM produc-
tion as in constraints (1d), (1f), and (1k). Firstly, we can transform them to bilinear
constraints as shown in (2a)–(2c). Secondly, replace the fractional variables by com-
bination of binary variables. Thirdly, we linearize the bilinear term with exactly one
binary variable and one continuous variable. Then we get a MILP optimization prob-
lem. We refer this procedure to Discretization-Linearization procedure as discussed
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in [12]. The validity and accuracy to the original model is mainly controlled by
the number of binary variables introduced to replace each fractional variable. For
example, we would like to replace variable x by a series of binary variables (i.e.,
zl , l = 1, . . . ), and the formulation is shown as follows:

x =
L

∑
l=0

2−lzl (3)

Say, if we require a degree of accuracy ε = 10−p where p ≥ 0 and zl ∈ {0,1}. The
number of binary variables needed, L, for the binary representation is

L =

⌈

p
log10
log2

⌉

(4)

In the next three subsubsections, we will discuss how each of the three nonlinear
constraints are linearized by the discretization-linearization procedure.

3.1.1 Linearization of Composition of Sorbed Phase Constraints

The first nonlinear term appears in the expression of composition of sorbed phase
as follows:

xt
1 =

wt−1
1

wt−1
1 +wt−1

2

, t = 1, . . . ,T.

which can be converted to an equivalent bilinear constraints as in (2a). First, we use
binary representation to replace xt

1 as follows:

xt
1 =

L

∑
l=0

2−lzt
l , t = 1, . . . ,T. (5)

where zl ∈ {0,1}, l = 0, . . . ,L. After applying the new replacement in the bilinear
constraint (2a), we have the following new bilinear constraints

[
L

∑
l=0

2−lzt
lw

t−1
1

]

+

[
L

∑
l=0

2−lzt
lw

t−1
2

]

−wt−1
1 = 0, t = 1, . . . ,T. (6)

The new bilinear terms include exactly one binary variable and one continuous non-
negative variable. We introduce λ t

l and ϕ t
l to assist linearize the bilinear terms zt

lw
t−1
1

and zt
lw

t−1
2 above, respectively. Let

λ t
l = wt−1

1 zt
l , t = 1, . . . ,T, l = 0, . . . ,L (7a)

ϕ t
l = wt−1

2 zt
l , t = 1, . . . ,T, l = 0, . . . ,L (7b)
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Then we need to introduce the following constraints to have equivalent transforma-
tion (the standard linearization technique as in [10])

0 ≤ λ t
l ≤ wt−1

1 , t = 1, . . . ,T, l = 0, . . . ,L (8a)

wt−1
1 −Rl(1− zt

l)≤ λ t
l ≤ Rlz

t
l , t = 1, . . . ,T, l = 0, . . . ,L (8b)

0 ≤ ϕ t
l ≤ wt−1

2 , t = 1, . . . ,T, l = 0, . . . ,L (8c)

wt−1
2 −Rl(1− zt

l)≤ ϕl ≤ Rlz
t
l , t = 1, . . . ,T, l = 0, . . . ,L (8d)

where Rl is a large number to bound the variables. Instead, the bilinear constraint
(6) is then replaced as follows:

wt−1
1 =

L

∑
l=1

2−l(λ t
l +ϕ t

l ), t = 1, . . . ,T, (9)

Then the final linear formulation only includes constraints (5), (8a)–(8d), and (9).

3.1.2 Linearization of Composition of Gas Phase Constraints

By using the extended Langmuir isotherm, the composition of free gas yi can be
obtained. The fraction of CO2/CH4 in the gas phase is represented as follows,

The gas molar fraction of CH4:

yt
1 =

xt
1

θ +(1−θ)xt
1

The gas molar fraction of CO2:

yt
2 = 1− yt

1

The key is to make the first constraint linearized. Note that the bilinear terms for the
reformulated first constraint (2b) involve also xt

1. Since we have already discretized
xt

1 while linearizing composition of sorbed phase constraints, we keep using the
binary representation of (5). The new bilinear constraints are shown as follows:

xt
1 = θyt

1 +
L

∑
l=0

(1−θ)2−lzt
ly

t
l , t = 0,1, . . . ,T (10)

To linearize the above constraint, we introduce a new variable ζ t
l to replace the

bilinear term zt
ly

t
l . Using the same technique as in the last subsubsection, we need to

introduce the following new constraints:

0 ≤ ζ t
l ≤ yt

1, t = 0, . . . ,T, l = 0, . . . ,L (11a)

yt
1 −Rl(1− zt

l)≤ ζ t
l ≤ Rlz

t
l , t = 0, . . . ,T, l = 0, . . . ,L (11b)
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where Rl is a large number to bound the variables. Instead, the bilinear constraint
(10) is then replaced by the following equation:

xt
1 = θyt

1 +
L

∑
l=0

(1−θ)2−lζ t
l , t = 0,1, . . . ,T (12)

Then the final linear formulation only includes constraints (5), (11a), (11b),
and (12).

3.1.3 Linearization of CO2 Extraction Constraints

The third nonlinear term appears as the expression for the amount of CO2 extraction.
According to Dalton’s Law of partial pressure, we have the following constraints:

vt
2,r =

vt
1yt

2

yt
1
, t = 1, . . . ,T

The equivalent bilinear constraints (2c) include two bilinear terms, which include
two sets of completely different variables. However, we know yt

2 = 1− yt
2 and can

then reduce the number of variables involved in bilinear terms. After make the sub-
stitution, we get the following:

vt
1 = yt

1vt
2,r + yt

1vt
1, t = 1, . . . ,T (13)

We already know that yt
1 is a fractional number as well. In addition, it appears in both

of the bilinear terms of (13). Hence it is convenient if we use binary representation
to replace it as follows:

yt
1 =

L

∑
l=0

2−lη t
l , t = 1, . . . ,T (14)

After introducing the above binary representation, we obtain the following new bi-
linear constraints:

vt
1 =

[
L

∑
l=0

2−lη t
l vt

2,r

]

+

[
L

∑
l=0

2−lη t
l vt

1

]

, t = 1, . . . ,T (15)

Then we introduce two new nonnegative continuous variables to replace the bilinear
terms in (15). Let

ψ t
1l = vt

1η t
l , t = 1, . . . ,T, l = 0, . . . ,L (16a)

ψ t
2l = vt

2,rη
t
l , t = 1, . . . ,T, l = 0, . . . ,L (16b)

Using the same standard linearization technique as in the previous two subsubsec-
tions, we need to introduce the following new constraints:
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0 ≤ ψ t
1l ≤ vt

1, t = 1, . . . ,T, l = 0, . . . ,L (17a)

0 ≤ ψ t
2l ≤ vt

2,r, t = 1, . . . ,T, l = 0, . . . ,L (17b)

vt
1 −Rl(1−η t

l )≤ ψ t
1l ≤ Rlη t

l , t = 1, . . . ,T, l = 0, . . . ,L (17c)

vt
2,r −Rl(1−η t

l )≤ ψ2l ≤ Rlη t
l , t = 1, . . . ,T, l = 0, . . . ,L (17d)

where Rl is a large number to bound the variables. Instead, the bilinear constraint
(15) is then replaced by the following equation:

vt
1 =

L

∑
l=0

2−l(ψ t
1l +ψ t

2l) t = 1, . . . ,T (18)

Then the final linear formulation only includes constraints (14), (17a)–(17d), and
(18).

3.2 Linear Optimization Model

After the nonlinear/bilinear terms are discretized and therefore linearized, the new
linear deterministic model is obtained. In order to clarify the mixed integer linear
program, we show all constraints and variables of the model as follows:

[MILP]:

max
T

∑
t=0

Pt
1vt

1 +
T

∑
t=0

Pt
2vt

2 −
T

∑
t=0

Ct
1(v

t
1 + vt

2,r)−
T

∑
t=0

Ct
2vt

2 −
T

∑
t=0

Ct
2,rv

t
2,r (19a)

s.t. vt
2 ≤ NSt

2 + τvt−1
2,r , t = 1, . . . ,T (19b)

T

∑
t=0

Qtδyt
1 ≤ GIP, (19c)

xt
1 =

L

∑
l=0

2−lzt
l , t = 1, . . . ,T. (19d)

0 ≤ λ t
l ≤ wt−1

1 , t = 1, . . . ,T, l = 0, . . . ,L (19e)

wt−1
1 −Rl(1− zt

l)≤ λ t
l ≤ Rlz

t
l , t = 1, . . . ,T, l = 0, . . . ,L (19f)

0 ≤ ϕ t
l ≤ wt−1

2 , t = 1, . . . ,T, l = 0, . . . ,L (19g)

wt−1
2 −Rl(1− zt

l)≤ ϕl ≤ Rlz
t
l , t = 1, . . . ,T, l = 0, . . . ,L (19h)

wt−1
1 =

L

∑
l=1

2−l(λ t
l +ϕ t

l ), t = 1, . . . ,T, (19i)

xt
2 = 1− xt

1, t = 0,1, . . . ,T (19j)

0 ≤ ζ t
l ≤ yt

1, t = 1, . . . ,T, l = 0, . . . ,L (19k)

yt
1 −Rl(1− zt

l)≤ ζ t
l ≤ Rlz

t
l , t = 0, . . . ,T, l = 0, . . . ,L (19l)
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xt
1 = θyt

1 +
L

∑
l=0

(1−θ)2−lζ t
l , t = 0,1, . . . ,T (19m)

yt
2 = 1− yt

1, t = 1, . . . ,T (19n)

Mcwt
1 = Mcwt−1

1 −Qtδyt
1, t = 1, . . . ,T (19o)

Mcwt
2 = Mcwt−1

2 + vt
2 −Qtδyt

2, t = 1, . . . ,T (19p)

vt
1 ≤

t

∑
i=0

Qiδyi
1 −

t−1

∑
i=0

vi
1, t = 1, . . . ,T (19q)

yt
1 =

L

∑
l=0

2−lη t
l , t = 1, . . . ,T (19r)

0 ≤ ψ t
1l ≤ vt

1, t = 1, . . . ,T, l = 0, . . . ,L (19s)

0 ≤ ψ t
2l ≤ vt

2,r, t = 1, . . . ,T, l = 0, . . . ,L (19t)

vt
1 −Rl(1−η t

l )≤ ψ t
1l ≤ Rlη t

l , t = 1, . . . ,T, l = 0, . . . ,L (19u)

vt
2,r −Rl(1−η t

l )≤ ψ2l ≤ Rlη t
l , t = 1, . . . ,T, l = 0, . . . ,L (19v)

vt
1 =

L

∑
l=0

2−l(ψ t
1l +ψ t

2l), t = 1, . . . ,T (19w)

yt
1 ≥ γ , t = 0, . . . ,T (19x)

vt
1,v

t
2,v

t
2,r,x

t
1,x

t
2,y

t
1,y

t
2,w

t
1,w

t
2,λ

t
l ,ϕ

t
l ,ζ

t
l ,ψ

t
1l ,ψ

t
2l ≥ 0,

t = 0,1, . . . ,T, l = 0, . . . ,L (19y)

zt
l ,η

t
l ∈ {0,1}, t = 1, . . . ,T, l = 0,1, . . . ,L (19z)

where zt
l ,η

t
l are the two sets of binary variables. As in the previous discussion, the

degree of accuracy of this program is largely dependent on the number of binary
variables introduced to represent the two sets of continuous variables xt

1 and yt
1.

However, the more the binary variable introduced, the more the computational de-
manding becomes the new MILP problem. In the next section, we will report our
computational experiments based on the MILP formulation.

4 Numerical Experiments

The linearized CO2-ECBM model is programmed in C++ and solved by CPLEX
12.2. All experiments are implemented on a PC Dell Vostro with Intel Pentium
CPU at 2.80 GHz and 3 GB memory. The experiment results are compared with the
original results that were gained through solving the original model in GAMS with
the commercial solver BARON.

The linearized model is applied to a 12-period case studies. This case selected is
to illustrate the impacts of economical factors such as prices and operational costs
on the production scheduling when the technical parameters are given and the max-
imum extraction rate for a single well is fixed, shown in Table 1. This case is based
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Table 1 Technical parameters

Parameter Value

GIP 1,200,000 MMcf
θ 1.2
γ 0.1
τ 0.55

Mc 4,000 million tons
Max. extr. rate 30 MMcf/month
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Fig. 3 The trends of prices and costs (T = 12). (a) Methane wellhead prices and
CO2 trading prices. (b) Gas production costs, CO2 injection costs and CO2 removal
costs

on a 1-year horizon, where the methane wellhead prices are selected from US EIA,
starting in January 2008 and ending in December 2008. CO2 credit price for each
period is generated within the range of historical prices [13]. Figure 3 shows two
types of prices (Fig. 3a) and three types of costs (Fig. 3b), respectively. The total
CO2 supply amount in each period is forecasted and shown in Fig. 4. Due to the
continuity of production planning, it is assumed 30 work days in a month.

Table 2 lists the computing times of four different period projects given to a series
of numbers of required binary variables (L) for each discretization and a fixed large
number (Rl). We specify all results under the situation of Rl = 1,000. For above
four cases, they have the same starting period, but different ending periods which
are employed to describe the relationship between a project period and the compu-
tation time. As the project period increased, under the condition with same L, the
computation time also grows significantly. For example, the computation time for
annual planning is at least ten times of time for half-year planning, yet the compu-
tation time is still within a feasible range. Moreover, we tested many instances with
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Fig. 4 CO2 supply amount (T = 12)

more than 12 periods, whereas no feasible solution is obtained in less than 3 h, and
then generally the solving process was terminated.

As can be seen in Table 2, there exists the minimum number of binary variables
(L) required for each discretization based on the length of a project. In general,
a larger number of binary variables (L) are required when the longer schedule is
made. If the number of integer variable is reduced below a threshold, solving the
corresponding case only yields an infeasible solution. We observed the four cases
individually and found that the computation times fluctuate within the same order
of magnitude in spite of number of binary variables increased. However, the com-
putation time for 12-period case even has a larger variance, which means that the
computation could be costly in some instances due to the number of binary variables
needed.

In addition, for the solution deviation, we take an example of a half-year case
with L = 50 to compare the solutions solved by BARON using the original model
and by CPLEX using the linearized MILP model, respectively. Table 3 shows that
the percentage of deviation (%Δ ) on gas production rate v1, CO2 injection rate v2,
and CO2 removal amount v2r. Most percentage deviations are lower than 1 %, which
indicates that the discretization-linearization technique not only helps solve the non-
linear CO2-ECBM problems successfully but also is applicable to small-size and
median-size cases.
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Table 2 Number of binary variables and computation time for four cases

L

Case Period 15 20 25 30 40 50 60 70 80 90 100

I T = 3 inf. 65.99 115.83 3.93 1.26 2.88 8.63 10.03 8.16 5.71 11.86
II T = 6 inf. inf. inf. 19.48 85.63 53.96 74.68 50.09 48.39 41.03 55.57
III T = 9 inf. inf. inf. 137.5 239.95 339.97 702.07 179.96 1,071.99 110.4 703.77
IV T = 12 inf. inf. inf. inf. 610.71 1891.25 900.63 490.59 16,187.54 588.50 273.41

Table 3 Comparison of solutions from original model and linearized MILP model

v1 v2 v2r

Period Org. Lnz. %Δ Org. Lnz. %Δ Org. Lnz. %Δ

1 29.8805 29.8790 0.005 0 0 0.000 0.1195 0.1210 1.251
2 29.8805 29.8726 0.026 0 0 0.000 0.1195 0.1274 6.594
3 29.8805 29.8757 0.016 21,565.07 21,565.1 0.000 0.1195 0.1243 4.003
4 29.2521 29.2527 0.002 20,170.07 20,170.1 0.000 0.7479 0.7473 0.086
5 28.6878 28.6812 0.023 19,993.41 19,993.4 0.000 1.3122 1.3188 0.504
6 28.1495 28.1382 0.040 20,327.72 20,327.7 0.000 1.8505 1.8618 0.608

5 Conclusion

This paper discusses an ECBM scheduling problem through CO2 injection. The
original model is proposed in Huang et al. [7], which takes into account the profits
from both natural gas sales and CO2 credits, and chemical/physical reaction details
of the process. It is a management problem including a great amount of real tech-
nical details in practice. However, the model is a nonlinear optimization problem
and is computationally very challenging. The main contribution of this paper is
the use of a quasi exact reformulation, which is a mixed integer linear program, to
solve the original model. Both discretization and linearization techniques are used
to construct the MILP reformulation. Accuracy of the reformulation is dependent
on the number binary variables used to discretize the fractional variables in the
original model. Computational experiments show that the results (obtained in rea-
sonable computing times) from the reformulation are almost as same as the exact
solutions. With the popularity and advancement of integer/MILP software packages
(e.g., CPLEX, EXPRESS, GUROBI, etc.), the reformulation approach will be more
accessible to general users and provide efficient and effective solutions. This paper
uses the reformulation to solve the deterministic models from [7]. Future research
in this direction would be solving the multi-stage stochastic models, which will be
very difficult, because the number of introduced binary variables will grow exponen-
tially. Advanced and specifically devised decomposition algorithms will be required
to handle these cases. In addition, including transportation constraints (given multi-
ple locations of resources) on both natural gas and CO2 will be more interesting to
higher level decision makers.
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A Stochastic Model of Oligopolistic Market
Equilibrium Problems

Baasansuren Jadamba and Fabio Raciti

1 Introduction

We provide a stochastic formulation of the classical deterministic oligopolistic
market equilibrium, à la Cournot [2] in this short note. Equilibria of this kind
are particular cases of Nash equilibria, and it is well known (see, e.g., [1] for the
general Hilbert space case, and [4] for a finite-dimensional framework close to oper-
ations research problems) that under standard hypotheses solutions can be obtained
by solving a variational inequality. Thus, we can apply the theory of random (or
stochastic) variational inequalities in Lebesgue spaces to our model. This approach
has been proposed quite recently to study many stochastic equilibrium problems
arising from applied sciences and operations research [5–8, 10]. Other approaches
to stochastic variational inequalities have been proposed by other authors. Here we
cite only the very recent paper [13] which also contains applications to Nash equi-
librium problems.

The paper is structured in four sections. In the remainder of this introduction
we briefly recall the connection between Nash equilibrium problems and variational
inequalities in the deterministic, finite-dimensional setting; in Sect. 2 we introduce
random data in the deterministic oligopolistic market model; in Sect. 3 we present
the Lebesgue-space formulation of the stochastic model; in Sect. 4 we study a par-
ticular class of utility functions, and use them to illustrate our model by means of a
numerical example.
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Consider m players each acting in a selfish manner in order to maximize their
individual welfare. Each player i has a strategy vector qi = (qi1, . . . ,qin) ∈ Xi, where
Xi ⊂ R

n is a convex and closed set, and a utility (or welfare) function wi : X1 ×
X2 × ·· · × Xm → R. He/she chooses his/her strategy vector qi so as to maximize
wi, given the moves (q j) j �=i of the other players. We will use the notation q−i =
(q1, . . . ,qi−1,qi+1, . . . ,qm) and q = (qi,q−i).

Definition 1. A Nash equilibrium is a vector q∗ = (q∗
1, . . . ,q

∗
m) ∈ X , such that:

wi(q
∗
i ,q

∗
−i)≥ wi(qi,q

∗
−i), ∀qi ∈ Xi,∀i ∈ {1, . . . ,m}.

The following theorem (see e.g. [12, Chap. 6]) relates Nash equilibrium problems
and variational inequalities.

Theorem 1. Let wi ∈C1(X),∀i, and concave with respect to qi. Let F : Rmn → R
mn

be the mapping built with the partial gradients of the utility functions as follows:

F(q) = (−Dq1w1(q), . . . ,−Dqmwm(q)).

Then, q∗ ∈ X is a Nash equilibrium if and only if it satisfies the variational
inequality:

mn

∑
r=1

Fr(q
∗) · (qr −q∗

r )≥ 0,∀q ∈ X

2 The Stochastic Oligopoly Model

We consider here the model in which m players are the producers of the same
commodity. The quantity produced by firm i is denoted by qi so that q ∈ R

m

denotes the global production vector. Let (Ω ,P) be a probability space and for every
i ∈ {1, . . . ,m} consider functions fi : Ω ×R→ R and p : Ω ×R

m → R.
More precisely, for almost every ω ∈ Ω , (i.e. P-almost surely in probabilistic

language), fi(ω,qi) represents the cost of producing the commodity by firm i, and
is assumed to be nonnegative, increasing, concave, and C1, while p(ω,q1+ · · ·+qm)
represents the demand price associated with the commodity. For almost every ω ∈
Ω , p is assumed nonnegative, increasing, convex w.r.t. qi, and C1. We also assume
that all these functions are random variables w.r.t. ω , i.e. they are measurable with
respect to the probability measure P on Ω . In this way, we have introduced the
possibility that both the production cost and the demand price are affected by a
certain degree of uncertainty or randomness.

Thus, the welfare (or utility) function of player i is given by:

wi(ω,q1, . . . ,qm) = p(ω,q1 + · · ·+qm)qi − fi(ω,qi). (1)
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Although many authors assume no bounds on the production, in a more realistic
model the production capability is bounded from above and we allow also for the
upper bound being a random variable: 0 ≤ qi ≤ qi(ω).

Thus, the specific Nash equilibrium problem associated with this model takes the
following form. For a.e. ω ∈ Ω , find q∗(ω) = (q∗

1(ω), . . . ,q∗
m(ω)):

wi(q
∗(ω)) = max

0≤qi≤qi(ω)

{

p(ω,qi +∑
j �=i

q∗
j(ω))qi − fi(ω,qi)

}

,∀i. (2)

In order to write the equivalent variational inequality, consider the closed and convex
subset of Rm:

K(ω) = {(q1, . . . ,qm) : 0 ≤ qi ≤ qi(ω), ∀i}
for each ω and define the functions

Fi(ω,q) :=
∂ fi(ω,qi)

∂qi
− ∂ p(ω,∑m

j=1 q j)

∂qi
qi − p

(

ω,
m

∑
j=1

q j

)

. (3)

The Nash problem is then equivalent to the following variational inequality: for a.e.
ω ∈ Ω , find q∗(ω) ∈ K(ω) such that

m

∑
j=1

Fj[ω,q∗(ω)](q j −q∗
j(ω))≥ 0, ∀q ∈ K(ω). (4)

Since F(ω, ·) is continuous, and K(ω) is convex and compact, problem (4) is solv-
able for almost every ω ∈ Ω , due to the Stampacchia’s theorem. Moreover, we
assume that F(ω, ·) is monotone, i.e.:

m

∑
i=1

(Fi(ω,q)−Fi(ω,q′))(qi −q′
i)≥ 0 ∀ω ∈ Ω ,∀q,q′ ∈ R

m.

F is said to be strictly monotone if the equality holds only for q = q′ and in this case
(4) has a unique solution. In the sequel the following uniform strong monotonicity
property will be useful:

∃α > 0 :
m

∑
i=1

(Fi(ω,q)−Fi(ω,q′))(qi −q′
i)≥ α‖q−q′‖2 ∀ω ∈ Ω ,∀q,q′ ∈R

m. (5)

Although the uniform strong monotonicity property is quite demanding, nonetheless
it is verified by some classes of utility functions frequently used in the literature (see,
e.g., Sect. 4).
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3 The Lebesgue Space Formulation

Now we are interested in computing statistical quantities associated with the
solution q∗(ω), in particular its mean value. For this purpose we introduce a
Lebesgue space formulation of problems (2) and (4). Moreover, in view of the
numerical approximation of the solution, from now on, we assume that the random
and the deterministic part of the operator can be separated. Thus, let:

wi(ω,q) = p

(
m

∑
j=1

q j

)

+β (ω)−α(ω) fi(qi)−gi(qi)

where α,β are real random variables, with 0 < α ≤ α(ω) ≤ α , and the part of
the cost which is affected by uncertainty is denoted now by fi (with an abuse of
notation). As a consequence, the operator F takes the form:

Fi(ω,q) = α(ω)
∂ fi(qi)

∂qi
+

∂gi(qi)

∂qi
− p

(
m

∑
j=1

q j

)

−β (ω)−
∂ p

(
∑m

j=1 q j

)

∂qi
qi.

The separation of variables allows us to use the approximation procedure developed
in [6]. Furthermore, we assume that F is uniformly strongly monotone according to
(5) and satisfies the following growth condition:

|Fi(ω,q)| ≤ c(1+ |q|),∀q ∈ R
m,∀ω ∈ Ω , ∀i (6)

and wi(ω,0) ∈ L1(Ω). Moreover, we shall assume that α ∈ L∞(Ω), while β ,qi ∈
L2(Ω). Under these assumptions the following Nash equilibrium problem can be
derived (see [9] or [3] for a similar derivation which can be easily extended to our
functional setting):

Find u∗ ∈ L2(Ω ,P,Rm) such that, ∀i
∫

Ω
wi(ω,u∗(ω))dPω = max

0≤ui≤qi

∫

Ω
wi(ω,(ui(ω),u∗

−i(ω))dPω , (7)

where we used the notation: (ui,u∗−i) := (u∗
1, . . . ,u

∗
i−1, ui, u∗

i+1, . . . ,u
∗
m). Then, we

define a closed and convex set KP by

KP = {u ∈ L2(Ω ,P,Rm) : 0 ≤ ui(ω)≤ qi(ω),P-a.s.,∀i}

and consider the variational inequality formulation of (7): Find u∗ ∈ KP such that

∫

Ω

m

∑
j=1

Fj(ω,u∗(ω))(u j(ω)−u∗(ω))≥ 0,∀u ∈ KP. (8)

The relation between problems (7) and (8) is clarified by the following theorem.

Theorem 2. u∗ is a solution of (7) if and only if it is a solution of (8).
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Proof. The proof can be obtained along the same lines as in [3], with minor
modifications. ��
Since the stochastic oligopolistic market problem will be studied through (8), we
ensure its solvability by the following:

Theorem 3. Let fi(·,qi), p(·,∑m
j=1 q j) be measurable, and fi(ω, ·),di(ω, ·) are of

class C1. Let F be uniformly strongly monotone and satisfy the growth condition (6).
Then (8) admits a unique solution.

Proof. Under our assumption F : Ω ×R
m → R

m is a Carathéodory function and
it is well known that for each measurable function u(ω), the function F(ω,u(ω))
is also measurable. Under the growth condition (6) the superposition operator NF :
u(ω) → F(ω,u(ω)) maps L2(Ω ,P,Rm) in L2(Ω ,P,Rm) and is continuous, being
P a probability measure. Moreover the uniform strong monotonicity of F implies
the strong monotonicity of NF . The set KP is convex, closed, and (norm) bounded,
hence weakly compact. Then, monotone operator theory applies (see, e.g., [11] for
a recent survey on existence theorems) and (8) admits a unique solution. ��
Remark 1. The Lebesgue formulation is the natural one for our stochastic problem,
in that the solution of (8) is a function which, by definition, admits finite mean value
and variance. If the unique solution of (4) is square integrable, then it also satisfies
(8) (see also Proposition 1 in [8]).

Let us note that we worked with the abstract probability space (Ω ,P) up to this
point, and this was sufficient in providing the general formulation of our problem in
Lebesgue spaces in a concise manner. However, in concrete applications the sample
space Ω is not known. On the other hand, one can measure the distributions of the
real valued random variables that are involved in the model. Hence, it is natural
to work with the probability distributions induced on the images of the functions:
A = α(ω),B = β (ω),Qi = qi(ω). Thus, let y = (A,B,Q) and consider the probabil-
ity space (Rd ,P) with d = 2+m. In order to formulate the problem (8) in the image
space we introduce the closed convex set KP by:

KP = {u ∈ L2(Rd ,P,Rm) : 0 ≤ ui(A,B,Q)≤ Qi,∀i,P-a.s.}

and consider the following problem: Find u∗ ∈ KP such that ∀u ∈ KP

∫

Rd

m

∑
i=1

[

A
∂ fi(u∗

i (y))
∂qi

+
∂gi(u∗

i (y))
∂qi

− p

(
m

∑
j=1

u∗
j(y)

)

−B

−
∂ p

(
∑m

j=1 u∗
j(y)

)

∂qi
u∗

i

]

(ui(y)−u∗
i (y))dP(y)≥ 0. (9)

We assume that all the random variables are independent. Moreover, as it
is verified in most applications, we assume that each probability distribution
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is characterized by its density ϕ . Thus, we have P = PA ⊗ PB ⊗ PQ, dPα(A) =
ϕα(A)dA, dPβ (B) = ϕβ (B)dB, dPq(Q) = ϕq(Q)dQ, where we used the compact

notation ϕx(X) =
n

∏
i=1

ϕxi(Xi). Hence, we can write (8) using the Lebesgue measure:

α∫

α

∫

R

∫

R
n
+

m

∑
i=1

[

A
∂ fi(u∗

i (A,B,Q))

∂qi
+

∂gi(u∗
i (A,B,Q))

∂qi
− p

(
m

∑
j=1

u∗
j(A,B,Q)

)

−B

−
∂ p

(
∑m

j=1 u∗
j(A,B,Q)

)
u∗

i

∂qi

]

(ui(y)−u∗
i (y))ϕα(A)ϕβ (B)ϕq(Q)dAdBdQ ≥ 0

(10)

for all u ∈ KP. The advantage of this formulation is that it is suitable for an app-
roximation procedure based on discretization and truncation. The approximation
method is applied to the example presented in Sect. 4.1, for the details of the method
we refer the interested reader to [6, 8]. The outcome of the above mentioned pro-
cedure is a sequence of simple functions (u∗

k)k which converges in L2 to the exact
solution u∗ when k → ∞ (see [8, Theorem 4.2]). We can then use this sequence to
approximate the mean value of the solution, which is defined in the standard way as

〈u∗〉 :=
∫

Rd
u∗(y)dP(y).

4 A Class of Utility Functions

In this section we consider a random version of a class of utility functions widely
used in the literature (see, e.g., [12, Chap. 6]) and show that these functions satisfy
the theoretical requirements stated in the preceding section.
Thus, let

fi(ω,qi) = a(ω)aiq
2
i +biqi + ci

p

(

ω,
m

∑
i=1

qi

)

=−d
m

∑
i=1

qi + e(ω)

where 0 < a ≤ a(ω) ≤ a, a ∈ L∞(Ω), e ∈ L2(Ω), and ai,bi,d,ci are positive real
numbers. Thus, wi(ω,q) =−[a(ω)aiq2

i +biqi + ci]+ (−d ∑m
i=1 qi + e(ω))qi, and

Fi(ω,q) = [2a(ω)ai +2d]qi +d ∑
j �=i

q j +bi − e(ω) (11)

For each ω the operator F consists of a linear part and a constant vector. The follow-
ing theorem shows that F(ω,q) satisfies the monotonicity requirement mentioned
in the previous section.
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Theorem 4. Let F : Ω ×R
m →R

m defined as in (11). Then F is strongly monotone,
uniformly with respect to ω .

Proof. Let T be the matrix associated to the linear part of F . A straightforward
computation gives that the diagonal elements of T are 2a(ω)ai + 2d while its off
diagonal elements are all equal to d. Now let us decompose T as the sum of three
matrices:

T = 2a(ω)diag(a1,a2, . . . ,am)+d Im +d (12)

The first matrix is a diagonal matrix which as a(ω)mini{ai} as its minimum eigen-
value. Given that 0 < a ≤ a(ω) this matrix is positive definite, uniformly with
respect to ω . The second matrix is a scalar matrix, and because d is strictly positive
this matrix is positive definite. The third matrix, d, has each entry equal to d, hence
it is positive semidefinite. Hence, T is positive definite, uniformly with respect to ω ,
and as a consequence, F is strongly monotone, uniformly with respect to ω . ��

4.1 Numerical Example

We consider the random version of a classical oligopoly problem presented in [12]
where three producers are involved in the production of a homogeneous commodity.
The cost fi of producing the commodity by firm i and the demand function p are
given by

f1(ω,q1) = a(ω)q2
1 +q1 +1

f2(ω,q2) = 0.5a(ω)q2
2 +4q2 +2

f3(ω,q3) = a(ω)q2
3 +0.5q3 +5

p

(

ω,
3

∑
i=1

)

= −
3

∑
i=1

qi + e(ω)

where a(ω) and e(ω) are random parameters that follow truncated normal
distributions:

a ∼ 0.5 ≤ N(1,0.25)≤ 1.5

e ∼ 4.5 ≤ N(5,0.25)≤ 5.5

Although we do not put upper bounds on the production capabilities, the existence
of the solution is ensured because of the coercivity of the operator generated by
f and p. Solution of the nonrandom problem (q1,q2,q3) = (23/30,0,14/15) where
a(ω) ≡ 1, e(ω) ≡ 5 is given in [12]. We use the following approximation proce-
dure to evaluate mean value of q (see [6] for a detailed description of the method).
First, we choose a discretization of the parameter domain [0.5,1.5]× [4.5,5.5] using
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N1×N2 points and solve the problem for each pair (a(i),e( j)) using an extragradient
method. Then we evaluate the mean value of q by using appropriate probability
distribution functions. Approximate mean values of q1,q2, and q3 are shown in
Table 1.

Table 1 Mean value of q = (q1,q2,q3)

N1 = 100,N2 = 100 N1 = 200,N2 = 200 N1 = 400,N2 = 400

〈q1〉 0.76935 0.77154 0.77262
〈q2〉 2.903E−08 2.9109E−08 2.9185E−08
〈q3〉 0.94103 0.9436 0.94487

5 Conclusions and Future Developments

We used the theory of random variational inequalities to incorporate uncertain data
in an oligopolistic market model. The model presented makes use of quadratic
cost functions and a linear demand price, which yields to a linear random varia-
tional inequality. In future work we plan to treat other classes of functions which
yield to nonlinear variational inequalities and to perform more extended numerical
experiments.
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Computing Area-Tight Piecewise Linear
Overestimators, Underestimators and Tubes
for Univariate Functions

Josef Kallrath and Steffen Rebennack

1 Introduction

The motivation for this publication is to follow-up on a previous work by Rebennack
and Kallrath [11] to construct over- and underestimators for one-dimensional func-
tions. These over- and underestimators are used to replace non-linear expressions by
piecewise linear ones with the idea to approximate a non-linear (and non-convex)
core and to place it into a large mixed-integer linear programming (MILP) problem.
If the approximations of the feasible region and/or the objective function are con-
structed carefully, then the resulting MILP problem yields a lower bound (for min-
imization problems). In some applications, it is important to detect infeasibility of
the original non-convex mixed-integer non-linear programming problem (MINLP).
Again, careful use of over- and underestimators allows for the safe conclusion of
infeasibility of the original MINLP from the infeasibility of the approximate MILP
problem; cf. [11, Sect. 3.3].

The concept of approximating non-linear functions by piecewise linear ones has
been around for some time. However, new developments in efficient representation
of the resulting breakpoint systems [15] have lead to more interest in piecewise
linear approximators. Recently, Misener and Floudas [8, 9] utilize such approxi-
mators for relaxations (underestimators) when solving mixed-integer quadratically-
constrained quadratic programs.

The automatic computation of optimal breakpoint systems, however, received
very little treatment in the literature. The seminal work by Rosen and Pardalos [13]
and Pardalos and Rosen [10, Chap. 8] uses a system of equidistant breakpoints to
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achieve a predefined maximal deviation between a concave quadratic function and
the piecewise linear approximator. Geißler [1] and Geißler et al. [2] can compute
piecewise linear approximators (over- and underestimators) automatically when cer-
tain assumptions on the functions are satisfied. For more than one dimension, Mis-
ener and Floudas [7] utilize piecewise linear formulations via simplices; Rebennack
and Kallrath [12] use triangulations.

In Rebennack and Kallrath [11], we minimize the number of breakpoints used to
achieve a maximal deviation of δ between the piecewise linear approximator and the
original function. Furthermore, we constructed tight approximators by minimizing
the maximal vertical distance between the approximator and the original function,
for a given number of breakpoints. In this paper, we utilize an area-based tightness
definition: allowing a maximal deviation of δ > 0 and B ∈ N ≥ 2 breakpoints, we
seek a piecewise linear, continuous approximator which minimizes the area between
the approximator and the original function. Minimizing the error between the ap-
proximator and the original function through an area-based measure is expected to
produce better results (e.g., tighter bounds) when replacing non-linear functions by
piecewise linear ones, compared to approaches which ignore any tightness measure.

The idea of minimizing the area between a function is briefly mentioned in Geyer
et al. [3]. However, their paper does not further follow this idea but rather prefers
a curvature-based approach pointing out that this is of similar quality than using
vertical distances or an area-based approach. Different to our approach, they cannot
guarantee the computation of an optimal breakpoint system.

The contributions of this article are as follows. For univariate functions, we de-
velop methodologies to compute over- and underestimators as well as tubes which
are (1) continuous, (2) do not deviate more than a given tolerance δ > 0 from the
original function, (3) stay above (for overestimators), below (for underestimators)
or a combination of both (for tubes) and are (4) area-minimizing. Thus, it is the first
paper to describe a framework to automatically compute (optimal) area-minimizing
breakpoint systems for univariate functions.

The remainder of the paper is organized as follows: in Sect. 2, we provide vari-
ous definitions in the context of piecewise linear approximators. We treat over- and
underestimators in Sect. 3, tubes in Sect. 4 and approximators in Sect. 5. Section 6
contains our computational results. We conclude with Sect. 7.

2 Definitions

The original (non-linear, non-convex, continuous, and real) function to be approxi-
mated is f (x) over the compactum [X−,X+]⊂R. We denote by �(x) : [X−,X+]→R

a function approximating f (x).
We start with the definition of a δ -approximator for univariate functions.

Definition 1 (δ -Approximator, [11]). Let f (x) : [X−,X+] → R be a univari-
ate function and let scalar δ > 0. A piecewise linear, continuous function �(x) :
[X−,X+]→ R is called a δ -approximator for f (x), if the following property holds
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max
x∈[X−,X+]

|�(x)− f (x)| ≤ δ . (1)

We require for the piecewise linearity property of a function that the function is
non-differentiable at a finite number of points. δ -Over- and δ -underestimators are
δ -approximators with the additional requirement to stay above or below function
f (x) in the domain [X−,X+]. This is formalized in

Definition 2 (δ -Overestimator/δ -Underestimator, [11]). We call a piecewise lin-
ear, continuous function �+(x) : [X−,X+] → R a δ -overestimator for function
f (x) : [X−,X+]→ R, if condition (1) is satisfied along with

�+(x)≥ f (x), ∀ x ∈ [X−,X+]. (2)

We call a piecewise linear, continuous function �−(x) a δ -underestimator of func-
tion f (x), if −�−(x) is a δ -overestimator of − f (x).

We continue with the definition of a δ -tube.

Definition 3 (δ -Tube). We call any combination of a piecewise linear, continu-
ous δ -overestimator �+(x) for function f (x) and a piecewise linear, continuous δ -
underestimator �−(x) for f (x) a δ -tube for f (x).

The definitions of δ -approximators, δ -overestimators, δ -underestimators, and δ -
tubes require piecewise linearity and continuity. Thus, we will no longer mention
these function properties explicitly in the remainder of the paper, except if we want
to emphasis these two properties.

Given univariate function f (x) over a compactum and the δ -tolerance, we
have two desires on an automatic procedure: (1) it computes δ -approximators,
δ -overestimators and/or δ -underestimators and (2) the number of required break-
points (i.e., discontinuities) is minimal. This has been achieved already [11]. Their
approach can easily be extended to compute δ -tubes which require the minimal
number of breakpoints; in most cases, such optimal δ -tubes exhibit the property that
the breakpoint systems of the δ -overestimator and δ -underestimator are identical,
i.e., both the δ -overestimator and δ -underestimator share the same discontinuities.

Vice-versa, one can provide the number of breakpoints and ask for the “tightest”
possible δ -approximator, δ -overestimator, δ -underestimator, and δ -tube. In [11],
the authors use an absolute function deviation error tolerance criterion as a tightness
definition:

Definition 4 (Absolute-Error-Tolerance-Tightness (AETT), [11]). A δ -approxi-
mator, δ -overestimator, δ -underestimator, or δ -tube with B breakpoints for function
f (x) is called tighter (in the absolute-error-tolerance sense) than a ϑ -approximator,
ϑ -overestimator , ϑ -underestimator, or ϑ -tube, respectively, with B breakpoints for
function f (x), if δ < ϑ . A δ -approximator, δ -overestimator, δ -underestimator or
δ -tube with B breakpoints is called tight (in the absolute-error-tolerance sense) for
f (x), if there is no tighter ϑ -approximator, ϑ -overestimator, ϑ -underestimator, or
ϑ -tube for f (x).
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In this paper, we utilize an area-based tightness definition:

Definition 5 (Area-Tightness (AT)). Let �(x) be a δ -approximator, δ -overestimator,
δ -underestimator, or δ -tube with B breakpoints for function f (x). Further, let A1

be the area between �(x) and f (x) over the compactum [X−,X+]. Another δ -
approximator, δ -overestimator, δ -underestimator, or δ -tube with B breakpoints for
function f (x) and area A2 is called tighter (in the area sense) than �(x) for function
f (x), if A2 < A1. �(x) is called tight (in the area sense) for f (x), if there is no tighter
δ -approximator, δ -overestimator, δ -underestimator, or δ -tube with B breakpoints
for function f (x).

To compute an area-tight δ -approximator, δ -overestimator, δ -underestimator, or
δ -tube, we treat the error-tolerance, δ , and the number of breakpoints, B, as in-
put parameters. Thus, we more precisely call them (δ ,B)-approximator, (δ ,B)-
overestimator, (δ ,B)-underestimator, or (δ ,B)-tube.

Interestingly, AETT is preserved when shifting an absolute-error-tolerance-tight
(δ ,B)-approximator to obtain a (δ ,B)-overestimator or (δ ,B)-underestimator.

Corollary 1 ([11]). Let �(x) : [X−,X+] → R be an absolute-error-tolerance-
tight (δ ,B)-approximator for f (x) and let ε = 2δ . Then �+(x) := �(x) + δ and
�−(x) := �(x)− δ define an absolute-error-tolerance-tight (ε ,B)-underestimator
and an absolute-error-tolerance-tight (ε ,B)-overestimator, respectively, for f (x)
with the same number of breakpoints B.

For AETT, it therefore suffice to develop one single algorithm to compute optimal
(δ ,B)-approximators, (δ ,B)-overestimators and/or (δ ,B)-underestimators; a differ-
ent procedure is required for absolute-error-tolerance-tight (δ ,B)-tubes. Unfortu-
nately, AT is not preserved through (careful) shifting.

We present algorithms to compute area-tight (δ ,B)-overestimators and (δ ,B)-
underestimators in Sect. 3, area-tight (δ ,B)-tubes in Sect. 4 and area-tight (δ ,B)-
approximators in Sect. 5. However, before we proceed with the methodology, we
discuss how to choose the two parameters: the absolute-error tolerance, δ , and the
number of breakpoints, B. Dependent on the application, we might want to follow
one of the following two paths.

If we desire to compute an approximate solution to the original MINLP problem
with a specific tolerance guarantee in mind (e.g., a safe gap of ε > 0) via piecewise
linear approximations, one needs to compute δ -approximators, δ -overestimators,
δ -underestimators or δ -tubes with a certain absolute tolerance δ and apply them
appropriately; cf. [11, Sect. 3.3]. In this case, we might want to proceed as follows:

1. first, compute the minimum number of breakpoints, B∗, needed to obtain a given
δ -approximation (as discussed in [11]),

2. second, compute an absolute-error-tolerance-tight approximator—(ϑ ,B∗)-ap-
proximator, (ϑ ,B∗)-overestimator, (ϑ ,B∗)-underestimator, or (ϑ ,B∗)-tube—
using B∗ breakpoints (ϑ ≤ δ ; as discussed in [11]), and

3. third, compute an area-tight approximator—(ϑ ,B∗)-approximator, (ϑ ,B∗)-over-
estimator, (ϑ ,B∗)-underestimator, or (ϑ ,B∗)-tube.
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Instead of pre-defining the tolerance (δ dependent on ε) to achieve a good lower
bound for minimization problems, we might provide the number of breakpoints,
B, to be spend on the piecewise linear approximators. The number of breakpoints
directly affect the model size in the MILP framework. Thus, we might want to
choose the number of breakpoints in such a way that the resulting MILP problem
remains efficiently solvable with (standard) solvers. Another reason for pre-defining
the number of breakpoints are the use of logarithmic representations in the number
of breakpoints (both in the number of binary variables and constraints involved) of
the resulting breakpoint system; it is efficient to choose B as a power of 2. Given B,
we would skip the first step above and compute an absolute-error-tolerance-tight ap-
proximator yielding the tolerance δ . This allows for the computation of an area-tight
approximator using δ and B.

3 Computing Area-Tight (δ ,B)-Overestimators
and (δ ,B)-Underestimators

We are given the absolute-error tolerance δ (i.e., maximal vertical absolute differ-
ence between the function f (x) and the approximator �(x)) and the number of break-
points, B, for the univariate function f (x) along with the closed interval [X−,X+].
We seek to automatically compute area-tight (δ ,B)-overestimators. The case of
area-tight (δ ,B)-underestimators follows the same logic; we discuss it in brief at
the end of the section as well.

For the following discussions, we require:

• f (x)−δ ≥ 0 for all x ∈ [X−,X+], and
• X− ≥ 0.

Both requirements can be achieved through a shift in either the function value direc-
tion ( f (x) attains a minimum in [X−,X+], cf. Extreme Value Theorem) or the x-axis
direction.

For our derivations, we assume that the primitive of f (x) exists and we denote
it by F(x), for x ∈ [X−,X+]. We do not require its existence for our computations,
though. We are interested in minimizing the area between function f (x) and the
piecewise linear function �+(x); let L+(x) denote the primitive of �+(x). Therefore,
we need to compute the area between the two functions. Let xb ∈ [X−,X+] denote
the x-value (i.e., footpoint) of the bth breakpoint and let �+(xb) be its corresponding
function value. Then, the area between f (x) and �+(x) can be calculated as

∫ X+

X−
(�+(x)− f (x))dx

=
B−1

∑
b=1

[L+(x)−F(x)]
xb+1
xb
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=
B−1

∑
b=1

(L+(xb+1)−L+(xb))+F(x1)−F(xB)

=
1
2

B−1

∑
b=1

(�+(xb+1)+ �+(xb))(xb+1 − xb)+F(x1)−F(xB).

Note that the first identity is true because the approximator, �+(x), never crosses the
function f (x), cf. requirement (2).

We define x1 := X− and xB := X+ implying that both F(x1) and F(xB) are fixed,
i.e., they are constants. Thus, we are interested in minimizing the non-linear expres-
sion

B−1

∑
b=1

(�+(xb+1)+ �+(xb))(xb+1 − xb).

Notice that we do not require the primitive (or its existence) of function f (x) any-

more; the numerical value of
∫ X+

X− f (x)dx suffices.
Next, we need to model the decisions on the placement of the B breakpoints, via

decision variables xb (xb ∈ [X−,X+], xb+1 > xb, b = 2, . . . ,B − 1), and the func-
tion values of �+(x) at the breakpoints, via the shit variables sb (sb ∈ [−δ ,δ ],
b = 1, . . . ,B) with respect to f (x). In this context, we define

φ(xb) := f (xb)+ sb, ∀ b = 1, . . . ,B (3)

which equals �+(xb). The approximator �+(x) is then the corresponding interpolator
between the values of φ(xb).

Further, we need to ensure conditions (1) and (2). Both requirements lead to
semi-infinite programming problems because an infinite number of (non-linear, non-
convex) constraints need to hold; cf. Hettich and Kortanek [4] or Lopez and Still [5].
We follow the idea of formulation OBSD as described in [11] and discretize each
interval (xb−1,xb) into I equidistant grid points. Conditions (1) and (2) need then to
hold on this finite grid; we increase the number of grid points dynamically until a
pre-defined tolerance has been reached.

This leads us to the following (non-convex) non-linear programming (NLP) prob-
lem, computing an area-tight (δ ,B)-overestimator for the continuous function f (x)
on the interval [X−,X+]:

Ã+(δ ,B, I,M) :=

min
B−1

∑
b=1

(
φ(xb+1)+φ(xb)

)(
xb+1 − xb

)
(4)

s.t. xb − xb−1 ≥ 1
M
, ∀ b = 2, . . . ,B (5)

xbi = xb−1 +
i

I +1
(xb − xb−1) , ∀ b = 2, . . . ,B, i = 1, . . . , I (6)
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lbi = φ(xb−1)+
φ(xb)−φ(xb−1)

xb − xb−1
(xbi − xb−1) ,

∀ b = 2, . . . ,B, i = 1, . . . , I (7)

lbi − f (xbi)≤ δ , ∀ b = 2, . . . ,B, i = 1, . . . , I (8)

lbi ≥ f (xbi), ∀ b = 2, . . . ,B, i = 1, . . . , I (9)

x1 = X−, xB = X+ (10)

xb ∈ [X−,X+], ∀ b = 2, . . . ,B−1 (11)

xbi ∈ [X−,X+], ∀ b = 2, . . . ,B, i = 1, . . . , I (12)

lbi free , ∀ b = 2, . . . ,B, i = 1, . . . , I (13)

sb ∈ [0,δ ], ∀ b = 1, . . . ,B. (14)

The logic of the constraint set (5)–(14) is as follows. Constraints (5) ensure the sort-
ing of the breakpoints and that no two breakpoints can be identical. This becomes
numerically important to avoid a division by zero when calculating the slope of the
approximator �+(x). The value of the constant M needs to be chosen carefully in
order to avoid exclusion of an optimal distribution of the breakpoints. Actually, it is
non-trivial to mathematical (and computational) safely conclude what a sufficiently
large value for M is. Constraints (6) model the I grid points, xbi, for the interval
(xb−1,xb). These grid points are the discretization introduced in order to ensure that
(I) the maximal vertical distance between function f (x) and the approximator �+(x)
is at most δ , as required in (1) and modeled via (7) and (8), and that (II) approxima-
tor �+(x) stays above function f (x) as required in (2) and modeled via (7) and (9).
Constraints (10)–(14) model the variables’ domain.

The mathematical model (4)–(14) is non-linear, non-convex and continuous: It
consists of 2B+2(B−1)I−2 continuous variables and B+4(B−1)I−1 constraints;
the objective function (4) as well as constraints (7)–(9) is non-convex.

If the NLP (4)–(14) is infeasible, then there are two possibilities: either M is too
small or the combination of δ and B does not allow for the existence of a (δ ,B)-
overestimator.

The idea of the objective function (4) is intuitive: We minimize the area of the
approximator �+(x) and the x-axis; constraints (9) ensure that �+(x) always stays
above function f (x). Given a sufficiently large value for M denoted by M∗, we can
recover a lower bound A+ on the area A between the approximator �+(x) and the
original function f (x) via

A+ = 1
2 Ã+(δ ,B, I,M∗)+F(x1)−F(xB). (15)

Equation (15) constitutes a lower bound on the area A because both conditions (1)
and (2) are relaxed; they hold only on a finite number of (grid) points.

After solving (4)–(14) to (local or global) optimality, we solve (to global opti-
mality)

μ+(I) := max
b=2,...,B

μ+
b (I) := max

b=2,...,B
max

x∈[xb−1,xb]
(�+(x)− f (x)) (16)
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in order to compute the maximal vertical deviation between f (x) and the computed
approximator �+(x) in the interval [X−,X+]. If

μ+(I)≤ δ , (17)

then condition (1) holds true and the computed �+(x) defines a (δ ,B)-approximator
for f (x).

We further need to check if �+(x) is below function f (x) somewhere in the inter-
val (X−,X+). Therefore, we solve (to global optimality)

ψ+(I) := min
b=2,...,B

ψ+
b (I) := min

b=2,...,B
min

x∈[xb−1,xb]
(�+(x)− f (x)). (18)

If

ψ(I)≥ 0, (19)

then condition (2) holds true. If both (17) and (19) are satisfied, then �+(x) defines
an area-tight (δ ,B)-overestimator for f (x) with A = A+.

If (17) or (19) are violated by more than a pre-defined tolerance η > 0, then we
increase the number of grid points, I, and re-solve (4)–(14) as well as (16) and (18).
For any desired precision η > 0, this process, of increasing I, is finite (granted that
the NLP problems can be solved to global optimality).

Corollary 2. Let f (x) be a continuous function on [X−,X+], δ > 0 and B ∈ N ≥ 2
be fixed. Then, for each η > 0, there exists a finite I∗, such that μ(I∗)≤ δ +η and
ψ(I∗)≥ −η , given that there exists a (δ ,B)-overestimator for f (x).

The proof of Corollary 2 is based on the continuity of f (x) over a compactum and
follows from Rebennack and Kallrath [11, Corollary 6].

Following the same logic as for the area-tight (δ ,B)-overestimator, we compute
an area-tight (δ ,B)-underestimator, �−(x), for f (x) on the interval [X−,X+]:

Ã−(δ ,B, I,M) :=

max
B−1

∑
b=1

(φ(xb+1)+φ(xb))(xb+1 − xb) (20)

s.t. (5)–(7) , (10)–(13) (21)

f (xbi)− lbi ≤ δ , ∀ b = 2, . . . ,B, i = 1, . . . , I (22)

lbi ≤ f (xbi), ∀ b = 2, . . . ,B, i = 1, . . . , I (23)

sb ∈ [−δ ,0], ∀ b = 1, . . . ,B. (24)

Analogously, the condition (1) reads for underestimators

μ−(I) := max
b=2,...,B

μ−
b (I) := max

b=2,...,B
max

x∈[xb−1,xb]
( f (x)− �−(x)) (25)
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and (2) is

ψ−(I) := min
b=2,...,B

ψ−
b (I) := min

b=2,...,B
min

x∈[xb−1,xb]
( f (x)− �−(x)). (26)

Function �−(x) defines an area-tight (δ ,B)-underestimator for f (x) with area

A = 1
2 Ã−(δ ,B, I,M)+F(x1)−F(xB),

if both

μ−(I)≤ δ and ψ−(I)≥ 0. (27)

Corollary 2 reads now

Corollary 3. Let f (x) be a continuous function on [X−,X+], δ > 0 and B ∈ N ≥ 2
be fixed. Then, for each η > 0, there exists a finite I∗, such that μ−(I∗)≤ δ +η and
ψ−(I∗)≥ −η , given that there exists a (δ ,B)-underestimator for f (x).

4 Computing an Area-Tight (δ ,B)-Tube: (δ ,B)-Overestimators
and (δ ,B)-Underestimators Sharing the Same Breakpoint
System

Recall that the purpose of piecewise linear approximations of functions is to re-
place a non-liner system of constraints or objective function by MILP constructs
to be placed in a MILP framework. Therefore, consider a non-convex, continuous,
univariate function f (x) which appears as an equation

f (x) = b, x ∈ [X−,X+]

in the constraints of the MINLP problem to be approximated. In this case, one
would compute an area-tight (δ ,B)-overestimator, �+(x), and an area-tight (δ ,B)-
underestimator, �−(x), for f (x). When doing so, there is no guarantee that the break-
point systems of �+(x) and �−(x) are identical. Most likely, we would require 2(B−
1) breakpoints for the resulting δ -tube. Notice that the resulting tube might not be an
area-tight (δ ,2B−2)-tube. For a given number of breakpoints, B, an are-tight (δ ,B)-
tube can be calculated when the (δ ,B)-overestimator and the (δ ,B)-underestimator
share the same breakpoint system. Notice that the resulting (δ ,B)-overestimator and
(δ ,B)-underestimator might not be area-tight, even though the (δ ,B)-tube is.

Just like in the previous section, for notational convenience, we assume that

• f (x)−δ ≥ 0 for all x ∈ [X−,X+], and
• X− ≥ 0.
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For (δ ,B)-overestimator, �+(x), and (δ ,B)-underestimator, �−(x), sharing the
same B breakpoints at xb, the area of the resulting (δ ,B)-tube is derived through

∫ X+

X−
(�+(x)− �−(x))dx

=
B−1

∑
b=1

[L+(x)−L−(x)]xb+1
xb

=
B−1

∑
b=1

(L+(xb+1)−L+(xb)−L−(xb+1)+L−(xb))

=
1
2

B−1

∑
b=1

(�+(xb+1)+ �+(xb))(xb+1 − xb)

−1
2

B−1

∑
b=1

(�−(xb+1)+ �−(xb))(xb+1 − xb).

Similar to (3), we define

φ+(xb) := f (xb)+ s+b and φ−(xb) := f (xb)+ s−b , ∀ b = 1, . . . ,B.

Following the idea of formulation (4)–(14), we obtain the following continuous,
non-convex NLP problem, computing an area-tight (δ ,B)-tube for the continuous
function f (x) on the interval [X−,X+]:

Ã±(δ ,B, I,M) :=

min
1
2

B−1

∑
b=1

(φ+(xb+1)+φ+(xb)−φ−(xb+1)−φ−(xb))(xb+1 − xb) (28)

s.t. (5), (6), (10)–(12) (29)

l+bi = φ+(xb−1)+
φ+(xb)−φ+(xb−1)

xb − xb−1
(xbi − xb−1) ,

∀ b = 2, . . . ,B, i = 1, . . . , I (30)

l+bi − f (xbi)≤ δ , ∀ b = 2, . . . ,B, i = 1, . . . , I (31)

l+bi ≥ f (xbi), ∀ b = 2, . . . ,B, i = 1, . . . , I (32)

l−bi = φ−(xb−1)+
φ−(xb)−φ−(xb−1)

xb − xb−1
(xbi − xb−1) ,

∀ b = 2, . . . ,B, i = 1, . . . , I (33)

f (xbi)− l−bi ≤ δ , ∀ b = 2, . . . ,B, i = 1, . . . , I (34)

l−bi ≤ f (xbi), ∀ b = 2, . . . ,B, i = 1, . . . , I (35)

l+bi , l−bi free , ∀ b = 2, . . . ,B, i = 1, . . . , I (36)

s+b ∈ [0,δ ], s−b ∈ [−δ ,0], ∀ b = 1, . . . ,B. (37)
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Constraint group (29) models the breakpoint system, constraints (30)–(32) model
the overestimator and (33)–(35) the underestimator.

The computed �+(x) defines a (δ ,B)-overestimator, if both (17) and (19) hold
true; �−(x) is a (δ ,B)-underestimator, if both conditions in (27) hold. If all four
conditions are satisfied, then �+(x) and �−(x) define an area-tight (δ ,B)-tube for
f (x) on [X−,X+] with area Ã±(δ ,B, I,M); otherwise, if at least one of the four
conditions is violated, then the grid size I needs to be increased.

We also have a finite convergence argument for tubes.

Corollary 4. Let f (x) be a continuous function on [X−,X+], δ > 0 and B∈N≥ 2 be
fixed. Then, for each η > 0, there exists a finite I∗, such that max{μ+(I∗),μ−(I∗)}≤
δ + η and min{ψ+(I∗),ψ−(I∗)} ≥ −η , given that there exists a (δ ,B)-tube for
f (x).

5 Computing Area-Tight (δ ,B)-Approximators

δ -Approximators play the central role in the methodology developed by Rebennack
and Kallrath [11], because they allow for the efficient computation of AETT δ -
overestimators and δ -underestimators via a simple function value shift; minimality
in the number of breakpoints required is preserved as well. The case for area-tight
(δ ,B)-approximators is different: AT is not preserved after a shifting operation.

Over-, underestimators and tubes are important constructs when replacing NLP
problems; approximators are not equally important, as they do not allow for the
computation of safe bounds and do not allow for infeasibility detection. Thus, we
leave it at a sketch of the idea on how to compute an area-tight (δ ,B)-approximator.

Approximators can intersect with the function f (x), unlike over- and underesti-
mators. This poses a challenge, when calculating the area between the approximator
and the function. We use the following idea: given that we are working with a grid
(the I discrete points) on the x-axis, we evaluate the relative position of the ap-
proximator �(x) to the function f (x) at these grid points by introducing the binary
decision variables γbi with

−δ
(
1− γbi)≤ f (xbi)− lbi ≤ δγbi, ∀ b = 2, . . . ,B, i = 1, . . . , I.

If f (x) is above (below) the approximator �(x) at point xbi, i.e., f (xbi)> lbi ( f (xbi)<
lbi), then γbi = 1 (γbi = 0).

We consider only the case in which the primitive of function of f exists. We
distinguish three cases on the relative position of the approximator to the function
f (x), to calculate an approximation of the area between f (x) and �(x)

I: γbi = γb,i+1 = 1

F(xb,i+1)−F(xbi)−L(xb,i+1)+L(xbi)

this formula is precise if f (x)≥ �(x) for all x ∈ [xbi,xb,i+1]
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II: γbi = γb,i+1 = 0

−F(xb,i+1)+F(xbi)+L(xb,i+1)−L(xbi)

this formula is precise if f (x)≤ �(x) for all x ∈ [xbi,xb,i+1]
III: γbi �= γb,i+1 the approximator � intersects with the function f at least once in

the interval x ∈ [xbi,xb,i+1], we assign the area a value of 0.

The three cases above are restricted to the intervals [xb1,xbI ], b = 2, . . . ,B, and do
neither consider the interval [xb−1,xb1] nor [xbI ,xb] located around the breakpoints,
b = 1, . . . ,B. Therefore, we introduce the binary decision variable γb with

−δ
(
1− γb)≤ sb ≤ δγb, ∀ b = 1, . . . ,B.

and derive the area of the intervals using the three cases above analogously.
The resulting mathematical programming problem is a MINLP, which is non-

convex. The number of binary variables depends on the number of breakpoints, B,
and the grid size, I. Therefore, we expect that the computation of area-tight (δ ,B)-
approximators is computationally much harder than the computation of area-tight
(δ ,B)-overestimators or area-tight (δ ,B)-underestimators.

After the resulting MINLP has been solved, we check if the continuums-
condition (1) is satisfied, via the solution of the global optimization problem

μ±(I) := max
b=2,...,B

μb(I) := max
b=2,...,B

max
x∈[xb−1,xb]

∣
∣
∣�(x)− f (x)

∣
∣
∣.

If μ(I) > δ , then we increase I and start-over; otherwise, �(x) is a (δ ,B)-approxi-
mator. The area computed as described above defines a lower bound on the area of
an area-tight (δ ,B)-approximator; an upper bound is obtained by evaluating the area
between the calculated �(x) and f (x). If the lower and the upper bound on the area
are close enough together, then we stop, otherwise we increase I further.

6 Computational Results

We execute our computational tests on an Intel(R) i7 @ 2.40 GHz with 8 GB RAM
running 64-bit Windows 7. We use GAMS version 23.8 and solve all non-convex
NLP problems with the global solver LindoGLOBAL [14] to an absolute gap (i.e.,
upper bound minus lower bound) of 10−5.
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Table 1 One-dimensional test functions taken from Rebennack and Kallrath [11]

# f (x) X− X+ Comment

01 x2 −3.5 3.5 Convex function; axial symmet-
ric at x = 0

02 lnx 1 32 Concave function
03 sinx 0 2π Point symmetric at x = π
04 tanh(x) −5 5 Strictly monotonically increas-

ing; point symmetric at x = 0

05 sin(x)
x 1 12 For numerical stability reason

we avoid the removable singu-
larity and the oscillation at 0, the
two local minima have an abso-
lute function value difference of
≈ 0.126

06 2x2 + x3 −2.5 2.5 In (−∞,∞), there is one local
minimum at x = 0 and one local
maximum at x = 4

3
07 e−x sin(x) −4 4 One global minimum (xm ≈

−2.356 with f (xm)≈ −7.460)

08 e−100(x−2)2
0 3 A normal distribution with a

sharp peak at x = 2

09 1.03e−100(x−1.2)2
+ e−100(x−2)2

0 3 The sum of two Gaussians, with
two slightly different maxima
(their absolute function value
difference is ≈ 0.030)

10 Maranas and Floudas [6] 0 2π Three local minima (the absolute
function value difference of the
two smallest local minima is ≈
0.031)

For our computational tests, we made the following selection for the parameters
I,M and η . We start with a grid size of I = 2 and update the number of grid points
according to the following formula

max{�1.5I , I +1}.

We choose M = 10−5 as well as η = 0.001. We use the ten univariate functions,
taken from the literature, as summarized in Table 1.

Table 2 summarized the computational results for area-tight (δ ,B)-overestima-
tors. We make the following observations: (I) area-tight (δ ,B)-overestimators can
only be computed for a few number of breakpoints; (II) the number of discretization
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points (i.e., I) required to ensure a maximal violation of 0.001 of condition (2) (II.1)
varies widely among the tested functions: if the function is convex (e.g., function
01), then any discretization suffices, and (II.2) decreases with an increase in the
number of breakpoints; (III) the computational time tends to increase exponentially
in the number of breakpoints.

Table 2 Area-tight (δ ,B)-overestimators for the functions provided in Table 1

# B δ A+ ψ+ μ+ I Sec.

01 3 3.10 14.2917 0.0000000 3.063 2 0.19
4 1.50 6.3519 0.0000000 1.361 2 0.91
5 1.10 3.5729 0.0000000 0.766 2 24.35
6 1.10 2.2867 0.0000000 0.490 2 329.53
7 0.40 1.5880 0.0000000 0.340 2 0.78
8 0.40 – – – 2 3,600.07a

02 3 1.00 2.4186 −0.0005192 0.900 9 4.38
4 0.85 1.1780 −0.0005961 0.494 9 154.21
5 0.45 – – – 2 3,600.10a

03 3 1.50 3.4820 −0.0005656 1.365 28 12.37
4 0.40 0.7448 −0.0002769 0.278 28 50.67
5 0.40 0.4484 −0.0004956 0.311 28 1,348.89
6 0.40 0.2958 −0.0006979 0.125 13 5,965.65
7 0.40 – – – 3 7,081.38a

04 3 1.00 3.2294 −0.0002624 0.958 13 4.07
4 0.30 0.4874 −0.0007642 0.192 3 3.42
5 0.20 0.2660 −0.0002292 0.172 13 136.22
6 0.20 0.1819a −0.0010273a – 19 7,808.39a

05 3 1.00 1.4856 −0.0007117 0.301 42 30.76
4 0.40 0.5659 −0.0004862 0.106 13 28.47
5 0.40 0.3583 −0.0002181 0.102 13 412.04
6 0.40 0.1849 −0.0007009 0.049 9 1,650.26
7 0.40 0.1395a −0.0041407a – 6 6,894.49a

06 3 5.00 8.4034 −0.0004046 3.959 28 11.81
4 4.50 4.5613 0.0000000 4.369 63 1,035.67
5 4.50 3.1492a −0.0027268a – 42 9,040.39a

07 3 30.00 17.0289 −0.0005812 7.490 94 87.63
4 10.00 11.9770 −0.0002707 9.569 42 846.74
5 4.00 4.8733 −0.0003621 3.603 28 5,184.76
6 4.00 2.7909a −0.0053520a – 3 5,223.90a

08 3 1.00 1.3130b −0.0110870b – 141 562.27b

4 1.00 0.4476 0.0000000 0.785 63 6,338.37
5 1.00 0.0626 −0.0006100 0.237 13 622.74
6 1.00 0.0376a −0.0016832a – 28 6,845.49a

09 3 1.00 1.9998b −0.0077818b – 141 1,262.31b

4 1.00 1.3293a −0.0862732a – 42 7,569.87a

10 3 4.00 10.2380b −0.0069331b – 141 4,376.43b

4 4.00 8.6188a −0.1971054a – 19 9,491.13a

aOut of time (time limit per model is 3,600 s)
bModel size exceeds license limits
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The computational results for area-tight (δ ,B)-underestimators are provided in
Table 3. The concavity of function 02 makes it possible to compute area-tight (δ ,B)-
underestimators for up to 15 breakpoints within the time limit. Functions 08 and 09
are difficult to tightly underestimate: the value of M needs to be chosen carefully;
local solvers might easily miss a global optimum for (20)–(24).

Results for area-tight (δ ,B)-tubes for the ten test functions are given in Table 4.
The column labeled “A+ +A−” reports on the sum of the area of the correspond-
ing area-tight (δ ,B)-overestimator and area-tight (δ ,B)-underestimator, which is a
lower bound on the area of a (δ ,B)-tube. Further, μ± := max{μ+,μ−} provides
the maximal absolute vertical deviation of the tube to the original function f (x).
Interestingly, the area of an area-tight (δ ,B)-tube is only marginally larger (if at all),
for the tested functions, compared to the area provided by combining an area-tight
(δ ,B)-overestimator with an area-tight (δ ,B)-underestimator, while the number of

Table 3 Area-tight (δ ,B)-underestimators for the functions provided in Table 1

# B δ A− ψ− μ− I Sec.

01 3 3.10 7.1458 −0.0001151 3.100 3 0.73
4 1.50 3.1759 −0.0000429 1.376 9 41.06
5 1.10 1.7801a −0.0009104a – 28 4,542.38a

02 3 1.00 5.9903 0.0000000 0.564 2 0.33
4 0.85 2.6130 0.0000000 0.319 2 2.03
5 0.45 1.4598 0.0000000 0.205 2 28.95
6 0.45 0.9312 0.0000000 0.143 2 5.80
7 0.25 0.6455 0.0000000 0.106 2 51.80
8 0.25 0.4738 0.0000000 0.081 2 61.68
9 0.25 0.3625 0.0000000 0.064 2 44.42

10 0.25 0.2863 0.0000000 0.052 2 67.59
11 0.25 0.2318 0.0000000 0.043 2 8.77
12 0.25 0.1915 0.0000000 0.036 2 299.95
13 0.25 0.1609 0.0000000 0.031 2 380.18
14 0.25 0.1371 0.0000000 0.027 2 858.85
15 0.25 0.1182 0.0000000 0.023 2 526.15
16 0.25 – – – 2 3,601.02a

03 3 1.50 3.4820 −0.0005656 1.365 28 13.46
4 0.40 0.7448 −0.0002769 0.278 28 62.06
5 0.40 0.4484 −0.0004956 0.311 28 1,118.99
6 0.40 0.2958a −0.0027497a – 13 7,059.87a

04 3 1.00 3.2294 −0.0002941 0.958 13 3.03
4 0.30 0.4874 −0.0007642 0.192 3 3.06
5 0.20 0.2661 −0.0000696 0.180 19 202.68
6 0.20 0.1819a −0.0010272a – 19 6,774.00a

(continued)
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Table 3 (continued)

# B δ A− ψ− μ− I Sec.

05 3 1.00 1.0176 −0.0006447 0.285 9 2.71
4 0.40 0.3514 −0.0008220 0.157 13 56.77
5 0.40 0.2615 −0.0002037 0.150 19 1,854.52
6 0.40 – – – 3 6,561.11a

06 3 5.00 7.1298 −0.0005952 3.779 3 1.39
4 4.50 4.0965 −0.0007573 4.351 63 1,319.01
5 4.50 2.0713a −0.0048858a – 28 7,504.65a

07 3 30.00 20.1332b −0.0085689b – 141 196.96b

4 10.00 6.3694a −0.0016387a – 94 6,880.37a

08 3 1.00 0.1772 0.0000000 1.000 3 0.86
4 1.00 0.1764 −0.0009344 0.997 4 67.11
5 1.00 0.0205 0.0000000 0.108 6 425.71
6 1.00 0.0142 −0.0000999 0.106 4 354.25
7 1.00 0.0142 −0.0000999 0.106 4 731.74
8 1.00 0.0109a −0.0066468a – 9 6,050.35a

09 3 1.00 0.3598 0.0000000 1.030 6 4.81
4 1.00 0.3597 −0.0001966 1.030 9 646.77
5 1.00 0.1984 0.0000000 1.000 6 1,832.71
6 1.00 0.1966 −0.0004934 1.030 4 2,752.09
7 1.00 – – – 2 3,601.98a

10 3 4.00 7.9921b −0.0017494b – 141 5,844.36b

4 4.00 6.218a −0.2982953a – 13 5,864.30a

aOut of time (time limit per model is 3,600 s)
bModel size exceeds license limits

breakpoints for the area-tight (δ ,B)-tubes is almost half compared to the combina-
tion of an area-tight (δ ,B)-overestimator with an area-tight (δ ,B)-underestimator.
Computing area-tight (δ ,B)-tubes is computationally more challenging than com-
puting area-tight (δ ,B)-overestimators and area-tight (δ ,B)-underestimators. How-
ever, it remains computational tractable to compute area-tight (δ ,B)-tubes for a
small number of breakpoints.

Figure 1 shows plots of the ten test functions together with an area-tight (δ ,B)-
overestimator, (δ ,B)-underestimator or (δ ,B)-tube. The presented over-, underesti-
mators and tubes correspond to the results of Tables 2, 3 and 4.
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Table 4 Area-tight (δ ,B)-tubes for the functions provided in Table 1

# B δ A++A− A± ψ+ ψ− μ± I Sec.

01 3 3.10 21.4375 21.4375 0.0000000 −0.0001148 3.100 3 1.40
4 1.50 9.5278 9.5278 0.0000000 −0.0000105 1.369 9 178.39
5 1.10 c 5.3594a 0.0000000a −0.0156250a – 9 3,707.36a

02 3 1.00 8.4089 8.4292 −0.0008616 0.0000000 0.788 13 19.56
4 0.85 3.7910 3.7946 −0.0004650 0.0000000 0.449 9 257.74
5 0.45 c 2.1479 −0.0003956 0.0000000 0.282 9 437.53
6 0.45 c 1.3279a −0.0016468a 0.0000000a – 4 3833.89a

03 3 1.50 6.9639 7.3622 −0.0000396 −0.0004090 1.500 42 91.53
4 0.40 1.4896 1.5018 −0.0006088 −0.0006088 0.257 19 141.01
5 0.40 0.8967 1.0616a −0.0020084a −0.0088723a – 9 4,516.01a

04 3 1.00 6.4588 7.9908 −0.0006473 −0.0002773 1.000 42 85.96
4 0.30 0.9748 0.9967 −0.0006409 −0.0006409 0.154 6 42.62
5 0.20 0.5321 0.7070 −0.0002143 −0.0006732 0.174 13 1,858.18
6 0.20 c – – – – 2 3,600.11a

05 3 1.00 2.5032 2.6914 −0.0006133 −0.0003608 0.453 42 70.57
4 0.40 0.9173 0.9235 −0.0006387 0.0000000 0.157 13 115.89
5 0.40 0.6198 0.6192a −0.0028052a −0.0007355a – 13 5,500.06a

06 3 5.00 15.5331 15.6470 −0.0007989 −0.0008506 4.466 63 131.09
4 4.50 8.6578 10.2935a 0.0000000a −0.0039028a – 63 5,896.67a

07 3 30.00 c 37.492b −0.0006538b −0.0073744b –141 494.11b

4 10.00 c 19.2815 −0.0003845 −0.0009017 10.000 42 3,810.09
5 4.00 c 8.518a −0.0241269a −0.0248196a – 13 9,022.88a

08 3 1.00 c 1.4903b −0.0110513b 0.0000000b –141 3,660.14b

4 1.00 0.6249 0.6221a −0.1077110a 0.0000000a – 42 3,889.13a

09 3 1.00 c 2.3596a −0.0152941a 0.0000000a – 94 5,729.48a

4 1.00 c 1.7519a −0.0862732a 0.0000000a – 42 7,235.23a

10 3 4.00 c 18.6457a −0.0125147a −0.0071669a – 94 8,319.97a

4 4.00 c 13.1937a −1.0792070a −0.0033989a – 9 4,397.01a

aOut of time (time limit per model is 3,600 s)
bModel size exceeds license limits
cOver- and/or underestimator problem was not solved to global optimality

7 Conclusions

In this paper, we extend the literature on methodologies which automatically com-
pute optimal piecewise linear overestimators, underestimators and tubes for uni-
variate functions. The computed approximators are optimal among all piecewise
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linear, continuous functions in the sense that they minimize the area between
the function and the approximator. Our methodology for computing area-tight
(δ ,B)-overestimators, (δ ,B)-underestimators and (δ ,B)-tubes require the solution
of a series of continuous, non-linear, and non-convex mathematical programming
problems.

The computational tests reveal that it is worth-while to compute area-tight
(δ ,B)-tubes which share the same breakpoint system, rather than computing (δ ,B)-
overestimators and (δ ,B)-underestimators individually, if tubes are desired.
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Fig. 1 The ten univariate functions together with computed (δ ,B)-overestimator,
(δ ,B)-underestimator, or (δ ,B)-tube; (black lines) original function f (x), (gray
lines) approximator function �+(x), �−(x), or �±(x). (a) 01: area-tight (0.4,8)-
overestimator, (b) 02: area-tight (0.25,15)-underestimator, (c) 03: area-tight
(0.4,4)-tube, (d) 04: area-tight (0.2,5)-overestimator, (e) 05: area-tight (0.4,4)-
underestimator, (f) 06: area-tight (5,3)-tube, (g) 07: area-tight (10,4)-tube, (h) 08:
area-tight (1,5)-overestimator, (i) 09: area-tight (1,5)-underestimator, (j) 10: no area-
tight approximation
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Market Graph and Markowitz Model

Valery Kalyagin, Alexander Koldanov, Petr Koldanov, and Viktor Zamaraev

1 Introduction

Market graph is an important part of market network. The concept of the market
graph was introduced in [3, 5]. Since, different aspects of the market graph approach
(threshold method) were developed in the literature. We mention here some of the
references. Dynamics of the US market graphs was studied in [6]. Complexity of
the US market graph associated with significant correlations is investigated in [7].
Peculiarity of different financial markets is emphasized in [2, 8, 11, 19, 24]. Market
graphs with different measures of similarity were studied in [1, 2, 10, 22]. Statistical
procedures for the market graph construction are discussed in [15, 16]. Some effi-
cient algorithms related to the calculation of isolated cliques in a market graph are
presented in [9, 12]. The power law phenomenon first observed for US stock market
in [5] was then developed in [4, 11, 23].

Markowitz model is the most popular tool for practical portfolio selection and
optimization [21]. The main concept of portfolio optimization in the framework
of Markowitz model is the efficient frontier of sets of stocks. For a given set of
stocks its efficient frontier is the curve in the plane associated with Pareto optimal
portfolios according to two criteria: expected return → max, risk → min. The choice
of particular portfolio on the efficient frontier is then determined by the value of risk
aversion of investor. However in practice investor is interested to limit the number
of stocks in his optimal portfolio. We call it stocks selection problem. Criteria of
selection can be different. It can be the stock return, i.e. one selects the stocks with
the highest return, it can be the stock volume of trading, i.e. one selects the stocks
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with the highest volume, it can be the stock liquidity, i.e. one selects the stocks with
the highest liquidity or other criteria. One needs to make this first selection without
big loss of information on efficient portfolios.

In the present paper we investigate a connection between characteristics of the
market graph and classical Markowitz portfolio theory. More precisely we consider
cliques and independent sets of the market graph. Cliques are sets of highly inter-
connected stocks and usually are composed by stocks attractive by their return and
liquidity [23, 24]. Independent sets are sets of stocks without connections in the
market graphs. Independent sets were conjectured in [5] to be useful for the con-
struction of diversified portfolio. Our main result is the following: effective frontier
of the market can be well approximated by the effective frontier of the maximum
independent set (MIS) of the market graph constructed on the sets of stocks with
the highest Sharp ratio. This allows to reduce the number of stocks for portfolio
optimization without the loss of quality of obtained portfolio. On the other hand we
show that despite some attractiveness the cliques are not suitable for the portfolio
optimization. Note that some relations of market network analysis with portfolio
theory were already mentioned in [13, 17, 20].

The paper is organized as follows. In Sect. 2 we recall some notions related to
market graph and Markowitz theory. In Sect. 3 we discuss some statistical proce-
dures for the stock selection problem. In Sect. 4 we study efficient frontiers of ind-
ependent sets and cliques for different market graphs and different stock markets.
Finally in Sect. 5 we give some comments for the obtained results.

2 Market Graph and Markowitz Theory

Let S be a subset of stocks on financial market, N be the number of stocks in S,
and let n be the number of observations. Denote by pi(t)the price of the stock i
for the day t, (i = 1, . . . ,N; t = 1, . . . ,n) and define the daily return of the stock
i for the period from day t − 1 to day t as ri(t) = ln(pi(t)/pi(t − 1)). We assume
ri(t) to be a realization of the random variable Ri(t). We consider standard assump-
tions: the random variables Ri(t), t = 1, . . . ,nare independent with fixed i, have all
the same distribution as a random variable Ri(i = 1, . . . ,N), and the random vector
(R1,R2, . . . ,RN)has a multivariate distribution with the covariance matrix ‖σi, j‖. Let

ρi, j =
σi, j

σiσ j

where σ2
i = σi,i, σ2

j = σ j, j Matrix of correlations ‖ρi, j‖is the matrix for market
graph construction. Each node of the graph corresponds to a stock from S. The edge
between two nodes i and j is included in the market graph, if ρi, j > ρ0(where ρ0is
a threshold). Clique in a graph is a subset of nodes connected to each other. Max-
imum clique (MC) is the clique with the maximal number of nodes. Independent
set in a graph is a subset of nodes with no connections. MIS is the independent set
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with maximal number of nodes. Cliques are sets of highly interconnected stocks.
Independent sets are sets of stocks without connections in the market graphs. As it
was mentioned above independent sets were conjectured in [5] to be suitable for the
construction of diversified portfolio.

Portfolio of stocks from S is defined by the vector f = ( f1, f2, . . . , fN), where
fi ≥ 0 is the portion of capital invested in the stock i, i = 1,2, . . . ,N and ∑N

i=1 fi = 1.
Return of the portfolio f is a random variable R = ∑N

i=1 fiRi. Mean-variance theory
of Markowitz is based on two characteristics: expected return E(R)

E(R) =
N

∑
i=1

fiE(Ri)

and risk σ(R)

σ2(R) =
N

∑
i=1

N

∑
j=1

σi, j fi f j

Efficient frontier of the market is the set of Pareto optimal points in the plane (E,σ)
with respect to two criteria

E(R)→ max,σ(R)→ min

Investor according to his preferences (utility function, risk aversion, or others) can
choose an efficient portfolio associated with a point of the efficient frontier. Efficient
frontier of any set of nodes is defined in the same way.

3 Stocks Selection Problem

In this section we discuss the stock selection problem from statistical point of view.
Our approach follows the paper [18]. For the set of stocks S = {1, . . . ,N} we would
like to select a subset according to some criteria. Let xi(t) be the observation of
some characteristic of stock i (return, volume of trading, liquidity or other) for
the time t, t = 1, . . . ,n, i = 1, . . . ,N. We assume xi(t) to be a realization of the
random variable Xi(t). We consider standard assumptions: the random variables
Xi(t), t = 1, . . . ,nare independent with fixed i, have all the same distribution as a
random variable Xi(i = 1, . . . ,N). We assume Xi to be a random variable of the class
N(ai,σ2

i ). Let us consider the following selection criteria according to the quality
of stocks:

1. the quality of the i-th stock is characterized by parameter ai, and a stock is said
to be positive (or good) if ai > a0, and is said to be negative (or bad) if ai ≤ a0.

2. the quality of the i-th stock is characterized by parameter σi, and a stock is said
to be positive (or good) if σi < σ0, and is said to be negative (or bad) if σi ≥ σ0.
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3. the quality of the i-th stock is characterized by parameter shi =
ai

σi
, and a stock

is said to be positive (or good) if shi > sh0, and is said to be negative (or bad) if
shi ≤ sh0.

For the case of return the criteria 1 gives the selection of the most profitable stocks,
the criteria 2 gives the selection of the least risky stocks, and the criteria 3 gives the
selection of the best stocks according to the Sharp ratio. For the case of liquidity
the criteria 1 gives the most liquid stocks. All formulated selection problems can be
considered as multiple hypothesis testing problems. For each statistical procedure
of stock selection there are two possible sources of error. There is the possibility of
false positives, that is, stocks which are selected although they are negative, and of
false negatives, that is, populations which are not selected although they are positive.
Instead of false negatives we shall focus our attention on true positives, that is, on
those positive stocks which are included in the selected group.

For measuring how well a statistical procedure carries out its task of identifying
the positive stocks we consider:

(a) The expected number of true positives.
(b) The expected proportion of true positives, that is, the quantity (a) divided by the

total number of positives.
For measuring how well a procedure carries out its task of identifying the neg-
ative stocks we consider:

(c) The expected number of false positives.
(d) The expected proportion of false positives, that is, the quantity (c) divided by

the total number of negatives.

As a generic notation for any one of the quantities (a), (b) we shall use S(θ ,δ )
where θ is an element of the parametric space Ω , and δ is the statistical procedure.
Similarly, we shall let R(θ ,δ ) denote the quantity (c) or (d). With these definitions
of R and S, it is desirable to have S(θ ,δ ) as large and R(θ ,δ ) as small as possible.

A selection procedure is a partition of the sample space into the sets Di1,...,ik
of those sample points for which the selected group consists of the stocks with
subscripts i1, . . . , ik and no others. To these must be added the set D0 for which none
of the stocks is selected. If the number of stocks is N, the number of sets D is 2N .
Let Ei be the set of sample points for which the i-th stock is included in the selected
group. Then each of the two systems of sets {D} and {E} is uniquely expressed in
terms of the other. In fact, Ei is the union of all those sets D which have i as one of
their subscripts. Conversely,

Di1,...,ik = Ei1 ∩ . . .∩Eik ∩E j1 . . .∩E jN−k

where j1, . . . , jN−k are the subscripts different from i1, . . . , ik and E denotes the com-
plement of E. Each Ei is then represented by its characteristic function ψi(x). Then
selection statistical procedure is characterized by the vector ψ = (ψ1, . . . ,ψN).
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In the case of independent random variables (independent returns, volume or
liquidity) it is shown in [18] that there exists a statistical procedure of the type

ψi =

{
1, Ti ≥ ci

0, Ti < ci
(1)

which is optimal in the following min–max sense:

subject to inf
θ

S(θ ,δ )≥ γ one has sup
θ

R(θ ,δ )→ min (2)

In particular if quality of stocks is characterized by the parameter a then optimal
statistical procedure for the stock selection is given by:

ψi =

{
1, xi ≥ ci

0, xi < ci
(3)

where xi =
1
n

n

∑
t=1

xi(t).

If the quality of stocks is characterized by the parameter σ , then the optimal
statistical procedure for the stock selection is given by:

ψi =

{
0, s2

i ≥ ci

1, s2
i < ci

(4)

where s2
i =

1
n

n

∑
t=1

(xi(t)− xi)
2

If the quality of stocks is characterized by the parameter
ai

σi
, then the optimal

statistical procedure for the stock selection is given by:

ψi =

⎧
⎪⎪⎨

⎪⎪⎩

1,
xi

s2
i

≥ ci

0,
xi

s2
i

< ci

(5)

The assumption of independence of random variables Xi (returns, volume, liq-
uidity) is not realistic for the financial market. Therefore it is important to construct
optimal statistical procedures for the stock selection problem for more general cases.
The first result in this direction is obtained in [14] where it is shown that the statis-
tical procedure (3) remains optimal in the sense of multiple hypothesis testing for
multivariate normal distributions. In what follows we use the tests (3), (4), (5) for
the first stage of the stock selection.
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4 Efficient Frontiers of Independent Sets and Cliques

In our study of market graphs from the point of view of the portfolio theory we use a
two-stage procedure. At the first stage we select a “good” stocks by fixing some cri-
teria and a critical value of the “goodness.” At the second stage we construct the
market graphs with the selected stocks as nodes with different thresholds of inter-
connections. We calculate maximum cliques and MISs of the constructed market
graphs and study the efficient frontiers of these sets of stocks. Our main goal is to
find a small sets of “good” stocks such that the efficient frontiers associated with
this sets of stocks are close to the efficient frontier of the entire market. Such sets of
stocks can be a basis of the construction of “diversified” portfolios. Our main finding
is the following (empirical) conclusion: independent sets are suitable for portfolio
optimization in the case when at the first stage one selects the stocks with the high-
est Sharp ratio. The selection of stocks with highest returns, lowest risk or highest
liquidity does not give independent sets with this property. This phenomenon is new
and needs a deeper investigation. The situation for the cliques is different. In many
markets cliques represent a sets of stocks which dominate market and therefore are
attractive for investment. However as it is shown below cliques are not appropriate
for portfolio optimization. This result is in some sense expected by the well known
principle “don’t put all eggs in the same basket” but what is interesting is the fact
that the stocks in the maximum cliques produce a very limited efficient frontier in
both directions: expected return and risk. Moreover efficient frontiers of the maxi-
mum cliques are generated by a very small number of stocks in the clique.

We use data from two stock markets: Nasdaq market (USA), daily returns for the
period November 2011 to October 2013 and Moscow interbank currency exchange
MICEX (Russian Federation), daily returns for the period October 2008 to October
2010. To make the conclusions more general we take at random 250 stocks from
Nasdaq market and 151 stocks from MICEX market. Next we apply the selection
procedure according to some criteria, construct the market graphs for the three val-
ues of thresholds 0.1, 0.3, 0.4, calculate cliques and independent sets, and compare
the efficient frontiers of obtained sets with the efficient frontier of 250 stocks for
Nasdaq and 151 stocks for MICEX markets. The results are stable with respect to
random choice, similar for both markets and are presented in Figs. 1, 2, 3, 4, 5, 6, 7,
8, 9, and 10. Each figure has some interesting meaning which is described below.

Figure 1 shows the efficient frontiers for three sets of stocks for US market: ran-
domly selected 250 stocks (thick line), MIS (66 stocks) for the market graph con-
structed on the set of 125 highest Sharp ratio stocks for threshold 0.3 (dashed line),
MIS (90 stocks) for the market graph constructed on the set of 125 highest Sharp
ratio stocks for threshold 0.4 (thin line). It is clear that efficient frontier of the mar-
ket (250 stocks) is well approximated by the efficient frontiers of the independent
sets (66 and 90 stocks).

The conclusion for Fig. 1 is confirmed in Fig. 2 where only 16 stocks are selected
according to the Sharp ratio. Despite a small number of stocks in independent sets
(11 and 13 stocks) the approximation of the efficient frontier is still good.
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Figure 3 shows the efficient frontiers for three sets of stocks for RF market:
randomly selected 151 stocks (thick line), MIS (29 stocks) for the market graph
constructed on the set of 76 highest Sharp ratio stocks for threshold 0.3 (dashed
line), MIS (40 stocks) for the market graph constructed on the set of 76 highest
Sharp ratio stocks for threshold 0.4 (thin line). One can see that the behavior of two
market is different but the phenomenon of good approximation is the same.

Figure 4 shows the stocks of MIS in the plane (E,σ) for US (17 stocks) market
for the market graphs with threshold 0.1. The stocks in the independent set are
enumerated according to their Sharp ratio. One can observe that in fact the efficient
frontiers of independent set are constructed only using the stocks number 1, 2, 3,
9, 10. The same conclusion is valid for the values of threshold 0.3, 0.4 (we use here
the threshold 0.1 for simplicity of presentation).

