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Abstract
Energy minimization methods are a very popular tool in image and signal
processing. This chapter deals with images defined on a discrete finite set.
The energies under consideration can be differentiable or not or convex or not.
Analytical results on the minimizers of different energies are provided that reveal
salient features of the images recovered in this way, as a function of the shape of
the energy itself. An intrinsic mutual relationship between energy minimization
and modeling via the choice of the energy is thus established. Examples and
illustrations corroborate the presented results. Applications that take benefit from
these results are presented as well.

1 Introduction

In numerous applications, an unknown image or a signal uo 2 R
p is represented by

data v 2 R
q according to an observation model, called also forward model

v D A.uo/ with noise; (1)

where A W Rp ! R
q is a (linear or nonlinear) transform. When u is anm�n image,

its pixels are arranged columnwise into a p-length real vector, where p D mn and
the original uŒi; j � is identified with uŒ.i � 1/mC j �. Some typical applications are,
for instance, denoising, deblurring, segmentation, zooming and super-resolution,
reconstruction in inverse problems, coding and compression, feature selection, and
compressive sensing. In all these cases, recovering a good estimate Ou for uo needs
to combine the observation along with a prior and desiderata on the unknown uo. A
common way to define such an estimate is

Find Ou such that F.Ou; v/ D min
u2UF.u; v/; (2)

F.u; v/ D ‰.u; v/C ˇˆ.u/; (3)

where F W Rp � R
q ! R is called an energy (or an objective), U � R

p is a set of
constraints, ‰ is a data-fidelity term, ˆ brings prior information on uo, and ˇ > 0
is a parameter which controls the trade-off between ‰ and ˆ.

The term‰ ensures that Ou satisfies (1) quite faithfully according to an appropriate
measure. The noise n is random and a natural way to derive ‰ from (1) is to use
probabilities; see, e.g., [7, 32, 37, 56]. More precisely, if �.vju/ is the likelihood of
data v, the usual choice is

‰.u; v/ D � log�.vju/: (4)

For instance, ifA is a linear operator and v D AuCnwhere n is additive independent
and identically distributed (i.i.d.) zero-mean Gaussian noise, one finds that
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‰.u; v/ / kAu � vk2
2: (5)

This remains quite a common choice partly because it simplifies calculations.
The role of ˆ in (3) is to push the solution to exhibit some a priori known or

desired features. It is called prior or regularization or penalty term. In many image
processing applications,ˆ is of the form

ˆ.u/ D
rX

iD1

�.kDiuk/; (6)

where for any i 2 f1; : : : ; rg, Di W R
p ! R

s , for s an integer s > 1, are linear
operators and k � k is usually the `1 or the `2 norm. For instance, the family fDig �
fDi W2 f1; : : : ; rgg can represent the discrete approximation of the gradient or the
Laplacian operator on u or the finite differences of various orders or the combination
of any of these with the synthesis operator of a frame transform or the vectors of the
canonical basis of Rr . Note that s D 1 if fDi g are finite differences or a discrete
Laplacian; then

s D 1 ) �.kDiuk/ D �.jDiuj/:

And if fDig are the basis vectors of Rr , one has �.jDiuj/ D �.juŒi �j/. In (6), � W
RC 7! R is quite a “general” function, often called a potential function (PF). A
very standard assumption is that

H1 � W RC ! R is proper, lower semicontinuous (l.s.c.) and increasing on RC,
with �.t/ > �.0/ for any t > 0.

Some typical examples for � are given in Table 1 and their plots in Fig. 1.

Remark 1. If �0.0C/ > 0 the function t ! �.jt j/ is nonsmooth at zero in which
case ˆ is nonsmooth on [r

iD1Œw 2 R
p W Diw D 0�. Conversely, �0.0C/ D 0 leads

to a smooth at zero t ! �.jt j/. With the PF (f13),ˆ leads to the counting function,
commonly called the `0-norm.

For the human vision, an important requirement is that the prior ˆ promotes
smoothing inside homogeneous regions but preserves sharp edges. According to a
fine analysis conducted in the 1990s and summarized in [7], � preserves edges if H1
holds as if H2, stated below, holds true as well:

H2 lim
t!1

�0.t/
t

D 0:

This assumption is satisfied by all PFs in Table 1 except for (f1) in case if ˛ D 2.
Note that there are numerous other heuristics for edge preservation.
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Table 1 Commonly used PFs � W RC ! R where ˛ > 0 is a parameter. Note that among the
nonconvex PFs, (f8), (f10), and (f12) are coercive, while the remaining PFs, namely, (f6), (f7), (f9),
(f11), and (f13), are bounded. And all nonconvex PFs with �0.0C/ > 0 are concave on RC. Recall
that (f6) is the discrete equivalent of the Mumford-Shah (MS) prior [17, 72]

Convex PFs

�0.0C/ D 0 �0.0C/ > 0

(f1) �.t/ D t ˛; 1 < ˛ 6 2 (f5) �.t/ D t

(f2) �.t/ D p
˛ C t 2

(f3) �.t/ D log.cosh.˛t//

(f4) �.t/ D t=˛ � log .1 C t=˛/

Nonconvex PFs

�0.0C/ D 0 �0.0C/ > 0

(f6) �.t/ D minf˛t 2; 1g (f10) �.t/ D t ˛; 0 < ˛ < 1

(f7) �.t/ D ˛t 2

1 C ˛t 2
(f11) �.t/ D ˛t

1 C ˛t
(f8) �.t/ D log.˛t 2 C 1/ (f12) �.t/ D log .˛t C 1/

(f9) �.t/ D 1 � exp .�˛t 2/ (f13) �.0/ D 0; �.t/ D 1 if t ¤ 0

0 1
0

1

0 1
0

1

Convex PFs Nonconvex PFs

Fig. 1 Plots of the PFs given in Table 1. PFs with �0.0C/ D 0 (- - -), PFs with �0.0C/ > 0 (—)

Background

Energy minimization methods, as described here, are at the crossroad of several
well-established methodologies that are briefly sketched below.

• Bayesian maximum a posteriori (MAP) estimation using Markov random field
(MRF) priors. Such an estimation is based on the maximization of the posterior
distribution �.ujv/ D �.vju/�.u/=Z; where �.u/ is the prior model for uo and
Z D �.v/ can be seen as a constant. Equivalently, Ou minimizes with respect to u
the energy

F.u; v/ D � ln�.vju/� ln�.u/:



Energy MinimizationMethods 161

Identifying these first term above with ‰. � ; v/ and the second one with ˆ shows
the basis of the equivalence. Classical papers on MAP energies using MRF priors
are [14–16, 20, 51, 56]. Since the pioneering work of Geman and Geman [56],
various nonconvex PFs � were explored in order to produce images involving
neat edges; see, e.g., [54, 55, 65]. MAP energies involving MRF priors are also
considered in many books, such as [32, 53, 64]. For a pedagogical account,
see [96].

• Regularization for ill-posed inverse problems was initiated in the book of
Tikhonov and Arsenin [93] in 1977. The main idea can be stated in terms of
the stabilization of this kind of problems. Useful textbooks in this direction are,
e.g., [61, 69, 94] and especially the recent [91]. This methodology and its most
recent achievements are nicely discussed from quite a general point of view in
Chapter �Regularization Methods for Ill-Posed Problems in this handbook.

• Variational methods are related to PDE restoration methods and are naturally
developed for signals and images defined on a continuous subset � � R

d , d D
1; 2; : : : I for images d D 2. Originally, the data-fidelity term is of the form (5)
for A D Id and ˆ.u/ D R

�
�.kDuk2/dx, where � is a convex function as those

given in Table 1 (top). Since the beginning of the 1990s, a remarkable effort
was done to find heuristics on � that enable to recover edges and breakpoints
in restored images and signals while smoothing the regions between them; see,
e.g., [7, 13, 26, 31, 59, 64, 73, 85, 87]. One of the most successful is the Total
Variation (TV) regularization corresponding to �.t/ D t , which was proposed
by Rudin, Osher, and Fatemi in [87]. Variational methods were rapidly applied
along with data-fidelity terms ‰. The use of differential operatorsDk of various
orders k > 2 in the prior ˆ has been recently investigated; see, e.g., [22, 23].
More details on variational methods for image processing can be found in several
textbooks like [3, 7, 91].

For numerical implementation, the variational functional is discretized andˆ
takes the form of (6). Different discretization approaches are considered; see,
e.g., [2, 27, 95]

The equivalence between these approaches has been considered in several
seminal papers; see, e.g., [37,63]. The state of the art and the relationship among all
these methodologies are nicely outlined in the recent book of Scherzer et al. [91].
This book gives a brief historical overview of these methodologies and attaches a
great importance to the functional analysis of the presented results.

TheMain Features of theMinimizers as a Function of the Energy

Pushing curiosity ahead leads to various additional questions. One observes that
frequently data fidelity and priors are modeled separately. It is hence necessary to
check if the minimizer Ou of F. � ; v/ obeys all information contained in the data
model ‰ as well as in the prior ˆ. Hence the question: how the prior ˆ and the
data-fidelity ‰ are effectively involved in Ou – a minimizer of F. � ; v/. This leads to
formulate the following inverse modeling problem:

http://dx.doi.org/10.1007/978-1-4939-0790-8_3
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Analyze the mutual relationship between the salient features exhibited by
the minimizers Ou of an energy F. � ; v/ and the shape of the energy itself.

(7)

This problem was posed in a systematic way and studied since [74, 75]. The point
of view provided by (7) is actually adopted by many authors. Problem (7) is totally
general and involves crucial stakes:

• It yields rigorous and strong results on the minimizers Ou.
• Such a knowledge enables a real control on the solution – the reconstructed image

or signal Ou.
• Conversely, it opens new perspectives for modeling.
• It enables the conception of specialized energies F that fulfill the requirements

in applications.
• This kind of results can help to derive numerical schemes using knowledge on

the solutions.

Problem (7) remains open. The results presented here concern images, signals, and
data living on finite grids. In this practical framework, the results in this chapter are
quite general since they hold for energies F which can be convex or nonconvex or
smooth or nonsmooth, and results address local and global minimizers.

Organization of the Chapter

Some preliminary notions and results that help the reading of the chapter are
sketched in Sect. 2. Section 3 is devoted to the regularity of the (local) minimizers
of F. � ; v/ with a special focus on nonconvex regularization. Section 4 shows
how edges are enhanced using nonconvex regularization. In Sect. 5 it is shown
that nonsmooth regularization leads typically to minimizers that are sparse in the
space spanned by fDig. Conversely, Sect. 6 exhibits that the minimizers relevant to
nonsmooth data fidelity achieve an exact fit for numerous data samples. Section 7
considers results when both ‰ and ˆ are nonsmooth. Illustrations and applications
are presented.

2 Preliminaries

In this section we set the notations and recall some classical definitions and results
on minimization problems.

Notation

We systematically denote by Ou a (local) minimizer of F. � ; v/. It is explicitly
specified when Ou is a global minimizer.
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• Dn
j – The differential operator of order n with respect to the j th component of a

function.
• vŒi � – The i th entry of vector v.
• #J – The cardinality of the set J .
• J c D InJ – The complement of J � I in I where I is a set.
• K? – The orthogonal complement of a sub-vector space K � R

n.
• A� – The transpose of a matrix (or a vector) where A is real valued.
• A � 0 (A � 0) – The matrix A is positive definite (positive semi-definite)
• 1n 2 R

n –The n-length vector composed of ones, i.e., 1nŒi � D 1, 1 6 i 6 n.
• L

n – The Lebesgue measure on R
n.

• Id – The identity operator.
• k:k� – A vector or a matrix �-norm.

• RC
defD ft 2 R W t > 0g and R

�C
defD ft 2 R W t > 0g.

• TV – Total Variation.
• fe1; : : : ; eng – The canonical basis of Rn, i.e., ei Œi � D 1 and ei Œj � D 0 if i ¤ j .

Reminders and Definitions

Definition 1. A function F W Rp ! R is coercive if lim
kuk!1

F.u/ D C1.

A special attention being dedicated to nonsmooth functions, we recall some basic
facts.

Definition 2. Given v 2 R
q , the function F. � ; v/ W Rp ! R admits at Ou 2 R

p a
one-sided derivative in a direction w 2 R

p , denoted ı1F.Ou; v/.w/, if the following
limit exists:

ı1F.Ou; v/.w/ D lim
t&0

F.Ou C tw; v/ � F.Ou; v/
t

;

where the index 1 in ı1 means that derivatives with respect to the first variable of F
are addressed.

Here ı1F.Ou; v/.w/ is a right-side derivative; the left-side derivative is
�ı1F.Ou; v/.�w/. If F. � ; v/ is differentiable at Ou, then ı1F.Ou; v/.w/ D D1F.Ou; v/w
where D1 stands for differential with respect to the first variable (see paragraph
“Notation”). For � W RC ! R, we denote by �0.t�/ and �0.tC/ its left-side and
right-side derivatives, respectively.

The classical necessary condition for a local minimum of a (nonsmooth) function
is recalled [60, 86]:

Theorem 1. If F. � ; v/ has a local minimum at Ou 2 R
p , then ı1F.Ou; v/.w/ > 0, for

every w 2 R
p .
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If F. � ; v/ is Fréchet differentiable at Ou, one finds D1F.Ou; v/ D 0.
Rademacher’s theorem states that if F is proper and Lipschitz continuous on R

p ,
then the set of points in R

p at which F is not Fréchet differentiable form a set of
Lebesgue measure zero [60, 86]. Hence F. � ; v/ is differentiable at almost every u.
However, when F. � ; v/ is nondifferentiable, its minimizers are typically located at
points where F. � ; v/ is nondifferentiable; see, e.g., Example 1 below.

Example 1. Consider F.u; v/ D 1

2
ku � vk2 C ˇjuj for ˇ > 0 and u; v 2 R. The

minimizer Ou of F. � ; v/ reads as

Ou D
�

0 if jvj 6 ˇ

v � sign.v/ˇ if jvj > ˇ (Ou is shrunk w.r.t. v.)

Clearly, F. � ; v/ is not Fréchet differentiable only at zero. For any jvj 6 ˇ, the
minimizer of F. � ; v/ is located precisely at zero.

The next corollary shows what can happen if the necessary condition in
Theorem 1 fails.

Corollary 1. Let F be differentiable on .Rp � R
q/ n‚0 where

‚0
defD f.u; v/ 2 R

p � R
q W 9w 2 R

p; � ı1F.u; v/.�w/ > ı1F.u; v/.w/g: (8)

Given v 2 R
q , if Ou is a (local) minimizer of F. � ; v/ then

.Ou; v/ 62 ‚0:

Proof. If Ou is a local minimizer, then by Theorem 1, ı1F.Ou; v/.�w/ > 0, hence

� ı1F.Ou; v/.�w/ 6 0 6 ı1F.Ou; v/.w/; 8w 2 R
p: (9)

If .Ou; v/ 2 ‚0, the necessary condition (9) cannot hold. ut

Example 2. Suppose that ‰ in (3) is a differentiable function for any v 2 R
q . For a

finite set of positive numbers, say �1; : : : ; �k , suppose that the PF � is differentiable
on RC n [k

jD1�j and that

�0
�
��
j

�
> �0

�
�C
j

�
; 1 6 j 6 k: (10)

Given a (local) minimizer Ou, denote

I D f1; : : : ; rg and IOu D fi 2 I W kDi Ouk2 D �j ; 1 6 j 6 kg:
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Define F.Ou; v/ D ‰.Ou; v/C ˇ
X

i2InIOu

�.kDi Ouk2/, which is differentiable at Ou.