The same observation is valid for RF market. Figure 5 shows the stocks of MIS
in the plane (E,σ) for RF (eight stocks) market for the market graphs with threshold
0.1. The stocks in the independent sets are enumerated according to their Sharp ratio.
One can observe that in fact as for US market the efficient frontiers of independent
set are constructed only using the stocks number 1, 2, 4, 6. The same conclusion is
valid for the values of threshold 0.3, 0.4.

The phenomenon of good approximation of the efficient frontiers is not observed
for another selection criteria. Typical results are Figs. 6 and 7 where the efficient
frontiers of independent sets for the selection of the most liquid stocks for the market
graph construction are presented.

Our experiments allow to conclude that cliques are not suitable for portfolio opt-
imization. Typical results are given in Figs. 8 and 9. Figure 8 shows the efficient
frontiers for three sets of stocks for US market: selected 100 most liquid stocks of
the market (thick line), maximum clique (6 stocks) for the market graph constructed
on the set of 100 most liquid stocks for threshold 0.5 (dashed line), maximum clique
(13 stocks) for the market graph constructed on the set of 100 most liquid stocks for
threshold 0.4 (thin line). Figure 9 shows the efficient frontiers for analogous sets of
stocks for RF market. Note that for RF market the number of stocks in the cliques
is 16 and 21, respectively.

Composition of cliques has some interesting phenomena too. Figure 10 shows the
cloud of 21 stocks of the maximum clique of the RF market graph with threshold 0.1
constructed from the set of 100 most liquid stocks. One can observe that in fact only
three stocks define the efficient frontier of the maximum clique. This phenomenon
is general for the maximum cliques in different situations.
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Fig. 1 US market. Efficient frontiers of the maximum independent sets of the mar-
ket graphs constructed on the set of 125 highest Sharp ratio stocks. Values of thresh-
old 0.3, 0.4
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Fig. 2 US market. Efficient frontiers of the maximum independent sets of the mar-
ket graphs constructed on the set of 16 highest Sharp ratio stocks. Values of thresh-
old 0.3, 0.4
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Fig. 3 RF market. Efficient frontiers of the maximum independent sets of the market
graphs constructed on the set of 76 highest Sharp ratio stocks. Values of threshold
0.3, 0.4
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Fig. 4 US market. Efficient frontiers and cloud of the maximum independent set of
the market graphs constructed on the set of 125 highest Sharp ratio stocks. Value of
threshold 0.1
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Fig. 5 RF market. Efficient frontiers and cloud of the maximum independent set of
the market graphs constructed on the set of 76 highest Sharp ratio stocks. Value of
threshold 0.1.
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ket graphs constructed on the set of 16 most liquid stocks. Values of threshold 0.3,
0.4
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Fig. 7 RF market. Efficient frontiers of the maximum independent sets of the market
graphs constructed on the set of 76 most liquid stocks. Values of threshold 0.3, 0.4
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constructed on the set of 100 most liquid stocks. Values of threshold 0.4, 0.5
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Fig. 9 RF market. Efficient frontiers of the maximum cliques of the market graphs
constructed on the set of 100 most liquid stocks. Values of threshold 0.4, 0.5
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Fig. 10 RF market. Efficient frontier and cloud of the maximum clique of the mar-
ket graph constructed on the set of 100 most liquid stocks. The value of threshold is
0.4
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5 Concluding Remarks

The paper presents some empirical results in the study of connections between
market graph approach and Markowitz portfolio theory for financial markets. It is
observed that independent sets of the market graphs are suitable for portfolio opti-
mization in the case when at the first stage one selects the stocks with the highest
Sharp ratio. The situation for the cliques is different. Despite the fact that in many
situations the cliques dominate the market, they are not appropriate for portfolio
optimization.
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Nonconvex Generalized Benders Decomposition

Xiang Li, Arul Sundaramoorthy, and Paul I. Barton

1 Introduction

This chapter is devoted to mixed-integer nonlinear programs (MINLPs) in the fol-
lowing form:

min
x,y

f (x,y)

s.t. g(x,y)≤ 0,

x ∈ X , y ∈ Y,

(P)

where X = {x = (xb,xc) ∈ {0,1}nxb × Πxc : p(x) ≤ 0}, Πxc ⊂ R
nxc is convex,

Y = {y ∈ {0,1}ny : q(y)≤ 0}, f : [0,1]nxb ×Πxc × [0,1]ny → R, g : [0,1]nxb ×Πxc ×
[0,1]ny →R

m, p : [0,1]nxb ×Πxc →R
mp , q : [0,1]ny →R

mq . Here the subdomains of
the functions for binary variables are intervals [0,1] instead of discrete sets {0,1},
because the functions often need to be defined on these intervals for practical so-
lution of Problem (P) (e.g., via branch-and-bound). y is a vector of complicating
variables in the sense that Problem (P) is a much easier optimization problem for
a fixed y. For example, when Problem (P) is a stochastic program, it may be de-
composed into a large number of smaller and easier optimization problems for a
fixed y.
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The structure of Problem (P) indicates that it may be beneficial to solve the
problem by searching the y-space and then the x-space in an iterative manner (in-
stead of searching the xy-space directly). The concept of projection can be used to
facilitate this solution strategy, specifically, Problem (P) can be projected onto the
y-space as:

min
y

v(y)

s.t. y ∈ Y ∩V,
(Ppro j)

where v(y) = infx∈{x∈X :g(x,y)≤0} f (x,y) and V = {y : ∃x ∈ X , g(x,y)≤ 0}. When f , g
are affine functions and X is a convex polyhedral set, function v and set V in the pro-
jected problem can be approximated by cutting planes generated in a dual space, and
Problem (P) can be solved by the solution of a sequence of linear programming (LP)
and mixed-integer linear programming (MILP) subproblems. This solution method
is known as Benders decomposition [1] in the literature. The cutting plane approx-
imation of v and V is also valid when f and g are nonlinear functions that satisfy
certain convexity conditions and set X is convex; in this case, Problem (P) can be
typically addressed by the solution of a sequence of nonlinear programming (NLP)
and MINLP/MILP subproblems, and the solution method is called generalized Ben-
ders decomposition (GBD) [2]. However, when functions f , g or set X are noncon-
vex, neither BD nor GBD can guarantee convergence to the optimal solution due to
the loss of strong duality.

This chapter presents an extension of BD/GBD, called nonconvex generalized
Benders decomposition (NGBD), to deal with nonconvexity in Problem (P) rigor-
ously. By introducing convex relaxations of nonconvex functions and continuous
relaxations of non-complicating binary variables, NGBD can obtain an ε-optimal
solution for Problem (P) in finite time. To simplify the discussion, the following
assumptions are made for Problem (P).

Assumption 1 Sets X, Y are nonempty.

Assumption 2 Problem (P) either has a minimum or is infeasible for any y ∈ Y .

Remark 1. Assumption 2 is to exclude the situation in which Problem (P) is feasible
but does not have a minimum. This is a mild assumption as it holds when set X is
compact and functions f , g are continuous on Πxc for any feasible xb, y.

This chapter is organized as follows. The decomposition strategy of NGBD along
with the resulting subproblems is introduced in Sect. 2, and important properties of
the subproblems are proved in Sect. 3. Then, the NGBD algorithm is given with
a proof of the finite convergence property in Sect. 4. In Sect. 5, the application of
NGBD to a class of stochastic MINLPs is discussed. The computational advantage
of NGBD is demonstrated via case studies of several industrial optimization prob-
lems in Sect. 6 and the chapter ends with concluding remarks in Sect. 7.
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2 Reformulation and the Subproblems

NGBD is a result of applying the framework of concepts presented by Geoffrion for
the design of large-scale mathematical programming techniques [3, 4]. The frame-
work includes two groups of concepts: problem manipulations and solution strate-
gies. Problem manipulations, including projection, dualization, inner and outer lin-
earization, restate a given problem in an alternative form more amenable to solution.
Solution strategies, including relaxation and restriction, reduce a complicated prob-
lem to a related sequence of simpler subproblems. The following subsections give
details on the construction of the NGBD subproblems with the concepts of problem
manipulations and solution strategies.

2.1 Convex and Continuous Relaxations: Lower
Bounding Problem

One difficulty in decomposing Problem (P) is that dualization does not usually gen-
erate an equivalent reformulation for this nonconvex problem. To cope with this
difficulty, a surrogate for Problem (P) for which strong duality holds, is constructed
via convex relaxations of nonconvex functions and continuous relaxations of non-
complicating binary variables in Problem (P). This new problem, called the lower
bounding problem, provides a lower bound for Problem (P), and it can be solved via
a procedure similar to GBD. The lower bounding problem can be expressed in the
following form:

min
x,y,e

u f (x,e,y)

s.t. ug(x,e,y)≤ 0,

(x,e) ∈ D, y ∈ Y,

(LBP-NS)

where D = {(x,e) ∈ [0,1]nxb ×Πxc ×Πe : up(x,e)≤ 0, ue(x,e)≤ 0}, Πe is convex,
functions u f : [0,1]nxb ×Πxc ×Πe× [0,1]ny →R, ug : [0,1]nxb ×Πxc ×Πe× [0,1]ny →
R

m, up : [0,1]nxb ×Πxc ×Πe →R
mp , ue : [0,1]nxb ×Πxc ×Πe →R

me are all convex
on their domains. In addition, the convex functions satisfy the relaxation property,
i.e., ∀x̂ ∈ [0,1]nxb ×Πxc and ∀ŷ ∈ [0,1]ny , ∃ê ∈ Πe such that:

u f (x̂, ê, ŷ)≤ f (x̂, ŷ),

ug(x̂, ê, ŷ)≤ g(x̂, ŷ),

up(x̂, ê)≤ p(x̂),

ue(x̂, ê)≤ 0.

(1)

Note that the domain of any binary variable in x has been relaxed into the in-
terval [0,1], and nonconvex functions f , g, p have been replaced with their convex
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relaxations u f , ug, up. The additional variables e and constraints ue(x,e)≤ 0 may be
needed if smooth convex relaxations are desired. Standard convex relaxation tech-
niques include McCormick’s relaxations [5], outer linearization [6] and αBB [7],
and readers can refer to [8] for more discussions on convex relaxation techniques.

Assumption 3 The relaxed set D is compact.

Problem (LBP-NS) cannot be practically solved by GBD unless Property P is
satisfied [2]. Property P is a strong condition in general, but it trivially holds if the
functions in Problem (LBP-NS) are separable in x and y. Therefore, for NGBD to
be practical, Problem (LBP-NS) needs to be further relaxed into the following form
(if it is not already in this form):

min
x,y,e

u f ,1(x,e)+u f ,2(y)

s.t. ug,1(x,e)+ug,2(y)≤ 0,

(x,e) ∈ D, y ∈ Y,

(LBP)

where functions u f ,1 : [0,1]nxb ×Πxc ×Πe → R, u f ,2 : [0,1]ny → R, ug,1 : [0,1]nxb ×
Πxc × Πe → R

m, ug,2 : [0,1]ny → R
m are convex on their domains. In addition,

∀(x̂, ê, ŷ) ∈ [0,1]nxb ×Πxc ×Πe × [0,1]ny ,

u f ,1(x̂, ê)+u f ,2(ŷ)≤ u f (x̂, ê, ŷ),

ug,1(x̂, ê)+ug,2(ŷ)≤ ug(x̂, ê, ŷ).
(2)

If functions u f and ug are continuous, functions u f ,1, u f ,2, ug,1, ug,2 can always be
obtained through outer linearization using their gradient or subgradient information
[9, 10].

Assumption 4 Functions u f ,1, u f ,2, ug,1, ug,2 are continuous.

Remark 2. Assumptions 3 and 4 imply that Problem (LBP) has a compact feasible
set and a continuous objective function, so Problem (LBP) either has finite optimal
objective value or is infeasible.

Assumption 5 Problem (LBP) satisfies Slater’s condition for y fixed to those ele-
ments in Y for which Problem (LBP) is feasible.

Remark 3. Assumption 5 implies that strong duality holds for Problem (LBP) for y
fixed to those elements in Y for which Problem (LBP) is feasible. This validates the
dualization manipulation of the problem in the next subsection.

2.2 Projection/Dualization: Master Problem

Direct solution of Problem (LBP) is generally difficult, as complicating variables
y are still present and coupled with non-complicating variables x. Therefore, it is
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solved in NGBD via a decomposition procedure that is very similar to classical
GBD method. The first step of the decomposition is to project the problem to the y
space (as explained in Sect. 1), and then express the objective function and feasible
set with the cutting planes in a dual space. Readers can refer to [2] for details on
the dualization manipulation. The resulting problem is called the master problem,
which can be written in the following form:

min
η ,y

η

s.t. η ≥ inf
(x,e)∈D

[
u f ,1(x,e)+λ Tug,1(x,e)

]
+u f ,2(y)+λ Tug,2(y), ∀λ ≥ 0,

0 ≥ inf
(x,e)∈D

μTug,1(x,e)+μTug,2(y), ∀μ ∈ M1,

y ∈ Y, η ∈ R,

(MP1)

where λ ,μ ∈ R
m and M1 = {μ ∈ R

m : μ ≥ 0,∑m
i=1 μi = 1}. For convenience in

establishing valid subproblems later, Problem (MP1) is further reformulated into
the following form (by replacing set M1 with set M):

min
η ,y

η

s.t. η ≥ inf
(x,e)∈D

[
u f ,1(x,e)+λ Tug,1(x,e)

]
+u f ,2(y)+λ Tug,2(y), ∀λ ≥ 0,

0 ≥ inf
(x,e)∈D

μTug,1(x,e)+μTug,2(y), ∀μ ∈ M,

y ∈ Y, η ∈ R,

(MP)

where M = {μ ∈ R
m : μ ≥ 0,∑m

i=1 μi > 0}. The equivalence of Problems (MP1)
and (MP) is proved in the next section.

2.3 Restriction: Primal Problem, Primal Bounding Problem
and Feasibility Problem

The primal problem is obtained through restricting y in Problem (P) to an element
y(l) in Y , where the superscript l enumerates the sequence of integer realizations vis-
ited by the primal problem (i.e. the integer realizations for which the primal problem
is constructed and solved). This problem can be written as follows:

objPP(y
(l)) =min

x
f (x,y(l))

s.t. g(x,y(l))≤ 0,

x ∈ X ,

(PPl)
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where objPP(y
(l)) denotes the optimal objective value of Problem (PPl) (which

depends on the integer realization y(l)).

Remark 4. Problem (PPl) is a NLP, MILP or MINLP, which can be solved to
ε-optimality in finite time by state-of-the-art solvers, such as CPLEX [11] or
BARON [6], provided suitable convex underestimators of the participating func-
tions can be constructed.

Similarly, the primal bounding problem is obtained through restricting y in Prob-
lem (LBP) to an element y(k) in Y , where the superscript k enumerates the sequence
of integer realizations visited by the primal bounding problem. This problem can be
written as follows:

objPBP(y
(k)) =min

x,e
u f ,1(x,e)+u f ,2(y

(k))

s.t. ug,1(x,e)+ug,2(y
(k))≤ 0,

(x,e) ∈ D,

(PBPk)

where objPBP(y
(k)) denotes the optimal objective value of Problem (PBPk). If Prob-

lem (PBPk) is infeasible, the following feasibility problem is solved:

objFP(y
(k)) =min

x,e,z
||z||

s.t. ug,1(x,e)+ug,2(y
(k))≤ z,

(x,e) ∈ D, z ∈ Z,

(FPk)

where objFP(y
(k)) denotes the optimal objective value of Problem (FPk), ||z|| denotes

an arbitrary norm of the slack variable vector z, set Z ⊂ {z ∈ R
m : z ≥ 0} and it has

three additional properties:

1. Z is a convex set;
2. Z is a pointed cone, i.e., 0 ∈ Z, and ∀α > 0,z ∈ Z implies αz ∈ Z;
3. There exists ẑ ∈ Z such that ẑ > 0 (therefore the cone Z is unbounded from above

in each dimension).

Each component of z measures the violation of a constraint, so the norm of z is
minimized for minimum violation of the constraints. Since any norm function is
convex, Problem (FPk) is convex.

Remark 5. If the convex subproblems (PBPk) and (FPk) are smooth, they can be
solved by gradient-based optimization solvers such as CONOPT [12], SNOPT [13],
CPLEX [11] (only for linear programs, convex quadratic programs and convex
quadratically constrained programs). Otherwise, they may be solved by nonsmooth
optimization methods such as bundle methods [14].
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2.4 Relaxation: Relaxed Master Problem

The master problem (MP) is difficult to solve directly because of the infinite number
of constraints involved. Therefore, it is relaxed by only keeping a finite number of
constraints. The resulting subproblem is called the relaxed master problem; at the
kth iteration, this subproblem can be written in the following form:

min
η ,y

η

s.t. η ≥ inf
(x,e)∈D

[
u f ,1(x,e)+

(
λ ( j)

)T
ug,1(x,e)

]
+u f ,2(y)+

(
λ ( j)

)T
ug,2(y), ∀ j ∈ T k,

0 ≥ inf
(x,e)∈D

(
μ(i)

)T
ug,1(x,e)+

(
μ(i)

)T
ug,2(y), ∀i ∈ Sk,

∑
r∈Rt

1

yr − ∑
r∈Rt

0

yr ≤ |Rt
1|−1, ∀t ∈ T k ∪Sk,

y ∈ Y, η ∈ R,

(RMP1k)

where the index sets

T k = { j ∈ {1, . . . ,k} : Problem (PBP) is feasible for y = y( j)},
Sk = {i ∈ {1, . . . ,k} : Problem (PBP) is infeasible for y = y(i)},
Rt

1 = {r ∈ {1, . . . ,ny} : y(t)r = 1},
Rt

0 = {r ∈ {1, . . . ,ny} : y(t)r = 0}.

λ ( j) denotes Lagrange multipliers for Problem (PBP j), which form an optimality
cut for iteration j ∈ T k. μ(i) denotes Lagrange multipliers for Problem (FPi), which
form a feasibility cut for iteration i ∈ Sk. To be precise, the definition of a Lagrange
multiplier is given below.

Definition 1. λ ∗ is a Lagrange multiplier for the optimization problem

min
x

f (x)

s.t. g(x)≤ 0,

x ∈ X ,

if λ ∗ ≥ 0 and f (x∗) = infx∈X
[

f (x)+(λ ∗)Tg(x)
]
, where x∗ denotes an optimal so-

lution of the problem.

Remark 6. Definition 1 for Lagrange multipliers follows from [15] in the context of
duality theory (where they are called geometric multipliers instead). This definition
is consistent with the one used by Geoffrion for the GBD method [2] and dual-
ity theory [16] (where they are called optimal multipliers). Note that the Lagrange
multipliers defined here are in general different from the multipliers that satisfy the
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Karush–Kuhn–Tucker (KKT) conditions, which are usually called KKT multipliers.
However, for convex program (PBPk) or (FPk), KKT multipliers are also Lagrange
multipliers, as implied by the theorem on [17, p. 211]. State-of-the-art optimization
solvers, such as CONOPT, SNOPT, CPLEX, return such multiplier values at a so-
lution, so there is no need to develop an additional algorithm to obtain the Lagrange
multipliers for Problem (PBPk) or (FPk) in NGBD.

The third group of constraints in Problem (RMP1k), which does not appear in
the master problem (MP), represents a set of canonical integer cuts that prevent the
previously examined integer realizations from becoming a solution [18].

When T k = /0, Problem (RMP1k) is unbounded; in this case, the following feasi-
bility relaxed master problem is solved instead:

min
y

ny

∑
i=1

yi

s.t. 0 ≥ inf
(x,e)∈D

(
μ(i)

)T
ug,1(x,e)+

(
μ(i)

)T
ug,2(y), ∀i ∈ Sk,

∑
r∈Rt

1

yr − ∑
r∈Rt

0

yr ≤ |Rt
1|−1, ∀t ∈ Sk,

y ∈ Y.

(FRMP1k)

The inner optimization problems in Problems (RMP1k) and (FRMP1k) can be
replaced by the solution information of the previously solved primal bounding prob-
lems and feasibility problems (which is to be explained in the next section). As a
result, Problem (RMP1k) is equivalent to the following single-level optimization
problem:

min
η ,y

η

s.t. η ≥ objPBP(y
( j))+u f ,2(y)−u f ,2(y

( j))

+
(

λ ( j)
)T (

ug,2(y)−ug,2(y
( j))

)
,∀ j ∈ T k,

0 ≥ objFP(y
(i))+

(
μ(i)

)T (
ug,2(y)−ug,2(y

(i))
)
, ∀i ∈ Sk,

∑
r∈Rt

1

yr − ∑
r∈Rt

0

yr ≤ |Rt
1|−1, ∀t ∈ T k ∪Sk,

y ∈ Y, η ∈ R.

(RMPk)

and Problem (FRMP1k) is:
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min
y

ny

∑
i=1

yi

s.t. 0 ≥ objFP(y
(i))+

(
μ(i)

)T (
ug,2(y)−ug,2(y

(i))
)
, ∀i ∈ Sk,

∑
r∈Rt

1

yr − ∑
r∈Rt

0

yr ≤ |Rt
1|−1, ∀t ∈ Sk,

y ∈ Y.

(FRMPk)

Remark 7. Problem (RMPk) or (FRMPk) is a convex MINLP or a MILP. Commer-
cial solvers are available for solving these problems, such as DICOPT [19] (for
convex MINLP), CPLEX (for MILP).

This section details the reformulation of the original MINLP into a collection
of subproblems through convex and continuous relaxations, projection, dualization,
restriction and relaxation. The subproblems to be solved directly in NGBD include
Problems (PPl), (PBPk), (FPk), (RMPk) and (FRMPk). The lower bounding prob-
lem and the master problem are also generated in the reformulation, but they are not
solved directly in the NGBD procedure. In the next section, a set of propositions
regarding the properties and the relationships of the subproblems are presented and
proved. Based on these results, the NGBD algorithm is developed with a conver-
gence proof in Sect. 4.

3 Properties of the Subproblems

Proposition 1. The optimal objective value of Problem (LBP) represents a lower
bound on the optimal objective value of Problem (P).

Proof. Let (x̂, ŷ) be a minimum of Problem (P). Then x̂ ∈ [0,1]nxb × Πxc and ŷ ∈
[0,1]ny . According to (1), ∃ê ∈ Πe such that

u f (x̂, ê, ŷ)≤ f (x̂, ŷ),

ug(x̂, ê, ŷ)≤ g(x̂, ŷ)≤ 0,

up(x̂, ê)≤ p(x̂)≤ 0,

ue(x̂, ê)≤ 0.

So point (x̂, ê, ŷ) is feasible for Problem (LBP-NS), and the objective value of
Problem (LBP-NS) at this point is no larger than the optimal objective value of
Problem (P).

According to (2), (x̂, ê, ŷ) also satisfy

u f ,1(x̂, ê)+u f ,2(ŷ)≤ u f (x̂, ê, ŷ)≤ f (x̂, ŷ),

ug,1(x̂, ê)+ug,2(ŷ)≤ ug(x̂, ê, ŷ)≤ 0.
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So this point is also feasible for Problem (LBP) and the objective value of
Problem (LBP) at this point is also no larger than the optimal objective value
of Problem (P). Therefore, the optimal objective value of Problem (LBP) is no
larger than that of Problem (P). ��
Proposition 2. Problems (LBP) and (MP1) are equivalent in the sense that:

(1) Problem (LBP) is feasible iff Problem (MP1) is feasible;
(2) The optimal objective values of Problems (LBP) and (MP1) are the same;
(3) The optimal objective value of Problem (LBP) is attained with an integer re-

alization iff the optimal objective value of Problem (MP1) is attained with the
same integer realization.

Proof. Given Assumption 5, the results follow immediately from Theorems 2.1, 2.2
and 2.3 in [2]. ��
Proposition 3. Problems (MP1) and (MP) are equivalent in the sense that:

(1) Problem (MP1) is feasible iff Problem (MP) is feasible;
(2) The optimal objective values of Problems (MP1) and (MP) are the same;
(3) The optimal objective value of Problem (MP1) is attained with an integer real-

ization iff the optimal objective value of Problem (MP) is attained with the same
integer realization.

Proof. The results can be proved by showing that Problems (MP1) and (MP) have
the same feasible set. Denote the feasible regions of Problems (MP1) and (MP) by
FMP1 and FMP, respectively. FMP1 = FMP can be proved by showing FMP ⊂ FMP1 and
FMP1 ⊂ FMP.

First, for any (ŷ, η̂) ∈ FMP,

0 ≥ inf
(x,e)∈D

μTug,1(x,e)+μTug,2(ŷ), ∀μ ∈ M,

so
0 ≥ inf

(x,e)∈D
μTug,1(x,e)+μTug,2(ŷ), ∀μ ∈ M1,

because M1 ⊂ M. Therefore, FMP ⊂ FMP1.
Second, for any (ŷ, η̂) ∈ FMP1,

0 ≥ inf
(x,e)∈D

μTug,1(x,e)+μTug,2(ŷ), ∀μ ∈ M1. (3)

For such (ŷ, η̂), consider any μ̂ ∈ M,

m

∑
i=1

μ̂i > 0. (4)

So μ̂ can be used to define new multipliers
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μ̃i = μ̂i/
m

∑
i=1

μ̂i, ∀i ∈ {1, . . . ,m}, (5)

then
μ̃ = (μ̃1, . . . , μ̃m) ∈ M1. (6)

From (3) and (6),
inf

(x,e)∈D
μ̃Tug,1(x,e)+ μ̃Tug,2(ŷ)≤ 0. (7)

Considering (4), (5) and (7)

inf
(x,e)∈D

μ̂Tug,1(x,e)+ μ̂Tug,2(ŷ)

=

(
m

∑
i=1

μ̂i

)

inf
(x,e)∈D

(

μ̂/

(
m

∑
i=1

μ̂i

))T

ug,1(x,e)+

(

μ̂/

(
m

∑
i=1

μ̂i

))T

ug,2(ŷ)

=

(
m

∑
i=1

μ̂i

)(
inf

(x,e)∈D
μ̃Tug,1(x,e)+ μ̃Tug,2(ŷ)

)

≤0

Therefore,
inf

(x,e)∈D
μTug,1(x,e)+μTug,2(ŷ)≤ 0, ∀μ ∈ M,

and (ŷ, η̂) ∈ FMP too. So FMP1 ⊂ FMP. ��
Proposition 4. For y fixed to any element in Y , if Problem (PPl) is feasible, its opti-
mal objective value is no less than the optimal objective value of Problem (P).

Proof. This result trivially holds due to the construction of Problem (PPl) and the
principle of restriction. ��
Proposition 5. If the primal problem (PPk) is feasible, the corresponding primal
bounding problem (PBPk) is feasible as well. In this case, the optimal objective
value of Problem (PPk) is no less than that of Problem (PBPk).

Proof. This can be proved according to the construction of these problems in the
same way to prove Proposition 1. ��
Remark 8. Proposition 5 implies that, if the optimal objective value of Problem
(PBPk) is worse than that of Problem (P), there is no need to solve Problem (PPl)
because y = y(k) cannot lead to an optimum of Problem (P). This property will be
exploited in the NGBD algorithm to reduce the number of the primal problems to be
solved, since obtaining a global optimum for the primal problem is computationally
expensive.

Proposition 6. Problem (FPk) satisfies Slater’s condition and it always has a
minimum.
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Proof. According to Assumption 5, set D has at least one Slater point, say (x̂, ê).
Due to the continuity of functions ug,1, ug,2, ug,1(x̂, ê)+ ug,2(y(k)) is finite, so there
exists ẑ∈ Z such that ug,1(x̂, ê)+ug,2(y(k))< ẑ. Then (x̂, ê, ẑ) is a Slater point of Prob-
lem (FPk). In addition, Problem (FPk) has a closed feasible set and ||z|| is continuous
and coercive on Z, so Problem (FPk) has a minimum according to Weierstrass’ The-
orem [15]. ��
Proposition 7. Let μ∗ be Lagrange multipliers of Problem (FPk). If Problem (PBPk)

is infeasible, inf(x,e)∈D

[
(μ∗)T

(
ug,1(x,e)+ug,2(y(k))

)]
is a finite positive value and

∑m
i=1 μ∗

i > 0.

Proof. As Lagrange multipliers,

μ∗ ≥ 0. (8)

Let (x∗,e∗,z∗) be a minimum of Problem (FRMP1k), then due to strong duality
(implied by Proposition 6 and the convexity of the problem),

||z∗||= inf
(x,e,z)∈D×Z

[
||z||+(μ∗)T

(
ug,1(x,e)+ug,2(y

(k))− z
)]

= inf
z∈Z

[||z||− (μ∗)Tz
]
+ inf

(x,e)∈D

[
(μ∗)T

(
ug,1(x,e)+ug,2(y

(k))
)]

.
(9)

First, inf(x,e)∈D

[
(μ∗)T

(
ug,1(x,e)+ug,2(y(k))

)]
is finite due to the compactness

of the feasible set and continuity of the objective function of the problem.
Second, we will show that infz∈Z

[||z||− (μ∗)Tz
]
= 0 by contradiction. Suppose

that

inf
z∈Z

[||z||− (μ∗)Tz
]
< 0, (10)

then ∃ε > 0 such that

inf
z∈Z

[||z||− (μ∗)Tz
]
<−ε . (11)

Hence, ∀α > 0,

α inf
z∈Z

[||z||− (μ∗)Tz
]
<−αε , (12)

which is
inf
z∈Z

[||αz||− (μ∗)Tαz
]
<−αε . (13)

Since ∀z ∈ Z, αz ∈ Z as well,

inf
z∈Z

[||z||− (μ∗)Tz
]
= inf

z∈Z

[||αz||− (μ∗)T(αz)
]
<−αε (14)

and therefore
inf
z∈Z

[||z||− (μ∗)Tz
]
=−∞. (15)
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According to (9), (15) and finiteness of inf(x,e)∈D

[
(μ∗)T

(
ug,1(x,e)+ug,2(y(k))

)]
,

||z∗|| = −∞, which contradicts the definition of a norm. Therefore, (10) is not
true and

inf
z∈Z

[||z||− (μ∗)Tz
] ≥ 0. (16)

On the other hand, when z = 0 (∈ Z), ||z||− (μ∗)Tz = 0, so

inf
z∈Z

[||z||− (μ∗)Tz
] ≤ 0. (17)

Inequalities (16) and (17) imply

inf
z∈Z

[||z||− (μ∗)Tz
]
= 0. (18)

Finally, according to (9) and (18),

inf
(x,e)∈D

[
(μ∗)T

(
ug,1(x,e)+ug,2(y

(k))
)]

= ||z∗||. (19)

If Problem (PBPk) is infeasible, z∗ �= 0 and therefore ||z∗||> 0, then (19) implies

inf
(x,e)∈D

[
(μ∗)T

(
ug,1(x,e)+ug,2(y

(k))
)]

> 0, (20)

which further implies
μ∗ �= 0. (21)

So according to (8) and (21),
m

∑
i=1

μ∗
i > 0. (22)

��
Proposition 8. Problem (RMP1k) is a relaxation of the master problem (MP)
when (MP) is augmented with the relevant canonical integer cuts excluding the
previously examined integer realizations.

Proof. As Lagrange multipliers, λ ( j) ≥ 0, ∀ j ∈ T k. According to Proposition 7,
μ(i) ∈ M, ∀i ∈ Sk. Therefore, Problem (RMP1k) is a relaxation of the master prob-
lem (MP) excluding all the previously examined integer variables (i.e. the master
problem augmented with the integer cuts). ��
Proposition 9. Problems (RMP1k) and (RMPk) are equivalent.

Proof. This follows from the separability of the functions in the continuous and the
integer variables. Detailed proof can be found in [2]. ��
Corollary 1. Problem (RMPk) or (FRMPk) never generates the same integer solu-
tion twice.
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Corollary 2. The optimal objective value of Problem (RMPk) is a valid lower bound
for the lower bounding problem (LBP) (or the master problem (MP)) augmented
with the relevant canonical integer cuts and the original problem (P) augmented
with the relevant canonical integer cuts.

4 NGBD Algorithm

4.1 Algorithm

Initialize:

1. Iteration counters k = 0, l = 1 and the index sets T 0 = /0 , S0 = /0 , U0 = /0.
2. Upper bound for Problem (P) UBD = +∞, upper bound for Problem (LBP)

UBDPB =+∞, lower bound for Problems (LBP) and (P) LBD =−∞.
3. Tolerance ε is set and initial integer realization y(1) is given.

repeat
if k = 0 or (Problem (RMPk) is feasible and LBD <UBDPB and LBD <UBD−ε)
then

repeat
Set k = k+1

1. Solve Problem (PBPk). If Problem (PBPk) is feasible and has Lagrange
multipliers λ (k), add an optimality cut to Problem (RMPk) with λ (k), set
T k = T k−1∪{k}. If objPBP(y

(k))<UBDPB, update UBDPB= objPBP(y
(k)),

y∗ = y(k), k∗ = k.
2. If Problem (PBPk) is infeasible, set Sk = Sk−1 ∪{k}. Then, solve Problem

(FPk) and obtain the corresponding Lagrange multipliers μ(k). Add a feasi-
bility cut to Problem (RMPk) with μ(k).

3. If T k �= /0, solve Problem (RMPk); otherwise, solve Problem (FRMPk). In
the former case, set LBD to the optimal objective value of Problem (RMPk)
if Problem (RMPk) is feasible. In either case, set y(k+1) to the y value at the
solution of either problem.

until LBD ≥UBDPB or (Problem (RMPk) or (FRMPk) is infeasible).
end if

if UBDPB <UBD− ε
1. Solve Problem (PP∗) (i.e., for y = y∗) to ε-optimality, set Ul = Ul−1 ∪{k∗}.

If Problem (PP∗) has a minimum x∗ and objPP(y
∗) < UBD, update UBD =

objPP(y
∗) and set y∗p = y∗, x∗p = x∗.

2. If T k \Ul = /0, set UBDPB =+∞.
3. If T k \ Ul �= /0, pick i ∈ T k \ Ul such that objPBP(y

(i)) =
min j∈T k\Ul{objPBP(y

( j))}. Update UBDPB = objPBP(y
(i)), y∗ = y(i),

k∗ = i. Set l = l +1.
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end if
until UBDPB ≥ UBD − ε and (Problem (RMPk) or (FRMPk) is infeasible
or LBD ≥UBD− ε).
Problem (P) has an ε-optimal solution (x∗p,y∗p) or it is infeasible.

4.2 Finite Convergence

Assumption 6 Compared to Problem (PPl), Problems (PBPk) and (FPk) (which
are convex NLPs or LPs) and Problems (RMPk) and (FRMPk) (which are convex
MINLPs or MILPs) can be solved with a much tighter tolerance, which is then neg-
ligible for the discussion of the ε-optimality of the NGBD algorithm.

Assumption 7 The optimal objective value of a problem returned by a global opti-
mizer is worse than or equal to the real optimal objective value.

Remark 9. Note that UBDPB is neither the upper bound, nor the lower bound for
Problem (P). UBDPB has two functions in the algorithm. One is to control the “in-
ner loop” of the algorithm (which is a GBD-like procedure). The other is to prevent
solving Problem (PP) for any integer realization that will not lead to a global solu-
tion of Problem (P), and this is explained in the following Lemma 1.

Lemma 1. If the NGBD algorithm terminates finitely with a feasible solution of
Problem (P), this feasible solution is an ε-optimal solution of Problem (P).

Proof. Note that the algorithm terminates with “UBDPB ≥ UBD − ε and (Prob-
lem (RMPk) or Problem (FRMPk) is infeasible” or “LBD ≥ UBD − ε)”. First, it
is demonstrated that this termination condition ensures that an integer realization
which leads to an ε-optimal solution of Problem (P) has been visited by Problem
(PBP). Second, it is demonstrated that if one such integer realization has been vis-
ited by Problem (PBP), the termination condition ensures that y = y∗p is one such
integer realization and UBD is an ε-optimal objective value of Problem (P).

Consider the case in which Problem (RMPk) or (FRMPk) is infeasible. Since
Problem (P) is feasible, Problem (FRMPk) cannot be infeasible and the infeasibility
of Problem (RMPk) implies that all the feasible integer realizations have been visited
by Problem (PBP), so any integer realization leading to an ε-optimal solution of
Problem (P) has been visited by Problem (PBP).

Consider the case in which LBD ≥ UBD− ε . Denote the real optimal objective
value of the original problem (P) by ôbjP. Denote the real optimal objective value

of Problem (PP) for y = y∗p by ôbj
∗
PP and the one returned by the solver by obj∗PP.

Obviously,
ôbj

∗
PP ≥ ôbjP. (23)

According to Assumption 7,

UBD = obj∗PP ≥ ôbj
∗
PP. (24)
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From (23) and (24),
UBD ≥ ôbjP. (25)

Assume any integer realization that leads to an ε-optimal solution of Problem (P)
has not been visited by Problem (PBP), then any such integer realization has not
been excluded by the canonical integer cuts in Problem (RMPk). According to
Corollary 2,

ôbjP ≥ LBD ≥UBD− ε . (26)

Inequalities (25) and (26) imply that y = y∗p obtained at the termination of the al-
gorithm leads to an ε-optimal solution of Problem (P) and this integer realization
has been visited by Problem (PBP), which contradicts the assumption. Therefore, in
the case in which LBD ≥ UBD− ε , at least one integer realization that leads to an
ε-optimal solution of Problem (P) has been visited by Problem (PBP) as well.

Finally, the algorithm ensures that UBDPB equals the minimum optimal objec-
tive value of Problem (PBP) for those integer realizations that have been visited by
Problem (PBP) but not by Problem (PP) (and UBDPB = +∞ if no such integer re-
alizations exist). Then at the termination when UBDPB ≥ UBD− ε always holds,
such integer realizations cannot lead to a global optimal solution of Problem (P) due
to Proposition 5. Therefore, an integer realization that leads to an ε-optimal solu-
tion of Problem (P) has been visited by Problem (PP), which has been recorded by
y = y∗p and UBD = obj∗PP is an ε-optimal objective value of Problem (P).

Theorem 1. If all the subproblems can be solved to ε-optimality in a finite number
of steps, then the NGBD algorithm terminates in a finite number of steps with an
ε-optimal solution of Problem (P) or an indication that Problem (P) is infeasible.

Proof. Notice that all the integer realizations are generated by solving Problem
(RMPk) or (FRMPk) in the algorithm. According to Corollary 1, no integer real-
izations will be generated twice. Since the cardinality of set Y is finite by definition
and all the subproblems are terminated in finite number of steps, the algorithm ter-
minates in a finite number of steps.

Lemma 1 shows that if Problem (P) is feasible, the algorithm terminates with
its ε-optimal solution. If Problem (P) is infeasible, the algorithm terminates with
UBD =+∞ because UBD can only be updated with an ε-optimal solution of Prob-
lem (PP), which is infeasible for any integer realization in Y (and therefore UBD is
never updated).

5 Application to Stochastic MINLPs

MINLP is widely adopted to model problems that involve discrete and continu-
ous decisions and nonlinearities. Over the past several decades there has been a
tremendous amount of work on the development and solution of MINLP models in
various engineering areas [20, 21], from product and process design to process op-
eration and control [22]. While these problems have been traditionally solved with
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deterministic MINLP models, recently more attention has been paid to including
uncertainty considerations in the model, typically using a stochastic programming
approach [23]. This section discusses the application of NGBD to scenario-based,
two-stage stochastic MINLPs in the following form:

min
x1,...,xs,y

s

∑
h=1

fh(xh,y)

s.t. gh(xh,y)≤ 0, ∀h ∈ {1, . . . ,s},
xh ∈ Xh, ∀h ∈ {1, . . . ,s},
y ∈ Y,

(P-SMIP)

where Xh = {xh ∈ {0,1}nxb ×Πxc : ph(xh) ≤ 0}, Πxc ⊂ R
nxc is convex, Y = {y ∈

{0,1}ny : q(y)≤ 0}, fh : [0,1]nxb ×Πxc × [0,1]ny →R, gh : [0,1]nxb ×Πxc × [0,1]ny →
R

m, ph : [0,1]nxb ×Πxc →R
mp , qh : [0,1]ny →R

mq . Here uncertainties are character-
ized by s different uncertainty realizations, also called scenarios [23, 24], which are
indexed by h. y involves binary variables representing first-stage decisions that are
made before realization of the uncertainties. xh involves binary and/or continuous
variables presenting second-stage decisions made after the outcome of scenario h.
fh(xh,y) in the objective function is related to a cost associated with the realization
of scenario h. Problem (P-SMIP) is assumed to satisfy all assumptions made for
Problem (P), so it is a special case of Problem (P) and inherits all the properties of
Problem (P).

The size of Problem (P-SMIP) depends on the number of scenarios (s) addressed.

General-purpose deterministic global optimization methods, such as branch-and-
reduce [6], SMIN-αBB and GMIN-αBB [25], and nonconvex outer approximation
[26], cannot fully exploit the decomposable structure of Problem (P-SMIP). These
methods have to solve a sequence of subproblems whose sizes grow with the number
of scenarios in the problem, so they are usually not practical for Problem (P-SMIP)
with large numbers of scenarios.

It is not difficult to find that Problem (P-SMIP) can be solved by NGBD. Primal
problem, primal bounding problem, and feasibility problem for Problem (P-SMIP)
can all be decomposed over the scenarios. The decomposed primal subproblem,
primal bounding subproblem and feasibility subproblem are given below as Prob-
lem (PPl

h-SMIP), Problem (PBPk
h-SMIP), Problem (FPk

h-SMIP) for any scenario h.

objPPh
(y(l)) =min

xh
fh(xh,y

(l))

s.t. gh(xh,y
(l))≤ 0,

xh ∈ Xh.

(PPl
h-SMIP)

When s is large, Problem (P) is a large-scale MINLP even if the model with one
scenario is small. Obviously, y is a vector of complicating variables for Problem (P-
SMIP), as the problem can naturally be decomposed into s subproblems if y is fixed.
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objPBPh
(y(k)) =min

xh,eh
u f ,1,h(xh,eh)+u f ,2,h(y

(k))

s.t. ug,1,h(xh,eh)+ug,2,h(y
(k))≤ 0,

(xh,eh) ∈ Dh.

(PBPk
h-SMIP)

objFPh
(y(k)) = min

xh,eh,zh
||zh||

s.t. ug,1,h(xh,eh)+ug,2,h(y
(k))≤ zh,

(xh,eh) ∈ Dh, zh ∈ Zh.

(FPk
h-SMIP)

Note that functions u f ,1,h, u f ,2,h, ug,1,h, ug,2,h and sets Dh are obtained through con-
vex and continuous relaxations as described in Sect. 2. Problem (PPl

h-SMIP) needs
to be solved to εh-optimality to ensure ε-optimality of the NGBD algorithm, where
∑m

h=1 εh ≤ ε .
It is also easy to derive customized (RMPk) and (FRMPk) for Problem (P-SMIP).

They are given below as Problem (RMPk-SMIP) and Problem (FRMPk
h-SMIP).

min
η ,y

η

s.t.η≥
s

∑
h=1

[
objPBPh

(y( j))+u f ,2,h(y)−u f ,2,h(y
( j))+

(
λ ( j)

h

)T(
ug,2,h(y)−ug,2,h(y

( j))
)]

,

∀ j ∈ T k,

0 ≥
s

∑
h=1

[
objFPh

(y(i))+
(

μ(i)
h

)T (
ug,2,h(y)−ug,2,h(y

(i))
)]

, ∀i ∈ Sk,

∑
r∈Rt

1

yr − ∑
r∈Rt

0

yr ≤ |Rt
1|−1, ∀t ∈ T k ∪Sk,

y ∈ Y, η ∈ R. (RMPk-SMIP)

min
y

ny

∑
i=1

yi

s.t. 0 ≥
s

∑
h=1

[
objFPh

(y(i))+
(

μ(i)
h

)T (
ug,2,h(y)−ug,2,h(y

(i))
)]

, ∀i ∈ Sk,

∑
r∈Rt

1

yr − ∑
r∈Rt

0

yr ≤ |Rt
1|−1, ∀t ∈ Sk,

y ∈ Y.
(FRMPk

h-SMIP)

Note that λ ( j)
h , μ(i)

h are Lagrange multipliers for Problem (PBPk
h-SMIP) and Prob-

lem (FPk
h-SMIP), respectively.

putational advantage for problems with large numbers of scenarios. On the one hand,
the number of subproblems to be solved in NGBD grows linearly with s, so the

Obviously, the sizes of the subproblems to be solved in NGBD for Problem (P-
SMIP) are all independent of the number of scenarios. This brings tremendous com-
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NGBD solution time grows roughly linearly with s if the total number of iterations
does not change significantly with s. On the other hand, the computational com-
plexity of a general-purpose optimization method is usually worse than linear, e.g.
polynomial for linear programs and some convex programs, worst-case exponential
for (global optimization of) nonconvex and/or mixed-integer programs. So the solu-
tion times of these methods usually increase with s much faster than NGBD does.
This is demonstrated in the case study results in the next section. In addition, the
primal subproblems in one iteration can be solved simultaneously, because the so-
lution of one of the subproblems is not dependent on the solution of the others. The
primal bounding and feasibility subproblems have the same feature. Therefore, the
NGBD solution time can be readily reduced through parallel computation.

A large number of stochastic MINLPs in the literature arise from integrated sys-
tem design and operation problems, in which y represents design decisions that are
related to the development of the infrastructure of the system, and xh represents op-
erational decisions that are related to the operation of the system for scenario h. In
this case, functions fh, gh in Problem (P-SMIP) are often separable in y and xh and
affine in y. In other words, Problem (P-SMIP) can be expressed in the following
form:

min
x1,...,xs,y

s

∑
h=1

fh(xh)+ cT
h y

s.t. gh(xh)+Bhy ≤ 0, ∀h ∈ {1, . . . ,s},
xh ∈ Xh, ∀h ∈ {1, . . . ,s},
y ∈ Y.

(P-SMIP-S)

The application of NGBD to Problem (P-SMIP-S) is a lot easier than the general
case. As y and xh are already separable in Problem (P-SMIP-S), the lower bound-
ing problem (LBP) can be constructed without the construction of the intermediate
problem (LBP-NS). In addition, Problems (RMPk) and (FRMPk) are always MILPs
(that are usually easier to solve than MINLPs).

Furthermore, when all functions in Problem (P-SMIP) are affine, the problem
becomes a MILP and it can be solved by NBGD via the solution of a sequence of
MILP and LP subproblems. Note that this MILP cannot be solved by BD or GBD
in general, as set Xh is nonconvex due to the binary variables involved.

6 Case Studies

6.1 Case Study Problems

Three industrial problems are studied here to demonstrate the computational advan-
tage of NGBD over state-of-the-art commercial solvers. Brief descriptions of the
case study problems are given below.
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6.1.1 Pump Network Configuration Problem

This problem is to find the optimal configuration of a centrifugal pump network that
achieves a prespecified pressure rise based on a given total flow rate. The objective
of the optimization is to minimize annualized cost. The deterministic version of
the problem was initially presented in [27] and then updated in [25] with a set of
additional linear constraints for tighter relaxation in global optimization. Here the
problem is further reformulated to reduce the number of nonlinear functions and
then it is extended into a two-stage stochastic problem which explicitly addresses the
uncertainty in the pump performance models and minimizes an expected annualized
cost. More details of the problem can be found in [28].

6.1.2 Sarawak Gas Production Subsystem Design Problem

This problem comes from a real industrial system, the Sarawak Gas Production Sys-
tem (SGPS) [29]. In [30], optimal operation of a subsystem of the SGPS is studied.
This problem is extended into an integrated design and operation problem under un-
certainty. The uncertainties in the system include gas product demand, gas product
price and the pressure-flow relationship in a pipeline. The objective of the opti-
mization is to maximize the expected net present value while satisfying the demand
constraints at the end node over the scenarios of consideration. More details of the
problem can be found in [28].

6.1.3 Capacity Planning Problem

This is a capacity planning problem in continuous pharmaceutical manufacturing
under clinical trials uncertainty [31, 32]. The problem considers the building of
new facilities or expansion of existing facilities for future manufacturing of new
drugs that are still in the clinical trial stages. The problem is modelled as a two-
stage stochastic MILP to achieve the best expected profits. The first-stage decisions
are to determine the timing of facility development and the discrete sizes of the
facilities to be developed before product launch. The second-stage decisions are to
determine the discrete sizes of the facilities to be developed after product launch and
the operation of the facilities. More details of the problem can be found in [31, 32].

All the three case study problems are two-stage stochastic programs exhibit-
ing the structure of Problem (P-SMIP-S) discussed in the previous section, in which
the complicating variables are the first-stage decisions. In the first two problems,
the second-stage decisions are all continuous and the nonconvexity of the problem
comes from the nonconvex functions involved. In the third problem, the second-
stage decisions involve both continuous and binary variables (which make set Xh

nonconvex) but all functions involved are affine, so the overall problem is a MILP.
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6.2 Implementation

The first two case study problems are nonconvex MINLPs, so BARON 9.0 was used
to compare with NGBD for global solution. Convex underestimators for construct-
ing the lower bounding problems in NGBD were generated through McCormick
relaxation [5, 10] and auxiliary variables were introduced for generating smooth
underestimators [8]. The problem instances were solved on a computer allocated a
single 2.83 GHz CPU, 2 GB memory and running Linux Kernel. GAMS 23.4 [33]
was used to formulate the problems, program the NGBD algorithm and interface
the solvers for the subproblems. The NGBD method employed BARON 9.0 for
solving nonconvex NLP subproblems, CPLEX 12.1 for LP/MILP subproblems and
CONOPT 3 for convex NLP subproblems. BARON 9.0 itself employed CPLEX
12.1 as the LP solver and CONOPT 3 the local NLP solver.

The third case study problem is a MILP, so CPLEX 12.3 was used to compare
with NGBD. The problem instances were solved on a computer with a 3.2 GHz
Intel Xeon CPU, 12 GB memory, and Windows platform. GAMS 23.7 was used to
formulate the problems, program the NGBD algorithm and interface the solvers for
the subproblems. The NGBD method employed CPLEX 12.3 to solve LP and MILP
subproblems.

The relative and absolute termination criteria were set to be 10−3 for all the three
case study problems. The NGBD solution times reported here are the total times
reported by the GAMS solvers for solving all the subproblems.

6.3 Results and Discussion

The results for the case study problems with different numbers of scenarios are
summarized in Tables 1, 2 and 3. It can be seen that when the number of scenar-
ios is small, NGBD may not be faster than the commercial solvers; it is slower
than BARON 9.0 for the pump network problem with 1 scenario and slower than
CPLEX 12.3 for the capacity planning problem with 16 scenarios. However, when
more scenarios are considered, the solution time with BARON 9.0 or CPLEX 12.3
increases rapidly with the number of scenarios while the solution time with NGBD
increases slowly. For the pump network problem with 125 scenarios and the SGPS
problem with 27 scenarios, BARON cannot return a global solution within 10,000 s,
while NGBD can within several minutes. For the capacity planning problem with
4,094 scenarios, CPLEX 12.3 cannot return an optimal solution within 20,000 s,
while NGBD can within 15 min. For all the three case study problems, NGBD is
at least an order of magnitude faster than the commercial solvers in most cases. In
addition, computational results of two large problem instances in the tables are no-
table. One is the SGPS problem with 1,331 scenarios. This nonconvex MINLP has
nearly 150,000 variables and it was solved to global optimality by NGBD within
only 80 min. The other is the capacity planning problem with 65,536 scenarios. This
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Table 1 Results for the pump network configuration problem

Number of scenarios 1 27 125 343 729 1,331
Number of continuous variables 38 1,026 4,750 13,034 27,702 50,578
Number of binary variables 18 18 18 18 18 18
Total time with BARON 9.0 (s) 0.5 28.9 –a – – –
Total time with NGBD (s) 7.7 60.9 328.8 754.1 1,497.0 2,794.8

Detailed results for NGBD
Time for PBP&FP (s) 0.4 5.7 9.9 31.1 150.2 304.1
Time for RMP&FRMP (s) 1.8 1.0 0.7 0.7 1.1 1.1
Time for PP (s) 5.4 54.2 3,18.3 722.4 1,345.7 2,489.6
UBD at termination (FIM)b 128.9 136.6 136.3 145.3 145.3 145.3
LBD at termination (FIM) +∞c +∞ +∞ +∞ +∞ +∞
Integer realizations visited by PBP 100 72 77 75 77 80
Integer realizations visited by PP 41 21 20 19 19 19
a No ε-optimal solution returned within 10,000 s
b UBD at termination is returned as the ε-optimal objective value of the problem
c Represented by a large number (1010) in NGBD, which indicates that PBP has visited all
feasible integer realizations

Table 2 Results for the SGPS problem

Number of scenarios 1 27 125 343 729 1,331

Number of continuous variables 110 2,970 13,750 37,730 80,190 146,410

Number of binary variables 20 20 20 20 20 20

Total time with BARON 9.0 (s) 123.2 –a – – – –

Total time with NGBD (s) 0.6 78.7 372.0 1,081.2 2,253.1 4,234.8

Detailed results for NGBD

Time for PBP&FP (s) 0.1 5.5 31.8 82.3 175.4 263.4

Time for RMP&FRMP (s) 0.1 0.8 0.8 0.9 0.8 0.6

Time for PP (s) 0.5 72.4 339.3 998.1 2,076.9 3,970.8

UBD at termination (Billion $)b −7.209 −7.189 −7.187 −7.188 −7.188 −7.188

LBD at termination (Billion $) −7.209 −7.189 −7.189 −7.189 −7.189 −7.189

Integer realizations visited by PBPh 14 70 70 71 70 68

Integer realizations visited by PPh 1 16 16 16 16 16
a No ε-optimal solution returned within 10,000 s
b UBD at termination is returned as the ε-optimal objective value of the problem

MILP has about 65 million binary variables, 240 million continuous variables, 250
million constraints, and it was solved by NGBD within only 6 h.

The computational advantage of NGBD comes from the fact that (1) the total
number of NGBD iterations does not change significantly with the number of sce-
narios (as indicated by integer realizations visited by PP and PBP shown in the
tables), and (2) the NGBD solution time is dominated by Problem (PP) and Prob-
lem (PBP) that are decomposable over the scenarios. So the NGBD solution time
increases roughly linearly with the number of scenarios, while BARON 9.0 and
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Table 3 Results for the capacity planning problem
Number of scenarios 16 256 4,096 16,384 65,536
Number of first-stage binary variables 124 124 124 124 124
Number of second-stage binary vari-
ables (per scenario)

248 496 744 868 992

Number of continuous variables (per
scenario)

1,054 1,922 2,790 3,224 3,658

Total time with CPLEX 12.3 (s) 1.8 1,127.5 –a – –
Total time with NGBD (s) 2.4 39.3 878.1 4,103.7 19,235.5

Detailed results for NGBD
Time for PBP&FP (s) 1.3 6.5 128.4 611.4 2,797.8
Time for RMP&FRMP (s) 0.2 0.1 0.1 0.1 0.3
Time for PP (s) 0.9 32.7 749.6 3,492.2 16,437.4
UBD at termination (Billion $)b −32.198 −63.803 −83.410 −88.953 −99.664
LBD at termination (Billion $) −32.216 −63.789 −83.365 −88.890 −99.579
Integer realizations visited by PBP 5 2 2 2 2
Integer realizations visited by PP 1 1 1 1 1
a No ε-optimal solution returned within 20,000 s
b UBD at termination is returned as the ε-optimal objective value of the problem

CPLEX 12.3 cannot achieve this empirical linear complexity. In addition, Problem
(PP) is the most difficult subproblem in NGBD, and the solution of it is postponed
as much as possible. It can be seen from the three tables that the number of inte-
ger realizations visited by Problem (PP) (i.e. the number of Problem (PP) solved) is
smaller than that by Problem (PBP). This is because the solution of Problem (PBP)
helps to eliminate some integer realizations that will never lead to a global optimum
(as indicated by Proposition 5).

Tables 1, 2 and 3 also show UBD and LBD at the NGBD termination for all
the cases. UBD stands for an upper bound as well as an ε-optimal objective value
of Problem (P). LBD stands for the lower bound of the Problem (P) excluding all
the visited integer realizations. LBD can be significantly larger than UBD at the
termination and LBD = +∞ implies that all the feasible integer realizations have
been visited.

7 Conclusions

By using the concepts of problem manipulation and solution strategy used
in BD/GBD and the notion of convex/continuous relaxations, NGBD solves
Problem (P) by solving a sequence of subproblems that lead to an ε-optimal
solution in a finite number of steps. NGBD has tremendous computational ad-
vantages when the subproblems are much easier to solve than the original problem,
such as for the stochastic programs (P-SMIP) and (P-SMIP-S). Case studies of
several stochastic MINLP/MILP problems from industry demonstrate that NGBD
is more efficient than state-of-the-art commercial solvers by at least one order of
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magnitude. In addition, the solution time with NGBD increases moderately with
the number of scenarios involved in the stochastic program.

As the lower bounding problem serves as a surrogate of the original problem, its
closeness to the original problem has a dominant impact on the convergence rate
of NGBD. The efficiency of NGBD can be improved by introducing tighter con-
vex and continuous relaxations for constructing the lower bounding problem. It has
been shown that the efficiency of NGBD can be improved by an order of magnitude
through the integration of a piecewise convex relaxation framework [34]. Since most
of the subproblems in a NGBD iteration can be solved without exchanging informa-
tion among them, the performance of NGBD can also be improved by exploitation of
a parallel computation architecture. Some preliminary study has demonstrated that
a parallel NGBD algorithm can reduce the NGBD solution time by several times on
an 8-core processor [35].

The NGBD method proposed in this work only deals with binary complicating
variables (i.e. y in Problem (P) is binary). An interesting future work is to extend the
method to continuous/mixed integer and continuous complicating variables. While
the convergence of the current NGBD method is established on the finite number of
realizations for the complicating variables, the extension will require a new mecha-
nism to guarantee convergence to an ε-optimal solution.
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On Nonsmooth Multiobjective Optimality
Conditions with Generalized Convexities

Marko M. Mäkelä, Ville-Pekka Eronen, and Napsu Karmitsa

1 Introduction

Optimality conditions are an essential part of mathematical optimization theory, af-
fecting heavily, for example to the method development both in local and global
optimization [21]. When constructing optimality conditions convexity has been the
most important concept during the last decades. Recently there have been numerous
attempts to generalize the concept of convexity in order to weaken the assumptions
of the attained results (see, e.g., [1, 4, 8, 13, 16, 26, 30, 32]).

Different kinds of generalized convexities have proved to be the main tool when
constructing optimality conditions, particularly sufficient conditions. There exist a
wide amount of papers published for smooth (continuously differentiable) single-
objective case (see [26] and references therein). For nonsmooth (not continuously
differentiable) problems there is an additional degree of freedom in choosing the
way how to deal with the nonsmoothness. There are many different generalized di-
rectional derivatives to do this. For example, necessary and sufficient conditions for
nonsmooth single-objective optimization by using the Dini directional derivatives
were developed in [8]. These results were extended for nonsmooth multiobjective
problems in [3].

Another degree of freedom is how to generalize convexity. In [22] sufficient
conditions for nonsmooth multiobjective programs were derived by using the (F,ρ)-
convexity defined by Preda [27] and its extension for nonsmooth case defined by
Bhatia and Jain [4]. Recently, the concept of invexity defined by Hanson [9] has be-
come a very popular research concept. It was used to formulate necessary and suffi-
cient conditions for differentiable multiobjective case in [25], for arcwise connected
functions in [5] and for nonsmooth multiobjective programming in [6, 12, 23, 24].
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In this paper, we present optimality conditions for nonsmooth multiobjective
problems with locally Lipschitz continuous functions. Three types of constraint sets
are considered. First, we discuss general set constraint, then, only inequality con-
straints and, finally, both inequality and equality constraints. To deal with the nons-
moothness we use the Clarke subdifferential as a generalization to gradient. For the
necessary condition we require that certain constraint qualifications holds. For suffi-
cient conditions we use f ◦-pseudo- and quasiconvexities [13] as a generalization to
convexity. The necessary conditions with inequality constraints rely mainly on [14].
In [12] a sufficient condition was presented which differs from ours mainly by the
formulation of object function. Moreover, f ◦-quasiconcave inequality constraints
were not considered in [12].

Nonsmooth problems with locally Lipschitz continuous functions were consid-
ered also in [24, 29, 31]. Our presentation differs from [24, 29] by constraint qual-
ifications and the formulation of KKT conditions. Also, in [24] the necessary opti-
mality condition relied on a theorem, which required the subdifferential of equality
constraint functions to be a singleton. For the sufficient conditions we need general-
ized pseudo- and quasiconvexities. Contrary to [24], the invexity and its generaliza-
tions are not used here. In [31] general constraint set was used in the derivation of
conditions for weak Pareto optimality. Our presentation has different, more specific
formulation for these conditions.

This article is organized as follows. In Sect. 2 we recall some basic tools from
nonsmooth analysis. In Sect. 3 results concerning generalized pseudo- and quasi-
convexity are presented. In Sect. 4 we present Karush–Kuhn–Tucker (KKT) type
necessary and sufficient conditions of weak Pareto optimality for nonsmooth mul-
tiobjective optimization problems with different constraint sets. Finally, some con-
cluding remarks are given in Sect. 5.

2 Nonsmooth Analysis

In this section we collect some notions and results from nonsmooth analysis. Most
of the proofs of this section are omitted, since they can be found, for example in [7,
15, 17]. Nevertheless, we start by recalling the notion of convexity and Lipschitz
continuity. The function f : Rn → R is convex if for all x,y ∈ R

n and λ ∈ [0,1] we
have

f
(
λx+(1−λ )y

) ≤ λ f (x)+(1−λ ) f (y).

A function is locally Lipschitz continuous at a point x ∈ R
n if there exist scalars

K > 0 and δ > 0 such that

| f (y)− f (z)| ≤ K‖y− z‖ for all y,z ∈ B(x;δ ),

where B(x;δ )⊂R
n is an open ball with center x and radius δ . If a function is locally

Lipschitz continuous at every point then it is called locally Lipschitz continuous.
Note that both convex and smooth functions are always locally Lipschitz continuous
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(see, e.g. [7]). In what follows the considered functions are assumed to be locally
Lipschitz continuous.

Definition 1. [7] Let f : Rn → R be locally Lipschitz continuous at x ∈ S ⊂ R
n.

The Clarke generalized directional derivative of f at x in the direction of d ∈ R
n is

defined by

f ◦(x;d) = limsup
y→x
t↓0

f (y+ td)− f (y)
t

and the Clarke subdifferential of f at x by

∂ f (x) = {ξ ∈ R
n | f ◦(x;d)≥ ξ T d for all d ∈ R

n}.

Each element ξ ∈ ∂ f (x) is called a subgradient of f at x.

Note that the Clarke generalized directional derivative f ◦(x;d) always exists for a
locally Lipschitz continuous function f . Furthermore, if f is smooth ∂ f (x) reduces
to ∂ f (x) = {∇ f (x)} and if f is convex ∂ f (x) coincides with the classical subdiffer-
ential of convex function (cf. [28]), in other words the set of ξ ∈ R

n satisfying

f (y)≥ f (x)+ξ T (y− x) for all y ∈ R
n.

The following properties derived in [7, 17] are characteristic to the generalized di-
rectional derivative and subdifferential.

Theorem 1. If f : Rn → R is locally Lipschitz continuous at x ∈ R
n, then

a) d �→ f ◦(x;d) is positively homogeneous, subadditive and Lipschitz continuous
function such that f ◦(x;−d) = (− f )◦(x;d).

b) ∂ f (x) is a nonempty, convex and compact set such that ∂ (− f )(x) =−∂ f (x).
c) f ◦(x;d) = max{ξ T d | ξ ∈ ∂ f (x)} for all d ∈ R

n.
d) f ◦(x;d) is upper semicontinuous as a function of (x,d).

In order to maintain equalities instead of inclusions in subderivation rules we need
the following regularity property.

Definition 2. The function f : Rn → R is said to be subdifferentially regular at x ∈
R

n if it is locally Lipschitz continuous at x and for all d ∈R
n the classical directional

derivative

f ′(x;d) = lim
t↓0

f (x+ td)− f (x)
t

exists and f ′(x;d) = f ◦(x;d).

Note, that the equality f ′(x;d) = f ◦(x;d) is not necessarily valid in general even
if f ′(x;d) exists. This is the case, for instance, with concave nonsmooth functions.
However, convexity, as well as smoothness implies subdifferential regularity [7].
Furthermore, it is easy to show that a necessary and sufficient condition for convex-
ity is that for all x,y ∈ R

n we have
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f (y)− f (x) ≥ f ◦(x;y− x)

= f ′(x;y− x). (1)

Next we present two subderivation rules of composite functions, namely the finite
maximum and positive linear combination of subdifferentially regular functions.

Theorem 2. Let fi : Rn →R be locally Lipschitz continuous at x for all i = 1, . . . ,m.
Then the function

f (x) = max{ fi(x) | i = 1, . . . ,m}
is locally Lipschitz continuous at x and

∂ f (x)⊂ conv{∂ fi(x) | fi(x) = f (x), i = 1, . . . ,m}, (2)

where conv denotes the convex hull of a set. In addition, if fi is subdifferentially
regular at x for all i = 1, . . . ,m, then f is also subdifferentially regular at x and
equality holds in (2).

Theorem 3. Let fi : Rn → R be locally Lipschitz continuous at x and λi ∈ R for all
i = 1, . . . ,m. Then the function

f (x) =
m

∑
i=1

λi fi(x)

is locally Lipschitz continuous at x and

∂ f (x)⊂
m

∑
i=1

λi∂ fi(x). (3)

In addition, if fi is subdifferentially regular at x and λi ≥ 0 for all i = 1, . . . ,m, then
f is also subdifferentially regular at x and equality holds in (3).

In the following, for a given set S ⊂ R
n we denote by dS the distance function of S,

that is,
dS(x) = inf{‖x− s‖ | s ∈ S}. (4)

If S is nonempty, then dS is locally Lipschitz continuous with the constant one [7].
The closure of a set S is denoted clS. By the Weierstrass Theorem we may replace
inf by min in (4) if S �= /0 is closed. Note also that dS(x) = 0 if x ∈ clS.

A set C ⊂ R
n is a cone if λx ∈C for all λ ≥ 0 and x ∈C. We also denote

rayS = {λ s | λ ≥ 0, s ∈ S} and coneS = rayconvS.

In other words rayS is the smallest cone containing S and coneS is the smallest
convex cone containing S.

Definition 3. The Clarke normal cone of the set S ⊂ R
n at x ∈ S is given by the

formula
NS(x) = cl ray∂dS(x).
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It is easy to derive that NS(x) is a closed convex cone (see, e.g. [7]). In convex case
the normal cone can be expressed by the following simple inequality condition.

Theorem 4. If S is a convex set and x ∈ S, then

NS(x) = {z ∈ R
n | zT (y− x)≤ 0 for all y ∈ S}.

The contingent cone, polar cone and strict polar cone of set S ∈ R
n at point x are

defined respectively as

TS(x) = {d ∈ R
n | there exist ti ↓ 0 and di → d with x+ tidi ∈ S}

S≤ = {d ∈ R
n | sT d ≤ 0, for all s ∈ S}

S< = {d ∈ R
n | sT d < 0, for all s ∈ S}.

Next we will present some basic results that are useful in Sect. 4. The proofs of the
following two lemmas can be found in [17].

Lemma 1. Let Si ⊂R
n, i = 1,2, . . . ,m be convex sets and C ⊂R

n be a convex cone.
Assume that all the sets are nonempty. Then

a) conv
⋃m

i=1 Si = {∑m
i=1 λisi | si ∈ Si, λi ≥ 0,∑m

i=1 λi = 1}.

b) cone
⋃m

i=1 Si = {∑m
i=1 μisi | si ∈ Si, μi ≥ 0}= ∑m

i=1 raySi.

c)
⋃m

i=1(Si +C) =
⋃m

i=1 Si +C.

d) conv
⋃m

i=1(Si +C) = conv
⋃m

i=1 Si +C.

Lemma 2. Let Si ⊂ R
n, i = 1,2, . . . ,m be convex compact sets. Then conv

⋃m
i=1 Si is

a compact set.

To the end of this section we recall the classical necessary and sufficient nonsmooth
unconstrained optimality condition.

Theorem 5. Let f : Rn → R be locally Lipschitz continuous at x∗. If f attains its
local minimum at x∗, then

0 ∈ ∂ f (x∗).

If, in addition, f is convex, then the above condition is sufficient for x∗ to be a global
minimum.

3 Generalized Convexities

In this section we present some generalizations of convexity, namely f ◦-
pseudoconvexity, quasiconvexity and f ◦-quasiconvexity, that are used later. We
also define f ◦-quasiconcavity. A famous generalization of convexity is pseudocon-
vexity introduced in [18]. For a pseudoconvex function f a point x ∈ R is a global
minimum if and only if ∇ f (x) = 0. The classical pseudoconvexity requires the
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function to be smooth and, thus, it is not suitable for our purposes. However, with
some modifications pseudoconvexity can be defined for nonsmooth functions as
well. One such definition is presented in [10]. This definition requires the function
to be merely locally Lipschitz continuous.

Definition 4. A function f : Rn → R is f ◦-pseudoconvex, if it is locally Lipschitz
continuous and for all x,y ∈ R

n

f (y)< f (x) implies f ◦(x;y− x)< 0.

Note that due to (1) a convex function is always f ◦-pseudoconvex. Sometimes the
reasoning chain in the definition of f ◦-pseudoconvexity needs to be converted.

Lemma 3. A locally Lipschitz continuous function f is f ◦-pseudoconvex, if and only
if for all x,y ∈ R

n

f ◦(x;y− x)≥ 0 implies f (y)≥ f (x).

Proof. Follows directly from the definition of f ◦-pseudoconvexity. ��
The important sufficient extremum property of pseudoconvexity remains also for
f ◦-pseudoconvexity.

Theorem 6. An f ◦-pseudoconvex function f attains its global minimum at x∗, if and
only if

0 ∈ ∂ f (x∗).

Proof. If f attains its global minimum at x∗, then by Theorem 5 we have 0 ∈ ∂ f (x∗).
On the other hand, if 0 ∈ ∂ f (x∗) and y ∈ R

n, then by Definition 1 we have

f ◦(x∗;y− x∗)≥ 0T (y− x∗) = 0

and, thus by Lemma 3 we have

f (y)≥ f (x∗).

��
Note that it follows from Theorem 6 that pseudoconvexity implies f ◦-
pseudoconvexity.

The notion of quasiconvexity is the most widely used generalization of convexity
and, thus, there exist various equivalent definitions and characterizations. Next we
recall the most commonly used definition of quasiconvexity (see [1]).

Definition 5. A function f :Rn →R is quasiconvex, if for all x,y ∈R
n and λ ∈ [0,1]

f (λx+(1−λ )y)≤ max{ f (x), f (y)}.
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Note that, unlike pseudoconvexity, the previous definition of quasiconvexity does
not require differentiability nor continuity. We give also a useful result concerning
a finite maximum of quasiconvex functions.

Theorem 7. Let fi : Rn → R be quasiconvex at x for all i = 1, . . . ,m. Then the
function

f (x) = max{ fi(x) | i = 1, . . . ,m}
is also quasiconvex.

Proof. Follows directly from the definition of quasiconvexity. ��
Analogously to the Definition 4 we can define the corresponding generalized con-
cept, which is a special case of h-quasiconvexity defined by Komlósi [13] when h is
the Clarke generalized directional derivative.

Definition 6. A function f : Rn → R is f ◦-quasiconvex, if it is locally Lipschitz
continuous and for all x,y ∈ R

n

f (y)≤ f (x) implies f ◦(x;y− x)≤ 0.

A function f : Rn → R is f ◦-quasiconcave if − f is f ◦-quasiconvex.

Theorem 8. A function f : Rn →R is f ◦-quasiconcave if it is locally Lipschitz con-
tinuous and for all x,y ∈ R

n

f (y)≤ f (x) implies f ◦(y;y− x)≤ 0.

Proof. By Definition 6 we have

− f (x)≤ − f (y) implies (− f )◦(y;x− y)≤ 0.

Using Theorem 1(a) we obtain

f (y)≤ f (x) implies f ◦(y;y− x)≤ 0

which proves the theorem. ��
Next, we give few results concerning relations between the previously presented
generalized convexities. The proofs for these results can be found in [16].

Theorem 9. If f : Rn → R is f ◦-pseudoconvex, then f is f ◦-quasiconvex and qua-
siconvex.

Theorem 10. If f : Rn → R is f ◦-quasiconvex, then f is quasiconvex.

Theorem 11. If f : Rn → R is subdifferentially regular and quasiconvex then f is
f ◦-quasiconvex.

Figure 1 illustrates the relations between different convexities.
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pseudoconvex

quasiconvex

2) demands subdifferential regularity

1) demands continuous differentiability

f o−pseudoconvex

f o−quasiconvex

convex

1)

2)

Fig. 1 Relations between different types of generalized convexities

4 Optimality Conditions for Nonsmooth Multiobjective Problem

In this section we present some necessary and sufficient optimality conditions for
multiobjective optimization.

Consider first a general multiobjective optimization problem
{

minimize { f1(x), . . . , fq(x)}
subject to x ∈ S,

(5)

where fk : Rn →R for k = 1,2, . . . ,q are locally Lipschitz continuous functions and
S ⊂ R

n is an arbitrary nonempty set. Denote

F(x) =
⋃

k∈Q

∂ fk(x) and Q = {1,2, . . . ,q}.

We start the consideration by defining the notion of optimality for the multiobjective
problem (5).

Definition 7. A vector x∗ is said to be a global Pareto optimum of (5), if there does
not exist x ∈ S such, that fk(x) ≤ fk(x∗) for all k = 1, . . . ,q and fl(x) < fl(x∗) for
some l. Vector x∗ is said to be a global weak Pareto optimum of (5), if there does not
exist x ∈ S such that fk(x) < fk(x∗) for all k = 1, . . . ,q. Vector x∗ is a local (weak)
Pareto optimum of (5), if there exists δ > 0 such that x∗ is a global (weak) Pareto
optimum on B(x∗;δ )∩S.

Next we will present some optimality conditions of problem (5) in terms of cones.
We also consider the unconstrained case, that is, when S = R

n. We begin the con-
siderations with the following lemma which can be found in [14, Lemma 4.2].

Lemma 4. If x∗ is a local weak Pareto optimum of problem (5), then F<(x∗)∩
TS(x∗) = /0.
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Proof. Let x∗ be a local weak Pareto optimum. Then, there exists ε > 0 such that
for every y ∈ S ∩ B(x∗,ε) there exists k ∈ Q such that inequality fk(y) ≥ fk(x∗)
holds. Let d ∈ TS(x∗) be arbitrary. Then, there exist sequences (di) and (ti) such
that di → d, ti ↓ 0 and x∗+ tidi ∈ S for all i ∈ N. Also, there exists an index I1 such
that x∗+tidi ∈ S∩B(x∗,ε) for all i> I1. Then for every i> I1 there exists ki such that
fki(x

∗+ tidi)≥ fki(x
∗). Since the set Q is finite, there exists k̄ ∈ Q and subsequences

(di j)⊂ (di) and (ti j)⊂ (ti) such that

fk̄(x
∗+ ti j di j)≥ fk̄(x

∗) (6)

for all i j with j ∈N large enough. Denote I2 =
{

i j | i j > I1, j ∈ N
}

. The Mean-Value
Theorem (see, e.g., [7]) implies that for all ī ∈ I2 there exists t̃ī ∈ (0, tī) such that

fk̄(x
∗+ tīdī)− fk̄(x

∗) ∈ ∂ fk̄(x
∗+ t̃īdī)

T tīdī. (7)

From the definition of generalized directional derivative (Definition 1), (6) and (7)
we obtain

f ◦̄k (x
∗+ t̃īdī;dī) = max

ξ∈∂ fk̄(x
∗+t̃īdī)

ξ T dī ≥
1
tī
( fk̄(x

∗+ tīdī)− fk̄(x
∗))≥ 0.

Thus, for all ī ∈ I2 we have f ◦̄
k
(x∗+ t̃īdī;dī)≥ 0. Since dī → d and x∗+ t̃īdī → x∗ the

upper semicontinuity of function f ◦̄
k

[Theorem 1, (d)] implies

f ◦̄k (x
∗,d)≥ lim

ī→∞
f ◦̄k (x

∗+ t̃īdī;dī)≥ 0.

Thus, there exists ξ ∈ ∂ fk̄(x
∗)⊂ F(x∗) such that ξ T d ≥ 0 implying d /∈ F<(x∗). ��

Next, we will present a result for the unconstrained case. The result is analogous to
Theorem 5.

Theorem 12. Let fk be locally Lipschitz continuous for all k ∈ Q and S = R
n. If x∗

is a local weak Pareto optimum of problem (5), then

0 ∈ convF(x∗)

Proof. Since S = R
n we have TS(x∗) = R

n as well. Then by Lemma 4 we have
F<(x∗) = /0. Hence, for any d ∈ R

n there exists ξ ∈ F(x∗)⊂ convF(x∗) such that

dT ξ ≥ 0. (8)

Suppose that 0 /∈ convF(x∗). Since the sets convF(x∗) and {0} are closed convex
sets, there exists d ∈ R

n and a ∈ R such that

0 = dT 0 ≥ a and dT ξ < a for all ξ ∈ convF(x∗)
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according to the Separation Theorem (see, e.g. [2]). From the first inequality we
see that a ≤ 0. Then the second inequality contradicts with inequality (8). Hence,
0 ∈ convF(x∗). ��
In the following we shall present the necessary optimality condition of problem (5)
in terms of Clarke normal cone. The proof is quite similar to the proof for single
objective case in [15, pp. 72–73]. Before the condition we will present a useful
lemma.

Lemma 5. If x∗ is a local weak Pareto optimum of problem (5), then it is local weak
Pareto optimum of unconstrained problem

min
x∈Rn

{ f1(x)+KdS(x), f2(x)+KdS(x), . . . , fq(x)+KdS(x)}, (9)

where K = max{K1,K2, . . . ,Kq} and Kk is the Lipschitz constant of function fk at
point x∗.

Proof. From the definition of K and local weak Pareto optimality we see that there
exists ε > 0 such that the Lipschitz condition holds for all fk at B(x∗;ε) and x∗ is
weak Pareto optimum at B(x∗;ε)∩S. Suppose on the contrary that x∗ is not a local
weak Pareto optimum of problem (9). Then there exists y ∈ B(x∗; ε

2 ) such that

fk(y)+KdS(y)< fk(x
∗)+KdS(x

∗) = fk(x
∗) for all k ∈ Q. (10)

Suppose y ∈ clS. Then KdS(y) = 0 and by the continuity of fk there exists δ > 0
such that fk(z) < fk(x∗) for all k ∈ Q and z ∈ B(y;δ ) ⊂ B(x∗; ε

2 ). Since y ∈ clS we
have S∩B(y;δ )∩B(x∗; ε

2 ) �= /0 and, thus, x∗ is not a weak Pareto optimum of (5) in
S∩B(x∗;ε) contradicting the assumption. Hence, y /∈ clS and dS(y)> 0.

By the definition of dS(y) there exists c ∈ clS such that dS(y) = ‖y− c‖. Further-
more,

‖c− y‖ ≤ ‖x∗ − y‖< ε
2
.

Thus,

‖c− x∗‖ ≤ ‖c− y‖+‖y− x∗‖< ε
2
+

ε
2
= ε

implying c ∈ B(x∗;ε). By inequality (10) and local weak Pareto optimality of x∗
there exists k1 ∈ Q such that

fk1(y)< fk1(x
∗)≤ fk1(c).

Hence,
∣
∣ fk1(x

∗)− fk1(y)
∣
∣ ≤ ∣

∣ fk1(c)− fk1(y)
∣
∣ ≤ K ‖y− c‖= KdS(y)

implying fk1(x
∗)≤ fk1(y)+KdS(y). This contradicts with inequality (10). Thus, x∗

is a local weak Pareto optimum of problem (9). ��
Finally, we can state the necessary optimality condition of problem (5) with arbitrary
nonempty feasible set S ⊂ R

n.
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Theorem 13. If x∗ is a local weak Pareto minimum of (5), then

0 ∈ convF(x∗)+NS(x
∗). (11)

Proof. By Lemma 5 x∗ is a local weak Pareto optimum of unconstrained problem
(9). Consider kth objective function of the unconstrained problem. By Theorem 3
we have

∂ ( fk(x)+KdS(x))⊂ ∂ fk(x)+K∂dS(x).

The Definition 3 of normal cone implies K∂dS(x)⊂ NS(x). Since x∗ is a local weak
Pareto optimum of problem (9), Theorem 12 implies

0 ∈ conv
⋃

k∈Q

∂ ( fk(x
∗)+KdS(x

∗))⊂ conv
⋃

k∈Q

(∂ fk(x
∗)+NS(x

∗)).

By Lemma 1(d) we have

conv
⋃

k∈Q

(∂ fk(x
∗)+NS(x

∗)) = convF(x∗)+NS(x
∗),

as desired. ��
Since Pareto optimality implies weak Pareto optimality we get immediately the fol-
lowing consequence.

Corollary 1. Condition (11) is also necessary for x∗ to be a local Pareto optimum
of (5).

To prove a sufficient condition for global optimality we need the assumptions that S
is convex and fk are f ◦-pseudoconvex for all k ∈ Q.

Theorem 14. Let fk be f ◦-pseudoconvex for all k ∈ Q and S convex. Then x∗ ∈ S is
a global weak Pareto minimum of (5), if and only if

0 ∈ convF(x∗)+NS(x
∗).

Proof. The necessity follows directly from Theorem 13. For sufficiency let 0 ∈
convF(x∗) +NS(x∗). Then there exist ξ ∗ ∈ convF(x∗) and z∗ ∈ NS(x∗) such that
ξ ∗ =−z∗. Then by Theorem 4 we have for all x ∈ S that

0 ≤ −zT
∗ (x− x∗) = ξ T

∗ (x− x∗) =
q

∑
k=1

λkξ T
k (x− x∗),

where λk ≥ 0, ξ k ∈ ∂ fk(x∗) for all k ∈ Q and ∑q
k=1 λk = 1. Thus, there exists k1 such

that f ◦k1
(x∗,x−x∗)≥ ξ T

k1
(x−x∗)≥ 0. Then by Lemma 3 the f ◦-pseudoconvexity of

fk1 implies fk1(x)≥ fk1(x
∗). Thus, there exists no feasible point x ∈ S with fk(x)<

fk(x∗) for all k ∈ Q implying x∗ is a global weak Pareto optimum. ��
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4.1 Inequality Constraints

Now we shall consider problem (5) with inequality constraints:
{

minimize { f1(x), . . . , fq(x)}
subject to gi(x)≤ 0 for all i = 1, . . . ,m,

(12)

where also gi : Rn → R for i = 1, . . . ,m are locally Lipschitz continuous functions.
Denote M = {1,2, . . . ,m} and the total constraint function by

g(x) = max{gi(x) | i = 1, . . . ,m}.

Problem (12) can be seen as a special case of (5), where

S = {x ∈ R
n | g(x)≤ 0}.

Denote also

G(x) =
⋃

i∈I(x)

∂gi(x), where I(x) = {i | gi(x) = 0}.

For necessary conditions we need some constraint qualifications. We restrict our-
selves to constraint qualifications that give conditions in terms of feasible set or
constraint functions. This makes the constraint qualifications easily applicable to
both single and multiobjective problems. There are many constraint qualifications
involving the objective functions too (see, e.g. [14]), but they are not considered
here.

In order to formulate KKT type optimality conditions we need one of the follow-
ing constraint qualifications

(CQ1) G≤(x)⊂ TS(x)

(CQ2) 0 /∈ ∂g(x)

(CQ3) G<(x) �= /0

(CQ4) 0 /∈ convG(x),

where we assume I(x) �= /0 for all the constraint qualifications. Due to Theorem 1(b)
the assumption I(x) �= /0 guarantees that G(x) �= /0. Note that the sets G≤(x) and
G<(x) can be defined also in terms of generalized directional derivatives. For
example

G≤(x) = {d | ξ T d ≤ 0, for all ξ ∈
⋃

i∈I(x)

∂gi(x)}

= {d | g◦
i (x;d)≤ 0, for all i ∈ I(x)}.
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In [14] CQ1 and CQ3 were called nonsmooth analogs of Abadie qualification and
Cottle qualification respectively, while both CQ4 and CQ2 were called Cottle con-
straint qualifications in [19] and [15] respectively. In [14] it was shown that CQ1
follows from CQ3. In the appendix we will show that the following relations hold
between the given constraint qualifications.

1) if all constraint functions are subdifferentially regular or f o -pseudoconvex

CQ2 CQ1CQ3CQ4
1)

Fig. 2 Relations between different constraint qualifications

Next, we will prove a KKT Theorem in the case where the constraint qualification
is CQ1. As seen in Fig. 2, CQ1 is the weakest condition of the above qualifications.
Thus, CQ1 can be replaced by any of CQ2, CQ3 or CQ4. The proof of the KKT
Theorem is in practice the same as in [14]. The idea is quite similar to the proof
in [2, p. 165] for differentiable single objective case. The outline of the proof goes
as follows. First we characterize a necessary condition for (weak Pareto) optimal-
ity in terms of contingent cone and objective function(s). Then, by some constraint
qualification we replace the contingent cone by another cone, related to constraint
functions and, finally, by some alternative theorem we may express the optimal-
ity in the form of KKT conditions. The main difference between the differentiable
and nondifferentiable case is that the cones are defined with generalized directional
derivatives (or subdifferentials) instead of classical gradients.

The weak Pareto optimality was expressed in terms of contingent cone and ob-
jective functions in Lemma 4. Let us then prove the theorem of alternatives needed
in the proof of the KKT Theorem.

Lemma 6. Let S ⊂ R
n be a nonempty closed convex set and let C ⊂ R

n be a
nonempty closed convex cone. Then one and only one of the following relations
hold

a) S∩C �= /0
b) S<∩−C≤ �= /0.

Proof. Assume that S∩C �= /0. If S< = /0 then trivially S<∩−C≤ = /0. If d ∈ S< �= /0,
we have sT d < 0 for all s ∈ S ∩C. Thus, d /∈ −C≤ = {x | xT c ≥ 0, ∀c ∈ C} and
S<∩−C≤ = /0.

Assume next that S∩C = /0. Since S and C are closed convex sets the Separation
Theorem (see e.g. [2]) implies there exist d ∈ R

n and α ∈ R such that

dT s < α for all s ∈ S (13)

dT c ≥ α for all c ∈C. (14)
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Since C is a cone, 0 ∈ C and C is unbounded, we can choose α = 0. Then, Eq. (13)
means that d ∈ S< and Eq. (14) means that d ∈ −C≤. Thus, d ∈ S<∩−C≤ �= /0. ��
The following results are useful in the proof of necessary conditions.

Lemma 7. Let fk, k ∈ Q and gi, i ∈ M be locally Lipschitz continuous and S ⊂ R
n

an arbitrary set. Then

S≤ = (clS)≤, F<(x) = (convF(x))< and G≤(x) = (coneG(x))≤.

Proof. Since

S ⊂ clS, F(x)⊂ convF(x) and G(x)⊂ coneG(x)

clearly

(clS)≤ ⊂ S≤, (convF(x))< ⊂ F<(x) and (coneG(x))≤ ⊂ G≤(x).

Suppose that d ∈ S≤. If d /∈ (clS)≤ then dT s > 0 for some s ∈ clS. By the conti-
nuity of function dT s there exists ε > 0 such that dT b > 0 for all b ∈ B(s;ε). This
contradicts with assumption d ∈ S≤ as B(s;ε)∩S �= /0.

Suppose that d ∈ F<(x). Then for every ξ ∈⋃
k∈Q ∂ fk(x) we have dT ξ < 0. Then

dT

(
q

∑
k=1

λkξ k

)

=
q

∑
k=1

λkdT ξ k < 0,

for all ξ k ∈ ∂ fk(x) and λk ≥ 0, ∑q
k=1 λk = 1. Hence, d ∈ (convF(x))<.

Suppose that d ∈ G≤(x). Likewise to the previous case we can show that d ∈
(convG(x))≤. Then

dT ξ ≤ 0 implies dT λξ ≤ 0

for all λ ≥ 0 and ξ ∈ convG(x). Hence, d ∈ (coneG(x))≤. ��
Now, we are ready to formulate the necessary condition for local weak Pareto opti-
mality.

Theorem 15. If x∗ is a local weak Pareto optimum and CQ1 holds then

0 ∈ convF(x∗)+ clconeG(x∗). (15)

Proof. By Lemma 4 F<(x∗)∩TS(x∗) = /0. Since the CQ1 holds we have

F<(x∗)∩G≤(x∗)⊂ F<(x∗)∩TS(x
∗) = /0.

By Lemma 7 we have

F<(x∗)∩G≤(x∗) = (convF(x∗))<∩ (coneG(x∗))≤

= (convF(x∗))<∩ (clconeG(x∗))≤ = /0.
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Since F(x∗) and G(x∗) are nonempty (I(x∗) �= /0), convF(x∗) is a closed convex set
(Lemma 2) and clconeG(x∗) is a closed convex cone. Then Lemma 6 implies

convF(x∗)∩−clconeG(x∗) �= /0.

This is equivalent with 0 ∈ convF(x∗)+ clconeG(x∗). ��
Since Pareto optimality implies weak Pareto optimality we get immediately the fol-
lowing consequence.

Corollary 2. Condition (15) is also necessary for x∗ to be a local Pareto optimum
of (12).

In Theorem 15 it was assumed that I(x) �= /0. If this is not the case, then we have
g(x) < 0. By continuity of g there exists ε > 0 such that B(x;ε) belongs to the
feasible set. Then NS(x) = {0} and with Theorem 13 we may deduce that condition
in Theorem 12 holds. From that we may deduce that assumption I(x) �= /0 could be
omitted if in (15) clconeG(x∗) is replaced by {0}∪ clconeG(x∗).

A condition stronger than (15) was developed for CQ3 in [14, 19]. Next we shall
study the stronger condition. For that we need the following lemma.

Lemma 8. If CQ4 (or equivalently CQ3) holds at x ∈ R
n, then coneG(x) is closed.

Proof. Let (d j) ⊂ coneG(x) be an arbitrary converging sequence such that
lim j→∞ d j = d̂. For every j there exists λ j ≥ 0 and ξ j ∈ convG(x) such that
d j = λ jξ j. By Lemma 2 convG(x) is a compact set. Then there exists a converging

subsequence (ξ ji) such that limi→∞ ξ ji = ξ̂ . By closedness of convG(x) we have

ξ̂ ∈ convG(x). Since 0 /∈ convG(x) sequence

λ ji =

∥
∥d ji

∥
∥

∥
∥
∥ξ ji

∥
∥
∥

is converging too. Denote limi→∞ λ ji = λ̂ . Then

d̂ = λ̂ ξ̂ ∈ coneG(x)

implying that coneG(x) is closed. ��
Theorem 16. If x∗ is a local weak Pareto optimum and CQ3 holds, then

0 ∈ convF(x∗)+ coneG(x∗).