Clearly, F.Ou; v/ D F.Ou; v/ C ˇ
X

i2IOu

�.kDi Ouk2/. Applying the necessary condition

(9) for w D Ou yields

ˇ
X

i2IOu

�0 �kDi Ouk�
2

�
6 �D1F.Ou; v/.Ou/ 6 ˇ

X

i2IOu

�0 �kDi OukC
2

�
:

In particular, one has
P

i2IOu
�0 �kDi Ouk�

2

�
6

P
i2IOu

�0 �kDi OukC
2

�
, which contradicts

the assumption on �0 in (10). It follows that if Ou is a (local) minimizer of F. � ; v/,
then IOu D ¿ and

kDi Ouk2 ¤ �j ; 1 6 j 6 k; 8i 2 I:

A typical case is the PF (f6) in Table 1, namely, �.t/ D minf˛t2; 1g. Then k D 1
and �1 D 1p

˛
.

The following existence theorem can be found, e.g., in the textbook [35].

Theorem 2. For v 2 R
q , let U � R

p be a nonempty and closed subset and
F. � ; v/ W U ! R a lower semicontinuous (l.s.c.) proper function. IfU is unbounded
(with possibly U D R

p), suppose that F. � ; v/ is coercive. Then there exists Ou 2 U
such that F.Ou; v/ D inf

u2U F.u; v/.

This theorem gives only sufficient conditions for the existence of a minimizer.
They are not necessary, as seen in the example below.

Example 3. Let F W R2 � R
2 ! R involve (f6) in Table 1 and read

F.u; v/ D .uŒ1��vŒ1�/2Cˇ�.j uŒ1��uŒ2� j/ for �.t/ D maxf˛t2; 1g; 0 < ˇ < 1:

For any v,F. � ; v/ is not coercive since it is bounded by ˇ in the direction spanned by
f.0; uŒ2�/g. However, its global minimum is strict and is reached for OuŒ1� D OuŒ2� D
vŒ1� with F.Ou; v/ D 0.

To prove the existence of optimal solutions for more general energies, we refer
to the textbook [9].

Most of the results summarized in this chapter exhibit the behavior of the
minimizer points Ou of F. � ; v/ under variations of v. In words, they deal with local
minimizer functions.

Definition 3. Let F W Rp � R
q ! R and O 	 R

q . We say that U W O ! R
p is a

local minimizer function for the family of functions F. � ; O/ D fF. � ; v/ W v 2 Og
if for any v 2 O , the function F. � ; v/ reaches a strict local minimum at U.v/.
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When F. � ; v/ is proper, l.s.c., and convex, the standard results below can be
evoked; see [35, 49].

Theorem 3. Let F. � ; v/ W Rp ! R be proper, convex, l.s.c., and coercive for every
v 2 R

q .

(i) Then F. � ; v/ has a unique (global) minimum which is reached for a closed

convex set of minimizers
n OU.v/

o
defD

�
Ou 2 R

p W F.Ou; v/ D inf
u2U F.u; v/

�
.

(ii) If in addition F. � ; v/ is strictly convex, then there is a unique minimizer Ou D
U.v/ (which is also global). So F.Rp; v/ has a unique minimizer function v 7!
U.v/.

The next lemma, which can be found, e.g., in [52], addresses the regularity of
the local minimizer functions when F is smooth. It can be seen as a variant of the
implicit functions theorem.

Lemma 1. Let F be Cm, m > 2, on a neighborhood of .Ou; v/ 2 R
p � R

q . Suppose
that F. � ; v/ reaches at Ou a local minimum such thatD2

1F.Ou; v/ � 0. Then there are
a neighborhoodO � R

q containing v and a unique Cm�1 local minimizer function
U W O ! R

p , such that D2
1F.U.�/; �/ � 0 for every � 2 O and U.v/ D Ou.

This lemma is extended in several directions in this chapter.

Definition 4. Let � W Œ0;C1/ ! R and m > 0 an integer. We say that � is Cm on
RC, or equivalently that � 2 Cm.RC/, if and only if t 7! �.jt j/ is Cm on R.

By this definition, �0.0/ D 0. In Table 1, left, � 2 C1.RC/ for (f1) if ˛ < 2,
� 2 C2.RC/ for (f4), while for (f2), (f3), and (f7)–(f9) we find � 2 C1.RC/.

3 Regularity Results

Here, we focus on the regularity of the minimizers of F W Rp �R
q ! R of the form

F.u; v/ D kAu � vk2
2 C ˇ

X

i2I
�.kDiuk2/; (11)

I
defD f1; : : : ; rg;

where A 2 R
q�p and for any i 2 I we have Di 2 R

s�p for s > 1. Let us denote by
D the following rs � p matrix:

D
defD

2

4
D1

: : :

Dr

3

5 :
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When A in (11) is not injective, a standard assumption in order to have regulariza-
tion is

H3 ker.A/\ ker.D/ D f0g.

H3 is trivial if rankA D p or rank D D p. Often, ker.D/ D span.1p/ and
A1p ¤ 0, so H3 holds.

Some General Results

We first verify the conditions on F. � ; v/ in (11) that enable Theorems 2 and 3 to be
applied. Since H1 holds, F. � ; v/ in (11) is l.s.c. and proper.

1. F. � ; v/ in (11) is coercive for any v 2 R
q at least in one of the following cases:

• Rank.A/ D p and � W RC 7! RC is nondecreasing.
• H1 and H3 hold and limt%1 �.t/ D 1 (e.g., (f1)–(f5),(f8), (f10), and (f12)

in Table 1).

By Theorem 2, F. � ; v/ has minimizers.
2. For any v 2 R

q , the energy F. � ; v/ in (11) is convex and coercive if H1 and H3
hold for a convex �. Then the claim in Theorem 3(3) holds true.

3. Further, F. � ; v/ in (11) is strictly convex and coercive for any v 2 R
q if �

satisfies H1 and if one of the following assumptions holds:

• Rank.A/ D p and � is convex.
• H3 holds and � is strictly convex.

Then the claim in Theorem 3(3) holds. Further, if F is Cm for m > 2, then the
minimizer function U W Rq ! R

p (see Definition 3) is Cm�1 by Lemma 1.

However, the PFs involved in (11) used for signal and image processing are often
nonconvex, bounded, or nondifferentiable. One extension of the standard results is
given in the next section.

Stability of theMinimizers of Energies with Possibly Nonconvex
Priors

Related questions have been considered in critical point theory, sometimes in semi-
definite programming; the well-posedness of some classes of smooth optimization
problems was addressed in [42]. Other results have been established on the stability
of the local minimizers of general smooth energies [52]. Typically, these results are
quite abstract to be applied directly to energies of the form (11).

Here the assumptions stated below are considered.
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H4 The operator A in (11) satisfies rankA D p, i.e., A�A is invertible.

H5 The PF � in (11) is C0.RC/ and Cm, m > 2, on R
�C with 0 6 �0.0C/ < 1.

Under H1, H2, H4, and H5, the prior ˆ (and hence F. � ; v/) in (11) can be
nonconvex and in addition nonsmooth. By H1 and H4, F. � ; v/ in (11) admits a
global minimum v 2 R

q – see Item 1 in section “Some General Results.” However,
F. � ; v/ can present numerous local minima.