Proof. From Lemma 8 it follows that if CQ3 holds then clconeG(x∗) = coneG(x∗).
Then the result follows directly from Theorem 15. ��
Consider then the sufficient conditions of problem (12). It is well-known that the
convexity of the functions fk, k ∈ Q, and gi, i ∈ M, guarantees the sufficiency of the
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KKT optimality condition for global weak Pareto optimality in Theorem 16 (see [19,
p. 51]). We will present the sufficient conditions in more detail later. Namely, they
can be obtained as a special case of sufficient conditions for problems with both
inequality and equality constraints.

4.2 Equality Constraints

Consider problem (5) with both inequality and equality constraints.
⎧
⎪⎨

⎪⎩

minimize
{

f1(x), . . . , fq(x)
}

subject to gi(x)≤ 0 for all i = 1, . . . ,m,

h j(x) = 0 for all j = 1, . . . , p,

(16)

where all functions are supposed to be locally Lipschitz continuous. Denote H(x) =⋃p
j=1 ∂h j(x) and J = {1,2, . . . , p}. By Theorem 1(b) we see that

−H(x) =−
⋃

j∈J

∂h j(x) =
⋃

j∈J

∂ (−h j)(x).

A straightforward way to deal with an equality constraint h j(x) = 0 is to replace it
with two inequality constraints

h j(x)≤ 0 and −h j(x)≤ 0. (17)

Then, we may use the results obtained for problem (12) to derive results for prob-
lem (16). However, some constraint qualifications are not satisfied if this kind of
operation is done as we will see soon.

Consider first the CQ1. Denote

G≤
∗ (x) = {d | g◦

i (x;d)≤ 0, i ∈ I(x), h◦
j(x;d)≤ 0, (−h j)

◦(x;d)≤ 0, j ∈ J}
= G≤(x)∩H≤(x)∩ (−H)≤(x).

It is good to note that we can replace (−h j)
◦(x;d) ≤ 0 by h◦

j(x;−d) ≤ 0 in the
definition of G≤∗ (x) according to Theorem 1(a). We can use a new cone instead of
the cone H≤(x)∩ (−H)≤(x) as the next lemma shows.

Lemma 9. Let h : Rn → R be a locally Lipschitz continuous function. Then

∂h(x)≤ ∩ (−∂h(x))≤ = {d | h◦(x;d)≤ 0, h◦(x;−d)≤ 0}
⊂ {d | h◦(x;d) = 0}

Proof. Suppose d ∈ ∂h(x)≤∩(−∂h(x))≤. By the subadditivity of h◦ [Theorem 1(a)]
we have

0 = h◦(x;0)≤ h◦(x;−d)+h◦(x;d)≤ 0, (18)
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which is possible only if h◦(x;−d) = h◦(x;d) = 0. Namely, if one would be strictly
negative the other should be strictly positive in order to satisfy inequality (18). This
is impossible since d ∈ ∂h(x)≤ ∩ (−∂h(x))≤. ��
Denote

H0(x) = {d | h◦
j(x;d) = 0 for all j ∈ J}.

From Lemma 9 we can easily deduce that H≤(x)∩ (−H)≤(x) ⊂ H0(x). However,
in general H0(x) �⊂ H≤(x)∩ (−H)≤(x). To see this, consider a function

h(x) =

{
−x, if x ≤ 0

0, otherwise.

Then h◦(0,1) = 0 and h◦(0,−1) = 1. Thus, 1 ∈ H0(0) but 1 /∈ H≤(0)∩ (−H)≤(0).
Now we can present two constraint qualifications for problem (16):

(CQ5) G≤(x)∩H≤(x)∩ (−H)≤(x)⊂ TS(x)

(CQ6) G≤(x)∩H0(x)⊂ TS(x),

where again I(x) �= /0. From Lemma 9 we see that CQ6 implies CQ5. Thus, we can
derive KKT conditions with CQ6 if we can do so for CQ5.

Consider next the constraint qualification CQ2. Assume our problem has an
equality constraint h1(x) = 0. Then, at the feasible points the total constraint func-
tion will be

g(x) = max{h1(x),−h1(x), l(x)}= max{max{h1(x),−h1(x)}, l(x)},

where l(x) contains the other terms. It is clear that function max{h1(x),−h1(x)} is
non-negative. Consequently, g is non-negative too. Then, 0 is minimum value for g
and it is attained at every feasible point of problem (16). Thus, for any feasible x we
have 0 ∈ ∂g(x) according to Theorem 5 and, thus, CQ2 does not hold. Hence, CQ2
is not suitable for problems with equality constraints.

Next, we shall consider CQ3. Denote

G<
∗ (x) = {d | g◦

i (x;d)< 0, i ∈ I(x), h◦
j(x;d)< 0, (−h j)

◦(x;d)< 0, j ∈ J}
= G<(x)∩{d | h◦

j(x;d)< 0, h◦
j(x;−d)< 0, j ∈ J}.

Let x,d ∈ R
n and j ∈ J be arbitrary. By the subadditivity of h◦

j we have

0 = h◦
j(x;0)≤ h◦

j(x;d)+h◦
j(x;−d). (19)

From inequality (19) it is easy to see that {d | h◦
j(x;d) < 0, h◦

j(x;−d) < 0} = /0.
Hence, CQ3 does not hold implying that the constraint qualification CQ3 (or CQ4)
is not suitable for equality constraints.

Before the proof of the KKT Theorem of problem (16) we need the following
lemma.
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Lemma 10. If A and B are nonempty cones then cl(A+B)⊂ clA+ clB.

Proof. Since A ⊂ clA and B ⊂ clB we have A+B ⊂ clA+clB. By Lemma 2 in [20]
clA+ clB is closed. Thus, cl(A+B)⊂ clA+ clB. ��
Finally, we can state the theorem corresponding to Theorem 15 with constraint qual-
ification CQ5.

Theorem 17. If x∗ is a local weak Pareto optimum of (16) and CQ5 holds at x∗,
then

0 ∈ convF(x∗)+ clconeG(x∗)+ clconeH(x∗)− clconeH(x∗). (20)

Proof. From Theorem 15 and previous considerations we see that

0 ∈ convF(x∗)+ clcone(G(x∗)∪H(x∗)∪−H(x∗)). (21)

By using Lemma 1(b) twice and Lemma 10 we obtain

clcone(G(x∗)∪H(x∗)∪−H(x∗))

= cl

(

∑
i∈I(x∗)

ray∂gi(x
∗)+ ∑

j∈J
ray∂h j(x

∗)+ ∑
j∈J

ray∂ (−h j(x
∗))

)

= cl(coneG(x∗)+ coneH(x∗)− coneH(x∗))
⊂ clconeG(x∗)+ clconeH(x∗)− clconeH(x∗).

Combining this with relation (21) proves the theorem. ��
There are papers dealing with equality constraints in nonsmooth problems without
turning them into inequality constraints (see, e.g., [11]). However, the conditions are
expressed in terms of generalized Jacobian of multivalued mapping h : Rm → R

n.
We shall not consider generalized Jacobians here and, thus, will not discuss these
type of conditions further.

There are also papers where closures are not needed in conditions in Theorem 17
(see, e.g., [29]). But there they used constraint qualifications including objective
functions which we shall not consider either.

After the necessary conditions we shall now study sufficient conditions.
For that we do not need the constraint qualifications but we have to make
some assumptions on objective and constraint functions. More accurately, we
assume that objective functions are f ◦-pseudoconvex and inequality constraint
functions are f ◦-quasiconvex. The equality constraints may be f ◦-quasiconvex or
f ◦-quasiconcave. Denote

H+(x) =
⋃

j∈J+

∂h j(x) and H−(x) =
⋃

j∈J−
∂h j(x),

where J− ∪ J+ = J and h j is f ◦-quasiconvex if j ∈ J+ and h j is f ◦-quasiconcave if
j ∈ J−.
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Theorem 18. Let x∗ be a feasible point of problem (16). Suppose fk are f ◦-pseudo-
convex for all k ∈ Q, gi are f ◦-quasiconvex for all i ∈ M, h j are f ◦-quasiconvex for
all j ∈ J+ and f ◦-quasiconcave for all j ∈ J−. If

0 ∈ convF(x∗)+ coneG(x∗)+ coneH+(x
∗)− coneH−(x∗), (22)

then x∗ is a global weak Pareto optimum of (16).

Proof. Note that if (22) is satisfied then I(x∗) �= /0. Let x ∈R
n be an arbitrary feasible

point. Then gi(x) ≤ gi(x∗) if i ∈ I(x∗), h j(x) = h j(x∗) for all j ∈ J+ ∪ J− and f ◦-
quasiconvexity implies that

g◦
i (x

∗;x− x∗)≤ 0 for all i ∈ I(x∗) (23)

h◦
j(x

∗;x− x∗)≤ 0 for all j ∈ J+. (24)

The f ◦-quasiconcavity implies that

h◦
j(x

∗;x∗ − x)≤ 0 for all j ∈ J−. (25)

According to (22) there exist ξ k ∈ ∂ fk(x∗), ζ i ∈ ∂gi(x∗), η j ∈ ∂h j(x∗) and coeffi-
cients λk,μi,ν j ≥ 0, for all k ∈ Q, i ∈ I(x∗) and j ∈ J such that ∑q

k=1 λk = 1 and

0 = ∑
k∈Q

λkξ k + ∑
i∈I(x∗)

μiζ i + ∑
j∈J+

ν jη j − ∑
j∈J−

ν jη j. (26)

Multiplying equation (26) by x− x∗, using Definition 1 and Eqs. (23), (24) and (25)
we obtain

− ∑
k∈Q

λkξ T
k (x− x∗)

= ∑
i∈I(x∗)

μiζ T
i (x− x∗)+ ∑

j∈J+

ν jηT
j (x− x∗)+ ∑

j∈J−
ν jηT

j (x
∗ − x)

≤ ∑
i∈I(x∗)

μig
◦
i (x

∗;x− x∗)+ ∑
j∈J+

ν jh
◦
j(x

∗;x− x∗)+ ∑
j∈J−

ν jh
◦
j(x

∗;x∗ − x)

≤ ∑
i∈I(x∗)

μi ·0+ ∑
j∈J+

ν+
j ·0+ ∑

j∈J−
ν j ·0 = 0.

Thus,

0 ≤ ∑
k∈Q

λkξ T
k (x− x∗)≤ ∑

k∈Q

λk f ◦k (x
∗;x− x∗).

Since λk ≥ 0 for all k ∈ Q and ∑k∈Q λk = 1 > 0 there exists k1 ∈ Q such that

0 ≤ f ◦k1
(x∗;x− x∗).
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Then, f ◦-pseudoconvexity of fk1 implies that fk1(x
∗)≤ fk1(x). Since x is an arbitrary

feasible point there exists no feasible point y ∈ R
n such that fk(y) < fk(x∗) for all

k ∈ Q. Thus, x∗ is a global weak Pareto optimum of problem (16). ��
Note, that due to Theorems 9 and 11 the previous result is valid also for f ◦-pseudo-
convex and subdifferentially regular quasiconvex inequality constraint functions.
Also, the implicit assumption I(x∗) �= /0 could be omitted by replacing coneG(x∗)
by {0}∪ coneG(x∗).

Finally, by modifying somewhat the proof we get the sufficient KKT optimality
condition for global Pareto optimality with an extra assumption for the multipliers.

Corollary 3. The condition of Theorem 18 is also sufficient for x∗ to be a global
Pareto optimum of (16), if in addition λ j > 0 for all k ∈ Q.

Proof. By the proof of Theorem 18 we know that inequality

0 ≤ ∑
k∈Q

λkξ T
k (x− x∗)≤ ∑

k∈Q

λk f ◦k (x
∗;x− x∗) (27)

holds for arbitrary feasible x. Suppose there exists k1 ∈ Q such that f ◦k1
(x∗;x−x∗)<

0. Because λk > 0 for all k ∈ Q, by inequality (27) there must be also k2 ∈ Q such
that f ◦k2

(x∗;x−x∗)> 0. By Theorem 9 fk2 is f ◦-quasiconvex and by Definition 6 we
have fk2(x)> fk2(x

∗). Since x were arbitrary, x∗ is Pareto optimal.
Suppose then that f ◦k (x

∗;x− x∗)≥ 0 for all k ∈ Q. Then the f ◦-pseudoconvexity
implies that fk(x∗)≤ fk(x) and, thus, x∗ is Pareto optimal. ��
As the next example shows a global minimum x∗ does not necessarily satisfy the
conditions in Theorem 18.

Example 1. Consider the problem

minimize f (x) =−x1

subject to g(x) = (x1 −2)2 +(x2 +2)2 −2 ≤ 0

h(x) = (x1 −4)2 + x2
2 −10 = 0.

All the functions are convex and, thus, the assumptions of Theorem 18 are satisfied.
The global minimum to this problem is x∗ = (3,−3)T . The gradients at this point

are

∇ f (x∗) = (−1,0)T , ∇g(x∗) = (2,−2)T and ∇h(x∗) = (−2,−6)T .

The gradients are illustrated in Fig. 3. The lengths of the gradients in figure are
scaled for clarity. The bolded curve represents the feasible set. It is easy to see that
0 /∈ ∇ f (x∗)+ cone∇g(x∗)+ cone∇h(x∗). Thus we have a global optimum but the
sufficient condition is not satisfied.
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Fig. 3 Gradients at the global minimum

Let us then apply necessary conditions (Theorem 17) to the given example. It
is easy to see that qualifications CQ5 and CQ6 are equivalent if functions h j are
differentiable for all j ∈ J. Clearly,

TS(x
∗) = {λ (−3,1) | λ ≥ 0},

H0(x∗) = {λ (−3,1) | λ ∈ R} and

G≤(x∗) = {(d1,d2) | d1,d2 ∈ R, d1 ≤ d2}.
Thus, G≤(x∗) ∩ H0(x∗) = TS(x∗) implying that CQ6 is satisfied. According to
Theorem 17, relation (20) should hold at global minimum x∗. Indeed,

0 = ∇ f (x∗)+
3
8

∇g(x∗)+0∇h(x∗)− 1
8

∇h(x∗)

⊂ convF(x∗)+ clconeG(x∗)+ clconeH(x∗)− clconeH(x∗).

5 Concluding Remarks

We have considered KKT type necessary and sufficient conditions for nonsmooth
multiobjective optimization problems. Both inequality and equality constraints were
considered. The optimality were characterized as a weak Pareto optimality. In neces-
sary conditions CQ1–CQ6 constraint qualifications were needed. In sufficient con-
ditions the main tools used were the generalized pseudo- and quasiconvexities based
on the Clarke generalized directional derivative. It was assumed that the objective
functions are f ◦-pseudoconvex and the constraint functions are f ◦-quasiconvex.
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Due to relations between different generalized convexities the results are valid also
for f ◦-pseudoconvex and subdifferentially regular quasiconvex constraint functions.

Appendix

Consider problem (12), that is, problem
{

minimize
{

f1(x), . . . , fq(x)
}

subject to gi(x)≤ 0 for all i ∈ M = {1, . . . ,m}. (28)

Next, we will study some relations between the constraint qualifications. From now
on, we assume that I(x) �= /0.

In [14] it was shown that CQ1 follows from CQ3. Next we will prove that CQ1
follows also from CQ2.

Theorem 19. Let x ∈ R
n be a feasible point of problem (28) such that I(x) �= /0. If

0 /∈ ∂g(x) then G≤(x)⊂ TS(x).

Proof. Assume that there exists d∗ ∈ G≤(x) such that d∗ /∈ TS(x). Since a contingent
cone is a closed set there exists ε > 0 such that clB(d∗;ε)∩TS(x) = /0. Since d /∈
TS(x), for every d ∈ clB(d∗;ε) there exists t(d)> 0 such that g(x+t1d)> g(x) when
0 < t1 < t(d). Thus,

g◦(x;d)≥ 0, for all d ∈ clB(d∗;ε). (29)

Since d∗ ∈ G≤(x) we have

g◦(x;d∗) = max
{

ζ T d∗ | ζ ∈ ∂g(x)
}

≤ max
{

ζ T d∗ | ζ ∈ conv{∂gi(x) | i ∈ I(x)}
}

(30)

= max{g◦
i (x,d

∗) | i ∈ I(x)} ≤ 0.

Then for all ζ ∈ ∂g(x) we have ζ T d∗ ≤ 0. Since we have 0 /∈ ∂g(x) the Separation
Theorem (see, e.g. [2]) implies that there exist α ∈ R and z, ‖z‖= 1 such that

zT 0 > α and zT ζ ≤ α

for all ζ ∈ ∂g(x). Since zT 0= 0 we see that zT ζ < 0 for all ζ ∈ ∂g(x). If d̄ = d∗+εz,
then d̄ ∈ clB(d∗;ε) and

ζ T d̄ = ζ T d∗+ εζ T z < 0

for all ζ ∈ ∂g(x). Then

g◦(x; d̄) = max
{

ζ T d̄ | ζ ∈ ∂g(x)
}
< 0

contradicting inequality (29). Thus, G≤(x)⊂ TS(x). ��
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There exist problems that satisfy the CQ1 constraint qualification, but does not sat-
isfy the CQ2.

Example 2. Consider the problem (28) with g(x) = |x|. Then we have G≤(0) = {0}
and TS(0) = {0}. Thus, G≤(0)⊂ TS(0) and CQ1 holds at x = 0. However, 0 ∈ ∂g(0)
and CQ2 does not hold.

Next we will consider the relations between CQ2 and CQ3. First we will show that
CQ2 follows from CQ3.

Theorem 20. If I(x) �= /0 and G<(x) �= /0, then 0 /∈ ∂g(x).

Proof. It follows from the condition G<(x) �= /0 that there exists d, such that
g◦

i (x;d)< 0 for all i ∈ I(x). In other words, dT ξ i < 0 for all ξ i ∈ ∂gi(x) and i ∈ I(x).
Let λi ≥ 0, i ∈ I(x) be scalars such that ∑i∈I(x) λi = 1. Then

dT ∑
i∈I(x)

λiξ i = ∑
i∈I(x)

λid
T ξ i < 0.

Thus, dT ξ < 0 for all ξ ∈ conv
⋃

i∈I(x) ∂gi(x). Since ∂g(x)⊂ conv
⋃

i∈I(x) ∂gi(x), we
have g◦(x;d)< 0 implying that 0 /∈ ∂g(x). ��
There exist problems for which CQ2 holds but CQ3 does not as the following ex-
ample shows.

Example 3. Consider constraint functions

g1(x) = x and g2(x) =

{
x, if x < 0

0, if x ≥ 0.

Then g(x) = max{g1(x),g2(x)}= g1(x) and 0 /∈ ∂g(0). However, 0 ∈ ∂g2(0) which
implies G<(0) = /0.

Despite Example 3 we can establish some conditions on constraint functions
which guarantees that CQ2 implies CQ3. Namely, if all the constraint functions are
subdifferentially regular or f ◦-pseudoconvex the CQ3 follows from CQ2.

Theorem 21. Let x ∈R
n and I(x) �= /0. If the functions gi are subdifferentially regu-

lar for all i ∈ M and 0 /∈ ∂g(x), then G<(x) �= /0.

Proof. If 0 /∈ ∂g(x), then there exists d, such that g◦(x;d)< 0. Due to regularity we
have ∂g(x) = conv

⋃
i∈I(x) ∂gi(x). Hence,

dT ∑
i∈I(x)

λiξ i < 0, for all ξ i ∈ ∂gi(x), λi ≥ 0, ∑
i∈I(x)

λi = 1,

implying dT ξ i < 0 for all ξ i ∈ ∂gi(x). In other words g◦
i (x;d) < 0 for all i ∈ I(x).

Thus, we have d ∈ G< �= /0. ��



356 M.M. Mäkelä et al.

Theorem 22. Let x ∈ R
n and I(x) �= /0. If the functions gi are f ◦-pseudoconvex for

all i ∈ M and 0 /∈ ∂g(x), then G<(x) �= /0.

Proof. On contrary, assume that G< = /0. Then for all d ∈ R
n there exists i ∈ I(x),

for which g◦
i (x;d) ≥ 0. Due to f ◦-pseudoconvexity we have gi(x+ td) ≥ gi(x) for

all t ≥ 0. Since g(x) ≥ gi(x) for all i ∈ M we have g(x+ td) ≥ g(x) for all d ∈ R
n.

Thus, x is a global minimum and 0 ∈ g(x) by Theorem 5. In other words, if 0 /∈ g(x)
we will have G< �= /0. ��
Finally, we will show that constraint qualification CQ3 is equivalent to CQ4.

Theorem 23. Suppose I(x) �= /0. Then 0 /∈ convG(x) iff G<(x) �= /0.

Proof. The condition 0 /∈ convG(x) is equivalent to condition convG(x)∩{0}= /0.
By Lemma 2 convG(x) is a closed convex set and trivially {0} is a closed convex
cone. Also, {0}≤ =R

n =−{0}≤. By Lemma 6 convG(x)∩{0}= /0 is equivalent to

(convG(x))<∩R
n = (convG(x))< �= /0.

Furthermore, (convG(x))< = G<(x) according to Lemma 7. ��
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20. Miettinen, K., Mäkelä, M.M.: On cone characterizations of weak, proper and Pareto optimality

in multiobjective optimization. Math. Methods Oper. Res. 53, 233–245 (2001)
21. Migdalas, A., Pardalos, P.M., Värbrand, P. (eds.): From Local to Global Optimization. Non-

convex Optimization and Its Applications, vol. 53. Kluwer Academic, Dordrecht (2001)
22. Mishra, S.K.: On sufficiency and duality for generalized quasiconvex nonsmooth programs.

Optimization 38, 223–235 (1996)
23. Nobakhtian, S.: Infine functions and nonsmooth multiobjective optimization problems.

Comput. Math. Appl. 51, 1385–1394 (2006)
24. Nobakhtian, S.: Multiobjective problems with nonsmooth equality constraints. Numer. Funct.

Anal. Optim. 30, 337–351 (2009)
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A Game Theoretical Model for Experiment
Design Optimization

Lina Mallozzi, Egidio D’Amato, and Elia Daniele

1 Introduction

This work concerns the optimization of receiver location on ground, under uniform
cosmic source distribution, on a bounded settlement area and constrained by a lim-
ited number of receivers due to a budget limitation. Assuming the capture range
of each receiver (e.g. a radar) to be shaped as a circular area, this problem could
be considered to have many points in common with classic sphere packing prob-
lem [4, 10, 17] that has been applied in several fields and faced with algorithmic
optimization procedure [2, 9, 11, 15, 18, 19].

Here we present the experimental design problem as a Nash equilibrium problem
as stated in Game Theory: the choice of the variables in n experiments is made by n
players, each of them has to decide his location far as possible from the opponents
and also from the border of the region. It turns out that the game has a peculiar
structure, namely it is a potential game [12, 14] and the Nash equilibrium solutions
will be the minimum points of a function that is called the potential function or
potential in short. The numerical procedure to compute the maximum points of the
potential is based on a genetic algorithm [3, 5, 6, 8, 13, 16, 21].

In Fig. 1 some sketches for the classic sphere packing problem are shown. In this
case is exploited the greater difference between the typical location problem on a
bounded domain and the specific location problem that we deal with in this work.
In our case the nature of the domain’s boundaries is such to act as a cut-off line on
which the receiver lost its efficacy or any other measure of profit. In other words,

L. Mallozzi (�)
Department of Mathematics and Applications “R. Caccioppoli”, Università degli Studi
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Fig. 1 Sketches for classic sphere packing problem

as in the sphere packing problem the spheres are forced to stay within a limited
bounded volume avoiding to consider their elasticity to reduce their size and in our
location problem the receiver or sensor (for an experiment) would lose a portion of
its efficacy in collecting the signal (pressure, temperature, etc.) by allowing itself
to be pushed on the boundary because the information is limited within the same
boundary. This is the analogy that let us expose the location problem as explained
in Sect. 2.

In literature, there are many different alternatives concerning location problem
among which the ones for which:

• more than one facility has to be located (multifacility location);
• location on continuous regions or networks;
• case of absence of demand points (facility layout models);
• when facilities compete for costumers and their objective is to maximize the

market share they capture (competitive models).

The problem could be stated in different ways, and one of the better known his-
torical formalization are the Weber’s problem or minisum, that minimizes the sum
of weighted distances, and the minimax problem (von Neumann) that minimizes the
maximal distance between facilities and demand points (Fig. 2).

In this paper a game theoretical model concerning experimental design optimiza-
tion is illustrated, focusing, in Sect. 2 on the mathematical model, the facility loca-
tion game, with and without constraints, explaining the procedure to recognize a
potential problem inside a Nash equilibrium problem; in Sect. 3 numerical results
are shown, using a genetic algorithm procedure to minimize the potential function
just developed.
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where?

to be located facilities
existing facilities

Fig. 2 Location problem statement as a sketch on the left side; Weber’s problem or
minisum on the right side

2 The Model

Let Ω be a rectangular region of R2. We restrict the model to the unit square
Ω = [0,1]2 without leading the generalities (rescaling the variables our results hold).
The problem is to decide for two variables x and y the values of n available exper-
iments (n ∈ N). So we want to settle n points P1,P2, . . . ,Pn in the square in such a
way that they are far as possible from the rest and from the boundary of the square.
This implies to maximize the dispersion of the points. We assign each point to a vir-
tual player, whose decision variables are the coordinates and whose payoff function
translates the dispersion in terms of distances.

Problem 1. Experimental Design (ED)
The problem of deciding the values of two variables for n assigned experiments

is to choose P1, . . . ,Pn ∈ Ω maximizing the

dispersion(P1, . . . ,Pn),

where the dispersion function is defined in a suitable way [7].

There is a competition between the points in the square, because the dispersion
depends on the mutual position of all the points, also with respect to the boundary
of Ω , so we use a game theoretical model.

The overview of the experimental design problem as a Nash equilibrium problem
as stated in Game Theory could be given by Fig. 3 in which each player has to decide
his location as far as possible from the other players and also from the border of the
region.
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Player 1 controls (x1, y1)

Player 2 controls (x2, y2)

Player 3 controls (x3, y3)

Fig. 3 Location problem as a game

2.1 Preliminaries

Let us consider an n-player normal form game Γ (n ∈ N, where N is the set of
natural numbers), that consists of a tuple

Γ = 〈N;X1, . . . ,Xn; f1, . . . , fn〉
where N = {1,2, . . . ,n} is the finite player set, for each i ∈ N the set of player i’s
strategies is Xi (i.e. the set of player i’s admissible choices) and fi : X1×·· ·×Xn →R

is player i’s payoff function (R is the set of real numbers). We suppose here that
players are cost minimizing, so that player i has a cost fi(x1,x2, . . . ,xn) when player
1 chooses x1 ∈ X1, player 2 chooses x2 ∈ X2, . . . , player n chooses xn ∈ Xn. We define
X = X1 ×·· ·×Xn and for i ∈ N: X−i = Π j∈N\{i}Xj. Let x = (x1,x2, . . . ,xn) ∈ X and
i ∈ N. Sometimes we denote x = (xi,x−i), where x−i = (x1, . . . ,xi−1,xi+1, . . . ,xn).

Definition 1. A Nash equilibrium [1] for Γ is a strategy profile x̂ =
(x̂1, x̂2, . . . , x̂n) ∈ X such that for any i ∈ N and for any xi ∈ Xi we have that

fi(x̂)≤ fi(xi, x̂−i).

Such a solution is self-enforcing in the sense that once the players are playing
such a solution, it is in every player’s best interest to remain in his strategy. We
denote by NE(Γ ) the set of the Nash equilibrium strategy profiles.

Any x̂ = (x̂1, . . . , x̂n) ∈ NE(Γ ) is a vector such that for any i ∈ N, x̂i is solution to
the optimization problem

min
xi∈Xi

fi(xi, x̂−i).

Not always a game admits a Nash equilibrium solution. There are special situa-
tion in which this is true, for example in potential games.

Potential games have been introduced by Monderer and Shapley: the idea is that
a game is said potential if the information that is sufficient to determine Nash equi-
libria can be summarized in a single function on the strategy space, the potential
function [12, 14].
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Definition 2. A game Γ = 〈N;X1, . . . ,Xn; f1, . . . , fn〉 is an exact potential game
(or simply potential game) if there exists a function V : Πi∈NXi → R such that
for each player i ∈ N, each strategy profile x−i ∈ Π j∈N\{i}Xj of i’s opponents, and
each pair xi,yi ∈ Xi of strategies of player i:

fi(yi, x−i)− fi(xi, x−i) =V (yi, x−i)−V (xi, x−i).

The function V is called an exact potential (or, in short, a potential) of the game
Γ . If V is a potential function of Γ , the difference induced by a single deviation is
equal to that of the deviator’s payoff function.

Clearly, by definition, the set of all strategy profiles that minimize V (called po-
tential minimizers) is a subset of the Nash equilibrium set of the game Γ :

argmin x∈XV ( x)⊆ NE(Γ ).

This implies that for a potential game finding a Nash equilibrium means to solve
an optimization problem.

The following theorem characterizes potential games [20].

Theorem 1. Γ = 〈N;X1, . . . ,Xn; f1, . . . , fn〉 is a potential game with potential V iff

fi(x1, . . . ,xn) =V (x1, . . . ,xn)+di(x−i)

for some di : X−i → R for any i ∈ N.

2.2 The Facility Location Game

We define the following n-player normal form game Γ ED
n = 〈N;Ω , . . . ,Ω ; f1, . . . , fn〉

where each player in N = {1,2, . . . ,n}, for each i ∈ N, minimizes the cost fi : A →R

defined by

fi(P1, . . . ,Pn) = ∑
1≤ j≤n, j �=i

1
d(Pi,Pj)

+
1

√
2d(Pi,∂Ω)

being A =
{
(P1, . . . ,Pn) ∈ Ω n : Pi ∈ (]0,1[)2, Pi �= Pj ∀i, j = 1, . . . ,n, j �= i

}
and

d(x,y) is the Euclidean metric in R2.
In terms of coordinates, if Pi = (xi,yi), i ∈ N the distance of a point P = (x,y)

from the set ∂Ω , the boundary of Ω , is

d(P,∂Ω) = min
Q∈∂Ω

d(P,Q) = min{x,y,1− x,1− y}

and we have for (x1,y1, . . . ,xn,yn) ∈ A
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Fig. 4 Location problem with requirements of distance from both boundaries and
each other player

fi(x1,y1, . . . ,xn,yn) = ∑
1≤ j≤n, j �=i

1
√

(xi − x j)2 +(yi − y j)2

+
1

√
2min{xi,yi,1− xi,1− yi}

.

The first n− 1 terms in the definition of fi give the distance between the point
Pi and the rest of the points, the last term an increasing function of the distance
of Pi from the boundary of the square. In Fig. 4 a graphical interpretation of both
requirements is shown.

Definition 3. Any (x̂1, ŷ1, . . . , x̂n, ŷn)∈A Nash equilibrium solution of the game Γ ED
n

is an optimal solution of the problem (ED). For any i ∈ N, (x̂i, ŷi) is solution to the
optimization problem

min
(xi,yi)∈Ω

fi(x̂1, ŷ1, . . . , x̂i−1, ŷi−1,xi,yi, x̂i+1, ŷi+1, . . . , x̂n, ŷn)

with (x1,y1, . . . ,xn,yn) ∈ A.

The following theorem gives the existence of a solution to the problem (ED),
namely of a Nash equilibrium solution of the game Γ ED

n .

Theorem 2. Γ ED
n is a potential game and has at least a Nash equilibrium solution.

Proof. By using Theorem 1, the function V : A → R defined by

V (x1,y1, . . . ,xn,yn) = ∑
1≤i< j≤n

1
√

(xi − x j)2 +(yi − y j)2

+ ∑
1≤i≤n

1
√

2min{xi,yi,1− xi,1− yi}

where A =
{
(P1, . . . ,Pn) ∈ Ω n : Pi ∈ (]0,1[)2, Pi �= Pj ∀i, j = 1, . . . ,n, j �= i

}
is a po-

tential for the game Γ ED
n and by using the Tonelli–Weierstrass theorem (Appendix)
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d(P1, P3)
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d(P2, P3)
P1

d(P1,∂Ω)

d(P3, ∂Ω)

d(P2, ∂Ω)
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Fig. 5 Sketch for the game of location problem (ED)

admits at least a minimizer that is a Nash equilibrium solution of the game Γ ED
n in

the set A.

Any Nash equilibrium solution of the game Γ ED
n is an optimal solution of the

problem (ED), for which a sketch in Fig. 5 is illustrated.

2.3 The Constrained Facility Location Game

When there are logistic and economic limitation there is a constrained location case,
such as that in which radar are to be located along defined grid lines, such as those
of electricity feeding. We want to settle n points P1,P2, . . . ,Pn in the square in such
a way that they are far as possible from the rest and from the boundary of the square
with an additional task. Now we have a constraint in the possible choices: the points
P1,P2, . . . ,Pn can be located only along prescribed lines y = y1, . . . ,y = yk (k ∈N) of
the region Ω .

As before, given the set {y1, . . . ,yk} (yi ∈]0,1[, i = 1, . . . ,k) we define the follow-
ing n-player normal form game Γ ED

n,k = 〈N;Ω , . . . ,Ω ; f1, . . . , fn〉 where each player
in N = {1,2, . . . ,n}, for each i ∈ N, minimizes the cost fi : B → R defined by

fi(P1, . . . ,Pn) = ∑
1≤ j≤n, j �=i

1
d(Pi,Pj)

+
1

√
2d(Pi,∂Ω)

being B =
{
(P1, . . . ,Pn) ∈ A : ∀i ∈ {1, . . . ,n}∃ j ∈ {1, . . . ,k}s.t. yi = ỹ j

}
.

The following theorem gives the existence of a solution to the constrained prob-
lem (ED), namely of a Nash equilibrium solution of the game Γ ED

n,k .
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Theorem 3. Γ ED
n,k is a potential game and has at least a Nash equilibrium solution.

Proof. The proof is similar as in Theorem 2 by considering the potential function V
in the set B.

3 Results

The results summarized in this section are pure numerical, and they have been com-
puted by a genetic algorithm for several cases, increasing the number of sensor
devices to be located.

A genetic algorithm (GA) is an optimization technique based on the principles of
genetics and natural selection. This technique is based on a population of individuals
improved during generations by using several genetic operators, such as crossover
and mutation, that combine the good features of each individual (crossover) to ex-
plore the search domain and to evolve the population to a state that minimizes the
cost function. Each individual (or chromosome) represents a feasible solution in the
search space. It’s made by a string of bits, called chromosome, that may be divided
in several genes, one for each problem variable or property.

A finite set of chromosomes make up a population. It can be viewed as a sampling
of the problem domain that generation by generation maps zones with a higher
probability of presence of the optimum.
A typical genetic algorithm consists of several steps:

• Population initialization: the algorithm in the first step randomly generates a set
of solutions in the search space.

• Fitness computation: each individual is analysed to evaluate objective function
and constraints. This procedure permits to sort the population for the following
step.

• Selection: a probabilistic based selection of parents allows coupling of best indi-
viduals without wasting worst chromosomes, useful to move towards unexplored
zones of search space.

• Crossover: on selected parents, a binary crossover operator is applied to create
two new individuals.

• Mutation: to avoid premature stagnation of the algorithm a mutation operator is
used, randomly changing a bit of the just created chromosomes.

The characteristics of the genetic algorithm employed for the solution of the loca-
tion problem are summarized in Table 1. Each of the following results are intended
to represent only one of the several solutions that differs only for the permutation
of sensor locations. This reduces the number of evaluation of the location problem
solutions proportional to the factorial of the number of sensors to be located.
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Table 1 Genetic algorithm characteristics

Parameter Value or type

Chromosome Binary string
Crossover Multi-cat
Mutation probability 0.01 %
Population size 100
Mating-pool 50

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Fig. 6 Cases for n = 4,5
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Fig. 7 Cases for n = 6,7

In Figs. 6, 7, 8, 9, and 10 the results for unconstrained cases are shown.
In Figs. 11, 12, and 13 the comparison for unconstrained and constrained cases

is shown, changing the number of rows in which the sensor is constrained case by
case, depending on the results of the unconstrained cases.
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Fig. 10 Cases for n = 15,20
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Fig. 11 Cases for n = 4,5: blue circles unconstrained case, red squares constrained
case
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Fig. 12 Cases for n = 6,7: blue circles unconstrained case, red squares constrained
case
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Fig. 13 Cases for n= 8,10: blue circles unconstrained case, red squares constrained
case

4 Conclusions

In this paper a game theoretical model to the experimental design is presented. This
potential approach permits to avoid the computational difficulties due to the numer-
ical evaluation of the Nash equilibria, reducing the problem to the research of the
optimal point of a suitable objective function [12]. A numerical procedure based on
a genetic algorithm has been used to compute results for several test cases using
different number of sensors.

In results section, two models were considered: the constrained and the uncon-
strained one. The constrained model is a special case where the admissible region
is made by a set of parallel segments due to operative constraints (for example,
electricity lines).

An important improvement to this work could be using a domain with obstacles
situation closer to real life application, extending the constrained model to handle
convex obstacles. In a future paper this innovation will be investigated, also consid-
ering the generalization of the model to a 3D case.
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Appendix

Definition 4. X a metric space, F : X �→ [−∞,+∞]. F is coercive if ∀t ∈R ∃ K(t)⊂
X , K(t) compact s.t

{x ∈ X : F(x)≤ t} ⊆ K(t)

Theorem 4. Tonelli–Weierstrass Theorem. X a metric space, F : X �→ [−∞,+∞].
Supposing F lower semi-continuous and coercive. Then F has a minimum in X.

Proof. If F(x) =+∞ ∀x ∈ X nothing is to be proved cause every x ∈ X is a minimum
point.

Supposing that infx∈X F(x) = m <+∞. Let t > m and K(t) compact. Than:

inf
x∈X

F(x) = inf
x∈K(t)

F(x)

Now, let {xn}n∈N a minimizing succession. For n big enough we have F(xn) < t
thus xn ∈ K(t) compact. Thus, it exists a sub-succession {xnk}k∈N that converges to
a point x̄ ∈ K(t).

Standing the lower semi-continuity:

F(x̄)≤ lim
k→∞

infF(xnk) = lim
n→∞

F(xn) = m

but then F(x̄) = m and x̄ is a minimum point in K(t) and thus in X .
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A Supply Chain Network Game Theoretic
Framework for Time-Based Competition
with Transportation Costs and Product
Differentiation

Anna Nagurney and Min Yu

1 Introduction

Supply chains today span the globe and provide the infrastructure for the produc-
tion and delivery of goods and services, with more knowledgeable consumers de-
manding timely deliveries, despite, paradoxically, the great distances that may be
involved. Indeed, delivery times are becoming a strategy, as important as produc-
tivity, quality, and even innovation (see, e.g., [10, 19, 28, 38, 52]). As noted by
Ray and Jewkes [42], practitioners have realized that speed of product delivery is a
competitive advantage [4, 47].

It is now well recognized (cf. [5, 15, 22]) that, whether in manufacturing (espe-
cially in build-to-order and made-on-demand industries such as certain computers,
electronic equipment, specific cars, airplanes, and furniture) or in digitally based
production and delivery (DVDs, online shopping, online content distribution, etc.)
speed and consistency of delivery time are two essential components of customer
satisfaction, along with price (cf. [1, 20]). Stalk, Jr., in his seminal Harvard Busi-
ness Review 1988 article [46], “Time - The next source of competitive advantage,”
utilized the term time-based competition, to single out time as the major factor for
sustained competitive advantage. Today, time-based competition has emerged as
a paradigm for strategizing about and operationalizing supply chain networks in
which efficiency and timeliness matter (see [8, 9, 25, 28, 49]).
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Advances in production and operations management thought and practice,
including such revolutionary concepts as time-based competition, have, in turn, pro-
vided a rich platform for the accompanying research investigations. The extensive
literature review of Hum and Sim [22] of time-based competition emphasized both
its intellectual history as well as the associated mathematical modeling, thereby,
constructing a bridge between practice and scholarship on this important topic.
They, nevertheless, concluded that much of the time-based focus in modeling was
limited to the areas of transportation modeling, lead time and inventory modeling,
and set-up time reduction analysis. Moreover, they argued that the literature em-
phasized cost minimization but what was needed was the explicit incorporation
of time as a significant variable in modeling. The complexity of the production
and operations management landscape in the real world could not be adequately
captured through an objective function representing simply cost minimization.
Gunasekaran and Ngai [18] further emphasized this shortcoming and the relevance
of analyzing the trade-offs between operational costs and delivery time in supply
chain management.

Hence, in order to rigorously capture time-based competition within an analyti-
cal, computable supply chain framework, one needs to utilize game theory and the
appropriate strategic variables with the explicit recognition of time.

Li and Whang [24] developed an elegant game theory model for time-based com-
petition in which firms choose, as their strategic variables, both prices and produc-
tion rates and discussed several special cases. Their approach was a generalization
of the contributions of Lederer and Li [23], who, in turn, built on some of the prior
research in queuing and delays. However, since the focus in those papers was on
operations management, and not on supply chain management, Li and Whang [24]
did not consider the time component associated with the transportation of the prod-
ucts, which is a central issue in increasingly globalized supply chains (cf. [28]). In
addition, the underlying functions were assumed to have an explicit structure. More-
over, they assumed that the firms were price-takers. In various industries, as noted
above, in which made-to-order and build-to-order strategies are relevant, the under-
lying industrial organization is that of oligopolies and, imperfect, rather than perfect
competition (cf. [48, 50]). Shang and Liu [43], in turn, investigated the impacts of
promised delivery time and on-time delivery rates under oligopolistic competition.
Blackburn [3] discussed some of the limits of time-based competition quantitatively
through the introduction of the marginal value of time derived from a total cost ob-
jective function. However, he exclusively focused on inventory costs and did not
include transportation costs which are fundamental to global supply chains. More-
over, a single cost-minimizing decision-maker was assumed, whereas in order to
appropriately address time-based competition, a framework that captures the inter-
actions among decision-makers, that is, firms, in a supply chains, along with the
reality of product differentiation, is needed.

In this paper, hence, we develop a game theoretical framework for supply chain
network time-based competition, which has the following major, novel features:

1. firms are assumed to be spatially separated and can compete both on the produc-
tion side and on the demand side;
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2. firms compete in an oligopolistic manner and, hence, influence the prices;
3. the time consumption of both production and transportation/shipment supply

chain activities is made explicit;
4. the strategic variables of the firms are quantity variables and guaranteed delivery

time variables;
5. consumers at the demand markets for the substitutable, but differentiated, prod-

ucts respond to both the quantities of the products and to their guaranteed deliv-
ery times, as reflected in the prices of the products.

In addition, by capturing the total cost associated with delivery times of each
firm, along with their production costs and their transportation costs in their respec-
tive objective functions, the marginal cost of time can be quantified in this more
general competitive network framework.

The intellectual platform upon which our model is based has several founda-
tional supports. First, it builds upon the existing literature on oligopolistic compe-
tition and network equilibria (cf. [12, 27, 28]), coupled with the recent modeling
advances that incorporate brand/product differentiation and supply chain network
competition (see [26, 30, 32, 38]). However, unlike Nagurney and Yu [32], where
the goal was to minimize total cost and total time in the supply chain network for
a time-sensitive product, which, in that case, was fast fashion apparel, here we fo-
cus on the delivery times to the consumers at the demand market. In addition, in
contrast to work noted above, in this paper, the consumers reflect their preferences
for the different products through both the prices and the guaranteed delivery times,
where the guaranteed delivery time here includes the time required for production
and for transportation/shipment, with the understanding that different products will
be distributed in an appropriate manner (digital products, e.g., are distributed via the
web).

It is also important to recognize the literature on time-sensitive products from
food to the, already noted, fashion apparel, to even perishable products in healthcare,
as well as critical needs products in humanitarian operations; see Nagurney et al.
[38] for such a survey. Finally, we note that although the book by Nagurney [28]
contains a spectrum of dynamic supply chain network models the dynamics therein
are modeled using projected dynamical systems (cf. [34]) without delivery times
being explicit strategic variables.

To the best of our knowledge, this is the first paper to synthesize oligopolistic
competition, product differentiation, and time-based competition, with guaranteed
delivery times as strategic variables, in a computable supply chain network game
theoretic model under Nash [39, 40] equilibrium.

For the reader, we also highlight the paper by Geunes and Pardalos [16] and
the edited volume of theirs—Geunes and Pardalos [17], which provide excellent
literature overviews of supply chain optimization with the latter also focusing on
networks.

This paper is organized as follows. In Sect. 2 we develop the supply chain net-
work game theoretic model with differentiated products and time-based competition
by describing each firm’s individual profit-maximizing behavior and the underlying
cost functions and demand price functions, with an emphasis on the time element
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and the network structure. We then define the governing supply chain Nash equi-
librium and establish alternative variational inequality formulations. We emphasize
that variational inequalities for supply chain network equilibrium problems were
first utilized by Nagurney et al. [36] and initiated a rich literature. Recent applica-
tions have included also supply chain disruptions; see [31, 41, 51].

In Sect. 3, we focus on the variational inequality formulation that has elegant
features for computations for which we propose an algorithm that yields, at each
iteration, closed form expressions for the product shipments, the delivery times, and
the associated Lagrange multipliers with the constraints for the latter. In Sect. 4,
we illustrate the model through a series of numerical examples, which are solved
using the algorithm. In Sect. 5, we conclude the paper with a summary of results
and discussion.

2 The Supply Chain Network Game Theoretic Model
with Product Differentiation and Guaranteed Delivery Times

In this section, we develop a supply chain network model with product differenti-
ation in which the firms have as strategic variables their product shipments to the
demand markets and the guaranteed times of the deliveries of the products. The
firms compete under the Cournot-Nash equilibrium concept of non-cooperative be-
havior. The consumers, in turn, signal their preferences for the products through
the demand price functions associated with the demand markets, which are, in gen-
eral, functions of the demands for the products at all the demand markets as well as
the guaranteed delivery times of the products, from the manufacturing/production
stage to demand market delivery. We assume that there are m firms and n demand
markets that can be located in different physical locations. There is a distinct (but
substitutable) product produced by each of the m firms and is consumed at the n de-
mand markets. Please refer to Fig. 1 for the underlying structure of the supply chain
network problem under consideration here. The notation for the model is given in
Table 1. The vectors are assumed to be column vectors. The equilibrium solution is
denoted by “∗.”

The model is a strategic model rather than an operational-level model. Hence, we
do not consider possible sequencing of jobs for specific demand markets. Such an
extension may be considered in future research.

The following conservation of flow equations must hold:

si =
n

∑
j=1

Qi j, i = 1, . . . ,m, (1)

di j = Qi j, i = 1, . . . ,m; j = 1, . . . ,n, (2)

Qi j ≥ 0, i = 1, . . . ,m; j = 1, . . . ,n. (3)
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Firms

1 2 n

1 2 m

Production links

Shipment links

The products i = 1,...,m may be consumed at any demand market

Fig. 1 The network structure of the supply chain problem

Table 1 Notation for the game theoretic supply chain network model with product
differentiation and guaranteed delivery times
Notation Definition

Qi j The nonnegative shipment of firm i’s product to demand market j; i = 1, . . . ,m; j =
1, . . . ,n. We group the {Qi j} elements for firm i into the vector Qi ∈ Rn

+ and all the
firms’ product shipments into the vector Q ∈ Rmn

+ .
si The nonnegative output produced by firm i; i= 1, . . . ,m. We group the firm production

outputs into the vector s ∈ Rm
+.

di j The demand for the product produced by firm i at demand market j; i = 1, . . . ,m;
j = 1, . . . ,n. We group the demands into the vector d ∈ Rmn

+ .
Ti j The guaranteed delivery time of product i, which is produced by firm i, at demand

market j; i = 1, . . . ,m; j = 1, . . . ,n. We group the delivery times of firm i into the
vector Ti ∈ Rn

+ and then group all these vectors of all firms into the vector T ∈ Rmn
+ .

fi(s) The production cost of firm i; i = 1, . . . ,m.
gi(Ti) The total cost associated with the delivery time of firm i; i = 1, . . . ,m.

pi j(d,T ) The demand price of the product produced by firm i at demand market j; i = 1, . . . ,m;
j = 1, . . . ,n.

ĉi j(Q) The total transportation cost associated with shipping firm i’s product to demand mar-
ket j; i = 1, . . . ,m; j = 1, . . . ,n.

Consequently, the quantity of the product produced by each firm is equal to the
sum of the amounts shipped to all the demand markets; the quantity of a firm’s
product consumed at a demand market is equal to the amount shipped from the firm
to that demand market, and the product shipments must be nonnegative.

As noted in Sect. 1, the firms are also competing with time, that is, the guaranteed
delivery times are strategic variables. Since each product must be manufactured and
then delivered, as depicted in Fig. 1, we need to account for the time consumption
associated with these supply chain network activities. Hence, associated with each
firm and demand market pair, we also have the following constraint:
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tisi +hi + ti jQi j +hi j ≤ Ti j, i = 1, . . . ,m; j = 1, . . . ,n, (4a)

where ti, hi, ti j, and hi j are all positive parameters. The first two terms in (4a) reflect
the actual time consumption associated with producing product i and the second
two terms reflect the actual time consumption associated with delivering product i
to demand market j. Constraint (4a), thus, guarantees that the product of each firm
i will be produced and shipped to demand market j within the guaranteed delivery
time Ti j determined by firm i.

Note that, according to (4a), the supply chain network activities of produc-
tion/manufacturing and transportation are functions, respectively, of how much is
produced and of how much is transported. Indeed, it may take longer to pro-
duce a larger quantity of product and also (since the product may need to be
loaded/unloaded) to deliver a larger volume of product to a demand point. The fixed
terms hi and hi j denote the physical lower bounds of the time needed to produce and
to transport product i to demand market j, respectively. Even in the case of digital
products there will be a lower bound, albeit, small, in size. In light of (1), (4a) also
ensures that the guaranteed delivery time strategic variables will be nonnegative.
Furthermore, the total transportation cost functions ĉi j; i = 1, . . . ,m; j = 1, . . . ,n
since they, for the sake of generality, are functions of the product shipment pattern,
capture possible congestion or competition for shipment resources (see also [28] and
the references therein). Of course, a special case of (4a) and (4b) is when some (or
all) of the parameters ti; i = 1, . . . ,m and ti j; i = 1, . . . ,m; j = 1, . . . ,n are identically
equal to zero. The transportation costs that we consider, as a special case, capture
the possibility of fixed transportation costs between firm and demand market pairs.

In view of (1), we may rewrite (4a) in product shipment variables only, that is,

ti
n

∑
j=1

Qi j +hi + ti jQi j +hi j ≤ Ti j, i = 1, . . . ,m; j = 1, . . . ,n. (4b)

In our numerical examples, we illustrate different realizations of constraint (4b)
in which we show that sometimes there may be a slack associated with (4b) in the
equilibrium solution and sometimes not.

A firm’s production cost may depend not only on its production output but also
on that of the other firms. This is reasonable since firms which produce substitutable
products may compete for the resources needed to produce their products. Also, in
lieu of the time consumption [cf. (4a), (4b)] associated with producing a product the
production costs fi(s); i = 1, . . . ,m, also capture the cost associated with the timely
production of different levels of output. Due to the conservation of flow equation (1),
we can define the production cost functions f̂i; i = 1, . . . ,m, in quantity shipments
only, that is

f̂i = f̂i(Q)≡ fi(s), i = 1, . . . ,m. (5)

The production cost functions (5) are assumed to be convex and continuously
differentiable.

It is important to emphasize that faster guaranteed delivery may be more costly,
since it may require additional capacity and may be dependent on the operational
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efficiency (cf. [5, 7, 37, 42, 44, 52]). For example, shipping costs of Amazon.com
were doubled when the guaranteed delivery time was decreased from 1 week to 2
days [45]. This is captured in our functions gi; i = 1, . . . ,m, which are also assumed
to be convex and continuously differentiable.

In view of (2), we may define demand price functions, p̂i j, for all (i, j), in terms
of the product shipments, that is:

p̂i j = p̂i j(Q,T )≡ pi j(d,T ), i = 1, . . . ,m; j = 1, . . . ,n. (6)

We note that including both product quantities and guaranteed delivery time into
demand functions has a tradition in economics as well as in operations research and
marketing (cf. [5, 6, 21, 23, 42, 43, 45]) and the references therein). The demand
price functions (6) and the total transportation cost functions ĉi j; i = 1, . . . ,m and
j = 1, . . . ,n, are assumed to be continuous and continuously differentiable.

Representing both the production cost (5) and the demand price functions (6) as
functions of the product shipments, along with the time delivery constraints (4b)
and the total cost function associated with the guaranteed delivery times, yields an
elegant formulation of the supply chain network game with strategic variables being
the product shipments and the delivery times, as we shall establish in Theorem 1.

The strategic variables of firm i are its product shipments {Qi} where Qi =
(Qi1, . . . ,Qin) and its guaranteed delivery times {Ti}, note that Ti = (Ti1, . . . ,Tin).

The profit or utility Ui of firm i; i = 1, . . . ,m, is, hence, given by the expression

Ui =
n

∑
j=1

p̂i jQi j − f̂i −gi −
n

∑
j=1

ĉi j, (7)

which is the difference between its total revenue and its total costs.
In view of (1)–(7), one may write the profit as a function solely of the shipment

pattern and delivery times, that is,

U =U(Q,T ), (8)

where U is the m-dimensional vector with components: {U1, . . . ,Um}.
Let Ki denote the feasible set corresponding to firm i, where Ki ≡ {(Qi,Ti)|Qi ≥

0, and (4b) is satisfied for i} and K ≡ ∏m
i=1 Ki.

In the oligopolistic market mechanism, the m firms supply their products in a
non-cooperative fashion, each one trying to maximize its own profit. We seek to
determine an equilibrium product shipment and delivery time pattern (Q∗,T ∗), ac-
cording to the definition below (see also [11, 39, 40]).
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Definition 1. A Supply Chain Network Equilibrium with Product
Differentiation and Delivery Times
A product shipment and delivery time pattern (Q∗,T ∗) ∈ K is said to constitute a
network equilibrium if for each firm i; i = 1, . . . ,m,

Ui(Q
∗
i ,T

∗
i , Q̂

∗
i , T̂

∗
i )≥Ui(Qi,Ti, Q̂∗

i , T̂
∗

i ), ∀(Qi,Ti) ∈ Ki, (9)

where

Q̂∗
i ≡ (Q∗

1, . . . ,Q
∗
i−1,Q

∗
i+1, . . . ,Q

∗
m); and T̂ ∗

i ≡ (T ∗
1 , . . . ,T

∗
i−1,T

∗
i+1, . . . ,T

∗
m). (10)

According to (9), an equilibrium is established if no firm can unilaterally improve
its profits by selecting an alternative vector of product shipments and delivery times
of its product, given the decisions of the other firms.

2.1 Variational Inequality Formulations

We now derive alternative variational inequality formulations of the above supply
chain network equilibrium with product differentiation in the following theorem.

Theorem 1. Assume that for each firm i the profit function Ui(Q,T ) is concave with
respect to the variables {Qi1, . . . ,Qin}, and {Ti1, . . . ,Tin}, and is continuous and con-
tinuously differentiable. Then (Q∗,T ∗) ∈ K is a supply chain network equilibrium
according to Definition 1 if and only if it satisfies the variational inequality

−
m

∑
i=1

n

∑
j=1

∂Ui(Q∗,T ∗)
∂Qi j

× (Qi j −Q∗
i j)−

m

∑
i=1

n

∑
j=1

∂Ui(Q∗,T ∗)
∂Ti j

× (Ti j −T ∗
i j)≥ 0,

∀(Q,T ) ∈ K, (11)

or, equivalently, (Q∗,T ∗,γ∗) ∈ K1 is an equilibrium product shipment and guaran-
teed delivery time pattern if and only if it satisfies the variational inequality

m

∑
i=1

n

∑
j=1

[
∂ f̂i(Q∗)

∂Qi j
+

n

∑
l=1

∂ ĉil(Q∗)
∂Qi j

−
n

∑
l=1

∂ p̂il(Q∗,T ∗)
∂Qi j

Q∗
il − p̂i j(Q

∗,T ∗)+
n

∑
l=1

γ∗
il ti + γ∗

i jti j

]

× (Qi j −Q∗
i j)+

m

∑
i=1

n

∑
j=1

[
∂gi(T ∗

i )

∂Ti j
−

n

∑
l=1

∂ p̂il(Q∗,T ∗)
∂Ti j

Q∗
il − γ∗

i j

]

× (Ti j −T ∗
i j)

+
m

∑
i=1

n

∑
j=1

[

T ∗
i j − ti

n

∑
l=1

Q∗
il − ti jQ

∗
i j −hi −hi j

]

× [
γi j − γ∗

i j

] ≥ 0, ∀(Q,T,γ) ∈ K1, (12)

where K1 ≡{(Q,T,γ)|Q ≥ 0, T ≥ 0, γ ≥ 0} with γ being the mn-dimensional vector
with component (i, j) consisting of the element γi j corresponding to the Lagrange
multiplier associated with the (i, j)-th constraint (4b).
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Proof. Equation (11) follows directly from Gabay and Moulin [12, 14].
In order to obtain variational inequality (12), we note that, for a given firm i,

under the imposed assumptions, (11) holds if and only if (see, e.g., [2]) the following
holds:

n

∑
j=1

[
∂ f̂i(Q∗

i )

∂Qi j
+

n

∑
l=1

∂ ĉil(Q∗)
∂Qi j

−
n

∑
l=1

∂ p̂il(Q∗,T ∗)
∂Qi j

Q∗
il − p̂i j(Q

∗,T ∗)+
n

∑
l=1

γ∗
il ti + γ∗

i jti j

]

× (Qi j −Q∗
i j)+

n

∑
j=1

[
∂gi(T ∗

i )

∂Ti j
−

n

∑
l=1

∂ p̂il(Q∗,T ∗)
∂Ti j

Q∗
il − γ∗

i j

]

× (Ti j −T ∗
i j)

+
n

∑
j=1

[

T ∗
i j − ti

n

∑
l=1

Q∗
il − ti jQ

∗
i j −hi −hi j

]

× [
γi j − γ∗

i j

] ≥ 0, ∀(Qi,Ti,γi) ∈ K1
i , (13)

where K1
i ≡ {(Qi,Ti,γi)|(Qi,Ti,γi) ∈ R3n

+ }, with {γi}=(γi1, . . . ,γin).
But (13) holds for each firm i; i = 1, . . . ,m, and, hence, the summation of (13)

yields variational inequality (12). The conclusion follows. ��
We now put variational inequality (12) into standard form (cf. [27]): determine

X∗ ∈K⊂ RN , such that

〈F(X∗)T ,X −X∗〉 ≥ 0, ∀X ∈K, (14)

where F is a given continuous function from K to RN , and K is a closed and convex
set.

We define the 3mn-dimensional vector X ≡ (Q,T,γ) and the 3mn-dimensional
row vector F(X) = (F1(X),F2(X),F3(X)) with the (i, j)-th component, F1

i j , of
F1(X) given by

F1
i j(X)≡ ∂ f̂i(Q)

∂Qi j
+

n

∑
l=1

∂ ĉil(Q)

∂Qi j
−

n

∑
l=1

∂ p̂il(Q,T )
∂Qi j

×Qil − p̂i j(Q,T )+
n

∑
l=1

γilti + γi jti j,

(15)
the (i, j)-th component, F2

i j , of F2(X) given by

F2
i j(X)≡ ∂gi(Ti)

∂Ti j
−

n

∑
l=1

∂ p̂il(Q,T )
∂Ti j

×Qil − γi j, (16)

and the (i, j)-th component, F3
i j , of F3(X) given by

F3
i j(X) = Ti j − ti

n

∑
l=1

Qil − ti jQi j −hi −hi j, (17)

and with the feasible set K≡ K. Then, clearly, variational inequality (12) can be put
into standard form (14).

We now present two examples in order to illustrate some of the above concepts
and results.
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2.2 Illustrative Examples

Consider a supply chain network oligopoly problem consisting of two firms and one
demand market, as depicted in Fig. 2.

Demand Market 1

Firm 1 Firm 2

Fig. 2 The network structure for the illustrative examples

Example 1 We assume that these two firms are located in the same area. Both of
them adopt similar technologies for the production and delivery of their highly sub-
stitutable products. Therefore, the production and transportation cost functions of
Firms 1 and 2 are identical. Meanwhile, consumers at the demand market are indif-
ferent between the products of Firms 1 and 2. The production cost functions are:

f1(s) = 2s2
1 +3s1, f2(s) = 2s2

2 +3s2,

so that (cf. (5)):

f̂1(Q) = 2Q2
11 +3Q11, f̂2(Q) = 2Q2

21 +3Q21.

The total transportation cost functions are:

ĉ11(Q11) = Q2
11 +Q11, ĉ21(Q21) = Q2

21 +Q21,

the total cost functions associated with delivery times are:

g1(T1) = T 2
11 −30T11 +400, g2(T2) = T 2

21 −40T21 +450,

and the demand price functions are assumed to be:

p11(d,T ) =300−2d11 −0.5d21 −T11 +0.2T21,

p21(d,T ) =300−2d21 −0.5d11 −T21 + .2T11
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so that [cf. (6)]:

p̂11(Q,T ) =300−2Q11 −0.5Q21 −T11 +0.2T21,

p̂21(Q,T ) =300−2Q21 −0.5Q11 −T21 + .2T11.

The above nonlinear cost functions, although hypothetical, were constructed to
capture the potential resource competition and congestion in the production and
delivery activities. Moreover, the total cost associated with delivery times decreases
if the delivery time is increased in a certain range. However, the slower delivery may
also be costly since resources could be used elsewhere.

The parameters associated with the production time consumption are:

t1 = 0, h1 = 1, t2 = 0, h2 = 1,

and the parameters associated with the transportation time consumption are:

t11 = 0, h11 = 1, t21 = 0, h21 = 1,

which means that the actual production times and the actual transportation times of
these two firms are fixed.

Hence, for Firm 1, the following guaranteed delivery time constraint must be
satisfied:

1+1 ≤ T11,

and for Firm 2, the corresponding guaranteed delivery time constraint is:

1+1 ≤ T21.

The equilibrium product shipment and guaranteed delivery time pattern is:

Q∗
11 = 28.14, Q∗

21 = 27.61, T ∗
11 = 2.00, T ∗

21 = 6.19,

and the corresponding Lagrange multipliers are:

γ∗
11 = 2.14, γ∗

21 = 0.00.

Furthermore, the equilibrium prices associated with these two products are:

p11 = 229.15, p21 = 224.91,

and the profits of the two firms are:

U1 = 3,616.20, U2 = 3,571.90.
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In this example, Firm 2’s guaranteed delivery time, which is 6.19, is longer than
the actual delivery time, which is 2, mainly because the total cost associated with
delivery time would increase notably if Firm 2 were to reduce its guaranteed delivery
time.

Example 2 This has the same data as Example 1 except that now the actual produc-
tion times and the actual transportation times of Firms 1 and 2 depend on how much
is produced and how much is shipped, respectively, that is,

t1 = 0.2, t2 = 0.3, t11 = 0.1, t21 = 0.2.

The new equilibrium product shipment and guaranteed delivery time pattern are:

Q∗
11 = 27.06, Q∗

21 = 26.13, T ∗
11 = 10.12, T ∗

21 = 15.07,

and the corresponding Lagrange multipliers are:

γ∗
11 = 17.30, γ∗

21 = 16.26.

The equilibrium prices associated with these two products are:

p11 = 225.70, p21 = 221.17,

and the profits of the two firms are:

U1 = 3,603.89, U2 = 3,551.89.

This example shows that Firm 1 attracts more consumers with a notably shorter
guaranteed delivery time, although the price of its product is higher than that of Firm
2’s product. Due to its competitive advantage in delivery time performance, Firm 1
achieves a relatively higher profit.

Example 3 This has the same data as Example 2 except that now Firm 2 has re-
duced its production cost by improving its operational efficiency. The production
cost function of Firm 2 is now given by:

f2(s) = s2
2 +2s2,

so that [cf. (5)]:
f̂2(Q21) = Q2

21 +2Q21.

The equilibrium product shipment and guaranteed delivery time pattern is:

Q∗
11 = 26.86, Q∗

21 = 31.75, T ∗
11 = 10.06, T ∗

21 = 17.87,

and the corresponding Lagrange multipliers are:

γ∗
11 = 16.97, γ∗

21 = 27.49.
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The equilibrium prices associated with these two products are:

p11 = 223.93, p21 = 207.22,

and the profits of the two firms are:

U1 = 3,543.33, U2 = 4,413.00.

As a result of its lower production cost, Firm 2 is able to provide consumers with
its product at an appealing price. Hence, the demand for Firm 2’s product increases
remarkably, even with a longer guaranteed delivery time, while there is a slight
decrease in the demand for Firm 1’s product. Therefore, in this example, Firm 2’s
profit improves significantly.

3 The Algorithm

The feasible set underlying variational inequality (12) is the nonnegative orthant, a
feature that we will exploit for computational purposes. Specifically, we will apply
the Euler-type method, which is induced by the general iterative scheme of Dupuis
and Nagurney [13], where, at iteration τ of the Euler method (see also [34]) one
must solve the following problem:

Xτ+1 = PK(Xτ −aτ F(Xτ)), (18)

where PK is the projection on the feasible set K and F is the function that enters the
variational inequality problem (12).

As demonstrated in Dupuis and Nagurney [13] and in Nagurney and Zhang [34],
for convergence of the general iterative scheme, which induces this algorithmic
scheme, the sequence {aτ} must satisfy: ∑∞

τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ → ∞.
Specific conditions for convergence of this scheme as well as various applications
to the solutions of other supply chain and network oligopoly models can be found in
Nagurney and Zhang [34], Nagurney et al. [35], Nagurney [29], Nagurney and Yu
[33], and Nagurney et al. [37].

3.1 Explicit Formulae for the Euler Method Applied to the Supply
Chain Network Model

The elegance of this procedure for the computation of solutions to our model with
product differentiation and time deliveries can be seen in the following explicit for-
mulae. In particular, we have the following closed form expression for all the prod-
uct shipments i = 1, . . . ,m; j = 1, . . . ,n:
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Qτ+1
i j = max{0,Qτ

i j +aτ(−F1
i j(X

τ))}, (19)

and the following closed form expression for all the guaranteed delivery time values
i = 1, . . . ,m; j = 1, . . . ,n:

T τ+1
i j = max{0,T τ

i j +aτ(−F2
i j(X

τ))}, (20)

with the Lagrange multipliers being computed for all i = 1, . . . ,m; j = 1, . . . ,n ac-
cording to:

γτ+1
i j = max{0,γτ

i j +aτ(−F3
i j(X

τ))}; i = 1, . . . ,m; j = 1, . . . ,n. (21)

In the next section, we apply the Euler method to compute solutions to additional
numerical supply chain network problems.

4 Numerical Examples

We implemented the Euler method, as described in Sect. 3, using Matlab. The con-
vergence criterion was ε = 10−6; that is, the Euler method was considered to have
converged if, at a given iteration, the absolute value of the difference of each prod-
uct shipment, each guaranteed delivery time value, and each Lagrange multiplier
differed from its respective value at the preceding iteration by no more than ε . We
set the sequence aτ = .1(1, 1

2 ,
1
2 ,

1
3 ,

1
3 ,

1
3 , . . .).

In this section, we considered a supply chain network consisting of three firms
and two demand markets, which are geographically separated (as depicted in Fig. 3).
Consumers at Demand Market 2 are more sensitive with respect to guaranteed de-
livery times than consumers at Demand Market 1.

Demand Market 1 Demand Market 2

Firm 1 Firm 2 Firm3

Fig. 3 The network structure for the numerical examples
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Example 4 The cost functions, demand price functions, and parameters associated
with time consumption are as follows:

Firm 1:

f1(s) = s2
1 +0.5s1s2 +0.5s1s3, g1(T1) = T 2

11 +T 2
12 −30T11 −40T12 +650,

ĉ11(Q11) = Q2
11 +0.5Q11, ĉ12(Q12) = Q2

12 +Q12,

p11(d,T ) = 400−2d11 −d21 −0.8d31 −1.2T11 +0.3T21 +0.2T31,

p12(d,T ) = 400−1.5d12 −0.5d22 −0.8d32 −2T12 +0.2T22 +0.3T32,

t1 = 0.8, h1 = 1.5, t11 = 0.4, h11 = 1.5, t12 = 0.5, h12 = 1.5;

Firm 2:

f2(s) = 1.5s2
2 +0.8s1s2 +0.8s2s3, g2(T2) = T 2

21 +T 2
22 −30T21 −30T22 +480,

ĉ21(Q21) = Q2
21 +Q21, ĉ22(Q22) = Q2

22 +Q22,

p21(d,T ) = 400−2d21 −d11 −d31 −1.2T21 +0.2T11 +0.2T31,

p22(d,T ) = 400−1.5d22 −0.5d12 −0.5d32 −2T22 +0.3T12 +0.3T32,

t2 = 0.6, h2 = 1.5, t21 = 0.4, h21 = 1.3, t22 = 0.4, h22 = 1.3;

Firm 3:

f3(s) = 2s2
3 +0.8s1s3 +0.8s2s3, g3(T3) = 0.8T 2

31 +0.8T 2
32 −25T31 −20T32 +400,

ĉ31(Q31) = 1.5Q2
31 +Q31, ĉ32(Q32) = Q2

32 +1.5Q32,

p31(d,T ) = 400−2d31 −0.8d11 −d21 −1.2T31 +0.2T11 +0.3T21,

p32(d,T ) = 400−1.5d32 −0.8d12 −0.5d22 −2T32 +0.3T12 +0.2T22,

t3 = 0.3, h3 = 1, t31 = 0.2, h31 = 1, t32 = 0.1, h32 = 1.

We utilized (5) and (6) to construct the production cost functions and the demand
price functions, respectively, in shipment variables, for all examples in this section.

The equilibrium product shipment and guaranteed delivery time pattern, the
Lagrange multipliers, and the prices are reported in Tables 2 and 3.

Note that, in Example 4, Firm 1 has a slight advantage over its competitors in
Demand Market 1, despite the longer guaranteed delivery time, perhaps as a conse-
quence of the lower price. Firm 3 captures the majority of the market share at De-
mand Market 2, due to consumers’ preference for timely delivery. However, Firm
2 attains the lowest profit, as compared to its rivals, since Firm 2 is neither cost-
effective enough nor sufficiently time-efficient.
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Example 5 This has the identical data to that in Example 4, except that consumers at
Demand Market 2 are becoming even more time-sensitive. The new demand price
functions are now given by:

p12(d,T ) = 400−1.5d12 −0.5d22 −0.8d32 −3T12 +0.2T22 +0.3T32,

p22(d,T ) = 400−1.5d22 −0.5d12 −0.5d32 −3T22 +0.3T12 +0.3T32,

p32(d,T ) = 400−1.5d32 −0.8d12 −0.5d22 −3T32 +0.3T12 +0.2T22.

We also provided the solutions to Example 5 in Tables 2 and 3.

Table 2 The equilibrium product shipment and guaranteed delivery time patterns,
the Lagrange multipliers, and the prices for Examples 4 and 5

Example 4 Example 5
Firm Demand market Q∗ T ∗ γ∗ p Q∗ T ∗ γ∗ p

1
1 18.05 36.44 64.54 302.76 19.30 35.34 63.84 299.96
2 14.73 36.59 62.65 288.15 11.48 33.36 61.15 268.47

2
1 15.96 29.10 47.36 308.78 17.01 28.32 47.04 305.76
2 17.23 29.61 63.67 311.74 14.19 27.19 66.94 295.34

3
1 17.14 17.63 23.78 330.18 17.47 17.24 23.55 327.49
2 23.55 16.56 53.60 328.05 21.69 15.91 70.54 318.91

Table 3 The profits of Firms 1, 2, and 3 in Examples 4 and 5

Firm 1 Firm 2 Firm 3
Example 4 6,097.14 5,669.63 6,782.11
Example 5 5,697.97 5,3072.64 6,560.58

In Example 5, Firms 1 and 3 still dominate Demand Markets 1 and 2, respec-
tively. Consumers’ increasing time sensitivity at Demand Market 2 has forced all
these three firms to shorten their guaranteed delivery times. The decrease in Firm
3’s profit is negligible, while the profits of Firms 1 and 2 shrink notably. The re-
sults in Examples 4 and 5 suggest that delivery times, as a strategy, are particularly
influential in time-based competition.

5 Summary and Conclusions

In this paper, we developed a rigorous modeling and computational framework for
time-based competition in supply chain networks using game theory and variational
inequality theory.
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Specifically, the firms are assumed to compete in an oligopolistic manner using
as strategic variables not only their product shipments to the various demand mar-
kets, under brand differentiation, but also their guaranteed delivery times. Here the
guaranteed delivery times provide upper bounds on the sum of the production time
and the transportation time between the firm and demand market pairs. All firms are
assumed to be profit-maximizers and subject to production and transportation costs.
The consumers, in turn, reflect their preferences for the firms’ brands or products
through the demand price functions which are functions of not only the demands
for the firms’ products at the different demand markets but also their guaranteed
delivery times.

Numerical supply chain network examples were presented to illustrate the gen-
erality of the proposed model with a complete reporting of the input data and the
computed equilibrium product shipments and guaranteed delivery times, along with
the Lagrange multipliers associated with the delivery time constraints.

The modeling and analytical framework can be used as the foundation for the
investigation of supply chain networks in the case of build to order and made on
demand products. It can also be extended in several directions through the inclusion
of multiple options of transportation and multiple technologies for production. One
may also incorporate additional tiers of suppliers. Nevertheless, we have laid out
the foundations for time-based competition in supply chain networks with this study
that enables numerous explorations both theoretical and empirical with a focus on
particular industrial sectors.
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On the Discretization of Pseudomonotone
Variational Inequalities with an Application
to the Numerical Solution of the Nonmonotone
Delamination Problem

Nina Ovcharova and Joachim Gwinner

1 Introduction

While the existence of solutions of pseudomonotone variational inequalities under
appropriate coerciveness conditions is well known [7, 14], the discretization theory
is more challenging since it bridges the gap to the appropriate numerical analysis.
In other words, the more interesting question is how to discretize such problems in
order to find their solutions by using efficient numerical methods. In this paper we
present a novel approximation method for pseudomonotone variational inequalities
applicable to regularization of nonsmooth functionals and further finite element dis-
cretization. For this approximation procedure a convergence analysis is established.
We also turn our attention back to the concept of pseudomonotonicity due to Brézis
and show that this property is a weaker condition than the pseudomonotonicity of
the functional that is defined by means of set-valued operators with nonvoid convex
closed bounded values. However, by both conditions the existence of solution can
be guaranteed.

We continue with hemivariational inequalities in linear elasticity involving
nonmonotone contact of elastic bodies. Such problems arise in unilateral contact of
an elastic body with a rigid foundation or in bilateral contact between elastic bodies,
when friction cannot be neglected and is modelled by a nonmonotone friction law.
We point out also delamination problems for laminated composite structures under
loading where two bodies are in adhesive contact, i.e., they are glued on a surface by
an adhesive material. We show that such nonmonotone laws can be modelled with
pseudomonotone functionals for those our approximation method can be applied.
As an application we study a two-dimensional delamination problem. We illustrate
our theoretical results and present some numerical results. More detailed, we first
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regularize the nonmonotone law describing the behaviour of the binding interlayer
material in the normal direction on the contact boundary and then use a finite
element discretization of the regularized problem [19, 20]. Altogether, we apply our
approximation scheme with two parameters (ε ,h), where ε > 0 is a regularization
parameter and h is a mesh parameter of discretization.

Concerning the mathematical study of hemivariational inequalities and their dis-
cretization by finite elemente methods we refer the reader, respectively, to the mono-
graphs [8, 13, 18, 20, 21, 23] and [16]. For discretization and numerical realization
of contact problems with nonmonotone friction and delamination, see e.g. [4, 5].

2 An Approximation Scheme for Pseudomonotone
Variational Inequalities

Let (V,‖·‖V ) be a real reflexive Banach space and K ⊆V a closed, convex nonempty
set. Let ψ : K ×K →R be a given functional such that ψ(·,v) is upper semicontinu-
ous on each finite dimensional part of K. For a fixed linear form g ∈V ∗ we consider
the variational inequality (P): Find u ∈ K such that

ψ(u,v)≥ 〈g,v−u〉 ∀v ∈ K. (1)

We assume that the functional ψ is pseudomonotone in the sense that

(PM) for any sequence {un} in K,

un ⇀ u and liminf
n→∞

ψ(un,u)≥ 0

implies that for any v ∈ K

ψ(u,v)≥ limsup
n→∞

ψ(un,v)

holds.

A simple example of pseudomonotone function is ψ(u,v) = f (v)− f (u), where f
is a weakly lower semicontinuous function.

Further, we assume also asymptotic coercivity in the sense that there exist v0 ∈ K
such that

lim
‖u‖V →∞, u∈K

−ψ(u,v0)

‖u− v0‖V
= ∞.

Then, the existence of a solution to (1) can be guaranteed by the existence theory
in [14].

Remark 1. The definition (PM) of pseudomonotonicity is motivated by a topolog-
ically pseudomonotone operators T : V → V ∗ in the sense of Brézis [7]. Indeed,
Ψ : V ×V → R defined by
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Ψ(u,v) = 〈Tu,v−u〉

is pseudomonotone if and only if T is pseudomonotone operator.

Remark 2. Let now T : V ⇒ V ∗ be a set-valued mapping with nonempty convex
closed bounded values. Then T is said to be Brézis-pseudomonotone if the following
conditions hold:

(a) T is upper semicontinuous from each finite dimensional subspace of V to the
weak topology on V ∗;

(b) for each sequence {un} in V and u∗
n ∈ T (un) such that un ⇀ u and

limsup 〈u∗
n,un −u〉 ≤ 0

it follows that for any v ∈V there exists u∗(v) ∈ T (u) such that

liminf〈u∗
n,un − v〉 ≥ 〈u∗(v),u− v〉.

As we see below, the Brézis-pseudomonotonicity of T is a weaker condition than
the pseudomonotonicity of the functional Ψ : V ×V → R that is defined by

Ψ(u,v) := max{〈w,v−u〉 : w ∈ T (u)}. (2)

Indeed, let {un} in V be such that un ⇀ u and liminf Ψ(un,u) ≥ 0. Since V is a
reflexive Banach space and T (un) is a nonempty, convex, closed and bounded subset
of V ∗ it follows that T (un) is weakly compact and therefore there exists u∗

n ∈ T (un)
such that

max
w∈T (un)

〈w,u−un〉= 〈u∗
n,u−un〉.

Hence, for any un ∈V there exists u∗
n ∈ T (un) such that

liminf Ψ(un,u) = liminf{ max
w∈T (un)

〈w,u−un〉}= liminf〈u∗
n,u−un〉 ≥ 0.

Since T is pseudomonotone then for each v ∈V there exists u∗(v) ∈ T (u) such that

liminf〈u∗
n,un − v〉 ≥ 〈u∗(v),u− v〉,

which is equivalent to

limsup〈u∗
n,v−un〉 ≤ 〈u∗(v),v−u〉. (3)

To establish the pseudomonotonicity of Ψ we have to verify

Ψ(u,v)≥ limsup
n→∞

Ψ(un,v) ∀v ∈V.

More detailed, we have to check if there exists u∗ ∈ T (u) such that there holds

〈u∗,v−u〉 ≥ limsup〈wn,v−un〉 ∀v ∈V, ∀wn ∈ T (un).
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But this inequality cannot be guaranteed for all wn ∈ T (un) as inequality (3) shows.
Nevertheless, by both conditions one can guarantee the existence of solution, see
[14].

Now we investigate the approximation of (1) by a family of finite-dimensional
variational inequalities. Let T be a directed set, {Vt} a family of finite-dimensional
subspaces of V and {Kt} a family of closed convex nonempty subsets of Vt such
that Kt ⊂ K. Without the loss of generality we can always assume that 0 ∈ K. Since
0 ∈ K, we assume also that 0 ∈ Kt for all t ∈ T . We require the following hypotheses:

(H0) for any v ∈ K there exists a net {vt} such that vt ∈ Kt and vt → v in V ;
(H1) ψt is pseudomonotone;
(H2) for any nets {ut} and {vt} from Kt such that ut ⇀ u and vt → v in V it follows

that

limsup
t∈T

ψt(ut ,vt)≤ ψ(u,v);

(H3) the family {−ψt(·,0)} is uniformly bounded from below in the sense that
there exist constants c > 0, d, d0 ∈ R and α > 1 (independent of t) such that

−ψt(ut ,0)≥ c‖ut‖α
V −d‖ut‖V +d0 ∀ut ∈ Kt , ∀t.

Now, the discrete approximate problem (Pt), t ∈ T , of the problem (P) reads:
Find ut ∈ Kt such that

ψt(ut ,vt)≥ 〈g,vt −ut〉 ∀vt ∈ Kt . (4)

Further, we study the behaviour of ut and present the following basic convergence
result.

Theorem 1 (General Approximation Result). Under conditions (H0)–(H3), the
family {ut} of solutions to the problem (Pt) is uniformly bounded in V . Moreover,
there exists a subnet of {ut} that converges weakly in V to a solution of the prob-
lem (P). Furthermore, any weak accumulation point of {ut} is a solution to (P).

Proof. Setting vt = 0 in (4) and using (H2) we obtain

c‖ut‖α
V −d‖ut‖V +d0 ≤ −ψt(ut ,0)≤ ‖g‖V ∗‖ut‖,

which proves the norm boundness of {ut}. So, we can extract a subnet of {ut}
denoted by {ut ′}t ′∈T ′ such that ut ′ converges weakly to u in V . By Kt ⊂ K and the
closedness of K, u ∈ K.

Now, we take an arbitrary v ∈ K. By (H0), there exist a net {vt} such that vt ∈ Kt

and vt → v in V . Using (H2) and definition of (4), we get for any v ∈ K that

ψ(u,v)≥ limsup
t ′∈T ′

ψt ′(ut ′ ,vt ′)≥ liminf
t ′∈T ′ ψt ′(ut ′ ,vt ′)≥ lim

t ′∈T ′〈g,vt ′ −ut ′ 〉 ≥ 〈g,v−u〉

and consequently u is a solution to (P). At the same time we have proved that any
weak accumulation point of {ut} is a solution to the problem (P). This should be



Discretization of Pseudomonotone Variational Inequalities 397

understood in the sense that every weak limit of any subnet of {ut} is a solution to
the problem (P). ��
Remark 3. Without coercivity we get a stability result using Kuratowski set conver-
gence [3] in the form that

limsup
t∈T

solution(Pt)⊂ solution(P).

3 A Hemivariational Inequality in Linear Elasticity
as a Pseudomonotone Variational Inequality

Let V be the classical Sobolev space H1(Ω ;Rm), where Ω ⊂ R
2 is a domain with

Lipschitz boundary ∂Ω , and let K ⊆ V be a nonempty closed, convex set specified
later. Further, let the boundary ∂Ω = Γ̄D ∪ Γ̄c ∪ Γ̄F be composed of three mutually
disjoint parts: a Dirichlet boundary ΓD, a contact boundary Γc and a part ΓF , where
given external forces are applied. We also assume that the measure of ΓD and Γc is
strictly positive.

With γ we denote the trace operator from V into L2(Γc;Rm). As known the
trace operator is a linear continuous mapping. Therefore, there exists a constant
c0 depending on Ω ,ΓD and Γc such that

‖γv‖L2(Γc;Rm) ≤ c0‖v‖V ∀v ∈V. (5)

Moreover, the trace V ↪→ L2(Ω ;Rm) is compact [1, 2], and γ is compact too.
We adopt the standard notations from linear elasticity [17] and introduce the

linear elastic operator A : V →V ∗ by

〈Au,v〉=
∫

Ω
ε(u) : σ(v)dx, (6)

where ε(u)= 1
2 (∇u+(∇u)T ) is the linearized strain tensor and σ(v)=C : ε(v) is the

stress tensor. Here, C is the elasticity tensor with symmetric positive L∞ coefficients.
Hence, the linear operator A is continuous, symmetric and due to the first Korn’s
inequality coercive.

The linear form g : V → R is defined by

〈g,v〉=
∫

Ω
f0vdx+

∫

ΓF

f1vds

where f0 ∈ L2(Ω ;Rm) are the body forces and f1 ∈ L2(Γ ;Rm) are the prescribed
surface tractions on ΓF .

In what follows we consider a function f : Γc×R
m →R such that f (·,ξ ) : Γc →R

is measurable on Γc for all ξ ∈ R
m and f (s, ·) : Rm → R is locally Lipschitz on R

m

for almost all s ∈ Γc.
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The hemivariational inequality under consideration reads as follows:

Problem (P): Find u ∈ K such that

〈Au−g,v−u〉+
∫

Γc

f 0(s,γu(s);γv(s)− γu(s))ds ≥ 0 ∀v ∈ K. (7)

where f 0(s, · ; ·) is the generalized Clarke directional derivative [11] of f (s, ·).

In the study of Problem (P) we need the following growth condition on ∂ f (s, ·):
(Hf ) there exist positive constants c and d such that for a.e. s ∈ Γc, all ξ ∈ R

m and
for all η ∈ ∂ f (s,ξ ) it holds

(i) |η | ≤ c(1+ |ξ |);

(ii) ηT ξ ≥ −d|ξ |.
It follows from (i) and (ii) that for a.e. s ∈ Γc

∣
∣ f 0(s,ξ ;ς)

∣
∣ =

∣
∣
∣
∣ max
η∈∂ f (s,ξ )

ηT ς
∣
∣
∣
∣ ≤ max

η∈∂ f (s,ξ )
|η | |ς | ≤ c(1+ |ξ |)|ς | ∀ξ ,ς ∈R

m (8)

and
f 0(s,ξ ;−ξ ) = max

η∈∂ f (s,ξ )
ηT (−ξ )≤ d|ξ | ∀ξ ∈ R

m. (9)

By virtue of (8) the integral in (7) is well defined.
Next, we define the functional ϕ : V ×V → R by

ϕ(u,v) =
∫

Γc

f 0(s,γu(s);γv(s)− γu(s))ds ∀u,v ∈V. (10)

The main properties of ϕ are given in the following lemma.

Lemma 1. The functional ϕ is pseudomonotone and satisfies

ϕ(u,0)≤C‖u‖V ∀u ∈V (11)

for some positive constant C.

Proof. Let {un} be a sequence in V such that

un ⇀ u in V as n → ∞.

Since γ is compact, it follows that

γun → γu in L2(Γc;Rm) as n → ∞. (12)

Now, we fix v ∈V and show that

limsup
n→∞

ϕ(un,v)≤ ϕ(u,v). (13)
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We first observe that by (12) there exists a subsequence of {γun}, which we denote
again by {γun}, such that

γun(s)→ γu(s) for a.e. s ∈ Γc (14)

and

|γun(s)| ≤ κ0(s) for some function κ0 ∈ L2(Γc;R+). (15)

Using (8) and (15), it follows that

f 0(s,γun(s);γv(s)− γun(s)) ≤ c(1+ |γun(s)|)|γv(s)− γun(s)|
≤ c(1+κ0(s))

(|γv(s)|+κ0(s)
) ∈ L1(Γc).

From (14) and the upper semicontinuity of f 0(s; ·, ·), we conclude by applying the
Fatou lemma that

limsup
n→∞

ϕ(un,v) = limsup
n→∞

∫

Γc

f 0(s,γun(s);γv(s)− γun(s))ds

≤
∫

Γc

limsup
n→∞

f 0(s,γun(s);γv(s)− γun(s))ds

≤
∫

Γc

f 0(s,γu(s);γv(s)− γu(s))ds = ϕ(u,v) (16)

and thus, (13) is shown. Hence, the functional ϕ is pseudomonotone.
Furthermore, by (9) for any u ∈V we can estimate

ϕ(u,0) =
∫

Γc

f 0(s,γu(s);−γu(s))ds ≤ d
∫

Γc

|γu(s)|ds

≤ d((meas(Γc))
1/2‖γu‖L2(Γc;Rm)

(5)
≤ d((meas(Γc))

1/2c0‖u‖V ,

which implies (11). The proof of the lemma is thus complete. ��
Remark 4. Arguments similar to those used to derive (13) show that ϕ is weakly
upper semicontinuous with respect to the both arguments.

Define now
ψ(u,v) = 〈Au,v−u〉+ϕ(u,v).

Since the linear continuous operator A : V → V ∗ gives rise to a pseudomono-
tone function 〈Au,v − u〉, the functional ψ is pseudomonotone as a sum of two
pseudomonotone functions, see [7, 15], and the existence of a solution u to problem
(P) is due to the existence theorem in [14]. Moreover, taking into account Remark 4,
we conclude that ψ satisfies the hypothesis (H2). Finally, it follows from Lemma 1
and the coercivity of the operator A that (H3) with α = 2 holds too.

In what follows, in view of our applications, we consider the maximum function

f : Γc ×R
m → R, f (s,ξ ) = max{g1(s,ξ ),g2(s,ξ ), . . . ,gp(s,ξ )},
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where gi(s, ·) : Rm →R are continuously differentiable. We introduce the following
growth conditions on the gradient ∇ξ gi(s, ·) :
(Hgi ) there exist positive constants ci,di such that for a.e. s ∈ Γc and all ξ ∈ R

m

it holds

(i) |∇ξ gi(s,ξ )| ≤ ci(1+ |ξ |);

(ii) ∇ξ gi(s,ξ )T ξ ≥ −di|ξ |.
Note that (Hg)(ii) holds for any continuously differentiable function g satisfying

g′(x) ≤ d0 for x < 0

g′(x) ≥ −d0 for x ≥ 0
, for some d0 = const ≥ 0.

Let now g :R→R be a continuously differentiable function with ultimately increas-
ing derivative g′; that is

sup
x∈(−∞,−ξ )

g′(x)≤ c0 ≤ inf
x∈(ξ ,+∞)

g′(x) for some ξ ≥ 0 and c0 ∈ R.

Such a function fulfills the directional growth condition (Hg)(ii) as well. In this case,
the constant d0 is defined by

d0 = |c0|+ sup
x∈[−ξ ,ξ ]

|g′(x)|.

Moreover, the condition (Hgi) implies that the maximum function f belongs to the
class of functions for which (Hf ) is satisfied.

4 A Delamination 2D Benchmark Problem

In this section to illustrate our theoretical results we consider a delamination
problem for a laminated composite structure and present some numerical results.
As a model example we consider a symmetric two-dimensional laminated structure
depicted in Fig. 1 with the modulus of elasticity E = 210 GPa and Poisson’s ratio
ν = 0.3 (steel). Because of the symmetry of the structure we consider only the upper
half (100 mm ×10 mm ). The body is fixed on Γu, i.e.

ui = 0 on Γu, i = 1,2.

the part ΓF2 is load-free. On ΓF1 the boundary forces F is prescribed

F = (0,P) on ΓF1 .
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Fig. 1 A 2D benchmark with force distribution and boundary decomposition

The linear form 〈g, ·〉 is defined by

〈g,v〉= P
∫

ΓF1

v2 ds.