I Energies F with nonconvex and possibly nondifferentiable PFs � are fre-
quently used in engineering problems since they were observed to give rise to
high-quality solutions Ou. It is hence important to have good knowledge on the
stability of the obtained solutions.

The results summarized in this section provide the state of the art for energies of
the form (11).

Local Minimizers
The stability of local minimizers is an important matter in its own right for several
reasons. Often, a nonconvex energy is minimized only locally, in the vicinity of
some initial guess. Second, the minimization schemes that guarantee the finding
of the global minimum of a nonconvex objective function are exceptional. The
practically obtained solutions are usually only local minimizers.

The statements below are a simplified version of the results established in [44].

Theorem 4. Let F. � ; v/ in (11) satisfy H1, H2, H4, and H5. Then there exists a
closed subset ‚ � R

q whose Lebesgue measure is L
q.‚/ D 0 such that for any

v 2 R
q n‚, there exists an open subset O � R

q with v 2 O and a local minimizer
function (see Definition 3) U W O ! R

p which is Cm�1 on O and fulfills Ou D U.v/.

Since ‚ is closed in R
q and L

q.‚/ D 0, the stated properties are generic.

Commentary on the Assumptions
All assumptions H1, H2, and H5 bearing on the PF � are nonrestrictive; they address
all PFs in Table 1 except for (f13) which is discontinuous at zero. The assumption
H4 cannot be avoided, as seen in Example 4.

Example 4. Consider F W R2 � R ! R given by

F.u; v/ D .uŒ1�� uŒ2�� v/2 C juŒ1�j C juŒ2�j;

where v � vŒ1�. The minimum is obtained after a simple computation.

v >
1

2
Ou D

�
c; c � v C 1

2

	
for any c 2



0; v � 1

2

�
(nonstrict minimizer):
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jvj 6 1

2
Ou D 0 (unique minimizer)

v < �1

2
Ou D

�
c; c � v � 1

2

	
for any c 2



v C 1

2
; 0

�
(nonstrict minimizer):

In this case, assumption H4 fails and there is a local minimizer function only for

v 2


�1

2
;

1

2

�
.

Other Results
The derivations in [44] reveal several other practical results.

1. If � 2 C2.RC/, see Definition 4, then 8v 2 R
q n‚, every local minimizer Ou of

F.u; v/ is strict and D2
1F.Ou; v/ � 0. Consequently, Lemma 1 is extended since

the statement holds true 8v 2 R
q n‚.

I For real data v – a random sample of Rq – whenever F. � ; v/ is differentiable
and satisfies the assumptions of Theorem 4, it is a generic property that
local minimizers Ou are strict and their Hessians D2

1F.Ou; v/ are positive
definite.

2. Using Corollary 1, the statement of Theorem 4 holds true if �0.0C/ D 0 and if
there is 	 > 0 such that �0.	�/ > �0.	C/. This is the case of the PF (f6) in
Table 1.

3. If �0.0C/ > 0, define

OJ defD fi 2 I W Di Ou D 0g and K OJ
defD

n
w 2 R

p W Diw D 0; 8i 2 OJ
o
:

(12)
Then 8v 2 R

q n‚, every local minimizer Ou of F.u; v/ is strict and
(a) D1F jK OJ

.Ou; v/ D 0 and D2
1F jK OJ

.Ou; v/ � 0 – a sufficient condition for a
strict minimum on K OJ .

(b) ı1F.Ou; v/.w/ > 0; 8w 2 K?
OJ nf0g – a sufficient condition for a strict

minimum on K?
OJ .

I Here (a) and (b) provide a sufficient condition for a strict (local) minimum
of F. � ; v/ at Ou (a direct consequence of [80, Theorem 1]). These conditions
are satisfied at the (local) minimizers Ou of F. � ; v/ for every v 2 R

q , except
for a negligible subset of Rq , in which case Lemma 1 can be applied.

One can interpret these results as follows:

I Under the assumptions H1, H2, H4, and H5, given real data v 2 R
q , the

chance to get a nonstrict (local) minimizer or a (local) minimizer of the
energy in (11) that does not result from a Cm�1 local minimizer function
is null.
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Global Minimizers of Energies with for Possibly Nonconvex Priors
The results on the global minimizers of (11) presented next are extracted from [45].

Theorem 5. Assume that F. � ; v/ in (11) satisfy H1, H2, H4, and H5. Then there
exists a subset O‚ � R

q such that Lq. O‚/ D 0 and the interior of R
q n O‚ is dense

in R
q , and for any v 2 R

q n O‚ the energy F. � ; v/ has a unique global minimizer.
Furthermore, the global minimizer function OU W Rq n O‚ ! R

p is Cm�1 on an open
subset of Rq n O‚ which is dense in R

q .

I Otherwise said, in a real-world problem there is no chance of getting data v
such that the energy F. � ; v/ (11) has more than one global minimizer.

Nonetheless, O‚ plays a crucial role for the recovery of edges; this issue is
developed in Sect. 4.

Nonasymptotic Bounds onMinimizers

The aim here is to give nonasymptotic analytical bounds on the local and the global
minimizers Ou of F. � ; v/ in (11) that hold for all PFs � in Table 1. Related questions
have mainly been considered in particular cases or asymptotically; see, e.g., [4, 71,
92]. In [51] the mean and the variance of the minimizers Ou for strictly convex and
differentiable functions � have been explored.

The bounds provided below are of practical interest for the initialization and
the convergence analysis of numerical schemes. The statements given below are
extracted from [82].

Bounds on the restored data. One compares the “restored” dataAOu with the given
data v.

H6 Consider the alternative assumptions:

• �0.0C/ D 0 and � 2 C1.RCn‚0/ where the set‚0 D ˚
t > 0 W �0.t�/ > �0.tC/

�

is at most finite.
• �0.0C/ > 0 and � is C1 on R

�C.

The set‚0 allows us to address the PF given in (f6). Let us emphasize that under
H1 and H6, the PF � can be convex or nonconvex.

Theorem 6. Consider F. � ; v/ of the form (11) where H1, H3, and H6 hold. For
every v 2 R

q , if F. � ; v/ has a (local) minimum at Ou, then

kAOuk2 6 kvk2:

Comments on the results. This bound holds for every (local) minimizer of
F. � ; v/. If A is a uniform tight frame (i.e., A�A D Id), one has
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kOuk2 6 kvk2:

The mean of restored data. In many applications, the noise corrupting the data
can be supposed to have a mean equal to zero. When A D Id, it is well known that
mean.Ou/ Dmean.v/; see, e.g., [7]. However, for a general A one has

A1p / 1q ) mean.Ou/ D mean.v/: (13)

The requirement A1p / 1q is quite restrictive. In the simple case when �.t/ D t2,
ker.D/ D 1rs and A is square and invertible, it is easy to see that this is also a
sufficient condition. Finally, if A ¤ Id, then generally mean .Ou/ ¤ mean .v/.

The residuals for edge-preserving regularization. A bound on the data-fidelity
term at a (local) minimizer Ou of F. � ; v/ shall be given. The edge-preserving H2 (see
Sect. 1) is replaced by a stronger edge-preserving assumption:

H7 k�0k1
defD max

�
sup
t>0

j�0.tC/j; sup
t>0

j�0.t�/j
�
< 1.

Except for (f1) and (f13), all other PFs in Table 1 satisfy H7. Note that when
�0.0C/ > 0 and H7 hold, one usually has k�0k1 D �0.0C/.

Theorem 7. Let F. � ; v/ be of the form (11) where rank .A/ D q 6 p, and H1, H3,
H6, and H7 hold. For every v 2 R

q , if F. � ; v/ has a (local) minimum at Ou, then

kAOu � vk1 6 ˇ

2
k�0k1k.AA�/�1Ak1kDk1: (14)

Let us emphasize that the bound in (14) is independent of data v and that it
is satisfied for any local or global minimizer Ou of F. � ; v/. (Recall that for a real
matrix C with entries C Œi; j �, one has kCk1 D maxj

P
i jC Œi; j �j and kCk1 D

maxi
P

j jC Œi; j �j; see, e.g., [35].)
If D corresponds to a discrete gradient operator for a two-dimensional image,

kDk1 D 4. If in addition A D Id, (14) yields

kv � Ouk1 6 2ˇk�0k1:

The result of this theorem may seem surprising. In a statistical setting, the
quadratic data-fidelity term kAu � vk2

2 in (11) corresponds to white Gaussian noise
on the data, which is unbounded. However, if � is edge preserving according to
H7, any (local) minimizer Ou of F. � ; v/ gives rise to a noise estimate .v � AOu/Œi �,
1 6 i 6 q that is tightly bounded as stated in (14).

I Hence the model for Gaussian noise on the data v is distorted by the solution
Ou.
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I When F. � ; v/ is convex and coercive, (14) shows that a good initialization for
a minimization algorithm should be a point u0 such that Au0 D v, e.g., the
minimum norm solution of kv � Ouk2 given by u0 D A�.AA�/�1v.

4 Nonconvex Regularization

Motivation

A permanent requirement is that the energy F favors the recovery of neat edges.
Since the pioneering work of Geman and Geman [56], various nonconvex ˆ in (3)
have been proposed [15,54,55,64,68,72,85]. Indeed, the relevant minimizers exhibit
neat edges between homogeneous regions. However, these nonconvex energies are
tiresome to control and to minimize (only few algorithms are proved to find the
global minimizer in particular cases). In order to avoid these numerical intricacies,
since the 1990s, an important effort was done to derive convex edge-preserving PFs;
see, e.g., [20,31,57,64,87] and [7] for an overview. The most popular convex edge-
preserving PF was derived by Rudin, Osher, and Fatemi [87]: it amounts to � D t ,
for fDi g yielding the discrete gradient operator, the `2-norm in (6) (see Sect. 1), and
the relevantˆ is called the Total Variation (TV) regularization.

In Fig. 2 one sees that the height of the edges is better recovered when � is
nonconvex, compared to the convex TV regularization. The same effect can also
be observed, e.g., in Figs. 7, 8, and 10.

A considerable progress in nonconvex minimization has been realized. For
energies of the form (2)–(3) we refer to [5, 19, 88, 89].

I This section is devoted to explain why edges are nicely recovered using a
nonconvex �.

Assumptions on Potential Functions �

Consider F. � ; v/ of the form (11) where Di W Rp ! R
1, i 2 I D f1; : : : ; rg, i.e.,

F.u; v/ D kAu � vk2
2 C ˇ

X

i2I
� .jDiuj/ ; (15)

and � W RC ! RC satisfies H1 (see Sect. 1), H6 section “Nonasymptotic Bounds
on Minimizers,” and H8 given below

H8 � is C2 and �0.t/ > 0 on R
�C, and inf

t2R�
C

�00.t/ < 0 with lim
t!1�00.t/ D 0;

as well as one of the following assumptions:
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1 100

0

4

1 100

0

4

1 100

0

4

Data v = u + n (—)
Original uo(dashed line)

Non-convex regularization
φ(t) = αt/(1+ αt)

Convex regularization φ(t) = t(TV)
Original uo (---), minimizer u (—)ˆ

Fig. 2 Minimizers of F.u; v/ D ku � vk2
2 C ˇ

Pp�1
iD1 �.juŒi �� uŒi C 1�j/

H9 �0.0C/ D 0, and there are two numbers 	 > 0 and T 2 .	;1/ such that
�00.t/ > 0 on Œ0; 	 �, �00.t/ < 0 on .	;1/, �00.t/ decreases on .	; T / and increases
on .T ;1/.

H10 �0.0C/ > 0, and lim
t!0

�00.t/ < 0 is well defined and �00.t/ < 0 strictly

increases on .0;1/.

These assumptions are illustrated in Fig. 3. They hold for all nonconvex PFs in
Table 1, except for (f6) and (f13) which are presented separately. Further, these
assumptions are easy to relax.

The results presented below come from [81].
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Fig. 3 Illustration of the assumptions in two typical cases – (f7) and (f11) – in Table 1

How It Works onR

I This example illustrates the main facts that explain why edges are enhanced
when � is nonconvex, satisfying H1, and H8 along with either H9 or H10.

Let F W R � R ! R be given by

F.u; v/

D 1

2
.u � v/2 C ˇ�.u/ for

8
<̂

:̂

ˇ > 1
j�00.T /j if �0.0C/ D 0 (H1, H8 and H9)

ˇ > 1
jlimt&0 �

00.t/j if �0.0C/ > 0 (H1, H8 and H10)

The (local) minimality conditions for Ou of F. � ; v/ read as

• If �0.0C/ D 0 or


�0.0C/ > 0 and Ou ¤ 0

�
: OuCˇ�0.Ou/ D v and 1Cˇ�00.Ou/ > 0.

• If �0.0C/ > 0 and Ou D 0 : jvj 6 ˇ�0.0C/.

To simplify, we assume that v > 0. Define

�0 D infCˇ and �1 D supCˇ;

for Cˇ D ˚
u 2 R

�C W D2
1F.u; v/ < 0

� D ˚
u 2 R

�C W �00.u/ < �1=ˇ
�
:

One has �0 D 0 if �0.0C/ > 0 and 0 < �0 < T < �1 if �0.0C/ D 0. A few
calculations yield
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1. For every v 2 RC no minimizer lives in .�0; �1/ (cf. Fig. 4).
2. One computes 0 < 
0 < 
1 such that (cf. Fig. 4)

a. If 0 6 v 6 
1, F. � ; v/ has a (local) minimizer Ou0 2 Œ0; �0�, hence Ou0 is subject
to a strong smoothing.

b. If v > 
0, F. � ; v/ has a (local) minimizer Ou1 > �1, hence Ou1 is subject to a
weak smoothing.

c. If v 2 Œ
0; 
1� then F. � ; v/ has two local minimizers, Ou0 and Ou1.
3. There is 
 2 .
0; 
1/ such that F. � ; 
/ has two global minimizers, F.Ou0; 
/ D

F.Ou1; 
/, as seen in Fig. 5;
a. If 0 < v < 
, the unique global minimizer is Ou D Ou0.
b. If v > 
, the unique global minimizer is Ou D Ou1.

4. The global minimizer function v 7! U.v/ is discontinuous at 
 and C1-smooth on
RCnf
g.

Item 1 is the key for the recovery of either homogeneous regions or high edges. The
minimizer Ou0 (see Items 2a and 3a) corresponds to the restoration of homogeneous
regions, while Ou1 (see Items 2b and 3b) corresponds to edges. Item 3 corresponds to a
decision for the presence of an edge at the global minimizer. Since f
g is closed and
L

1f
g D 0, Item 4 confirms the results of section “Global Minimizers of Energies
with for Possibly Nonconvex Priors.”

Either Smoothing or Edge Enhancement

(A) Case �0.0C/ D 0. Below the case depicted in Figs. 4, left, and 5, left, is
extended to R

p .

Fig. 4 The curve of u 7! �
D1F.u; v/� v

�
on R n f0g. All assumptions mentioned before hold
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Fig. 5 Each curve represents F.u; v/ D 1
2 .u�v/2 Cˇ�.u/ for an increasing sequence v 2 Œ0; 
1/.