Further,
u2 ≥ 0 a.e. on Γc

and
−SN(s) ∈ ∂ j(s,uN(s)) for a.a. s ∈ Γc.

Note that SN denotes the normal component of the boundary stress vector. A typical
nonmonotone law ∂ j(s, ·) describing delamination is shown in Fig. 2. This law is
derived from a nonconvex and a nonsmooth superpotential j expressed in terms of a
minimum function. In particular, j(s, ·) is a minimum of four convex quadratic and
one linear function.

We assume also that no tangential traction is given, i.e. ST (s) = 0. The weak for-
mulation of the delamination problem is given now by the following hemivariational
inequality: Find u ∈ K such that

〈Au,v−u〉+
∫

Γc

j0(s,uN(s);vN(s)−uN(s))ds ≥ 〈g,v−u〉 (17)

for all v ∈ K, where A : V →V ∗ is the linear elastic operator defined by (6),

V = {v ∈ H1(Ω ;R2) : v = 0 on Γu},
and

K = {v ∈V : v2 ≥ 0 on Γc}.

We solve (17) numerically by first using a regularization of the nonsmooth func-
tional and then by applying a finite element scheme for the regularized problem.
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uN

Fig. 2 A nonmonotone delamination law

This approach allows us to replace (17) by a smooth optimization problem that can
be solved by using global minimization algorithms like trust region methods.

The regularized problem of (17) is given now by: find uε ∈ K such that

〈Auε ,v−uε〉+ 〈−DJε(uε),v−uε〉 ≥ 〈g,v−uε〉 ∀v ∈V, (18)

where DJε : V →V ∗ is the Gâteaux derivative of

Jε(v) =
∫

Γc

S(s,vN(s),ε)ds

defined by

〈DJε(u),v〉=
∫

Γc

S′
ξ (s,uN(s),ε)vN(s)ds.

Here S : Γc×R×R++ →R is a smoothing approximation of the maximum function
− j based on the Bertsekas representation formula for the maximum function using
the plus function [6] and the smoothing approximation P : R++×R→R of the plus
function due to Zang [24] defined by

P(ε , t) =

⎧
⎪⎨

⎪⎩

0 if t <− ε
2

1
2ε (t +

ε
2 )

2 if − ε
2 ≤ t ≤ ε

2

t if t > ε
2 .

For more details concerning this regularization technique, we refer the reader to
[9, 19, 20].

Next, we briefly describe the discretization of (18). Let {Th} be a regular triangu-
lation of Ω . By Vh we denote the space of all continuous, piecewise linear functions
on Th vanishing on Γu. Thus Vh ⊂V . Further, K is discretized by

Kh = {vh ∈Vh : vh2(Pi)≥ 0 ∀Pi ∈ Γ c\Γ u}.
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With piecewise linear approximation, Kh ⊂ K. Moreover, according to [10], we have
K ⊂ liminf

h
Kh.

The approximation of (17) now reads as follows:
Find uh ∈ Kh such that for all vh ∈ Kh

〈Auh,vh −uh〉+ 〈−DJε ,h(uh),vh −uh〉 ≥ P
∫

ΓF1

(vh2 −uh2)dx1, (19)

where we use the trapezoidal quadrature rule

〈DJε ,h(uh),vh〉 = 1
2 ∑

PiPi+1 ∈ Γ c\Γ u

|PiPi+1|
[

∂S
∂ξ

(Pi,uh2(Pi),ε)vh2(Pi)

+
∂S
∂ξ

(Pi+1,uh2(Pi+1),ε)vh2(Pi+1)

]
.

Altogether, we have t = (ε ,h) in our approximation scheme of Sect. 2. Next, we
use the condensation technique based on the Schur complement to reduce the total
number of unknowns in (19). As a result we receive a reduced finite-dimensional
variational inequality problem formulated only in terms of the displacements at
the free nodes on the boundary Γc. The latter problem is rewritten into a mixed
complementarity problem which by means of the Fischer–Burmeister Function [12]
φ(a,b) =

√
a2 +b2 − (a+b) is further reformulated as a system of nonlinear equa-

tions. Finally, by using an appropriate merit function we receive an equivalent
smooth, unconstrained minimization problem which is numerically solved by ap-
plying an algorithm based on trust region methods. For more details we refer the
reader to [19].

The numerical results are shown in Figs. 3 and 4. They illustrate the behaviour
of the normal displacements and the distribution of the normal stresses along the
contact boundary Γc for the grid 40×4 and for different values of P. From Fig. 4 it
is easy to see that for a load 0.4 N/mm2 no delamination occurs. A partial one takes
place for a load 0.6 N/mm2. In this case some of computed normal displacements
are larger than 0.2 mm and the first jump occurs (see Fig. 4). Finally, with a load
1.0 N/mm2 we have a complete damage of the adhesive material. In this case some
of the computed normal displacements are larger than 0.4 mm and the computed
normal stresses jump down to zero as described by the nonmonotone delamination
law presented in Fig. 2.
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Fig. 3 The vertical displacements on Γc for the grid 40×4

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Contact in cm

load 0.2 N/mm2

load 0.6 N/mm2

load 1.0 N/mm2

Fig. 4 The normal stresses on Γc for the grid 40×4
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Designing Groundwater Supply Systems Using
the Mesh Adaptive Basin Hopping Algorithm

Elisa Pappalardo and Giovanni Stracquadanio

1 Introduction

Groundwater supply systems are an important field of energy engineering,
characterized by several challenging computational problems, ranging from mod-
eling water flows to finding optimal pump location. Particularly interesting is the
task of minimizing the cost of providing a specific quantity of water, subject to
constraints on the net extraction rate, pumping rates, and hydraulic head location.
The problem is extremely complex from a mathematical point of view, since it takes
into account parameters that are stochastic in nature, leading to objective functions
that are often discontinuous, nonlinear, non-convex, and with a large number of
local minima. Classical gradient-based methods produce low quality solutions in
this scenario and tend to be computationally expensive.

It has been showed that derivative-free optimization (DFO) algorithms represent
an effective approach to solve water supply problems [11]. These methods rely on
a minimization scheme that takes into account only the objective function value,
making them robust to noise, discontinuity and nonlinearity of the objective func-
tion: this is a classical scenario when the objective function value is the output of a
simulator [7].

Recently, the Mesh Adaptive Basin Hopping (MABH) method has been applied
to solve industrial problems [23]; the algorithm combines a heuristic search with a
local optimization step, which relies on the Mesh Adaptive Direct Search (MADS,
[2]) algorithm. In this work, we extend the MABH algorithm with a new heuristic for
the groundwater supply problem, which is able to explore the landscape of mixed-
integer problems.

We test our algorithm on four different problems, which take into account
different number of extraction wells, and both confined and unconfined aquifers.
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The performance of MABH is compared with the state-of-the-art deterministic
and stochastic methods, such as Implicit Filtering for Constrained Optimization
(IFFCO) [10], Generalized Pattern Search (GPS) [18], MADS [3], Differential Evo-
lution (DE) [20, 21], classical Genetic (GA) Algorithm [10], and the Covariance
Adaptation Matrix Evolution Strategy (CMA-ES) [13]. The experimental results
show that MABH outperforms these methods in terms of quality of solutions and
number of function evaluations; moreover, we show that the use of the monotonic
basin hopping scheme improves the performance of GPS and MADS algorithms.

2 The Groundwater Supply Model

Aquifers are underground layers of water-bearing regions from which groundwater
can be pumped out through wells; confined aquifers are bounded on the top and on
the bottom by impermeable materials, whereas there are no confining layers between
an unconfined aquifer and the surface.

In this work, we focus on a well-field design problem, where the objective is the
minimization of the cost of providing a specific quantity of water, subject to a set
of constraints, such as the net extraction and pumping rates, and the hydraulic head
location. The hydrological settings considered are based on the model proposed by
Fowler et al. [11], characterized by homogeneous confined and unconfined aquifers,
in which wells can inject or extract water. System costs include the installation and
maintenance of wells, along with the extraction costs. The latter takes into account
the costs for lifting the water from the aquifer to the discharge point, and those for
supplying sufficient discharge pressure to achieve the desired flow [11].

In this design problem, the decision variables are the number of the wells n, their
{(xi,yi)}n

i=1 locations, and the pumping rates {Qi}n
i=1 (m3/s) [11].

The physical domain is defined as Ω = [0,1000]× [0,1000]× [0,30]m, with
ground elevation zgs = 60 m for the confined aquifer, and zgs = 30 m for the un-
confined aquifer [11]; however, for consistency with Fowler et al. [11], wells are
required to be at least 200 m from the Dirichlet boundaries defined by 0 ≤ xi,yi ≤
800 m.

The objective function consists of two components: the capital cost of installing
a well, defined as:

f c =
n

∑
i=1

c0db0
i + ∑

i,Qi<0

c1|Qm
i |b1(zgs −hmin)b2 (1)

which accounts for the drilling and installation costs; c and b represent the coeffi-
cient costs (Table 1).

The operational cost for a well is defined as

f 0 =
∫ t f

0

[

∑
i,Qi<0

c2Qi(hi − zgs)+ ∑
i,Qi>0

c3Qi

]

dt (2)
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Table 1 Parameters of the objective function

Parameter Value Units

Cost coefficients

c0 5.5×103 $/mb0

c1 5.75×103 $/[(m3/s)b1 ·mb2]
c2 2.90×10−4 $/m4

c3 1.45×10−4 $/m3

b0 0.3 –
b1 0.45 –
b2 0.64 –

Well depth
zgs 60 confined m
zgs 30 unconfined m
di zgs m

Pumping rate Qm
i 1.5Qi m3/s

where the term for the extraction wells includes a lifting cost to raise the water to
the ground; t f is the simulation time and is set to 5 years. A negative pumping rate
Qi means that a well is extracting groundwater, while a positive pumping rate Qi

indicates water injection; di = zgs is the depth of well i, Qm
i is the designed pumping

rate, which represents the maximum rate at which a given well can pump water;
hmin is the minimum allowable head, and hi is the hydraulic head in well i.

The objective function for the problem takes into account both the installation
and operational costs and is defined as the minimization of the function:

F = f c + f 0 (3)

To evaluate the objective function, the computation of the hydraulic heads in wells
hi, for a set {Qi}n

i=1 of pumping rates at the given locations {(xi,yi)}n
i=1, is required.

Obtaining the head values requires a call to a groundwater flow simulator, MOD-
FLOW-96 [14] in our simulations. MODFLOW takes in input the locations and
pumping rates of the wells and returns the hi values used to evaluate the objective
function and the constraints.

To ensure that wells are located appropriately in the physical domain and operate
at reasonable levels, two constraints are enforced on the hydraulic head locations
and pumping rates. Each hydraulic head must verify the following constraints:

hmin ≤ hi ≤ hmax, i = 1, . . . ,n (4)

where the upper bound allows to maintain the hydraulic head below the surface,
while the lower bound limits its drawdown. Pumping rates are constrained as
follows:

Qemax ≤ Qi ≤ Qimax , i = 1, . . . ,n (5)
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where Qemax and Qimax represent the maximum extraction rate and the maximum
injection rate, respectively.

The maximum and minimum values for head location and pumping rates are
shown in Table 2. Finally, the total amount of water to supply is given by:

QT =
n

∑
i=1

Qi ≤ Qmin
T , (6)

where Qmin
T is the minimum allowable total extraction rate.

Table 2 Bounds for the constraints of the objective function

Parameter Value Units

Maximum extraction rate Qemax −6.4×10−3 m3/s
Maximum injection rate Qimax 6.4×10−3 m3/s
Minimum total extraction rate Qmin

T −3.2×10−2 m3/s

Minimum allowable head hmin 40 confined m
10 unconfined m

Maximum allowable head hmax 60 confined m
30 confined m

3 Derivative-Free Optimization Methods

The inherent complexity of the groundwater supply problem requires the introduc-
tion of ad hoc optimization methods; in particular, due to the extreme roughness
of the search landscape, classical gradient-based algorithms have been proved to
perform poorly [10]. For this reason, several derivative-free optimization methods
have been proposed in literature; in general, DFOs aim to find a minimizer of an ob-
jective function by using only the objective function value. This approach does not
require any derivate or gradient information and, in general, performs effectively on
problems where the objective function is computed by a simulator.

Two subclasses of DFO methods can be identified: deterministic and stochastic.
While deterministic algorithms provide a theoretical proof of convergence to a min-
imizer, stochastic methods strongly rely on randomized sampling procedures, with-
out any convergence guarantee. According to the above classification, in the next
paragraphs we introduce a brief review of the most effective methods for designing
groundwater supply systems.



MABH for Designing Groundwater Supply Systems 411

3.1 Deterministic Methods

Several deterministic methods have been proposed and compared in [10, 11]. The
term “deterministic” does not imply that the algorithm is able to rigorously find
a global minimum but, conversely, the method assures some convergence results,
when the function has specific mathematical properties. In particular, the IFFCO [6]
algorithm and Pattern Search (PS) methods have been successfully applied to the
groundwater supply problem.

Implicit filtering is a projected quasi-Newton method that uses a sequence of
finite difference steps to approximate the gradients. The difference increment is re-
duced as the optimization progresses, allowing to avoid local minima, discontinu-
ities, or non-smooth regions [5, 10, 12]. IFFCO evaluates the objective function in
all the points required for the poll step, in order to provide a gradient estimate. The
Hessian estimate is computed by a quasi-Newton update; this provides a quadratic
surrogate used to explore the search space [11].

Conversely, GPS [18] and MADS, [3] rely on sampling of a finite number of
points, selected according to a set of directions; typically, search directions are cho-
sen such that they form a positive spanning set or positive bases. Additionally, the
sampled points are constrained to lie on a mesh, which fineness is coarsened based
on the outcome of the current iteration. This mechanism, called polling, tends to
favor large steps when a minimizing direction is found, otherwise restricts the sam-
pling to a smaller basin. The strategy ensures the convergence of the method to a
secondary stationary point using the Clarke directional derivatives [1]. IFFCO and
GPS algorithms provide the current putative optimal solutions for the groundwater
supply problem; they achieve such results using a tight budget of simulator calls,
which makes them suitable in industrial environments.

3.2 Stochastic Methods

Stochastic algorithms represent an effective alternative when no boundary condi-
tions are available to tackle the problem. These algorithms rely on two main compo-
nents: a sampling procedure to generate candidate solutions, and a selection scheme
to assure asymptotic convergence to a minimizer.

Evolutionary Algorithms (EA) are a class of methods inspired by the Darwinian
process of natural selection [17]: they generate a population of candidate solutions,
which are recombined and mutated to explore and exploit the search space.

Genetic Algorithms (GA) are among the most used evolutionary algorithms; they
mimic the natural evolutionary process by evolving a population of solutions. GAs
are based on natural selection and sexual reproduction processes; the first mech-
anism determines which members of a population survive and are able to repro-
duce, the second one assures genetic recombination among individuals of the same
population. EAs do not use any mathematical information and do not provide any
convergence property; from a theoretical point of view, there is no proof of EAs
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convergence but in practice they have been shown to be effective even for complex
problems. A single-objective variant of the Non-dominated Sorting Genetic Al-
gorithm (NSGA-II) [8] has been proposed for the groundwater supply problem
[10, 11]. This algorithm deals with continuous and discrete variables using ad
hoc evolutionary operators; for real-coded variables, the simulated binary crossover
(SBX) operator with polynomial mutation is used, while the single-point crossover
with bitwise mutation is used for binary-coded variables.

In this work, we compare our method to two state-of-the-art evolutionary
optimizers: the Differential Evolution (DE) [21] and Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES) [13] algorithms. DE generates candidate
solutions by simply adding a weighted difference of two individuals to a third;
this scheme does not need any separate probability distribution, which makes it a
robust self-organizing method. The classical selection scheme is based on a (1,1)-
replacement, where the children substitute the parent according to the objective
function value. Starting from its first application, the Chebyshev polynomial fitting
problem [20, 21], DE has been successfully applied to a number of real world
applications [22].

CMA-ES is an evolutionary algorithm that adopts a multivariate Gaussian distri-
bution, such that the likelihood of successful steps is maximized. Currently, CMA-
ES is the best evolutionary algorithm for derivative-free optimization and one of the
most effective derivative-free optimizers in literature [4].

4 Mesh Adaptive Basin Hopping

The MABH [23] algorithm combines the MADS [2] algorithm with a local heuristic
step, which is responsible for performing a sampling in the neighborhood of the
current minimizer (incumbent). This approach can be viewed as a local descent
method combined with a stochastic heuristic [19], where the Metropolis acceptance
criterion is discarded in favor of a monotonic one.

Although no restriction is enforced on the landscape of the objective function,
MABH is supposed to be more effective on funneled landscapes, as already shown
for other basin hopping methods; recently, Stracquadanio et al. have shown that
MABH is the most effective optimizer for the class of the antenna design problems
[23], outperforming state-of-the-art methods in terms of efficiency and quality of
solutions. Moreover, the use of a basin hopping strategy improves the robustness of
MADS, since it overcomes the problem of poor initial iterates.

We extend the MABH strategy with heuristics to tackle the groundwater sup-
ply problem, aiming at improving the putative global optimal solutions with a tight
budget of function evaluations; the algorithm is presented in Algorithm 1. MABH
alternates a heuristic step (line 4) with a truncated local optimization step (line 5),
in order to find a new incumbent. Local optimization can perform λ objective func-
tion evaluations at most; this strategy has the benefit of limiting the chance of being
trapped into a local minimum. Finally, the current iterate is accepted if it improves
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the incumbent objective function value. The stopping criterion can accommodate
any strategy, such as the maximum number of function evaluations, maximum run-
ning time, or a predefined objective function value.

In our implementation, MABH uses variable scaling; since the range of each
variable could be extremely different, stagnation issues might happen. MABH over-
comes this problem by projecting the variables on the [−0.5,0.5]n ⊆ R

n space,
where n is the dimension of the problem.

The heuristic perturbation procedure performs a local search around the incum-
bent solution, by applying some stochastic noise; in particular, let xi be the i-th
variable of the problem, the following perturbation is applied:

x′i = xi +(−ρ +(rand×2×ρ))

where ρ ∈ [0,1] is a parameter of the algorithm and rand is a function that gen-
erates a uniform random number in [0,1). The number of perturbed variables is
determined by the parameter μ ∈ [0,1], where 0 means no perturbation and 1 per-
turbs all; large μ values are not recommended since the perturbation operator tends
to destroy suboptimal solutions.

5 Experimental Results

The experiments are focused on two instances of the groundwater supply problem,
considering five and six wells. By using n = 5 wells extracting at Qemax =−0.0064
(m3/s), the water supply demand is satisfied; since the installation cost is a fixed
amount in this case (≈ $10,000 per well), it is interesting to find the best well posi-
tion to minimize the operation cost ( f o).

For the six-well case design, both the installation and operational costs are con-
sidered; since the water supply demand can be satisfied by a five-well installation
pumping at maximum rate, it is expected that an optimizer is able to find this so-
lution even starting from a six-well design, since the installation cost of a well is
greater than the operation cost.
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5.1 Five-Well Design

The five-well design problem requires to find the spatial coordinates {xi,yi}5
i=1 that

minimize the operational costs. The position of the wells is subject to box con-
straints, such as {xi,yi} ∈ {[20,800]× [20,800]},∀i = 1, . . . ,5. The optimization has
been conducted on both the confined and unconfined cases, in order to estimate
how the performances of the algorithm change. An initial feasible solution has been
determined for both the problems, and each optimization algorithm starts from this
iterate to maintain an experimental coherence with the results presented in [10]. The
initial solutions have an operation cost of $23,204 and $127,421 for the confined and
unconfined problems, respectively; for the unconfined case, the installation cost of
the system is considered for consistency with the most recent results available [11].

To have comparable results with the existing state-of-the-art methods, the num-
ber of objective function evaluations has been fixed to 500; MABH performs 10
iterations allowing at most 50 simulator calls to the local optimizer, and setting
μ = 0.1 and ρ = 0.05. Local optimization has been performed by using MADS
with coordinate directions (GPS) and orthogonal directions (ORTHOMADS) [2];
default parameters have been used for both instances. CMA-ES and DE have been
used with default parameters (Fig. 1).

By inspecting the results for the confined aquifer in Table 3, we assess that the
two instances of MABH are able to find a new putative global optimum with at most
400 simulator calls (Fig. 2).

The deterministic methods are all ranked within the first four positions, remark-
ing their ability of rapidly converging to a satisfactory solution; however, the results

Table 3 Five-well design results

Confined five-wells Unconfined five-wells

Algorithm Cost ($) Sim calls Cost ($) Sim calls

MABH + MADS 21,778 400 124,386 300
MABH + GPS 21,778 300 124,386 250
GPS 21,778 340 124,386 321
IFFCO [11] 21,830 275 125,129 275
MADS 21,903 461 124,389 461
DE/RAND/1/EXP 21,933 500 124,573 500
DE/BEST/1/EXP 22,035 475 125,485 475
DE/RAND-TO-BEST/1/EXP 22,316 475 124,626 500
GA 22,822 330 124,386 930
CMA-ES 22,978 500 125,672 500

We report the cost of the best solution found and the number of simulator calls
required. The new putative optimal solution is reported in boldface, in italic the
previous putative global minimum
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obtained by MABH show that random perturbations can prevent a premature stag-
nation and improve the convergence speed. Additionally, MABH variants reach the
previous putative global optimum after ≈220 simulator calls versus the 275 of IF-
FCO, confirming the efficiency of the monotonic basin hopping strategy. DE per-
forms sufficiently well, although the best solution is obtained by using all the bud-
get of function evaluations; conversely, CMA-ES is not able to find a satisfactory
solution, which might be apportioned to a difficult adaptation of the covariance ma-
trix, mainly because of the high number of simulator failures.

Since a new best solution has been found, in Fig. 3 and in Table 4, we report the
2D visualization of the new optimal system and the coordinates of its wells, respec-
tively. From a comparison with the previous best found solution, it is possible to
note that some coordinates differ substantially, which means that despite the limited
decrease of the objective function, the algorithm is able to locate a new basin.

For the unconfined five-well design problem, the putative global optimum is
found by MABH with the smallest number of function evaluations. For this in-
stance, deterministic methods are the most effective in terms of quality of solutions
and computational efficiency, even if the GA offers comparable results at the price
of an increased computational effort.

The analysis of the convergence plot (Fig. 1) shows that MABH is extremely
efficient in reaching a nearly optimal solution and improves the performances of
the local solver. It is also interesting to note that DE performs well on this instance,
despite the limited budget of simulator calls; it clearly outperforms CMA-ES, which
could be an evidence of the former algorithm to work better with noisy objective
functions.

5.2 Six-Well Design

Starting from the consideration that the five-well solution is the best to supply the
water demand, the effectiveness of the algorithm has been tested on a six-well sys-
tem. This formulation considers both the installation and the operational costs; since
the installation cost of each well is much higher than the operation cost, a satisfac-
tory solution is the one that turns off a well [10].

A common approach to handle this situation is to reformulate the problem as a
mixed-integer optimization problem [16], where an integer variable represents the
well to remove. To eliminate the integer decision variable, we set an inactive well-
threshold [9, 15], so that if |Qi| < 10−6 m3/s, the well i is removed from the design
space, and not included in the cost calculation.

Two initial feasible solutions have been found for the six-well design, both for
the confined and unconfined cases, having operation cost $170,972 and $152,878,
respectively. The six-well design requires the optimization of the spatial coordinates
{xi,yi}6

i=1 of the wells in order to minimize the operational and installation cost;
the well positions are subject to box constraints such that {xi,yi} ∈ {[20,800]×
[20,800]},∀i = 1, . . . ,6.
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Fig. 1 Convergence plot for the five-well unconfined groundwater supply problem
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Fig. 2 Convergence plot for the five-well confined groundwater supply problem

For each well, the initial extraction rate Qi = −0.0064,∀i = 1, . . . ,6 is consid-
ered; if Qi falls below the installation threshold, the corresponding well is removed
from the designed system.
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Fig. 3 Five-well confined groundwater supply problem. (a) Wells location as de-
fined by the initial solution provided to the optimizers. (b) Wells location for the
new putative global optimum found by MABH

Table 4 Five-well confined aquifer wells location

Initial IFFCO MABH

X1 350 401.7 151.6
Y1 725 800.0 795.1

X2 775 800.0 793.0
Y2 775 800.0 794.7

X3 675 776.9 452.1
Y3 675 481.1 795.1

X4 200 138.2 792.7
Y4 200 800.0 460.1

X5 725 798.4 795.1
Y5 350 168.9 144.3

We report coordinates of the initial solution, the previous best known design
found by IFFCO and the new optimal solutions found by MABH

In order to let the MABH algorithm explore the six-well design, the perturbation
operator is designed such that it randomly chooses whether perturbing a location or
turning off a well; this choice provides a natural way of handling the mixed-integer
nature of the problem.

The stopping criterion for all the adopted algorithms is the attainment of 500
simulator calls; MABH uses the same settings adopted for the five-well case.

The results in Table 5 show that MABH finds new putative global minima for the
confined and unconfined case; these solutions are found within the prefixed budget
of simulator calls and at the beginning of the convergence.
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Table 5 Six-well design results

Confined six-wells Unconfined six-wells
Algorithm Cost ($) Simulator calls Cost ($) Simulator calls

MABH + MADS 139,878 150 124,414 250
MABH + GPS 140,147 250 124,414 301
IFFCO [11] 140,237 346 124,582 327
GA 140,628 464 127,069 161
MADS 143,639 500 160,981 500
GPS 161,143 500 161,143 500

We report the cost of the best solution found and the number of simulator calls
required. The new putative optimal solution is reported in boldface, in italic the
previous best found solution

It is interesting to observe that GPS and ORTHOMADS are not able to find sat-
isfactory solutions, confirming that using the basin hopping scheme improves their
performances.

The plots in Figs. 4 and 5 show that the solutions attained for the six-well design
are very similar to the five-well solutions, which means that MABH is able to pro-
vide solutions close to the known optimal. Moreover, by comparing the solutions
with the previous best found by IFFCO (Tables 6 and 7), it is possible to note that
at least two wells are located in very different locations, confirming that MABH
explores different basins of the search space.
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Fig. 4 Six-well confined groundwater supply problem. (a) Wells location as defined
by the initial solution provided to the optimizers. (b) Wells location for the new
putative global optimum found by MABH
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Table 6 Six-well confined aquifer wells location

Initial IFFCO MABH

X1 350 350 116
Y1 725 798.1 800

X2 775 799.4 800
Y2 775 775.0 463

X3 675 626.2 –
Y3 675 772.5 –

X4 200 – 800
Y4 200 – 122

X5 725 737.2 800
Y5 350 287.8 800

X6 725 112.5 444
Y6 350 795.0 800

We report coordinates of the initial solution, the previous best known design
found by IFFCO and the new optimal solutions found by MABH
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Fig. 5 Six-well unconfined groundwater supply problem. (a) Wells location as
defined by the initial solution provided to the optimizers. (b) Wells location for
the new putative global optimum found by MABH

6 Conclusions

Designing efficient systems for water supply is a challenging optimization task; the
output of the simulator is extremely noisy and sensitive to the well locations and
pumping rates, hence, finding a cost-effective design is not trivial.

Due to this complex scenario, derivative-free algorithms have been applied
with satisfactory results. We propose a new Monotonic Basin Hopping algorithm
(MABH), which combines a deterministic local optimization step with a heuristic
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Table 7 Six-well unconfined aquifer wells location

Initial IFFCO MABH

X1 350 410.9 504.7
Y1 725 798 800

X2 775 715 800
Y2 775 799 800

X3 675 772.5 800
Y3 675 473.9 441

X4 200 187.8 195
Y4 200 800 800

X5 725 – –
Y5 350 – –

X6 725 800.0 800
Y6 350 202.5 144

We report coordinates of the initial solution, the previous best known design
found by IFFCO and the new optimal solutions found by MABH

perturbation method. This approach aims at preventing stagnation and improves the
exploring ability of the method. The experimental results on the design of five- and
six-well systems show that our approach is suitable to tackle this class of problems;
on three out of four design problems, we were able to find new optimal solutions
that minimize the costs of the system and identify new designs with substantially
different wells locations.

Finally, we proved that using the basin hopping strategy improves the efficiency
and effectiveness of the pattern search methods; these results confirm that hybrid
optimization methods represent a viable approach for computationally expensive
black-box optimization problems.

References

1. Abramson, M.A., Audet, C.: Convergence of mesh adaptive direct search to second-order
stationary points. SIAM J. Optim. 17(2), 606–619 (2006)

2. Abramson, M.A., Audet, C., Dennis, J.E., Jr., Le Digabel, S.: Orthomads: a deterministic mads
instance with orthogonal directions. SIAM J. Optim. 20(2), 948–966 (2009)

3. Audet, C., Dennis, J.E., Jr.: Mesh adaptive direct search algorithms for constrained optimiza-
tion. SIAM J. Optim. 17(1), 188–217 (2006)

4. Auger, A., Hansen, N.: A restart cma evolution strategy with increasing population size. In:
Proceedings of the IEEE Congress on Evolutionary Computation, 2005, vol. 2, pp. 1769–1776.
IEEE, Piscataway (2005)

5. Bertsekas, D.: On the Goldstein-Levitin-Polyak gradient projection method. IEEE Trans.
Autom. Control 21(2), 174–184 (2002)



MABH for Designing Groundwater Supply Systems 421

6. Choi, T.D., Eslinger, O.J., Gilmore, P., Patrick, A., Kelley, C.T., Gablonsky, J.M.: IF-
FCO: implicit filtering for constrained optimization, version 2. Technical Report, Center for
Research in Scientific Computation, North Carolina State University, Raleigh (1999)

7. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization.
Society for Industrial Mathematics, Philadelphia (2009)

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

9. Fowler, K.R., Kelley, C.T., Kees, C.E., Miller, C.T.: A hydraulic capture application for
optimal remediation design. Dev. Water Sci. 55, 1149–1157 (2004)

10. Fowler, K.R., Kelley, C.T., Miller, C.T., Kees, C.E., Darwin, R.W., Reese, J.P., Farthing, M.W.,
Reed, M.S.C.: Solution of a well-field design problem with implicit filtering. Optim. Eng. 5(2),
207–234 (2004)

11. Fowler, K.R., Reese, J.P., Kees, C.E., Dennis, J.E., Jr., Kelley, C.T., Miller, C.T., Audet, C.,
Booker, A.J., Couture, G., Darwin, R.W.: Comparison of derivative-free optimization meth-
ods for groundwater supply and hydraulic capture community problems. Adv. Water Resour.
31(5), 743–757 (2008)

12. Gilmore, P., Kelley, C.T.: An implicit filtering algorithm for optimization of functions with
many local minima. SIAM J. Optim. 5, 269 (1995)

13. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandom-
ized evolution strategy with covariance matrix adaptation (cma-es). Evol. Comput. 11(1), 1–18
(2003)

14. Harbaugh, A.W., McDonald, M.G.: User’s documentation for MODFLOW-96, an update to
the US Geological Survey modular finite-difference ground-water flow model. US Department
of the Interior, US Geological Survey (1996)

15. Hemker, T., Fowler, K.R., von Stryk, O.: Derivative-free optimization methods for handling
fixed costs in optimal groundwater remediation design. In: Proceedings of the CMWR XVI-
Computational Methods in Water Resources, pp. 19–22. Citeseer (2006)

16. Hemker, T., Fowler, K.R., Farthing, M.W., von Stryk, O.: A mixed-integer simulation-based
optimization approach with surrogate functions in water resources management. Optim. Eng.
9(4), 341–360 (2008)

17. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence. The MIT Press, Cambridge
(1992)

18. Lewis, R.M., Torczon, V.: Pattern search algorithms for linearly constrained minimization.
SIAM J. Optim. 10(3), 917–941 (2000)

19. Pardalos, P.M., Schoen, F.: Recent advances and trends in global optimization: deterministic
and stochastic methods. In: Proceedings of the Sixth International Conference on Foundations
of Computer-Aided Process Design (2004)

20. Price, K.V.: Differential evolution. In: Handbook of Optimization, pp. 187–214. Springer, New
York (2013)

21. Storn, R., Price., K.: Differential evolution—a simple and efficient heuristic for global opti-
mization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

22. Stracquadanio, G., La Ferla, A., De Felice, M., Nicosia, G.: Design of robust space trajectories.
In: Research and Development in Intelligent Systems XXVIII, pp. 341–354. Springer, New
York (2011)

23. Stracquadanio, G., Pappalardo, E., Pardalos, P.M.: A mesh adaptive basin hopping method for
the design of circular antenna arrays. J. Optim. Theory Appl. 155(3), 1008–1024 (2012)



Regularity of a Kind of Marginal Functions
in Hilbert Spaces

Fátima F. Pereira and Vladimir V. Goncharov

1 Introduction

Given a real-valued function f : X ×Y → R and a multivalued mapping C : X ⇒ Y
(X and Y are Banach spaces) the general marginal function is defined as

T (x) := inf
y∈C(x)

f (x,y) , (1)

where inf can be certainly substituted by sup. The marginal mapping instead
associates with each x ∈ X the set of minimizers (or maximizers):

Π (x) := {y ∈C (x) : T (x) = f (x,y)} . (2)

Regularity properties of marginal functions and mappings are important due to
numerous applications in control theory, theory of games, mathematical economics,
stochastic analysis, etc. We refer to [1, 2] for their general topological properties
regarding the continuity and the lipschitzeanity.

A lot of works (see, e.g., [12, 24, 28, 29, 31, 32, 38] and the bibliography therein)
was devoted to the representation of various kinds of subdifferentials of the marginal
function through the respective subdifferentials of the function f (·, ·). The authors
studied also subdifferential regularity of (1) in the sense of coincidence of differ-

F.F. Pereira
CIMA-UE, Rua Romão Ramalho 59, 7000-671, Évora, Portugal
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ent subdifferentials, and other properties such as the approximate convexity [33] or
generic differentiability [22, 24, 41].

As about the differentiability of T (·) at a given point, notice that it can be treated
in different ways. Namely, the Fréchet differentiability means the possibility to
reduce the (Fréchet) subdifferential to the (eventually continuous) singleton ∇T (x)
called the Fréchet derivative, or gradient. On the other hand, one may take an inter-
est in both existence and uniqueness of the proximal subgradient that is a stronger
property.

The Fréchet differentiability of the marginal function was particularly well
studied when X = Y = H is a Hilbert space with the norm ‖·‖; C (x) = C ⊂ H is
a closed set and f (x,y) = ‖x− y‖. In this case T (·) is nothing else than the distance
of the point to C, denoted further by dC (·), whereas Π (x) = πC (x) is the (multi-
valued) metric projection of x onto C. In general, the set πC (x) can be certainly
empty that does not occur when C is convex. Moreover, in the convex case πC (x) is
a singleton, which is Lipschitz continuous w.r.t. x (with the Lipschitz constant 1) on
the whole space H, and the gradient ∇dC (x) is continuous (and locally lipschitzean)
out of C.

If, instead, C is no longer convex, then the latter property, in general, fails. How-
ever, there is a class of so named ϕ-convex sets (called also prox-regular, proximally
smooth, sets with positive reach, etc.), for which the projection πC (x) is well defined
and continuous (in fact, locally lipschitzean) on some (open) neighbourhood U of
C (equivalently, the distance dC (·) is of class C1,1

loc on U\C). For the first time such
sets were considered in the pioneer work [23] by Federer in finite dimensions, while
afterwards various characterizations of them were given in Hilbert and Banach set-
ting (see, e.g., [4, 5, 8, 13, 15, 34, 37] and the bibliography therein). This class of
sets is well studied up to now, and we refer to the nice survey [17] for their basic
properties.

The next step is to minimize the function f (x,y) = ρF (x− y) in the place of the
norm, where F ⊂ H is a closed convex bounded set such that the origin belongs to
the interior intF , and ρF (·) is the Minkowski functional (gauge function),

ρF (ξ ) = inf {λ > 0 : ξ ∈ λF} . (3)

In the latter case the value function (denoted by TF
C (x)) of the respective

minimization problem can be seen as the minimal time, which is necessary to
achieve the target set C ⊂ H from a point x by trajectories of the differential
inclusion (with a constant convex right-hand side)

ẋ(t) ∈ −F . (4)

Observe that another interpretation via viscosity theory for Hamilton–Jacobi equa-
tions can be given. Namely, TF

C (·) is nothing else than the (unique) viscosity solution
to the equation

ρF0 (∇u(x))−1 = 0 , x ∈ H\C , (5)

with u(x) = 0 on C (here F0 is the polar set). This is a natural generalization of
the so-called eikonal equation arising from the geometric optics. For instance, if
H = R

3 and
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F0 =

{

ξ ∈ H :
3

∑
i=1

c2
i ξ 2

i ≤ 1

}

,

then (5) describes the propagation of a light wave from a point source placed at the
origin in (anisotropic) medium with the constant coefficients of refraction of light
rays parallel to coordinate axes (denoted by ci).

Notice that in the past many authors studied such best approximation problem

min{ρF (x− y) : y ∈C} . (6)

For example, in [10, 20] the generic properties of (6) were established, while in
the works [11, 18, 39, 40] the directional derivatives as well as various subdiffer-
entials of the value (time-minimum) function TF

C (·) were computed. Furthermore,
Colombo and Wolenski gave in [18] the first sufficient condition guaranteeing the lo-
cal well-posedness of the problem (6) as well as the regularity of TF

C (·). Afterwards,
in [25, 26] the authors essentially sharpened this condition and represented it as a
certain balance between curvatures of the dynamics F and the target set C. Toward
this end some quantitative results on convex duality in a Hilbert space were obtained
in [25]. Besides that another (independent) “first order” hypothesis ensuring the
well-posedness was proposed. It is written in terms of the balance between (exter-
nal) normals to the sets F and C.

It turned out that the latter hypothesis can be easily adapted to a more general
problem where a supplementary additive term appears. Namely, given a sufficiently
regular function θ : C → R we are led to consider the mathematical programming
problem

min{ρF (x− y)+θ (y) : y ∈C} , (7)

whose value function under an additional “slope assumption” is nothing else than
the viscosity solution to the same Hamilton–Jacobi equation (5) but with the
(general) boundary condition u(x) = θ (x), x ∈ C. Although the latter fact is well
known (see, e.g., [9, 30]), for the sake of completeness we give in Sect. 3 its detailed
proof emphasizing thereby one of the crucial interpretations of the problem (7).
Section 4 instead is devoted to another interpretation in terms of an optimal time
control problem, which somehow extends the problem with the constant dynam-
ics (4) mentioned above.

In Sect. 5 we introduce basic assumptions, under which the well-posedness and
regularity results are obtained. Notice that the main hypothesis is, roughly speak-
ing, a sort of (Lipschitz) compatibility of the normal vectors to F , on the one hand,
and of the (proximal) subdifferential to the restriction θ |C , on the other. Moreover,
an auxiliary statement similar to Lemma 5.1 [25] is placed here. The (local) well-
posedness of the problem (7) is proved in Sect. 6, while Sect. 7 is devoted to the
regularity of the value function that includes its Fréchet differentiability and the
(Hölder) continuity of the gradient near the target. We conclude in Sect. 8 with two
examples, which illustrate the applicability and the novelty of obtained results even
in finite dimensions.

The main results of the paper (without detailed proofs) were announced earlier
in [27].
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2 Preliminaries

Let us emphasize first the setting of the problem. Everywhere in our considerations
we assume that H is a Hilbert space with the inner product 〈·, ·〉 and the norm ‖·‖,
that F ⊂ H is a convex closed bounded set containing the origin in the interior
and that C ⊂ H is an arbitrary nonempty closed subset. Given a sufficiently regular
(e.g., Lipschitz continuous) real-valued function θ : C → R we are interested in the
well-posedness of the problem (7), i.e., in the existence, uniqueness and stability of
its minimizers as well as in some kind of regularity of the value function (denoted
further by û(·)).

We define the support function σF : H → R
+,

σF (ξ ∗) := sup{〈ξ ,ξ ∗〉 : ξ ∈ F} ,

and recall the well-known identity

ρF (ξ ) = σF0 (ξ ) , ξ ∈ H , (8)

where F0 is the polar set of F . Hence

1
‖F‖ ‖ξ‖ ≤ ρF (ξ )≤ ∥

∥F0
∥
∥‖ξ‖ , ξ ∈ H , (9)

where ‖F‖ := sup{‖ξ‖ : ξ ∈ F}, and ρF (·) is lipschitzean with the Lipschitz
constant

∥
∥F0

∥
∥.

In what follows we use also the so-called duality mapping JF : ∂F0 → ∂F that
associates with each ξ ∗ ∈ ∂F0 the set of all linear functionals 〈ξ , ·〉 with ξ ∈ ∂F
supporting F0 in ξ ∗. In other words,

JF (ξ ∗) := {ξ ∈ ∂F : 〈ξ ,ξ ∗〉= 1} .

Denoting by NF (ξ ) the normal cone to F at the point ξ ∈ ∂F and by ∂ρF (ξ ) the
subdifferential of the function ρF (·) in the sense of Convex Analysis we have other
characterizations of the duality mapping:

JF (ξ ∗) = ∂ρF0 (ξ ∗) ; (10)

JF0 (ξ ) = J−1
F (ξ ) = NF (ξ )∩∂F0 . (11)

In particular, using positive homogeneity of the gauge function one easily deduces
from (10) and (11) that

∂ρF (ξ ) = NF

(
ξ

ρF (ξ )

)
∩∂F0 , ξ �= 0 . (12)

Following [25, Definition 3.2], for each dual pair (ξ ,ξ ∗) (i.e., ξ ∗ ∈ ∂F0 and
ξ ∈ JF (ξ ∗)) let us define the modulus of rotundity
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ĈF (r,ξ ,ξ ∗) := inf{〈ξ −η ,ξ ∗〉 : η ∈ F, ‖ξ −η‖ ≥ r} , r > 0 .

The set F is said to be strictly convex (or rotund) at ξ w.r.t. ξ ∗ if

ĈF (r,ξ ,ξ ∗)> 0 for all r > 0 . (13)

If (13) is fulfilled, then ξ is an exposed point of F and, in particular, ξ is the unique
element of JF (ξ ∗). So, in this case ξ is well defined whenever ξ ∗ is fixed. Observe
that there is a strong connection between the rotundity of F and the smoothness
of F0. Namely (see [25, Proposition 3.3 (iii)]), F is strictly convex at ξ w.r.t. ξ ∗ iff
ρF0 (·) is Fréchet differentiable at ξ ∗ with ∇ρF0 (ξ ∗) = ξ . In this case we say also
that F0 is smooth at ξ ∗ (w.r.t. ξ ).

Given a set U ⊂ ∂F0 we say that F is uniformly rotund w.r.t. U if

βU (r) := inf
{
ĈF (r,ξ ,ξ ∗) : ξ ∗ ∈U

}
> 0 for all r > 0 .

In [26, Proposition 2.1] the dual version of the latter property was given: the gauge F
is uniformly rotund w.r.t. U if and only if the duality mapping JF (·) is single-valued
on U and uniformly continuous in the following sense

sup
η∈JF (η∗)

‖JF (ξ ∗)−η‖→ 0 as ‖ξ ∗ −η∗‖ → 0 , ξ ∗ ∈U , η∗ ∈ ∂F0

(14)

(we clearly identify JF (ξ ∗) with its element whenever it is a singleton). Recalling
the characterization of the duality mapping through the subdifferential of the
Minkowski functional (see (10)) we derive from (14) that the uniform rotundity
of F w.r.t. U implies, in particular, the uniform continuity of the Fréchet gradient
∇ρF0 (·) on the set U .

In Sects. 4 and 7 we will use also the distance between sets A,B ⊂ H. So, let us
remind the Pompeiu–Hausdorff metric:

D(A,B) := max

{

sup
x∈A

dB (x) ,sup
y∈B

dA (y)

}

= inf
{

r > 0 : A ⊂ B+ rB and B ⊂ A+ rB
}
. (15)

Here and in what follows B means the closed unit ball in H. It is well known that
the family convH of all nonempty convex closed bounded subsets of H supplied
with the above distance is isometrically embedded into the space of real continuous
functions defined on H as a complete cone, and the respective isometry is given by
the formula:

D(A,B) = sup
‖v‖=1

|σA (v)−σB (v)| . (16)

Given now F ∈ convH with nonempty interior and v ∈ intF let us denote by

rF (v) := sup
{

r > 0 : v+ rB ⊂ F
}
. (17)
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Being the set (F − v)0 convex closed and bounded we have the following (local)
Lipschitz inequality for the mapping v �→ (F − v)0:

D
(
(F − v1)

0 ,(F − v2)
0
)
≤ 1

rF (v1)rF (v2)
|v1 − v2| , (18)

v1,v2 ∈ intF . It was obtained in [19, Lemma 2] for H = R
n but readily can be

adapted to the Hilbert case.
In the rest of this section let us give some concepts and notations of Nonsmooth

Analysis, which will be used in the sequel.
Given a proper lower semicontinuous function f : H → R ∪ {+∞} we

denote by ∂ p f (x), ∂− f (x), ∂ l f (x) and ∂ c f (x) the proximal, Fréchet, limit-
ing (Mordukhovich) and Clarke–Rockafellar subdifferential of f (·) at a point x,
f (x)<+∞, respectively. Let us recall their definitions (see, e.g., [12, 14, 31]):

• ∂ p f (x) :=
{

ζ ∈ H : ∃η > 0, σ ≥ 0 such that f (y)≥ f (x)+ 〈ζ ,y− x〉
−σ ‖y− x‖2 ∀y , ‖y− x‖ ≤ η

}
;

• ∂− f (x) :=

{
ζ ∈ H : liminf

y→x

f (y)− f (x)−〈ζ ,y−x〉
‖y−x‖ ≥ 0

}
;

• ∂ l f (x) := w-limsup
y

f→x

∂− f (y) =

{
w - lim

i→∞
ζi : ζi ∈ ∂− f (xi) , xi → x,

f (xi)→ f (x)};
• ∂ c f (x) :=

{
ζ ∈ H : 〈ζ ,v〉 ≤ f ↑ (x;v) ∀v ∈ H

}
.

Here “w-lim
i→∞

” stands for the weak limit, and

f ↑ (x;v) := lim
ε→0+

limsup
y

f→x, h→0+

inf
‖w−v‖≤ε

f (y+hw)− f (y)
h

is the Rockafellar’s generalized directional derivative (see [35]); y
f→ x means the

convergence y → x together with f (y)→ f (x).
Moreover, in order to treat viscosity solutions in the next section we define the

Fréchet superdifferential ∂+ f (x) as the counterpart to ∂− f (x) assuming that the
function f (·) is upper semicontinuous at x:

∂+ f (x) :=

{
ζ ∈ H : limsup

y→x

f (y)− f (x)−〈ζ ,y− x〉
‖y− x‖ ≤ 0

}
. (19)

It is well known (see, e.g., [31, p. 90]) that for a continuous function f (·) both
∂− f (x) and ∂+ f (x) are nonempty simultaneously if and only if f (·) is Fréchet
differentiable at the point x. In this case ∂− f (x) = ∂+ f (x) = {∇ f (x)}.

Notice that the inclusions

∂ p f (x)⊂ ∂− f (x)⊂ ∂ l f (x)⊂ ∂ c f (x) (20)
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are always valid, and that f ↑ (x;v) is reduced to the Clarke’s directional derivative

f o (x;v) := limsup
y→x,h→0+

f (y+hv)− f (y)
h

(21)

whenever f (·) is lipschitzean around x. In the latter case ∂ c f (x) is bounded and can
be represented as the convex closed hull of the limiting subdifferential. Taking into
account that in turn ∂ l f (x) can be expressed through proximal subgradients in the
place of Fréchet ones (see [31, p. 240]), we have

∂ c f (x) = co

{
w - lim

i→∞
ζi : ζi ∈ ∂ p f (xi) , xi → x

}
(22)

(see also [14, p. 88]). A function f (·) is said to be proximally (lower, Clarke) regular
at x if ∂ p f (x) = ∂ l f (x) (respectively, ∂− f (x) = ∂ l f (x) or ∂− f (x) = ∂ c f (x)).

If f (·) is convex, then all the subdifferentials above coincide with the subdiffer-
ential in the sense of Convex Analysis. If instead f (·) is (Fréchet) continuously
differentiable at x, then we can only affirm that ∂− f (x) = ∂ l f (x) = ∂ c f (x) =
{∇ f (x)} whereas the proximal subdifferential may be empty. However, this does
not occur if the gradient ∇ f (·) is lipschitzean near x. So, in the latter case also
∂ p f (x) = {∇ f (x)}. Let us observe that even Hölder continuity of ∇ f (·) with an
exponent 0 < α < 1 does not guarantee the proximal regularity.

Given an open set U ⊂ H in what follows we denote by C
1,α
loc (U), 0 < α ≤ 1,

the class of all continuously differentiable functions f (·) whose gradient ∇ f (·) is
locally Hölderean on U with the exponent α . In this case we say that f (·) is of class
C

1,α
loc on U .

The various notions of normal cones to a closed set C (all of them coincide
with the cone NC (x) if C is convex) can be given through the respective subdif-
ferentials of the indicator function IC (·) equal to 0 on C and to +∞ elsewhere.
Thus, the proximal, Fréchet (ou weak Bouligand), limiting (or Mordukhovich) and
Clarke normal cones are defined and denoted by Np

C (x), Nσ
C (x), Nl

C (x), Nc
C (x),

respectively. Various properties of the normal cones (as well as of the subdifferen-
tials of lower semicontinuous functions) can be found, e.g., in [2, 6, 12, 14, 31, 36]).
Similarly as for the subdifferentials, a closed set C is said to be proximally (nor-
mally, Clarke) regular at x ∈ ∂C if Np

C (x) = Nl
C (x) (respectively, Nσ

C (x) = Nl
C (x)

or Nσ
C (x) = Nc

C (x)).
We say that a closed set C ⊂ H has smooth (or C1) boundary at x0 ∈ ∂C if for

each x ∈ ∂C enough close to x0 the limiting cone Nl
C (x) is reduced to nC (x) R+

with some continuous function nC (·), ‖nC (x)‖ = 1. If, moreover, nC (·) is Hölder
continuous with an exponent 0<α ≤ 1, then we say that C has C1,α -boundary at x0.

In what follows by the restriction θ |C we mean the function equal to θ (x) on C
and to +∞ elsewhere. If θ (·) is defined also out of C, then clearly θ |C = θ + IC.
Due to this representation and to the proximal “sum rule” ∂ p f + ∂ pg ⊂ ∂ p ( f +g)
we have that

• the subdifferential ∂ p (θ |C )(x) is unbounded whenever Np
C (x) �= {0};

• ∂ p (θ |C )(x) = ∂ pθ (x) whenever x ∈ intC.
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3 Marginal Function as the Viscosity Solution

Let Ω ⊂ H be a nonempty open set and Γ : Ω ×R× H → R be a continuous
mapping. Let us remind that a continuous function u : Ω →R is said to be viscosity
solution of the (stationary) Hamilton–Jacobi equation

Γ (x,u(x) ,∇u(x)) = 0 (23)

if the following two conditions are fulfilled:

(I) Γ (x,u(x) , p)≤ 0 for each x ∈ Ω and each p ∈ ∂+u(x);
(II) Γ (x,u(x) , p)≥ 0 for each x ∈ Ω and each p ∈ ∂−u(x).

For the main results of the viscosity theory for Hamilton–Jacobi equations we
refer to [3] and to the bibliography therein (for a concise survey of viscosity
solutions in finite dimensions see also the tutorial lessons by Bressan [7]). In partic-
ular, it is known that for each suitable boundary function θ (·) there exists an unique
viscosity solution u(·) of the Eq. (23) such that u |∂Ω = θ . Moreover, this solution
is stable w.r.t. θ . Notice also that the class of viscosity solutions is consistent with
other types of solutions. For instance, any continuously differentiable (by Fréchet)
function u(·) satisfying (23) everywhere in Ω (so named classical solution) is also
a viscosity solution.

Now we consider a hamiltonian Γ depending only on the gradient. Then, as
shown in [9], under some geometric conditions the Hamilton–Jacobi equation (23)
can be reduced to a particular case, where the hamiltonian takes the form ρF0 (ξ )−1
with an appropriate gauge F [see (5) with Ω = H\C].

So, in what follows we deal with the boundary value problem for the Eq. (5),
assuming that the boundary function θ : C → R satisfies the slope condition with
respect to F , namely,

θ (x)−θ (y)≤ ρF (x− y) ∀x,y ∈C . (24)

Remark 1. By (9) the inequality (24) implies the Lipschitz continuity of the function
θ (·) on C with the Lipschitz constant

∥
∥F0

∥
∥. Moreover, the function

û(x) := inf
y∈C

{ρF (x− y)+θ (y)} (25)

is a sort of extension of θ (·) to the whole H with keeping the property (24) (a gen-
eralization of McShane lemma, see also [9, Lemma 4.1]).

Indeed, on the one hand, it follows directly from (24) that û(x) = θ (x) for all
x ∈C. On the other hand, given y ∈ H and ε > 0 we find zy ∈C such that

û(y)≥ ρF (y− zy)+θ (zy)− ε .

Then for each x ∈ H

û(x)− û(y) ≤ ρF (x− zy)−ρF (y− zy)+ ε
≤ ρF (x− y)+ ε .
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Since ε > 0 is arbitrary, we arrive at the same slope condition as (24):

û(x)− û(y)≤ ρF (x− y) ∀x,y ∈ H . (26)

It implies, in particular, that û(x) admits finite value for each x ∈ H (in fact, û(x)≥
θ (x0)−ρF (x0 − x), x ∈ H, where x0 ∈C is an arbitrary fixed point).

Theorem 1. If the inequality (24) is fulfilled, then the convolution (25) is the
(unique) viscosity solution of the equation (5) such that û(x) = θ (x) , x ∈C.

Proof. In conformity with the definition above the proof splits into two parts as
follows.

(I) Let us fix x /∈ C and p ∈ ∂+û(x). Then, given ε > 0 by using the formula (19)
we find δ > 0 such that

û(y)− û(x)−〈p,y− x〉 ≤ ε ‖y− x‖

whenever ‖y− x‖ ≤ δ . In the case y �= x dividing the latter inequality by ρF (x− y)
and taking into account that

û(y)− û(x)
ρF (x− y)

≥ −1

[see (26)] we obtain

−1+

〈
p,

x− y
ρF (x− y)

〉
≤ ε

‖x− y‖
ρF (x− y)

.

Hence,

−1+ sup
0<‖y−x‖<δ

〈
p,

x− y
ρF (x− y)

〉
≤ ε sup

0<‖y−x‖<δ

‖y− x‖
ρF (y− x)

. (27)

Since, by the positive homogeneity of the gauge function,

sup
0<‖y−x‖<δ

‖y− x‖
ρF (y− x)

= sup
z �=0

‖z‖
ρF (z)

= ‖F‖

and

sup
0<‖y−x‖<δ

〈
p,

x− y
ρF (x− y)

〉
= sup

z∈∂F
〈p,z〉= σF (p) ,

it follows from (27) and (8) that

−1+ρF0 (p)≤ ε ‖F‖ .
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Letting ε → 0+ we obtain ρF0 (p)≤ 1.

(II) Let us fix now p ∈ ∂−û(x) (x /∈ C is given). We should prove that ρF0 (p) ≥
1. Assuming the contrary, we choose ε > 0 so small that ρF0 (p) < 1 − ε . Then,
by the definition of the Fréchet subdifferential and by (9) there exists δ , 0 < δ <
dC (x), with

û(x)− û(y)+ 〈p,y− x〉 ≤ ε
4

ρF (x− y) (28)

whenever ‖y− x‖ ≤ δ . On the other hand, let us take zx ∈C such that

û(x)≥ ρF (x− zx)+θ (zx)− εδ
8‖F‖ ,

and, consequently,

û(x)− û(y)≥ ρF (x− zx)−ρF (y− zx)− εδ
8‖F‖ ∀y /∈C. (29)

Since ‖zx − x‖> δ (by the choice of δ > 0), there exists yx ∈ [x,zx] with ‖yx − x‖=
δ/2. Representing this point as λx+(1−λ )zx for some 0 < λ < 1, we clearly have

ρF (x− yx) = (1−λ )ρF (x− zx) ;
ρF (yx − zx) = λρF (x− zx) .

Consequenlty (see also (9)),

ρF (x− zx)−ρF (yx − zx) = ρF (x− yx)≥ δ
2‖F‖ . (30)

Therefore, applying successively (30), (29) and (28), we obtain

ρF (x− yx)− εδ
8‖F‖ + 〈p,yx − x〉

= ρF (x− zx)−ρF (yx − zx)− εδ
8‖F‖ + 〈p,yx − x〉

≤ û(x)− û(yx)+ 〈p,yx − x〉 ≤ ε
4

ρF (x− yx) . (31)

It follows from the inequality ρF0 (p)≥
〈

p, x−yx
ρF (x−yx)

〉
[see (8)] and from the choice

of ε > 0 that

〈p,x− yx〉< ρF (x− yx)(1− ε) .

Hence, recalling (31) and (30) we obtain

ρF (x− yx) ≤ εδ
8‖F‖ + 〈p,x− yx〉+ ε

4
ρF (x− yx)

<
ε
4

ρF (x− yx)+
ε
4

ρF (x− yx)+ρF (x− yx)(1− ε)

= ρF (x− yx)
(

1− ε
2

)
,
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which is a contradiction.

Combining the parts (I) and (II) proves the theorem. ��

Remark 2. Observe that the slope condition (24) is always fulfilled if θ (·) is defined
and Lipschitz continuous on an open convex neighbourhood U of C and either
∇θ (x) ∈ F0 for a.e. x ∈ U (in finite dimensions), or ∂ cθ (x)⊂ F0 ∀x ∈U (in gen-
eral case). This immediately follows from Lebourg’s theorem (see [12, p. 41]). Vice
versa (we use this property in the sequel), if θ (·) is defined and satisfies (24) on
a neighbourhood U (x̂) of x̂ ∈ C, then ∂ cθ (x̂) ⊂ F0. Indeed, it follows directly
from (24) that given arbitrary v ∈ H for each x ∈ U (x̂) and sufficiently small h > 0
we have

θ (x+hv)−θ (x)
h

≤ ρF (v) .

Then, passing to limsup as h → 0+ and x → x̂ we conclude from both (8) and (21)
that θ o (x̂;v)≤ σF0 (v). So, the definition of the Clarke subdifferential gives:

∂ cθ (x̂)⊂ {ζ ∈ H : 〈v,ζ 〉 ≤ σF0 (v) ∀v ∈ H}= F0 .

4 Marginal Function as the Minimal Time

In this section we relate the function (25) with an optimal time control problem
having, in general, nonconstant (autonomous) dynamics. However, in order to do
this we should impose much stronger hypothesis on the function θ (·).
Theorem 2. Let U ⊂ H be an open convex set with U ⊃ C, and θ : U → R be a
(Fréchet) continuously differentiable function such that

∇θ (x) ∈ intF0 ∀x ∈U . (32)

Then for each x ∈U the equality

û(x) = TF,θ
C (x)+θ (x) (33)

holds, where TF,θ
C (x) is the minimal time necessary to achieve (the boundary of) the

set C from the point x ∈U by trajectories of the differential inclusion

ẋ(t) ∈ (−F0 +∇θ (x(t))
)0

(34)

remaining inside U.
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Proof. Observe first that under the condition (32) the right-hand side of the
inclusion (34) is bounded for each x ∈U that is essential for proving (33). Moreover,
it is easy to see that in this case the inequality (24) is strict.

Let us prove first that

û(x)≤ TF,θ
C (x)+θ (x) . (35)

To this end fix x ∈ U and assume that TF,θ
C (x)<+∞ [otherwise (35) is trivial]. So,

the target C can be achieved from x by some trajectory x(·) of the inclusion (34),
x(t) ∈U , in some time moment T > 0.

On the other hand, since the function û(·) satisfies on H the inequality (26), it
admits nonempty, convex and closed Clarke subdifferential ∂ cû(z)⊂ F0, z ∈ H (see
Remark 2). In other words, setting g(z) := û(z)−θ (z) we have

−∂ cg(z)⊂ −F0 +∇θ (z) (36)

(see [12, Propositions 2.3.1 and 2.3.2]). Now, the relations (34) and (36) imply that
〈−p, ẋ(t)〉 ≤ 1 for all p ∈ ∂ cg(x(t)) and a.e. t ∈ [0,T ]. It follows then from [12, p.
27] that

go (x(t) ,−ẋ(t)) = max
p∈∂ cg(x(t))

〈p,−ẋ(t)〉 ≤ 1 . (37)

Let us consider the superposition t �→ g(x(t)), which is Lipschitz continuous
because x(t) ∈ U , t ∈ [0,T ], and the right-hand side of (34) is bounded. Therefore,
t �→ g(x(t)) admits derivative at a.e. t ∈ [0,T ]. By (21) and (37) we successively
obtain

d
dt

g(x(t)) = −limsup
h→0+

g(x(t −h))−g(x(t))
h

= −limsup
h→0+

g(x(t)−hẋ(t))−g(x(t))
h

≥ −go (x(t) ,−ẋ(t))≥ −1

a.e. on [0,T ]. Hence, by integrating the latter inequality on the interval [0,T ] and
taking into account that g(x(T )) = 0 (due to the boundary condition on C) we have

−g(x) = g(x(T ))−g(x(0)) =
∫ T

0

d
dt

g(x(t))dt ≥ −T .

Since the instant T > 0 was chosen arbitrarily, we arrive at (35).

In order to prove the opposite inequality we fix x ∈ U , ε > 0 and choose zx ∈ C
such that

û(x)≥ ρF (x− zx)+θ (zx)− ε . (38)
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We should find a trajectory x(·) of the inclusion (34) remaining in U such that
x(0) = x and x(T ) = zx ∈C where

T := ρF (x− zx)+θ (zx)−θ (x)> 0 (39)

[see (32)]. To this end we define first an approximative sequence {xn (·)} as follows.
Given n = 1,2, . . . let us divide the segment [x,zx] into small parts by the points

xn
i := x+ i

n (zx − x) ∈U , i = 1,2, . . . ,n. Denote by

T n
i := ρF (x− xn

i )+θ (xn
i )−θ (x)

and observe that T n
0 = 0, T n

n = T , T n
i > 0 and

hn
i := T n

i −T n
i−1 = ρF

(
xn

i−1 − xn
i

)
+θ (xn

i )−θ
(
xn

i−1

)
> 0 , (40)

i = 1,2, . . . ,n, due to the strict slope condition. Defining on [0,T ] the continuous
piecewise affine function

xn (t) := xn
i−1 +

t −T n
i−1

hn
i

(
xn

i − xn
i−1

)
, t ∈ [

T n
i−1,T

n
i

]
, (41)

we clearly have xn (0) = x, xn (T ) = zx ∈C, xn (T n
i ) = xn

i , and

xn (t) ∈ [x,zx]⊂U , t ∈ [0,T ] . (42)

The composed function t �→ θ (xn (t)) is continuously differentiable on each interval]
T n

i−1,T
n

i

[
, i= 1,2, . . . ,n, and by the mean value theorem there exists τn

i ∈ ]
T n

i−1,T
n

i

[

such that

θ (xn
i ) = θ

(
xn

i−1

)
+

d
dt

θ (xn (t))
∣
∣
∣t=τn

i
hn

i

= θ
(
xn

i−1

)
+

〈
∇θ (xn (τn

i )) ,x
n
i − xn

i−1

〉
(43)

[see (41)]. Combining (40), (43) and (8) we have that

hn
i = θ (xn

i )−θ
(
xn

i−1

)
+ρF

(
xn

i−1 − xn
i

)

=
〈−∇θ (xn (τn

i )) ,x
n
i−1 − xn

i

〉
+σF0

(
xn

i−1 − xn
i

)

≥ 〈−ξ ∗+∇θ (xn (τn
i )) ,x

n
i − xn

i−1

〉

whenever ξ ∗ ∈ F0. Consequently,

ẋn (t) =
xn

i − xn
i−1

hn
i

∈ (−F0 +∇θ (xn (τn
i ))

)0
(44)

for all t ∈ ]
T n

i−1,T
n

i

[
, i = 1,2, . . . ,n.

Thus, it remains to prove the convergence of {xn (·)} (up to a subsequence) to a
desired trajectory. To this end we observe, first, that the functions xn (·) admit values
in the same compact set [x,zx] [see (42)]. Furthermore, since there exists r > 0 with
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∇θ (z)+ rB ⊂ F0 (45)

whenever z ∈ [x,zx] [see (32)], passing to the polar sets and recalling (44) we
have that

‖ẋn (t)‖ ≤
∥
∥
∥
(−F0 +∇θ (xn (τn

i ))
)0

∥
∥
∥ ≤ 1

r
, t ∈ ]

T n
i−1,T

n
i

[
, i = 1,2, . . . ,n ,

n = 1,2, . . .. Therefore, applying successively Askoli and Banach-Alaoglu theorems
without loss of generality we can assume that both the sequence {xn (·)} con-
verges uniformly on [0,T ] to some Lipschitz continuous function x(·) and {ẋn (·)}
converges weakly in the space L∞ ([0,T ] ,H) to the derivative ẋ(·), which exists
almost everywhere on [0,T ]. Then, by Mazur’s Lemma there exists a sequence
{vn (·)} of convex combinations of the functions ẋn (·), converging to ẋ(·) strongly
in L∞ ([0,T ] ,H) and, consequently, almost everywhere on [0,T ]. Let T be the set
of all t ∈ [0,T ], t �= T n

i , such that the derivative ẋ(t) exists and vn(t)→ ẋ(t),n → ∞.
Clearly, T is a set of full measure in [0.T ].

Fix now t ∈ T and choose in, n = 1,2, . . ., with t ∈
]
T n

in−1,T
n

in

[
. Since by (40), (9)

and (24)

hn
in = T n

in −T n
in−1 ≤ 2

∥
∥F0

∥
∥
∥
∥xn

in−1 − xn
in

∥
∥ =

2
n

∥
∥F0

∥
∥‖zx − x‖→ 0 ,

we have that τn
in → t as n → ∞. Then also xn

(
τn

in

) → x(t) and ∇θ
(
xn

(
τn

in

)) →
∇θ (x(t)), n → ∞ (we use here the continuity of the gradient ∇θ (·)). Hence, recall-
ing (18), (17) and (45) we obtain

D
((−F0 +∇θ

(
xn

(
τn

in

)))0
,
(−F0 +∇θ (x(t))

)0
)

≤ 1
r2

∥
∥∇θ

(
xn

(
τn

in

))−∇θ (x(t))
∥
∥ → 0 .

In particular, given δ > 0 one can choose N = N (δ ) such that

(−F0 +∇θ
(
xn

(
τn

in

)))0 ⊂ (−F0 +∇θ (x(t))
)0

+δB (46)

whenever n ≥ N. Combining (46) with (44) by the convexity of the right-hand side
of (46) it follows that

vn (t) ∈
(−F0 +∇θ (x(t))

)0
+δB

for all n ≥ N. Passing now to the limit and taking into account the arbitrarity of
δ > 0, we conclude that x(·) is indeed a solution of the differential inclusion (34)
with x(0) = x and x(T ) = zx ∈ C. Moreover, x(·) admits values in U because all
the approximate solutions xn (·) map [0,T ] into the compact segment [x,zx] ⊂ U .
Thus [see (38) and (39)],
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TF,θ
C (x)≤ T ≤ û(x)−θ (x)+ ε ,

and getting ε → 0+ we prove the second part of the theorem. ��

Remark 3. Notice that although the right-hand side in (34) is nonconstant and the
trajectories realizing the optimal time are, in general, nonaffine (as one can see from
the second part of the proof above), this time optimal control problem satisfies an
essential property that the target set is achieved for the shortest time along one fixed
direction (or close to that).

5 Auxiliary Statement and Standing Assumptions

Our goal is to study regularity properties of û(·) [see (25)], which (see the Sects. 3
and 4) can be seen either as viscosity solution of a stationary Hamilton–Jacobi equa-
tion or as translated value function in an associated optimal time control problem.
Such regularity is strictly related to the existence, uniqueness and stability of min-
imizers of y �→ ρF (x− y) + θ (y) on C. In the particular case θ ≡ 0 this relation
was well studied in [18, 25, 26], while for a general marginal function T (x) and a
compact set C =C (x) [see (1)] we find a justification of this property, for instance,
in the result by F. Clarke on representation of the generalized gradient ∂ cT (x) as a
family of integrals of f (x, ·) with respect to all Radon measures supported on the set
of minimizers Π (x) (see [12, p. 86]). In the sequel the set Π (x) for the problem (7)
will be denoted by πF,θ

C (x), and we keep the same notation for its element if πF,θ
C (x)

is a singleton.

Our standing hypothesis in what follows is a slightly strengthened slope condi-
tion [compare with (24)]:

(H) there exists 0 < γ < 1
‖F‖‖F0‖ such that

θ (x)−θ (y)≤ γρF (x− y) (47)

for all x,y ∈C.

Extending if necessary θ (·) in a suitable way (see Remark 1), without loss of gener-
ality we can assume that the function θ (·) is defined and satisfies (47) on the whole
space H. Due to Remark 2 the inequality (47) can be equivalently written as the
inclusion

∂ cθ (x)⊂ γF0 , x ∈ H . (48)

By (9) and the convexity of F0 it follows from (48) that

∂ cθ (x)+
1− γ
‖F‖ B ⊂ ∂ cθ (x)+(1− γ)F0 ⊂ F0 , (49)
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or, recalling the definition (17),

rF0 (ζ )≥ 1− γ
‖F‖ ∀ζ ∈ ∂ cθ (x) , x ∈ H . (50)

On the other hand, passing in (49) to polar sets we have

∥
∥
∥
(
F0 −ζ

)0
∥
∥
∥ ≤ ‖F‖

1− γ
∀ζ ∈ ∂ cθ (x) , x ∈ H . (51)

In particular, if θ (·) is (Fréchet) differentiable at x, then it follows from (50)
and (51) that

rF0 (∇θ (x))≥ 1− γ
‖F‖ (52)

and
∥
∥
∥
(
F0 −∇θ (x)

)0
∥
∥
∥ ≤ ‖F‖

1− γ
, (53)

respectively (these estimates will be used further in Sect. 7).

Besides (H) in what follows we need a certain “slope-preserving” compatibility
of the set C and the function θ (·). Namely, set the following hypothesis:

(Ĥ) for each x ∈ ∂C there exist a (possibly empty) convex set Γ (x)⊂ γF0 and a
(possibly trivial) convex cone Nθ

C (x) such that

∂ p (θ |C )(x) = Γ (x)+Nθ
C (x) . (54)

So, the subdifferential ∂ p (θ |C )(x) is empty if and only if Γ (x) = ∅, while it is
bounded iff Nθ

C (x) = {0}. Let us denote by ∂ θC the part of ∂C consisting of the
points x where the cone Nθ

C (x) is nontrivial. Notice that in the case θ ≡ 0 we have
Γ (x) = {0}, Nθ

C (x) =Np
C (x) for each x ∈ ∂C, and ∂ θC = ∂ ∗C is the reduced bound-

ary in the sense of [25, 26].
Observe that the equality (54) holds with Γ (x) = ∂ pθ (x) and Nθ

C (x) = Np
C (x),

in particular, whenever either both θ (·) and C are proximally regular [because for
the proximal subdifferentials the inclusion ∂ p (θ |C )(x) ⊃ ∂ pθ (x)+Np

C (x) always
holds, while for the limiting ones we have ∂ l (θ |C )(x) ⊂ ∂ lθ (x) + Nl

C (x) (see,
e.g., [14, p. 62])] or θ (·) is of class C1,1 near a given point (that can be proved
easily by the same line as Proposition 2.11 [14, p. 38]). In the latter case, moreover,
Γ (x) = {∇θ (x)}.

Let us prove now an auxiliar assertion giving a property of minimizing sequences
in (25), which generalizes the similar result [25, Lemma 5.1] obtained for the case
θ ≡ 0. We use here some tools of Variational and Proximal Analysis.

Lemma 1. Let us suppose the standing assumptions (H) and (Ĥ). Then given
a point z ∈ H \C and a minimizing sequence {xn} ⊂ C for the function x �→
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ρF (z− x)+θ (x) on C one can find another minimizing sequence {x′n} ⊂ ∂ θC and
sequences {x′′n}, {vn}, {ξ ∗

n } such that

vn ∈ ∂ p (θ |C )
(
x′n

)∩∂F0 , (55)

ξ ∗
n ∈ ∂ρF

(
z− x′′n

)
(56)

and
∥
∥x′n − xn

∥
∥+

∥
∥x′′n − xn

∥
∥ → 0 , (57)

‖vn −ξ ∗
n ‖ → 0 (58)

as n → ∞.

Proof. Let us take an arbitrary sequence εn → 0+ with

ρF (z− xn)+θ (xn)≤ û(z)+ εn

and applying the Ekeland Variational Principle [21, Corollary 11] choose a
sequence {yn} ⊂C such that

ρF (z− yn)+θ (yn) ≤ û(z)+ εn ; (59)

‖xn − yn‖ ≤ √
εn

and
ρF (z− yn)+θ (yn)≤ ρF (z− y)+θ (y)+

√
εn ‖y− yn‖ (60)

for all y ∈C, n = 1,2, . . ..
The inequality (60) means that yn minimizes the functional

Fn (y) := ρF (z− y)+θ |C (y)+
√

εn ‖y− yn‖

on H. Then the necessary condition of optimality in proximal form yields 0 ∈
∂ pFn (yn). Decomposing the proximal subdifferential in accordance with the fuzzy
sum rule (see Theorem 8.3 [14, p. 56]) we find sequences {x′n} ⊂ C and {x′′n} ⊂ H,
‖x′n − yn‖ ≤ √

εn, ‖x′′n − yn‖ ≤ √
εn, such that

0 ∈ −∂ρF
(
z− x′′n

)
+

√
εn

x′′n − yn

‖x′′n − yn‖ +∂ p (θ |C )
(
x′n

)
+

√
εnB

⊂ −∂ρF
(
z− x′′n

)
+∂ p (θ |C )

(
x′n

)
+2

√
εnB .

Hence, there exist vectors v′
n ∈ ∂ p (θ |C )(x′n) and ξ ∗

n ∈ ∂ρF (z− x′′n) with
∥
∥v′

n −ξ ∗
n

∥
∥ ≤ 2

√
εn . (61)

It follows from (59), (47) and (9) that {x′n} is a minimizing sequence of x �→
ρF (z− x)+θ (x) on C. Indeed,
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ρF
(
z− x′n

)
+θ

(
x′n

) ≤ ρF (z− yn)+θ (yn)

+ρF
(
yn − x′n

)
+ γ

∥
∥F0

∥
∥

∥
∥yn − x′n

∥
∥

≤ û(z)+(γ +1)
∥
∥F0

∥
∥√

εn + εn .

By using the hypothesis (Ĥ) we deduce that x′n ∈ ∂ θC since otherwise v′
n ∈Γ (x′n)⊂

γF0 contradicting the choice of ξ ∗
n because ‖v′

n −ξ ∗
n ‖→ 0 [see (61)] and ξ ∗

n ∈ ∂F0

[see (12)]. So, by (54) v′
n can be decomposed in a sum wn +un where wn ∈ Γ (x′n)

and un ∈ Nθ
C (x

′
n) with un �= 0. Finally, let us define the vectors

vn :=
un

ρF0−wn
(un)

+wn ∈ Nθ
C

(
x′n

)
+Γ

(
x′n

)
= ∂ p (θ |C )

(
x′n

)
. (62)

Obviously, vn ∈ ∂F0 implying together with (62) the property (55). Furthermore,
applying (9), the hypothesis (Ĥ) and the relations (48), (51) with Γ (x′n) in the place
of ∂ cθ (x′n) we successively obtain

∥
∥v′

n −vn
∥
∥ =

‖un‖
ρF0−wn

(un)

∣
∣ρF0−wn

(
v′

n −wn
)−ρF0−wn

(ξ ∗
n −wn)

∣
∣

≤ ∥
∥F0 −wn

∥
∥
∥
∥
∥
(
F0 −wn

)0
∥
∥
∥

∥
∥v′

n −ξ ∗
n

∥
∥

≤ 1+ γ
1− γ

‖F‖∥
∥F0

∥
∥
∥
∥v′

n −ξ ∗
n

∥
∥ , (63)

n = 1,2, . . .. Combining now (63) and (61) we arrive at (58), and the lemma is
proved. ��

6 Existence, Uniqueness and Stability of Minimizers

Given x0 ∈ ∂C let us set now the local assumptions, under which the results on
well-posedness and regularity near x0 hold:

(H1 (x0)) the mapping x �→ JF
(
∂ p (θ |C )(x)∩∂F0

)
is single-valued and lips-

chitzean (with Lipschitz constant L = L(x0)> 0) on the set

Cδ (x0) :=
{

x ∈ ∂ θC : ‖x− x0‖ ≤ δ
}
, δ > 0 ;

(H2 (x0)) F is uniformly rotund w.r.t. the set

Uδ (x0) :=
⋃

x∈Cδ (x0)

∂ p (θ |C )(x)∩∂F0. (64)

Observe that (like the case θ ≡ 0) in finite dimensions the hypothesis (H2 (x0))
holds automatically if one requires just the strict convexity of F w.r.t. each vector
ξ ∗ ∈ Uδ (x0) that trivially follows from (H1 (x0)). So, the assumption (H2 (x0)) can
be required only in an infinite dimensional space H, while in R

n it is superfluous.



Regularity of Marginal Functions in Hilbert Spaces 441

Theorem 3. Under the standing assumptions (H) and (Ĥ) let us fix x0 ∈ ∂C and
assume that the local hypotheses (H1 (x0)) and (H2 (x0)) are fulfilled. Then there
exists a neighbourhood U(x0) of x0 where the mapping πF,θ

C (·) is single-valued and
locally lipschitzean.

Proof. Due to the choice of γ > 0 (see (H)) we can assume δ > 0 from the hypothe-
ses (H1 (x0))− (H2 (x0)) so small that

δγ
∥
∥F0

∥
∥ <

1− γ ‖F‖∥
∥F0

∥
∥

L
.

Now, using the upper semicontinuity of û(·) and the equality û(x0) = θ (x0) (see
Theorem 1), we can define the (open) neighbourhood

U(x0) :=

{

x ∈ H : ‖x− x0‖<
(
1− γ ‖F‖∥

∥F0
∥
∥)

δ
2‖F‖‖F0‖ ,

û(x)< θ (x0)+
1− γ ‖F‖∥

∥F0
∥
∥

L
−δγ

∥
∥F0

∥
∥
}

. (65)

Fix z ∈ U(x0) \C and a minimizing sequence {xn} ⊂ C for the function x �→
ρF (z− x)+ θ (x) on C. By Lemma 1 let us choose another minimizing sequence
{x′n} ⊂ ∂ θC and sequences {x′′n} ⊂ H, vn ∈ ∂ p (θ |C )(x′n)∩∂F0, ξ ∗

n ∈ ∂ρF (z− x′′n)
satisfying (57) and (58).

Let us show first that x′n ∈ Cδ (x0) for n ≥ 1 large enough. To this end we de-
note by

0 < εn := ρF
(
z− x′n

)
+θ

(
x′n

)− û(z)→ 0+ (66)

and using the inequalities (9) and (47) successively write

ρF
(
x0 − x′n

) ≤ ρF (x0 − z)+ρF
(
z− x′n

)

= ρF (x0 − z)+ û(z)−θ
(
x′n

)
+ εn

≤ ρF (x0 − z)+ρF (z− x0)+θ (x0)−θ
(
x′n

)
+ εn

≤ 2
∥
∥F0

∥
∥‖z− x0‖+ γ

∥
∥F0

∥
∥
∥
∥x′n − x0

∥
∥+ εn . (67)

Hence, again by (9) we have
(

1
‖F‖ − γ

∥
∥F0

∥
∥
)∥

∥x′n − x0
∥
∥ ≤ εn +2

∥
∥F0

∥
∥‖z− x0‖ ,

and by the choice of z [see (65)] conclude that ‖x′n − x0‖< δ .
Then, due to one of the characterizations of the convex subdifferential [see (12)]

ξ ∗
n ∈ NF (ξn)∩∂F0, where

ξn :=
z− x′′n

ρF (z− x′′n)
,
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and, consequently [see (10)], ξn ∈ JF (ξ ∗
n ), n = 1,2, . . ..

Set now

βn := max
{

εn ,
∥
∥x′n − xn

∥
∥+

∥
∥x′′n − xn

∥
∥ , ‖JF (vn)−ξn‖

}
(68)

and deduce from (57), (58), the hypothesis (H2 (x0)) and [26, Proposition 2.1] that
βn → 0+ as n → ∞.

Taking into account the representation x′′n = z−ξnρF (z− x′′n), for given m,n ≥ 1
we write

∥
∥x′′n − x′′m

∥
∥ ≤ ρF

(
z− x′′n

)‖ξn −ξm‖+‖ξm‖
∣
∣ρF

(
z− x′′n

)−ρF
(
z− x′′m

)∣∣ . (69)

Let us estimate each term of the latter inequality. First, by the definition of εn

[see (66)], (9), (47) and (68) we obtain that

ρF
(
z− x′′n

) ≤ ∥
∥F0

∥
∥
∥
∥x′′n − x′n

∥
∥+ û(z)−θ

(
x′n

)
+ εn

≤ (∥∥F0
∥
∥+1

)
βn + û(z)−θ (x0)+ γδ

∥
∥F0

∥
∥ (70)

and that
∣
∣ρF

(
z− x′′n

)−ρF
(
z− x′′m

)∣∣

≤ ∣
∣ρF

(
z− x′n

)−ρF
(
z− x′m

)∣∣+
∥
∥F0

∥
∥(βn +βm)

≤ ∣
∣ρF

(
z− x′n

)
+θ

(
x′n

)− û(z)
∣
∣+

∥
∥F0

∥
∥(βn +βm)

+
∣
∣ρF

(
z− x′m

)
+θ

(
x′m

)− û(z)
∣
∣+

∣
∣θ

(
x′n

)−θ
(
x′m

)∣∣

≤ (∥∥F0
∥
∥+1

)
(βn +βm)+ γ

∥
∥F0

∥
∥
∥
∥x′n − x′m

∥
∥ . (71)

Furthermore, since vn ∈ ∂ p (θ |C )(x′n) ∩ ∂F0, applying the main hypothesis
(H1 (x0)) we have

‖ξn −ξm‖ ≤ ‖JF (vn)−JF (vm)‖+βn +βm

≤ L
∥
∥x′n − x′m

∥
∥+βn +βm . (72)

After substituting (70)–(72) into (69) and joining all the infinitesimal constants we
finally arrive at:

∥
∥x′n − x′m

∥
∥ ≤ ∥

∥x′′n − x′′m
∥
∥+βn +βm ≤ [

L
(
û(z)−θ (x0)+ γδ

∥
∥F0

∥
∥)

+γ ‖F‖∥
∥F0

∥
∥]∥

∥x′n − x′m
∥
∥+μn,m (73)

where μn,m → 0+ as n,m → ∞. Since

γ ‖F‖∥
∥F0

∥
∥+L

(
û(z)−θ (x0)+ γδ

∥
∥F0

∥
∥)

< 1

by the choice of z [see (65)], we conclude from (73) that {x′n} (and, consequently,
{xn}) is a Cauchy sequence in H.
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In fact, we have proved that each minimizing sequence of the function x �→
ρF (z− x)+ θ (x) on C is a Cauchy sequence. Therefore, its limit x̄ is the (unique)
element of the set of minimizers πF,θ

C (z). Moreover, by using the same argument

we can prove the continuity of the mapping z �→ πF,θ
C (z) on U(x0). Indeed, taking a

sequence {zn} ⊂ U(x0), zn → z ∈ U(x0), and denoting by z̄n the unique element of
πF,θ

C (zn), we observe that {z̄n} is a minimizing sequence of x �→ ρF (z− x)+θ (x)
on C. Indeed, we have

û(z) ≤ ρF (z− z̄n)+θ (z̄n)≤ ρF (z− zn)+ρF (zn − z̄n)+θ (z̄n)

≤ û(z)+2
∥
∥F0

∥
∥‖z− zn‖ ,

where the latter inequality follows from the lipschitzeanity of the function û(·). So,
{z̄n} converges to the (unique) element of πF,θ

C (z).

In the second part of the proof we show that the single-valued function πF,θ
C (·) is

actually Lipschitz continuous on U(x0). To do this fix an arbitrary point x ∈ U(x0)
and choose τ > 0 and 0 < ε ≤ τ

2‖F0‖ so small that

û(x)−θ (x0)+ γδ
∥
∥F0

∥
∥+ τ <

1− γ ‖F‖∥
∥F0

∥
∥

L
(74)

and
2‖F‖∥

∥F0
∥
∥

1− γ ‖F‖‖F0‖ (‖x− x0‖+ ε)< δ . (75)

Let us take z1,z2 ∈ U(x0), ‖zi − x‖ < ε , i = 1,2, and assume first that both (differ-
ent) points z1 and z2 are out of C. Setting β := ‖z1 − z2‖/2 > 0, in virtue of the
hypothesis (H2 (x0)) and [26, Proposition 2.1 (ii)] we find 0 < ν ≤ ε ∧β such that

‖JF (η∗)−ξ‖ ≤ β

whenever ξ ∈ JF (ξ ∗), ξ ∗ ∈ ∂F0 and η∗ ∈ Uδ (x0) with ‖ξ ∗ −η∗‖ ≤ ν . Without
loss of generality one may suppose that

ν +
2‖F‖∥

∥F0
∥
∥

1− γ ‖F‖‖F0‖ (‖x− x0‖+ ε)< δ (76)

and that
(
zi +νB

)∩C =∅, i = 1,2. Set also z̄i := πF,θ
C (zi). Now we apply the tools

used for proving Lemma 1 but without recurrence to the Ekeland Principle (because
the exact minimizer is already known). Namely, z̄i minimizes the function

Fi(z) := ρF (zi − z)+θ |C (z)

on H. Therefore 0 ∈ ∂ pFi (z̄i), i = 1,2. By the fuzzy sum rule similarly as in the
proof of Lemma 1 we find points z′i ∈ ∂ θC and z′′i ∈H both close to z̄i (say ‖z′i − z̄i‖+
‖z′′i − z̄i‖ ≤ ν) and vectors vi ∈ ∂ p (θ |C )(z′i)∩∂F0, ξ ∗

i ∈ ∂ρF (zi − z′′i ) such that
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‖vi −ξ ∗
i ‖ ≤ ν . (77)

Let us show now that z′i ∈Cδ (x0). Similarly as in (67) we have:

ρF (x0 − z̄i) ≤ ρF (zi − z̄i)+ρF (x0 − zi)

= û(zi)−θ (z̄i)+ρF (x0 − zi)

≤ ρF (zi − x0)+θ (x0)−θ (z̄i)+
∥
∥F0

∥
∥‖zi − x0‖

≤ 2
∥
∥F0

∥
∥‖zi − x0‖+ γ

∥
∥F0

∥
∥‖z̄i − x0‖ ,

and, hence,

1− γ
∥
∥F0

∥
∥‖F‖

‖F‖ ‖z̄i − x0‖ ≤ 2
∥
∥F0

∥
∥‖zi − x0‖ .

Recalling (76), from the latter inequality we obtain
∥
∥z′i − x0

∥
∥ ≤ ∥

∥z′i − z̄i
∥
∥+‖z̄i − x0‖

≤ ν +
2
∥
∥F0

∥
∥‖F‖

1− γ ‖F0‖‖F‖ (ε +‖x− x0‖)< δ .

Thus z′i ∈Cδ (x0) and vi ∈ Uδ (x0) [see (64)].

Setting now ξi := zi−z′′i
ρF(zi−z′′i )

we see that ξi ∈ JF (ξ ∗
i ), and it follows from (77) and

from the choice of ν > 0 that

‖JF (vi)−ξi‖ ≤ β . (78)

Joining together the inequalities (78) for i = 1,2 and using the hypothesis (H1 (x0)),
we have

‖ξ1 −ξ2‖ ≤ 2β +L
∥
∥z′1 − z′2

∥
∥

≤ 2β +L(2ν +‖z̄1 − z̄2‖) . (79)

In order to estimate the distance ‖z̄1 − z̄2‖ we use first the proximity of each
minimizer z̄i to z′′i = zi −ξiρF (zi − z′′i ). Namely,

‖z̄1 − z̄2‖ ≤ 2ν +
∥
∥z′′1 − z′′2

∥
∥

≤ 2ν +‖z1 − z2‖+
∥
∥ξ1ρF

(
z1 − z′′1

)−ξ2ρF
(
z2 − z′′2

)∥∥

≤ 2ν +‖z1 − z2‖+ρF
(
z1 − z′′1

)‖ξ1 −ξ2‖
+‖F‖ ∣

∣ρF
(
z1 − z′′1

)−ρF
(
z2 − z′′2

)∣∣ . (80)

On the other hand, similarly to (70) and (71) we successively have

ρF
(
z1 − z′′1

) ≤ ρF (z1 − z̄1)+
∥
∥F0

∥
∥

∥
∥z̄1 − z′′1

∥
∥

≤ ∥
∥F0

∥
∥ν + û(z1)−θ (z̄1)
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≤ ∥
∥F0

∥
∥(ν +‖z1 − x‖)+ û(x)−θ (x0)+ γ

∥
∥F0

∥
∥‖z̄1 − x0‖

≤ û(x)−θ (x0)+ γ
∥
∥F0

∥
∥δ + τ (81)

(recall that ν ≤ ε ≤ τ
2‖F0‖ ), and

∣
∣ρF

(
z1 − z′′1

)−ρF
(
z2 − z′′2

)∣∣

≤ |ρF (z1 − z̄1)−ρF (z2 − z̄2)|+2
∥
∥F0

∥
∥ν

≤ |û(z1)− û(z2)|+ |θ (z̄1)−θ (z̄2)|+2
∥
∥F0

∥
∥ν

≤ ∥
∥F0

∥
∥(2ν +‖z1 − z2‖)+ γ

∥
∥F0

∥
∥‖z̄1 − z̄2‖ . (82)

Taking into account the inequalities (81), (79), (82) and recalling that ν ≤ β =
‖z1 − z2‖/2 we deduce from (80):

[
1−L

(
û(x)−θ (x0)+ γ

∥
∥F0

∥
∥δ + τ

)− γ ‖F‖∥
∥F0

∥
∥]‖z̄1 − z̄2‖ ≤ K ‖z1 − z2‖

where

K = K (x) := 2
(
1+‖F‖∥

∥F0
∥
∥)

+(L+1)
(
û(x)−θ (x0)+ γ

∥
∥F0

∥
∥δ + τ

)
> 0 .

Finally,

μ = μ (x) := 1−L
(
û(x)−θ (x0)+ γ

∥
∥F0

∥
∥δ + τ

)− γ ‖F‖∥
∥F0

∥
∥ > 0

by (74), and we arrive at the (local) Lipschitz inequality

∥
∥
∥πF,θ

C (z1)−πF,θ
C (z2)

∥
∥
∥ ≤ K (x)

μ (x)
‖z1 − z2‖ . (83)

In the case when one of the points zi (say z2) belongs to C, we obviously have
πF,θ

C (z2) = z2 and

‖z̄1 − z̄2‖ = ‖z̄1 − z2‖ ≤ ‖F‖ρF (z1 − z̄1)+‖z1 − z2‖
= ‖F‖(û(z1)−θ (z̄1))+‖z1 − z2‖
= ‖F‖(û(z1)− û(z2))+‖F‖(θ (z2)−θ (z̄1))+‖z1 − z2‖
≤ (‖F‖∥

∥F0
∥
∥+1

)‖z1 − z2‖+ γ ‖F‖∥
∥F0

∥
∥‖z̄1 − z̄2‖ .

Hence, (83) holds as well with

K (x) := ‖F‖∥
∥F0

∥
∥+1

and
μ (x) := 1− γ ‖F‖∥

∥F0
∥
∥ > 0 .

Theorem is completely proved. ��
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Remark 4. Notice that the Lipschitz constant of the mapping πF,θ
C (·) depends

essentially on the distance from the boundary of the neighbourhood U(x0) con-
trolled by the parameter τ . In fact, U(x0) is defined by means of two inequalities:
the first one gives direct proximity to the boundary point x0, while the second
derives from the upper semicontinuity of the marginal function û(·) at x0. Thus,
the Lipschitz constant of πF,θ

C (·) depending on x ∈ U(x0) tends to +∞ (μ (x) → 0)
whenever the strict upper semicontinuity inequality

û(x)< û(x0)+
1− γ ‖F‖∥

∥F0
∥
∥

L
−δγ

∥
∥F0

∥
∥

tends to become an equality, i.e., the value of the function û(·) at x is most distant
from its value at x0. This generalizes the well-known property of the metric projec-
tions onto prox-regular sets (see, e.g., [8]).

Remark 5. If the conditions (H1 (x0)) and (H2 (x0)) are fulfilled at each point x0 ∈
∂C, then the marginal mapping x �→ πF,θ

C (x) is single-valued and locally lipschitzean
on the open neighbourhood

A(C) := intC∪
⋃

x0∈∂C

U(x0)

of the target set.

7 Regularity of the Value Function

At the beginning of this section we study the Clarke (and lower) regularity of the
function û(·) at a given point x̂ out of the target set under an a priori assumption
that for each x near x̂ the infimum in (7) is attended at an unique point, and a kind of
stability of the minimizer takes place. Furthermore, we give a representation formula
for the Clarke (Fréchet or Mordukhovich) subdifferential of û(·) at x̂ in terms of the
respective constructions for F , θ (·) and C. A similar result was obtained in [26] in
the case θ ≡ 0 (see also [16]).

For one step of the proof we need the following simple observation.

Lemma 2. Fix x /∈ C such that πF,θ
C (x) is a singleton (say x̄) and denote by ξ :=

x−x̄
ρF (x−x̄) . Then for all 0 ≤ t ≤ ρF (x− x̄) the inequality

û
(

x− tξ
)
≤ û(x)− t (84)

holds.
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Proof. Setting yt := x− tξ for 0 ≤ t ≤ ρF (x− x̄), we have

û(yt) ≤ ρF (yt − x̄)+θ (x̄) = ρF

(
(x− x̄)

(
1− t

ρF (x− x̄)

))
+θ (x̄)

= ρF (x− x̄)− t +θ (x̄) = û(x)− t ,

and (84) is proved. ��

Theorem 4. Let us fix x̂ /∈ C and assume that the mapping x �→ πF,θ
C (x) is single-

valued in a neighbourhood U (x̂) of x̂ and such that

lim
r→0+

ω (x̂;r)√
r

= 0 , (85)

where ω (x̂;r) is the modulus of continuity of πF,θ
C (·) at the point x̂, namely,

ω (x̂;r) := sup
{∥
∥
∥πF,θ

C (x)−πF,θ
C (x̂)

∥
∥
∥ : ‖x− x̂‖ ≤ r

}
.

Suppose also that the restriction θ |C is proximally regular at x̂ := πF,θ
C (x̂). Then the

function û(·) is Clarke (and, hence, lower) regular at x̂. Furthermore, the following
formula takes place:

∂ cû(x̂) = ∂ l û(x̂) = ∂−û(x̂) = ∂ρF
(
x̂− x̂

)∩∂− (θ |C )
(
x̂
) �=∅ . (86)

Proof. Our proof is divided into several steps.

Step 1. Let us show first that ∂−û(x)⊂ ∂ρF (x− x̄) for each x ∈U (x̂) where x̄ :=
πF,θ

C (x). To this end we use the representation of the subdifferential ∂ρF (x− x̄)
via the normal cone to F [see (12)]. Since the function û(·) satisfies the slope
condition (26), by (20) and Remark 2 we have ∂−û(x) ⊂ ∂ cû(x) ⊂ F0. On the
other hand, by Theorem 1 û(·) is the viscosity solution of (5). So, in particular,

ρF0 (p)≥ 1 (87)

for each p ∈ ∂−û(x). Thus ∂−û(x)⊂ ∂F0.
Besides that, given p ∈ ∂−û(x) let us choose ε > 0 and δ > 0 such that

û(y)− û(x)−〈p,y− x〉 ≥ −ε ‖x− y‖

for all y, ‖y− x‖ ≤ δ . In particular, setting y = x− tξ̄ , where

ξ̄ :=
x− x̄

ρF (x− x̄)
,

and applying Lemma 2 we have that

û(x)− t ≥ û
(
x− tξ̄

)

≥ û(x)− t
〈

p, ξ̄
〉− εt

∥
∥ξ̄

∥
∥
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for sufficiently small t > 0. Hence, letting ε → 0+ we arrive at 1 ≤ 〈
p, ξ̄

〉
and,

consequently,
〈

p,ξ − ξ̄
〉 ≤ 0

whenever ξ ∈ F , i.e., p ∈ NF
(
ξ̄
)
. So, due to (12) we conclude that ∂−û(x) ⊂

∂ρF (x− x̄).
Step 2. We prove the inclusion ∂ pû(x) ⊂ ∂ p (θ |C )(x̄), x ∈ U (x̂). Given p ∈

∂ pû(x) let us choose η > 0 and σ > 0 such that

û(y)− û(x)−〈p,y− x〉 ≥ −σ ‖y− x‖2

for all y, ‖y− x‖ ≤ η . In particular, for y = z− x̄+ x, where z ∈ C, ‖z− x̄‖ ≤ η ,
we have:

−σ ‖z− x̄‖2 ≤ û(z− x̄+ x)− û(x)−〈p,z− x̄〉
≤ ρF (x− x̄)+θ (z)−ρF (x− x̄)−θ (x̄)−〈p,z− x̄〉 ,

or, in other words,

−σ ‖z− x̄‖2 ≤ θ |C (z)−θ |C (x̄)−〈p,z− x̄〉

for all z ∈ H with ‖z− x̄‖ ≤ η that means p ∈ ∂ p (θ |C )(x̄).
Thus, joining Steps 1 and 2 we conclude that

∂ pû(x)⊂ ∂ρF (x− x̄)∩∂ p (θ |C )(x̄) (88)

for each x close to x̂.
Step 3. Let us prove now a kind of opposite inclusion

∂ρF (x− x̄)∩∂ p (θ |C )(x̄)⊂ ∂−û(x) (89)

but only at the point x = x̂. To this end fix p from the left-hand side of (89). Then,
in particular,

ρF (ξ )≥ ρF
(
x̂− x̂

)
+

〈
p,ξ − x̂+ x̂

〉
(90)

for all ξ ∈ H. Given x /∈ C sufficiently close to x̂ let us set ξ = x− x̄ in (90) and
rewrite the latter inequality as

ρF (x− x̄)−ρF
(
x̂− x̂

)−〈p,x− x̂〉 ≥ −〈
p, x̄− x̂

〉
. (91)

On the other hand, one can choose η > 0 and σ > 0 such that

θ (z)≥ θ
(
x̂
)
+

〈
p,z− x̂

〉−σ
∥
∥z− x̂

∥
∥2

(92)

whenever z ∈ C with
∥
∥z− x̂

∥
∥ ≤ η . Due to the continuity of the mapping πF,θ

C (·)
at x̂ the inequality (92) holds for z = x̄ with x enough close to x̂. Combining this
with both (91) and the condition (85), we successively obtain:
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liminf
x→x̂

û(x)− û(x̂)−〈p,x− x̂〉
‖x− x̂‖

= liminf
x→x̂

ρF (x− x̄)+θ (x̄)−ρF
(
x̂− x̂

)−θ
(
x̂
)−〈p,x− x̂〉

‖x− x̂‖

≥ liminf
x→x̂

−〈
p, x̄− x̂

〉
+θ (x̄)−θ

(
x̂
)

‖x− x̂‖

≥ liminf
x→x̂

−σ
∥
∥x̄− x̂

∥
∥2

‖x− x̂‖ ≥ −σ
(

lim
r→0+

ω (x̂,r)√
r

)2

= 0 ,

i.e., p ∈ ∂−û(x̂).
Taking into account the proximal regularity of θ |C at the point x̂ and the

inclusions (20) we deduce from (89) that

∂ρF
(
x̂− x̂

)∩∂− (θ |C )
(
x̂
) ⊂ ∂−û(x̂)⊂ ∂ cû(x̂) . (93)

Step 4. To complete the proof recall the representation formula (22) for the Clarke
subdifferential through the proximal subgradients in neighbour points and apply
the inclusion (88). So, ∂ cû(x̂) is contained in the closed convex hull of the set of
all weak limits of sequences ζi ∈ ∂ρF (xi − x̄i)∩ ∂ p (θ |C )(x̄i) such that xi → x̂
as i → ∞. Furthermore, since x̄i → x̂, the subdifferential of a convex function has
s×w sequentially closed graph and

w− limsup
x→x̂, x∈C

∂ p (θ |C )(x) = ∂ l (θ |C )
(
x̂
)

(see [31, p. 240]), we have

∂ cû(x̂) ⊂ co
(

∂ρF
(
x̂− x̂

)∩∂ l (θ |C )
(
x̂
))

= ∂ρF
(
x̂− x̂

)∩∂− (θ |C )
(
x̂
)
, (94)

where the latter equality follows from the lower regularity of the function θ |C
(it is a consequence of the proximal regularity) and from the convexity of the
Fréchet subdifferential ∂− (θ |C )

(
x̂
)
. Hence, in particular, the right-hand side

of (94) is nonempty because û(·) is a lipschitzean function.

Combining now (94) with (93) proves the theorem. ��
Corollary 1. If the condition (85) is fulfilled not only at the point x̂ itself but at each
x ∈ U (x̂) (in particular, if πF,θ

C (·) is Hölder continuous with an exponent β > 1/2
on this neighbourhood), then the equality

∂ cû(x̂) = ∂ρF
(
x̂− x̂

)∩∂− (θ |C )
(
x̂
)

(95)

takes place whenever θ |C is just lower regular at x̂. If, moreover, θ |C is lower
regular at each point of ∂C close to x̂ then the same equality as (95) holds also at
each x ∈U (x̂).
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Proof. Indeed, under the assumptions of the Corollary the inclusion (89) is valid at
all points x close to x̂, and passing to the weak Kuratowski–Painlevé upper limits we
have

∂ρF
(
x̂− x̂

)∩∂− (θ |C )
(
x̂
)
= ∂ρF

(
x̂− x̂

)∩∂ l (θ |C )
(
x̂
)

⊂ ∂ l û(x̂)⊂ ∂ cû(x̂) ,

while the opposite inclusion is already proved [see (94)]. The second assertion is
obvious. ��

Observe that in the framework of Corollary 1 by strengthening the condition (85)
we can achieve the Clarke regularity of û(·) as well.

Proposition 1. Given x̂ /∈ C let us assume that the mapping x �→ πF,θ
C (x) is single-

valued in a neighbourhood U (x̂) of x̂ and satisfies the Lipschitz type inequality
∥
∥
∥πF,θ

C (x)−πF,θ
C (x̂)

∥
∥
∥ ≤ L‖x− x̂‖ (96)

for all x ∈U (x̂) with some constant L > 0. If, moreover, the restriction θ |C is lower
regular at x̂ := πF,θ

C (x̂), then the statement of Theorem 4 holds.

Proof. The equalities in (86) split essentially into two inclusions. The first one
is (94), which is obtained by using only the lower regularity of θ |C , and the sec-
ond is

∂ρF
(
x̂− x̂

)∩∂− (θ |C )
(
x̂
) ⊂ ∂−û(x̂) (97)

[compare with (89)].
Taking p ∈ ∂ρF

(
x̂− x̂

)∩ ∂− (θ |C )
(
x̂
)

similarly as in the proof of Theorem 4
(see Step 3) we write the inequality (91) for all x /∈C sufficiently close to x̂. Further-
more, given ε > 0 we choose η > 0 such that

θ (z)≥ θ
(
x̂
)
+

〈
p,z− x̂

〉− ε
L

∥
∥z− x̂

∥
∥ (98)

whenever z ∈C with
∥
∥z− x̂

∥
∥ ≤ η [compare with (92)]. By the continuity of πF,θ

C (·)
let us choose δ > 0 such that

∥
∥x̄− x̂

∥
∥ ≤ η whenever ‖x− x̂‖ ≤ δ . Setting then z = x̄

in (98) and taking into account the inequality (96) we have:

θ (x̄)≥ θ
(
x̂
)
+

〈
p, x̄− x̂

〉− ε ‖x− x̂‖ . (99)

Joining together (91) and (99) we obtain that

û(x)− û(x̂)−〈p,x− x̂〉 = ρF (x− x̄)+θ (x̄)

−ρF
(
x̂− x̂

)−θ
(
x̂
)−〈p,x− x̂〉

≥ −〈
p, x̄− x̂

〉
+θ (x̄)−θ

(
x̂
) ≥ −ε ‖x− x̂‖
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for all x, ‖x− x̂‖ ≤ δ . So, p ∈ ∂−û(x̂), and the inclusion (97) is proved. ��
We see that under the assumption of Corollary 1 the question of the Fréchet

continuous differentiability of the value function û(·) is reduced to the single-
valuedness and the continuity of the mapping

Φ (x) := ∂− (θ |C )(x̄)∩∂ρF (x− x̄) (100)

near a given point x̂. Indeed, if Φ (x) = ∂ cû(x) is a singleton, then by [12, Propo-
sition 2.2.4] û(·) is strictly differentiable and ∂ cû(x) = {∇Hû(x)}, where ∇Hû(x)
stands for the (strict) Hadamard derivative coinciding with the Fréchet one by the
continuity. Observe that in finite dimensions the mapping (100) is continuous as
soon as it is single-valued. This follows from the lower regularity of θ |C and from
the properties of the subdifferentials ∂ l (θ |C ) and ∂ρF .

Thus, recalling (12) we have a representation formula for the gradient ∇û(·)
in a neighbourhood of x̂ through the (unique) minimizer x̄ of the function y �→
ρF (x− y)+θ (y) on C:

∇û(x) = ∂− (θ |C )(x̄)∩NF

(
x− x̄

ρF (x− x̄)

)
∩∂F0 . (101)

Although the condition guaranteeing the continuous Fréchet differentiability in
such a form [single-valuedness and continuity of the mapping (100)] and the for-
mula (101) have a certain theoretical interest, their practical applicability is very
restrictive because they are given in terms of an a priori unknown minimizer.
To overcome this difficulty we propose first an alternate hypothesis regarding the
regularity properties of either the function θ |C or the gauge F . Namely, observing
that the right-hand side in (101) is reduced to a singleton whenever either the Fréchet

subdifferential ∂− (θ |C )(x̄) or the normal cone NF

(
x−x̄

ρF (x−x̄)

)
(both unbounded)

becomes a semiline, we arrive at the following result.

Theorem 5. Given x̂ ∈ H \C assume that in some neighbourhood U (x̂) of x̂ the
mapping x �→ πF,θ

C (x) is single-valued and Hölder continuous with an exponent

β > 1/2, and that the restriction θ |C is lower regular at x̄ = πF,θ
C (x) for each x

close to x̂. Then the function û(·) is (Fréchet) continuously differentiable on U (x̂) if
at least one of the conditions below holds:

(i) F is smooth at ξ := x−x̄
ρF (x−x̄) for each x ∈U (x̂);

(ii) C has smooth boundary at x̂, and the function θ (·) is of class C1 near this point.

Furthermore, in the first case

∇û(x) = ∇ρF (x− x̄) (102)

(it coincides with the unique normal vector to F at the point ξ , belonging to the
boundary ∂F0), while in the second
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∇û(x) = ∇θ (x̄)+λ (x̄)nC (x̄) , (103)

where λ = λ (x̄)> 0 is the unique positive root of the equation

ρF0 (∇θ (x̄)+λnC (x̄)) = 1 , (104)

and nC (x̄) is the (unique) unit normal vector to C at x̄.

Proof. The first assertion follows directly from (101) because the smoothness of F
at ξ means exactly that the convex subdifferential ∂ρF (ξ ) is reduced to the unique
point ξ ∗ ∈ JF0 (ξ ) =NF (ξ )∩∂F0 [see (10)], which is nothing else than the Fréchet
gradient ∇ρF (x− x̄). The continuity of ∇û(·) instead follows from both [25, Propo-
sition 3.3 (ii)] and the continuity of πF,θ

C (·).
In the second case let us decompose the Fréchet subdifferential of θ |C into the

sum of the gradient ∇θ (x̄) and the (Fréchet) normal cone to C (see [31, p. 112]):

∂− (θ |C )(x̄) = ∇θ (x̄)+Nσ
C (x̄) .

Since the boundary ∂C is assumed to be smooth at x̂, and x̄ is close to x̂ whenever
x ∈U (x̂), we have that

Nσ
C (x̄) = Nl

C (x̄) = {λnC (x̄) : λ ≥ 0} ,

where nC (·) is a continuous function defined on ∂C near x̂ with ‖nC (x̄)‖= 1. So, the
intersection ∂− (θ |C )(x̄)∩∂F0 is the singleton ∇θ (x̄)+λ (x̄)nC (x̄) where λ (x̄)>
0 can be uniquely determined from the Eq. (104), and the gradient ∇û(x) takes
the form (103) [see (101)]. In order to show continuity let us fix a sequence {xn}
converging to x ∈ U (x̂). Then {x̄n} converges to x̄ ∈ ∂C. Let us denote by λn =
λ (x̄n) the respective positive root of (104) and observe that the sequence {λn} is
bounded. Consequently, some of its subsequences (assume that {λn} itself) converge
to λ̄ ≥ 0. Passing to limit in the equality

ρF0 (∇θ (x̄n)+λnnC (x̄n)) = 1

and using continuity of the involved functions we arrive at

ρF0

(
∇θ (x̄)+ λ̄nC (x̄)

)
= 1 .

Hence λ̄ > 0 [see (48)], and by the uniqueness λ̄ = λ (x̄). Therefore ∇û(xn) →
∇û(x), and the continuity is proved. ��

Recall now that under the standing assumptions (H), (Ĥ) and the local hypothe-
ses (H1 (x0)), (H2 (x0)) the (single-valued) mapping x �→ πF,θ

C (x) is locally lips-
chitzean, so satisfies the hypotheses of both Corollary 1 and Proposition 1 near a
fixed point x0 ∈ C (see Theorem 3). Taking into account that πF,θ

C (x) is close to x0

whenever x approaches x0, we give a version of the regularity theorem, which does
not use explicitly the minimizers.
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Theorem 6. Let us fix x0 ∈ ∂C and suppose all the hypotheses of Theorem 3 to be
valid. Assume, in addition, that θ |C is lower regular near x0, and that for some
δ > 0 at least one of the conditions below is fulfilled:

(i) F is smooth at each ξ ∈ JF
(
∂− (θ |C )(x)∩∂F0

)
, x ∈ ∂C, ‖x− x0‖ ≤ δ ;

(ii) C has smooth boundary, and θ (·) is of class C1 on ∂C∩ (
x0 +δB

)
.

Then the marginal function û(·) is (Fréchet) continuously differentiable on a neigh-
bourhood of x0 (outside of C), and the gradient ∇û(x) can be computed by the
formula (102) or (103), respectively.

Proof. By Theorem 3 there exists a neighbourhood U(x0) of x0 such that for each
x ∈U(x0) the set πF,θ

C (x) is a singleton, say {x̄}, and ‖x̄− x0‖ ≤ δ . Now, in the case
(i) we apply Corollary 1 at the point x ∈ U(x0)\C and consider the unique vector

ξ ∗ ∈ ∂− (θ |C )(x̄)∩NF (ξ )∩∂F0

where ξ := x−x̄
ρF (x−x̄) [see (101)]. In particular, ξ ∗ ∈ JF0 (ξ ), or dually ξ ∈ JF (ξ ∗).

So, we are led to the hypothesis (i) of Theorem 5. The case (ii) instead is directly
reduced to Theorem 5 (ii). ��

By duality, in the place of the smoothness of F we may require here the rotundity
of F0 with respect to each ξ ∈ JF

(
∂− (θ |C )(x)∩∂F0

)
(compare with the condition

(H2 (x0))).

If the hypotheses (H1 (x0)) and (H2 (x0)) hold at each point x0 ∈ ∂C, and the
restriction θ |C is lower regular everywhere on the boundary ∂C, then in order to
have the continuous differentiability of û(·) in some neighbourhood A⊃C (outside
of C) one can alternate the conditions (i) and (ii) from one point x0 ∈ ∂C to other.

In conclusion let us strengthen the hypotheses on F , C and θ (·) in order to have
more regularity for the value function û(·). Remind that in the case θ ≡ 0 and
F = B under well-posedness assumptions, which are reduced to the ϕ-convexity
of C, the function û(·) = dC (·) is of class C1,1 near C, while in the case of an ar-
bitrary gauge the lipschitzeanity (hölderianity, in general) of ∇û(·) depends on the
order of smoothness of the input data (see [26, Theorems 5.6 and 5.7]). The same
happens in the case θ �= 0.

Theorem 7. Given x0 ∈ ∂C let us assume that all the hypotheses of Theorem 6 hold.
Moreover, suppose that in the case (i) the gradient ∇ρF (·) is Hölder continuous
with an exponent 0 < α ≤ 1 on the set

Mδ (x0) :=
⋃

x∈∂C,‖x−x0‖≤δ
JF

(
∂− (θ |C )(x)∩∂F0)

(equivalently, the unit normal vector to F moves in a hölderean way along the part
Mδ (x0) of the boundary ∂F), while in the case (ii) both the gradient ∇θ (·) and the
normal nC (·) are Hölder continuous (with the exponent 0 < α ≤ 1) near x0. Then
the value function û(·) is of class C1,α

loc in a neighbourhood of x0 (outside of C).
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Proof. After application of Theorem 6 the proving consists in the verification
(locally) the Hölder inequality for the gradient ∇û(x) in both cases. Let U(x0) be
the neighbourhood of x0 constructed in Theorem 3. Without loss of generality as-
sume that δ > 0 from the formula (65) is the same as in the conditions (i) and (ii)
of Theorem 6. Fix x ∈ U(x0) \C and choose δ̄ > 0 such that x+ δ̄B ⊂ U(x0) \C.
We have U(x0) ⊂ x0 + δB. Moreover, for each z ∈ x+

(
δ̄/2

)
B the (unique) mini-

mizer z̄ := πF,θ
C (z) also belongs to x0 +δB as shown in the first part of the proof of

Theorem 3. Now, let us consider the respective estimates in each case separately.

(i) Given z1,z2 ∈ x+
(
δ̄/2

)
B we denote by

ξi :=
zi − z̄i

ρF (zi − z̄i)
, z̄i := πF,θ

C (zi) , i = 1,2 ,

and by the positive homogeneity of the Minkowski functional deduce
from (102) that

‖∇û(z1)−∇û(z2)‖ ≤ h‖ξ1 −ξ2‖α , (105)

where h> 0 is the Hölder constant of ∇ρF (·) on Mδ (x0). Setting for the sake
of brevity ρi := ρF (zi − z̄i), we further have

‖ξ1 −ξ2‖ ≤ 1
ρ1ρ2

(‖z̄1 − z1‖|ρ2 −ρ1|+ρ1 ‖(z̄1 − z̄2)+(z2 − z1)‖)

≤ 1
ρ2

(‖F‖∥
∥F0

∥
∥+1

)‖(z̄1 − z̄2)+(z2 − z1)‖

≤ 1
ρ2

(‖F‖∥
∥F0

∥
∥+1

)
(‖z̄1 − z̄2‖+‖z1 − z2‖) . (106)

Notice that ‖z2 − z̄2‖> δ̄/2 because otherwise ‖z̄2 − x‖ ≤ δ̄ , contradicting the

choice of δ̄ > 0. Consequently, ρ2 ≥ δ̄
2‖F‖ [see (9)]. Hence, using the Lip-

schitz continuity of πF,θ
C (·) (with the Lipschitz constant K > 0) we obtain

from (106) that

‖ξ1 −ξ2‖ ≤ 2‖F‖(‖F‖∥
∥F0

∥
∥+1

)
(K +1)

δ̄
‖z1 − z2‖ .

Joining the latter inequality with (105) we arrive at

‖∇û(z1)−∇û(z2)‖ ≤ H‖z1 − z2‖α , (107)

where the constant H> 0 essentially depends on x (through δ̄ and K) and tends
to +∞ as the point x approaches the target C.

(ii) In this case we prove a Hölder inequality like (107) in the neighbourhood x+
δ̄B. To this end we apply the Lipschitz continuity of πF,θ

C (·) on U(x0)⊃ x+ δ̄B
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and the Hölder continuity of both ∇θ (·) and nC (·) on ∂C∩ (
x0 +δB

)
. Let us

take z1,z2 ∈ x+ δ̄B and set as usual z̄i := πF,θ
C (zi), i = 1,2. Then it follows

from (103) that

‖∇û(z1)−∇û(z2)‖ ≤ ‖∇θ (z̄1)−∇θ (z̄2)‖+ |λ (z̄1)−λ (z̄2)|
+λ (z̄1)‖nC (z̄1)−nC (z̄2)‖ (108)

where λ (z̄i)> 0, i = 1,2, satisfy the equality

ρF0 (∇θ (z̄i)+λ (z̄i)nC (z̄i)) = 1 . (109)

Notice that (109) is equivalent to

1
λ (z̄i)

= ρF0−∇θ(z̄i)
(nC (z̄i)) .

Then, due to (9) and to the hypothesis (H) [see (48)]

λ (z̄i)≤
∥
∥F0 −∇θ (z̄i)

∥
∥ ≤ (1+ γ)

∥
∥F0

∥
∥ . (110)

On the other hand, by the lipschitzeanity of the gauge function, (8), (53), (16),
(18) and (52) we successively have:

∣
∣
∣
∣

1
λ (z̄1)

− 1
λ (z̄2)

∣
∣
∣
∣ ≤

∣
∣
∣ρF0−∇θ(z̄1)

(nC (z̄1))−ρF0−∇θ(z̄1)
(nC (z̄2))

∣
∣
∣

+
∣
∣
∣ρF0−∇θ(z̄1)

(nC (z̄2))−ρF0−∇θ(z̄2)
(nC (z̄2))

∣
∣
∣

≤
∥
∥
∥
(
F0 −∇θ (z̄1)

)0
∥
∥
∥‖nC (z̄1)−nC (z̄2)‖

+

∣
∣
∣
∣σ(F0−∇θ(z̄1))

0 (nC (z̄2))−σ
(F0−∇θ(z̄2))

0 (nC (z̄2))

∣
∣
∣
∣

≤ ‖F‖
1− γ

‖nC (z̄1)−nC (z̄2)‖

+D
((

F0 −∇θ (z̄1)
)0
,
(
F0 −∇θ (z̄2)

)0
)

≤ ‖F‖
1− γ

‖nC (z̄1)−nC (z̄2)‖

+

( ‖F‖
1− γ

)2

‖∇θ (z̄1)−∇θ (z̄2)‖ . (111)

Applying the Hölder inequality for both nC (·), ∇θ (·) with the exponent 0 <
α ≤ 1 and a Hölder constant h> 0 we obtain from (110) and (111) that

|λ (z̄1)−λ (z̄2)|= λ (z̄1)λ (z̄2)

∣
∣
∣
∣

1
λ (z̄1)

− 1
λ (z̄2)

∣
∣
∣
∣

≤ (1+ γ)2

1− γ

(
1+

‖F‖
1− γ

)
‖F‖∥

∥F0
∥
∥2

h‖z̄1 − z̄2‖α . (112)
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Again by the Hölder continuity of the functions ∇θ (·) and nC (·) and by the
inequalities (108), (110) and (112) it follows that

‖∇û(z1)−∇û(z2)‖ ≤ h̄‖z̄1 − z̄2‖α

with some constant h̄ > 0, which is proportional to h. Recalling also the Lip-
schitz inequality for minimizers (with a Lipschitz constant K > 0) we arrive,
finally, at (107) where H := h̄Kα .

So the theorem is completely proved. ��

Observe that unlike the item (i) the Hölder constant in the case (ii) depends pos-
sibly on how close to the boundary ∂C the point x is just through the lipschitzeanity
of the mapping πF,θ

C (·) and the hölderianity of both ∇θ (·) and nC (·) (remind that in
the case of metric projections onto convex and prox-regular sets the gradient ∇û(x)
exactly coincides with the unit normal nC (x̄)). However, in both cases H tends to
+∞ as the point x approaches the boundary of the neighbourhood U(x0), where the
regularity hypotheses (H1 (x0)) and (H2 (x0)) fail (see Remark 4).

Remark 6. Notice that Theorems 5–7 have been proved under the lower regularity
assumption for the function θ |C , while in [26] we supposed the target set C to be
proximal regular that is a much stronger property.

8 Examples

In this section we illustrate the obtained results with two simple examples restrict-
ing ourselves just to the case H = R

2. We recommend to compare them with the
examples given earlier for the case θ ≡ 0 (see [25, 26]).

Example 1.

F :=
{
(ξ1,ξ2) ∈ R

2 : |ξ2| ≤ 1−ξ 4
1 , −1 ≤ ξ1 ≤ 1

}
;

C :=
{
(x1,x2) ∈ R

2 : x1 ≤ x2
2

}
;

θ (x) :=
1
2

arctg
(
x2

1 + x2
2

)
, x = (x1,x2) ∈C .

In [25, Example 8.3] the well-posedness problem for the same target set C and
the same dynamics F with θ ≡ 0 was considered. Now we somewhat complicate
the problem by introducing a (smooth) nonlinear boundary function.



Regularity of Marginal Functions in Hilbert Spaces 457

Let us verify first the standing slope condition (24), guaranteeing that the value
function û(·) is the viscosity solution of the associated Hamilton–Jacobi equa-
tion (5) with the boundary datum u |C = θ (see Theorem 1). To this end we calculate
the gradient

∇θ (x) =

(
x1

1+
(
x2

1 + x2
2

)2 ,
x2

1+
(
x2

1 + x2
2

)2

)

and the dual gauge function

ρF0 (ξ ∗) = σF (ξ ∗) =

⎧
⎨

⎩
3
(|ξ ∗

1 |/4)
4/3

|ξ ∗
2 |1/3 + |ξ ∗

2 | if |ξ ∗
2 | ≥ |ξ ∗

1 |/4 ;

|ξ ∗
1 | if |ξ ∗

2 |< |ξ ∗
1 |/4 ,

(113)

ξ ∗ = (ξ ∗
1 ,ξ ∗

2 ) ∈ R
2. Comparing the radii of two circles centered at the origin, one

inscribed into F and other circumscribed around it, we find that ‖F‖ ≤ 7/6 and∥
∥F0

∥
∥ ≤ 9/8. Substituting ∇θ (x) in the place of ξ ∗ in (113) we obviously have

ρF0 (∇θ (x))≤

⎧
⎪⎨

⎪⎩

3
4

|x1|
1+(x2

1+x2
2)

2 +
|x2|

1+(x2
1+x2

2)
2 if |x2| ≥ |x1|

4 ;

|x1|
1+(x2

1+x2
2)

2 if |x2|< |x1|
4 .

(114)

The function in the right-hand side of (114) attends its maximum at the point(
33/4

5 , 4
31/4·5

)
, and the maximum is 5·33/4

16 < 35
48 . Thus, ∇θ (x) ∈ γF0 with

γ :=
35
48

<
1

‖F‖‖F0‖ , (115)

and we have not merely the slope condition (24) but also the (stronger) standing
hypothesis (H) required for the well-posedness and regularity results. Moreover,
by [14, p. 38] the second standing assumption (Ĥ) holds as well with Γ (x) =
{∇θ (x)} and

Nθ
C (x) = Np

C (x) = Nl
C (x)

= {λnC (x) : λ ≥ 0}= {(λ ,−2λx2) : λ ≥ 0} ,

where nC (x) is the unit normal vector to C,

nC (x) =
1

√
1+4x2

2

(1,−2x2) ,

x = (x1,x2) ∈ ∂C. Thus,

∂ p (θ |C )(x) =

{(
x1

1+
(
x2

1 + x2
2

)2 +λ ,
x2

1+
(
x2

1 + x2
2

)2 −2λx2

)

: λ ≥ 0

}

.
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Let us fix now x0 =
(
x0

1,x
0
2

) ∈ ∂C and verify the local hypotheses of Theorem 3,
or, rather, just the hypothesis (H1 (x0)) according to the observation before
Theorem 3. To this end we compute first the value JF (ξ ∗), ξ ∗ = (ξ ∗

1 ,ξ ∗
2 ) ∈ ∂F0,

restricting ourselves just to the case ξ ∗
1 > 0, since the first coordinate of the (unique)

element of ∂ p (θ |C )(x)∩ ∂F0, x ∈ C, is positive. By the formula (10) due to the
continuous differentiability of ρF0 (·) we have that JF (ξ ∗) = {∇ρF0 (ξ ∗)}, while
the direct derivation of (113) gives

∇ρF0 (ξ ∗) =

(

f

(
ξ ∗

1

4
∣
∣ξ ∗

2

∣
∣

)

,sgn(ξ ∗
2 )g

(
ξ ∗

1

4
∣
∣ξ ∗

2

∣
∣

))

, (116)

where f (·) and g(·) are real functions defined on ]0,+∞[ by

f (t) :=

{
t1/3 if 0 < t ≤ 1 ,

1 if t > 1 ,
(117)

g(t) :=

{
1− t4/3 if 0 < t ≤ 1 ,

0 if t > 1 .
(118)

Then we substitute in the place of ξ ∗ in (116) the unique subgradient of θ |C be-
longing to ∂F0, i.e.,

ξ ∗
1 =

x1

1+
(
x2

1 + x2
2

)2 +λ ; (119)

ξ ∗
2 =

x2

1+
(
x2

1 + x2
2

)2 −2λx2 , (120)

where λ = λ (x) is the (unique) positive root of the equation ρF0 (ξ ∗
1 ,ξ ∗

2 )= 1, x ∈ ∂C
(i.e., x1 = x2

2) with ‖x− x0‖ ≤ δ . Similarly as in the proof of Theorem 7 [see (110)
and (53)] we obtain the following estimates for the parameter λ [see also (115)]:

1
5
<

13
56

≤ 1− γ
‖F‖ ≤ λ (x)≤ (1+ γ)

∥
∥F0

∥
∥ ≤ 249

128
< 2 (121)

and establish the lipschitzeanity of the function λ (·) near x0 [see (112)]. It follows
from (119)–(121) that

• ξ ∗
1

4|ξ ∗
2 | ≥ 1 whenever |ξ ∗

2 | ≤ 1
20 ;

• ξ ∗
1

4|ξ ∗
2 | ≥

λ (x)
4‖F0‖ ≥ s := 2

45 whenever x ∈ ∂C.

Taking this into account and observing that the functions (117) and (118) are lip-
schitzean on [s,+∞[ with the Lipschitz constant 1/3max

{
4,s−2/3

}
, that they are

constant for t ≥ 1, and that the mapping ξ ∗ �→ ξ ∗
1

4|ξ ∗
2 | is lipschitzean on the set
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{
ξ ∗ ∈ ∂F0 : |ξ ∗

2 | ≥
1
20

}
,

we conclude that the gradient ∇ρF0 (·) [see (116)] is lipschitzean on

{

ξ ∗ ∈ ∂F0 :
ξ ∗

1

4
∣
∣ξ ∗

2

∣
∣ ≥ s

}

.

Consequently, estimating further the second derivative of the function θ (·) we
obtain the lipschitzeanity of the composed mapping

x �→ ∇ρF0

(
x1

1+
(
x2

1 + x2
2

)2 +λ (x) ,
x2

1+
(
x2

1 + x2
2

)2 −2λ (x)x2

)

on the set Cδ (x0).
Thus, all the conditions of Theorem 3 are fulfilled, and we can affirm that the

function
1
2

arctg
(
z2

1 + z2
2

)
+ρF (x1 − z1,x2 − z2)

admits an unique minimizer πF,θ
C (x) on C, which is Lipschitz continuous w.r.t. x in

a neighbourhood of each point x0 ∈ ∂C (out of C). This neighbourhood is given by
the formula (65), where the Lipschitz constant L > 0 of the mapping

x �→ JF
(
∂ p (θ |C )(x)∩∂F0) , x ∈Cδ (x0) ,

can be computed by using the above arguments.
Furthermore, the restriction θ |C is obviously lower (even proximally) regular on

∂C, and the condition (ii) of Theorems 6 and 7 holds (the condition (i) is violated
in the “angle” point (1,0)). Therefore, applying Theorem 7 we see that the value
function û(x) in the above mathematical programming problem, which can be in-
terpreted also as the viscosity solution to the Hamilton–Jacobi equation

min

⎧
⎪⎨

⎪⎩

∣
∣
∣
∣

∂u
∂x1

∣
∣
∣
∣ ,

3
4

∣
∣
∣
∣

∂u
∂x1

∣
∣
∣
∣

3

√√
√
√
√

∣
∣
∣ ∂u

∂x1

∣
∣
∣

4
∣
∣
∣ ∂u

∂x2

∣
∣
∣
+

∣
∣
∣
∣

∂u
∂x2

∣
∣
∣
∣

⎫
⎪⎬

⎪⎭
= 1 ,

u
(
x2

2,x2
)
=

1
2

arctg
(
x2

1 + x2
2

)

[see (113)], is of class C1,1
loc on an open set

{
(x1,x2) : x2

2 < x1 < x2
2 +η (x2)

}
, where

η (·) is a positive real function.

By the next example we test the case of nonsmooth both a target C and a boundary
function θ (·). It shows, in particular, that the hypotheses of Theorem 3 can be
fulfilled even if the target C has an “inward” angle point.
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Example 2.

F :=
{

x ∈ R
2 : ‖x‖ ≤ 1 and 〈v,x〉+μ ‖x−v‖ ≤ 1

}
; (122)

C :=
{

x ∈ R
2 : min{x1,x2} ≤ 0

}
;

θ (x) := max{〈a,x〉 ,〈b,x〉} , x = (x1,x2) ∈C .

Here 0 < μ < 1 and v, a, b ∈ R
2 are such that ‖v‖ = 1, vi > 0, ‖a‖ < 1, ‖b‖ < 1,

ai ≥ 0, bi ≥ 0, i = 1,2, and a1 �= b1, a2 �= b2. Our goal is to find conditions on the
choice of the parameters v, a, b ∈ R

2 and μ , under which the well-posedness and
regularity results of the previous sections hold.

Since F can be represented as B∩ (
v+Kv,μ

)
where

Kv,μ := {x : 〈−v,x〉 ≥ μ ‖x‖}

is a closed convex cone in R
2, from elementary geometric considerations we obtain

that F0 is the convexification of the unit circle B and a symmetric segment of the
tangent line at the point v = (v1,v2). Namely,

F0 = co
(

B∪ (
v+Kv,μ

)0
)

= co

(

B∪
{

(v1 +λv2,v2 −λv1) : |λ | ≤ μ
√

1−μ2

})

. (123)

We obviously have ‖F‖ = 1,
∥
∥F0

∥
∥ = 1√

1−μ2
, and JF (ξ ∗) = {v} for each ξ ∗ =

(v1 +λv2,v2 −λv1) ∈ ∂F0 with |λ |< μ√
1−μ2

.

The target set C admits the unit normal vector

nC (x) =

{
(1,0) if x1 = 0 , x2 > 0 ,
(0,1) if x1 > 0 , x2 = 0

(124)

at each point of the boundary ∂C except the origin, where the proximal and the
Fréchet normal cones are trivial.

The function θ (·) is convex and admits the piecewise constant gradient

∇θ (x) =

⎧
⎨

⎩

a if 〈a−b,x〉> 0 ,

b if 〈a−b,x〉< 0 ,
(125)

while
∂θ (x) = ∂ cθ (x) = {λa+(1−λ )b , 0 ≤ λ ≤ 1}

whenever 〈a−b,x〉= 0 (see [12, Theorem 2.5.1]). Hence, we deduce the first con-
dition, under which the standing hypothesis (H) is fulfilled [see (48)]:
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max{‖a‖ ,‖b‖}< 1
‖F‖‖F0‖ =

√
1−μ2 . (126)

Since at each point x ∈ ∂C with x �= 0 both the function θ (·) and the set C are
proximally regular (moreover, θ (·) is of class C2), we have that

∂ p (θ |C )(x) = ∂θ (x)+Np
C (x)

= {∇θ (x)+λnC (x) : λ ≥ 0} . (127)

Taking into account (125) and (124) we may further represent (127) in an alter-
nate form depending on the mutual location of the vectors a and b. Let us restrict
ourselves just to the case when a1 < b1 and a2 > b2. Then

∂ p (θ |C )(x) =

{ {(a1 +λ ,a2) : λ ≥ 0} if x1 = 0 , x2 > 0 ,
{(b1,b2 +λ : λ ≥ 0)} if x1 > 0 , x2 = 0 . (128)

At the origin instead we compute this subdifferential directly by the definition.
In fact, ∂ p (θ |C )(0) is the triangle Δ := co{a,b,c} where c := (b1,a2). So the
hypothesis (Ĥ) also holds with

Γ (x) =

{
∂θ (x) if x �= 0 ;

Δ if x = 0 ,

and Nθ
C (x) = Np

C (x) at each x ∈ ∂C if we set

γ := ‖c‖=
√

b2
1 +a2

2 <
√

1−μ2.

Notice that here ∂ θC = ∂C \{0}.
Given δ > 0 simple geometric considerations give that the condition

max

{ |b1 −v1|
v2

,
|a2 −v2|

v1

}
≤ μ

√
1−μ2

(129)

ensures that the intersection ∂ p (θ |C )(x)∩ ∂F0 is contained in the line segment{
(v1 +λv2,v2 −λv1) : |λ | ≤ μ√

1−μ2

}
[see(123)] for each x ∈Cδ (0). Furthermore,

if the inequality (129) is strict, then (see above)

JF
(
∂ p (θ |C )(x)∩∂F0) = {v} , x ∈Cδ (0) .

So, the hypothesis (H1 (0)) is trivially fulfilled. Notice that the verification of the
respective hypothesis at each point x0 ∈ ∂C, x0 �= 0, is reduced to the (more general)
case x0 = 0. So, everything said above is sufficient to be able to apply Theorem 3
and to conclude that under the assumptions

√
b2

1 +a2
2 <

√
1−μ2; (130)
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max

{ |b1 −v1|
v2

,
|a2 −v2|

v1

}
<

μ
√

1−μ2
(131)

the minimization problem for the function

max{〈a,z〉 ,〈b,z〉}+ρF (x− z) (132)

subject to min{z1,z2} ≤ 0, where F is defined by (122), admits an unique mini-
mizer, which is Lipschitz continuous w.r.t. x from an open neighbourhood A of the
constraint set.

For instance, setting v =
(√

2
2 ,

√
2

2

)
, a = (0,q) and b = (q,0), 0 < q < 1, we see

that the conditions (130) and (131) hold whenever the parameters μ and q satisfy
the inequalities

1− μ
√

1−μ2
<

√
2q <

√
1−μ2

(e.g., μ =
√

3/2 and q = 1/3). In this case we are led to minimize the function

qmax{z1,z2}+ρF (x− z) , z ∈C . (133)

Unfortunately, we are not able to deduce anything about the Fréchet continuous
differentiability of û(·) near the origin due to the lack of smoothness of the input
data F , C and θ (·).
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On Solving Optimization Problems with Hidden
Nonconvex Structures

Alexander S. Strekalovsky

1 Introduction

The most of real-life problems, according to Leibnitz and Euler [3, 10, 13], can
be stated as optimization problems, because the lows of the nature just follow the
principles of Fermat, Lagrange, Euler, and other equations provided by extremum
principles.

On the other hand, the contemporary situation can be characterized by the crucial
impact and the increasing value of the numerical methods in view of computational
solving the problems of practical interest.

It is worthy to note that the optimization problems must be separated into two
parts: convex and nonconvex. From the viewpoint of the numerical processing of
the problem of a rather general kind

{
f0(x) ↓ min

x
, x ∈ S ⊂ R

n,

fi(x)≤ 0, i = 1,2, . . . ,m,
(P0)

there exists a “solvable case”—this one of the convex optimization problems, those
where the domain S and the functions f0 and fi are all convex [3, 13, 22, 40].

Under minimal additional computability assumptions a convex optimization
problem is computationally tractable [3, 22]. It means that the computational effort
required to solve the problem to a given accuracy grows moderately with the
dimension of the problem and the required number of accuracy digits.
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In contrast to this, general-type nonconvex problems are too difficult for
numerical solution, since in a real-life nonconvex optimization problem there can
exist a lot (often a huge!) of local extrema and stationary points which are rather far
from a global solution [9, 17, 25, 28].

As a consequence, the classical optimization methods (conjugate gradients,
Newton’s and quasi-Newton’s methods, TRM, SQP, IPM, etc.) turn out to be
inoperative, in general, and ineffective as to finding a global solution in noncon-
vex problems because they are not able to escape a local pit.

Moreover, specialists in applied problems do not think about the correctness of
direct application of classical optimization methods in nonconvex problems, while
the numerical results are interpreted only in the content aspect, without thinking of
the fact that all classical optimization methods converge to the global solution only
in convex problems [3, 22].

At the same time, in nonconvex problems, the direct application of standard
methods may have unpredictable consequences [3, 17, 24, 28, 40], and sometimes
may even distract one from the desired solution. So, these arise various approaches
which completely neglect the classical optimization methods and use a direct selec-
tion way employing, for example, the B&B idea or cut’s method. As well known the
latter algorithms suffer the curse of dimension, when the volume of computations
grows exponentially side by side with the growth of the problem’s dimension [17].
We are sure, there exists also another way of solving nonconvex problems of high
dimension [18, 19, 26–37].

In the recent two decades, we have managed to construct a theory of global
search, which is harmonic from the viewpoint of the theory of optimization
and which unexpectedly has turned out to be rather efficient in the aspect of
computations, especially for the problems of high dimensions. Simultaneously nec-
essary and sufficient Global Optimality Conditions (GOCs) for the principal classes
of nonconvex problems can be viewed as the kernel of the theory (see below) [28].

Furthermore, we have proposed a family of local search methods (LSMs), which,
on the one hand, in some cases develop methods earlier known for the special prob-
lems and, on the other hand, this family of LSMs represents a joint ensemble of
methods, which is harmonic from the viewpoint of GOCs [28, 31, 33].

Moreover, the procedures of escape from stationary or local solutions, which
are based on GOCs, are unique and quite efficient even in case of any simplest
implementation [18, 19, 26–28, 31–37].

Besides, the approach elaborated has been tested on a wide field of popular non-
convex problems (some part of which is represented below). It has demonstrated
an unexpected efficiency during the numerical solving problems of high dimension.
Note, convex optimization methods are successfully used “inside” the procedures of
local and global search proposed [18, 19, 26–28, 31–37].

Finally, we have to add that, according to the opinion of numerous confirmed
specialists in optimization, the most attractive and promising fields of investigation
and, may be, even modelling paradigms in optimization in twenty-first century can
be represented (see [24]), in particular, by the following examples which both pos-
sess the hidden nonconvex structures:
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• the search for equilibriums in competitions (conflict situations or games);
• hierarchical optimization problems.

Unexpectedly for us, we turned out to be on this main stream, but rather prepared,
i.e. possessing a suitable mathematical apparatus.

2 Examples of Applied Problems

2.1 Linear Complementarity Problems

As well known [7], the linear complementary problem (LCP) aims at finding the
pair of vector (x,w) ∈ R

n+n, which satisfy the following conditions:

Mx+q = w, 〈x,w〉= 0,
x ≥ 0, w ≥ 0,

}
(1)

for a given vector q ∈ R
n and a given real (n× n)-matrix M which is, in general,

indefinite. Many physical, engineering problems (the braking problem; the prob-
lem of contact; the problem of viscoelastic twisting, etc.), some economic problems
(the problems of market equilibrium, the problem of optimal constant basic capital,
etc.) and problems of computational geometry can often be stated as LSP. From the
first glance any nonconvexity is not visible in (1). Even if we consider a similar
formulation of LSP, for example,

〈x,Mx+q〉= 0, M = M%,
x ≥ 0, Mx+q ≥ 0,

}
(1 ′)

a nonconvexity does not appear since all data stays to be linear. However, if one
looks at the problem as optimization problem:

Φ(x) := 〈x,Mx〉+ 〈x,q〉 ↓ min, x ∈ S,

S
.
= {x ∈ R

n | x ≥ 0, Mx+q ≥ 0},

}

(2)

it becomes clear that the properties and the structure of the LSP (1) depend on the
features of the matrix M, as follows.

(a) If M is nonnegative definite, the problem (2) is convex, i.e. solvable with the
classical methods, for instance, the conjugate gradient method (CGM).

(b) If M is negative definite, then the problem (2) turns out to be nonconvex
(anticonvex) optimization problem of concave minimization (that is equivalent
to convex maximization).

(c) If M is indefinite, i.e. it has positive and negative eigenvalues, then the problem
(2) must be classified as a d.c. minimization problem:

Φ(x) = g(x)−h(x) ↓ min
x
, x ∈ S, (3)
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where g(x) = 〈x,M1x〉+ 〈q,x〉, M1 = M%
1 > 0, h(x) = 〈x,M2x〉, M2 = M%

2 > 0,
M = M1 −M2, g(·) and h(·) are strongly convex functions on R

n. In each of cases
(a), (b), and (c) one has to apply the different methods of local and global search in
order to find a global solution to Problem (2) or, what is equivalent, to find a solution
to Problem (1).

The conclusion is unexpected: if anyone needs to have a solution to the LCP (1),
then he has to choose the only one way (global search method (GSM)) among three
different paths (GS methods) dependent on the properties of the matrix M. Below
we will show how to do it.

So, very simple, from the first sight, Problem (1) may turn out to be very difficult
to solve, since it possesses, in general, a hidden nonconvexity.

2.2 Search for an Equilibrium

As example of equilibrium problems, let us consider the bimatrix games [33] which
reflect the conflict of two parties (players), each one having a finite number of
strategies. After having introduced the mixed strategies, we obtain

〈x,Ay〉 ↑ max
x

, x ∈ Sm,

〈x,By〉 ↑ max
y

, y ∈ Sn,

Sp =
{

x ∈ R
p
+ |

p

∑
i=1

xi = 1
}
, p = m,n.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(4)

Some economics, engineering and ecological problems can be represented in the
form of bimatrix games, in which the Nash equilibrium is the common concept and
can be represented as follows: find an equilibrium situation (x∗,y∗) ∈ Sm ×Sn:

〈x∗,Ay∗〉 ≥ 〈x,Ay∗〉 x ∈ Sm,
〈x∗,By∗〉 ≥ 〈x∗,By〉 y ∈ Sn.

}
(5)

In formulae (4) and (5), from the first sight, any nonconvexity also is not yet visible,
since all the data is linear, and the problem (4)–(5) seems to be convex, i.e. solvable
by the classical methods and approaches.

However, it turns out that the search for the Nash equilibrium can be
reduced [20, 21] to solving the following nonconvex (in general) problem of math-
ematical programming:

F(x,y,α,β ) := 〈x,(A+B)y〉−α −β ↑ max,
x%B−βen ≤ 0n, x ∈ Sm,
Ay−αem ≤ 0m, y ∈ Sn,

⎫
⎬

⎭
(6)

where α,β ∈R, ep = (1,1, . . . ,1)% ∈R
p, p=m,n. Note that the numbers α∗ and β∗

in a global solution (x∗,y∗,α∗,β∗) to Problem (6) are the optimal profits of the first
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and second players, respectively, in the game (4)–(5), while the pair (x∗,y∗) turns
out to be just a Nash equilibrium point in the game (4)–(5).

On account of the formulation (6) it becomes clear that a way (method) of finding
a Nash point strongly depends on the properties of the matrix (A+B).

So, the conclusion is obvious here and consists in the fact that the initial statement
(4)–(5) of a bimatrix game is deceptive in the sense that it has, in general, a hidden
(implicit) nonconvexity.

2.3 Hierarchical Optimization Problems

Hierarchical problems are encountered in practice because of impossibility of
accumulation of the total available information at the upper level in the process
of investigation of structurally complex control systems (social, economic,
ecological-economic ones, etc.) and, as a consequence, possess some hidden non-
convexity generated by just hierarchical structures.

For example, the financial systems in the economic power countries are usually
constructed as bilevel systems. Besides, the electric energy system in USSR was
organized as a four-level system.

As to mathematical aspects of the statement, problems of bilevel programming
represent extremum problems, that side by side with standard constraints which are
expressed in terms of equalities and inequalities, include the constraints described
with the aid of optimization subproblem representing the lower level of the bilevel
problem (or the player called the follower in difference with the player of the upper
level called the leader).

To begin with, let us consider the linear bilevel problem

(LBP) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F(x,y) := 〈c,x〉+ 〈d,y〉 ↓ min
x,y

,

x ∈ X = {x ∈ R
m | Ax ≤ b},

y ∈ Y∗(x) := Argmin
y

{〈d1,y〉 | y ∈ Y (x)},
Y (x) = {y ∈ R

n | A1x+B1y ≤ b1 },
where c ∈ R

m, d,d1 ∈ R
n, b ∈ R

p, b1 ∈ R
q, and A, A1, B1 are matrices of

corresponding dimensions. Suppose, that
(H1): the function F(x,y) is bounded below on the nonempty set Z,

Z := {x ∈ R
m, y ∈ R

n | Ax ≤ b, A1x+B1y ≤ b1 };

(H2): the function 〈d1,y〉 is bounded below on the set Y (x) for all x ∈ X .
Even in this very simple case it is easy to construct an example showing the non-
convexity of the problem (LBP).

Example 1. ([8]) Consider the problem
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F(x,y) = x+3y ↓ min
x,y

, x,y ∈ R,

1 ≤ x ≤ 6, y ∈ Y∗(x) = Sol(PL),

}

(LBP1)

(PL) :

⎧
⎪⎨

⎪⎩

f (y) =−y ↓ min
y
,

x+ y ≤ 8, x+4y ≥ 8,
x+2y ≤ 13.

Regardless of the convexity of the set

Z = {(x,y) ∈ R
2 | 1 ≤ x ≤ 6, x+ y ≤ 8, x+4y ≥ 8, x+2y ≤ 13},

it is easy to see even geometrically that the set

Z∗ = {(x,y) ∈ Z | y ∈ Y∗(x)}

is nonconvex which provides for the nonconvexity in the problem (LBP1). ��
So, the Example 1 shows the importance of the preliminary theoretical study

of hierarchical optimization problems and, as, may be, the simplest case of (BP),
the (LBP).

2.4 Problems of Financial and Medical Diagnostics

Such problems are well known as applied ones, and on the other hand, these prob-
lems are often interpreted as the problems of generalized separability. For example,
if the two sets of points A and B are characterized by the matrices A = [a1, . . . ,aM],
B = [b1, . . . ,bN ], ai,b j ∈ R

n, then the problem of polyhedral separability may be
reduced to the problem of minimization of the nonconvex nondifferentiable error
function (V = (vp), Γ = (γp), γp ∈ R, vp ∈ R

n, p = 1, . . . ,P)

F(V,Γ ) = F1(V,Γ )+F2(V,Γ ), (7)

F1(V,Γ ) =
1
M

M

∑
i=1

max{0; max
1≤p≤P

(〈ai,vp〉− γp +1)},

F2(V,Γ ) =
1
N

N

∑
j=1

max{0; min
1≤p≤P

(−〈bi,vp〉+ γp +1)}.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(8)

In this problem it is also not clear with which kind of nonconvexity we are dealing
and how to overcome not only the nonsmoothness of the problem but also a non-
convexity generated apparently by F2(·).

But, anyway, the question arises how to attack optimization problems with a
hidden or an explicit nonconvexities.
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3 Optimization Problems with the Functions of A.D.Alexandrov

The targets of our presentation can be bounded by consideration of the class DC(Rn)
of the functions f (·) which can be represented as the difference of two convex func-
tions (d.c. functions). The class was, for the first time, introduced in 1934 [1, 2] by
the Russian mathematician A.D.Alexandrov, the member of AS of USSR.

Nowadays, this class is viewed by the specialists [9, 17, 25, 39] to be rather wise
for consideration. Furthermore, the DC(Rn) possess several remarkable properties.

(a) The set DC(Rn) is generated by the well-studied class—the convex cone of
convex functions and forms a linear space [12, 13, 17, 28, 39].

(b) DC(Rn) includes the well-known classes such as twice differentiable functions,
power and trigonometric polynomials [12, 13, 17, 39].

(c) Any continuous function on a compact set K⊂ R
n can be approximated at any

desired accuracy (in the topology of homogeneous convergence) by a function
from DC(K) [12]. Consequently, any optimization problem with continuous
functions can be approximated at any desired accuracy by an extremum problem
with functions of A.D.Alexandrov.

Only note, that, if f (·) is a d.c. function, then there exists an infinite number
of d.c. representations of the form (3), for example, in the form of difference of
strongly convex functions.

Closedness of the set DC(Rn) of functions of A.D.Alexandrov with respect to
the majority of operations, which are used in optimization, is also essential from
the optimization viewpoint. For example, a sum, a difference, the module, the max-
imum, the minimum, etc. of the family of d.c. functions occur also in the class
DC(Rn).

Besides, the number of problems with d.c. functions is so large that the major-
ity of the specialists, who have a long-time experience of solving problems of d.c.
programming are sure [9, 12, 13, 17, 39] that all (or almost all) nonconvex optimiza-
tion problems turn out to be really d.c. problems.

In this connection, the following statement of optimization problem can be
viewed as rather general:

f0(x) = g0(x)−h0(x) ↓ min
x
, x ∈ S,

fi(x) = gi(x)−hi(x)≤ 0, i = 1, . . . ,m;
f j(x) = g j(x)−h j(x) = 0, j = 1, . . . ,N.

⎫
⎬

⎭
(9)

Here gi, g j, hi, h j are convex functions and S is convex set from R
n.

Apparently, almost all the specialists in optimization areas could estimate
Problem (9) as very difficult and unsolvable by the existing approaches and methods
even for the case of middle dimension (say, n = 100, . . . ,1,000.)

Actually, even very simple (from the viewpoint of Problem (9)) the convex max-
imization quadratic problem on a box (which is a very particular case of (9)):
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h(x) = 1
2 〈x,Qx〉 ↑ max

x
, Q = QT > 0,

x ∈ S := Π = {x ∈ R | αi ≤ xi ≤ βi i = 1, . . . ,n}

}

(10)

is proved to be NP-hard [9]. Therefore, to begin with, let us simplify the situation
and start with rather simple (from the first glance) nonconvex optimization prob-
lems.

1. D.C. minimization

(P) : f (x) = g(x)−h(x) ↓ min, x ∈ D, (11)

where g(·), h(·) are convex functions, and D is a convex set, D ⊂ R
n.

2. D.C. constraint problem

(DCC) :
f0(x) ↓ min

x
, x ∈ S,

F(x) = g(x)−h(x)≤ 0,

}

(12)

where g(·) and h(·) are as above, S ⊂ IRn, f0(·) is a continuous function.
3. Convex maximization

h(x) ↑ max, x ∈ D, (13)

(when g ≡ 0 in (11)).
4. Reverse-convex constraint problem

f0(x) ↓ min, x ∈ S,
h(x)≥ 0,

}
(14)

(g ≡ 0 in (12)).

Note, that any quadratic optimization problem with arbitrary matrices occurs in
the classification (11)–(14) or takes the form (9).

4 Global Search Methodology

Since in our approach the general global search procedure includes two principal
parts:

(a) local search;
(b) procedures of escaping a critical point provided by a LSM; we are going, first,

to consider special (for each class of d.c. programming problems) LSMs.
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4.1 Local Search

The ideas of the most of LSM are rather simple and may consist in the consecutive
solution of the (partially) linearized problems which for Problems (11)–(14) turn
out to be convex. As a consequence, it becomes possible to apply classical convex
optimization methods (Newtonians, CGM, TRM, etc.) in order to find a solution to
linearized problems, i.e. within the framework of Local Search Schemes.

So, unlike that in well-known methods of the so-called Global Optimization
(such as B&B, cuts methods), which, say, “deny and ignore” the modern and classi-
cal optimization methods, we insist on the obligatory, but “indirect” application of
these methods.

For example, as regards the problem of d.c. minimization (P)–(11), the basic
element, the “cornerstone” of the Global and LSMs is solving the following (lin-
earized at a current iteration point xs ∈ D) convex problem

(PLs) : Φs(x) := g(x)−〈h′(xs),x〉 ↓ min
x
, x ∈ D, (15)

where h′(xs) = h′
s ∈ ∂h(xs), s = 1,2, . . . is a subgradient of the convex function h(·)

at the point xs [13]. It is clear that in the differentiable case h′
s coincides with the

usual gradient ∇hs [13].
Furthermore, the LSM itself for (P)–(11) may consist in the consecutive solving

(likewise in the method of “direct iterations”) Problems (PLs)–(15). More precisely,
given xs ∈ D, we can find xs+1 ∈ D as an approximate solution to (PLs) by means
of some suitable convex optimization method (for example, BFGS), or one of the
packages of applied software (Xpress-MP, IBM CPLEX etc).

So, we produce the sequence {xs} according to the inequality:

Φs(x
s+1) := g(xs+1)−〈h′(xs),xs+1〉 ≤ inf

x
{g(x)−〈h′(xs),x〉 | x ∈ D}+δs (16)

where the sequence {δs} fulfils the condition

∞

∑
s=0

δs <+∞, δs > 0, s = 1,2, . . . .

It was rather surprising that the process in this case converges in the following sense.

Theorem 1. Suppose the cost function of Problem (P)–(11) is bounded below, so
that

V(P) := inf( f ,D)
.
= inf

x
{ f (x) | x ∈ D}>−∞.

Then the sequence {xs} ∈ D generated by the rule (16) satisfies the following con-
ditions.

(a) The number sequence { fs}, fs = f (xs) converges in the sense, as follows:

lim
s→∞

fs = f∗ ≥ V(P). (17)
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(b) lim
s→∞

[inf
x
{g(x)−g(xs+1)+ 〈h′(xs),xs+1 − xs〉 | x ∈ D}] = 0. (18)

or, what is the same (see (PLs)–(15)),

lim
s→∞

[V(PLs)−Φs(x
s+1)] = 0, (18′)

where

Vs := V(PLs) := inf
x
{g(x)−〈h′(xs),x〉 | x ∈ D} (19)

is the optimal value of the linearized problem (PLs)–(15)
(c) If the function h(·) in (15) is strongly convex, then we have

lim
s→∞

‖xs − xs+1‖= 0. (20)

(d) Any limit point x∗ of the sequence {xs} generated by LSM (16) is a solution
of the following linearized problem

(PL∗) : Φ∗(x) := g(x)−〈y∗,x〉 ↓ min
x
, x ∈ D, (21)

where y∗ = h′(x∗) ∈ ∂h(x∗).

Note that very frequently for small dimension (n ≤ 7,8,10) cases LSM (16)
provides for a global solution to (P)–(11).

It is interesting that historically the particular case (g ≡ 0) of LSM (16) for differ-
entiable convex maximization problem (13) has been proposed by Bulatov in 1969
[4] and can be represented in the modern form as follows:

〈h′(xs),xs+1〉+δs ≥ sup
x
{〈h′(xs),x〉 | x ∈ D}. (22)

Besides, the well-known “power” method for finding the maximal eigenvalue of
a symmetric positive definite matrix A, or what is the same, for solving the prob-
lem [38]

〈x,Ax〉 ↑ max
x

, ‖x‖ ≤ 1, (23)

turns out to be very particular case of LSM (22), when the linearized problem (PLs)
(with g ≡ 0) can be solved analytically. Note that the method (22) in Problem (23)
converges to the global solution [38].

Thus, one can conclude that the idea of linearization with respect to the basic
nonconvexity of a nonconvex problem has certainly some age. Anyway, it is worth
noting to mention the works of the group of Pham Dinh Tao in which the idea of
linearization with respect to the basic nonconvexity also demonstrated its effective-
ness [14–16].

Furthermore, special methods of local search have been developed for the prob-
lems with d.c. constraints (12), (14) (see [31]). These methods have also been
grounded, for example, on considering linearized problems of the form



On Solving Optimization Problems with Hidden Nonconvex Structures 475

g(x)−〈h′(xs),x〉 ↓ min
x
,

x ∈ S, f0(x)≤ ζs = f0(xs),

}

(24)

and the duality of Tuy [39].

4.2 Global Optimality Conditions

The second step in the global search methodology can be viewed as the most
important one and even crucial, because the question is how to escape a critical
point (provided by an LSM and that is not a global solution).

Such a procedure is substantiated by the theoretical basis produced with the help
of the so-called GOC which for the case of d.c. minimization problem (P)–(11)
takes the following form.

Theorem 2. If z is a global solution to (P), z ∈ Sol(P), ζ := f (z), then

(E) :

{∀(y,β ) ∈ R
n ×R : h(y) = β −ζ ,

g(x)−β ≥ 〈h′(y),x− y〉 ∀x ∈ D.
(25)

Proof. Suppose, for some pair (y,β ) satisfying (25) and a feasible point x̂ ∈ D the
inequality in (25) is violated

g(x̂)< β + 〈h′(y), x̂− y〉.

Then due to convexity of h(·) we have

f (x̂)
.
= g(x̂)−h(x̂)< h(y)+ζ −h(y) = f (z),

or f (x̂)< f (z). Thus, x̂ is “better” than z, which contradicts to z ∈ Sol(P). ��
So, when selecting the “perturbation parameters” (y,β ) satisfying (25) and

solving the linearized problem (sf. (15))

Φy(x) := g(x)−〈h′(y),x〉 ↓ min
x
, x ∈ D, (26)

(where y ∈ R
n is not obligatory feasible!) we obtain a family of starting points

x(y,β ) for a further (assume) local search.
Moreover, on each level ζk = f (zk) it is not necessary to investigate all the pairs

(y,β ) satisfying (25), ζk = β − h(y), but it is sufficient to discover the violation of
the variational inequality (25) only for one pair (ŷ, β̂ ).

After that, one proceeds to the next iteration of the global search: zk+1 := x̂,
ζk+1 := f (zk+1), and starts the procedure from the very beginning. So, the idea of
the GSM becomes considerably more clear.
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For the case of d.c. constraint problem (12) the character of GOC is a little bit
different. It particular, the necessary conditions are rather far from the sufficient
ones. More precisely, we have the result as follows:

Theorem 3. Assume that in Problem (DCC)–(12) the following condition holds:

(G) :
there does not exist a solution x∗ ∈ S
to Problem (12) such that F(x∗)< 0.

}
(27)

If a point z ∈ S is a global solution to Problem (12) such that F(z) = 0, then

(E1) :

{ ∀(y,β ) ∈ R
n ×R : β = h(y), ∀h′(y) ∈ ∂h(y)

g(x)−β ≥ 〈h′(y),x− y〉 ∀x ∈ S, f0(x)≤ f0(z).
(28)

Proof. Suppose we find some parameters (y0,β0), h′(y0) ∈ ∂h(y0) and a point x0 ∈
S such that

β0 = h(y0), f0(x0)≤ f0(z), and g(x0)−β0 < 〈h′(y0),x0 − y0〉.

Then due to convexity of h(·) we obtain

0 < β0 −g(x0)+h(x0)−h(y0) =−F(x0).

Hence, we have the feasible point x0 ∈ S, F(x0) < 0 = F(z) with the property
f0(x0)≤ f0(z). It means that x0 is a solution to Problem (12) as well as the point z.
The latter contradicts to the condition (G)–(27). ��

A procedure of escaping a local pit can be conducted in a similar manner as it
was explained after Theorem 2.

In the next subsection such a procedure will be precised for the case of d.c. min-
imization problem (11).

4.3 Global Search Methods

In order to deal with nonconvex optimization problems and, in addition, on the basis
of the rather large computational experience [11, 18, 19, 26–28, 31–37] we propose
three principles on which can be produced a search for a global solution to d.c.
optimization problems of the forms considered above.

1. Linearization with respect to the basic nonconvexities of the problem under
scrutiny and, consequently, the reduction of the original problem to a family
of (partially) linearized problems.

2. Application of contemporary convex optimization methods for solving
linearized problems and, as a consequence, “within” special LSMs.

3. Construction of “good” approximations (resolving sets) of the level surfaces/epi-
graph boundaries of convex functions.
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Moreover, by working rather long time (about 30 years) on the field of nonconvex
optimization, several practical rules have been elaborated, which can be represented
as follows:

1. Never apply convex optimization methods directly.
2. Exact classification of the problem under scrutiny.
3. Application of special (for the class of problems to which belongs your problem)

LSM, or (your problem’s) specific methods.
4. Application of GSM specialized for the class which includes your problem.
5. Construction of suitable approximations of level surfaces (and the boundaries

of the epigraphs) of convex functions with the aid of the experience obtained
during solving similar problems.

6. Application of convex optimization methods for solving linearized problems and
within the framework of special LSM.

These rules may be explained otherwise and by examples, following the
instances.

1. Never apply CGM or BFGS if you are not convinced that your problem is
convex.

2. Try to separate the data of your problem into two parts—convex and anticonvex.

For example, dealing with a quadratic function of the kind

q(x) =
1
2
〈x,Qx〉,

where the matrix Q is indefinite, you have to separate the matrix Q(n× n) into a
difference Q = Q1 −Q2 of two symmetric positive definite matrices Qi = QT

i > 0,
i = 1,2. Note there exists infinity of such representations and several methods and
ways to obtain its [28, 38].

Further, it is very important where your quadratic function q(x) is situated—in
the objective function or among the constraint’s data, because depending on the
situation you have different types of the problem to solve—d.c. minimization (11)
or d.c. constraint problem (12), respectively. And as a consequence, you have to
follow the different strategy (GSM, see below).

To demonstrate the effectiveness of these practical rules, let us consider the
following example.

Example 2 (Incorrect Classification). Consider the problem

ϕ(x) =
n
∑

i=1
ln(1+ xi) ↓ min

x
,

x ∈ Π =
{

x ∈ R
n | − 1

2 ≤ xi ≤ 3
} ⊂ R

n.

⎫
⎬

⎭
(29)

Obviously, the point z =
(− 1

2 , . . . ,− 1
2

)T
is the solution to the problem. Suppose, the

current iterate is xk = (0, . . . ,0)T
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∇ f (x) =

(
1

1+ x1
, . . . ,

1
1+ xn

)T

, ∇ f (xk) = (1, . . . ,1)T ,

∇2 f (x) =

⎡

⎢
⎣

− 1
(1+x1)2 . . . 0

. . . . . . . . .
0 . . . − 1

(1+xn)2

⎤

⎥
⎦ , ∇2 f (xk) =

⎡

⎣
−1 . . . 0
. . . . . . . . .
0 . . . −1

⎤

⎦ .

The auxiliary problem of Newton’s method

Φ(d) =
n

∑
i=1

di −
n

∑
i=1

d2
i ↓ min, d ∈ Π = (Π − xk)

has obviously the solution d = (3, . . . ,3)T (take the case n = 2), which is a direction
to the worst feasible point x=(3, . . . ,3)T . As a consequence, the iteration of the line-
search method xk+1 = xk + tdk cannot escape from xk = (0, . . . ,0)T and the process
is stopped at xk. Besides, note that the auxiliary problem conserves the nonconvex
character of the original problem (29).

In contrast to the incorrectness of the above classification, let us look at the goal
function of Problem (29) as a concave function, and correspondingly at the problem
(29) as the concave minimization problem. Then we immediately conclude that we
are dealing just with Problem (13) (h(·) =−ϕ(·)). Hence, we have to apply, first, the
special LSM (16) where g(x)≡ 0. So, beginning at arbitrary feasible point x0 ∈ Π ,
we have to solve the linearized problem

(PL0) : 〈∇ϕ(x0),x〉=−〈∇h(x0),x〉 ↓ min
x
, x ∈ Π ⊂ R

n,

i.e.
n

∑
i=1

1

1+ x0
i

· xi ↓ min
x

−1
2
≤ xi ≤ 3, i = 1, . . . ,n

that provides for the global solution to the original problem (29)

x1 = z
.
=

(
−1

2
, . . . ,−1

2

)T

∈ Sol(P).

So, the special LSM (in one step!) has found the global solution to Problem (29).
��

Let us return now to the construction of a GSM (strategy) based on GOC
presented in Theorem 2 and specialized only for Problem (P)–(11).

The basic stages of such a GSM (strategy) can be described as follows:

I. Find a critical point z by means of the special LSM ((16), for example).
II. Choose a number β ∈ [β−,β+], where β− = inf(g,D), β+ = sup(g,D) can be

approximated by rather rough estimates.
III. Construct an approximation
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A(β ) = {y1, . . . ,yN | h(yi) = β −ζ , i = 1, . . . ,N = N(β )}

of the level surface of the function h(·).
IV. Beginning at every point yi of the approximation A(β ) find a feasible point ui

by means of the special local search algorithm (16).
V. Verify the VI (25) from GOC

g(ui)−β ≥ 〈h′(wi),ui −wi〉 ∀i = 1, . . . ,N, (30)

where wi may be found as the projection of the point ui onto the convex set

L(h,β −ζ ) = {x ∈ R
n | h(x)≤ β −ζ }.

VI. If ∃ j ∈ {1, . . . ,N} such that (30) is violated, then set xk+1 := u j and return to
Stage I. Otherwise change β and return to Stage III.

Example 3. Consider the problem

f (x) ↓ min, x ∈ R, (31)

f (x) =

{ 1
4 x4 − 1

2 x2, x ≥ 0,
1
2 x4 − x2, x < 0.

(32)

The d.c. representation is here obvious, for example

f (x) = g(x)−h(x),

where

g(x) =

{ 1
4 x4, x ≥ 0,
1
2 x4, x < 0,

h(x) =

{
1
2 x2, x ≥ 0,
x2, x < 0.

(33)

Let us choose the starting point x0 = 100, while the global solution is z = −1,
which can be readily seen.

(A) Local search
We have s = 0, x0 = 100, ∇h(x0) = x0 = 100, since

∇h(x) =

{
∇h1(x) = x, x ≥ 0,

∇h2(x) = 2x, x < 0.
(34)

Then the linearized (convex) problem (PL0)–(15) takes the form

(PL0) : Φ0(x) = g(x)−〈∇h(x0),x〉= 1
4

x4 −100x ↓ min
x
, x ∈ R.

To simplify the situation, in order to solve (PLs) let us apply the Fermat rule instead
of any numerical method. This yields

∇Φ(x) = x3 −100 = 0.
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Taking into account that 43 = 64, 53 = 125, let us risk to set x1 ≈ 4.5. Further, we
have to solve the next linearized problem (s = 1)

(PL1) : Φ1(x) =
1
4

x4 −4.5x ↓ min
x
, x ∈ R,

and, as a consequence, the equation

∇Φ1(x) = x3 −4.5 = 0,

whence it follows that x2 ≈ 1.7.
For s = 2 consider the next linearized problem

(PL2) : Φ2(x) =
1
4

x4 −1.7x ↓ min
x
, x ∈ R,

and the corresponding equation

x3 −1,7 = 0,

that provides for the solution x3 ≈ 1.2. Hence, it is clear that {xs} tends to
z0 = 1 ∈ Arglocmin (31).

(B) Global search.

Step 1. Thus, beginning at x0 = 100 LSM provided for the point z0 = 1, ζ0 :=
f (z0) =− 1

4 .
Step 2. To begin with let us choose β0 = g(z0) = g(1) = 1

4 .
Step 3. Now we need to construct an approximation

A0 =

{
y1,y2, . . . ,yN | h(yi) = β0 −ζ0 =

1
4
−

(
−1

4

)
=

1
2

}
.

i = 1, h1(y)
.
=

1
2

y2 =
1
2
, y > 0, y1 = 1,

i = 2, h2(y)
.
= y2 =

1
2
, y < 0, y2 =−

√
2

2
.

So, we obtain A0 = {y1 = 1, y2 =−
√

2
2 }.

Step 4. Further, we have to solve the linearized problems (i = 1,2)

(PLi) : Φi(x) = g(x)−∇h(yi),x〉 ↓ min
x
, x ∈ R.

a) i = 1,

Φ1(x) =
1
4

x4 −〈∇h1(y1),x〉= 1
4

x4 − x ↓ min
x

.

The Fermat rule provides for u1 = 1.
i = 2,
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Φ2(x) =
1
4

x4 −〈∇h2(y2),x〉= 1
4

x4 −〈2y2,x〉= 1
4

x4 +
√

2x ↓ min
x
, x ∈ R,

whence it follows ∇Φ2(x) = x3 +
√

2 = 0 that yields u2 =−(2)1/6.
b) i = 1,

Φ3(x) =
1
2

x4 −〈∇h1(y1),x〉= 1
2

x4 − x ↓ min
x

.

As above, one has u3 =
3
√

0.5.

Here, it is necessary to note that the points u2 and u3 are unacceptable because
the initial data and the final results are incompatible, i.e.

a) i = 2, g(x) = g1(x) = 1
4 x4 when x ≥ 0 meanwhile the solution u2 =−(2)1/6 is

negative;
b) i = 1. g(x) = g2(x) = 1

2 x2 when x < 0, while u3 =
3
√

0.5 > 0.
Further we consider the last case.

c) i = 2.

Φ4(x) = g2(x)−〈∇h2(y2),x〉= 1
2

x4 −〈2y2,x〉= 1
2

x4 +
√

2x ↓ min
x

.

It is easy to see that the Fermat rule ∇Φ4(x) = 2x3 +
√

2 = 0 yields u4 =

−
(√

2
2

)1/3
.

Now, we have to verify VI (30).
Step 5. a) i = 1.

g(u1)−β0 −〈∇h(y1),u1 − y1〉= 1
4

u4
1 =

1
4
−〈y1,u1 − y1〉= 1

4
− 1

4
−0 = 0.

b) i = 2.

g2(u2)−β0 −〈∇h2(y2),u2 − y2〉= 1
2 u4

4 − 1
4 −〈2y2,u4 − y2〉

= 1
2

(√
2

3

)4/3 − 1
4 + 〈√2,−

(√
2

2

)1/3
+

√
2

2 〉

= 1
2

[(
1
2

)2/3 − 1
2

]
+ 〈√2,

(√
2

2

)
−

(√
2

2

)1/3〉.

Without a computer it is rather difficult to decide about the sign of the latter
expression. Suppose, our program was incorrect at this point, and we turned out
to be unsuccessful to violate the VI (30). What do we have to do further? It is
necessary to change β for another value, i.e. to loop to Step 2.

Step 2. Change β0 for β1 =
3
4 .

Step 3. We need a new set A1 of points yi satisfying

h(y) =

{
1
2 y2, y ≥ 0,
y2, y < 0

}
= β1 −ζ0 =

3
4
−

(
−1

4

)
= 1,
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whence it follows
i = 1, y1 =

√
2,

i = 2, y2 =−1.

On account of (34) we have to solve the linearized (convex) problems (i= 1,2)

(PLi) : Φi(x) = g(x)−〈∇h(yi),x〉 ↓ min
x
, x ∈ R.

Note that here it is sufficient to investigate only the case (i = 1, a) and (i = 2, b),
because other two (i = 1, b) and (i = 2, a) turn out to be unacceptable, as above.
i = 1, a)

g1(x)−〈∇h1(y1),x〉= 1
4

x4 − x
√

2 ↓ min
x
, x ∈ R.

With the help of Fermat rule one has

x3 −
√

2 = 0, x ≥ 0, u1 = (2)1/6.

i = 2, b)

g2(x)−〈∇h2(y2),x〉= Φ4(x) =
1
2

x4 +2x ↓ min, x ∈ R,

which provides for

2x3 +2 = 0, u4 =−1.

Now, we need to verify VI (30). However, it is sufficient to consider only the case
(i = 2, b) with u4 =−1, y2 =−1. Actually, in this case due to (34) we have

g2(u4)−β1−〈∇h2(y2),u4−y2〉= 1
2

u4
4−1−〈2(−1),−1−1〉= 1

2
−1−0=−1

2
< 0.

The latter inequality means that GOCs have been violated, and, moreover, we were
successful to “jump” out the local pit z0 = 1 directly to the global solution z1 =−1
by means of Global Search Strategy (Method). ��

5 Numerical Solution of the Applied Problems

5.1 Linear Complementarity Problem

As it was said in Sect. 2, we have to look at the LCP (1) as the optimization problem
(2). Besides, we will consider the most difficult case when (2) is nonconvex. More
precisely, the matrix M in the statement (2) is indefinite, i.e. possesses positive and
negative eigenvalues.
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Note that the LCP (1) represents necessary optimality conditions for the problem

f (x) =
1
2
〈x,Mx〉+ 〈q,x〉 ↓ min, x ≥ 0. (35)

However, this problem cannot replace (2) because M is indefinite. As a conse-
quence, f (·) in (35) can be unbounded below, while the objective function in (2)
is nonnegative and takes the zero value only at a solution to Problem (2). It is clear
that this provides an additional information for the computational process.

Now, let us describe the principal stage of the Global Search Algorithm (GSA).
0. Classification. Thus, we decide to classify LCP with an indefinite matrix M as

a d.c. minimization problem (3) with the strongly convex functions g(·) and h(·):

g(x) = 〈x,M1x〉+ 〈q,x〉, h(x) = 〈x,M2x〉,
Mi = M%

i > 0, i = 1,2, M = M1 −M2.

I. The next stage is the local search. In order to do it, let us apply the LSM (16)
which (for the LCP (2)) takes the form of the consecutive solutions of the following
linearized problem

Φs(x) = 〈M1x,x〉+ 〈q−2M2xs,x〉 ↓ min,
x ≥ 0, Mx+q ≥ 0.

}
(36)

To the end of solving Problems (36) we used the well-known XPress solver, which
was especially designed for solving convex quadratic and linear programming
problems.

On the other hand, to organize rather effective testing of the LSM (16), the data
of the (n× n) matrix M were randomly generated in the interval [−n,n] (see [34]).
So, the set of randomly generated LCPs of type (2) and of the dimension varying
from n = 2 to n = 1000 has been formed. Moreover, for every LCP we used three
different starting points. Further, the local solution process has been performed and
analyzed on this field of test LCPs. In particular, the results enable us to observe
the behavior of the method (15)–(16) and to choose appropriate starting points for
global search (“good-bad” points, starting at which the LSM (15)–(16) does not
provide for a global solution to Problem (2)).

Note separately that due to Theorem 1 the linearized problems (36) may be
solved at a low accuracy at the first steps; further, the accuracy δs can be gradually
improved (δs ↓ 0), for example, δ0 = 0.1, δs+1 = 0.5δs until the condition δs ≤ δ
is fulfilled with a given accuracy δ > 0. The results of computational testing of
LSM (16) have been presented for the first time in [34] and after have been con-
siderably improved (till the dimension n = 1,000 with a 3.4 GHz Pentium computer
with 1 Gb of memory). The auxiliary linearized problems (36) have been solved by
XPress solver.

On the basis of the analysis of the results of computational testing [34] one can
conclude that the LSM (16) showed itself rather effective for LCP (2). Moreover,
it was considerably more effective in comparison with X-Press solver, because the
latter was unable to deal with nonconvex LCP (2) of dimension n ≥ 10, meanwhile
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the LSM (15)–(16) yielded a critical (feasible) point for (2) in all considered test
problems till the dimension n = 1,000 with obligatory and considerable decreasing
of the goal function Φ(·) in (2) (see [34]).

So, LSM (15)–(16) can be applied in a GSA, although it is not able, in general,
to reach a global solution.

Now we can pass to a global search described in Sect. 4. To begin with, first, one
has to propose a numeric solution of the equation

h(y)
.
= 〈y,M2y〉= β −ζk, M2 = MT

2 > 0,

where ζk := Φ(zk), β ∈ [β−,β+], more precisely to construct an approximation

Ak(β ) = {y1, . . . ,yN | h(yi) = β −ζk, i = 1, . . . ,Nk}
of the level surface Uk(β ) = {x | h(x) = β − ζk}. The construction of such an
approximation is a key point in the implementation of the global search.

Regardless of the importance of this procedure, the construction may be per-
formed in rather simple fashion, for example,

yi = μid
i, i = 1, . . . ,N, (37)

where di are elements of some set in R
n, for instance, di = ei, {e1, . . . ,en} being the

Euclidian basis of Rn, and the numbers μi are chosen as the roots of the quadratic
equation h(μidi) = β −ζk due to the quadratic structure of h(·).

In order to solve Problem (2) we used the approximations as follows:

R1 = {yi = μie
i, yi+n =−yi | i = 1, . . . ,n},

R2 = {yi = zk +μie
i, yi+n = zk −μie

i | i = 1, . . . ,n},
where zk is the current iteration point.

Besides, we also applied the third approximation using the form (37), where
di(i = 1, . . . ,n) have been produced as the solutions of the linear programs

〈
ei,x

〉 ↓ min
x
, x ≥ 0, Mx+q ≥ 0, i = 1, . . . ,n (38)

and dn+1 is the solution of the similar problem

〈e,x〉 ↓ min
x
, x ≥ 0, Mx+q ≥ 0, (39)

with e = (1, . . . ,1)T ∈ R
n.

The results of computational testing of the developed GSA have first been pub-
lished in [34] and turned out to be rather promising for the test problems of dimen-
sion till 400.

Now we are having the software which is able to solve LCP (2) till the dimension
103 in 10–12 min and till the dimension 104 in 90–150 min, remember, by means of
(only one) almost the same computer as it was used in [34], without applying any
parallel technology.
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In addition, in order to compare the efficiency of GSA with existing software
the same series of randomly generated problems have been solved using the solver
PATH [34], which was especially designed for solving the LCP (1). Note that
all computational simulations have been carried out by students and postgraduate
students.

So, the qualities of the programs implemented may vary significantly.
Nevertheless, we can conclude that the developed GSA proved to be rather

effective for solving (nonconvex) LCPs with indefinite matrix M.

5.2 Bimatrix Games

Here we present the principal points of the numerical search for Nash equilib-
rium (NE) defined in (5) in the two-person game stated in (4). The computational
algorithm has been developed on the foundation of the following result of Mills [21].

Theorem 4. ([21]) (i) A situation (x∗,y∗) is a Nash equilibrium in the bimatrix
game G(A,B) (4) if and only if (x∗,y∗) is a part of a global solution (x∗,y∗,α∗,β∗)∈
R

m ×R
n ×R

2 to Problem (6).

(ii) Moreover, α∗ and β∗ are the payoffs of the first and the second players, respec-
tively:

〈x∗,Ay∗〉= α∗, 〈x∗,By∗〉= β∗.

(iii) Finally, the optimization value of the goal function in Problem (6) is equal to
zero

V(6) = F(x∗,y∗,α∗,β∗) = 0.

��

5.2.1 Classification

In order to develop a numerical method for solving Problem (6) we have, first, to
classify it as a nonconvex problem. Because all the constraints in (6) are linear,
we have to decide about the features of the cost function of Problem (6). It can be
readily seen that this function has the d.c. decomposition as follows:

F(x,y,α,β ) = h(x,y)−g(x,y,α,β ), (40)

where

h(x,y) = 1
4 (‖x+Ay‖2 +‖x+By‖2)

g(x,y,α,β ) = 1
4 (‖x−Ay‖2 +‖x−By‖2)+α +β

}

(41)

are convex functions (h(·) on R
m+n, g(·) on R

m+n+2). In other words, we have the
d.c. minimization problem (PBM) as follows:
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(PBM) :

F0(x,y,α,β ) =−F(x,y,α,β ) = g(x,y,α,β )−h(x,y) ↓ min
x,y,α ,β

,

(x,β ) ∈ X = {x ∈ Sm, β ∈ R | x%B ≤ βen },
(y,α) ∈ Y = {y ∈ Sn, α ∈ R | Ay ≤ αem }.

⎫
⎪⎬

⎪⎭
(6′)

It is easy to see that the cost function F0(x,y,α,β ) is nonnegative (F0(·) ≥ 0,
F(·)≤ 0) on the feasible set of Problem (PBM)–(6′).

In addition, if we denote

α(y) := max
1≤i≤m

(Ay)i, β (x) := max
1≤ j≤n

(x%B) j, (42)

then due to the necessity proof of Theorem 2 we can reformulate Theorem 2 in the
contrapositive form as follows.

Theorem 5. ([28]) If a feasible tuple (x̂, ŷ, α̂, β̂ ) is not a global solution to Problem
(PBM)–(6′), then there exist some vectors (u,v) ∈ Sm ×Sn and (x̄, ȳ) ∈ Sm ×Sn, and
a number γ such that

γ −h(u,v) = ζ := F0(x̂, ŷ, α̂, β̂ )> 0, (43)

g(u,v,α(v),β (u))≤ γ ≤ sup(g,D), (44)

g(x̄, ȳ,α(ȳ),β (x̄))− γ < 〈∇xh(u,v), x̄−u〉+ 〈∇yh(u,v), ȳ− v〉. (45)

��
Applying just this result we will develop a GSM for finding a global solution

to (PBM)–(6′). The first step of this GSM is a local search algorithm which takes
into account the bilinear structure of the cost function α +β −〈x,(A+B)y〉 of the
Problem (PBM)–(6′).

5.2.2 Local Search

First, let us repeat that LSMs play the important role in the processes of search for
a global solution to nonconvex problems, since it provides for the so-called critical
(stationary) points which may be considerably better than a simple feasible point.
Moreover, if a starting point occurs rather closed to a global solution (as in the case
of Newton method for solving systems of nonlinear equations), then an LSM is able
to provide for the global solution.

Therefore, we have to pay our attention and considerable efforts to a creation (a
design or a choice) and the substantiation of local search procedures.

For instance, for the case of Problem (6′) it might be possible to apply the LSM
(15)–(16) taking into account the d.c. representation (40)–(41) and applying the
corresponding methods of quadratic programming.