The global minimizer of each F. � ; v/ is marked with “�.” No (local) minimizer lives in .�0; �1/

Theorem 8. Let F. � ; v/ be of the form (15) where H1, H3, H8, and H9 hold, and

fDi W i 2 I g are linearly independent. Set �
defD max16i6r kD�.DD�/�1eik2. For

ˇ >
2�2 kA�Ak2

j�00.T /j , there are �0 2 .	; T / and �1 2 .T ;1/ such that 8v 2 R
q , if Ou is a

(local) minimizer of F. � ; v/, then

either jDi Ouj 6 �0; or jDi Ouj > �1; 8i 2 I: (16)

In many imaging problems, fDig are not linearly independents. If fDig are
linearly dependent, the result (16) holds true for all (local) minimizers Ou that are
locally homogeneous on regions that are connected with respect to fDig. Otherwise,
one recovers both high edges and smooth transitions, as seen in Fig. 8a. When � is
convex, all edges are smoothed, as one can observe in Fig. 7a.

The PF �.t/ D minf˛t2; 1g (f6) in Table 1 does not satisfy assumptions H8 and
H9. From Corollary 1 and Example 2 (section “Reminders and Definitions”), any
(local) minimizer Ou of F. � ; v/ obeys

jDi Ouj ¤ 1p
˛
; 8i 2 I:

Proposition 1 below addresses only the global minimizers of F. � ; v/.

Proposition 1. Let F. � ; v/ be given by (15) where �.t/ D minf˛t2; 1g, fD W i 2
I g are linearly independent and rank .A/ > p � r > 1. If F. � ; v/ has a global
minimizer at Ou, then

either jDi Ouj 6 1p
˛
�i ; or jDi Ouj > 1p

˛ �i
;
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for �i D
s

kBeik2
2

kBeik2
2 C ˛ˇ

< 1; 8i 2 I; (17)

where B is a matrix depending only on A and D.

If D D Id, then B D A. If u one-dimensional signal and Diu D uŒi � � uŒi C 1�,
1 6 i 6 p� 1, one has B D .Id � 1

p
11T /AH whereH 2 R

p�p is upper triangular
composed of ones.

In Proposition 1, set �0 D 
p
˛

and �1 D 1p
˛


for 

defD max

i2I �i < 1.

Let us define the following subsets:

OJ0
defD fi 2 I W jDi Ouj 6 �0g and OJ1

defD I n OJ0 D fi 2 I W jDi Ouj > �1g: (18)

One can interpret the results of Theorem 8 and Proposition 1 as follows:

I The pixels in OJ0 form homogeneous regions with respect to fDi g, whereas the
pixels in OJ1 are break points.

In particular, if fDi g correspond to first-order differences, OJ0 addresses
smoothly varying regions where jDi Ouj 6 �0, while OJ1 corresponds to edges
higher than �1 � �0.

(B) Case �0.0C/ > 0. Here the results are stronger without assumptions on fDig.
This case corresponds to Figs. 4, right, and 5, right.

Theorem 9. Consider F. � ; v/ of the form (15) where H3 holds and � satisfies H1,

H8, and H10. Let ˇ > 2�2 kA�Ak2
j limt&0 �

00.t/j , where � > 0 is a constant depending only on

fDig. Then 9�1 > 0 such that 8v 2 R
q , every (local) minimizer Ou of F. � ; v/ satisfies

either jDi Ouj D 0; or jDi Ouj > �1; 8i 2 I: (19)

The results of Theorem 9 were extended to energies involving box constraints in
[33].

The “0-1” PF (f13) in Table 1 does not satisfy H8 and H10 since it is
discontinuous at 0.

Proposition 2. Let F. � ; v/ in (15) be defined for �.0/ D 0; �.t/ D 1 if t > 0, i.e.,
(f13), fDig be linearly independent and rankA > p� r > 1. If F. � ; v/ has a global
minimum at Ou, then

either jDi Ouj D 0 or jDi Ouj >
p
ˇ

kBeik2
; 8i 2 I; (20)

where the matrix B depends only on D and on A.
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In (20), B is the same as in Proposition 1. For �1
defD mini2I

p
ˇ

kBeik , it is clear that
(20) holds.

Let

OJ0
defD fi W jDi Ouj D 0g and OJ1

defD I n OJ0 D fi W jDi Ouj > �1g :

Using this notation, the results of Theorem 9 and Proposition 2 show that:

I The indexes in OJ0 address regions in Ou that can be called strongly homoge-
neous (since jDi Ouj D 0), while OJ1 addresses breakpoints where jDi Ouj > �1.

If fDi g are first-order differences, Ou is neatly segmented: OJ0 corresponds to
constant regions, while OJ1 describes all edges and they are higher than �1.

Direct segmentation of an image from data transformed via a general (nondiag-
onal) operatorA remains a difficult task using standard methods. The result in (19),
Theorem 9, tells us that such a segmentation is naturally involved in the minimizers
Ou of F. � ; v/, for any operator A. This effect can be observed, e.g., on Figs. 8b, d
and 11d.

(C) Illustration: Deblurring of an image from noisy data. The original image
uo in Fig. 6a presents smoothly varying regions, constant regions, and sharp edges.
Data in Fig. 6b correspond to v D a 
 uo C n, where a is a blur with entries ai;j D
exp

��.i2 C j 2/=12:5
�

for �4 6 i; j 6 4, and n is white Gaussian noise yielding
20 dB of SNR. The amplitudes of the original image are in the range of Œ0; 1:32�
and those of the data in Œ�5; 50�. In all restored images, fDi g correspond to the
first-order differences of each pixel with its 8 nearest neighbors. In all figures, the
obtained minimizers are displayed on the top. Just below, the sections corresponding
to rows 54 and 90 of the restored images are compared with the same rows of the
original image.

The restorations in Fig. 7 are obtained using convex PFs � while those in
Fig. 8 using nonconvex PFs �. Edges are sharp and high in Fig. 8 where � is
nonconvex, which corroborates the results in paragraphs (A) and (B). In Fig. 8b,
d � is nonconvex and �0.0C/ > 0 in addition. As stated in Theorem 9, in spite of
the fact that A is nondiagonal (and ill-conditioned), the restored images are fully
segmented and the edges between constant pieces are high.

5 Nonsmooth Regularization

I Observe that the minimizers corresponding to �0.0C/ > 0 (nonsmooth
regularization) in Figs. 2b, c, 7b, 8b, d, 10a–c, and 11d are constant on
numerous regions. This section is aimed to explain and to generalize this
observation.
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a b

Fig. 6 Data v D a ? uo C n, where a is a blur and n is white Gaussian noise, 20 dB of SNR. (a)
Original image. (b) Data v = blur + noise

a b

Fig. 7 Restoration using convex PFs. (a) �.t/ D t ˛ for ˛ D 1:4; ˇ D 40. (b) �.t/ D t for
ˇ D 100
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a b

c d

Fig. 8 Restoration using nonconvex PFs. (a) �.t/ D ˛t 2

1 C ˛t 2
for ˛ D 25, ˇ D 35. (b) �.t/ D

˛t

1 C ˛t
for ˛ D 20, ˇ D 100. (c) �.t/ D minf˛t 2; 1g for ˛ D 60, ˇ D 10. (d) �.0/ D

0; �.t/ D 1; t > 0 for ˇ D 25
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Consider

F.u; v/ D ‰.u; v/C ˇˆ.u/ (21)

ˆ.u/ D
rX

iD1

�
���Diu

��
2

�
; (22)

where ‰ W Rp � R
q ! R is any explicit or implicit Cm-smooth function for m > 2

and Di W R
p 7! R

s , 8i 2 I D f1; : : : ; rg, are general linear operators for any
integer s > 1. It is assumed that � satisfies H1 along with

H11 � is C2-smooth on R
�C and �0.0C/ > 0.