However, in this case the bilinear nature of Problem (PBM)–(6′), the specific
character of the cost function 〈x,(A+B)y〉, namely, its bilinearity, would be lost.
Therefore, we propose to follow another way, more natural in the case, taking
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into account the bilinear structure of the goal function F0(x,y,α,β ) = α + β −
〈x,(A+B)y〉. Combining the linearization idea and the separation of the variables
into groups according to the statement of Problem (PBM)–(6′), we obtain without
alternative a procedure of consecutive solving the following two (linearized at a
point (u,v) ∈ R

m ×R
n) problems

(PLx) :

{
β −〈(A+B)v,x〉 ↓ min

(x,β )
,

(x,β ) ∈ X = {(x,β ) ∈ Sm ×R | x%B ≤ βen},
(46)

(PLy) :

{
α −〈u%(A+B),y〉 ↓ min

(y,α)
,

(y,α) ∈ Y = {(y,α) ∈ Sn ×R | Ay ≤ αem}.
(47)

Unexpectedly enough, the procedure of consecutive solving the Problem (PLx) and
(PLy) converges in the following sense.

Theorem 6. ([33]) The sequence of the tuples (xs,ys,αs,βs) generated by the LSM
consisting in the consecutive fulfilling of the following inequalities

αs+1 −〈xs(A+B),ys+1〉− ρs

2
≤ inf

(y,α)
{α −〈xs(A+B),y〉 | (y,α) ∈ Y}, (48)

βs+1 −〈xs+1(A+B),ys+1〉− ρs

2
≤ inf

(x,β )
{β −〈x,(A+B)ys+1〉 | (x,β ) ∈ X}, (49)

converges to a quadruple (x̂, ŷ, α̂, β̂ ) satisfying the conditions as follows

F0(x̂, ŷ, α̂, β̂ )≤ F0(x̂,y,α, β̂ ) ∀(y,α) ∈ Y,

F0(x̂, ŷ, α̂, β̂ )≤ F0(x, ŷ, α̂,β ) ∀(x,β ) ∈ X ,

}

(50)

provided that ρs > 0, s = 0,1,2, . . .,
∞
∑

s=0
ρs <+∞. ��

We will call, henceforth, such a point satisfying (50) a critical point of Problem
(PBM)–(6′). The LSM (46)–(49) has been tested on a rather large field of well-
known test problems [33], and also on the various test problems especially con-
structed with the help of the idea from [5], by beginning the known games of
small dimension (2 × 2, 3 × 3) and until the test-games of rather high size (say,
m = n = 1,000).

Computational simulations certify unexpected effectiveness of the developed
LSM that naturally depends on the method or a package of applied software
(CPLEX) that was used for solving the linear problems (46), (47). Now we are
able to perform LSM with the data m = n = 106 rather easily and effectively.

5.2.3 Global Search Algorithm

Recall that, in addition to local search, the basic stages of a GSM include an ap-
proximation of the level surface of the convex function h(·) (which creates the basic
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nonconvexity in Problem (PBM)–(6′)), a solution of a linearized problem (PLs), the
verification of the VI (30) with wi ∈U(h,γ −ζ ) = {(x,y)∈R

m+n | h(x,y) = γ −ζ},
and finally a line search along the variable γ ∈ R.

Taking into account the particularities of Problem (6′) the following modifica-
tions have been introduced into the general scheme of Global Search on the bases
of Theorem 5.

1. Due to the properties of the cost function F0(x,y,α,β ) (see Theorem 4) the sup-
plementary stopping criterion was introduced.

2. Two new parameters (q and ν) have been introduced in order to control the speed
and the accuracy of the algorithm [23].

Let us now describe the GSM for solving Problem (PBM)–(6′) in a more algorithmic
form.

Assume, we are given a starting feasible point (x0,y0,α0,β0) ∈ D = X ×Y ;
number sequences {τk} and {δk}, k = 0,1,2, . . ., τk ↓ 0, δk ↓ 0 (k → ∞); a set of
directions Dir = {(ū1, v̄1), . . . ,(ūN , v̄N) ∈ R

m+n} the bounds γ− ≈ inf(g,D),γ+ ≈
sup(g,D); and parameters ν ∈]0,1[ and q.

Global Search Methods for (PBM)–(6′).

Step 0. Set k := 0, (x̄k, ȳk, ᾱk, β̄k) := (x0,y0,α0,β0), s := 0, p := 1, γ := γ−,
Δγ = (γ+− γ−)/q.
Step 1. Starting from (x̄k, ȳk, ᾱk, β̄k) ∈ D, move to τk—critical point
(xk,yk,αk,β k) ∈ D by means of the special LSM (48)–(49).
Set ξk := F0(xk,yk,αk,βk)≤ F0(x̄k, ȳk, ᾱk, β̄k).
Step 2. (Stopping criterion). If ξk ≤ ε , where ε is the prescribed accuracy, then
STOP: (xk,yk) ∈ NE(G,ε).
Step 3. With the help of the point (ūp, v̄p) ∈ Dir (p = 1, ..,N) construct
a point (up,vp) such that h(up,vp) = γ − ξk. Compute the numbers αp :=
max

1≤i≤m
(Avp)i,βp := max

1≤ j≤n
(upB) j.

Step 4. If g(up,vp,αp,βp) > γ + νγ , then set p := p+ 1 and return to Step 3.
Else go to Step 5.
Step 5. Starting at the point (up,vp,αp,βp) find a 2τk-critical point
(x̂p, ŷp, α̂p, β̂p) ∈ D of Problem (6′) by means of special LSM.
Step 6. (Stopping criterion). If F0((x̂p, ŷp, α̂p, β̂p) ≤ ε , then STOP.
(x̂p, ŷp) ∈ NE(G,ε).
Step 7. Find a δk-solution (xp

0 ,y
p
0) to the level problem or, what is equivalent,

〈∇xh(xp
0 ,y

p
0), x̂

p − xp
0〉+ 〈∇yh(xp

0 ,y
p
0), ŷ

p − yp
0〉+δk

≥ sup
(x,y)

{〈∇xh(xp
0 ,y

p
0), x̂

p − x〉+ 〈∇yh(xp
0 ,y

p
0), ŷ

p − y〉 | h(x,y) = γ −ζk}, (51)

where h(xp
0 ,y

p
0) = γ −ζk.

Step 8. Compute

ηk(γ) = g(x̂p, ŷp, α̂p, β̂p)− γ −〈∇xh(xp
0 ,y

p
0), x̂

p − x̂p
0〉−〈∇yh(xp

0 ,y
p
0), ŷ

p − ŷp
0〉.
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Step 9. If ηk(γ)≥ 0 and p < N, then set p := p+1 and loop to Step 3.
Step 10. If ηk(γ) ≥ 0 and p = N, then set γ := γ +.γ and p := 1 and return to
Step 3.
Step 11. If ηk(γ)< 0, then k := k+1,(x̄k+1, ȳk+1, ᾱk+1, β̄k+1) := (x̂p, ŷp, α̂ p, β̂ p),
and return to Step 1.
Step 12. If p = N and ηk(γ)≥ 0∀γ ∈ [γ−,γ+] (i.e., the line search with respect to
γ ∈ [γ−,γ+] is finished), then stop.

The GSM presented above is not an algorithm, since some of its steps have not
been described clearly, and must be precised. For instance, it is not clear how to
find the pair (xp

0 ,y
p
0) on Step 7, besides, how to construct a point (up,vp) on the

level surface of h(·): h(up,vp) = γ − ζk with the help of a given direction (ūp, v̄p)
on Step 3. As to the first problem of Step 7, it can be solved analytically for the
quadratic function

h(x,y) =
1
4
(‖x+Ay‖2 +‖x+By‖2), (52)

more precisely, the exact solution is given by the formula [32, 33]

(xp
0 ,y

p
0) = t(x̂p, ŷp), t =

[ γ −ζk

h(x̂p, ŷp)

] 1
2
.

The construction of point (up,vp) satisfying h(up,vp) = γ −ζk can be done in the
similar way:

(up,vp) = λp(ū
p, v̄p), p = 1, . . . ,N,

λp = λp(ζk,γ) =±[γ −ζk/h(ūp, v̄p)]
1
2 .

To the end of the solving Problem (PBM)–(6′) it was used the approximations
of the level surface U(h,γ −ζ ) = {(x,y)| h(x,y) = γ −ζ} (see Step 3) constructed
with the help of the following sets of directions

Dir1 = {(ei,e j) ∈ R
m+n| i = 1, . . . ,m, j = 1, . . . ,n},

where {ei} is the Euclidian basis in R
m and {e j} is the basis in R

n, respectively;

Dir2 = {(ei + x,e j + y)| i = 1, . . . ,m, j = 1, . . . ,n},

where (x,y) is a critical point provided by the special LSM;

Dir3 = {(a j + em,b
i + en)| i = 1, . . . ,m, j = 1, . . . ,n},

where a j ∈ R
n are the columns in A and bi ∈ R

n are the rows in B, and
ep = (1, . . . ,1) ∈ R

p, p = m,n.
Note that the sets Dir1,Dir2,Dir3 have been selected as the most efficient ones

after comparative computational experiments. But on the other hand, it is easy to



490 A.S. Strekalovsky

see that the number of points in the constructed approximations strongly depends
on the size of the problem, i.e. is equal to m×n.

So, the number of points in the approximations grows as q2, where q =
min{m;n}.

It is clear that this moment makes it prohibited the numerical solution of Prob-
lem (PBM)–(6) of high dimension due to the excessive solution time.

In order to avoid this drawback it was employed some reducing procedure of the
sets Dir1,2,3 to sets with the number of points equal to 2(m+n) [23, 33].

5.2.4 Computational Simulations

The numerical experiments were conducted applying software programs imple-
menting the GSAs described above. For all the problems, a starting point was chosen
as follows:

x0
i =

1
m
, i = 1,2, . . . ,m; y0

j =
1
n
, j = 1,2, . . . ,n,

α0 = max
i
(Ay0)i, β0 = max

j
(x0B) j.

The computational simulations have been separated into several stages, and the
first results of these experiments have been published in [23].

Further, the analysis of the results allowed us to conclude about some shortcom-
ings of the software program developed. First of all, it was the solving method for
linearized problems (46)–(47). Recall that to the end the simplex method program
or the supporting cone method program was employed, which showed itself very
excessive from the viewpoint of the solution time of problems of high dimension.

As a consequence, for solving the BM games of rather high dimension (up to
1,000 × 1,000) we decided to apply ILOG CPLEX 9.1(http://www-01.ibm.com/
soft-ware/commerce/optimization/cplex-optimizer/index.html) especially oriented
to LP problems. In addition, in order to create the worst conditions for the global
search software the entries of matrices A and B have randomly been generated from
the interval [−n,n], where n = m.

The software programs of global search were run on Pentium 4, CPU 3 GHz with
512 Mb of RAM and have been implemented by post-graduated students without a
long computational experience.

Nevertheless, the results of computational solving of BM games (m = n) can be
viewed as rather promising from the point of view of analysis of numeric results of
Table 1.

In Table 1, m = n is the number of pure strategies of players 1 and 2, F0 stands
for the value of the goal function at the starting points, Fk is the corresponding value
at the best obtained point, st is the number of iterations of GSAs (or, what is the
same, the number of critical (stationary) points passed by GS algorithms), LP and
Loc represent the number of linearized problems solved and the number of local
search algorithm’s applications, respectively.

http://www-01.ibm.com/soft-ware/commerce/optimization/cplex-optimizer/index.html
http://www-01.ibm.com/soft-ware/commerce/optimization/cplex-optimizer/index.html
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Table 1 Computational results

m = n F0 Fk st LP Loc Time

200 40.3811 0 2 972 65 00:43.66
250 51.1617 0 4 4,843 321 5:36.30
300 60.1209 0 2 28 2 00:44.17
400 75.0987 0 6 16,168 978 59:05.49
500 75.3494 0 2 158 20 05:57.88
600 84.1025 0 2 82 7 07:33.92
700 89.0439 0 2 54 6 11:50.34
800 99.8335 0 2 48 3 15:28.70
900 100.0419 0 3 136 11 29:31.38

1,000 106.8368 0 3 178 18 45:04.34

It can readily be seen that in the cases of m = n = 250 and 400 it happened to
randomly generate very difficult problems.

Despite these difficulties, all test-problems have successfully been solved that
certifies on the computational effectiveness of the software program created on the
basis of the GSA and the Global Search Theory.

Now, we are preparing to attack the bimatrix game of dimension m = n = 104

and the similar three-person-game of dimension m = n = l = 5, and 10.

5.3 Quadratic-Linear Bilevel Optimization

In this subsection we will consider the following problem of bilevel programming

(BP) : F(x,y) :=
1
2
〈x,Cx〉+ 〈c,x〉+ 1

2
〈y,Cy〉+ 〈c1,y〉 ↓ min

x,y
, (53)

(x,y) ∈ X := {(x,y) ∈ R
m ×R

n | Ax+By ≤ a, x ≥ 0}, (54)

y ∈ Y∗(x) := Argmin
y

{〈d,y〉 | y ∈ Y (x)} (55)

Y (x) := {y ∈ R
n | A1x+B1y ≤ b, y ≥ 0}, (56)

where we are seeking an optimistic solution [6, 8], i.e. the upper level (x, leader)
and the lower level (y, follower) are searching together (in cooperation) a common
solution (x∗,y∗). Here, c ∈R

m, d,c1 ∈R
n, a ∈R

p, b ∈R
q, and matrices C, C1, A, B,

A1, B1 are of corresponding dimensions. In addition, C =C% > 0, C1 =C%
1 > 0, so

that the leader cost function is a convex quadratic function, while the follower goal
function is linear.
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Assume that
(H): (i) the function F(x,y) is bounded from below on X ,
(ii) the function 〈d,y〉 is bounded from below on Y (x) ∀x ∈ Pr(X).

It is clear, that, from the first glance, any nonconvexity is not visible in the
formulation (BP)–(53)–(56). In order to put it explicit we apply the KKT-conditions
for the follower problem (55) –(56):

d + vB1 ≥ 0, v ≥ 0, A1x+B1y ≤ b,
〈d,y〉−〈A1x−b,v〉= 0,

}
(57)

where v is the Lagrangian multipliers. Since the follower problem is also convex,
the relations (57) are equivalent to the statement (55)–(56).

Let us replace, now, in (BP) the follower problem by (57). It yields us the new
problem

(P) : F(x,y) ↓ min
x,y,v

,

Ax+By ≤ a, A1x+B1y ≤ b, d + vB1 ≥ 0,
〈d,y〉= 〈A1x−b,v〉, x ≥ 0, y ≥ 0, v ≥ 0.

⎫
⎪⎬

⎪⎭
(58)

The following result establishes the relation between the (BP) and Problem (P).

Theorem 7. ([8]) For the pair (x∗,y∗) to be a global solution to Problem (BP)–
(53)–(56), it is necessary and sufficient that there exists a vector v∗ ∈ R

q such that
the triple (x∗,y∗,v∗) is a global solution to Problem (P)–(58). ��

Note, that, first, the relation exists only between the global solutions of Problems
(P) and (BP), but it does not take place between local solutions or between local
and global ones.

Second, it is easy to see that the feasible set of Problem (P)–(58) is nonconvex
because of the presence of the bilinear equality-constraint in (58). Thus, Problem
(P)–(58) turns out to be nonconvex.

Let us denote
H(x,y,v) := 〈d,y〉−〈A1x−b,v〉 (59)

and introduce a μ-parametric family of problems as follows:

(P(μ)) : F1(x,y,v,μ) = F(x,y)+μH(x,y,v) ↓ min
x,y,v

,

(x,y,v) ∈ D := {(x,y,v) | Ax+By ≤ a, A1x+B1y ≤ b,
d + vB1 ≥ 0, x ≥ 0, y ≥ 0,v ≥ 0},

⎫
⎪⎬

⎪⎭
(60)

where μ > 0 is a penalty parameter. If we rewrite the function H(·) in the form

H(x,y,v) = 〈d + vB1,y〉−〈A1x+B1y−b,v〉, (59 ′)

then it becomes clear that

H(x,y,v)≥ 0 ∀(x,y,v) ∈ D. (61)
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Furthermore, it can be readily seen that for a fixed value of μ Problem (P(μ)) is
convex and quadratic with respect to the variables (x,y), and, besides, bilinear with
respect to the variables x and v. So, Problem (P(μ)) can be called quadratic-bilinear,
but anyway it stays to be nonconvex with the convex feasible set D (defined in (60))
and the nonconvex objective function F1(·). Below we will show that F1(x,y,v,μ) is
a d.c. function.

Let us suppose (x(μ),y(μ),v(μ)) be a solution to Problem (P(μ))–(60) for
a given μ ∈ R. Further, denote H[μ ] = H(x(μ),y(μ),v(μ)). Then the following
relations between Problems (P)–(58) and (P(μ))–(60) take place.

(i) If the equality H[μ̂ ] = 0 holds for some value μ̂ ∈ R and
(x̂, ŷ, v̂) = (x̂ = x(μ̂), ŷ = y(μ̂), v̂ = v(μ̂)) is a solution to Problem (P(μ̂)),
then the triple (x̂, ŷ, v̂) is a solution to Problem (P).

(ii) Moreover, for all μ > μ̂ the equality H[μ ] = H(x(μ),y(μ),v(μ)) = 0 holds,
and, in addition, (x(μ),y(μ),v(μ)) is a solution to Problem (P).

In connection with these assertions we have results more suitable for computa-
tional uses.

Proposition 1. ([36]) Let (x(μ),y(μ),v(μ)) ∈ D be a τ1-solution to Problem
(P(μ)), and, besides,

H(x(μ),y(μ),v(μ))≤ τ2.

Then

(i) y(μ) is a τ2-solution to the follower problem (55)–(56) with parameter x= x(μ);

(ii) (x(μ),y(μ)) is an approximate τ1-solution to Problem (BP)–(53)–(56). ��
The above assertions allow us to apply the global search methodology developed

in Sect. 4 for solving Problem (P(μ))–(60) and, as a consequence, for finding an
approximate global solution to Problem (BP)–(53)–(56).

5.3.1 Local Search

It can be readily seen that Problem (P(μ)) can be rewritten in the following form

(P(μ)) : F1(x,y,v) :=
1
2
〈x,Cx〉+ 〈c,x〉+ 1

2
〈y,C1y〉+ 〈c1,y〉

+μ
[〈d,y〉−〈A1x−b,v〉] ↓ min

x,y,v
, (62)

(x,y) ∈ Z := {(x,y) | Ax+By ≤ a, A1x+B1y ≤ b, x ≥ 0, y ≥ 0}, (63)

v ∈V := {v | d + vB1 ≥ 0, v ≥ 0}. (64)

On account of the assumptions (H), it is easy to see that the cost function F1(·) is
bounded from below on the set D = Z×V . Further, the statement (62)–(64) of Prob-
lem (P(μ)) suggests the idea of local search consisting in a consecutive solution of
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the problem (62)–(64) with respect to the groups of variables; more precisely, in the
case (62)–(64) , first, with respect to the pair (x,y) and, after that, with respect to the
variables v, or in the inverse order.

Note that Problem (P(μ)) with a fixed value of the variable v becomes a convex
quadratic optimization problem. On the other hand, for a fixed pair (x,y) we obtain
a linear programming (LP) problem with respect to v. So, these auxiliary problems
can be solved by standard software packages (CPLEX, X-Press, etc.)

Therefore, we can produce local search as it was done for the Bimatrix games.
Given some starting point v0 ∈ V , we describe a so-called V -procedure as fol-

lows:

Step 0. Set s := 0, vs := v0.
Step 1. Find a ρs

2 -solution (xs+1,ys+1) of the problem

1
2
〈x,Cx〉+ 〈c,x〉+ 1

2
〈y,C1y〉+ 〈c1,y〉

+μ
[〈d,y〉−〈A1x−b,vs〉] ↓ min

x,y
, (x,y) ∈ Z,

⎫
⎬

⎭
(PLs)

so that the following inequality holds

F1(x
s+1,ys+1,vs)≤ inf

(x,y)
{F1(x,y,v

s) | (x,y) ∈ Z}+ ρ2

2
. (65)

Step 2. Find a ρs
2 -solution vs+1 of LP problem

〈d −A1xs+1,v〉 ↓ min
v
, v ∈V, (LPs)

so that the following inequality is satisfied

F1(x
s+1,ys+1,vs+1)≤ inf

v
{F1(x

s+1,ys+1,v) | v ∈V}+ ρ2

2
. (66)

Step 3. Set s := s+1 and loop to Step 1.
Under the condition

ρs > 0, s = 0,1,2, . . . ,
∞

∑
s=0

ρs <+∞,

we can prove, as it was in the Bimatrix games, that the numerical sequence
{F1s = F1(xs,ys,vs)} generated by the V -procedure from above is converging.

Moreover, if (xs,ys,vs)→ (x̂, ŷ, v̂), then the point (x̂, ŷ, v̂) turns out to be a critical
point of Problem (P(μ))–(62)–(64) [35] or partially global solution to (P(μ)), i.e.

F1(x̂, ŷ, v̂)≤ F1(x,y, v̂) ∀(x,y) ∈ Z,
F1(x̂, ŷ, v̂)≤ F1(x̂, ŷ,v) ∀v ∈V.

}
(67)
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Note that if a point (x̄, ȳ, v̄) is a local solution to Problem (P(μ))–(62)–(64), then
(x̄, ȳ, v̄) turns out to be a critical point of Problem (P(μ)). Thus, the notion of critical
point just introduced is really substantiated by and connected with the common
notion of local solution. The similar to V -procedure so-called XY -procedure (start-
ing at a point (x0,y0) ∈ Z) has also been studied and substantiated.

In order to test the developed LSM a rather large field of test-problems of the
form (BP)–(53)–(56) has been constructed with the help of the idea of Calamai and
Vicente [5], which provides for the bilevel problems with well-known properties,
local and global solutions (even the numbers of which is known).

Now, a few words about the numerical testing of LSM.
First, the computational simulation was threefold:

(a) to choose a suitable value of the penalty parameter μ that provides for the equal-
ity H(x(μ),y(μ),v(μ)) = 0 (the exact penalty [3, 22, 40]);

(b) to find starting points suitable for Global Search, i.e. from which the LSM was
not able to reach a global solution;

(c) and finally, to compare two versions of LSM (with V - or XY -procedures).

Analyzing the testing results, one concluded that the computational time was
rather short (less than 0.1 s), when the stopping criterion was satisfied at the accuracy
τ = 10−4.

Furthermore, the value μ = 10 of penalty parameter μ turned out to be sufficient
to reach the equality H(x(μ),y(μ),v(μ)) = 0 at a τ-critical point (x(μ),y(μ),v(μ)).
The targets (b) and (c) have been also reached.

Moreover, it should be specially noted the high rate of convergence of the XY -
and V -procedures on the considered series of randomly generated problems, only
two iterations were needed (starting from arbitrary feasible point) in order to get
a critical point. So, the results of computational testing of the LSM were rather
promising [35, 37].

5.3.2 Global Search

Let us repeat that the numerical test results showed that the special LSMs (V - and
XY procedures) do not, in general, yield a global solution, even in problems of small
sizes.

According to the methodology of Sect. 4, first we need to derive an explicit d.c.
decomposition (if possible) of the cost function of the problem under scrutiny.

It is not hard to see that the goal function F1(x,y,v) of the problem (P(μ)) can
be represented as a difference of two convex functions, for instance, as follows:

F1(x,y,v) = g(x,y,v)−h(x,v), (68)

where
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g(x,y,v) =
1
2
〈x,Cx〉+ 〈c,x〉+ 1

2
〈y,C1y〉+ 〈c1,y〉

+μ
(〈v,b〉+ 〈y,d〉+ 1

4
‖v−A1x‖2),

h(x,v) =
μ
4
‖v+A1x‖2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(69)

are convex functions. Note that this d.c. decomposition is different with respect to
these ones that was used in [35–37].

As it was noted above, the procedures of escaping critical points are based on
GOC of Theorem 2 (see (25)) and employing the constructive (algorithmic) property
of GOC. In the case of Problem (P(μ)) these GOCs take the form as follows:

(x∗,y∗,v∗) ∈ Sol(P(μ)), ζ := F1(x∗,y∗,v∗) =⇒
∀(z,w,γ) ∈ R

m+q+1 : h(z,w) = γ −ζ , (70)

g(x,y,v)− γ ≥ 〈∇xvh(z,w),(x,v)− (z,w)〉 ∀(x,y,v) ∈ D. (71)

Besides, if for some (ẑ, ŵ, γ̂) in (70) and (x̂, ŷ, v̂) ∈ D

g(x̂, ŷ, v̂)< γ̂ + 〈∇xvh(ẑ, ŵ),(x̂, v̂)− (ẑ, ŵ)〉,

i.e. the VI (71) is violated, then due to the convexity of h(·) it follows

F1(x̂, ŷ, v̂)< F1(x∗,y∗,v∗).

In other words, (x̂, ŷ, v̂) ∈ D is “better” than (x∗,y∗,v∗).
Similarly to Sect. 4 and according to the methodology presented in Sect. 3 Prob-

lem (P(μ)) is decomposed into several simpler problems as follows:

(a) one-dimensional search along the variable γ;
(b) constructing the level surface approximation of the convex function h(x,v),

which does not depend on y, as it was in our earlier papers [35–37]. It is clear
that in this case the approximations must be easier to construct.

On the other hand, we have to pay attention to the fact that in view of the differ-
ent d.c. representation (68)–(69) the global search has to be changed and becomes
different with respect to [35, 36].

Assume, we are given a point (x0,y0,v0) ∈ R
m+n+q, numerical sequences {τk},

{δk}, τk, δk > 0, k = 0,1, . . ., τk ↓ 0, δk ↓ 0 (k → ∞), numbers γ− ≈ inf
(x,y,v)

(g,D) and

γ+ ≈ sup
(x,y,v)

(g,D), an algorithm’s parameter M and a direction’s set of the form

Dir =
{
(al ,cl) ∈ R

m+q | (al ,cl) �= 0, l = 1, . . . ,N
}
.

The GS algorithm used here can be represented as follows:

Step 0. Set k := 0, (x̄k, ȳk, v̄k) := (x0,y0,v0), l := 1. γ := γ−;Δγ := γ+− γ−/M.
Step 1. Starting at the point (x̄k, ȳk, v̄k) construct a τk-critical point (xk,yk,vk)∈ D
in Problem (P(μ)) by applying V - or XY -procedure. Set ζk := F1(xk,yk,vk).
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Step 2. Given a point (al ,cl) ∈ Dir, construct a point (zl ,wl) such that
h(zl ,wl) = γ −ζk.
Step 3. Solve the linearized problem as follows:

(PLl) : g(x,y,v)−〈∇xvh(zl ,wl),(x,v)〉 ↓ min
(x,y,v)

, (x,y,v) ∈ D.

Let the point (x̂, ŷ, v̂) be a solution to (PLl).
Step 4. Starting at the point (x̂, ŷ, v̂) construct a δk-critical point (x̂l , ŷl , v̂l).

Step 5. If F1(x̂l , ŷl , v̂l) < ζk
.
= F1(xk,yk,vk), then set (x̄k+1, ȳk+1, v̄k+1) :=

(x̂l , ŷl , v̂l), k := k+1, l := 1, γ := γ− and loop to Step 1.
Step 6. If F1(x̂l , ŷl , v̂l)≥ ζk and l < N, then set l := l +1 and return to Step 2.
Step 7. If F1(x̂l , ŷl , v̂l)≥ ζk and l = N, then set γ := γ +Δγ , l := 1 and come back
to Step 2.
Step 8. If l = N, F1(x̂l , ŷl , v̂l) ≥ ζk ∀γ ∈ [γ−,γ+] (i.e., one-dimensional search
along γ over the interval [γ−,γ+] is terminated), then STOP; (xk,yk,vk) is a criti-
cal point provided by Algorithm of global search.

Remark 1. It is clear that different values of the parameter M are responsible for the
partitioning of the interval [γ−,γ+] into a suitable number of parts to implement a
passive one-dimensional search along γ . On the other hand, it is necessary to precise
how to construct a direction’s set Dir and, furthermore, an approximation of the level
surface h(z,w) = γ −ζk.

Taking into account that in contrast to the earlier papers [35–37] here due to (69)

h(x,v)
.
=

μ
4
‖v+A1x‖2, (69 ′)

we have to choose γ ≥ ζk so that γ− can always be chosen as follows: γ− := ζk.
Other points of the implementation of the algorithm were similar to [35–37].

Let us focus now on the construction of approximation of the level surface

U(γ) = {(z,w)| h(z,w) = γ −ζk}.

Recall that, on the one hand, such an approximation should be representative enough
to escape a critical point (if possible). On the other hand, if we are rather far from
a global solution, then the approximation must allow us to “jump out” the critical
point where we are.

Let us show how to construct an approximation. Given a set of directions

Dir = {(al ,cl) ∈ R
m+q|(al ,cl) �= 0, l = 1, . . . ,N},

we construct a point of an approximation An in a rather simple manner as follows:

(zl ,wl) = λl(a
l ,cl), h(zl ,wl) = γ −ζk, l = 1, . . . ,N. (72)
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Due to (69 ′) the corresponding equation

μ
4
‖cl +A1al‖λ 2

l = γ −ζk (72 ′)

leads us to very simple computing in order to calculate λl .
As the sets of directions, one can consider, for example, the set

Dir1 = {(xk + ei,vk + e j),(xk − ei,vk − e j)| i = 1, . . . ,m, j = 1, . . . ,q}

where (xk,vk) is the part of the current critical point (xk,yk,vk); ei ∈R
m, e j ∈R

q are
the Euclidean basis vectors. Further, it has been employed the set

Dir0 = {(ai,b j)|(ai,b j) �= 0, i = 1, . . . ,m, j = 1, . . . ,q}.

where ai and b j are, respectively, rows and columns of the matrix A1, which specifies
nonconvexity in the goal function of Problem (P(μ))–(60).

Note that the numbers of points in the approximations constructed are equal to
2qm and grow rapidly with the dimension. Therefore, we have also made the reduc-
tion of the approximations as described in [35, 36]. The first stages of computational
testings of the developed GSA have been presented in [36, 37].

Here, we will show the preliminary results of further computational experiments
with improved GSA described above (see Tables 2 and 3).

In particular we see in Table 2 the comparison of the results of computational
solving the test-problems (generated, as above, with the help of the methodology
from [5]) by GSA described above and by means of very popular package of applied
software KNITRO (www.ziena.com/knitro.htm).

Since KNITRO is not able to solve bilevel problems directly, the equivalent for-
mulation (P(μ)) (with μ = 10,15,20) was used to this end.

On the other hand, GSA has been run on a computer with the processor Intel Core
2 Duo 2.0 GHz, while KNITRO used a computer with more powerful processor
Intel Core 2 Quad 2.8 GHz. In Table 2 F∗ is the known optimal values of the test-
problems, FKms and T are the best values of the goal function and the corresponding
solving time provided by KNITRO, while FXY , FV , and T stand for the best values of
the cost function and the solution time obtained by GSA (using XY - or V -procedure
as LSM). The bold values in Table 2 denote the successful cases when the known
global solutions to the test-problems have been reached by the used algorithms.

Analyzing results of Table 2, it is easy to note that the KNITRO (multistart)
was successful to find the global solutions only in 61 % of the test-problems of the
middle dimension with the accuracy ε = 10−2. Meanwhile, applying the programs
implementing GSA, all considered test-problems have been solved at the same
precision.

Moreover, it is not hard to see the big difference in solution time between GSA
and KNITRO for the problems of middle dimension more than 10. For example,
for m = n = 30, KNITRO worked about 1.5–2 h without reaching a global solution,
meanwhile GSA provided for a global solution in 2 min approximately.

www.ziena.com/knitro.htm
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Table 2 Comparison of global search algorithm (GSA) with KNITRO

KNITRO multistart Global search
Name F∗ FKms T FXY T FV T

5×5 1 −21 −21 7.7 −21 11.4 −21 7.3
5×5 2 −9 −9 8.7 −9 11.3 −9 4.7
5×5 3 −5 −5 9.9 −5 11.7 −5 4.6

10×10 1 −38 −30 1:17.2 −38 33.1 −38 23.7
10×10 2 −26 −26 1:17.0 −26 29.2 −26 12.4
10×10 3 −14 −14 1:22.4 −14 24.6 −14 16.0
15×15 1 −19 −19 11:08.5 −19 20.3 −19 19.0
15×15 2 −27 −19 5:43.6 −27 38.6 −27 31.5
15×15 3 −43 −35 7:01.2 −43 48.1 −43 35.5
20×20 1 −24 −24 19:13.7 −24 26.9 −24 45.9
20×20 2 −48 −48 30:20.5 −47.999 1:12.0 −47.999 1:10.9
20×20 3 −52 −32 29:54.4 −52 1:13.1 −52 52.0
30×30 1 −142 −134 1:34:34.9 −141.997 4:30.3 −141.997 1:46.8
30×30 2 −58 −38 1:31:23.5 −58 1:26.2 −58 1:51.3
30×30 3 −42 −29.999 2:39:15.4 −42 51.5 −42 1:08.9

Table 3 Testing of global search algorithm (GSA) on problems of high dimension

m+n N LocSolavg Locavg Stavg Tavg

20 1,000 146.2 2,012.7 1.9 8.57
40 1,000 13,1284.1 3,436.6 2.1 20.69
60 100 1.34 ·108 4,601.5 2.0 34.36
80 100 1.17 ·1011 6,485.1 2.1 59.51

100 100 1.20 ·1014 9,352.5 2.1 1:40.29
150 10 3.78 ·1021 8,050.3 3.0 1:52.38
200 10 1.27 ·1029 12,263.8 2.8 4:00.69
250 10 4.27 ·1036 17,704.3 2.7 8:04.28
300 10 3.93 ·1044 72,245.6 17.9 49:53.48
350 10 2.12 ·1052 216,721.1 25.2 3:56:09.12
400 10 8.64 ·1059 318,448.7 27.6 9:10:24.43

Now, let us look at Table 3 where presented the results of computational solution
of the test-problems of high dimension (until m= n= 200) provided by the software
program implemented in a computer with the processor Intel Core i5-2400 3.1 GHz.
In Table 3 N is the number of test-problems in series, LocSolavg is an average number
of local solutions which are not global in one problem of the series (this is very
important difficulty index of the problem); Locavg stands for the average number
of switching on of the LSM in conducting GSA; Stavg is the average number of
iterations of GSA or critical points passed by GSA; Tavg is the average working time
of the program implementing the GSA.
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From the results of computation testing we can see, firstly, that all 2,350
randomly generated problems have been successfully solved so that, regardless the
fantastic difficulty of the test-problems (m+ n = 300 and LocSolavg = 3.93 · 1044,
m+n = 400 and LocSolavg = 8.64 ·1059), GSA has found a global solution in every
considered test-problem.

However, this version of program is characterized by the rapid increase in com-
puting time with the growth of the dimension: for m+ n = 400 it takes more than
9 h. On the other hand, it can be explained by the number Locavg of local search
applications which is more than 310 thousands.

Moreover, it is not hard to note that the number Stavg of approximately criti-
cal points, at which it happened an improvement of the cost function, turned out
to be rather moderate with respect to the number LocSolavg of local solutions
(different from global ones) which is varying from rather big (m + n = 60 and
LocSolavg = 1.34 · 108) until incalculable (m + n = 300, LocSolavg = 3.93 · 1044;
m+n = 400, LocSolavg = 8.64 ·1059).

So, we conclude that the new results of computational solving the bilevel prob-
lem can be viewed as rather promising and competitive. Moreover, we did not be
successful to find, at present, the solution’s results of similar problems of such
dimensions in the existing literature.

6 Concluding Remarks

In the present paper, new procedures of finding the solution to the linear comple-
mentarity problem with indefinite matrices, the Nash equilibrium in bimatrix games,
and optimistic solution in quadratic-linear bilevel optimization problems have been
proposed, discussed, and illustrated.

Further, a new approach based on GOCs, LSMs and GSMs, was applied in order
to solve all three problems. In addition, the new results of computational solutions
were presented in the paper. According to these results, the new approach has shown
itself rather promising and competitive.
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Theoretical and Practical Aspects, 2nd edn. Springer, Berlin, Heidelberg (2006)

4. Bulatov, V.P.: The approximation method for solving some problems of mathematical pro-
gramming. Applied Mathematics. Irkutsk State University, pp. 82–88 (1969)

5. Calamai, P.H., Vicente, L.N.: Generating quadratic bilevel programming test problems. ACM
Trans. Math. Softw. 20, 103–119 (1994)



On Solving Optimization Problems with Hidden Nonconvex Structures 501

6. Colson, B., Marcotte, P., Savard, C.: An overview of bilevel optimization. Ann. Oper. Res.
153(1), 235–256 (2007)

7. Cottle, R.W., Pang, J.-S., Stone, R.E.: The linear complementarity problem. SIAM, Philadel-
phia (2009) [Originally published by Academic Press, Boston (1992)]

8. Dempe, S.: Foundations of Bilevel Programming. Kluwer, Dordrecht (2002)
9. Floudas, C.A., Pardalos, P.M. (eds.): Frontiers in Global Optimization. Kluwer, New York

(2004)
10. Grötschel, M. (ed.): Optimization Stories. Documenta Mathematica, Bielefeld (2012)
11. Gruzdeva, T.V., Strekalovsky, A.S., Orlov, A.V., Druzhinina, O.V.: Nonsmooth minimiza-

tion problems for the difference of two convex functions. Numer. Methods Program. 12(2),
139–151 (2011) (in Russian)

12. Hiriart-Urruty, J.-B.: Generalized Differentiability, Duality and optimization for Problems
dealing with Diffrence of Convex Functions. Lecture Notes in Economics and Mathematical
Systems, vol. 256, pp. 37–69. Springer, Berlin (1985)
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Variational Principles in Gauge Spaces

Mihai Turinici

1 Cârjă–Ursescu Principles

1.1 Preliminaries

Throughout this exposition, the axiomatic system to be used is Zermelo–Fraenkel’s
(abbreviated: (ZF)), as described in Cohen [16, Chap. 2, Sect. 3]. The notations and
basic facts about these are more or less usual. Some important ones are given below.

(A) Let X be a nonempty set. By a relation over it, we mean any (nonempty) part
R of X ×X ; in this case, (X ,R) is called a relational structure. As usual, we may
regard R as a mapping from X to P(X) (=the class of all subsets in X). Precisely, for
each x ∈ X , denote X(x,R) = {y ∈ X ;xRy} (the section of R through x); then, the
mapping in question is [R(x) = X(x,R), x ∈ X]. Call R, proper when R(x) �= /0, for
all x ∈ X ; note that, in such a case, R appears as a mapping between X and P0(X)
(=the class of all nonempty parts in X). This will be also referred to as: (X ,R) is a
proper relational structure.

Call the relation (≤) over X , quasi-order, provided it is reflexive [x ≤ x, ∀x ∈ X]
and transitive [x ≤ y and y ≤ z imply x ≤ z]. If, in addition, (≤) is antisymmetric
[x ≤ y and y ≤ x imply x = y], then it is called a (partial) order on X . Let (X ,≤) be
a partially ordered structure. By a chain in X we mean any totally ordered part C of
it (in the sense: for each x,y ∈ C, either x ≤ y or y ≤ x). Given the subset Y of X ,
call u ∈ X an upper bound of Y , provided y ≤ u, for all y ∈ Y ; when such elements
exist, we say that Y is bounded above. Further, call z ∈ X , maximal (modulo (≤))
provided X(z,≤) = {z}; i.e.: [z ≤ w ∈ X implies z = w]. Finally, let us say that (≤)
is a Zorn order when, for each starting u ∈ X there exists a (≤)-maximal element
v ∈ X with u ≤ v.
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For each couple A,B of nonempty sets, let F(A,B) stand for the class of all
functions from A to B. In particular, if A = B, we write F(A) in place of F(A,A).
On the other hand, when A = N := {0,1, . . .} (=the set of all natural numbers), we
denote F(N,B) as S(B). Each element x ∈ S(B) is referred to as a sequence in B; and
denoted as (x(n);n ≥ 0) or (xn;n ≥ 0); when no confusion can arise, we simplify
this notation as (x(n)) or (xn), respectively.

(B) By a pseudometric on X we mean any map d : X ×X → R+ := [0,∞[. If, in
addition, d is symmetric [d(x,y) = d(y,x), ∀x,y ∈ X], triangular [d(x,z)≤ d(x,y)+
d(y,z), ∀x,y,z ∈ X], and reflexive [d(x,x) = 0, ∀x ∈ X], then it is called a semimetric
on X ; and (X ,d) is termed a semimetric space. Moreover, if in addition to this, d is
sufficient [x,y ∈ X , d(x,y) = 0 =⇒ x = y], we say that it is a metric on X ; and (X ,d)
is referred to as a metric space.

Let (X ,d) be a semimetric space. Denote, for each subset Y of X

diam(Y ) = sup{d(x1,x2);x1,x2 ∈ Y} (the diameter of Y );

when diam(Y )< ∞, we say that Y is d-bounded. We introduce a d-convergence and
a d-Cauchy structure on X as follows. Given the sequence (xn) in X and the point

x ∈ X , we say that (xn), d-converges to x (written as: xn
d−→ x), if d(xn,x) → 0 as

n → ∞; i.e.,

∀ε > 0, ∃i = i(ε): n ≥ i =⇒ d(xn,x)< ε .

The set of all such points x will be denoted limn(xn); if it is nonempty, then (xn) is
called d-convergent. Note that, in this case, limn(xn) may be not a singleton; but,
when d(., .) is a metric, this is retainable. Further, call the sequence (xn), d-Cauchy
when d(xm,xn)→ 0 as m,n → ∞, m ≤ n; i.e.,

∀ε > 0, ∃ j = j(ε): j ≤ m ≤ n =⇒ d(xm,xn)< ε;

or, equivalently:

∀η > 0, ∃k = k(η): diam({xn;n ≥ k})< η .

Note that, as d is semimetric, any d-convergent sequence is d-Cauchy. The recipro-
cal is not in general true; when it holds, we say that (X ,d) is complete.

(C) Remember that an outstanding part of (ZF) is the Axiom of Choice (abbrevi-
ated: (AC)) which, in a convenient manner, may be written as

For each nonempty set X , there exists a (selective) function f :P0(X)→ X , with
f (Y ) ∈ Y , ∀Y ∈ P0(X).

There are many logical equivalents of (AC); see, for instance, Moore
[38, Appendix 2]. A basic one is the Zorn Maximal Principle (in short: (ZMP)),
expressed as (cf. Bourbaki [7]):

Let the partially ordered structure (X ,≤) be inductive. Then, (≤) is a Zorn
order.
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[Here, inductive means: any totally ordered part C of X is bounded above].
Sometimes, when the ambient set X is endowed with denumerable type structures,
the existence of maximal elements may be determined by using a weaker form of
(AC), called: Dependent Choice Principle. Some preliminaries are needed. Let X
be a nonempty set. For each natural number k ≥ 1, call the map F : N(k,>) → X ,
a k-sequence; if k ≥ 1 is generic, we talk about a finite sequence. The following
result, referred to as the Finite Dependent Choice property (in short: (DC-fin)) is
available in the strongly reduced Zermelo–Fraenkel system (ZF-AC). Given a ∈ X ,
let us say that the k-sequence F : N(k,>) → X (where k ≥ 2) is (a,R)-iterative
provided F(0) = a and F(i)RF(i+1), for all i ∈ N(k−1,>).

Lemma 1. Let the relational structure (X ,R) be proper. Then, for each k ≥ 2, the
following property holds:

for each a ∈ X, there exists an (a,R)-iterative k-sequence. (1)

Proof. Denote by π(k) the conclusion above. Clearly, π(2) is true; just take b ∈
R(a) and define F : N(2,>)→ X as: F(0) = a, F(1) = b. Assume that π(k) is true,
for some k ≥ 2; we claim that π(k+1) is true as well. In fact, let F : N(k,>)→ X be
an (a,R)-iterative k-sequence, assured by hypothesis. As R is proper, R(F(k− 1))
is nonempty; let u be some element of it. The map G : N(k+1,>)→ X introduced
as [G(i) = F(i), i ∈ N(k,>); G(k) = u] is an (a,R)-iterative (k+ 1)-sequence; and
then, we are done.

Now, it is natural to see what happens when k “tends to infinity.” At a first glance,
the following Dependent Choice Principle (in short: (DC)) is obtainable in (ZF-AC)
from this “limit” process. Given a ∈ X , let us say that the sequence (xn;n ≥ 0) in X
is (a;R)-iterative provided [x0 = a; xn+1 ∈ R(xn), ∀n].

Proposition 1. Let the relational structure (X ,R) be proper. Then, for each a ∈ X
there is an (a,R)-iterative sequence in X.

Concerning this aspect, we stress that—from a technical perspective—-the
limit process in question does not work in (ZF-AC); whence, (DC) is not obtain-
able from the axioms of our strongly reduced system. On the other hand, this
principle—proposed, independently, by Bernays [6] and Tarski [42]—is deductible
from (AC), but not conversely; cf. Wolk [52]. Moreover, by the developments
in Moskhovakis [39, Chap. 8], and Schechter [41, Chap. 6], the reduced system
(ZF-AC+DC) it large enough so as to cover the “usual” mathematics; see also
Moore [38, Appendix 2, Table 4].

(D) Let (Rn;n ≥ 0) be a sequence of relations on X . Given a ∈ X , let us say
that the sequence (xn;n ≥ 0) in X is (a;(Rn;n ≥ 0))-iterative provided [x0 = a,
xn+1 ∈ Rn(xn), ∀n]. The following Diagonal Dependent Choice Principle (in short:
(DDC)) is also taken into consideration.

Proposition 2. Let (Rn;n ≥ 0) be a sequence of proper relations on X. Then, for
each a ∈ X, there exists at least one (a;(Rn;n ≥ 0))-iterative sequence in X.
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Clearly, (DDC) includes (DC) to which it reduces when (Rn;n ≥ 0) is constant.
The reciprocal of this is also true. In fact, letting the premises of (DDC) hold, put
P = N ×X ; and let S be the relation over P introduced as

S(i,x) = {i+1}×Ri(x), (i,x) ∈ P.

It will suffice applying (DC) to (P,S) and b := (0,a) ∈ P to get the conclusion in the
statement; we do not give details.

Summing up, (DDC) is provable in (ZF-AC+DC). This is valid as well for its
variant, referred to as: the Selected Dependent Choice Principle (in short: (SDC)).

Proposition 3. Let the map F : N → P0(X) and the relation R over X fulfill

(∀n ∈ N): R(x)∩F(n+1) �= /0, ∀x ∈ F(n) [F is R-chainable].

Then, for each a ∈ F(0) there exists a sequence (x(n);n ≥ 0) in X with

x(0) = a; x(n) ∈ F(n), ∀n; x(n)Rx(n+1), ∀n. (2)

As before, (SDC) =⇒ (DC) (⇐⇒ (DDC)); just take F(n) = X , n ≥ 0. But, the
reciprocal is also true, in the sense: (DDC) =⇒ (SDC). This follows from

Proof. (Proposition 3) Let the premises of (SDC) be admitted. Define a sequence
of relations (Rn;n ≥ 0) over X as: for each n ≥ 0,

Rn(x) = R(x)∩F(n+1), if x ∈ F(n); Rn(x) = {x}, if x ∈ X \F(n).

Clearly, Rn is proper, for all n ≥ 0. So, by (DDC), it follows that, for the start-
ing a ∈ F(0), there exists an (a;(Rn;n ≥ 0))-iterative sequence (x(n);n ≥ 0) in X .
Combining with the very definition of (Rn;n ≥ 0), yields the desired conclusion.

In particular, when R = X ×X , F is R-chainable. The corresponding variant of
(SDC) is just the Denumerable Axiom of Choice (in short: (AC-N)):

Proposition 4. Let F : N → P0(X) be a function. Then, for each a ∈ F(0) there
exists a function f : N → X with f (0) = a and f (n) ∈ F(n), ∀n ≥ 0.

Remark 1. Note that, as a consequence of the above facts, (DC) =⇒ (AC-N) in (ZF-
AC). A direct verification of this is obtainable by taking P = N ×X and introducing
the relation over it: [R(n,x) = {n+ 1}×F(n+ 1), n ≥ 0, x ∈ X]; we do not give
details. The reciprocal of the written inclusion is not true; see Moskhovakis [39,
Chap. 8, Sect. 8.25] for details.

(E) A direct application of these facts is the following. Let X be a nonempty set.
Given some property π involving P0(X), denote by (π) the subclass of all Y ∈P0(X)
fulfilling it. In this case, let us say that π is countably inductive provided:

(Yi ∈ (π), ∀i ≥ 0) implies Y := ∩{Yi; i ≥ 0} ∈ (π) (hence, Y ∈ P0(X)).
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A basic example of this type is the following. Let (X ,≤) be a quasi-ordered
structure. Call Z ∈P0(X), (≤)-cofinal in X when [X(u,≤)∩Z �= /0, ∀u ∈ X]. In addi-
tion, let us say that Z ∈P0(X) is (≤)-invariant provided w ∈ Z implies X(w,≤)⊆ Z.
The intersection of these properties will be referred to as: Z is (≤)-cofinal-invariant;
in short: (≤)-cof-inv. The following Cof-inv statement is available in (ZF-AC+DC).
Call (X ,≤), sequentially inductive provided each ascending sequence in X has an
upper bound (modulo (≤)).

Proposition 5. Assume that (X ,≤) is sequentially inductive. Then, the (≤)-cof-inv
property is countably inductive.

Proof. Let (F(i); i ≥ 0) be a sequence in P0(X) such that: F(i) is (≤)-cof-inv, for
each i ≥ 0. We intend to show that Y := ∩{F(i); i ≥ 0} is endowed with the same
property. Clearly, Y is (≤)-invariant; but, for the moment, Y = /0 cannot be avoided.
We show that Y is (≤)-cofinal too; hence, nonempty. Let u ∈ X be arbitrary fixed.
Further, let the relation R over X be introduced as [R(x) = X(x,≤), x ∈ X]; i.e.: R is
the graph of (≤). By the (≤)-cofinal property,

R(x)∩F(i) = X(x ≤)∩F(i) �= /0, ∀i ≥ 0,∀x ∈ X . (3)

In particular, this tells us that X(u,≤)∩F(0) �= /0; let a be one of its elements. From
the SDC it follows that, for this starting element, there exists a sequence (xn;n ≥ 0)
in X with

x0 = a; xn ∈ F(n),∀n; xn ≤ xn+1,∀n. (4)

As (X ,≤) is sequentially inductive, there exists some v ∈ X with xn ≤ v, ∀n. In par-
ticular, from u ≤ a = x0 ≤ v, one has u ≤ v. Moreover, by the (≤)-invariance prop-
erties of (F(n);n ≥ 0), we have v ∈ F(n), ∀n; hence v ∈ Y . Putting these together,
one gets the desired fact.

(F) Concerning the metrical structures to be considered, some basic examples are
constructed below.

Let P be a nonempty set. The simplest metric over P is:

(s, t ∈ P): [d(s, t) = 0, if s = t] and [d(s, t) = 1, if s �= t];

it will be referred to as: the discrete metric on P. A “sequential” version of it is the
following. Remember that S(P) stands for the class of all sequences in P. Fix some
a ∈ P; and put X = {x ∈ S(P);x(0) = a}. Define a mapping d∞ : X ×X → R+ as

d∞(x,y) = ∑n 2−nd(x(n),y(n)), for all x = (x(n)), y = (y(n)) in X .

It is not hard to see that d∞ is a metric on X . A natural question to be discussed here
is the completeness property. In this direction, we have

Proposition 6. Under the above conventions, the metrical structure (X ,d∞) is com-
plete: each d∞-Cauchy sequence in X is d∞-convergent.
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Proof. Let (xn;n ≥ 0) be a sequence in X ; it may be written as

(xn = (xn(0),xn(1), . . .) = (a,xn(1), . . .);n ≥ 0).

Assume that (xn;n ≥ 0) is d∞-Cauchy. This may be also characterized as:

∀ε > 0: C(ε) := {n ∈ N;n ≤ p ≤ q =⇒ d∞(xp,xq)< ε} �= /0.

As a consequence, the map ε �→ C(ε) is increasing on R0
+ :=]0,∞[, in the sense:

ε∗ < ε∗ implies C(ε∗)⊆C(ε∗); so that, the map ε �→ Γ (ε) := min[C(ε)] is decreas-
ing on R0

+: ε∗ < ε∗ implies Γ (ε∗)≥ Γ (ε∗). Let (εn;n ≥ 0) be a strictly descending
sequence in R0

+ with εn < 2−n, ∀n (hence εn → 0). Denote for simplicity

m(k) = Γ (εk), n(k) = m(k)+ k, k ≥ 0.

By the properties above, the map k �→ m(k) is increasing; hence, the map k �→ n(k) is
strictly increasing. For the moment, it is clear that xn(0)(0) = xp(0) = a, ∀p ≥ n(0).
Further, by the very definition of these maps, n(1) ≤ p ≤ q =⇒ d∞(xp,xq) < ε1.
Combining with the definition of d∞ gives 2−1d(xp(1),xq(1))< ε1, if n(1)≤ p ≤ q;
so that (as ε1 < 2−1), xn(1)(1) = xp(1), for all p ≥ n(1). The procedure may continue
indefinitely; it gives us a strictly ascending sequence of ranks (n(i); i ≥ 0) with

xn(i)(i) = xp(i), for all p ≥ n(i) and all i ≥ 0. (5)

Let y = (y(i); i ≥ 0) be the “diagonal” sequence (y(i) = xn(i)(i); i ≥ 0); clearly, it
is an element of X . We claim that our initial sequence (xn;n ≥ 0) is convergent
(modulo d∞) to y. In fact, let ε > 0 be arbitrary fixed; and h = h(ε) be such that
[2− j < ε , ∀ j ≥ h]. For each n ≥ n(h) we have (by the above properties)

d(xn,y) = ∑i≤h 2−id(xn(i),xn(i)(i))+∑i>h 2−id(xn(i),xn(i)(i)) =
∑i>h 2−id(xn(i),xn(i)(i))≤ ∑i>h 2−i = 2−h < ε;

and, from this, we are done.

1.2 (DC) =⇒ (CU) ⇐⇒ (BB)

Let X be a nonempty set. Take a quasi-order (≤) over it; and a function ϕ : X →
R∪{−∞,∞}. Call the point z ∈ X , (≤,ϕ)-maximal when: z ≤ w ∈ X implies ϕ(z) =
ϕ(w); the set of all these will be denoted as max(X ;≤;ϕ). Sufficient conditions for
existence of such elements are to be written in terms of the function ϕ belonging to
certain subclasses of F(X ,R∪{−∞,∞}). The basic ones are listed below:

(P0) general case (ϕ(X)∩{−∞,∞} �= /0 cannot be avoided)
(P1) ϕ(X)⊆ R∪{∞} and ϕ is bounded below (infϕ(X)>−∞)
(P2) ϕ(X)⊆ R∪{∞} and ϕ is positive (infϕ(X)≥ 0)
(P3) ϕ(X)⊆ R and ϕ is bounded below (infϕ(X)>−∞)
(P4) ϕ(X)⊆ R and ϕ is positive (infϕ(X)≥ 0)
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(P5) ϕ(X)⊆ R and ϕ is bounded (−∞ < infϕ(X)≤ supϕ(X)< ∞)
(P6) ϕ(X)⊆ R and ϕ is bounded positive (0 ≤ infϕ(X)≤ supϕ(X)< ∞).

The following “multiple” (global) ordering principle is now considered:

Theorem 1. Suppose that

(b01) (X ,≤) is sequentially inductive:
each ascending sequence has an upper bound (modulo (≤))
(b02) ϕ is (≤)-decreasing (x1 ≤ x2 =⇒ ϕ(x1)≥ ϕ(x2))
(b03) ϕ belongs to the subclass (Pj), for some j ∈ {0,1,2,3,4,5,6}.

Then, max(X ;≤;ϕ) is
(i) (≤)-cofinal in X [for each u ∈ X there exists v ∈ max(X ;≤;ϕ) with u ≤ v]
(ii) (≤)-invariant in X [z ∈ max(X ;≤;ϕ) =⇒ X(z,≤)⊆ max(X ;≤;ϕ)].

Denote the obtained (global) results as (CU;Pj), where j ∈ {0,1,2,3,4,5,6};
these will be referred to as (global) Cârjă–Ursescu ordering principles. The rela-
tionships between them are clarified in the (global) Equivalence statement below:

Lemma 2. We have [in (ZF-AC)]:
(i) (CU;P(j)) ⇐⇒ (CU;P(j+1)), ∀ j ∈ {1,3,5}
(ii) (CU;P5) =⇒ (CU;P0) =⇒ (CU;P1) =⇒ (CU;P3) =⇒ (CU;P5).

Hence, all these principles are equivalent in (ZF-AC).

Proof. (j) The inclusions (CU;P(j+1)) =⇒ (CU;P(j)) for j ∈ {1,3,5} are deductible
from the following remark: if the function ϕ is like in (CU;P(j)), then its translate
[ψ(.) = ϕ(.)− infϕ(X)] fulfills the requirements of (CU;P(j+1)). This, and the rec-
iprocal inclusions being fulfilled, proves the first part.

(jj) All inclusions in the second part, with the exception of the first one are clear.
(jjj) It remains to verify the quoted relation. Let the premises of (CU;P0) hold.

Define the function χ : X → [0,π] as [χ(x) = A(ϕ(x)),x ∈ X]; where

A(t) = π/2+ arctg(t) if t ∈ R; A(−∞) = 0; A(∞) = π .

Clearly, χ is (≤)-decreasing and belongs to the subclass (P5). Therefore, by the
conclusion of (CU;P5), for each u ∈ X there exists a (≤,χ)-maximal v ∈ X with
u ≤ v. This, along with max(X ;≤;ϕ) = max(X ;≤; χ), gives the desired conclusion.

Note that the obtained relations cannot assure us that these principles are ded-
uctible in (ZF-AC+DC). This, however, holds; as results from

Proposition 7. We have [in (ZF-AC)] (DC) =⇒ (CU;P5); hence (by the above)
(DC) =⇒ (CU;Pj), for each j ∈ {0,1,2,3,4,5,6}.

Proof. Assume that (X ,≤) is sequentially inductive and ϕ is (≤)-decreasing; in
addition, let ϕ belong to the subclass (P5). Define the function β : X → R as: β (v) :=
infϕ(X(v,≤)), v ∈ X . Clearly, β is (≤)-increasing, bounded, and

supϕ(X)≥ ϕ(v)≥ β (v)≥ infϕ(X), ∀v ∈ X . (6)
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Moreover, the (≤)-decreasing property of ϕ gives a characterization like

v is (≤,ϕ)-maximal iff ϕ(v) = β (v). (7)

Assume by contradiction that the conclusion of (CU;P5) would be false; i.e. (by the
preceding observation) there must be some u ∈ X such that:

(b04) for each v ∈ Xu := X(u,≤), one has ϕ(v)> β (v).

Consequently (for all such v), ϕ(v)> (1/2)(ϕ(v)+β (v))> β (v); hence

v ≤ w and (1/2)(ϕ(v)+β (v))> ϕ(w), (8)

for at least one w (belonging to Xu). The relation R over Xu given in this way is
proper. So, by (DC), there must be a sequence (un) in Xu with u0 = u and

un ≤ un+1, (1/2)(ϕ(un)+β (un))> ϕ(un+1), for all n. (9)

We have thus constructed an ascending sequence (un) in Xu for which the real seq-
uence (ϕ(un)) is strictly descending and bounded below; hence, λ := limn ϕ(un)
exists in R. As (X ,≤) is sequentially inductive, there exists v ∈ M such that un ≤ v,
for all n. Clearly, ϕ(un) ≥ ϕ(v), ∀n; and (by the properties of β ) ϕ(v) ≥ β (v) ≥
β (un), ∀n. The former of these relations gives λ ≥ ϕ(v). On the other hand, the latter
of these relations yields (by the definition of (un)), (1/2)(ϕ(un)+β (v))> ϕ(un+1),
for all n. Passing to limit as n → ∞ gives (ϕ(v)≥)β (v)≥ λ ; so, combining with the
preceding one, ϕ(v) = β (v)(= λ ), contradiction. Hence, the working assumption
above cannot hold; and conclusion follows.

Finally, note that (CU;P0) is (the global variant of) the 1993 Cârjă–Ursescu vari-
ational principle [13] (in short: (CU)). Moreover, (CU;P3) is just (the global variant
of) the 1976 Brezis–Browder ordering principle [9] (abbreviated as: (BB)). In a
“local” formulation, this last result may be expressed as follows:

Theorem 2. Suppose that the quasi-ordered structure (X ,≤) is sequentially induc-
tive and the function ϕ : X → R is (≤)-decreasing, bounded from below. Then, for
each u ∈ X there exists v ∈ X, with

(a) u ≤ v; (aa) v ≤ w ∈ X implies ϕ(v) = ϕ(w).

Finally, note that, a slightly different argument for getting the same conclusion
may be found in Cârjă et al. [14, Chap. 2, Sect. 2.1]. Further metrical aspects of these
questions were discussed in Turinici [43].

1.3 (BB) =⇒ (KP)

In the following, the relationships between (BB) [or, equivalently, (CU)] and some
other maximal results in the area are discussed.
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Let (X ,≤) be a quasi-ordered structure; and ϕ : X → R+ ∪{∞} be a function.
The following almost regular version of (CU) (in short: (CU-areg)) is available:

Theorem 3. Assume that (X ,≤) is sequentially inductive, ϕ is (≤)-decreasing, and

(c01) (X ,≤) is almost regular (modulo ϕ):
∀x ∈ X, ∀ε > 0, ∃y = y(x,ε)≥ x such that ϕ(y)≤ ε .

Then, for each u ∈ X there exists v ∈ X with u ≤ v and ϕ(v) = 0 (hence, necessarily,
v is (≤,ϕ)-maximal).

Proof. By the almost regular condition, there must be some z ≥ u with ϕ(z) < ∞.
Clearly, (BB) applies to X(z,≤) and (≤,ϕ). So, for z ∈ X(z,≤), there exists v ∈
X(z,≤) with

(i) z ≤ v (hence u ≤ v); (ii) v is (≤,ϕ)-maximal in X(z,≤).
Suppose by contradiction that γ := ϕ(v) > 0; and fix some β in ]0,γ [. Again
by the almost regular condition, there exists y = y(v,β ) ≥ v (hence y ∈ X(z,≤))
with ϕ(y) ≤ β < γ(= ϕ(v)); impossible, by the second conclusion above. Hence,
ϕ(v) = 0; and the proof is complete.

By this reasoning, (CU-areg) is deductible from (BB). The converse inclusion is
also true; to verify it, we need some conventions. By a (generalized) pseudometric
over X we shall mean any map d : X ×X → R+∪{∞}. Fix such an object; supposed
to be reflexive [d(x,x) = 0,∀x ∈ X]. Call z ∈ X , (≤,d)-maximal, if: u,v ∈ X and
z ≤ u ≤ v imply d(u,v) = 0. Note that, if d is (in addition) sufficient [d(x,y) = 0 =⇒
x= y], the (≤,d)-maximal property becomes: w∈X ,z≤w=⇒ z=w (and reads: z is
strongly (≤)-maximal). So, existence results involving such points may be viewed
as “metrical” versions of the ZMP we just encountered; cf. Moore [38, Chap. 4,
Sect. 4]. A natural way of deriving them is to start from the fact that, in terms of
the associated function ϕd(x) = sup{d(u,v);x ≤ u ≤ v},x ∈ X , this property may
be characterized as: ϕd(z) = 0. So, a basic source for determining such elements
is (CU-areg) above (applied to the underlying function). To do this, note that ϕd

is (≤)-decreasing. On the other hand, the almost regularity (modulo ϕd) condition
may be written as:

(c02) (X ,≤) is weakly regular (modulo d): ∀x ∈ X ,∀ε > 0,
∃y = y(x,ε)≥ x such that y ≤ u ≤ v =⇒ d(u,v)≤ ε .

Putting these together, it results (by the preceding ordering principle) the maximal
statement due to Kang and Park [34] (in short: (KP)):

Theorem 4. Assume that the quasi-ordered reflexive pseudometric space (X ,≤,d)
is such that (X ,≤) is sequentially inductive and weakly regular (modulo d). Then,
for each u ∈ X there exists a (≤,d)-maximal v ∈ X with u ≤ v.

Clearly, (BB) =⇒ (KP). The reciprocal implication holds too; as results from

Proposition 8. We have [in (ZF-AC)] (KP) =⇒ (BB); hence, (KP) ⇐⇒ (BB).
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Proof. Let ϕ : X → R be as in the premise of (BB). Denote d(x,y) = |ϕ(x)−
ϕ(y)|,x,y ∈ X ; this map is a semimetric on X . Further, let β (.) stand for the associ-
ated (to ϕ) function [β (v) := infϕ(X(v,≤)), v ∈ X]. Assume that the conclusion in
(BB) is false: there must be some u ∈ X such that (cf. a previous argument):

for each v ∈ Xu := X(u,≤), one has ϕ(v)> β (v).

Clearly, (Xu,≤) is sequentially inductive. Moreover, let v ∈ Xu be arbitrary fixed;
hence, ϕ(v)> β (v). Given ε in ]0,ϕ(v)−β (v)[, there exists y ∈ X(v,≤)⊆ Xu with
β (v)≤ ϕ(y)< β (v)+ ε < ϕ(v). This tells us that, if y ≤ s ≤ t, then s, t ∈ Xu and

β (v)+ ε > ϕ(y)≥ ϕ(s)≥ ϕ(t)≥ β (v);

whence d(s, t) = ϕ(s)− ϕ(t) < ε; so that, (Xu,≤) is weakly regular (modulo d).
Summing up, (KP) applies to (Xu,≤,d); so that, for the given u ∈ Xu there exists
a (≤,d)-maximal v ∈ Xu with u ≤ v. By the very definition of d(., .), the obtained
element is (≤,ϕ)-maximal in X ; contradiction. This ends the argument.

Summing up, we have established the inclusion chain: BB =⇒ (CU-areg) =⇒
(KP) =⇒ (BB). Hence, all these ordering principles are nothing but logical equiva-
lents of (BB) or (CU). It is natural to ask whether the maximal principles in Altman
[1] and Turinici [45] enter in this scheme. A (positive) answer to this is available
with the “diagonal” version of (DC); we do not give details. This conclusion com-
prises as well some further extensions of these results to sequential convergence
structures (as in Kasahara [35]) or pseudo-uniform structures (constructed under
the model in Nachbin [40, Chap. 2, Sect. 2]); we refer to the paper by Turinici [50]
for details.

1.4 Ekeland Variational Principles

A basic application of these facts is to Ekeland variational principles.
(A) Let (X ,d) be a metric space; and ϕ : X → R∪{∞} be a function, with

(d01) ϕ is proper: Dom(ϕ) := {x ∈ X ;ϕ(x)< ∞} �= /0.

The quasi-order (/(d,ϕ)) over X introduced as

(d02) (x1,x2 ∈ X): x1 /(d,ϕ) x2 iff d(x1,x2)+ϕ(x2)≤ ϕ(x1)

is antisymmetric—hence, an ordering—on Dom(ϕ). It is our objective in the fol-
lowing to determine sufficient conditions under which (/(d,ϕ)) be a Zorn order on
Dom(ϕ). Precisely, these consist in

(I) Boundedness properties of the objective function:
the classes [(Pj); j ∈ {1,2,3,4,5,6}] we just encountered

(II) Boundedness properties of the ambient metric space:

(L1) general case: [diam(X) = ∞] cannot be avoided
(L2) (X ,d) is bounded: diam(X)< ∞
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(III) Global completeness property of the whole family of objects:

(gdc) (X ,d,ϕ) is globally descending complete: each d-Cauchy sequence (xn)
in X with (ϕ(xn))= descending, is d-convergent to some x ∈ X ; with, in addi-
tion, [ϕ(xn)≥ ϕ(x), ∀n].

Our main result is

Theorem 5. Assume that the proper function ϕ belongs to the class (Pj), for
some j ∈ {1,2,3,4,5,6}, the metric space (X ,d) belongs to the class (Lm), for
some m ∈ {1,2}, and the triple (X ,d,ϕ) has the property (gdc). Then, for each
u ∈ Dom(ϕ) there exists v ∈ Dom(ϕ) with

(a) d(u,v)≤ ϕ(u)−ϕ(v) (hence ϕ(u)≥ ϕ(v))
(aa) d(v,x)> ϕ(v)−ϕ(x), for each x ∈ X \{v}.

Denote the obtained statements as (EVP;Pj;Lm;gdc), where j ∈ {1,2,3,4,5,6},
m ∈ {1,2}; these will be referred to as: “composed” Ekeland variational principles.
The relationships between them are given by

Lemma 3. We have [in (ZF-AC)],
(i) (EVP;P(j);Lm;gdc) ⇐⇒ (EVP;P(j+1);Lm;gdc), ∀ j ∈ {1,3,5}
(ii) the propositional map ( j,m) �→ (EV P;P j;Lm;gdc) is decreasing:

if ( j,m)≤ ( j′,m′), then (EVP;Pj;Lm;gdc) =⇒ (EVP;Pj’;Lm’;gdc).

Proof. (i) Let the triple (X ,d,ϕ) be as in the premise of (EVP;P(j);Lm;gdc). Then,
the associated triple (X ,d,ψ), where [ψ(.) := ϕ(.)− infϕ(X)], fulfills conditions
of (EVP;P(j+1);Lm;gdc); and, from this, we are done.

(ii) Evident, by the definition of the subclasses in question.

(B) Now, the property (gdc) is obtainable as an intersection of three components:
(III-a) Completeness properties for the whole family of objects

(B1) (X ,d,ϕ) is descending complete: each d-Cauchy sequence (xn) in X
with (ϕ(xn))=descending, is d-convergent
(B2) (X ,d,ϕ) is complete: each d-Cauchy sequence in X is d-convergent

(III-b) Lower semicontinuity properties of the objective function

(V1) ϕ is descending (X ,d)-lsc:
limn ϕ(xn)≥ ϕ(x), for each sequence (xn) in X and each x ∈ X with

xn
d−→ x and (ϕ(xn))=descending

(V2) ϕ is (X ,d)-lsc: liminfn ϕ(xn)≥ ϕ(x),
for each sequence (xn) in X and each x ∈ X with xn

d−→ x.

This yields the “factor” Ekeland variational principles (EVP;Pj;Lm;Bh,Vq),
where j ∈ {1,2,3,4,5,6}, m,h,q ∈ {1,2}; with the properties

(am-1) (EVP;Pj;Lm;gdc) =⇒ (EVP;Pj;Lm;Bh,Vq), for all admissible ( j,m,h,q)
(am-2) (EVP;P(j);Lm;Bh,Vq) ⇐⇒ (EVP;P(j+1);Lm;Bh,Vq), for all j ∈

{1,3,5}, m,h,q ∈ {1,2}
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(am-3) the propositional map ( j,m,h,q) �→ (EV P;P j;Lm;Bh,V q) is decreasing:
( j,m,h,q)≤ ( j′,m′,h′,q′) gives (EVP;Pj;Lm;Bh,Vq) =⇒ (EVP;Pj’;Lm’;Bh’,Vq’).

Now, to get all these, it will suffice proving that the “weakest” variational princi-
ple (EVP;P1;L1;gdc) is deductible in (ZF-AC+DC). This follows from

Proposition 9. We have [in (ZF-AC)] (DC) =⇒ (BB) =⇒ (EVP;P1;L1;gdc); hence,
all principles (EVP;Pj;Lm;gdc), (EVP;Pj;Lm;Bh,Vq), where j ∈ {1,2,3,4,5,6},
m,h,q ∈ {1,2}, are deductible in (ZF-AC+DC).

Proof. Let the triple (X ,d,ϕ) be as in the premises of (EVP;P1;L1;gdc). Denote for
simplicity (/) := (/(d,ϕ)); hence

(x,y ∈ X): x / y iff d(x,y)+ϕ(y)≤ ϕ(x).

Remember that (/) is an order on Dom(ϕ); hence, all the more, on its subset Xu :=
X(u,/). We claim that (BB) applies to (Xu,/) and ϕ (restricted to Xu). In fact, let
(xn;n ≥ 0) be a (/)-ascending sequence in Xu:

(d03) d(xn,xm)≤ ϕ(xn)−ϕ(xm), if n ≤ m.

The sequence (ϕ(xn)) is descending and bounded from below; hence, a Cauchy one.
This, along with the working hypothesis, tells us that (xn) is a d-Cauchy sequence
in Xu. Putting these facts together, it results via (gdc) that there must be some y ∈ X

with xn
d−→ y, and [ϕ(xn)≥ ϕ(y), ∀n]. Passing to limit as m → ∞ in the working hy-

pothesis, one gets d(xn,y)≤ ϕ(xn)−ϕ(y), ∀n; or, equivalently, xn / y, ∀n; whence,
y ∈ Xu; so that, (Xu,/) is sequentially inductive. On the other hand, ϕ (restricted to
Xu) is (/)-decreasing; and this proves our claim. From (BB) it then follows that, for
the starting u ∈ Xu there exists v ∈ Xu with

(j) u / v; (jj) v / w ∈ Xu implies ϕ(v) = ϕ(w).
The former of these is just our first conclusion in the statement. And the lat-
ter one gives our second conclusion of the same. In fact, let x ∈ X be such that
d(v,x) ≤ ϕ(v)− ϕ(x) (hence, v / x). As a consequence, x ∈ Xu; so that (by the
conclusion (jj) above) ϕ(v) = ϕ(x). Combining with the previous metrical relation
gives d(v,x) = 0; whence v = x (as d is sufficient); and we are done.

Remark 2. We stress that, by the very proof of the “composed” result above, one
has, in (ZF-AC),

(am-4) (EVP;P5;L2;gdc) =⇒ (EVP;P1;L1;gdc);
hence, (EVP;P5;L2;gdc) ⇐⇒ (EVP;P1;L1;gdc).
In fact, if (X ,d,ϕ) fulfills conditions of (EVP;P1;L1;gdc), then (Xu,d,ϕ) (where
u ∈ Dom(ϕ)) fulfills conditions of (EVP;P5;L2;gdc); and, from the conclusion of
this variational principle, we are done. However, as the statement above shows, the
deduction of these principles requires the system (ZF-AC+DC). Similar properties
are valid for the families of “factor” variational principles

((EVP;Pj;Lm;B1,V1); j ∈ {1,2,3,4,5,6}, m ∈ {1,2}),
((EVP;Pj;Lm;B2,V2); j ∈ {1,2,3,4,5,6}, m ∈ {1,2});

we do not give details.
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Note that (EVP;P1;L1;B2,V2) is just the 1974 Ekeland’s variational principle
[19]; denoted as (EVP); its complete formulation is as follows:

Theorem 6. Assume that ϕ : X → R ∪ {∞} is proper, lower semicontinuous, and
(X ,d) is complete. Then, for each u ∈ Dom(ϕ), there exists v ∈ Dom(ϕ), with

(b) d(u,v)≤ ϕ(u)−ϕ(v) (hence ϕ(u)≥ ϕ(v)≥ infϕ(X))
(bb) [x ∈ X, d(v,x)≤ ϕ(v)−ϕ(x)] =⇒ v = x.

The “strongest” principle in this series (EVP;P5;L2;B2,V2) is called the bounded
finitary variant of (EVP) and is denoted as: (EVP-bf). Further technical aspects may
be found in Bao and Khanh [4]; see also Hamel [26, Chap. 4] and Turinici [46, 49].

1.5 (EVP) =⇒ (DC)

The variational statements we just exposed found some useful applications to con-
trol and optimization, generalized differential calculus, critical point theory and
global analysis; we refer to the 1979 paper by Ekeland [20] for a survey of these. As
a consequence, many extensions of such principles were proposed; for a consistent
list of these, we refer to the 1997 monograph by Hyers et al. [30, Chap. 5], and the
2003 monograph by Goepfert et al. [23, Chap. 3]. Note that, for each variational
principle of this type (VP, say) one has (DC) =⇒ (VP) =⇒ (EVP); so, it is legiti-
mate asking of to what extent are these logical inclusions effective. At a first glance,
a negative answer is highly expectable; because, (DC) is “too general” with respect
to (EVP). However, the situation is exactly opposite, in the sense: (EVP) includes
(DC); and then, we closed the circle between all such principles. An early result of
this type was provided in 1987 by Brunner [12]; for a different answer to the same,
we refer to the 1999 paper by Dodu and Morillon [18]. It is our aim in the following
to show that a further extension of this last result is possible, in the sense: (DC) is
deductible from a certain Lipschitz bounded countable version of (EVP). Putting
these together, it then results that any such variational principle (VP) is equivalent
with both (DC) and (EVP).

Let (X ,≤) be a partially ordered structure. Remember that z ∈ X is (≤)-maximal
if z ≤ w ∈ X implies z = w; the class of all these will be denoted as max(X ,≤). In
this case, we say that (≤) is a Zorn order when max(X ,≤) is (nonempty and) cofinal
in X ; i.e.: for each u ∈ X , there exists v ∈ max(X ,≤) with u ≤ v. In particular, when
d(., .) is a metric on X and ϕ : X → R+ is some function, a good example of partial
order on X is that introduced by the convention

x ≤(d,ϕ) y iff d(x,y)≤ ϕ(x)−ϕ(y);

referred to as the Brøndsted order [11] attached to the couple (d,ϕ). Further, let
us say that ϕ is d-Lipschitz, provided |ϕ(x)−ϕ(y)| ≤ Ld(x,y), ∀x,y ∈ X , for some
L > 0; note that, any such function is uniformly continuous on X .

The following stronger variant of (EVP) enters in our discussion.
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Theorem 7. Let the metric space (X ,d) and the function ϕ : X → R+ satisfy

(e01) (X ,d) is bounded and complete
(e02) ϕ is d-Lipschitz (hence, bounded)
(e03) ϕ(X) is (at most) countable.

Then, (≤(d,ϕ)) is a Zorn order.

We call this the Lipschitz bounded countable version of EVP (in short:
(EVP-Lbc)). By the above developments, (DC) =⇒ (EVP-bf) =⇒ (EVP-Lbc).
The remarkable fact to be added is that this last result implies (DC).

Proposition 10. We have [in (ZF-AC)]: (EVP-Lbc) =⇒ (DC). Hence, (DC) and
(EVP-Lbc) are equivalent to each other in (ZF-AC); so that, all ordering/variational
principles above are equivalent with both (DC) and (EVP-Lbc).

Proof. The argument will be divided in several steps.
Part 1. Let M be a nonempty set; and R be a proper relation over M. Fix a ∈ M;

and take some other point α , that does not belong to M. Put P = M ∪{α}; and let
d(., .) stand for the discrete metric on P:

d(s, t) = 0, if s = t; d(s, t) = 1, if s �= t.

Remember that, S(P) is the class of all sequences x = (x(n);n ≥ 0) with elements
in P. Denote X = {x ∈ S(P);x(0) = a}; and let us introduce the metric

d∞(x,y) = ∑n 2−nd(x(n),y(n)), for x = (x(n)) and y = (y(n)) in X .

Clearly, (X ,d∞) is bounded. Moreover, by a previous auxiliary statement, (X ,d∞) is
complete: each d∞-Cauchy sequence in X is d∞-convergent.

Part 2. Let Y stand for the class of all sequences x = (x(n);n ≥ 0) in X with

(∀n): x(n),x(n+1) ∈ M =⇒ x(n)Rx(n+1).

Note that Y �= /0; for, given b ∈R(a), the sequence y = (y(n);n ≥ 0) in X introduced
as (y(0) = a, y(1) ∈ b, y(n) = α , n ≥ 2) is an element of it.

Lemma 4. The subset Y is d∞-closed; hence, d∞-complete as well.

Proof. Let (xn := (xn(0) = a,xn(1), . . .);n ≥ 0) be a sequence in Y , and y =
(y(n);n ≥ 0) be an element of X with xn → y (modulo d∞); that is,

d∞(x
n,y) := ∑

i
2−id(xn(i),y(i))→ 0, as n → ∞.

Note that, as a direct consequence of this,

xn(i)
d−→ y(i) as n → ∞, ∀i ≥ 0. (10)

Further, as d∞ is metric, (xn;n ≥ 0) is d∞-Cauchy; so, by a preliminary statement,
there exists a strictly ascending sequence of ranks (n(i); i ≥ 0), with

(∀i ≥ 0) : xn(i)(i) = xp(i), ∀p ≥ n(i). (11)



Variational Principles in Gauge Spaces 517

In this case, the d∞-limit, y = (y(n);n ≥ 0), of our sequence must have the form

y(i) = xn(i)(i), for all i ≥ 0. (12)

We now claim that the representation of Y gives us the desired conclusion: y ∈Y . In
fact, let i ≥ 0 be such that y(i),y(i+1) ∈ M. Note that, by the previous relations,

y(i) = xn(i)(i) = xn(i+1)(i) ∈ M; y(i+1) = xn(i+1)(i+1) ∈ M.

This, along with xn+1 ∈ Y , yields

xn(i+1)(i)Rxn(i+1)(i+1); that is, y(i)Ry(i+1).

The argument is thereby complete.

Part 3. Now, let us note that, conclusion of our statement is equivalent with
Y ∩ S(M) �= /0. For, taking some sequence y = (y(n);n ≥ 0) in this intersection,
we have y(n),y(n+ 1) ∈ M, ∀n; so that, by definition, y(n)Ry(n+ 1), ∀n; whence,
(y(n);n ≥ 0) is (a,R)-iterative. Assume by contradiction that this would be not true:

(e04) Y ∩S(M) = /0; i.e.: ∀y = (y(n);n ≥ 0) ∈ Y , ∃k = k(y)≥ 1: y(k) = α .

As a consequence, the functions below are well defined:

g(y) = min{k ≥ 1;y(k) = α}, ϕ(y) = 22−g(y), y ∈ Y .

Some basic properties of these are described in

Lemma 5. The following are valid:

(i) the functions g, ϕ are continuous on Y ; precisely,

∀y ∈Y,∃β = β (y)> 0 : z ∈Y,d∞(z,y)< β =⇒ g(z) = g(y), ϕ(z) = ϕ(y) (13)

(ii) the function ϕ is d∞-Lipschitz, in the sense:

|ϕ(x)−ϕ(y)| ≤ 4d∞(x,y), ∀x,y ∈ Y (14)

(iii) g(Y ) is countable; hence, so is ϕ(Y ).

Proof. (i) Fix y = (y(n);n ≥ 0) ∈ Y , and put r = g(y); we therefore have

r ≥ 1,y(r) = α,y(k) ∈ M,∀k ∈ N(r,>).

Take some β ∈]0,2−r[; and let z = (z(n);n ≥ 0) ∈ Y be such that d∞(y,z)< β .
By the definition of our metric,

2−kd(y(k),z(k))< β < 2−r, ∀k ∈ N(r,≥);
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and this yields [z(k) = y(k), ∀k ∈ N(r,≥)]. In particular, we must have

z(k) ∈ M, ∀k ∈ N(r,>); z(r) = α;

so that g(z) = α = g(y).
(ii) Let x = (x(n);n ≥ 0) and y = (y(n);n ≥ 0) be two points in Y . Denote, for

simplicity r = g(x), s = g(y). If r = s, all is clear; so, it remains the opposite
case r �= s; without loss, one may assume that r < s. As a consequence,

x = (x(0), . . . ,x(r−1),α, . . . ,x(s−1),x(s), . . .),
y = (y(0), . . . ,y(r−1),y(r), . . .y(s−1),α, . . .).

In particular, y(r) ∈ M; hence y(r) �= α; and then,

d∞(x,y)≥ 2−r ≥ 2−r −2−s = |2−r −2−s|.

This gives the conclusion we need.
(iii) Evident.

Part 4. We show that, under the introduced conventions,

for each v ∈ Y there exists y ∈ Y \{v} such that d∞(v,y)≤ ϕ(v)−ϕ(y); (15)

or, in other words: each element of Y is non-maximal with respect to the Brøndsted
ordering attached to d∞ and ϕ:

(x1,x2 ∈ Y ): x1 ≤ x2 iff d∞(x1,x2)≤ ϕ(x1)−ϕ(x2).

In fact, let v = (v(n);n ≥ 0) be the representation of this v ∈ Y . Put g(v) = r; hence

r ≥ 1; v(0), . . . ,v(r−1) ∈ M; v(r) = α.

Note that, by the definition of Y , one gets the relations

v(i)Rv(i+1), whenever (r ≥ 2 and) i ≤ r−2.

Take y = (y(n);n ≥ 0) in Y \{v} according to

(e05) y(k) = v(k), ∀k ∈ N(r,>); y(h) = α , ∀h ∈ N(r+1,<);
(e06) y(r),y(r+1) ∈ M; y(i)Ry(i+1), ∀i ∈ {r−1,r}.

(The last relation is possible, by the Finite Dependent Choice property). As a con-
sequence of this, g(y) = r+2. Now, the desired relation above becomes

d∞(v,y)≤ 22−r −2−r = 3.2−r.

According to the representation of y ∈ Y \{v}, this means

∑
i≥r

2−id(v(i),y(i))≤ 3.2−r. (16)
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But then, the last relation is clear, in view of

∑
i≥r

2−id(v(i),y(i))≤ ∑
i≥r

2−i = 21−r < 3.2−r.

Part 5. We may now pass to the final part of the argument. By the above facts,
(EVP-Lbc) is applicable to the metric space (Y,d∞) and the function ϕ : Y → R+

(introduced as before). Hence, the associated Brøndsted order (≤) (see above) is a
Zorn one. As a consequence, there exists, for the starting point (in Y )

u = (u(n);n ≥ 0): u(0) = a, u(n) = α , ∀n ≥ 1,

some other point v = (v(n);n ≥ 0) in Y with

u ≤ v : d∞(u,v)≤ ϕ(u)−ϕ(v) (17)

v is (≤)-maximal : d∞(v,y)> ϕ(v)−ϕ(y), ∀y ∈ Y \{v}. (18)

This, however, contradicts the preceding step and shows that Y ∩S(M) �= /0. But then
(by the very definition of Y ) there must be some sequence y = (y(n);n ≥ 0) in M
with y(0) = a and y(n)Ry(n+1), ∀n. The proof is complete.

In particular, when the boundedness and Lipschitz properties are ignored, this
result is just the one in Dodu and Morillon [18]. So, it is natural to call it as: Dodu–
Morillon statement; in short: (DM).

Let X be a nonempty set; and (≤) be an order on it. We say that (≤) has the inf-
lattice property, provided: x∧y := inf(x,y) exists, for all x,y ∈ X . Further, let d : X ×
X → R+ be a metric over X ; and ϕ : X → R+ be some function. Denote X(x,ρ) =
{u ∈ X ;d(x,u) < ρ}, x ∈ X , ρ > 0 [the open sphere with center x and radius ρ].
Call the ambient metric space (X ,d), discrete when for each x ∈ X there exists ρ =
ρ(x)> 0 such that X(x,ρ) = {x}. Note that, under such an assumption, any function
ψ : X → R is continuous over X . However, the Lipschitz property (|ψ(x)−ψ(y)| ≤
Ld(x,y), for all x,y ∈ X , and some L > 0) cannot be assured, in general.

Now, the result below is a particular case of (EVP):

Theorem 8. Let the metric space (X ,d) and the function ϕ : X → R+ satisfy

(e07) (X ,d) is discrete bounded and complete
(e08) (≤(d,ϕ)) has the inf-lattice property
(e09) ϕ is d-nonexpansive and ϕ(X) is countable.

Then, (≤(d,ϕ)) is a Zorn order.

We shall refer to it as: the discrete Lipschitz countable version of EVP (in short:
(EVP-dLc)). Clearly, (EVP) =⇒ (EVP-dLc). The remarkable fact to be added is
that this last principle yields (DC); so, it completes the circle between all these.

Proposition 11. We have [in (ZF-AC)]: (EVP-dLc) =⇒ (DC). Hence, (EVP), (DC)
and (EVP-dLc) are equivalent to each other in (ZF-AC).
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For a complete proof, see Turinici [51]. In particular, when the discrete, bounded,
inf-lattice and nonexpansive properties are ignored in (EVP-dLc), the last result
above reduces to the one in Brunner [12]; so, it is natural to name it as: Brunner
statement; in short: (Bru).

Finally, note that, by the conclusions of (DM) and (Bru), we have (EVP-Lbc)
⇐⇒ (EVP-dLc); moreover, both these statements are equivalent with (DC) and/or
(EVP). It would be interesting to give a direct proof of this equivalence; in
fact, of (EVP-Lbc) =⇒ (EVP-dLc). Further aspects may be found in Schechter
[41, Chap. 19, Sect. 19.51].

2 Variational Principles in Fang Spaces

2.1 Conical Gauge Functions

Let Y be a (real) vector space. Take a convex cone H of Y (αH +βH ⊆ H, for each
α,β in R+); which in addition is non-degenerate (H �= {0}), proper (H �= Y ); and
let (≤) stand for its induced quasi-order [x ≤ y iff y− x ∈ H]. Further, take some
point k0 ∈ H \ (−H); and put (for y ∈ Y )

(a01) Γ (H;k0;y) = {s ∈ R+;k0s ≤ y}, γ(H;k0;y) = supΓ (H;k0;y).

(Here, by convention, sup( /0) = −∞). We therefore defined a multivalued function
Γ (.) := Γ (H;k0; .) from Y to P(R+), and a function γ(.) := γ(H;k0; .) from Y to
R+∪{−∞,∞} with

Γ (y) �= /0 (hence, 0 ≤ γ(y)≤ ∞), iff y ∈ H; (19)

the latter of these will be referred to as the gauge function attached to (H;k0). Note
that, for each y ∈ H,

Γ (y) is hereditary (s ∈ Γ (y) =⇒ [0,s]⊆ Γ (y)); (20)

so, Γ (y) is an interval of R+, having 0 ∈ R+ as left endpoint. In addition, the couple
(Γ ,γ) is positively homogeneous and increasing

Γ (ty) = tΓ (y),γ(ty) = tγ(y), ∀t > 0, ∀y ∈ Y (21)

y1,y2 ∈ Y , y1 ≤ y2 implies Γ (y1)⊆ Γ (y2), γ(y1)≤ γ(y2). (22)

(Here, t /0= /0, ∀t ∈ R0
+). An important question to be solved is that of Γ being proper

[Γ (y) �= R+, ∀y ∈ H]. According to Cristescu [17, Chap. 5, Sect. 1], we say that H
is Archimedean, provided

(a02) [v ∈ Y , h ∈ H, Γ (H;v;h) = R+] imply v ∈ −H.

Likewise, let us call H, semi-Archimedean, if

(a03) Γ (H;k;y) is closed, ∀k ∈ H \ (−H), ∀y ∈ H.
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Lemma 6. The following are valid:

(i) If H is Archimedean, then Γ (.) is proper, in the sense: 0 ≤ γ(y)< ∞ and Γ (y) =
[0,γ(y)], for all y ∈ H; so, H is semi-Archimedean too

(ii) Let H be semi-Archimedean; and α ∈ R+, y ∈ H, (βn;n ≥ 0)⊆ R+ be such that
[k0α ≤ y+ k0βn, ∀n] and βn → 0. Then, k0α ≤ y.

Proof. (i) Let y ∈ H be arbitrary fixed. If (Γ (H;k0;y) =)Γ (y) = R+ then, by
the Archimedean property of H, one gets k0 ∈ −H; contradiction. Conse-
quently, R+ \Γ (y) �= /0; so that, by the hereditary property, Γ (y) is bounded
[whence, 0 ≤ γ(y) < ∞]. Further, again by this property, k0γ(y)− y ≤ k0t, for
all t > 0; wherefrom Γ (H;k0γ(y)− y;k0) = R+. This, again combined with the
Archimedean property of H, gives γ(y) ∈ Γ (y); i.e., Γ (y) = [0,γ(y)].

(ii) If α = 0 or [βn = 0, for some n ≥ 0], we are done; so, without loss, one may
assume that α > 0 and βn > 0, ∀n. As βn → 0<α , there must be some n(α)≥ 0
in such a way that 0 < α −βn < α , ∀n ≥ n(α). The imposed hypothesis now
gives: α −βn ∈ Γ (y), ∀n ≥ n(α). Passing to limit as n → ∞ yields (by the semi-
Archimedean property of H), α ∈ Γ (y); and the assertion follows.

The following couple of properties will be useful in the sequel:

Lemma 7. The gauge function γ is super-additive and subtractive:

γ(y1 + y2)≥ γ(y1)+ γ(y2), if the right member exists (23)

γ(y1 − y2)≤ γ(y1)− γ(y2), if the right member exists. (24)

Proof. Without loss, one may assume that y1,y2 ∈ H and γ(y1) > 0, γ(y2) > 0. By
the hereditary property, y1 ≥ k0t1,y2 ≥ k0t2, whenever 0 ≤ t1 < γ(y1),0 ≤ t2 < γ(y2);
and this yields (for all such (t1, t2)) y1 + y2 ≥ k0[t1 + t2] (i.e.: γ(y1 + y2) ≥ t1 + t2).
This, and the arbitrariness of the precise couple, ends the argument. The second part
is directly obtainable from the first one, in a standard way.

In particular, when Y is locally convex, the Archimedean property of H is hold-
ing whenever H is closed. Then, our developments reduce to the ones in Goepfert
et al. [22]. Note that an axiomatic approach of these facts is possible, under the lines
in Artzner et al. [2]; we do not give details.

2.2 Zhu–Li Vectorial Principles

Let in the following Y stand for a (real) vector space.
(A) Take a (non-degenerate, proper) Archimedean convex cone H of Y ; and let

(≤H) stand for its induced quasi-order. Further, let K be some (non-degenerate,
proper) semi-Archimedean convex cone of Y , with K ⊆ H; and denote by (≤K) the
induced quasi-order.
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(B) Further, let X be a nonempty set. By a pseudometric over X we mean any
map d : X ×X → R+; if, in addition, d is reflexive [d(x,x) = 0,∀x ∈ X] and sym-
metric [d(x,y) = d(y,x),∀x,y ∈ X], we say that it is a rs-pseudometric. Let (Λ ,≤)
be some directed quasi-ordered structure. Take a family D = (dλ ;λ ∈ Λ) of rs-
pseudometrics over X , with the properties: Λ -sufficient [dλ (x,y) = 0, ∀λ ∈ Λ =⇒
x = y], Λ -monotone [λ ≤ μ implies dλ (., .) ≤ dμ(., .)] and Λ -triangular [∀λ ∈ Λ ,
∃μ ∈Λ(λ ,≤), with dλ (x,z)≤ dμ(x,y)+dμ(y,z), ∀x,y,z ∈ X]. By definition, D will
be referred to as a Fang metric; and (X ,D), as a Fang space.

The introduced Fang metric D may now generate a conv-Cauchy structure, in
the following way. Take an arbitrary sequence (xn;n ≥ 0) in X . Given λ ∈ Λ , the

dλ -convergence of this sequence towards an x ∈ X [depicted as: xn
dλ−→ x], means:

dλ (xp,x)→ 0 as p → ∞; [i.e.: ∀ε > 0, ∃i = i(ε), such that i ≤ p =⇒ dλ (xp,x)< ε].
If this holds for all λ ∈ Λ , then (xn;n ≥ 0) is said to D-converge towards x [written

as: xn
D−→ x]; moreover, if x ∈ X is generic in such a convention, (xn;n ≥ 0) is

called D-convergent. On the other hand, given λ ∈ Λ , the dλ -Cauchy property of
(xn;n ≥ 0) means: dλ (xp,xq) → 0 as p,q → ∞, p ≤ q [i.e.: ∀ε > 0, ∃ j := j(λ ,ε),
such that j ≤ p ≤ q =⇒ dλ (xp,xq) < ε]. If this holds for each λ ∈ Λ , we say that
(xn;n ≥ 0) is D-Cauchy. Note that any D-convergent sequence is D-Cauchy too; the
reciprocal is not in general valid.

(C) Now, let (Y,H,K) be as above and (X ,D) be a Fang space. Let us complete
Y with an element ∞ /∈ Y ; the algebraic/order conventions introduced over the com-
pletion Y ∪{∞} are

∞ = b+∞ = ∞+b, ∀b ∈ Y ∪{∞}; ∞ = λ∞, ∀λ ∈ R0
+

b ≤H ∞, b ≤K ∞, ∀b ∈ Y ∪{∞}; ¬(∞ ≤H b) , ¬(∞ ≤K b) , ∀b ∈ Y .

Take a couple of functions F : X → Y ∪{∞} and k : Λ → K, with

(b01) F is proper: Dom(F) := {x ∈ X ;F(x) �= ∞} �= /0;
(b02) k is K-increasing [λ ≤ μ =⇒ k(λ )≤K k(μ)].

The relation (/(D,k,F)) over X introduced as

(b03) (x1,x2 ∈ X): x1 /(D,k,F) x2 iff k(λ )dλ (x1,x2)+F(x2)≤K F(x1), ∀λ ∈ Λ

is a quasi-order. For a number of both practical and theoretical reasons, it would
be useful to determine sufficient conditions under which (/(D,k,F)) is a Zorn order
with respect to Dom(F). To reach this objective, some regularity conditions about
our data must be imposed. Precisely, these consist in

(I) Boundedness properties of the (vectorial) objective function:

(Q1) F is H-bounded below: F(x)≥H b, ∀x ∈ X , for some b ∈ Y
(Q2) F is H-positive: F(x)≥H 0, ∀x ∈ X
(Q3) F(X)⊆Y and F is H-bounded below: F(x)≥H b, ∀x ∈ X , for some b ∈Y
(Q4) F(X)⊆ Y and F is H-positive: F(x)≥H 0, ∀x ∈ X
(Q5) F(X)⊆Y and F is H-bounded: a≥H F(x)≥H b, ∀x ∈X , for some a,b∈Y
(Q6) F(X)⊆ Y and F is H-bounded positive:
a ≥H F(x)≥H 0, ∀x ∈ X , for some a ∈ Y
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(II) Strict positivity properties of the coefficient function

(M1) k(Λ)⊆ K \ (−H) (hence, k(Λ)⊆ K \ (−K))
(M2) k(Λ)⊆ K \ (−H) and k is constant
(k(λ ) = k0,∀λ ∈ Λ , for some k0 ∈ K \ (−H))

(III) Global completeness property of the whole objects family:

(gsdc) (X ,D,K,F) is globally sequentially descending complete: each
D-Cauchy sequence (xn) in X for which (F(xn)) is K-descending, D-converges
to some x ∈ X ; with, in addition, [F(xn)≥K F(x), ∀n].

Our main result is

Theorem 9. Let the proper function F : X → Y ∪ {∞} and the K-increasing coe-
fficient function k : Λ → K be such that F is in the subclass (Qj) for some j ∈
{1,2,3,4,5,6}, k(.) has the property (Mp), for some p ∈ {1,2}, and (X ,D,K,F)
has the property (gsdc). Then, for each u ∈ Dom(F), there exists v ∈ Dom(F), with

(a) k(λ )dλ (u,v)≤K F(u)−F(v), ∀λ ∈ Λ (hence, F(u)≥K F(v))
(aa) x ∈ X, [k(λ )dλ (v,x)≤K F(v)−F(x), ∀λ ∈ Λ] =⇒ v = x.

Denote the obtained statements as (ZL;Qj;Mp;gsdc), where j ∈ {1,2,3,4,5,6},
p ∈ {1,2}; these will be referred to as: “composed” Zhu–Li variational principles.
The relationships between them are given by

Lemma 8. We have [in (ZF-AC)],
(i) (ZL;Q(j);Mp;gsdc) ⇐⇒ (ZL;Q(j+1);Mp;gsdc), ∀ j ∈ {1,3,5}, ∀p ∈ {1,2}
(ii) the propositional map ( j, p) �→ (ZL;Q j;Mp;gsdc) is decreasing:

if ( j, p)≤ ( j′, p′), then (ZL;Pj;Mp;gsdc) =⇒ (ZL;Pj’;Mp’;gsdc).

Proof. (i): Let (X ,D,K,F) be as in the premise of the principle (ZL;Q(j);Mp;gsdc).
Then, the quadruple (X ,D,K,G), where G(.) := F(.)− b, fulfills conditions of the
principle (ZL;Q(j+1);Mp;gsdc); and, from this, we are done.

(ii) Evident, by the definition of the subclasses in question.

Now, the property (gsdc) is obtainable as an intersection of two components:
(III-a) Completeness properties involving the Fang structure:

(C1) (X ,D,K,F) is sequentially descending complete: each D-Cauchy seq-
uence (xn) in X with (F(xn))=K-descending is D-convergent
(C2) (X ,D,K,F) is sequentially complete:
each D-Cauchy sequence in X is D-convergent.

(III-b) Lower semi-continuity properties of the objective function:

(W) F is sequentially K-descending (X ,D)-lsc:
for each sequence (xn) in X and each x ∈ X with

xn
D−→ x and (F(xn))=K-descending, we have [F(xn)≥K F(x), ∀n].
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This gives the “factor” Zhu–Li variational principles (ZL;Qj;Mp;Ch,W), where
j ∈ {1,2,3,4,5,6}, p,h ∈ {1,2}; with the properties

(v-1) (ZL;Qj;Mp;gsdc) =⇒ (ZL;Qj;Mp;Ch,W), for all admissible ( j, p,h)
(v-2) (ZL;Q(j);Mp;Ah,Ch,W) ⇐⇒ (ZL;Q(j+1);Mp;Ch,W),

for all j ∈ {1,3,5}, p,h ∈ {1,2}
(v-3) the propositional map ( j, p,h) �→ (ZL;Q j;Mp;Ch,W ) is decreasing:

if ( j, p,h)≤ ( j′, p′,h′), then (EVP;Qj;Mp;Ch,W) =⇒ (EVP;Qj’;Mp’;Ch’,W).
Now, to get all these, it will suffice proving that the “weakest” variational prin-

ciple (ZL;Q1;M1;gsdc)—or, equivalently (see above), (ZL;Q2;M1;gsdc)—is ded-
uctible in (ZF-AC+DC). This follows from

Proposition 12. We have [in (ZF-AC)] ((DC) =⇒) (BB) =⇒ (ZL;Q2;M1;gsdc);
hence, all these principles are deductible in (ZF-AC+DC).

Proof. Let the triple (Y,H,K), the Fang space (X ,D), the proper function F : X →
Y ∪{∞}, and the K-increasing coefficient function k : Λ → K be as in the premises
of (ZL;Q2;M1;gsdc). By (M1), the quasi-order (/(D,k,F)) is antisymmetric—hence
an order—on Dom(F); we do not give details. Given u ∈ Dom(F), denote Xu =
X(u,/(D,k,F)). Note that, by the very definition of this subset,

0 ≤H F(x)≤K F(u) (hence, 0 ≤H F(x)≤H F(u)), ∀x ∈ Xu. (25)

So, if we denote again by F the restriction of the initial function F to the subset Xu,
one has F(Xu)⊆ H: and, moreover (see a preceding observation),

Xu = {x ∈ X ;k(λ )dλ (u,x)≤K F(u)−F(x), ∀λ ∈ Λ}. (26)

The argument will be divided in a number of steps.
Part 1. Fix θ ∈ Λ and put Θ = Λ(θ ,≤); note that (as (Λ ,≤) is directed),

Θ is cofinal in Λ : for each λ ∈ Λ there exists μ ∈Θ with λ ≤ μ . (27)

Let δ (.) := γ(H;k(θ); .) stand for the gauge function attached to (H;k(θ)). As H is
Archimedean, δ (H)⊆ R+. Put also δ (∞) = ∞; then, the function [ψ(x) = δ (F(x)),
x ∈ X] is an element of F(X ,R+∪{−∞,∞}). Let again ψ stand for the restriction to
Xu of this function; by the relations above, one has ψ(Xu)⊆ R+.

Part 2. Let (0(D,ψ)) stand for the relation over Xu:

(b04) (x1,x2 ∈ Xu): x1 0(D,ψ) x2 iff dλ (x1,x2)≤ ψ(x1)−ψ(x2), ∀λ ∈ Λ ;

it is an order on Xu, as it can be directly seen. We claim that the following double
inclusion holds:

(∀x1,x2 ∈ Xu) : x1 /(D,k,F) x2 =⇒ x1 0(D,ψ) x2 =⇒ ψ(x1)≥ ψ(x2). (28)

The second part is clear; so, it remains to verify the first part. Let x1,x2 ∈ Xu be such
that x1 /(D,k,F) x2; that is:

k(λ )dλ (x1,x2)≤K F(x1)−F(x2), ∀λ ∈ Λ .
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As k(.) is K-increasing, this yields

k(θ)dλ (x1,x2)≤K F(x1)−F(x2), ∀λ ∈Θ ;

so that (by the subtractive property of gauge function δ (.))

dλ (x1,x2)≤ δ (F(x1)−F(x2))≤ ψ(x1)−ψ(x2), ∀λ ∈Θ .

This, in turn, yields (as λ �→ dλ (., .) is increasing and Θ is cofinal in (Λ ,≤))

dλ (x1,x2)≤ ψ(x1)−ψ(x2), ∀λ ∈ Λ ;

that is: x1 0(D,ψ) x2; hence, the assertion.
Part 3. We show that (BB) is applicable to (Xu,/(D,k,F)) and ψ (restricted

to Xu). Firstly, by the double inclusion above, ψ is decreasing (modulo (/(D,k,F))).
Secondly, let the sequence (xn;n ≥ 0) in Xu be (/(D,k,F))-ascending:

(b05) (∀λ ∈ Λ ): k(λ )dλ (xn,xm)≤K F(xn)−F(xm), if n ≤ m.

note that, in such a case, (F(xn);n ≥ 0) is K-descending. Again by the quoted double
inclusion, (xn;n ≥ 0) is (0(D,ψ))-ascending:

(∀λ ∈ Λ) : dλ (xn,xm)≤ ψ(xn)−ψ(xm), if n ≤ m; (29)

and, from this, (xn;n ≥ 0) is D-Cauchy. Combining with (gsdc) yields xn
D−→ x, for

some (uniquely determined) x ∈ X ; with, in addition, F(xn) ≥K F(x), ∀n. Taking
into account the working condition, we therefore get

(∀λ ∈ Λ) : k(λ )dλ (xn,xm)≤K F(xn)−F(x), if n ≤ m. (30)

Fix λ ∈ Λ and n ≥ 0. Let μ ∈ Λ(λ ,≤) be the index assured by the Λ -triangular
property of D. From the preceding relation, we have (as k(.) is K-increasing)

k(λ )dλ (xn,x)≤K k(μ)dμ(xn,xm)+ k(λ )dμ(xm,x)
≤K F(xn)−F(x)+ k(λ )dμ(xm,x), for all m ≥ n;

(31)

This, along with (M1) and the semi-Archimedean property of K, yields (by a pre-
ceding auxiliary fact)

(∀λ ∈ Λ) : k(λ )dλ (xn,x)≤K F(xn)−F(x); i.e. : xn /(D,k,F) x. (32)

As n ≥ 0 was arbitrarily fixed, we thus get that the limit point x is an upper bound
of (xn;n ≥ 0) [modulo (/(D,k,F))]. This gives x ∈ Xu; so that (by the arbitrariness of
our sequence), (Xu,/(D,k,F)) is sequentially inductive; hence, the claim.

Part 4. Applying (BB) to these data, one gets that, for the starting u ∈ Xu, there
exists a point v ∈ Xu, with

(j) u /(D,k,F) v; (jj) v /(D,k,F) w ∈ Xu =⇒ ψ(v) = ψ(w).
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The former of these is just the first conclusion of the statement. Moreover, by the
latter of these, one gets the second conclusion of the same. For, let x ∈ X be such
that v /(D,k,F) x. By (j), this yields u /(D,k,F) x; whence, x ∈ Xu. This, combined
with the double inclusion we already quoted, gives v 0(D,ψ) x; and, by jj) above,
ψ(v) = ψ(x). Combining these, one gets dλ (v,x) = 0, ∀λ ∈ Λ ; wherefrom, v = x
(as D is sufficient); and the claim follows.

Remark 3. We stress that, by the very proof of the “composed” result above, one
has, in (ZF-AC),

(v-4) (∀p ∈ {1,2}): (ZL;Q5;Mp;gsdc) =⇒ (ZL;Q1;Mp;gsdc);
hence, (EVP;Q5;Mp;gsdc) ⇐⇒ (EVP;Q1;Mp;gsdc).
In fact, if (X ,D,F,k(.)) fulfills conditions of (ZL;Q1;Mq;gsdc), then (Xu,D,F,k(.))
(where u ∈ Dom(F)) fulfills conditions of (ZL;Q5;Mq;gsdc); and, from the con-
clusion of this gauge variational principle, we are done. However, as the statement
above shows, the deduction of these gauge principles cannot be reached in (ZF-AC);
because it requires (BB) (or, equivalently, (DC)).

In particular, when Y is a locally convex space, the Archimedean property of
H is assured when H = cl(K). The corresponding “factor” variational principle
(ZL;Q3;M1;C2,W) is just the main result in Zhu and Li [53] proved via rather dif-
ferent methods; this also explains the conventions we just introduced. On the other
hand, the “factor” variational principle (ZL;Q3;M2;C2,W) yields the main result in
Turinici [48] which includes the ones in Goepfert et al. [22]. But, as precise by the
quoted authors, their statements include (EVP); hence, summing up: ((DC) =⇒)
(BB) =⇒ (ZL;Q1;M1;gsdc) =⇒ (ZL;Q1;M1;C1,W) =⇒ (ZL;Q5;M2;C2,W) =⇒
(EVP-bf). This, by the Dodu–Morillon statement, tells us that any of the variational
principles (ZL;Qj,Mq;gsdc) and (ZL;Qj;Mq;Ch,W), where j ∈ {1,2,3,4,5,6} and
q,h ∈ {1,2}, is equivalent with any of the principles (DC), (BB), and/or (EVP).

Note, finally, that these equivalence properties are no longer valid beyond the
Fang setting; some results in this direction may be found in Turinici [47].

2.3 Hamel Variational Principles

Let Y be a (real) vector space. By the properties of conical gauge functions,

H = K = Archimedean (non-degenerate, proper) (convex) cone of Y

is allowed in the Zhu–Li vector variational principles above. This, in the case of
Y = R, H = K = R+, yields a lot of “scalar” variational principles over Fang spaces,
including Hamel’s [27]. It is our aim in the following to state these principle as well
as to discuss certain related facts.

(A) Let X be a nonempty set; and (Λ ,≤) be a directed quasi-ordered struc-
ture. Take a family D = (dλ ;λ ∈ Λ) of rs-pseudometrics over X ; supposed to be
Λ -sufficient, Λ -monotone, and Λ -triangular. By a previous convention, D will be
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referred to as a Fang metric; and (X ,D), as a Fang space. Further, let ϕ : X →
R∪{∞} and k : Λ → R+ be a couple of functions with

(c01) ϕ is proper: Dom(ϕ) := {x ∈ X ;ϕ(x)< ∞} �= /0
(c02) k is increasing: λ ≤ μ =⇒ k(λ )≤ k(μ).

(Note that, among all such objects k(.), we have the unitary function g ∈ F(Λ ,R0
+),

introduced as: g(λ ) = 1, λ ∈ Λ ). The quasi-order (/(D,k,ϕ)) over X introduced as

(c03) (x1,x2 ∈ X): x1 /(D,k,ϕ) x2 iff k(λ )dλ (x1,x2)+ϕ(x2)≤ ϕ(x1), ∀λ ∈ Λ

is antisymmetric—hence, an ordering—on Dom(ϕ). As before, we want to deter-
mine sufficient conditions under which (/(D,k,ϕ)) be a Zorn order on Dom(ϕ).
Precisely, these consist in

(I) Boundedness properties of the objective function:
the classes (Pj), j ∈ {1,2,3,4,5,6}, we just encountered

(II) Strict positivity properties of the coefficient function

(M1) k(Λ)⊆ R0
+ (k is strictly positive)

(M2) k(Λ)⊆ R0
+ and k is constant:

k(λ ) = k0g(λ ) = k0, ∀λ ∈ Λ , for some k0 ∈ R0
+

(M3) k(Λ)⊆ R0
+ and k is unitary constant: k(λ ) = g(λ ) = 1,∀λ ∈ Λ

(III) Global completeness property of the remaining objects:

(gsdc) (X ,D,ϕ) is globally sequentially descending complete: each D-Cauchy
sequence (xn) in X with (ϕ(xn))= descending, is D-convergent to some x ∈ X
with [ϕ(xn)≥ ϕ(x), ∀n].

Our main result is

Theorem 10. Let the proper function ϕ : X → R ∪ {∞} and the increasing
coefficient function k : Λ → R+ be such that ϕ is in the subclass (Pj) for some
j ∈ {1,2,3,4,5,6}, k(.) has the property (Mp), for some p ∈ {1,2,3}, and (X ,D,ϕ)
has the property (gsdc). Then, for each u ∈ Dom(ϕ), there exists v ∈ Dom(ϕ), with

(a) k(λ )dλ (u,v)≤ ϕ(u)−ϕ(v), ∀λ ∈ Λ
(aa) x ∈ X, [k(λ )dλ (v,x)≤ ϕ(v)−ϕ(x), ∀λ ∈ Λ] =⇒ v = x.

Denote the obtained statements as (HVP;Pj;Mp;gsdc), j ∈ {1,2,3,4,5,6}, p ∈
{1,2,3}; these will be referred to as: “composed” Hamel variational principles. The
relationships between them are given by

Lemma 9. We have [in (ZF-AC)],
(i) (HVP;P(j),Mp;gsdc) ⇐⇒ (HVP;P(j+1);Mp;gsdc), ∀ j ∈ {1,3,5}, ∀p ∈

{1,2,3}
(ii) the propositional map ( j, p) �→ (HV P;P j;Mp;gsdc) is decreasing:

if ( j, p)≤ ( j′, p′), then (HVP;Pj;Mp;gsdc) =⇒ (HVP;Pj’;Mp’;gsdc)
(iii) (HVP;Pj,M1;gsdc) =⇒ (HVP;Pj,M2;gsdc) =⇒ (HVP;Pj,M3;gsdc)

=⇒ (HVP;Pj,M1;gsdc), ∀ j ∈ {1,2,3,4,5,6}.
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Proof. (i): Let (X ,D,ϕ) be as in the premise of the principle (HVP;P(j);Mp;gsdc).
Then, the triple (X ,D,ψ), where ψ(.) := ϕ(.)− infϕ(X), fulfills conditions
of the principle (ZL;P(j+1);Mp;gsdc); and, from this, we are done.

(ii): Evident, by the definition of the subclasses in question.
(iii): The first and second inclusions are trivial; so, it remains to verify our third

inclusion. Let the Fang space (X ,D), the proper function ϕ , and the increas-
ing function k : Λ → R+ be as in the premises of (HVP;Pj;M1;gsdc). Define
another family E = (eλ ;λ ∈ Λ) of rs-pseudometrics over X according to

(c04) eλ (x,y) = k(λ )dλ (x,y), x,y ∈ X .

The Λ -sufficiency of E results at once from that of D; and the Λ -monotonicity
of the same is reducible to the increasing property of k(.). Finally, we claim
that E is Λ -triangular. Let λ ∈ Λ be arbitrarily fixed; and μ ∈ Λ(λ ,≤) be
given by the Λ -triangular property of D. Again by the increasing property of
k(.),

eλ (x,z)≤ k(λ )[dμ(x,y)+dμ(y,z)]≤ eμ(x,y)+ eμ(y,z), ∀x,y,z ∈ X ;

and the assertion follows. Summing up, E is a Fang metric; it may generate a
conv-Cauchy structure on X , by the construction we just precise in a previous
place. Concerning its connections with the Fang metric D (and its attached
conv-Cauchy structure), one has (for all sequences (xn) in X , and all x ∈ X)

[∀λ ∈Λ ] : (xn
dλ−→ x)⇐⇒ (xn

eλ−→ x); hence (xn
D−→ x)⇐⇒ (xn

E−→ x); (33)

as well as (for a generic sequence (xn) in X)

[∀λ ∈ Λ ]: dλ -Cauchy ⇐⇒ eλ -Cauchy; hence D-Cauchy ⇐⇒ E-Cauchy.
(34)

The conv-Cauchy structures attached to the Fang metrics D and E are thus
equivalent. As a consequence, the triplet (X ,E,ϕ) has the property (gsdc); so
that, the couples (X ,E) and (ϕ,g) fulfill conditions of (HVP;Pj;M3;gsdc). By
the conclusion of this principle, we then get all desired facts.

Concerning this last aspect, we stress that the introduction of our coefficient func-
tion k(.) in our “scalar” setting is related to a better comparison with the vectorial
case. However, by the preceding statement, this procedure has a formal character.

(B) Note that, in our setting, the property (gsdc) is obtainable as an intersection
of two component families:

(III-a) Completeness properties involving the Fang structure:

(B1) (X ,D,ϕ) is sequentially descending complete: each D-Cauchy sequence
(xn) in X with (ϕ(xn))=descending is D-convergent
(B2) (X ,D,ϕ) is sequentially complete:
each D-Cauchy sequence in X is D-convergent
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(III-b) Lower semi-continuity conditions upon the (scalar) objective function:

(V1) ϕ is sequentially descending (X ,D)-lsc:
for each sequence (xn) in X and each element x ∈ X with

xn
D−→ x and (ϕ(xn))=descending, we have [ϕ(xn)≥ ϕ(x), ∀n].

(V2) ϕ is sequentially (X ,D)-lsc: for each sequence (xn) in X and each element

x ∈ X with xn
D−→ x, we have liminfn ϕ(xn)≥ ϕ(x),

This yields the “factor” Hamel variational principles (HVP;Pj;Mp;Bh,Vq), where
j ∈ {1,2,3,4,5,6}, p ∈ {1,2,3}, h,q ∈ {1,2}, with the properties

(s-1) (HVP;Pj;Mp;gsdc) =⇒ (HVP;Pj;Mp;Bh,Vq), for all admissible ( j, p,h,q)
(s-2) (HVP;P(j);Mp;Bh,Vq) ⇐⇒ (HVP;P(j+1);Mp;Bh,Vq), for all j ∈ {1,3,5},

p ∈ {1,2,3}, h,q ∈ {1,2}
(s-3) the propositional map ( j, p,h,q) �→ (HV P;P j;Mp;Bh,V q) is decreasing:

( j, p,h,q)≤ ( j′, p′,h′,q′) gives (HVP;Pj;Mp;Bh,Vq) =⇒ (HVP;Pj’;Mp’;Bh’,Vq’).
(C) Concerning the relationships with the Zhu–Li vector variational principles

we already presented, the following inclusions hold:
(s-4) (ZL;Qj;Mp;gsdc) =⇒ (HVP;Pj;Mp;gsdc),

∀ j ∈ {1,2,3,4,5,6}, ∀p ∈ {1,2,3}
(s-5) (ZL;Qj,Mp;Ch,W) =⇒ (HVP;Pj;Mp;Bh,V1),

∀ j ∈ {1,2,3,4,5,6}, ∀p ∈ {1,2,3}, ∀h ∈ {1,2}.
[Just take Y = R, H = K = R+ in the quoted principles]. This, by the preced-
ing auxiliary statement, tells us that all “composed” Hamel variational principles
(HVP;Pj;Mp;gsdc) and “factor” Hamel variational principles (HVP;Pj;Mp;Bh,Vq),
where j ∈ {1,2,3,4,5,6}, p ∈ {1,2,3}, h,q ∈ {1,2}, are deductible from (BB) in
(ZF-AC). On the other hand, the relationships with the (composed or factor) Ekeland
variational principles are obtainable from the inclusions

(s-6) (HVP;Pj;M3;gsdc) =⇒ (EVP;Pj;gdc), ∀ j ∈ {1,2,3,4,5,6}
(s-7) (HVP;Pj;M3;Bh,Vq) =⇒ (EVP;Pj;Bh,Vq),

∀ j ∈ {1,2,3,4,5,6}, ∀h,q ∈ {1,2}.
[Just take Λ as a singleton and D = {d}, where d(., .) is a metric on X]. Conse-
quently, all “composed” Hamel variational principles (HVP;Pj;Mp;gsdc) and all
“factor” Hamel variational principles (HVP;Pj;Mp;Bh,Vq) deductible from these,
where j ∈ {1,2,3,4,5,6}, p ∈ {1,2,3}, h,q ∈ {1,2}, include (EVP-bf) (=the boun-
ded finitary version of (EVP)). Combining with the Dodu–Morillon statement, we
get that these Hamel principles are all equivalent with both (BB) and (EVP-bf);
hence, with (DC) and/or (EVP) as well.

In particular, (HVP;P3;M1;B2,V1) is just Hamel’s variational principle [27] (in
short: (HVP)); this also explains our conventions. Note that (HVP)—based on a
maximal principle comparable with Brøndsted’s [10]—extends the related statement
in Fang [21], obtained via Zorn maximal techniques. It also includes the contribution
due to Hadžić and Žikić [25], founded on the maximal principle in Hicks [29]; we
do not give details. In addition, by the above developments, (HVP) is equivalent
with both (BB) and (EVP).

(D) The following completion of these facts is to be noted. Let I be some
nonempty set. Take a family F = ( fi; i ∈ I) of rs-pseudometrics over X , supposed
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to be I-sufficient [ fi(x,y) = 0, for all i ∈ I imply x = y], and I-triangular [for each
i ∈ I, there exist j = j(i) and k = k(i) in I such that fi(x,z) ≤ f j(x,y) + fk(y,z),
∀x,y,z ∈ X]. In this case, the couple (X ,F) will be termed a BMLO space; see
Benbrik et al. [5]. Clearly, any Fang space is a BMLO space as well. But, the rec-
iprocal inclusion is also true. In fact, let Λ stand for the class of all (nonempty)
finite parts of I, endowed with the usual inclusion, (⊆); note that, (Λ ,⊆) is a dir-
ected ordered structure. For each λ ∈ Λ define the rs-pseudometric dλ over X as:
dλ (x,y) = sup{ fi(x,y); i ∈ λ}, x,y ∈ X . The family D = (dλ ;λ ∈ Λ) of all these
is easily shown to be Λ -sufficient, Λ -monotone, and Λ -triangular; i.e., (X ,D) is a
Fang space. In addition, all usual F-concepts (like F-convergence and F-Cauchy)
are equivalent to their corresponding D-concepts. Hence, all variational results over
BMLO spaces established by these authors are completely reducible to those involv-
ing Fang spaces we just presented; see also Hamel and Loehne [28]. In particular,
this is retainable for the variational principles in uniform spaces (taken as in Bour-
baki [8, Chap. 2, Sect. 1]) due to Mizoguchi [37]; because any such structure is a
BMLO space. Further aspects may be found in Hadžić and Ovcin [24]; see also
Chang et al. [15]. For interesting applications of these facts to Pareto optimality we
refer to the 1996 paper by Isac [32] and the references therein.

2.4 (ZF-AC) Approach

In the following, some technical aspects involving the Hamel variational principles
we just presented are considered. Let X be a nonempty set; and (Λ ,≤) be a directed
quasi-ordered structure. Take a family D = (dλ ;λ ∈ Λ) of rs-pseudometrics over X ;
supposed to be Λ -sufficient, Λ -monotone, and Λ -triangular; by a previous conven-
tion, D will be referred to as a Fang metric, and (X ,D), as a Fang space. Further, let
ϕ : X → R∪{∞} be a proper function; and k : Λ → R+ be some increasing function.

(A) By the developments above, it results that, for the deduction, from (BB),
of the “composed” Hamel variational principles (HVP;Pj;Mp;gsdc) and the “fac-
tor” Hamel variational principles (HVP;Pj;Mp;Bh,Vq), where j ∈ {1,2,3,4,5,6},
p ∈ {1,2,3}, h,q ∈ {1,2}, the operational model is that involving Zhu–Li vector
variational principles. According to the argument presented there, (BB) was applied
in a “local” way, by means of the point θ ∈Λ and its attached section Θ :=Λ(θ ,≤).
However, the presence of a “scalar” objective function ϕ (in place of the vectorial
function F) suggests us that a “global” application of (BB) is highly expectable.
Note that, by an auxiliary fact, it will suffice that this deduction process be applica-
ble to the composed Hamel variational principle (HVP;P1;M3;gsdc), involving the
Fang space (X ,D), the proper function ϕ : X → R∪{∞}, and the unitary increasing
function g : Λ → R0

+ (introduced as: g(λ ) = 1, λ ∈ Λ ). The quasi-order associated
with these data, (/(D,g,ϕ)), will be simply denoted as (/(D,ϕ)); hence

(d01) (x1,x2 ∈ X): x1 /(D,ϕ) x2 iff dλ (x1,x2)+ϕ(x2)≤ ϕ(x1), ∀λ ∈ Λ .

A positive answer to the posed question is established in the statement below.
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Proposition 13. We have [in (ZF-AC)], (BB) =⇒ (HVP;P1;M3;gsdc); whence, all
Hamel variational principles above are deductible from (BB).

Proof. Let the Fang space (X ,D), the proper function ϕ : X → R ∪ {∞}, and the
unitary function g : Λ → R+ be as in the premises of (HVP;P1;M3;gsdc). Denote
(under the previous convention) Xu := X(u,/(D,ϕ)). We have to verify that (BB) is
applicable (in a global way) to (Xu,/(D,ϕ)) and the (proper) function ϕ (restricted
to Xu). Clearly, ϕ is descending [modulo (/(D,ϕ))]. Moreover, let (xn;n ≥ 0) be an
ascending [modulo (/(D,ϕ))] sequence in Xu:

(d02) (∀λ ∈ Λ ): dλ (xn,xm)≤ ϕ(xn)−ϕ(xm), if n ≤ m.

The sequence (ϕ(xn)) is descending and bounded from below; hence, a Cauchy
one This, along with the working hypothesis above, tells us that (xn) is D-Cauchy.

Taking (gsdc) into account, it follows that xn
D−→ x, for some x ∈ X with ϕ(xn) ≥

ϕ(x), ∀n. Combining with the working hypothesis above gives xn /(D,ϕ) x, ∀n
(whence x ∈ Xu); so that, (Xu,/(D,ϕ)) is sequentially inductive. From (BB) it then
follows that, for the starting u ∈ Xu, there exists an element v ∈ Xu, with

(j) u /(D,ϕ) v; (jj) v /(D,ϕ) w ∈ Xu implies ϕ(v) = ϕ(w).
The former of these is just our first conclusion in the statement. And the latter one
gives our second conclusion of the same. In fact, let x ∈ X be such that dλ (v,x) ≤
ϕ(v)−ϕ(x), ∀λ ∈Λ ; hence, v /(D,ϕ) x. Taking (j) into account gives x ∈ Xu; so that
(by the conclusion (jj) above) ϕ(v) = ϕ(x). Combining with the previous gauge
metrical relation, we get dλ (v,x) = 0, ∀λ ∈ Λ ; whence v = x (as D is sufficient).
This completes the argument.

Remark 4. We stress that, by the very proof of the “composed” result above, one
has, in (ZF-AC),

(mr-1) (HVP;P5;M3;gsdc) =⇒ (HVP;P1;M3;gsdc);
hence, (HVP;P5;M3;gsdc) ⇐⇒ (HVP;P1;M3;gsdc).
In fact, if (X ,D,ϕ) fulfills conditions of (HVP;P1;M3;gsdc), then (Xu,D,ϕ) (where
u ∈ Dom(ϕ)) fulfills conditions of (HVP;P5;M3;gsdc); and, from the conclusion
of this gauge variational principle, we are done. However, as the statement above
shows, the deduction of these gauge principles is based on (BB) (or, equivalently,
(DC)); so, it cannot be reached in (ZF-AC).

(B) Remember that, when Λ as a singleton and D= {d}, [where d(., .) is a metric
on X], then (by the involved conventions)

(mr-2) (HVP;Pj;M3;gsdc) becomes (EVP;Pj;gdc), for j ∈ {1,2,3,4,5,6},
(mr-3) (HVP;Pj;M3;Bh,Vq) becomes (EVP;Pj;Bh,Vq),

∀ j ∈ {1,2,3,4,5,6}, ∀h,q ∈ {1,2}.
As a consequence of this (and the previous facts)

(mr-4) (DC) =⇒ (BB) =⇒ (HVP;Pj;M3;gsdc) =⇒ (EVP;Pj;gdc)
=⇒ (EVP-bf), ∀ j ∈ {1,2,3,4,5,6}

(mr-5) (DC) =⇒ (BB) =⇒ (HVP;Pj;M3;Bh,Vq) =⇒ (EVP;Pj;Bh,Vq)
=⇒ (EVP-bf), ∀ j ∈ {1,2,3,4,5,6}, ∀h,q ∈ {1,2};
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wherefrom, by the Dodu–Morillon statement (in short: (DM)),
(mr-6) (HVP;Pj;M3;gsdc) ⇐⇒ (EVP;Pj;gdc), ∀ j ∈ {1,2,3,4,5,6}
(mr-7) (HVP;Pj;M3;Bh,Vq) ⇐⇒ (EVP;Pj;Bh,Vq),

∀ j ∈ {1,2,3,4,5,6}, ∀h,q ∈ {1,2}.
Note that, by the very arguments involved in (DM), these equivalence properties are
available in (ZF-AC+DC). It is our aim in the following to show that, by the “scalar”
nature of our setting, some of these relations may be obtained in (ZF-AC); i.e., (DC)
may be avoided in certain equivalence properties of this type.

Let X be a nonempty set; and (Λ ,≤) be a directed quasi-ordered structure. Fur-
ther, take a family D = (dλ ;λ ∈ Λ) of rs-pseudometrics over X , with the properties:
Λ -sufficient, Λ -monotone, and Λ -triangular; by our preceding developments, the
Fang metric D generates a conv-Cauchy structure on X . Further, let ϕ : X → R∪{∞}
be a proper function. Denote by (/(D,ϕ)) the quasi-order attached to these elements;
remember that it is antisymmetric—hence, an order—on Dom(ϕ).

Generally, the family of rs-pseudometrics D = (dλ ;λ ∈ Λ) is non-denumerable.
For example, in case of Fang spaces constructed from a probabilistic metric
space (cf. Fang [21]) or fuzzy metric spaces (cf. Hadžić and Žikić [25]) we have
(Λ ,≤) := (]0,1],≥); here, (≥) is the usual dual ordering on R. Despite this, its
associated quasi-order (/(D,ϕ)) may be ultimately viewed as a Brøndsted one, by
simply taking the supremum in the left-hand side of the relation that introduces it.
So, we may ask about the “metrical” aspects of this procedure. Before passing to
the effective part, we need some preliminary facts. Denote

(d03) Δ(x,y) = sup{dλ (x,y);λ ∈ Λ}, x,y ∈ X .

Since all members of D are rs-pseudometrics, Δ is also endowed with such proper-
ties. Moreover Δ is triangular [Δ(x,z) ≤ Δ(x,y)+Δ(y,z),∀x,y,z ∈ X], since D is
Λ -triangular; and, finally, Δ is sufficient [Δ(x,y) = 0 =⇒ x = y]; because so is D.
Summing up, Δ is a generalized metric on X , in the Luxemburg–Jung sense [33, 36].
It allows us introducing a conv-Cauchy structure on X as follows. Letting (xn;n ≥ 0)
in X and the point x ∈ X , let us say that this sequence Δ -converges towards x (written

as: xn
Δ−→ x), provided Δ(xn,x)→ 0 as n → ∞; or, equivalently,

∀ε > 0, ∃i = i(ε): n ≥ i =⇒ Δ(xn,x)< ε .

The set of all such x is denoted limn(xn); when it is nonempty, we say that (xn;n ≥ 0)
is Δ -convergent; note that, in such a case, limn(xn) is a singleton. Further, call the
sequence (xn;n ≥ 0), Δ -Cauchy, when Δ(xm,xn)→ 0 as m,n → ∞, m ≤ n; i.e.,

∀ε > 0, ∃ j = j(ε): j ≤ m ≤ n =⇒ Δ(xm,xn)< ε .

By the metrical properties of Δ , any Δ -convergent sequence in X is Δ -Cauchy; the
reciprocal is not in general valid.

Having these precise, the natural question to be posed is that of clarifying the
relationships between the conv-Cauchy attached to Δ and the one attached to the
Fang metric D = (dλ ;λ ∈ Λ). First, by the introduced conventions, we have the fol-
lowing Relative statement:
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Lemma 10. The generic local inclusions hold:

(∀(xn),∀x) : [xn
Δ−→ x] =⇒ [xn

D−→ x] (35)

(for each sequence): Δ -Cauchy =⇒ D-Cauchy. (36)

The reciprocal inclusions are not in general true; because the conv-Cauchy struc-
ture attached to D is finer than that induced by the generalized metric Δ . A comple-
tion of these facts is contained in the Metrical convergence statement below.

Lemma 11. Under these notations,

(∀(xn),∀x): (xn) is Δ -Cauchy, and xn
D−→ x imply xn

Δ−→ x. (37)

Proof. Let (xn) be a Δ -Cauchy sequence in X , so as (for some x ∈ X)

xn
D−→ x (hence dλ (xn,x)→ 0, for each λ ∈ Λ ).

By definition, for each β > 0 there exists some rank n(β ) in such a way that
Δ(xi,x j)≤ β (hence dλ (xi,x j)≤ β , ∀λ ∈ Λ ), whenever n(β )≤ i ≤ j. Let the rank
i ≥ n(β ) be arbitrarily fixed; and, for each λ ∈ Λ , let μ ∈ Λ(λ ,≤) be the index
given by the Λ -triangular property of D. We have, for all such (λ ,μ),

dλ (xi,x)≤ dμ(xi,x j)+dμ(x j,x)≤ β +dμ(x j,x), ∀ j ≥ i.

Passing to limit upon j gives (for all i like before)

dλ (xi,x)≤ β , ∀λ ∈ Λ (hence Δ(xi,x)≤ β ).

This, by the arbitrariness of β , yields xn
Δ−→ x; as claimed.

(C) Having these precise, we may now pass to the effective part of our
developments . Let (/(Δ ,ϕ)) stand for the quasi-order on X :

(d04) (x1,x2 ∈ X): x1 /(Δ ,ϕ) x2 iff Δ(x1,x2)+ϕ(x2)≤ ϕ(x1);

it is antisymmetric—hence, an order—on Dom(ϕ), as it can be directly seen. The
relationships between this and the initial quasi-order (/(D,ϕ)) are established in the
Identity statement:

Lemma 12. Under the above conventions, we have

(∀x1,x2 ∈ X): x1 /(D,ϕ) x2 iff x1 /(Δ ,ϕ) x2. (38)

In other words: these two quasi-orders are identical.

The verification is immediate, by the very definition of our generalized metric
Δ(., .); so, further details are not necessary.

We are now in position to give the announced result.
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Proposition 14. We have [in (ZF-AC)]:

(i) (EVP;Pj;gdc) =⇒ (HVP;Pj,M3;gsdc) (hence,
(EVP;Pj;gdc) ⇐⇒ (HVP;Pj,M3;gsdc)), for all j ∈ {1,2,3,4,5,6}

(ii) (EVP;Pj;B1,V1) =⇒ (HVP;Pj,M3;B1,V1) (hence,
(EVP;Pj;B1,V1) ⇐⇒ (HVP;Pj,M3;B1,V1)), ∀ j ∈ {1,2,3,4,5,6}

(iii) (EVP;Pj;B2,V2) =⇒ (HVP;Pj,M3;B2,V2) (hence,
(EVP;Pj;B2,V2) ⇐⇒ (HVP;Pj,M3;B2,V2)), ∀ j ∈ {1,2,3,4,5,6}.

Proof. Let the Fang space (X ,D), the proper function ϕ : X → R∪{∞} (and the inc-
reasing unitary function g : Λ → R0

+ be given. Take an element u ∈ Dom(ϕ) and put
Xu := X(u,/(D,ϕ)). By the Identity statement, Xu = X(u,/(Δ ,ϕ)); or, equivalently,

x ∈ Xu iff Δ(u,x)≤ ϕ(u)−ϕ(x); (39)

in addition, the restriction of Δ to Xu is a standard metric. There are three main steps
in the argument.

(I) Suppose that (X ,D,ϕ) has the property (gsdc). We claim that the triple
(Xu,Δ ,ϕ) has the property (gdc). In fact, let (xn;n ≥ 0) be a sequence in Xu; hence

(d05) Δ(u,xn)≤ ϕ(u)−ϕ(xn), ∀n.

Assume that (xn) is Δ -Cauchy, and (ϕ(xn)) is descending. By the Relative state-
ment, (xn) is a D-Cauchy sequence in Xu. This, along with (gsdc), tells us that

xn
D−→ x, for some x ∈ X ; with, in addition, ϕ(xn)≥ ϕ(x), ∀n. On the other hand, by

the Metrical convergence statement, xn
Δ−→ x; so that, passing to limit in the working

hypothesis above,

Δ(u,x)≤ ϕ(u)−ϕ(x); hence x ∈ Xu.

This proves our claim. But then, by the conclusions of (EVP;Pj;gdc) relative to
(Xu,Δ ,ϕ), we are done.

(II) Assume that (X ,D,ϕ) has the property (B1), and ϕ has the property (V1)
relative to (X ,D). We claim that (Xu,Δ ,ϕ) has the property (B1) and ϕ has the
property (V1) relative to (Xu,Δ). In fact, assume that (xn) is a Δ -Cauchy sequence
in Xu such that (ϕ(xn)) is descending. By the Relative statement, (xn) is D-Cauchy;

so that, from (B1), xn
D−→ x, for some x ∈ X ; with, in addition, [ϕ(xn)≥ ϕ(x), ∀n].

Combining with the Metrical convergence statement yields xn
Δ−→ x; this, along

with the relation involving (ϕ(xn)), gives [passing to limit in the metrical relation
concerning our sequence], x ∈ Xu; so that, (B1) holds for our data. Moreover, let

the sequence (xn) in Xu be such that xn
Δ−→ x for some x ∈ Xu; and (ϕ(xn)) is des-

cending. By the Relative statement, xn
D−→ x; so that, by (V1), ϕ(xn) ≥ ϕ(x), ∀n;

whence, (V1) holds for the same data. Summing up, our claim follows. But then, an
application of (EVP;Pj;B1,V1) to (Xu,Δ ,ϕ) gives us all conclusions we need.

(III) Assume that (X ,D,ϕ) has the property (B2), and ϕ has the property (V2)
relative to (X ,D). We claim that (Xu,Δ ,ϕ) has the property (B2) and ϕ has the
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property (V2) relative to (Xu,Δ). In fact, assume that (xn) is a Δ -Cauchy sequence

in Xu. By the Relative statement, (xn) is D-Cauchy; so that, by (B2), xn
D−→ x, for

some x ∈ X . Combining with the Metrical convergence statement yields xn
Δ−→ x;

and this, in combination of (V2), gives liminfn ϕ(xn) ≥ ϕ(x). Passing to liminfn

in the metrical relation involving our sequence, we necessarily have x ∈ Xu; so that,

(B2) holds for our data. Moreover, let (xn) be a sequence in Xu fulfilling xn
Δ−→ x, for

some x ∈ Xu. By the Relative statement, xn
D−→ x; so that, by (V2), liminfn ϕ(xn)≥

ϕ(x); whence, (V2) holds for our data. Summing up, our claim follows. But then,
an application of (EVP;Pj;B2,V2) to (Xu,Δ ,ϕ) gives us all desired conclusions.

As a consequence of the conclusion above, (DC) is not needed to establish the
logical equivalence between the Hamel variational principles

(HVP;Pj;M3;gsdc), (HVP;Pj;M3;B1,V1), (HVP;Pj;M3;B2,V2),

and their corresponding Ekeland variational principles

(EVP;Pj;gdc), (EVP;Pj;B1,V1), (EVP;Pj;B2,V2),

where j ∈ {1,2,3,4,5,6}. However, as already shown, all these principles are de-
ductible with the aid of (BB); or, equivalently, (DC). Further aspects may be found
in Hamel and Loehne [28].

3 Sequential Gauge Variational Statements

3.1 Gauge Ordering Principles

Let (X ,≤) be a quasi-ordered structure. Further, let Φ = (ϕi; i ≥ 0) be a sequence of
maps in F(X ,R∪{−∞,∞}); referred to as a gauge function over F(X ,R∪{−∞,∞}).
Call z ∈ X , (≤,Φ)-maximal, provided z is (≤,ϕi)-maximal, for each i ≥ 0. The class
of all these will be denoted as max(X ;≤;Φ); hence

max(X ;≤;Φ) = ∩{max(X ;≤;ϕi); i ≥ 0}.

To get such points, assume that (X ,≤) is sequentially inductive and

(a01) Φ is (≤)-decreasing: ϕi is (≤)-decreasing, ∀i ≥ 0.

Further, for each j ∈ {0,1,2,3,4,5,6}, let [Pj] stand for the [attached to (Pj)] sub-
class of all gauge functions over F(X ,R∪{−∞,∞}) introduced as:

(a02) Φ belongs to the subclass [Pj] iff ϕi belongs to the subclass (Pj), ∀i ≥ 0.

The following “multiple” gauge ordering principle enters into discussion:



536 M. Turinici

Theorem 11. Let (X ,≤) be sequentially inductive, Φ be (≤)-decreasing, and

(a03) Φ belongs to the subclass [Pj], for some j ∈ {0,1,2,3,4,5,6}.

Then, max(X ;≤;Φ) is

(i) (≤)-cofinal in X [∀u ∈ X, ∃v ∈ max(X ;≤;Φ): u ≤ v]
(ii) (≤)-invariant in X [v ≥ u ∈ max(X ;≤;Φ) =⇒ v ∈ max(X ;≤;Φ)].

For simplicity, we indicate these gauge ordering principles as (CUg;Pj), where
j ∈ {0,1,2,3,4,5,6}. Note that (CUg;P0) is the gauge variant of the (global) order-
ing principle (CU); so that, it will be written as (CUg). On the other hand, (CUg;P3)
is nothing else than the gauge variant of (BB), obtained in Turinici [44]; denoted as
(BBg).

Concerning the relationships between these, the following Gauge Equivalence
statement is available:

Lemma 13. We have [in (ZF-AC)]:

(i) (CUg;P(j)) ⇐⇒ (CUg;P(j+1)), ∀ j ∈ {1,3,5}
(ii) (CUg;P5) =⇒ (CUg;P0) =⇒ (CUg;P1) =⇒ (CUg;P3) =⇒ (CUg;P5)

Hence, all these principles are equivalent in (ZF-AC).

The proof of this mimics the one of its corresponding non-gauge (global) Equiv-
alence statement; so, it will be omitted.

Note that the obtained relations cannot assure us that these principles are ded-
uctible in (ZF-AC+DC). This, however, holds; as results from

Proposition 15. We have [in (ZF-AC)], (DC) =⇒ (CUg;P5); hence (by the above)
(DC) =⇒ (CUg;Pj), for each j ∈ {0,1,2,3,4,5,6}.

Proof. Let the premises of (CUg;P5) be accepted. From (CU;P5) [valid in
(ZF-AC+DC)], the subset Yi := max(X ;≤;ϕi) is nonempty (≤)-cof-inv, for each
i ≥ 0. This, along with Cof-inv statement [valid in (ZF-AC+DC) too], tells us that
the intersection of these, ∩{Yi; i ≥ 0}= max(X ;≤;Φ), has the same properties.

Remark 5. By the very arguments above, one gets, in (ZF-AC+DC):

(CU;Pj) =⇒ (CUg;Pj) =⇒ (CU;Pj), j ∈ {0,1,2,3,4,5,6}.

Hence, for each j ∈ {0,1,2,3,4,5,6}, the ordering principle (CU;Pj) is equivalent
with its gauge version (CUg;Pj). This, however, cannot be established on (ZF-AC);
because of Cof-inv statement.

Finally, an interesting question to be posed is that of such inclusion chains being
retainable beyond the countable case. Unfortunately, this is not in general possible;
see Isac [31] for details.
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3.2 Gauge Variational Principles

Let X be a nonempty set. By a pseudometric over X we shall mean any map
d : X ×X → R+. If, in addition, d is symmetric [d(x,y) = d(y,x),∀x,y ∈ X], triangu-
lar [d(x,z)≤ d(x,y)+d(y,z),∀x,y,z ∈ X], and reflexive [d(x,x) = 0,∀x ∈ X], we say
that it is a semimetric over X ; and (X ,d) is a semimetric space. The sequential con-

vergence (
d−→) attached to d is introduced as: the sequence (xn) in X , d-converges

to x ∈ X (and we write: xn
d−→ x), iff d(xn,x) → 0 as n → ∞. This also reads: x

is a d-limit of (xn); when x is generically taken, we say that (xn) is d-convergent.
Further, the d-Cauchy property of a sequence (xn) in X means: d(xm,xn) → 0 as
m,n → ∞, m ≤ n. By the imposed upon d properties, each d-convergent sequence is
d-Cauchy too; the reciprocal is not in general valid.

Let D = (di; i ≥ 0) be a denumerable family of semimetrics on X ; supposed to
be sufficient [di(x,y) = 0, ∀i ≥ 0, implies x = y]. Then, D is called a gauge metric
on X ; and (X ,D) will be referred to as a gauge space. We say that the sequence

(xn) in X , D-converges to x ∈ X (and we write xn
D−→ x), when it di-converges to

x, for each i ≥ 0. The set of all such points x will be denoted limn(xn); if it is
nonempty, then (xn) is called D-convergent. Note that, in this case, limn(xn) is a
singleton, because the gauge metric D is sufficient. Likewise, the sequence (xn) in
X is called D-Cauchy, when it is di-Cauchy, for each i ≥ 0. By the remark above,
any D-convergent sequence is D-Cauchy; the reciprocal is not in general true.

(A) Having these precise, let (X ,D) be a gauge space, Further, let Φ = (ϕi; i ≥ 0)
be a gauge function over F(X ,R∪{∞}), with

(b01) Φ is strongly proper: ϕi is proper, for all i ≥ 0, and
Dom(Φ) := ∩{Dom(ϕi); i ≥ 0]} is nonempty.

Define a quasi-order (/(D,Φ)) on X as

(b02) x1 /(D,Φ) x2 iff di(x1,x2)+ϕi(x2)≤ ϕi(x1), ∀i;

note that it is antisymmetric—hence, an order—on Dom(Φ). It is our objective in
the following to determine sufficient conditions under which (/(D,Φ)) be a Zorn
order on Dom(Φ). Precisely, these consist in

(I) Boundedness properties of the objective gauge function:
the classes [Pj], j ∈ {1,2,3,4,5,6}, we just encountered

(II) Global completeness property of the objects family:

(gsdc) (X ,D,Φ) is globally sequentially descending complete:
each D-Cauchy sequence (xn) in X with (Φ(xn))=descending,
is D-convergent to some x ∈ X with [Φ(xn)≥ Φ(x), ∀n].

Here, the gauge properties above mean

(b03) (Φ(xn))=descending iff [(ϕi(xn))=descending, ∀i ≥ 0]
(b04) (x,y ∈ X): Φ(x)≥ Φ(y) iff ϕi(x)≥ ϕi(y), ∀i.

Our main result is
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Theorem 12. Suppose that the strongly proper gauge function Φ = (ϕi; i ≥ 0)
belongs to the subclass [Pj] for some j ∈ {1,2,3,4,5,6}, and (X ,D,Φ) has the
property (gsdc). Then, for each u ∈ Dom(Φ), there exists v ∈ Dom(Φ), with

(a) di(u,v)≤ ϕi(u)−ϕi(v), ∀i
(aa) x ∈ X, [di(v,x)≤ ϕi(v)−ϕ(x), ∀i] =⇒ v = x.

Denote the obtained statements as (BCK;Pj;gsdc), where j ∈ {1,2,3,4,5,6};
these will be referred to as: “composed” Bae–Cho–Kim gauge variational princi-
ples. The relationships between them are given by

Lemma 14. We have [in (ZF-AC)],

(i) (BCK;P(j);gsdc) ⇐⇒ (BCK;P(j+1);gsdc), ∀ j ∈ {1,3,5}
(ii) the propositional map j �→ (BCK;P j;gsdc) is decreasing:

if j ≤ j′, then (BCK;Pj;gsdc) =⇒ (BCK;Pj’;gsdc).

Proof. (i): Let (X ,D,Φ) be as in the premise of (BCK;P(j);gsdc). Then, the triple
(X ,D,Ψ := (ψi; i ≥ 0)), where (ψi(.) := ϕi(.)− infϕi(X); i ≥ 0) fulfills condi-
tions of (BCK;P(j+1);gsdc); and, from this, we are done.

(ii): Evident, by the introduced definitions.

Now, the property (gsdc) is obtainable as an intersection of two components:
(II-a) Completeness properties involving the Fang structure:

[B1] (X ,D,Φ) is descending complete:
each D-Cauchy sequence (xn) in X with (Φ(xn))=descending is D-convergent
[B2] (X ,D,Φ) is complete: each D-Cauchy sequence in X is D-convergent

(II-b) Lower semi-continuity conditions upon the gauge function:

[V1] Φ is descending (X ,D)-lsc:
for each sequence (xn) in X and each element x ∈ X with

xn
D−→ x and (Φ(xn))=descending, we have limn Φ(xn)≥ Φ(x)

[V2] Φ is (X ,D)-lsc: for each sequence (xn) in X and each element x ∈ X with

xn
D−→ x, we have liminfn Φ(xn)≥ Φ(x).

Here, by definition,

(b05) limn Φ(xn)≥ Φ(x), iff [limn ϕi(xn)≥ ϕi(x), ∀i ≥ 0]
(b06) liminfn Φ(xn)≥ Φ(x), iff [liminfn ϕi(xn)≥ ϕi(x), ∀i ≥ 0].

This yields a family of “factor” type Bae–Cho–Kim gauge variational principles
(BCK;Pj;Bh,Vq), where j ∈ {1,2,3,4,5,6}, h,q ∈ {1,2}; with the properties

(am-1) (BCK;Pj;gdc) =⇒ (BCK;Pj;Bh,Vq), for all admissible ( j,h,q)
(am-2) (BCK;P(j);Bh,Vq) ⇐⇒ (BCK;P(j+1);Bh,Vq),

for all j ∈ {1,3,5}, h,q ∈ {1,2}
(am-3) the propositional map ( j,h,q) �→ (BCK;P j;Bh,V q) is decreasing:

if ( j,h,q)≤ ( j′,h′,q′), then (BCK;Pj;Bh,Vq) =⇒ (BCK;Pj’;Bh’,Vq’).
Now, to get all these, it will suffice proving that the “weakest” variational princi-

ple (BCK;P1;gsdc) is deductible in (ZF-AC+DC). This follows from
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Proposition 16. We have [in (ZF-AC)] ((DC) =⇒) (BBg) =⇒ (BCK;P1;gsdc);
hence, all these gauge variational principles are deductible in (ZF-AC+DC).

Proof. Let (X ,D,Φ) be as in the premises of (BCK;P1;gsdc). Denote for simplicity
(/) := (/(D,Φ)); hence

x / y iff [di(x,y)+ϕi(y)≤ ϕi(x), ∀i ≥ 0].

Remember that (/) is antisymmetric [hence, an order] on Dom(Φ); in addition,
Dom(Φ) is (/)-invariant. Moreover, both these properties remain valid on the sub-
set Xu := X(u,/) ⊆ Dom(Φ). Denote again by (D,Φ) the restriction of the ini-
tial couple (D,Φ) to Xu. We claim that conditions of (BBg):=(CUg;P3) (i.e.: the
gauge ordering principles in Turinici [44]) are fulfilled over (Xu,/,Φ). Clearly, Φ
is (/)-decreasing and belongs to the subclass [P3] (relative to Xu). So, it remains to
show that (Xu,/) is sequentially inductive. Let (xn) be a (/)-ascending sequence
in Xu:

(b07) (∀i ≥ 0): di(xn,xm)≤ ϕi(xn)−ϕi(xm), if n ≤ m.

By [P3], it follows that, for each i ≥ 0, the sequence (ϕi(xn)) is descending and
bounded from below; hence, a Cauchy one. This, along with the working hypothesis,
tells us that (xn) is a D-Cauchy sequence in Xu with (Φ(xn))=descending. By [gsdc],

there must be some y ∈ X with xn
D−→ y; and, in addition, [Φ(xn)≥ Φ(x), ∀n]. For

each pair (i,n) of natural numbers, we have

di(xn,y)≤ di(xn,xm)+di(xm,y)≤ ϕi(xn)−ϕi(xm)+di(xm,y)≤
ϕi(xn)−ϕi(y)+di(xm,y), ∀m ≥ n.

Passing to limit as m → ∞ one derives

(∀n): [di(xn,y)≤ ϕi(xn)−ϕi(y), ∀i]; hence, xn / y.

This firstly shows that y ∈ Xu; and secondly, that y is an upper bound (modulo (/))
of (xn). Summing up, (Xu,/) is sequentially inductive; as claimed. From (BBg) it
then follows that, for the starting u ∈ Xu, there exists v ∈ Xu with

(j) u / v; (jj) v / w ∈ Xu =⇒ [ϕi(v) = ϕi(w), ∀i].
The former of these is just the first conclusion in the statement. And the latter one
gives at once the second conclusion of the same. In fact, let x ∈ X be such that
[di(v,x) ≤ ϕi(v)−ϕi(x), ∀i]. As a consequence, z / x (hence, x ∈ Xu); so that (by
the assertion (jj) above) ϕi(v) = ϕi(x), ∀i. This (by the working hypothesis about
x), yields [di(z,x) = 0, ∀i]; so that (as D is sufficient) z = x. This ends the argument.

We stress that, by the very proof of the “composed” result above, one has, in
(ZF-AC),

(am-4) (BCK;P5;gsdc) =⇒ (BCK;P1;gsdc);
hence, (BCK;P5;gsdc) ⇐⇒ (BCK;P1;gsdc).
In fact, if (X ,D,Φ) fulfills conditions of (BCK;P1;gsdc), then (Xu,D,Φ) (where
u ∈ Dom(Φ)) fulfills conditions of (BCK;P5;gsdc); and, from the conclusion of
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this gauge variational principle, we are done. However, as the statement above
shows, the deduction of these gauge principles requires the system (ZF-AC+DC).
Similar properties are valid for the families of “factor” gauge variational principles
((BCK;Pj;B1,V1); j ∈ {1,2,3,4,5,6}) and ((BCK;Pj;B2,V2); j ∈ {1,2,3,4,5,6});
we do not give details.

(B) In particular, assume that the gauge metric D = (di; i ≥ 0) and the gauge
function Φ = (ϕi; i ≥ 0) are constant:

(b08) di = d, ϕi = ϕ , ∀i ≥ 0;

here, d is a metric over X and ϕ : X → R ∪ {∞} is a function. Then, the
Bae–Cho–Kim gauge variational principles we just encountered are identical with
their corresponding Ekeland (non-gauge) variational principles; so that

(BCK;Pj;Bh,Vq) =⇒ (EVP;Pj;Bh,Vq),
∀ j ∈ {1,2,3,4,5,6}, ∀h,q ∈ {1,2}.

(40)

This may be also expressed as: the gauge variational principles in question
are gauge versions of their corresponding non-gauge variational principles. For
example, (BCK;P1;B2,V2)—denoted as (BCK)—is the gauge version of the prin-
ciple (EVP;P1,B2,V2):=(EVP). On the other hand, the “strongest” gauge principle
in this series, (BCK;P5;B2,V2), is the gauge version of the Ekeland principle
(EVP;P5;B2,V2):=(EVP-bf) (=the bounded finitary variant of (EVP)); we denote it
as (BCK-bf).

Finally, we note that the gauge variational principle (BCK;P3;B2,V2) is just the
1982 one in Turinici [44]; likewise, the gauge variational principle (BCK;P4,B2,V2)
is nothing else than the 2011 statement in Bae et al. [3]; this, among others, explains
the conventions.

Concerning the relationships between these gauge variational statements, a direct
application of the Dodu–Morillon statement gives the following combined answer:

Proposition 17. We have [in (ZF-AC)]:

(DC) =⇒ (BCK;Pj;gsdc) =⇒ (BCK;Pj;Bh,Vq) =⇒ (BCK-bf)
=⇒ (EVP-bf) =⇒ (DC), ∀ j ∈ {1,2,3,4,5,6}, ∀h,q ∈ {1,2}.

(41)

As a consequence of this,

(i) all gauge variational principles above are equivalent with (DC); hence, with
(BB) and/or (EVP) as well

(ii) any gauge variational principle in this series is equivalent with its non-gauge
version.

Despite this equivalence, these gauge variational principles are useful tools in
practice. Further aspects in this direction may be found in the above quoted papers.
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Cuza” Iaşi (S. I-a: Mat.) 36, 329–352 (1990)
47. Turinici, M.: Vector extensions of the variational Ekeland’s result. An. Şt. Univ. “A. I. Cuza”

Iaşi (S I-a: Mat) 40, 225–266 (1994)
48. Turinici, M.: Minimal points in product spaces. An. Şt. Univ. “Ovidius” Constanţa (Ser. Math.)
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(S. N.) Mat. 57, 263–277 (2011)
52. Wolk, E.S.: On the principle of dependent choices and some forms of Zorn’s lemma. Canad.

Math. Bull. 26, 365–367 (1983)
53. Zhu, J., Li, S.J.: Generalization of ordering principles and applications. J. Optim. Theory Appl.

132, 493–507 (2007)



Brain Network Characteristics in Status
Epilepticus

Ioannis Vlachos, Aaron Faith, Steven Marsh, Jamie White-James,
Kostantinos Tsakalis, David M. Treiman, and Leon D. Iasemidis

1 Introduction

1.1 Status Epilepticus

Status Epilepticus (SE) is a life-threatening neurological emergency that is
commonly treated at tertiary care epilepsy centers. Approximately 250,000 cases
of SE occur in the USA annually [6]. Typically defined as greater than 30 min of
continuous seizure activity or two or more sequential seizures without full recovery
of consciousness between seizures, status epilepticus carries an overall 10–12 %
morbidity rate and a further risk of significant morbidity if not arrested promptly
[23]. Mortality in children and adults is minimized when SE lasts less than 1 h;
however, thereafter, the odds of mortality jump dramatically to 38 % [24]. In addi-
tion, it is estimated that SE accounts for more than $4B annual healthcare costs in
the USA alone.

Treatment of SE has traditionally involved intravenous administration of anti-
epileptic drugs (AEDs) that are used to treat chronic epilepsy. The goal of
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SE treatment is to stop the seizure activity as quickly as possible. Randomized
controlled trials have recommended benzodiazepines (in particular, diazepam and
lorazepam) as the initial treatment regimen [22]; however, only about 55 % of
patients in SE are successfully controlled by this initial AED treatment [27]. A suc-
cessful clinical response of SE to AED treatment is determined by observance
of complete cessation of all seizure (ictal) activity in simultaneously recorded
electroencephalogram (EEG). Successful cessation of ictal EEG activity typically
occurs within 20 min following AED treatment. On the other hand, in SE patients
who do not respond to treatment, patterns of ictal EEG activity persist or reappear
within 60 min [27]. It is evident that new drugs and procedures, and new methods to
monitor the effectiveness of those drugs and procedures over time, are of immediate
need for the treatment of SE.

Treiman et al. [25] have described a sequence of progressive, visually discernible
changes in the EEG recorded from generalized convulsive status epilepticus (GCSE)
in humans as well as in experimental rat models of SE [26, 30]. Evaluation of AEDs
and protocols for SE treatment in terms of the dynamics of concurrently monitored
EEG may lead to the design of new, more effective treatment paradigms for success-
fully controlling SE. Such monitoring techniques may have a profound effect in the
treatment of SE in the Emergency Department (ED) and Intensive Care Unit (ICU),
where AEDs are given in rapid succession in the hope of patient recovery.

In the past, we analyzed the EEG in SE using measures of nonlinear dynamics
and showed that successful administration of AEDs disentrains the pathologically
entrained brain network dynamics and correlates well with patient recovery [8, 11].
In the study we herein describe, we employed directional measures of connectivity
in terms of information flow between brain sites in the frequency domain and, with
the use of graph theoretical indices, we investigated global properties of the network
of the brain in SE. The general concepts under consideration were: (a) Brain net-
work connectivity (NC) is denser during than before or after SE, and (b) Balance of
information inflow and outflow (NIODc) at brain sites is lower during than before
or after SE.

1.2 Frequency-Based Connectivity Measures and Graph Theory

Measures of connectivity estimated in the frequency domain are powerful tools that
can provide robust estimates of the frequency interactions between components in
multi-component systems [7]. Although different measures of connectivity are inh-
erently related, their properties and capabilities vary. Some measures are able to
distinguish between directional (causal) and nondirectional (coupled/correlated) int-
eractions, some can capture only direct, and others both direct and indirect interac-
tions. The ability of measures of connectivity to capture the interactions between a
system’s components at different frequencies makes them ideal for analysis of bio-
logical signals like the EEG that can exhibit different behavior in different frequency
bands.
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Measures of connectivity like Coherence [19], Partial Coherence [15], Partial
Directed Coherence [1], and Directed Transfer Function [13] have been widely
employed to study the dynamics of the human brain. Applications include epilep-
togenic focus localization [9, 10, 17], sleep stage analysis [14], cognition [3], and
reflex (photosensitive) epilepsy [28].

In general, the brain can be treated as a network of bi-directionally connected
nodes, each node corresponding to a recording brain site. Ideas and notions from
graph theory have recently found use in the study of the brain network. In [31],
node centrality was used to identify brain states during seizure progression, and in
[4], clustering index, average path length, and weight dispersion were calculated
to characterize brain network organization and function and examine their changes
during normal development in children. In a recent review paper by Bullmore and
Sporns [5], different graph theoretical approaches to investigate complex brain net-
works from diverse experimental modalities (e.g., structural and functional MRI,
diffusion tensor imaging, magnetoencephalography, and electroencephalography)
in humans were discussed. The authors concluded that “the emerging field of com-
plex brain networks raises a number of interesting questions” and that “the power
and elegance of graph theoretical analysis suggests that this approach will play an
increasingly important part in our efforts to comprehend the physics of the brain’s
connectome.”

2 Materials and Methods

2.1 Data

Intracranial EEG data were recorded from rats that were induced into SE and
survived via timely and successful administration of AEDs at the rat epilepsy
monitoring unit in the Laboratory for Translational Epilepsy Research at Barrow
Neurological Institute, Phoenix, AZ. Three male Sprague-Dawley rats, weighing ap-
proximately 375 g each, were implanted with depth wire electrodes for continuous
EEG recording. Rats were continuously monitored over days using an electrocor-
ticography/field potential recording machine (XLTEK EEG; Natus Inc.). The ana-
log EEG was band-pass filtered (0.1–100 Hz) and subsequently sampled at 256 Hz
and digitally filtered by a 60 Hz notch filter. Following a 4-day resting period and a
3-day baseline EEG recording the animals were induced into status epilepticus by
an intraperitoneal (IP) injection of lithium chloride (3 mmol/kg) followed by sub-
cutaneous (SC) injection of pilocarpine (30 mg/kg) 20–24 h later. The EEG of each
rat was monitored visually for electrographic signs of SE. At the onset of SE (app-
roximately 2 h after pilocarpine injection), a cocktail of diazepam 10 mg/kg and
phenobarbital 25 mg/kg was IP administered to treat SE. The total length of each
EEG recording per rat was approximately 150 h.
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2.2 Measure of Connectivity Between Nodes: GPDC

The GPDC [2] measure of connectivity is a normalized variant of the traditional
Partial Directed Coherence. It is scale invariant and has been applied to the study of
biological signals [2, 7]. We have recently utilized GPDC in epilepsy to successfully
localize the epileptogenic focus from interictal EEG and MEG recordings [16, 29].

Let X(t) =
(
X1(t), . . . ,Xn(t)

)′
be an n-dimensional time series vector represen-

tation of recorded EEG signals at n brain sites, with each vector component Xi(t)
denoting the EEG signal recorded at the ith recording site. A vector autoregressive
model VAR(p) of order p [18] for X can be constructed as:

X(t) =
p

∑
τ=1

A(τ)X(t − τ)+ e(t),

where A(τ) are the n× n coefficient matrices of the model, and e(t) are the resid-
uals that ideally follow a multivariate Gaussian white noise process. The coeffi-
cient matrices can be estimated by OLS (Ordinary Least Squares) or another related
approach. The order of the model p can be estimated by traditional order selection
procedures (e.g., Akaike Information Criterion).

The GPDC measures the direct effect of the component process j on i at fre-
quency f . It is defined as:

G j→i( f ) =
|Bi j( f )|/σii√
n
∑

k=1
|Bk j( f )|2/σ2

kk

,

where σii are the diagonal elements of the covariance matrix S = [σi j]i, j=1,...,n

of the noise process e(t), Bi j( f ) is the (i, j)th element of the matrix B( f ) =

I−
p
∑

τ=1
A(τ)e−i2π f τ , and I is the n×n identity matrix.

GPDC provides a measure for the direct linear influence of process Xj on Xi at
frequency f , relative to the total influence Xj has on all the other processes of the
system. The average GPDC over a given frequency range ( f1, f2) Hz is estimated
and denoted by G j→i( f1, f2). This quantity is the “directional connectivity index”
from node “ j” to “i.”

Finally, taking an epoch of T seconds, we obtain an n× n connectivity matrix
C[i, j] with elements the individual indices G j→i that represent the connectivity
structure of the brain in this epoch.
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2.3 Network Information Measures: Density
and Node Degree Correlation

A network represented by the connectivity matrix C (see section above) has some
unique properties. It is a fully connected network (complete graph), with weighted,
bi-directional connections, so certain traditional graph theoretical measures are not
directly applicable. We define two measures that are appropriate for these kinds of
network representation: density and node degree correlation.

Network information Density (ND). In classical graph theory, the density of a
network is defined as the fraction of existing connections to possible connections
between nodes. In our case we define the network information density as the nor-
malized sum of all weights in the connectivity matrix C, i.e.:

d(C) =

√
n−1

n(n−1)

n

∑
j=1,i=1, j �=i

G j→i( f1, f2),

where the term
√

n−1
n(n−1) is the normalization that makes the density d(C) take values

in the interval [0,1], due to the property of GPDC that
n
∑

i=1
G2

j→i( f ) = 1.

Network Information Node In-Out Degree correlation (NIODc) [20]. In graph
theory, the NIODc is the Pearsons correlation coefficient between in-degree and
out-degree of a node in a directed network. Nodes with large in-degree are hubs,
nodes with large out-degree are authorities. Calculation of the correlation between
in-degree and out-degree is a way to check whether hubs are also authorities or not.
In our case, we replace the in-degrees and out-degrees with the total flow into a
node from all other nodes (Inflow) and total flow from the node to all other nodes
(Outflow), respectively. The inflow of a node/site i is estimated by summation over
all partial flows towards i from the rest of the nodes j as

InFi =
n

∑
j=1, j �=i

G j→i( f1, f2).

The outflow OutFi is defined similarly as the sum of all outflows originating
from i. Finally, the Node In-Out Degree correlation (NIODc) index for the connec-
tivity matrix C is defined as

r(C) =
Cov(InF,OutF)

√
Var(InF)Var(OutF)

,

where Cov denotes the covariance and Var the variance of inflows (InF) and out-
flows (OutF).

The estimated brain networks during interictal (seizure-free) and ictal (seizure)
periods by analysis of a 7-channel intracranial EEG recording from an epileptic rat is
shown in Fig. 1. The color plots show the average GPDC values over the 0.1–30 Hz
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Fig. 1 (a) Interictal EEG. (b) Ictal (during a seizure) EEG. (c) and (d) The average
GPDC (connectivity matrix C) over 0.1–30 Hz estimated interictally and ictally, re-
spectively. The values for the ND and NIODc measures of the networks are shown
below the corresponding sub-figures in (c) and (d)

band (G j→i(0.1,30)). We note that there are stronger (less blue color) connections
between brain sites during the seizure, the network density (ND) values d(C) are a
bit larger, and the NIODc values r(C) are a lot smaller than interictal ones.

3 Results

The EEG per rat was divided into successive non-overlapping epochs of T = 10
seconds in duration and the GPDC values were estimated within each epoch with
p = 7 and n = 4. The value of p = 7 is heuristically selected based on our nonlinear
dynamical analysis of EEG in the past [12]. G j→i( f1, f2) was computed over the
traditional rat EEG bands, delta (0,4) Hz, theta (4,12) Hz, beta (12,30) Hz, and
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gamma (30,100) Hz [21]. The ND and NIODc measures of the brain’s network
were then estimated from the connectivity matrix for each 10 s epoch over the full
period of recording (150 h per rat).

Figure 2 shows the network density (ND) for all three rats and all four fre-
quency bands. The first vertical black line corresponds to the time of pilocarpine
administration to induce SE, while the second one to the time of AEDs’ adminis-
tration. The profiles of the network density (ND) over time are relatively consistent
across rats and frequency bands: almost immediately after the pilocarpine injection,
there is a noticeable increase of the network density across all frequency bands that
persists for a long period, even after the administration of AEDs. Over time, ND
decreases and stabilizes at values a bit higher than its pre-SE induction (baseline)
values. This is maximally observed at the higher (beta and gamma) frequency bands.
Two additional interesting observations are that (a) the network density appears to
be generally inversely related to frequency (higher density at lower frequencies and
lower density at higher frequencies) and (b) stabilization of ND values after onset
of SE at different rates for different frequency bands.
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Fig. 2 Network density (ND) over time per frequency band for each of the three SE
induced rats (R1, R2, and R3). In each sub-figure, ND is estimated from a different
frequency band denoted on the figure’s title. The two black vertical lines correspond
to the times of administration of pilocarpine (to induce SE) and AEDs (to recover
from SE), respectively
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Fig. 3 Network Node In-Out Degree correlation (NIODc) over time per frequency
band for all three rats (R1, R2, and R3). Vertical lines as in Fig. 2

The NIODc profile of the brain network is shown in Fig. 3. There is a clear over-
all decrease in NIODc after SE induction with a slow trend of recovery towards
baseline (pre-SE) values thereafter, which is more clearly visible in the lowest fre-
quency (delta) band. The results from this network measure (correlation of informa-
tion inflow and outflow at the recording sites) are not as consistent across rats and
frequency bands as the ones of network density. This may be due to NIODc being
more sensitive to inflicted and possibly remaining damage after SE in rats’ brain
network.

4 Conclusions

In an attempt to better characterize the brain’s effective network during the tran-
sition into and out of SE, we first quantified the directional connectivity between
brain sites by multivariate autoregressive analysis of long-term recorded EEGs in
an animal model of SE. We then applied measures from graph theory to quantify
the global characteristics of the resulted brain network over time. We found that
SE was consistently associated with increased information flow between brain re-
gions, quantified by network density (ND), and with decreased balance between in-
flow and outflow at brain sites, quantified by NIODc. These changes persist long
after treatment of SE by AEDs and are more consistent across rats in specific
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frequency bands: the highest band (gamma) for ND and the lowest band (delta)
for NIODc. The above results suggest that the proposed methodology and measures
that combine quantification of information flow with graph theory may assist in the
study and monitoring of SE progression, as well as in the evaluation of AEDs’ ef-
fectiveness in the life-threatening condition of status epilepticus. Studies of a larger
scale in both SE animal models and humans with SE episodes to further validate
these preliminary results are in progress.
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A Review on Consensus Clustering Methods

Petros Xanthopoulos

1 Introduction

Unsupervised learning, or clustering, is one of the very fundamental exploratory
data analysis methodologies with application in virtually any research area that inv-
olves categorization or grouping of data [23]. Modern applications call for abil-
ity to analyze massive amounts of data in an efficient time frame [1, 38]. In this
sense unsupervised learning plays a significant role in data summarization and
preliminary structure identification of complex, and often heterogeneous, datasets.
Loosely speaking clustering is defined as the process of grouping similar objects
(data samples) together based on some basic common similarity properties. This is
usually achieved through optimization (maximization or minimization) of a similar-
ity related function of interest. This general definition allows many interpretations
and sub-definitions as to what constitutes “a good clustering” [11]. This ambiguity
is responsible for a richness of algorithms and practical challenges as well. Some
notable algorithmic contributions so far include, but are not limited to, the k-means
algorithm [30], hierarchical clustering [31, 49], distribution-based model such as
expectation maximization [37], spectral clustering [45] and density-based cluster-
ing [25]. For a comprehensive literature review of clustering methodology and its
applications we refer the reader to [7, 23, 33, 50].

Clustering results on a single problem can vary due to a number of factors. The
most important factors that are responsible for this variability are: (1) variability due
to local optimality, (2) variability due to algorithm, and (3) variability due to data.

1. Variability due to local optimality: In most cases, optimization of clustering
objective functions require solution of an NP-complete problem, making
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heuristic approaches are very common in the literature. Such algorithms usually
terminate after finding different locally optimal solutions which can differ for
multiple runs of the same algorithm.

2. Variability due to algorithm: Since the objectives of each clustering algorithm
are different, it is expected to have different clustering results for different
algorithms.

3. Variability due to data: Sometimes it is possible to have different datasets des-
cribing exactly the same objects. Such examples include two different images
of the same object under different illumination conditions and/or angles or same
users subscribed to different digital content services (e.g., Amazon, Netflix). In
such situations it is possible that clustering results will be different even for the
same objects.

These inconsistencies motivate the need for ensemble algorithms. These
algorithms try to combine various clusterings into a single robust clustering of
superior quality. The task of combining different clusterings is as computationally
challenging as clustering itself; however, research in this area has provided data
mining community with more robust algorithms. It can be shown that consensus
clustering is equivalent to the median partitioning problem which is known to be
NP-complete [26]. Although in robust data mining traditionally one has to deal with
uncertainty induced by measurement or implementation constraints [60, 61], in
consensus clustering ambiguity emanates from the choice of clustering algorithm as
well. In general there are some exact and a lot of heuristic approaches for consensus
clustering. Some interesting theoretical results provide a connection between con-
sensus clustering and the nonnegative matrix factorization (NNMF) problem [29]
whereas recently the problem was casted as a network clustering problem [27].

At this moment, we need to note that in the literature the terms unsupervised
ensemble learning, consensus clustering, and aggregation of clusterings are used
to denote the same process. Here we will use the term consensus clustering. In the
present chapter we provide a literature overview of the consensus clustering grouped
based on their basic principles and background theory.

In this paper we use uppercase letters to denote matrices (e.g., A) and lower-
case to denote matrix elements. For example with ai j we denote the element of
matrix A that belongs to the ith row and jth column. The vectors are column vec-
tors unless denoted otherwise. With tr(·) we denote the trace function of a square
matrix defined by tr(A) = ∑n

i=1 aii. The input to any clustering algorithm can be
described by a set of ordered samples S = {s1,s2, . . . ,sn} and a similarity function
d(., .) that maps a pair of samples to a real number. The output of a clustering algo-
rithm is a set of clusters C= {C1,C2, . . . ,Cm}, Ci ⊆ S, with the property ∪m

i=1Ci = S

where m is a parameter denoting the number of clusters that exist in the dataset and
it is either tuned by the user or internally during the clustering process. Moreover
if Ci ∩Cj = /0, i �= j the clustering is termed hard clustering and soft or fuzzy clus-
tering otherwise. This intuitively means that each sample can potentially belong to
more than one categories with partial membership. In this article we focus on hard
clustering although these approaches can be trivially generalized in soft clustering
framework as well.
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The rest of the chapter is structured as follows: In Sect. 2 we formulate the
consensus clustering problem. In Sect. 3 we describe the exact algorithms that have
been proposed to the literature. In Sect. 4 we describe the approximation algorithms
whereas in Sect. 5 we provide the relation to other problems such as NNMF and net-
work partitioning problem. In Sect. 6 we provide an overview of the most emerging
applications of consensus clustering and in Sect. 7 we describe some of the existing
software packages available for this problem. In the last section we provide discus-
sion and some challenges that could be potential direction for future research.

2 The Consensus Clustering Problem

Given a set of clustering SC = {C1,C2, . . . ,Ck} and a symmetric distance measure
d(., .) between two clusterings we want to find a clustering C∗ such that:

C∗ = argmin
C

k

∑
p=1

d(C,Cp) (1)

We call C∗ the consensus clustering. This problem is known as the median par-
tition problem. The commutation nature of the problem heavily depends on the dis-
tance measure d(., .). Next we discuss the most common function choices in the
literature.

2.1 Clustering Distance Functions

One important concept in consensus clustering is the choice of the distance measures
between clusterings. These distance measures are usually related to the clustering
agreements between two different clustering. One popular distance voice is the sym-
metric difference distance (sdd). Let us define α as the pair of samples that have been
clustered in the same cluster in both clusterings, and β as the samples clustered in
different clusters in both clusterings. Then sdd is given by:

d(Ci,C j) =

(
n
2

)
−α −β . (2)

Clearly, when two clusterings are identical
(n

2

)
= α +β and d(Ci,C j) = 0. In any

case distance measures need to be label independent. For example for the clusterings

C1 = {1,1,1,0,0,0}, C2 = {0,0,0,1,1,1}

the distance d(C1,C2) is zero. It can be shown that this distance can be computed
in linear time [12]. As noted in [56] the choice of the similarity function determines
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the complexity of the consensus clustering problem. For example, one can construct
similarity measures for which the consensus clustering problem is polynomially
solvable, however usually such functions are not interesting from a practical per-
spective. For example, if we consider the following distance function:

d(Ci,C j) =

{
1, if Ci = C j

0,otherwise
(3)

we can determine the median clustering in O(1) time. On the other hand there can
be distance measures for which heuristic optimization techniques do not run in acc-
eptable computational time. Some other categories of distance measures that have
been proposed over time in the literature are the following [56]: (1) pair counting
measures [5, 14, 34, 39], (2) set matching measures [10, 53, 65], (3) information
theory measures [3, 32, 35, 40, 51], and (4) kernel-based measures [48, 54, 55].

3 Exact Approaches

The consensus clustering problem can be formulated as a 0–1 linear program. The
resulting polyhedron is exactly the same with the one obtained for the well-known
clique partitioning problem. Based on this observation a cutting plane algorithm
was proposed for solving this problem [21]. This exact method improved over the
previous exact formulation and is able to handle instance of order several hundred
data points.

For every clustering Cp, p = 1, . . . ,k we define:

r(p)
i j =

{
1, (i, j) ∈ Cp

0, otherwise
(4)

where (i, j) ∈ Cp denotes that samples si and s j belong to the same cluster in clus-
tering Cp. Also define the decision variables ri j

ri j =

{
1, (i, j) ∈ C

0, otherwise
(5)

Then the objective function of Eq. (1) can be written as:

k

∑
p=1

d(C,Cp) =
k

∑
p=1

∑
i, j
(r(p)

i j − ri j)
2 (6)

Since r(p)
i j ,ri j ∈ {0,1} Eq. (6) can be linearized

k

∑
p=1

∑
i, j
(r(p)

i j − ri j)
2 =∑

p
∑
i, j

(
r(p)

i j −2r(p)
i j · ri j + ri j

)
(7a)

=∑
p

∑
i, j

r(p)
i j +∑

p
∑
i, j

(
1−2 · r(p)

i j

)
ri j (7b)
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From the last equation we can observe that the objective is a 0–1 linear. In fact it
can be written as

c+∑
i, j

ci jri j (8)

where

c = ∑
p

∑
i, j

r(p)
i j , ci j = ∑

p

(
1−2 · r(p)

i j

)
(9)

Since variables ri j refer to the clustering task they need to have the properties
of reflexiveness, symmetricity, and transitivity. Moreover the term c can be dropped
from the objective function since it is constant. Overall the optimization problem
can be formulated as

min ∑
i j

ci jri j (10a)

s.t. rii = 1, i = 1, . . . ,n (10b)

ri j = r ji, i, j = 1, . . . ,n (10c)

ri j + r jk − rik ≤ 1, i, j,k = 1, . . . ,n (10d)

ri j ∈ {0,1}, i, j = 1, . . . ,n (10e)

where the reflexive property is implied by constraints (10b), the symmetric property
by constraint (10c), and the transitive property by constraint (10d). The size of the
problem can be reduced by considering its symmetric nature. Since ri j = r ji these
variables can be replaced by a new variable xi j. Also since variables rii are fixed
they can be dropped. Accordingly we can define weights as wi j = ci j +c ji. Then the
problem can be rewritten in terms of the transformed variables:

min ∑
1≤i< j≤n

wi j · xi j (11a)

s.t. xi j + x jk − xik ≤ 1, 1 ≤ i < j < k ≤ n (11b)

xi j − x jk + xik ≤ 1, 1 ≤ i < j < k ≤ n (11c)

− xi j + x jk + xik ≤ 1, 1 ≤ i < j < k ≤ n (11d)

xi j ∈ {0,1}, 1 ≤ i < j ≤ n (11e)

The polyhedron of the last problem is the same with this of clique partitioning
problem. Although the last problem is also NP-complete one can use the theoreti-
cal results and exact approaches derived for clique partitioning to establish a more
efficient algorithm for consensus clustering. Such an algorithm is described in [21].
Despite the theoretical interests of this approach its practical limitations have made
it a less favorable option in consensus clustering literature. Recent developments in
this field are still limited to solving instances no larger than 300 data samples [52].
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4 Approximation Algorithms

In the literature there are several approximation algorithm approaches for consensus
clustering. These algorithms run in polynomial time and obtain a solution which is
equal to the optimal multiplied with a constant, known as the approximation factor.
It can be shown that even a simple naive algorithm can obtain a solution which
is guaranteed to be close to the optimal up to a multiplication factor. Some basic
algorithms for which there exist approximation results are the following:

• Pick-a-Cluster: Simple algorithm that just chooses a cluster randomly and
returns as a solution.

• Best-Clustering: Choose a clustering with the highest objective function value
as the solution.

Most of the approximation algorithms are directly derived by adjusting the
existing ones for the correlation clustering problem [4]. These approaches include
the following two algorithms:

• CC-Pivot: This algorithm resembles the quicksort number ordering routine. The
main idea is to choose a pivot element and partitions the rest of the elements
according to their relation with the pivot element.