Note that‰ and � can be convex or nonconvex. Let us define the set-valued function
J on R

p by

J .u/ D
n
i 2 I W kDiuk2 D 0

o
: (23)

Given u 2 R
p, J .u/ indicates all regions where Diu D 0. Such regions are

called strongly homogeneous with respect to fDi g. (The adverb “strongly” is used to
emphasize the difference with just “homogeneous regions” where kDiuk2 � 0.) In
particular, if fDi g correspond to first-order differences between neighboring samples
of u or to discrete gradients, J .u/ indicates all constant regions in u.

Main Theoretical Result

The results presented below are extracted from [80].

Theorem 10. Given v 2 R
q , assume that F. � ; v/ in (21)–(22) is such that ‰ is

Cm, m > 2 on R
p � R

q , and that � satisfies H1 and H11. Let Ou 2 R
p be a (local)

minimizer of F. � ; v/. For OJ defD J .Ou/, let K OJ be the vector subspace

K OJ D
n
u 2 R

p W Diu D 0;8i 2 OJ
o
: (24)

Suppose also that

(a) ı1F.Ou; v/.w/ > 0, for every w 2 K?
OJ n f0g.

(b) There is an open subsetO 0
OJ � R

q such that F jK OJ

�
:; O 0

OJ
�

has a local minimizer

function U OJ W O 0
OJ ! K OJ which is Cm�1 continuous and Ou D U OJ .v/.

Then there is an open neighborhood O OJ � O 0
OJ of v such that F. � ; O OJ / admits a

Cm�1 local minimizer function U W O OJ ! R
p which satisfies U.v/ D Ou, U jK OJ

D U OJ
and
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� 2 O OJ ) DiU.�/ D 0; for all i 2 OJ : (25)

Note that OJ and K OJ are the same as those introduced in (12) section “Local
Minimizers.”

Commentary on the assumptions. Since F. � ; v/ has a local minimum at Ou, by
Theorem 1 one has ı1F.Ou; v/.w/ > 0, for all w 2 K?

OJ n f0g, and if for some w
the inequality becomes inequality, then the inequality is strict for �w. So (a) is not
a strong requirement. Condition (b) amounts to Lemma 1 (section “Reminders and
Definitions”) applied to F jK OJ

which is Cm on a neighborhood of .Ou; v/ belonging to
K OJ � R

q .
If F. � ; v/ (possibly nonconvex) is of the form (11) and assumption H4 (sec-

tion “Stability of the Minimizers of Energies with Possibly Nonconvex Priors”)
holds, Theorem 4 and the other results given next show that (a) and (b) are satisfied
for any v 2 R

q n‚ where‚ is closed and L
q.‚/ D 0.

Significance of the results. Using the definition of J in (23), the conclusion of the
theorem can be reformulated as

v 2 O OJ ) J .U.v// � OJ , U.v/ 2 K OJ : (26)

Minimizers involving large subsets OJ are observed in Figs. 2b, c, 7b, 8b, d, 10a–c,
and 11d. It was seen in Examples 1 and 4, as well as in section “How It Works on
R” (case �0.0C/ > 0), that OJ is nonempty for data v living in an open O OJ . Note
also that there is an open subset QO OJ � O OJ such that J .U.v// D OJ for all v 2 QO OJ .
These sets QO OJ are described in Example 5.

Observe that (26) is a severe restriction sinceK OJ is a closed and negligible subset
of Rp, whereas data v vary on open subsets O OJ of Rq .

Focus on a (local) minimizer function U W O ! R
p for F. � ; O/ and put OJ D

J .U.v// for some v 2 O . By Theorem 10, the sets O OJ and QO OJ are of positive
measure in R

q . When data � range overO , the set-valued function .J ıU/ generally
takes several distinct values, say fJj g. Thus, with a (local) minimizer function U ,
defined on an open set O , there is associated a family of subsets f QOJj g which form
a covering of O . When � 2 QOJj , we find a minimizer Ou D U.�/ satisfying J .Ou/ D
Jj .

I Energies with nonsmooth regularization terms, as those considered here,
exhibit local minimizers which generically satisfy constraints of the form
J .Ou/ ¤ ¿.

In particular, if fDi g are discrete gradients or first-order difference operators,
minimizers Ou are typically constant on many regions. For example, if �.t/ D t ,
we have ˆ.u/ D TV.u/, and this explains the stair-casing effect observed in
TV methods on discrete images and signals [30,39].
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Examples and Discussion

The subsection begins with an illustration of Theorem 10 and its meaning.

Restoration of a noisy signal. Figure 9 shows a piecewise constant signal uo
corrupted with two different noises.

Figure 10 depicts the restoration from these two noisy data samples by minimiz-
ing an energy of the form F.u; v/ D ku � vk2 C ˇ

Pp�1
iD1 �.juŒi � � uŒi C 1�j/. The

minimizers shown in Fig. 10a–c correspond to functions � such that �0.0C/ > 0
and they are constant on large segments. The reader is invited to compare the
subsets where these minimizers are constant. The function � in Fig. 10d satisfies
�0.0C/ D 0 and the resultant minimizers are nowhere constant.

Example 5 below gives a rich geometric interpretation of Theorem 25.

Example 5 (1D TV Regularization). Let F W Rp � R
p ! R be given by

F.u; v/ D kAu � vk2
2 C ˇ

p�1X

iD1

ˇ̌
uŒi � � uŒi C 1�

ˇ̌
; ˇ > 0; (27)

where A 2 R
p�p is invertible. Clearly, there is a unique minimizer function U for

F. � ;Rp/. Two striking phenomena concerning the sets QOJ are described next:

1. For every point Ou 2 R
p , there is a polyhedron QOu � R

p of dimension #J .Ou/,
such that for every v 2 QOu, the same point U.v/ D Ou is the unique minimizer of
F. � ; v/.

2. For every J � f1; : : : ; p � 1g, there is a subset QOJ � R
p , composed of 2p�#J�1

unbounded polyhedra (of dimension p) of Rp such that for every v 2 QOJ , the

1 100

0

4

1 100

0

4

Fig. 9 Data v D uoCn (—) corresponding to the original uo (-.-.) contaminated with two different
noise samples n on the left and on the right
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d

c

b

a

Fig. 10 Restoration using different functions �. Original uo (-.-.), minimizer Ou (—). Each figure
from (a) to (d) shows the two minimizers Ou corresponding to the two data sets in Fig. 9 (left and
right), while the shape of � is plotted in the middle
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minimizer Ou of F. � ; v/ satisfies Oui D OuiC1 for all i 2 J and Oui ¤ OuiC1 for all
i 2 J c . Their closure forms a covering of Rp .

The next Remark 2 deserves to be combined with the conclusions of sec-
tion “Nonasymptotic Bounds on Minimizers.”

Remark 2. The energy in (27) has a straightforward Bayesian interpretation in
terms of maximum a posteriori (MAP) estimation (see section “Background,” first
item). The quadratic data-fidelity term corresponds to an observation model of
the form v D Auo C n where n is independent identically distributed (i.i.d.)
Gaussian noise with mean zero and variance denoted by �2. The likelihood reads

�.vju/ D exp

�
� 1

2�2
kAu � vk2

2

	
. The regularization term corresponds to an i.i.d.