• CCLP-Pivot: This is the linear programming version of CC-Pivot and it is an
adaptation of the linear programming approach first introduced in [9] for the
correlation clustering problem.

Other approximation algorithms for consensus clustering were proposed in [18]:

• Average linkage: This is based on the standard agglomerative clustering
principle. At the beginning each element belongs to its own separate cluster.
At each step the algorithm merges two clusters with the closest distance into one
cluster. The process is repeated until the average sdd between clusters is 1/2.

• Furthest: This is another greedy approach which is based on an approximation
algorithm originally proposed for the k-center problem in [19]. This algorithm’s
running time depends on the number of output clusters.

In Table 1 we summarize the known approximation results for these algorithms
with their known complexity times.

As noted in [6], approximation algorithms for consensus clustering, although
they come with a theoretical guarantee, most of the time are not practically use-
ful due to their computational time (as a O(n2) algorithm becomes impractical for
large datasets), and their practical performance is often comparable with heuristics
without any theoretical performance guarantee.

5 Relation to Other Problems

So far we have already pointed out the relation between consensus clustering and
the clique partitioning problem. In addition, the relation of the consensus cluster-
ing problem to the correlation clustering problem has provided most of its existing
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Table 1 The summary of existing approximation results and the corresponding
computational complexities for consensus clustering, where m stands for the num-
ber of clusterings, n for the number of data samples, and k for the resulting number
of clusters

Name Complexity Approximation factor Reference
Best clustering O(m2n) 2 [2]
Pick a cluster O(1) 2 [2]
CC-PIVOT O(kmn) 11/7 [2]
CCLP-PIVOT O(n8) 4/3 [2, 9]
Average linkage O(n2(logn+m)) 2 [18]
Furthest O(kmn) 2 [18]

approximation algorithms. In this section we will discuss other equivalency results
that have been reported in the literature. These results include the formulation of
consensus clustering as a NNMF problem as well as some recent algorithms that
solve consensus clustering through spectral graph clustering approaches. We con-
clude this section with the semidefinite programming relaxation of the problem.

5.1 Nonnegative Matrix Factorization

It has been shown that the consensus clustering problem can be solved through a
NNMF problem. The corresponding formulation was originally proposed by [29]
and then extended for the weighted consensus clustering problem in [28]. The
NNMF problem consists of finding two matrices A ∈ R

n×k and B ∈ R
k×m whose

product is approximately equal to a given matrix M ∈ R
m×n with the additional

constraint that both A and B are positive element-wise. This can be written as an
optimization problem as follows:

min
A,B

‖M −A ·B‖2
F (12a)

s.t. ai j > 0, i = 1, . . . ,n, j = 1, . . . ,k (12b)

bi j > 0, i = 1, . . . ,k, j = 1, . . . ,m (12c)

where ‖A‖F =
√

tr(AT A) =
√

∑i, j |ai j|2 the Frobenius norm of matrix A. Using the

same variables defined in Eqs. (4) and (5) the problem minimization problem can be
written in matrix notation:

min
k

∑
p=1

‖R−R(p)‖2
F (13)

If we define the matrix with the average distance from all clusterings as follows:
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R̃ =
1
k

k

∑
i=1

R(p) (14)

we can also write:

1
k

k

∑
p=1

‖R−R(p)‖2
F =

1
k

k

∑
p=1

‖R− R̃+ R̃−R(p)‖2
F (15a)

=ΔR2 +‖R− R̃‖2 (15b)

where ΔR is the average square difference defined by

ΔR2 =
1
k

k

∑
p=1

∑
i, j

(
R(p)− R̃

)2
(16)

and it is constant. Constraints described by (10d) can now be replaced by the NNMF
constraints. Then the problem can be described by

min
H≥0

‖R̃−HT H‖2 (17)

Solution to problem (17) can be obtained with any from the NNMF algo-
rithms [24].

5.1.1 Semidefinite Programming Relaxation

Note that the problem (17) can be relaxed to a semidefinite program as follows. The
quadratic form can be expanded as:

‖R̃−HT H‖2 = ‖R̃‖2 −2Tr(HT R̃H)+‖HT H‖. (18)

Since two of the terms are constants (‖R̃‖2 and ‖HT H‖) the problem can be
reduced to:

min
H≥0

Tr(HT R̃H) = min
H≥0

Tr(RHHT ) = min
Z)0

Tr(R̃Z) (19)

where ) denotes positive definiteness property. Problem (19) is a linear semidefi-
nite program. However recovering H from Z requires the solution of another norm
minimization problem.

5.2 Graph Clustering

In a recent work [27], consensus clustering was described as a spectral graph clus-
tering problem. This approach involves the construction of an intermediate structure



A Review on Consensus Clustering Methods 561

termed the consensus graph. This is a weighted graph with each weighted edge (i, j)
being the normalized number of clusterings that points si and s j were assigned to
the same cluster. Final consensus clustering is obtained by running a network clus-
tering algorithm (usually spectral clustering) on the consensus graph. This approach
was found to be robust compared to other clustering approaches [27]. In addition,
it is computationally efficient since it requires only a matrix eigendecomposition.
However theoretically it is still a heuristic approach with no performance guarantee.

6 Applications

Although consensus clustering can be employed for any exploratory data analysis
problem that involves data grouping it has been used for applications that naturally
produce massive amount of data and clustering uncertainty. Primary areas include
microarray gene expression analysis and computational chemistry, whereas it has
been applied in various other datasets, image segmentation data (including medical
datasets), documents clustering, and co-authorship network analysis. In Table 2 we
summarize some of the applications found in literature.

As noted in [18] consensus clustering naturally arises in problems where we need
to cluster categorical data. In this case each categorical variable defines a clustering,
and a clustering over the categorical variables can be seen as a consensus clustering.
Another natural application arises when we need to cluster heterogeneous data, i.e.,
data from different sources and maybe formats, about the same objects (entities).

Table 2 Representative literature of consensus clustering applications

Application Reference
Chemical structure clustering [41–43]
Categorical data clustering [16]
Gene expression microarray data [36, 47, 63]
Co-authorship network clustering [27]
Image segmentation [13, 15, 58, 59]
Magnetic resonance imaging (MRI) clustering [57]
Image quantization [8]
Synthetic aperture radar (SAR) image segmentation [64]
Document clustering [20, 46, 62]
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Due to the robustness of consensus clustering it is useful in particular for identifying
the number of clusters when this is now known in advance. In addition consensus
clustering is tightly related to outlier detection as well as privacy preserving clus-
tering [18]. In the last case a common clustering has to be generated but one might
not be able to directly access to all databases. In such cases individual vendors can
exchange clusterings that do not include sensitive (private) information without exc-
hanging the information itself.

7 Software

Several implementations of consensus clustering are readily available through
several software packages. Table 3 summarizes some of the most notable imple-
mentations.

Table 3 Software packages with consensus clustering capabilities

Software Environment Reference
ConsensusCluster Command line [44]

clusterCons R [47]
Clustering ensembles (CLUE) R [22]

Cluster pack toolbox Matlab [17]

The command line tool Consensus cluster [44] supports GPU processing
for more efficient computations and it is implemented in Python while it sup-
ports k-means, hierarchical clustering, self-organizing maps, and partition around
medoids algorithm. The consensus clustering is performed by another clustering
algorithm on the consensus graph which can be constructed by Euclidean or corre-
lation distance metrics. The software package clusterCons has been implemented
for the R platform1 providing implementation of resampling algorithms that have
appeared in the literature [36, 47]. It supports a number of clustering algorithms
such as k-means, hierarchical, as well as a number of visual evaluation tools such as
Receiver Operating Characteristic (ROC) curve plots. Finally the cluster pack tool-
box is a clustering toolbox that includes the consensus framework as an embedded
part.

1 http://www.r-project.org.

http://www.r-project.org
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8 Conclusion and Future Research

Consensus clustering is an important problem in exploratory data analysis with
particular value for applications that involve data heterogeneity. So far despite the
interesting theoretical results about the problem that include exact formulations
and approximation algorithms the most practically notable approaches are heuristic
based. Modern needs for massive data analysis make exact approaches impractical
since they are only able to handle problems of limited size.

The interesting relationship between consensus clustering and other well-studied
problems such as clique partition, correlation clustering, NNMF, and graph clus-
tering has provided theoretical and practical tools enabling robust solutions within
reasonable amount of time.
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20. Gonzàlez, E., Turmo, J.: Comparing non-parametric ensemble methods for document cluster-
ing. In: Natural Language and Information Systems, pp. 245–256. Springer, Berlin (2008)

21. Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering problem. Math.
Program. 45(1–3), 59–96 (1989)

22. Hornik, K.: A clue for cluster ensembles. J. Stat. Software 14(12), 1–25 (2005). URL http://
www.jstatsoft.org/v14/i12

23. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR)
31(3), 264–323 (1999)

24. Kim, J., He, Y., Park, H.: Algorithms for nonnegative matrix and tensor factorizations: a uni-
fied view based on block coordinate descent framework. J. Global Optim. 58(2), 285–319
(2014)
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Influence Diffusion in Social Networks

Wen Xu, Weili Wu, Lidan Fan, Zaixin Lu, and Ding-Zhu Du

1 Introduction

With hundreds of millions of users worldwide, social networks provide great
opportunities for social connection, learning, political and social change, as well
as individual entertainment and enhancement in a wide variety of forms. Although
social interaction is possible in the workplace, universities, communities, it is most
popular online. Online social networks (OSNs) allow individuals to present them-
selves, articulate their social networks, and establish or maintain connections with
others. Now, massive amounts of information about social networks and social
interactions are recorded, which can allow social scientists to study social interac-
tions on a scale and at a level of detail that has never before been possible. With the
rapid development of online communities and devices connecting to the Internet
such as smart phones, new possibilities of basic human activities have emerged. For
instance, the process by which people locate, organize, and coordinate groups of
individuals with shared interests, the number and nature of information and news
sources available, and the ability to solicit and share opinions and ideas across
various topics have all undergone dramatic change with the rise of social networks.

Social networks have already become a significant medium for the widespread
distribution of news and instructions in mass convergence events such as presidential
elections [1, 2], and emergencies like the landfall of Hurricanes Ike and Gustav in
the fall of 2008 [1]. OSNs such as Facebook and Twitter have also been well known
for providing great ease during the recent demonstrations in Middle East [3]. In light
of these notable events, understanding information diffusion in OSNs has become
a critical research goal. This great understanding can be achieved through effective
data analysis, the development of reliable models that can predict outcomes of social
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processes, and ultimately the creation of applications that can shape the outcome of
these processes. In this paper, we provide an overview of the recent research in this
area based on a wide variety of techniques such as optimization algorithms, data
mining, data streams covering a large number of problems such as influence spread
maximization, misinformation limitation, and study of trends in OSNs.

2 Characteristics of Social Networks

In order to study influence diffusion in OSNs, it is necessary to understand the
significance and characteristics of social networks first. In this section, we give an
overview about social networks identifying its significance and characteristics.

As a complex network, social networks have some well-known theoretical prop-
erties like Power-law distribution, Small-world, Scale-free et al. Power-law distri-
bution means that the probability that a node has degree k is proportional to k−γ , for
large k and γ > 1. The parameter γ is called the power-law coefficient. Researchers
have shown that many real-world networks are power-law networks, including In-
ternet topologies [4], the Web [5, 6], social networks [7], neural networks [8],
and power grids [9]. Scale-free networks are a class of power-law networks where
the high-degree nodes tend to be connected to other high-degree nodes. Scale-free
graphs are discussed in detail by Li et al. [10], and they propose a metric to mea-
sure the scale-freeness of graphs. Small-world networks have a small diameter and
exhibit high clustering. Studies have shown that the Web [11, 12], scientific collab-
oration on research papers [13], film actors [14], and general social networks [7]
have small-world properties. Kleinberg [15, 16] proposes a model to explain the
small-world phenomenon in off-line social networks and also examines navigability
in these networks.

There are also many other interesting properties about social networks that have
been studied by various sociologists. Milgram [17] shows that the average path
length between two Americans is six hops, and Pool and Kochen [18] provide an
analysis of the small-world effect. The influential paper by Granovetter [19] argues
that a social network can be partitioned into strong and weak ties, and that the strong
ties are tightly clustered. For an overview of social network analysis techniques, we
refer the reader to the book by Wasserman and Faust [20]. A prominent study of
the Web link structure [12] shows that the Web has a “bow-tie” shape, consisting
of a single large strongly connected component (SCC), and other groups of nodes
that can either reach the SCC or can be reached from the SCC. OSNs have a similar
large component, but that its relative size is much larger than that of the Web’s SCC.
Faloutsos et al. [4] show that the degree distribution of the Internet follows a power-
law. Siganos et al. demonstrate that the high-level structure of the Internet resembles
a “jellyfish” [21]. Kleinberg [22] demonstrates that high-degree pages in the Web
can be identified by their function as either hubs (containing useful references on a
subject) or authorities (containing relevant information on a subject). Kleinberg also
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presents an algorithm [23] for inferring which pages function as hubs and which as
authorities. The well-known PageRank algorithm [24] uses the Web structure to
determine pages that contain authoritative information.

As OSNs are gaining popularity, sociologists and computer scientists are
beginning to investigate their properties. Adamic et al. [7] study an early OSN
at Stanford University and find that the network exhibits small-world behavior, as
well as significant local clustering. Liben-Nowell et al. [25] find a strong correlation
between friendship and geographic location in social networks by using data from
LiveJournal. Kumar et al. [26] analyze two OSNs and discover that both possess a
large SCC. Girvan and Newman observe that users in OSNs tend to form tightly
knit groups, which is also called communities [27]. Backstrom et al. [28] examine
snapshots of group membership in LiveJournal and present models for the growth
of user groups over time.

3 Diffusion of Influence

In this section, we outline the techniques used in optimizing or facilitating infor-
mation diffusion in social networks. There are a large number of problems that are
related to the diffusion of information in social networks. We study two example
problem definitions through which a broad survey of techniques in recent research
is provided, namely, (a) maximizing the spread of influence and (b) minimizing
the spread of misinformation in social networks. Next we delve into details about
influence diffusion from the following subsections: (1) overview of influence diffu-
sion, (2) formalization and optimization, (3) large-scale data analysis.

3.1 Overview of Influence Diffusion

Diffusion of influence refers to circumstances where a point of view or behavior
is widely spread in specific structures of propagation channels [29]. A diffusion
can be associated with topological properties, such as scale, range, and temporal
properties. This concept has been widely researched in the field of epidemiology,
sociology, and marketing. In early time, biology and epidemiology have conducted
in-depth study on diffusion of virus within the group [30], and two classical mod-
els: SIS and SIR are proposed. In sociology and marketing area, research on dif-
fusion focuses on the problems of innovation diffusion. In the early twentieth cen-
tury, Schumpeter et al. [31] created innovative theory. Then the BASS model [32]
opened up new research directions for this research area and derived a series of re-
lated models. Westerman et al. [33] studied the effect of system generated reports of
connectedness on credibility, and have shown that there are curvilinear effects for
the number of followers exist, such that having too many or too few connections re-
sults in lower judgments of expertise and trustworthiness. Lopez-Pintado et al. [34]
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studied the product diffusion in complex social networks. He considered the mutual
influence among individuals on the micro-level into the propagation equation based
on mean-field theory, and found out that innovation diffusion in complex networks
has a threshold which is closely related to the degree distribution and propagation
functions of the network.

Information propagation considering two repellent relationship is studied in the
field of competitive marketing and disease control. Virus propagation and immu-
nization can be considered as two kinds of mutually exclusive information diffusing
in networks in the field of disease control. Meier et al. [35] studied inoculation
game problem in OSNs, that is, whether each node can select to protect itself when
virus diffusing in networks. Salathé et al. [36] developed an algorithm that acts
only on locally available network information and is able to quickly identify targets
for successful immunization intervention. They also demonstrated that community
structure strongly affects disease dynamics.

Understanding, capturing, and being able to predict influence diffusion can be
helpful for several areas such as marketing, security, and Web search. For instance,
if we consider the case of marketing, it may be useful to know which are the fea-
tures that control the process of diffusing information when it is created to, e.g.
better advertise a product or to better protect it against attacks on the network. The
marketing may also benefit from information such as how many initial users to
start with in a marketing campaign (budget optimization), how much time to wait
between actions etc. In the case of security, criminal investigators generally need
to understand the information flow between, e.g. members of a given community,
to extract hints regarding possible guilt or innocence of a person or a group of per-
sons. This is clearly an observation phase where the user wants to understand the
route that information took and possible links. Finally, as Web search evolves, if
we consider the case of subscriptions to feeds, a propagation prediction model may
be useful for the user to, e.g. subscribe to the most interesting topic according to its
expected growth (in addition to his interests). This reflects a more active usage of
the diffusion prediction.

3.2 Formalization and Optimization

To better understand the underlying ideas behind diffusion and social networks,
we study the formulations and optimizations for two important problems in
social networks, (1) maximizing the spread of influence, (2) limiting the spread
of misinformation, which is also called rumor blocking in some related work.

To begin with, we will cover two basic diffusion models that have been
researched intensely and will illustrate the differences between them. Since
diffusion models and the process of diffusion are the foundation of related research,
we provide as much background as possible.
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3.2.1 Two Basic Diffusion Models

Diffusion is the process by which information passes from neighbor to neighbor.
Real-world examples include viral marketing, innovation of technologies, and
infection propagation. Diffusion models are the framework on which diffusion
occurs.

Definition 1. A diffusion model is a graph G = V,E along with a collection of
activation functions F = ( fv)v∈V , where fv is a { /0,{v}} valued function on 2|V |.

The output of a function fv is a random variable based on the activation function.
Vertices on this graph are usually individuals and the activation function models

the influence individuals exert on others. The activation function usually depends
only on the neighbors of v, denoted N(v). This means that fv(S) = fv(N(v)

⋂
S).

Definition 2. Diffusion is the process on a diffusion model M, S = (St)
n−1
t=0 started

at S ⊆V :

1. set S0 = S
2. for t > 1 set St = f (St−1) = def

⋃
v∈V fv(St−1)

The set of nodes activated at the end of diffusion is denoted as σ(S) =
⋃n

t=0(St).

Diffusion occurs in time steps t. At each time step, all previously activated nodes
remain activated and individuals are either activated or deactivated based on the
activation functions. Diffusion can run on a fixed number of time steps or indefi-
nitely. Diffusion is said to have stopped when the set of activated nodes in time step
tk is the same as the set in time step tk+n for all n ≥ 1.

One class of diffusion models, namely threshold model, adds an influence
threshold to each individual, which, when overcome, triggers the individual to be
activated. There is a cumulative effect of these models, as it takes a critical num-
ber of influential neighbors to activate an individual. The linear threshold model is a
specialized form of general threshold models. The linear threshold model, LT model
in short, is more often used in marketing research.

Definition 3. The linear threshold model is a diffusion model with all of the
following properties:

1. A set of threshold values (θv)v∈V , where θv is in the range [0,1].
2. Node v being activated if fv(S)≥ θv, where S is the set of neighbors of v.
3. A set of weights (p(u,v))(u,v)∈E with the property Σu∈N(v)p(u,v)≤ 1.
4. Activation function of the form fv(S) = ∑u∈N(v) p(v,u) with f ( /0) = 0.

Cascade models of diffusion give each individual the ability to influence their
neighbors as soon as they are activated. This is opposed to the threshold models
that rely on a cumulative effect. This model has the property that the more nodes
that have attempted to influence a node, the less likely the node is to be activated.
Here we give a definition of a specialized cascade model, namely the independent
cascade model, IC model in short.
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Definition 4. The independent cascade model is a diffusion model with the fol-
lowing properties:

1. Each arc (u,v) has associated the probability p(u,v) of u influencing v.
2. Time unfolds in discrete steps.
3. At time t, nodes that became active at t −1 try to active their inactive neighbors,

and succeed according to p(u,v).

Note that the probability of a node u influencing a node v is independent of the
set of nodes S that has attempted to influence v.

There is an assumption of monotonicity on this model made to reflect that adding
active neighbors to a node increases likelihood of the node being activated.

3.2.2 Influence Maximization

An intensively studied problem in viral marketing is that, by picking a small group
of influential individuals in a social network—say, convincing them to adopt a
product—it will trigger the largest cascade of influence by which many users will
try the product ultimately. Domingos and Richardson [37] are the first to pose it as
an algorithmic problem and solve it as a probabilistic model of interaction. In [38],
Kempe et al. formalize it as the problem of influence maximization.

A social network is modeled as a directed graph G = (V,E) with vertices in V
modeling the individuals and edges in E modeling the relationship between individ-
uals. For example, in co-authorship graphs, vertices are authors of academic papers
and two vertices have an edge if the two corresponding authors have coauthored a
paper. Let p denote the influence probabilities between two vertices. The influence
is propagated in the network according to a diffusion model m. Let S be the subset
of vertices selected to initiate the influence propagation, which is also called seed
set. Let σm(S) be the expected number of influenced nodes at the end of propaga-
tion process. The formal definition of influence maximization problem is given as
follows:

Problem 1 (Influence Maximization). Given a directed and edge-weighted social
graph G = (V,E, p), a propagation model m, and an integer k ≤ |V |, find a seed set
S ⊂V , |S|= k, such that the expected influence σm(S) is maximum.

This problem is also referred to as the identification of influential users or opinion
leaders in a social network. This problem under both independent cascade (IC) and
linear threshold (LT) propagation models is shown to be NP-hard, and so attempts
have been made at approximating the value of σm(S) [39].

For a diffusion model with a nonnegative, monotone submodula activation
function, a greedy hill-climbing algorithm approximates the optimum within a
factor of (1 − 1/e)− ε for any real number ε , as shown by Kempe et al. [38].
The complexity of influence maximization problem has been further discussed in
[40–42]. By greedy hill-climbing algorithm we mean an algorithm which, at every
step, adds to the output set the element that currently has the highest value.
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Submodularity is a property on a diffusion model that states that the influence
gained from adding nodes to the infected set decreases or stays the same as the set
becomes larger. This condition can be read as a principle of diminishing returns,
where the value of adding a node to the infected set decreases based on the size of
the infected set.

The challenge of the greedy algorithm rises when selecting a new vertex ν that
provides the largest marginal gain σm(S + ν)− σm(S) compared to the influence
spread of current seed set S. Computing the expected spread given a seed set turns
out to be a difficult task under both the IC model and the LT model. Instead of find-
ing an exact algorithm, Kempe et al. run Monte-Carlo simulations of the propagation
model for sufficiently many times (10,000 trials) to obtain an accurate estimate of
the influence spread, leading to a very long computation time. In [43], Mathioudakis
et al. simplified the network to accelerate the speed of finding seeds. Facing serious
efficiency and scalability limits, several heuristics [44–46] are proposed to over-
come it. In [45], Chen et al. propose a scalable heuristic called DAGs (local directed
acyclic graphs) for the LT model. They construct local DAGs for each node and
computing the expected spread over DAGs can be done in linear time while over
general graphs it is #P-hard. In [44], Chen et al. also propose a PMIA heuristic to
estimate the influence spread under the IC model. However, these heuristics lack of
theoretical guarantees.

Another issue for Kempe’s method is that it assumes a weighted social graph as
input and does not address the problem of learning influence probabilities. In [47],
Saito et al. study how to learn the probabilities of the IC model from a set of past
propagations by formalizing this as a likelihood maximization problem and then
applying the expectation maximization (EM) algorithm to solve it; Goyal et al. [48,
49] propose a credit model for learning influence probability from pure historical
action logs which takes the temporal nature of influence into account.

Some variations are also proposed to handle different real-world requirements.
Leskovec et al. [50] optimized placements for a set of social sensors such that the
propagation of information or virus can be effectively detected in a social network.
Lappas et al. [51] discover a set of key mediators which determine the bottlenecks
of influence propagation if seed nodes try to activate some target nodes.

A characteristic common to the studies discussed so far is the assumption that
information cascades of campaigns happen in isolation. Next we introduce a group
of problem formulations that capture the notion of competing campaigns in a social
network [52–57]. This scenario will frequently arise in the real world: multiple com-
panies with comparable products will vie for sales with competing word-of-mouth
cascades; similarly, many innovations face active opposition also spreading by word
of mouth.

Dubey et al. [58] study competitive information game problem in networks based
on quasilinear model. They find the Nash equilibrium by considering the adoption
of the costs, benefits, and external functions of the different information conditions.
Carnes et al. [52] study the strategies of a company that wishes to invade an existing
market and persuade people to buy their product. This turns the problem into a
Stackelberg game where in the first player (leader) chooses a strategy in the first
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stage, which takes into account the likely reaction of the second players (followers).
In the second stage, the followers choose their own strategies having observed the
Stackelberg leader decision i.e., they react to the leader’s strategy. Carnes et al. use
models similar to the ones proposed in [38] and show that the second player faces an
NP-hard problem if aiming at selecting an optimal strategy. Furthermore, the authors
prove that a greedy hill-climbing algorithm lead to a (1−1/e− ε)-approximation.

Around the same time, Bharathi et al. [53] introduce roughly the same model for
competing rumors and they also show that there exists an efficient approximation
algorithm for the second player. Moreover they present an FPTAS for the single
player problem on trees. Kostka et al. [54] considered the rumors diffusion as a
game theoretical problem under a much more restricted model compared with IC
and LT. They showed that the first player did not always obtain benefit although
he/she started earlier. Trpevski et al. [55] propose a competitive rumors spreading
model based on SIS model in epidemic domain, but they did not address the issue of
influence maximization or rumor blocking. Borodin et al. in [56] study competitive
influence diffusion in several different models extended from LT. Chen et al. [57]
address positive influence maximization under an extension of the IC model with
negative opinions about the product or service quality.

3.2.3 Misinformation Minimization

While the ease of information propagation in social networks can be very beneficial,
it can also have disruptive effects. A number of examples of this sort are the spread
of misinformation on swine flu in Twitter [59], exaggerated reports on a bomb
attack in Grand Central and celebrities who are falsely claimed as being dead [60].
We specifically focus on the study that addresses the problem of influence limi-
tation [61, 63] where a “bad” campaign starts propagating from a certain node in
the network and use the notion of limiting campaigns to counteract the effect of
misinformation. The problem of misinformation minimization can also be called as
rumor blocking problem, or influence limitation problem. Its definition is defined as
follows:

Problem 2 (Misinformation Minimization). Given a graph G = (V ;E; p), where
p represents its positive and negative edge weights, a negative seed set N0, and a
positive integer k, the goal is to find a positive seed set S of size at most k such that
the expected number of negatively activated nodes is minimized, or equivalently, the
reduction in the number of negatively activated nodes is maximized.

Kimura et al. in [62] deal with influence limitation problem through blocking a
certain number of links in a network. The most recent works regarded with this prob-
lem include [63–65]. In [63], Budak et al. study the controlling of negative informa-
tion in social networks, that is, when negative information is diffused in networks,
how to select some nodes to implant positive information in order to correct the
information attitude in the whole network to a maximizing extent. They prove that
under an extension of the IC model, the eventual influence limitation (EIL) problem
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is NP-hard. They also examine a more realistic problem of influence limitation in
the presence of missing information and introduced an algorithm called predictive
hill-climbing approach which has good performance.

In [64], He et al. propose a competitive linear threshold (CLT) model to address
the influence blocking maximization (IBM) problem, which is an extension to the
classic linear threshold model. They prove that this problem under CLT model was
submodular and theoretically obtained a (1−1/e)-approximation ratio by a greedy
strategy. To improve the efficiency, they further propose the CLDAG algorithm that
is similar to the LDAG algorithm in [45]. In [65], a β I

T -Node Protector problem
is proposed by Nguyen et al., which is actually the extensions of the Misinforma-
tion Minimization problem under LT and IC models. The goal is to find the small-
est set of highly influential nodes that can limit the viral spread of misinformation
originated from set I to a desired rate (1 − β ) (β ∈ [0,1]) in T time steps. They
present a greedy viral stopper (GVS) algorithm that greedily adds nodes with the
best influence gain for β Node Protectors to the current solution. They also apply
GVS to the network restricted to T -hop neighbors of the initial set I and reached a
slightly better bound for β I

T -Node Protector problems. Besides, a community-based
algorithm which returns a good selection of nodes to decontaminate in a timely
manner is proposed.

3.3 Large-Scale Data Analysis

No matter which technique is used in studying information diffusion, large-scale
data analysis is a significant aspect of study as well as being a significant challenge.
In this part, we will introduce several representative data analysis techniques used in
the social influence analysis. With the increase of studies in social networks, there
are a number of data sets available to researchers [66–69].

As data grows, data mining and machine learning applications start to embrace
the Map-Reduce paradigm, e.g., news personalization with Map-Reduce EM al-
gorithm [70], Map-Reduce of several machine learning algorithms on multicore
architecture [71]. For the networking data, graphical probabilistic models are often
employed to describe the dependencies between observation data. Markov random
field [72], factor graph [73], restricted Boltzmann machine (RBM) [74], and many
others are widely used graphical models. In [75], Tang et al. proposed a topical
factor graph (TFG) model, for quantitatively analyzing the topic-based social influ-
ences. Compared with the existing work, the TFG can incorporate the correlation
between topics. They also proposed a very efficient algorithm for learning the TFG
model. In particular, a distributed learning algorithm has been implemented under
the Map-reduce programming model.

The techniques used in Web community discovery can also be applied in social
influence analysis. The problem of detecting such communities within networks has
been well studied. Early approaches such as spectral partitioning, the Kernighan–
Lin algorithm, hierarchical clustering, and G-N algorithm work well for spe-
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cific types of problems (particularly graph bisection), but perform poorly in real
networks. Recently, most works focus on graph partitioning approaches. The most
popular partition technique in the literature is k-means clustering, which aims to
separate the nodes in k clusters such to maximize/minimize a given cost function
based on distances between nodes and/or from nodes to centroids. In [76], Q. Yan
et al. proposed a two-phase method that combines community detection with naive
greedy algorithm to improve time efficiency of influence maximizing problem with
multiple spread model. In the first phase, they use efficient clustering algorithm
such as kernel k-means to partition graph nodes into k clusters, with the parameter k
related to the number of influential nodes. In the second phase, in each community,
they apply techniques in social influence maximization to find influential nodes in
each cluster. Similar work has [77].

4 Research Trends

Social networks provide large-scale information infrastructures for people to discuss
and exchange ideas about different topics. The general problem of network influence
analysis represents a new and interesting research direction in social network
mining. There are many potential future directions of this work. Even though the in-
fluence diffusion in social networks has been intensively studied, we note that there
are three essential dimensions emerging from the analysis we performed, which
could be of great benefits for future researchers.

4.1 Learn Influence Probabilities for IC and LT Models

In social network analysis, two information diffusion models: the independent
cascade (IC) and the linear threshold (LT) are widely used to solve such problems
as the influence maximization problem and the misinformation minimization prob-
lem. These two models focus on different information diffusion aspects. The IC
model is sender-centered (push type) and each active node independently influences
its inactive neighbors with given diffusion probabilities. The LT model is receiver-
centered (pull type) and a node is influenced by its active neighbors if their total
weight exceeds the threshold for the node. What is important to note is that both
models have parameters that need to be specified in advance: diffusion probabilities
for the IC model, and weights for the LT model. However, their true values are not
known in practice. This poses yet another problem of estimating them from a set of
information diffusion results that are observed as timesequences of influenced (acti-
vated) nodes. This falls in a well-defined parameter estimation problem in machine
learning framework.

In [78], K. Saito et al. extended both IC and LT models to be able to simulate
asynchronous time delay. They learned the dependency of the diffusion probability
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and the time-delay parameter on the node attributes by solving a formulated problem
named as the maximum likelihood estimation problem, and an efficient parameter
update algorithm that guarantees the convergence is derived. Other efforts of learn-
ing parameters of the influence graph from history data include the work [49, 79].
In [49], A. Goyal et al. proposed both static and time-dependent models for cap-
turing influence. Moreover, they presented optimized algorithms for learning the
parameters of the various models based on social networks and historical action
logs.

4.2 Learn the Speed of Influence Spread in Networks

It has been observed that information spreads extremely fast in social networks.
There has been some but not enough theoretical results about the analysis of
influence spread speed. In [80], B. Doerr et al. have shown that for preferential
attachment graphs the classic push–pull strategy needs Θ(logn) rounds to inform
all vertices. The slightly improved version which avoids that a vertex contacts the
same neighbor twice in a row only needs Θ(logn/ log logn) rounds, which is best
possible since the diameter is of the same order of magnitude. In [81], N. Foun-
toulakis et al. establishe for a class of random graphs ultrafast time bounds on the
running time of the synchronous push–pull protocol that is needed until the majority
of the vertices are informed. We present the first theoretical analysis of this protocol
on random graphs that have a power law degree distribution with an arbitrary expo-
nent β > 2. Their main findings reveal a striking dichotomy in the performance of
the protocol that depends on the exponent of the power law. More specifically, it is
shown that if 2 < β < 3, then the rumor spreads to almost all nodes in Θ(log logn)
rounds with high probability. On the other hand, if β > 3, then Θ(logn) rounds are
necessary.

4.3 Study the Time Constrained Influence Diffusion Problem

Traditional diffusion models including IC and LT do not fully incorporate impor-
tant temporal aspects that have been well observed in the dynamics of influence
propagation. Firstly, the propagation of influence from one person to another may
incur a certain amount of time delay, which is obvious from recent studies by statis-
tical physicists on empirical social networks. Secondly, the spread of influence may
be time-critical in practice. In a certain viral marketing campaign, a company might
wish to trigger a large cascade of product adoption in a fairly short time frame, e.g.,
a 3-day sale. Therefore it is very meaningful to extend the influence maximization
problem to have a time constraint.

Chen et al. [82] proposed the time-critical influence maximization problem, in
which one wants to maximize influence spread within a given deadline. In their
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model influence delays are constrained to follow the geometric distribution. In [83],
B. Liu et al. proposed a new problem of the time constrained influence maximization
in social networks based on a Latency Aware Independent Cascade model. They also
proposed to use Influence Spreading Paths to quickly and effectively approximate
the time constrained influence spread for a given seed set.
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8. Braitenberg, V., Schüz, A.: Anatomy of a Cortex: Statistics and Geometry. Springer, Berlin
(1991)

9. Phadke, A.G., Thorp, J.S.: Computer relaying for power systems. Wiley, New York (1988)
10. Li, L., Alderson, D., Doyle, J.C., Willinger, W.: Towards a theory of scale-free graphs: defini-

tions, properties, and implications. Internet Math. 2(4), 431–523 (2006)
11. Albert, R., Jeong, H., Barabasi, A.L.: The diameter of the world wide web. Nature 401, 130

(1999)
12. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A.,

Wiener, J.: Graph structure in the web: Experiments and models. In: Proceedings of the 9th
International World Wide Web Conference (WWW), Amsterdam, May 2000

13. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci.
(PNAS) 98, 409–415 (2001)

14. Amaral, L.A.N., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks.
Proc. Natl. Acad. Sci. (PNAS) 97, 11149–11152 (2000)

15. Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. In: Proceedings of
the 32nd ACM Symposium on Theory of Computing (STOC), Portland, May 2000

16. Kleinberg, J.: Navigation in a small world. Nature 406, 845–845 (2000)
17. Milgram, S.: The small world problem. Psychol. Today, 2(60), 60–67 (1967)
18. Pool, I., Kochen, M.: Contacts and influence. Soc. Netw. 1, 1–48 (1978)
19. Granovetter, M.: The strength of weak ties. Am. J. Sociol. 78(6), 1360–1380 (1973)
20. Wasserman, S., Faust, K.: Social Networks Analysis: Methods and Applications. Cambridge

University Press, Cambridge (1994)
21. Siganos, G., Tauro, S.L., Faloutsos, M.: Jellyfish: A conceptual model for the AS internet

topology. J. Commun. Netw. 8(3), 339–350 (2006)
22. Kleinberg, J., Lawrence, S.: The structure of the web. Science 294, 1849–1850 (2001)

http://www.time.com/time/world/article/0,8599,1905125,00.html
http://www.huffingtonpost.com/2011/02/11/egypt-facebook-revolution-wael- ghonim_n_822078.html
http://www.huffingtonpost.com/2011/02/11/egypt-facebook-revolution-wael- ghonim_n_822078.html


Influence Diffusion in Social Networks 579

23. Kleinberg, J.: Authoritative sources in a hyperlinked environment. J. ACM 46, 604–632 (1999)
24. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing

Order to the Web. Technical report, Stanford University (1998)
25. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geographic routing in

social networks. Proc. Natl. Acad. Sci. (PNAS) 102(33), 11623–11628 (2005)
26. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In:

Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), Philadelphia, August 2006

27. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc.
Natl. Acad. Sci. (PNAS) 99, 7821–7826 (2002)

28. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social net-
works: Membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD), Philadelphia, August
2006

29. Centola, D.: The spread of behavior in an online social network experiment. Science
329(5996), 1194–1197 (2010)

30. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford
University Press, Oxford (1992)

31. Schumpeter, J., Bakhays, U.: The Theory of Economics Development. Springer, New York
(2003)

32. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1),
47–97 (2002)

33. Westermana, D., Spenceb, P.R., Heide, B.V.D.: A social network as information: The effect
of system generated reports of connectedness on credibility on twitter. Comput. Hum. Behav.
28(1), 199–206 (2012)

34. Lopez-Pintado, D.: Diffusion in complex social networks. Games Econ. Behav. 62(2),
573–590 (2008)

35. Meier, D., Oswald, Y.A., Schmid, S., Wattenhofer, R.: On the windfall of friendship: Inocula-
tion strategies on social networks. In: ICEC, pp. 294–301 (2008)
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A New Exact Penalty Function Approach
to Semi-infinite Programming Problem

Changjun Yu, Kok Lay Teo, and Liansheng Zhang

1 Introduction

Many real-world optimization problems in engineering design, such as the
design of earthquake-resistant structures, multi-input multi-output control systems,
wide-band amplifiers, and robot trajectory planning [6, 13–15], can be formulated
as semi-infinite programming problems (SIPs). Some interesting applications in
statistics can be found in [2, 10]. They include optimal experimental design in
regression, constrained multinomial maximum likelihood estimation, robustness
in Bayesian statistics, and actuarial risk theory.

A general SIPs can be stated in the form given below:

min f (x) (1a)

subject to g j(x,ω)≤ 0, ∀ ω ∈ Ω , j = 1, . . . ,m, (1b)

where x ∈ R
n is a decision vector, Ω is a compact interval in R, f : Rn → R is

continuously differentiable in x, and for each j = 1, . . . ,m, g j : Rn ×R → R is a
continuously differentiable function in x and ω . Let this problem be referred to as
Problem (P).
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Since there are infinite many inequality constraints in (1b), it is difficult to solve
Problem (P) directly. Hence, SIP has become an active research area in optimization
both in theory and numerical algorithms since 1970s. Many important publications
have appeared in the literature. Examples include [1, 3–5, 9, 12, 17–20], and the
relevant references cited therein. There are also several excellent review papers (see,
for example, [6, 11]) devoted to SIP. The methods developed are mainly based on
exchange methods, discretization methods, dual parametrization methods, method
based on constraint transcription techniques, or methods based on local reduction.

In [21, 22], an exact penalty function approach is proposed for solving
continuous inequality constraint optimization problems where the summation of
the integrals of some smooth approximation functions is appended to the objective
function forming an exact penalty objective function

fσ (x,ε) =

⎧
⎨

⎩

f (x), if ε = 0,g j(x,ω)≤ 0 (ω ∈ Ω),

f (x)+ ε−αΔ(x,ε)+σεβ , if ε > 0,
+∞, otherwise

(2)

where

Δ(x,ε) =
m

∑
j=1

∫

Ω

[
max

{
0,g j(x,ω)− εγ}

]2
dω.

Convergence analysis and numerical results show that the proposed method is
effective.

In this paper, a new exact penalty function approach is proposed for solving the
semi-infinite optimization problem (P). The purpose is to develop an alternative
effective computational method for solving the semi-infinite optimization problem.
In this approach, a logarithmic form function of the constraint violation is appended
to the objective function forming a new exact penalty objective function fσ (x,ε).
This gives rise to a sequence of optimization problems subject to ε > 0. We shall
show that any local minimizer of these optimization problems is a local minimizer
of the original problem when the penalty parameter is sufficiently large.

The rest of the paper is organized as follows. In Sect. 2, we give a new exact
penalty function and analyze its convergent properties. In Sect. 3, we devise an
algorithm for solving Problem (P) via solving a sequence of optimization problems.
Several examples are solved by using the algorithm proposed. Section 4 concludes
the paper.

2 New Exact Penalty Function

Consider Problem (P). Define

Sε = {(x,ε) ∈ R
n ×R+ : g j(x,ω)≤ εγ , ∀ ω ∈ Ω , j = 1, . . . ,m}, (3)

where R+ = {α ∈ R : α ≥ 0}, j = 1, . . . ,m, are fixed constants and γ is a positive
real number. Clearly, Problem (P) is equivalent to the following problem, which is
denoted as Problem (P̂).

min f (x) (4a)
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subject to

(x,ε) ∈ S0, (4b)

where S0 = Sε with ε = 0.
We assume that the following conditions are satisfied:

1. There exists a global minimizer of Problem (P), implying that f (x) is bounded
from below on S0.

2. The number of distinct local minimum values of the objective function of Prob-
lem (P) is finite.

3. The objective function f (x) → ∞, as ‖x‖ → ∞, where ‖x‖ denotes the usual
Euclidean norm of the vector x.

Motivated by the exact penalty function introduced in [7] and the constraint tran-
scription method for converting continuous inequality constraints into a sequence
of inequality constraints in integral form (see [8]), we introduce a new exact penalty
function fσ (x,ε) defined below:

fσ (x,ε) =

⎧
⎨

⎩

f (x), if ε = 0,g j(x,ω)≤ 0 (ω ∈ Ω),

f (x)− ε−α log(1−Δ(x,ε))+σεβ , if ε > 0,Δ(x,ε)< 1,
+∞, otherwise

(5)
where Δ(x,ε), which is referred to as the constraint violation, is defined by

Δ(x,ε) =
m

∑
j=1

∫

Ω

[
max

{
0,g j(x,ω)− εγ}

]2
dω, (6)

γ is a positive real number, β > 2, and σ > 0 is a penalty parameter. We now
introduce a surrogate optimization problem, which is referred to as Problem (Pσ ),
as follows:

min fσ (x,ε) (7a)

subject to

(x,ε) ∈ R
n × [0,+∞). (7b)

Compared with the exact penalty function proposed in [21], which approximates
the optimal solution from outside of the feasible region, the new exact penalty
function (5) is more like a traditional barrier function. However, our method does
not require to choose an initial guess to be within the feasible region of the prob-
lem. We only require to choose an initial guess close to the feasible region of the
problem. Due to the structure of the logarithmic function, i.e., log(1−Δ(x,ε)), it is
clear that the constraint violation of the new proposed exact penalty function has an
upper bound of 1. It forces the iterates to stay within a small neighborhood of the
feasible region. When the penalty parameter σ is large, the constraint violation will
be forced to reduce. This means that the value of

[
max

{
0,g j(x,ω)− εγ}

]2
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must go down, and eventually, leading to the satisfaction of the continuous inequal-
ity constraints, i.e.,

g j(x,ω)≤ 0, ∀ ω ∈ Ω , j = 1, . . . ,m.

In the next section, we shall present our main theoretical results.

2.1 Convergence Analysis

Taking the gradients of fσ (x,ε) with respect to x and ε gives

∂ fσ (x,ε)
∂x

=
∂ f (x)

∂x
+

2ε−α

1−Δ(x,ε)

m

∑
j=1

∫

Ω
max

{
0,g j(x,ω)− εγ}∂g j(x,ω)

∂x
dω

(8)

∂ fσ (x,ε)
∂ε

= αε−α−1 log(1−Δ(x,ε))− ε−α 2γ
1−Δ(x,ε)

m

∑
j=1

∫

Ω
max{0,g j(x,ω)− εγ}εγ−1dω +σβεβ−1 (9)

For every positive integer k, let (x(k),�,ε(k),�) be a local minimizer of Problem (Pσk).
To obtain our main result, we need

Lemma 1. Let (x(k),�,ε(k),�) be a local minimizer of Problem (Pσk). Suppose that
fσk(x

(k),�,ε(k),�) is finite and that ε(k),� > 0. Then

(x(k),�,ε(k),�) /∈ Sε(k),�

where Sε(k),� is defined by (3) with ε = ε(k),�.

Proof. The proof is similar to that given for Lemma 2.1 in [21] and hence is omitted.

To continue, we introduce

Definition 1. It is said that the constraint qualification is satisfied for the continuous
inequality constraints (1b) at x = x̄ , if the following implication is valid. Suppose
that

∫

Ω
∑

j
ϕ j(ω)

∂g j(x̄,ω)

∂x
dω = 0.

Then, ϕ j(ω) = 0, ∀ω ∈ Ω , j = 1, . . . ,m.

By Assumption (A3), the existence of an accumulating point of the sequence
(x(k),�,ε(k),�) is assured. Let the conditions of Lemma 1 be satisfied. Then, we have
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Theorem 1. Suppose that (x(k),�,ε(k),�) is a local minimizer of Problem (Pσk) such
that fσk(x

(k),�,ε(k),�) is finite and ε(k),� > 0. If (x(k),�,ε(k),�)→ (x�,ε�) as k →+∞,
and the constraint qualification is satisfied for the continuous inequality constraints
(1b) at x = x�, then ε� = 0 and x� ∈ S0.

Proof. It follows from the conditions of the theorem that

∂ fσk(x
(k),�,ε(k),�)
∂x

=
∂ f (x(k),�)

∂x
+

2(ε(k),�)−α

1−Δ(x(k),�,ε(k),�)
m

∑
j=1

∫

Ω
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}∂g j(x(k),�,ω)

∂x
dω

= 0, (10)

∂ fσk(x
(k),�,ε(k),�)
∂ε

= α(ε(k),�)−α−1 log(1−Δ(x(k),�,ε(k),�))− (ε(k),�)−α 2γ
1−Δ(x(k),�,ε(k),�)

m

∑
j=1

∫

Ω
max{0,g j(x(k),�,ω)− (ε(k),�)γ}(ε(k),�)γ−1dω +σkβ (ε(k),�)β−1

= (ε(k),�)−α−1
{

α log(1−Δ(x(k),�,ε(k),�))− 2γ
1−Δ(x(k),�,ε(k),�)

m

∑
j=1

∫

Ω
max{0,g j(x(k),�,ω)− (ε(k),�)γ}(ε(k),�)γ dω

}
+σkβ (ε(k),�)β−1

= 0 (11)

Suppose that ε(k),� → ε� �= 0. Then, by (11), we observe that

(ε(k),�)−α−1
{

α log(1−Δ(x(k),�,ε(k),�))− 2γ
1−Δ(x(k),�,ε(k),�)

m

∑
j=1

∫

Ω
max{0,g j(x(k),�,ω)− (ε(k),�)γ}(ε(k),�)γ dω

}

tends to a finite value, while σkβ (ε(k),�)β−1 tends to positive infinity as σk → +∞,
when k →+∞. This is impossible for the validity of (11). Thus, ε� = 0.

Now, by rearranging (10), we obtain

(ε(k),�)α(
1−Δ(x(k),�,ε(k),�)

)∂ f (x(k),�)
∂x

(12)

+2
m

∑
j=1

∫

Ω
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}∂g j(x(k),�,ω)

∂x
dω

= 0. (13)
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Thus,

lim
k→+∞

{

(ε(k),�)α(
1−Δ(x(k),�,ε(k),�)

)∂ f (x(k),�)
∂x

+2
m

∑
j=1

∫

Ω
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}∂g j(x(k),�,ω)

∂x
dω

}

= 2
m

∑
j=1

∫

Ω
max

{
0,g j(x�,ω)

}∂g j(x�,ω)

∂x
dω = 0. (14)

Since the constraint qualification is satisfied for the continuous inequality
constraints (1b) at x = x�, it follows that, for each j = 1, . . . ,m,

max
{

0,g j(x�,ω)
}
= 0,

for each ω ∈ Ω . This, in turn, implies that, for each j = 1, . . . ,m, g j(x�,ω) ≤ 0,
∀ ω ∈ Ω . The proof is completed.

Corollary 1. If x(k),� → x� ∈ S0 and ε(k),� → ε� = 0, then Δ(x(k),�,ε(k),�) →
Δ(x�,ε�) = 0.

Proof. The conclusion follows readily from the definition of Δ(x,ε) and the
continuity of g j(x,ω).

The next theorem shows that, under some mild conditions, fσ (x,ω) is continu-
ously differentiable with continuous limits.

Theorem 2. Assume that g j(x(k),�,ω) = o((ε(k),�)δ ), δ > 0, j = 1, . . . ,m. Suppose
that γ > α, δ > α, −α −1+2δ > 0, 2γ −α −1 > 0. Then

fσk(x
(k),�,ε(k),�) ε(k),�→ε�=0−−−−−−−→

x(k),�→x�∈S0

fσk(x
�,0) = f (x�), (15)

∇(x,ε) fσk(x
(k),�,ε(k),�) ε(k),�→ε�=0−−−−−−−→

x(k),�→x�∈S0

∇(x,ε) fσk(x
�,0) = (∇ f (x�),0). (16)

Proof. The proof is similar to that given for Theorem 2.4 in [21] and hence is
omitted.

Theorem 3. There exists a k0 > 0, such that for any k ≥ k0, every local minimizer
(x(k),�,ε(k),�) of the penalty problem with finite fσk(x

(k),�,ε(k),�) has the form (x�,0)
with x� being a local minimizer of Problem (P).

Proof. On the contrary, we assume that the conclusion is false. Then, there exists
a subsequence of {(x(k),�,ε(k),�)}, which is denoted by the original sequence, such
that for any k0 > 0, there exists a k′ > k0 satisfying ε(k′),∗ �= 0. By Theorem 1,
we have
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ε(k),� → ε� = 0, x(k),� → x� ∈ S0, as k →+∞.

Since ε(k),� �= 0 for all k, it follows from dividing (11) by (ε(k),�)β−1 that

(ε(k),�)−α−β
{

α log(1−Δ(x(k),�,ε(k),�))− 2γ
1−Δ(x(k),�,ε(k),�)

m

∑
j=1

∫

Ω
max{0,g j(x(k),�,ω)− (ε(k),�)γ}(ε(k),�)γ dω

}
+σkβ = 0.

(17)

This is equivalent to

(ε(k),�)−α−β

{

α log(1−Δ(x(k),�,ε(k),�))

+
2γ

1−Δ(x(k),�,ε(k),�)

m

∑
j=1

∫

Ω

[
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}(− (ε(k),�)γ)

+max
{

0,g j(x(k),�,ω)− (ε(k),�)γ}g j(x(k),�,ω)

−max
{

0,g j(x(k),�,ω)− (ε(k),�)γ}g j(x(k),�,ω)
]
dω

}

+σkβ = 0. (18)

Note that

m

∑
j=1

∫

Ω

[
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}(− (ε(k),�)γ)

+max
{

0,g j(x(k),�,ω)− (ε(k),�)γ}g j(x(k),�,ω)
]
dω

=
m

∑
j=1

∫

Ω
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}(

g j(x(k),�,ω)− (ε(k),�)γ)dω (19)

=
m

∑
j=1

∫

Ω
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}2

dω

= Δ(x(k),�,ε(k),�)

Substitute (19) to (18) and rearranging (18) yields

(ε(k),�)−α−β
{

α log(1−Δ(x(k),�,ε(k),�))+
2γΔ(x(k),�,ε(k),�)

1−Δ(x(k),�,ε(k),�)

}
+σkβ

=
2γ(ε(k),�)−α−β

1−Δ(x(k),�,ε(k),�)

m

∑
j=1

∫

Ω
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}g j(x(k),�,ω)dω.

(20)

Letting k → +∞, it follows that the left-hand side of (20) tends to infinity, which
means the right-hand side of (20) should also goes to infinity. By Theorem 3, we
have that Δ(x(k),�,ε(k),�) → 0, as k → +∞. Thus, in view of the right-hand side of
(20), we have
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2γ(ε(k),�)−α−β
m

∑
j=1

∫

Ω
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}g j(x(k),�,ω)dω →+∞.

(21)

Again, by Theorem 3 and the continuity of g j, it follows that for a sufficiently
large k,

2γ(ε(k),�)−α−β
m

∑
j=1

∫

Ω
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}g j(x(k),�,ω)dω

≤ 2γ(ε(k),�)−α−β
m

∑
j=1

∫

Ω
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}|g j(x(k),�,ω)|dω

(22)

≤ 2γ(ε(k),�)−α−β
m

∑
j=1

∫

Ω
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}Gmaxdω

where Gmax = max{g j(x�), j = 1, . . . ,m}. Define

yk = (ε(k),�)−α−β
m

∑
j=1

∫

Ω
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}dω. (23)

Then, by (21) and (22), we obtain

2γGmaxyk →+∞ , as k →+∞. (24)

Thus, yk →+∞ , as k →+∞.
Let

zk = yk/|yk|. (25)

Clearly

lim
k→+∞

|zk|= |z∗|= 1. (26)

Dividing (12) by |yk| yields

∂ f (x(k),�)
∂x

|yk| +
2(ε(k),�)−α

|yk|(1−Δ(x(k),�,ε(k),�))

m

∑
j=1

∫

Ω
max

{
0,g j(x(k),�,ω)

− (ε(k),�)γ}∂g j(x(k),�,ω)

∂x
dω = 0. (27)

Note that x(k),� → x� as k →+∞ and that
∂ f (x)

∂x
and, for each j = 1, . . . ,m, g j and

∂g j(· ,ω)

∂x
are continuous in R

n for each ω ∈ Ω , where Ω is a compact set. Then, it

can be shown that there exist constants K̂ and K, independent of k, such that, for all
k = 1,2, . . . ,
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∣
∣
∣
∣
∣
∂ f (x(k),�)

∂x

∣
∣
∣
∣
∣
≤ K̂, (28)

∣
∣
∣
∣
∣
∂g j(x(k),�,ω)

∂x

∣
∣
∣
∣
∣
≤ K, for j = 1, . . . ,m. (29)

Dividing (27) by (ε(k),�)β , we obtain

∂ f (x(k),�)
∂x

|yk|(ε(k),�)β +
2(ε(k),�)−α−β

|yk|(1−Δ(x(k),�,ε(k),�))

m

∑
j=1

∫

Ω
max

{
0,g j(x(k),�,ω)

− (ε(k),�)γ}∂g j(x(k),�,ω)

∂x
dω = 0. (30)

By (23), we have

1

|yk|(ε(k),�)β =
1∣

∣
∣
∣
∣
(ε(k),�)−α−β

m

∑
j=1

∫

Ω
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}dω

∣
∣
∣
∣
∣
(ε(k),�)β

=
1∣

∣
∣
∣
∣

m

∑
j=1

∫

Ω
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}dω

∣
∣
∣
∣
∣
(ε(k),�)−α

.

(31)

From the conditions of Theorem 2, we recall that g j(x(k),�,ω) = o((ε(k),�)δ ) and
γ > α, δ > α . Thus

lim
k→+∞

∣
∣
∣
∣
∣

m

∑
j=1

∫

Ω
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}dω

∣
∣
∣
∣
∣
(ε(k),�)−α

= lim
k→+∞

∣
∣
∣
∣
∣

m

∑
j=1

∫

Ω
max

{

0,
g j(x(k),�,ω)

(ε(k),�)δ (ε(k),�)δ−α − (ε(k),�)γ−α

}

dω

∣
∣
∣
∣
∣

(32)

= lim
k→+∞

∣
∣
∣
∣
∣

m

∑
j=1

∫

Ω
max

{

0,
o((ε(k),�)δ )

(ε(k),�)δ (ε(k),�)δ−α − (ε(k),�)γ−α

}

dω

∣
∣
∣
∣
∣

= 0,

and hence,

lim
k→∞

1

|yk|(ε(k),�)β →+∞. (33)

From (28) and (33), it is clear that

∣
∣ ∂ f (x(k),�)

∂x

∣
∣

|yk|(ε(k),�)β →+∞, k →+∞. (34)
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On the other hand,
∣
∣
∣
∣∣

2(ε(k),�)−α−β

|yk|(1−Δ(x(k),�,ε(k),�))

m

∑
j=1

∫

Ω
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}∂g j(x(k),�,ω)

∂x
dω

∣
∣
∣
∣∣

≤ 2(ε(k),�)−α−β

|yk|(1−Δ(x(k),�,ε(k),�))

m

∑
j=1

∫

Ω

∣
∣
∣∣
∣
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}∂g j(x(k),�,ω)

∂x

∣
∣
∣∣
∣
dω

=
2(ε(k),�)−α−β

|yk|(1−Δ(x(k),�,ε(k),�))

m

∑
j=1

∫

Ω
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}

∣
∣∣
∣
∣
∂g j(x(k),�,ω)

∂x

∣
∣∣
∣
∣
dω

(35)

≤ 2(ε(k),�)−α−β

|yk|(1−Δ(x(k),�,ε(k),�))

m

∑
j=1

∫

Ω
max

{
0,g j(x(k),�,ω)− (ε(k),�)γ}Kdω

=
2Kzk

(1−Δ(x(k),�,ε(k),�))
,

where zk is defined by (25). Clearly, |zk| = 1. On the other hand, note that

1−Δ(x(k),�,ε(k),�) → 1, as k → +∞. Thus, 2Kzk

(1−Δ(x(k),�,ε(k),�))
is bounded when

k → ∞. This together with (34) is a contradiction to (30). This completes the first
part of the proof.

For sufficiently large k, every local minimizer (x(k),�,ε(k),�) has the form (x�,0).
It is obvious from Theorem 1 that x� is a feasible point of Problem (P). This indi-
cates that there is a neighborhood of x�, such that for any feasible x of Problem (P)

f (x) = fσk(x,0)≥ fσk(x
�,0) = f (x�).

Therefore, x� is a local minimizer of Problem (P). This completes the proof.

We may now conclude that, under some mild assumptions and the constraint
qualification condition, when the parameter σ is sufficiently large, a local minimizer
of Problem (Pσ ) is a local minimizer of Problem (P).

Based on the results obtained in Theorem 1, Corollary 1, Theorems 2, and 3 we
are in a position to present an effective computational method in the next section.

3 Algorithm and Numerical Results

To show the effectiveness of the proposed method, we consider three examples.
The optimization tool box fmincon within MATLAB environment is used to solve
the optimization Problem (Pσ ), where the integral appeared in fσ (x,ε) is calculated
by using the Simpson’s Rule with a discretization step size h. For Simpson’s Rule,
the global error is of order h4. Thus, by choosing a sufficiently small h, the required
accuracy of the integrations can be achieved.
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Let σ� be the upper bound of the penalty parameter, and ε� be the lower bound
of ε . Based on the proposed new exact penalty function, an efficient algorithm for
solving Problem (Pσ ) is given below:

Algorithm 1
Step 1:

Set σ (0) = 1, ε(0) = 0.1, σ� = 105 ε� = 10−9, choose an initial point (x0,ε0). Set the
iteration index k = 0. Choose appropriate values of β , γ and α . Note that their choices
depend on the specific structure of Problem (P) concerned.

Step 2:

Solve Problem (Pσk ), and let (x(k),�,ε(k),�) be the minimizer obtained.

Step 3:

If ε(k),� > ε�, σ (k) < σ�, set σ (k+1) = 10×σ (k), k := k+1. Go to Step 2 with (x(k),�,ε(k),�)
taken as the new initial point for the new optimization process
Else set ε(k),� := ε�, then go to Step 4

Step 4:

Check the feasibility of x(k),�. If x(k),� is feasible, then it is a local minimizer of Problem
(P). Else go to Step 5

Step 5:

Adjust the parameters α ,β and γ such that conditions of Lemma 1 are satisfied. Set k := 0.
Go to Step 2.

Note that, in Step 4, it is impossible to check the feasibility of g j(x,ω) ≤ 0,
j = 1, . . . ,m, for every ω ∈ Ω . In practice, we choose a set Ω̂ , which contains a
dense enough of points in Ω . Then, the feasibility of g j(x,ω) ≤ 0 is checked over
Ω̂ for each j = 1, . . . ,m.

Example 1. The following example is taken from [4]. It is also used in [16, 17,
20, 21] to test the effectiveness of their algorithms. In this problem, the objective
function:

f (x) =
x2(122+17x1 +6x3 −5x2 + x1x3)+180x3 −36x1 +1224

x2(408+56x1 −50x2 +60x3 +10x1x3 −2x2
1)

(36)

is to be minimized subject to

φ(x,ω)≤ 0 , ∀ ω ∈ Ω , (37)

0 ≤ x1,x3 ≤ 100, 0.1 ≤ x2 ≤ 100, (38)
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where Ω = [10−6,30] and (i =
√−1), while

φ(x,ω) = ℑ
(
T (x,ω)

)−3.33[ℜ
(
T (x,ω)

)
]2 +1.0,

T (x,ω) = 1+
x1 +

x2
iω + iωx3

(iω +3)(−ω2 +2iω +2)
.

Here, ℑ
(
T (x,ω)

)
and ℜ

(
T (x,ω)

)
are, respectively, the imaginary and real parts of

T (x,ω). The initial point is [50,50,50]%, and we choose α , β , and γ to be 1.7, 2.2,
and 3, respectively. Simpson’s Rule with Ω = [10−6,30] being divided into 3,000
equal subintervals is used to evaluate the integral. Moreover, the required dense
subset Ω̂ of Ω is taken to be the set which contains all these discretized points.

By applying Algorithm 1, the solution obtained is listed below:

x� = [16.9328, 45.4605, 34.6875]%

The corresponding cost is f (x�) = 0.174627 and the maximum value of the
continuous inequality constraint on [10−6,30] is −6.05 × 10−6, meaning that the
solution is feasible in regard to the continuous inequality constraint. Note that this
solution is slightly better than the solution reported in [21], where a cost of 0.174778
is obtained.

Example 2. Consider the following semi-infinite optimization problem:

min x2
1 +(x2 −3)2

subject to x2 −2+ x1 sin( t
x2−ω )≤ 0, ∀ t ∈ [0,π]

−1 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 3.

where ω is a parameter which is chosen to be 2.032 as in [17]
Simpson’s Rule with interval [0,π] being divided into 1,000 equal subintervals is

used to evaluate the integral. These discretized points also form a dense subset Ω̂
of the interval [0,π]. The feasibility check is carried over Ω̂ . By using Algorithm 1
with the initial point taken as (0.5,0.5), the solution obtained is (x�1,x

�
2) = [0,2]%

with the cost value f � = 1. This cost value is the same as the one obtained in [21].
The maximum value of the continuous inequality constraint on [0,π] is 0, meaning
that the solution is feasible in regard to the continuous inequality constraint.

Example 3. Consider the following semi-infinite optimization problem:

min (x1 + x2 −2)2 +(x1 − x2)
2 +30[min{0,x1 − x2}]2

subject to x1 cos t + x2 sin t −1 ≤ 0, ∀ t ∈ [0,π].

Again, Simpson’s Rule with the interval [0,π] being partitioned into 1,000 equal
subintervals is used to evaluate the corresponding constraint violation in the exact
penalty function. These discretized points also form the required dense subset Ω̂ of
the interval [0,π]. The check of the feasibility of the continuous inequality constraint
is carried out over Ω̂ . Now, by using Algorithm 1 with the initial point taken as
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[0.5,0.5]%, we obtain the solution x = [0.707100,0.707114]%. The corresponding
cost value is 0.343145. This is also slightly better than the result reported in [21],
where the cost value obtained is 0.34325. Furthermore, the solution obtained by
Algorithm 1 is a feasible point (the maximum value of the continuous inequality
constraint on [0,π] is −4.80×10−7).

4 Conclusions

In this paper, a barrier-like penalty function is introduced to develop an alternative
effective computational method for solving a class of SIPs. This computational
algorithm forces the iterates to stay in a small neighborhood of the feasible region.
There is no need to find an interior point to start with. Any local minimizer of
the penalized optimization problems is also a local minimizer of the original semi-
infinite optimization problem when the penalty parameter is sufficiently large. The
numerical results indicate that the proposed exact penalty method is effective when
compared with other existing methods.
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On the Statistical Models-Based Multi-objective
Optimization

Antanas Žilinskas

1 Introduction

Nonlinear multi-objective optimization is a very active research area. Depending
on the properties of a multi-objective optimization problem, different approaches to
its solution can be applied. The best direction developed is optimization of con-
vex problems; for the latter problems, the methods that generalize the ideas of
classical mathematical programming suit well [2, 14, 32]. For the problems with
the objectives not satisfying the assumption of convexity, metaheuristic methods
are frequently favorable [1, 3, 7, 16]. However, there remains a class of important
problems without sufficient attention of researchers: the problems with black-box,
multimodal, and expensive objectives. In the present paper, namely those problems
with black-box expensive objective functions are considered. The construction of
algorithms for such problems is difficult even at the conceptual level because of
scarce black-box information and the expensiveness of objective functions. The
latter factor restricts eliciting of the desirable information. The rational decision
theory and statistical models of uncertainty seem well appropriate to tackle such
problems. A new approach to constructing global optimization algorithms, induced
by the rational decision theory, is proposed. We postulate the properties to be sat-
isfied by a rational decision concerning the current optimization step. As shown in
[4, 28] such properties are inherent for several well-known single-objective opti-
mization algorithms, e.g. for the P-algorithm [27]. Those properties also facilitate
the implementation of the respective algorithms in the arithmetic of infinity [18, 19].
The proposed approach, from a new more general perspective, substantiates the
single-objective P-algorithm. For the multi-objective optimization, this approach
not only constitutes a new more general substantiation of the known algorithms
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but also facilitates construction of a family of algorithms, similar in a sense to
the multi-objective P-algorithm. The paper is completed with several numerical
examples which illustrate the performance of an algorithm constructed according
to the proposed ideas.

This paper is devoted to commemorate the 60th anniversary of Professor Panos
M. Pardalos.

2 On Statistical Models in Single-Objective Global Optimization

Global optimization (GO) of non-convex functions is a challenging problem. The
development of single-objective GO algorithms for some sub-classes of non-convex
functions is facilitated by the exploitation of analytical properties of objectives [9].
However, in some applications there occur optimization problems where objec-
tives are available either as a complicated computational model or as unfamiliar
software. We focus on the problems where objective functions are expensive be-
cause of the complexity of the computational model; expensiveness here means a
long-lasting computation of a value of the objective function. The complexity of
the computational model normally implies not only the expensiveness of the ob-
jective function but also the uncertainty in its properties. The black-box optimiza-
tion of expensive functions in many respects is quite opposite to the optimization
of objective functions defined by analytical formulae. The limitation in collecting
general information about the function, and particulary about its minima, strongly
requires the rationality in distribution of the points where to compute the objec-
tive function values. Therefore the algorithms, founded on the principles of rational
decision theory, here are of special interest. To construct such algorithms in the
single-objective optimization case, statistical models of multimodal functions have
proved very helpful [15, 20, 21, 23].

The global minimization problem minX∈A f (x), A ⊂ Rd , is considered, where
f (·) is a continuous function, and A is a compact set. The concept of black-box op-
timization includes the assumption on the uncertainty in properties of f (x), e.g. such
an assumption is natural in applied problems where only the values of an objective
function are available computed by an unfamiliar software. Besides the continuity,
other analytical properties of f (x) cannot be substantiated. By the expensiveness
it is supposed that the long-lasting computations are needed to evaluate a single
value of f (x). Such unfavorable, from the optimization point of view, properties of
f (x) as non-differentiability, non-convexity, and multimodality cannot be excluded.
To justify the search strategy in the described situation of uncertainty, a “rational
optimizer” should define a model of uncertainty, e.g. to choose a statistical model
of uncertainty as it is justified in the expected utility theory [6]. We focus on the sta-
tistical models of uncertainty, although other models such as fuzzy logic and rough
sets would also be interesting to investigate.

Let us consider the current minimization step, where n function values have
been computed at the previous steps: yi = f (xi), i = 1, . . . ,n. A rational choice of
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a point for the next computation of the objective function value cannot be per-
formed without the assessment of the uncertainty in the result of the computation.
The only objective information on f (·) is xi, yi, i = 1, . . . ,n. Besides that objective
information, normally some subjective information is available, e.g. the experience
of solution of similar problems in the past. As shown in [26], very general assump-
tions on the rational perception of uncertainty imply a random variable model for the
objective function value to be computed, i.e. those assumptions imply a random vari-
able ξx as a model of f (x), x �= xi, i = 1, . . . ,n. We refer to [21, 23] for the bottom-up
construction of a computational statistical model of objective functions, where the
mentioned above result of the existence of a statistical model in the form of a ran-
dom variable has been augmented by constructive details. Such a construction of the
statistical model is more advantageous than selection of the known stochastic func-
tion for a model of objective functions. In the latter case, f (x) is also considered as
a random variable, but its distribution is complicated to compute since the formulae
of conditional probability should be applied here which are rather complicated from
the computational point of view. That is true even for Gaussian stochastic functions
with a notable exception of Gaussian–Markovian stochastic processes the condi-
tional distribution of which is defined by simple formulas. Therefore such stochastic
processes are attractive models for the construction of one-variable global optimiza-
tion. The Wiener process was the first stochastic process model successfully used
for constructing the one-variable global optimization algorithms [13, 24, 25]. How-
ever, similar simple cases are not known for d ≥ 2. The bottom-up construction
gives more flexibility in a definition of the computationally simple statistical model,
i.e. to define parameters of the distribution of ξx which are more simply computable
than in the case of Gaussian stochastic function.

As mentioned above, the first global optimization algorithm, based on a
stochastic function model, was proposed in [13]. That one-variable algorithm was
constructed using the Wiener process for a model. The current point for computing
the objective function value is chosen to maximize the probability that this function
value falls below a certain level yon:

xn+1 = argmax
x∈A

P{ξ (x)≤ yon |ξ (x1) = y1, . . . ,ξ (xn) = yn}, (1)

where it is supposed that yon < min1≤i≤n yi. That algorithm was substantiated
axiomatically in [27], where it was named as the P-algorithm. For the generaliza-
tion of the P-algorithm to the multidimensional (d > 1) case, its theoretical analysis,
and applications we refer to [23]. The so-called Bayesian methods, where the idea
of minimization of the average error is implemented, are presented in detail in
[15]. An other well-established direction in the development of statistical model-
based global optimization algorithms is rooted in the information theory [20]. In the
present paper, we propose a new idea for substantiation of a statistical model-based
global optimization algorithm.

Let us consider the choice of a point for the current computation of the objective
function value. Such a choice in the black-box situation is a decision under un-
certainty, and the rational decision theory [6] can be applied to make the choice
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rationally. The theory suggests to make a decision by maximizing the average utility.
To compute the latter a statistical model of uncertainty is needed as well as a utility
function. The axioms in [26] substantiate the acceptance of a random variable as a
model of uncertainty for an unknown value of the objective function. Accordingly,
a family of random variables ξx is acceptable as a statistical model of the objective
function. A utility function corresponding to the conception of global optimization
is proposed in [27]. These results substantiate the P-algorithm, i.e. to choose the
point of current computation of the objective function value, where the probability
of improvement is maximal. To implement the algorithm, the family of random vari-
ables ξx should be defined constructively, and generally the Gaussian distribution is
used to describe ξx. In the present paper, we construct an algorithm bypassing the
necessity to define the utility function and the distribution of ξx.

Any characterization of a random variable normally includes a location
parameter (e.g., mean) and a spread parameter (e.g., standard deviation); we use a
minimal description of ξx by these two parameters denoted by m(x) and s(x). The
dependence of both parameters on the information available at the current opti-
mization step (xi, yi, i = 1, . . . ,n) will be included into the notation where needed.
Assume that the utility un+1(x) of computation of the current objective function
value at the point x depends on x via m(x) and s(x). The value of f (·) desired to
achieve yon, yon <min1≤i≤n yi, is also assumed as a parameter which defines un+1(x)

un+1(x) =U(m(x),s(x),yon), (2)

and the point of the current computation is defined as the maximizer of un+1(x). The
following assumptions on U(·) express the rationality of invariance of the utility
with respect to the scales of the objective function values:

U(m(x)+ c,s(x),yon + c) = U(m(x),s(x),yon),

U(m(x) ·C,s(x) ·C,yon ·C) = U(m(x),s(x),yon),C > 0. (3)

Since the minimization problem is considered, it is desirable to find a possibly small
objective function value at every iteration; therefore, we postulate that

m < μ implies U(m,s,y)>U(μ ,s,y). (4)

The postulated properties are inherent for several well-known optimization algo-
rithms as shown in [4, 28].

Theorem 1. The function that satisfies assumptions (3) is of the following structure

U(m(x),s(x),yon) = P

(
yon −m(x)

s(x)

)
. (5)

Moreover, if assumption (4) is satisfied, then P(·) is an increasing function.

Proof. The substitution of −yon for c in the equality U(m(x) + c,s(x),yon + c) =
U(m(x),s(x),yon) results in
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U(m(x),s(x),yon) =U(m(x)− yon,s(x),0). (6)

The substitution of 1/s(x) for C in (6) and the second equality in (3) yield the fol-
lowing equality:

U(m(x),s(x),yon) =U

(
m(x)− yon

s(x)
,1,0

)
. (7)

Now, equality (5) is obtained simply by denoting P(z) = U(−z,1,0). Assumption
(4) obviously implies that P(z) is an increasing function of z.

The theorem substantiates the construction of the global optimization algorithm
the n+1 iteration of which is defined by the solution of the following maximization
problem

xn+1 = max
x∈A

P

(
yon −m(x|xi,yi, i = 1, . . . ,n)

s(x|xi,yi, i = 1, . . . ,n)

)
. (8)

Formula (8) is coincident with that derived in [27], where the assumption on the
Gaussian distribution of ξ (x) is made. In that case, P(·) is a cumulative distribu-
tion function of Gaussian distribution, and the utility of the current computation
is interpreted as the improvement probability. For single-objective optimization the
theorem generalizes the known algorithm. For multi-objective optimization such a
generalization is more important since it provides more flexibility in constructing
relevant algorithms.

3 Multi-objective Optimization Based on Statistical Models

Recently several papers have been published which propose multi-objective
optimization algorithms that generalize single-objective optimization algorithms
based on statistical models of objective functions [5, 10–12, 16, 22, 30]. The
numerical results included there show the relevance of the proposed algorithms to
the problems of multi-objective optimization with black-box expensive objectives.
We propose here a new idea for constructing relevant algorithms.

A multi-objective minimization problem can be stated almost identically to a
single-objective problem,

min
x∈A

F(x), F(x) = ( f1(x), f2(x), . . . , fr(x))
T , A ⊂ Rd , (9)

however, the concept of solution in this case is more complicated. For the definitions
of the solution to a multi-objective optimization problem with nonlinear objectives
we refer to [14].

Generally speaking, the solution to a multi-objective optimization problem can
be described as a set of objective vectors which well represents either the set of
Pareto optimal solutions or its favorable subset; for a rigorous analysis, we refer
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to [17]. The following two cases can be pointed as extreme: the approximation
(discrete representation) of the whole Pareto optimal set, and an objective vector
sufficiently close to a desirable one. In the real-world applications, the notion of
solution can change. Frequently, in the starting optimization phase, a rough approx-
imation of the whole Pareto optimal set is of interest; in the intermediate phase, a
subset of the Pareto optimal set of interest is intended to be approximated more pre-
cisely; finally, a specific Pareto optimal solution is sought. A similar strategy is also
justified in single-objective global optimization: starting from a uniform search over
the feasible region, concentrating the search in prospective subregions, and finish-
ing with a local algorithm chosen according to the local properties of the objective
function.

In the case of multi-objective optimization, a vector objective function F(x) =
( f1(x), f2(x), . . . , fr(x))T is considered. The same arguments, as in the case of
single-objective optimization, corroborate the applicability of statistical models.
The assumptions on black-box information and expense of the objective func-
tions together with the standard assumptions of rational decision making imply the
acceptability of a family of random vectors Ξ(x) = (ξ1(x), . . . ,ξr(x))T , x ∈ A, as
a statistical model of F(x). Similarly, the location and spread parameters of ξi(x),
denoted by mi(x), si(x), i = 1, . . . ,r, are essential in the characterization of ξi(x).
For a more specific characterization of Ξ(x), e.g. by a multidimensional distribution
of Ξ(x), the available information usually is insufficient. If the information on, e.g.
correlation between ξi(x) and ξ j(x) were available, the covariance matrix could be
included into the statistical model. However, in the present paper we assume that the
objectives are independent, and the spread parameters are represented by a diagonal
matrix Σ(x) which diagonal elements are equal to s1, . . . ,sr. Similarly to the case of
single-objective optimization we assume that the utility of choice of the point for
the current computation of the vector value F(x) has the following structure

un+1(x) =U(m(x),Σ(x),yon), (10)

where m(x) = (m1(x), . . . ,mr(x))T , and yon denotes a vector desired to improve.
At the current optimization step a point for computing the value of F(x) is sought

by an optimization algorithm which maximizes un+1(x) which should be invariant
with respect to the scales of data. Such a rationality assumption can be expressed by
the following properties of U(·):

U(m(x)+ c,Σ(x),yon + c) = U(m(x),Σ(x),yon), c = (c1, . . . ,cr)
T ,

U(C ·m(x),C ·Σ(x),C · yon) = U(m(x),Σ(x),yon),Ci > O,

C =

⎛

⎝
C1 0 . . . 0
. . . . . . . . . . . .
0 0 . . . Cr

⎞

⎠ . (11)

Since the minimization problem is considered, it is desirable to find a vector
objective with possibly small values at every iteration; therefore, we postulate that
for μ = (μ1, . . . ,μr)

T , where μi ≥ mi, i = 1, . . . ,r and at least one inequality is strict,
the following inequality is valid
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U(m,Σ ,y)>U(μ ,Σ ,y). (12)

Theorem 2. The function that satisfies assumptions (11) is of the following
structure:

U(m(x),Σ(x),yon) = π
(

yon
1 −m1(x)

s1(x)
, . . . ,

yon
r −mr(x)

sr(x)

)
. (13)

Moreover, if assumption (12) is satisfied, then P(·) is an increasing function of all
variables.

Proof. The proof repeats the main steps of the proof of Theorem 1 replacing
the operations with scalar variables, where necessary, by the operations with vec-
tors/matrices.

The substitution of −yon for c in the equality U(m(x) + c,Σ(x),yon + c) =
U(m(x),Σ(x),yon) results in

U(m(x),Σ(x),yon) =U(m(x)− yon,Σ(x),0). (14)

The substitution of Σ(x)−1 for C in (14) and the second equality in (3) gives the
following equality:

U(m(x),Σ(x),yon) =U
(
Σ(x)−1 · (m(x)− yon), I,0

)
. (15)

Now, equality (13) is obtained simply by denoting π(z1, . . . ,zr) = U(−z, I,0).
Assumption (12) obviously implies that π(z) is an increasing function of zi.

Theorem 2 states that a rational choice of a point for the current computation of
objectives is the maximization problem of aggregated objectives (yon

i −mi(x))/si(x).
Such a conclusion is not surprising since the implementation of optimal, in some
sense, single-objective optimization algorithms normally involves the optimiza-
tion of an auxiliary function which formalizes the concept of optimality. The
previously developed multi-objective P-algorithm [30] uses a special case of scalar-
ization, where P(·) means a probability that the Gaussian random vector Ξ(x)
dominates yon:

P

(
yon

1 −m1(x)

s1(x)
, . . . ,

yon
r −mr(x)

sr(x)

)
=

r

∏
i=1

Φ
(

yon
i −mi(x)

si(x)

)
,

Φ(z) =
∫ z

−∞

1√
2π

exp

(−t2

2

)
dt. (16)

The substantiation of rationality of various scalarizations opens a broad
potentiality of the development of multi-objective optimization algorithms based
on statistical models of objective functions. However, the investigation of compati-
bility of a priori information on the properties of objective functions with particular
scalarization methods is needed to realize the mentioned potentiality. The newly
proposed algorithm is called π-algorithm to show its close relationship with the
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earlier developed P-algorithm; a Greek letter is used since this algorithm is pro-
posed in the paper dedicated to commemorate the 60th anniversary of the famous
Greek, the leader of global optimization, Professor Panos M. Pardalos.

As an example, the bi-objective π-algorithm has been implemented. The
statistical model described in [23, pp. 158–159], has been used. A product of
two arctangents was used for π(·). Then the n+1 step of the π-algorithm is defined
as the following optimization problem

xn+1 = arg max
x∈A

arctan

(
yon

1 −m1(x)

s1(x)
+

π
2

)
· arctan

(
yon

2 −m2(x)

s2(x)
+

π
2

)
, (17)

where the information collected at previous steps is taken into account when
computing mi(x) = mi(x|x j,y j, j = 1, . . . ,n) and si(x) = si(x|x j,y j, j = 1, . . . ,n).
The maximization in (17) was performed by a simple version of multistart: from the
best of 1,000 points, generated randomly with uniform distribution over the feasible
region, a local descent was performed using the codes from the MATLAB Opti-
mization Toolbox. By this implementation we wanted to check whether the function
arctan(·) ·arctan(·) chosen rather arbitrarily could be as good as the Gaussian cumu-
lative distribution function for constructing statistical model-based multi-objective
optimization algorithms. The experimentation with this version of the algorithm can
be helpful also in selecting the most appropriate statistical model for a further devel-
opment where two alternatives seem competitive: a Gaussian random field versus a
statistical model, based on the assumptions of subjective probability [21].

4 Experimental Results

The algorithm proposed in the present paper was implemented in MATLAB, and
some experiments have been done for its comparison with the multi-objective
P-algorithm, constructed using a homogeneous isotropic random field for the
statistical model [30]. Also the optimization results from [30], obtained by a
uniform random search, are included to highlight the properties of the selected test
problems. The results obtained by a multi-objective genetic algorithm (the MAT-
LAB implementation in [8]) are also provided for the comparison. Two examples
are presented and commented; we think that extensive competitive testing would be
premature, as argued in [30].

Two bi-objective test problems of two variables are chosen: the first multi-
objective test problem is composed using typical test functions for a single-objective
global optimization, and the second one is chosen from the set of functions,
frequently used for testing multi-objective algorithms. The first vector function is
composed of two Shekel functions:

f1(X) = − 1
0.1+(x1−0.1)2+2(x2−0.1)2 −

1
0.14+20(x1−0.45)2+(x2−0.55)2 ,
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f2(X) = − 1
0.15+40(x1−0.55)2+(x2−0.45)2 −

1
0.1+(x1−0.3)2+(x2−0.95)2 ,

0 ≤ xi ≤ 1, i = 1,2. (18)

Shekel test functions are frequently used for testing single-objective global
optimization algorithms [21]. For the representation of both objective functions by
contour lines as well as for the drawing of the feasible objective region we refer to
[30]. The second problem used was proposed in [7]; see also [3, pp. 339–340]. We
present below its definition for an arbitrary dimension of the decision variables d:

f1(X) = 1−exp

(

−
d

∑
i=1

(xi −1/
√

n)2

)

,

f2(X) = 1− exp

(

−
d

∑
i=1

(xi +1/
√

n)2

)

,

−4 ≤ xi ≤ 4, i = 1, . . . ,d. (19)

Both problems are constructed using the objective functions which are hard from
the single-objective global optimization point of view: their response surface is
rather flat over a large part of the feasible decision region, and the minima have
the form of sharp spikes. The worst case problems of multi-objective optimization
are also of this type [29].

Since the considered approach is oriented to “expensive” problems, we are
interested in the quality of the result obtained computing a modest number of the
values of objectives. Following the concept of experimentation in [30], a termination
condition of all the considered algorithms was defined by the maximum number of
computations of the objective function values, equal to 100. The parameters of the
statistical model, needed by the π-algorithm, have been estimated using a sample
of F(x) values, chosen similarly to the experiments in [30]: the sites for the first 50
computations of F(x) were chosen randomly with a uniform distribution over the
feasible region; the obtained data were used not only for estimating parameters but
also in planning of the next 50 observations according to (17).

An important parameter of the π-algorithm is yon. The vector yon should be not
dominated by the known values y1, . . . ,yn. A heuristic recommendation is to select
yon at a possibly symmetric site with respect to the global minima of objectives.
We have selected the values of yon used in [30]: yon = (−0.6,−0.6) in the case of
problem (18), and yon = (0.6,0.6) in the case of problem (19). Typical results are
illustrated in Fig. 1.

Several metrics have been proposed in recent publications for the comparison of
multi-objective algorithms; for the comprehensive list and discussion, we refer to
[3]. Generally speaking, it is aimed to assess the quality of approximations of the
Pareto set and the efficiency of algorithms, used to compute these approximations.
In the present paper, we consider only the approximation quality. Besides the results
of experimentation with the π-algorithm, the results of the P-algorithm, the uniform
random search, and the genetic algorithm are presented for the comparison. Since all
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Fig. 1 The points generated by the π-algorithm in the objective feasible region of
problem (18) on the left side, and of problem (19) on the right side. Non-dominated
solutions are denoted by thicker points. A line indicates the Pareto set

the considered algorithms are randomized, the statistical estimates of the considered
metrics are presented. The results of the P-algorithm are taken from [30]. The results
of the π-algorithm are obtained as the averages from 200 independent runs.

The following metrics, used for the quantitative assessment of the precision of
Pareto set approximation, have been evaluated: the number of nondominated solu-
tions found (NN), the generational distance (GD), and the epsilon indicator (EI).
GD is used to estimate, how close to the Pareto set are the found non-dominated
points; the role of this metric in testing of multi-objective optimization algorithms
is discussed, e.g., in [3]. GD is computed as the maximum of distances between
the found non-dominated solutions and their closest neighbors from the Pareto set.
EI is a metric suggested in [31] which integrates the measures of approximation
precision and spread: it is the max–min distance between the Pareto set and the set
of the found non-dominated solutions

EI = max
1≤i≤K

min
1≤ j≤N

||Zi −Fj||, (20)

where Fj are the non-dominated solutions found by the considered algorithm, and
{Zi, i = 1, . . . ,K} is the set of points well representing the Pareto set, i.e. Zi are suf-
ficiently densely and uniformly distributed over the Pareto set as described in [30].
The mean values and standard deviations of the considered metrics are presented in
Table 1.

Almost all the results of the π-algorithm are somewhat better than those of
the P-algorithm. The only exception is GD in the case of problem (19). How-
ever, the isolated comparison of two numbers here is insufficient, since NN of the
π-algorithm in this case is double of that of the P-algorithm.

The experimental results corroborate the acceptability of the departure from the
Gaussian model, and the good adaptivity of the generalized statistical model [21, 26]
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Table 1 The performance criteria of the considered algorithms for problems (18),
and (19)

Algorithm π-algorithm P-algorithm
Problem Problem (18) Problem (19) Problem (18) Problem (19)

NN 20.2 3.10 19.6 2.4 15.7 2.0 9.87 1.4
GD 0.044 0.027 0.055 0.028 0.070 0.051 0.015 0.0061
EI 0.13 0.074 0.14 0.047 0.13 0.053 0.20 0.034

Algorithm GA RUS
Problem Problem (18) Problem (19) Problem (18) Problem (19)

NN 9.3 2.5 8.2 2.2 12.1 3.0 6.6 1.6
GD 0.30 0.079 0.18 0.098 0.23 0.081 0.11 0.068
EI 0.38 0.078 0.55 0.21 0.26 0.056 0.33 0.097

to the properties of the objective functions; such a conclusion well consists with the
properties of the generalized statistical models in case of single-objective global
optimization.

In the second half of the Table 1 similar data of the experiments with the random
uniform search (RUS) and the genetic algorithm (GA) is presented for the compari-
son. As mentioned above, functions (18) and (19) are somewhat similar to the worst
case Lipshitz objective functions [29]. Therefore it is interesting to assess the perfor-
mance of the worst case optimal algorithm for these problems. RUS is a randomized
approximation of the optimal worst case algorithm which computes the values of the
objective functions at the centers of balls optimally covering the feasible region. The
results of experiments with RUS from [30], where the search was stopped after 100
computations of the objectives, are included in Table 1. The performance of RUS
is obviously worse than that of the π-algorithm and of the P-algorithm. In [30] it
is also reported how many computations are needed to RUS to achieve the average
values of the metrics EI and GD comparable with those by the P-algorithm after
100 observations. The RUS, while solving problem (18), needs about 600 observa-
tions to reach average values of EI (0.13) and GD (0.096), which are close to those
of the P-algorithm presented in Table 1. The averaged values of EI and GD, equal
to 0.2331 and 0.0810 correspondingly, are reached by the RUS for (19) after 200
observations; in that case, the RUS needs only twice as many observations to match
up the P-algorithm with respect to EI and GD. As it could be expected from the
theory in [29], the relative performance of the uniform search was better in the case
where the objective functions are more similar to the worst case ones.

The experiments with GA are reported to illustrate the hardness of the
considered black-box multi-objective expensive global optimization problems,
by demonstrating that the conventional algorithms are inappropriate here. The
“Pareto Genetic Algorithm” from the book oriented to practical applications [8]
was chosen for the experimentation. The intrinsic parameters of the GA have been
selected as recommended by the authors in [8]. The problem relevant parameters,
i.e., the population size, and the number of iterations, were chosen equal to 20
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Fig. 2 The solutions (of problem (18) on the left side, and of problem (19) on the
right side) generated by the GA algorithm at the last (fifth) iteration. Non-dominated
solutions are denoted by thicker points. A line indicates the Pareto set

and 5 correspondingly, taking into account the termination condition of the other
algorithms considered in our investigation. The values of metrics presented in
Table 1 are obtained as averages of the 200 independent runs of the algorithm. The
typical results presented in Fig. 2 illustrate large values of EI and GD.

Even with ten times larger number of computation of the objective functions
values, where the population size was equal to 100 and the number of iterations
was equal to 10, the average values of the considered metrics for GA were worse
than those of the π-algorithm in Table 1. For the problem (18) the average values of
EI and GD were 0.27 and 0.23 correspondingly; for the problem (19), those values
were 0.29 and 0.10 correspondingly.

The presented results of the preliminary numerical experiments corroborate the
theoretical conjecture that the proposed approach is competitive in the field of black-
box expensive global optimization and deserves further investigation. The develop-
ment of algorithms for the problems of larger dimensionality and with larger number
of objectives is, although challenging, but highly promising.

5 Conclusions

The statistical model-based approach to single-objective global optimization is
generalized relaxing some assumptions presented in the previous publications.
The generalized approach is extended to the black-box multi-objective opti-
mization of expensive objectives. The proposed approach facilitates construc-
tion of a family of algorithms, similar to the multi-objective P-algorithm. The
results of experimentation with small size test problems are promising, and for
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the development of algorithms, suitable for solving real-world problems, the
generalization of the theory of statistical model-based global optimization to the
multi-objective case is highly desirable.
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24. Žilinskas, A.: One-step bayesian method for the search of the optimum of one-variable

functions. Cybernetics and Systems Analysis, 11(1), 160–166 (1975)
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