Laplacian prior on each difference uŒi ��uŒiC1�, 1 6 i 6 p�1, that is, exp .��jt j/
for � D ˇ

2�2
. Since this density is continuous on R, the probability to get a null

sample, t D uŒi ��uŒiC1� D 0, is equal to zero. However, the results presented above
show that for the minimizer Ou of F. � ; v/, the probability to have OuŒi �� OuŒi C 1� D 0
for a certain amount of indexes i is strictly positive. This means that the Laplacian
prior on the differences uŒi � � uŒi C 1� is far from being incorporated in the MAP
solution Ou.

Applications

The use of nondifferentiable (and also nonconvex) regularization in compressive
sensing is actually extremely abundant; readers can check, e.g., the textbook [50].

Image reconstruction is computed tomography. The concentration of an isotope
in a part of the body provides an image characterizing metabolic functions and local
blood flow [21, 62]. In emission computed tomography (ECT), a radioactive drug
is introduced in a region of the body and the emitted photons are recorded around
it. Data are formed by the number of photons vŒi � > 0 reaching each detector,
i D 1; : : : ; q. The observed photon counts v have a Poissonian distribution [21, 90].
Their mean is determined using projection operators fai ; i D 1; 2; : : : ; qg and a
constant � > 0. The data-fidelity ‰ derived from the log-likelihood function is
nonstrictly convex and reads:

‰.u; v/ D �

*
qX

iD1

ai ; u

+
�

qX

iD1

vŒi � ln .hai ; ui/ : (28)

Figure 11 presents image reconstruction from simulated ECT data by minimizing
and energy of the forms (21) and (22) where ‰ is given by (28) and fDig yield
the first-order differences between each pixel and its eight nearest neighbors. One
observes, yet again, that a PF � which is nonconvex with �0.0C/ > 0 leads to a
nicely segmented piecewise constant reconstruction.
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a b

c d

Fig. 11 ECT. F.u; v/ D ‰.u; v/ C ˇ
P

i2I �.jDiuj/. (a) Original phantom. (b) ECT simulated
data. (c) �0.0/ D 0, edge preserving. (d) �.t/ D t=.˛ C t / (�0.0C/ > 0, nonconvex)

a b c

Fig. 12 D is a first-order difference operator, i.e., Diu D uŒi ��uŒiC1�, 1 6 i 6 p�1. Data (- - -),
restored signal (—). Constant pieces in (a) are emphasized using “�,” while data samples that are
equal to the relevant samples of the minimizer in (b) are emphasized using “ı”

6 Nonsmooth Data Fidelity

I Figure 12 shows that there is a striking distinction in the behavior of the
minimizers relevant to nonsmooth data-fidelity terms (b) with respect to
nonsmooth regularization (a). More precisely, many data samples are fitted
exactly when the data-fidelity term is nonsmooth. This particular behavior is
explained and generalized in the present section.

Consider

F.u; v/ D ‰.u; v/C ˇˆ.u/; (29)

‰.u; v/ D
qX

iD1

 .jhai ; ui � vŒi �j/ ; (30)
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where ai 2 R
p for all i 2 f1; : : : ; qg and  W RC ! RC is a function satisfying

H12  is Cm, m > 2 on R
�C and  0.0C/ > 0 is finite.

By this condition, t 7!  .jt j/ is continuous on R. Let A 2 R
q�p denote the

matrix such that for any i D 1; : : : ; q, its i th row reads a�
i .

Nonsmooth data-fidelity terms ‰ in energies of the form (29) and (30) were
introduced in image processing in 2001 [77].

General Results

Here we present some results on the minimizers Ou of F as given in (29) and (30),
where‰ is nondifferentiable, obtained in [78,79]. An additional assumption is that

H13 The regularization term ˆ W Rp ! R in (29) is Cm, m > 2.

Note that ˆ in (29) can be convex or nonconvex. To analyze the observation in
Fig. 12b, the following set-valued function J will be useful:

.u; v/ 2 .Rp � R
q/ 7! J .u; v/ D

n
i 2 f1; : : : ; qg W hai ; ui D vŒi �

o
: (31)

Given v and a (local) minimizer Ou of F. � ; v/, the set of all data entries vŒi � that are
fitted exactly by .AOu/Œi � reads OJ D J .Ou; v/. Its complement is OJ c D f1; : : : ; qg n OJ .

Theorem 11. Let F be of the form (29)–(30) where assumptions H12 and H13
hold. Given v 2 R

q , let Ou 2 R
p be a (local) minimizer of F. � ; v/. For OJ D J .Ou; y/,

where J is defined according to (31), let

K OJ .v/ D fu 2 R
p W hai ; ui D vŒi � 8i 2 OJ and hai ; ui ¤ vŒi � 8i 2 OJ cg;

and let K OJ be its tangent. Suppose the following:

1. The set
n
ai W i 2 OJ

o
is linearly independent.

2. 8w 2 K OJ nf0g we haveD1.F jK OJ .v/
/.Ou; v/w D 0 andD2

1.F jK OJ .v/
/.Ou; v/.w;w/ >

0.
3. 8w 2 K?

OJ n f0g we have ı1F.Ou; v/.w/ > 0.

Then there are a neighborhoodO OJ � R
q containing v and a Cm�1 local minimizer

function U W O OJ ! R
p relevant to F. � ; O OJ /, yielding in particular Ou D U.v/, and

� 2 O OJ )
� hai ;U.�/i D �Œi � if i 2 OJ ;

hai ;U.�/i ¤ �Œi � if i 2 OJ c: (32)

The result in (32) means that J .U.�/; �/ D OJ is constant on O OJ .
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Note that for every v and J ¤ ¿, the set KJ .v/ is a finite union of connected
components, whereas its closure KJ .v/ is an affine subspace. Its tangent K OJ reads

K OJ D fu 2 R
p W hai ; ui D 0 8i 2 OJ g:

A comparison with K OJ in (24) may be instructive. Compare also (b) and (c) in
Theorem 11 with (a) and (b) in Theorem 10. By the way, conditions (b) and (c) in
Theorem 11 ensure that F. � ; v/ reaches a strict minimum at Ou [78, Proposition 1].
Observe that this sufficient condition for strict minimum involves the behavior
of F. � ; v/ on two orthogonal subspaces separately. This occurs because of the
nonsmoothness of t 7!  .jt j/ at zero. It can be useful to note that at a minimizer Ou,

ı1F.Ou; v/.w/ D �0.0C/
X

i2 OJ
jhai ;wij C

X

i2 OJ c
 0.hai ; Oui � vŒi �/hai ;wi

CˇDˆ.Ou/w > 0; for any w 2 R
p (33)

Commentary on the assumptions. Assumption (a) does not require the indepen-
dence of the whole set fai W i 2 f1; : : : ; qgg. It is easy to check that this assumption
fails to hold only for some v is included in a subspace of dimension strictly smaller
than q. Hence, assumption (a) is satisfied for almost all v 2 R

q and the theorem
addresses any matrix A, whether it be singular or invertible.

Assumption (b) is the classical sufficient condition for a strict local minimum of
a smooth function over an affine subspace; see Lemma 1 (section “Reminders and
Definitions”). If an arbitrary function F. � ; v/ W Rp ! R has a minimum at Ou, then
necessarily ı1F.Ou; v/.w/ > 0 for all w 2 K?

OJ ; see Theorem 1. In comparison, (c)
requires only that the latter inequality be strict.

It will be interesting to characterize the sets of data v for which (b) and (c) may
fail at some (local) minimizers. Some ideas from section “Local Minimizers” can
provide a starting point.

Corollary 2. Let F be of the form (29)–(30) where p D q, and H12 and H13 hold
true. Given v 2 R

q , let Ou 2 R
p be a (local) minimizer of F. � ; v/. Suppose the

following:

(a) The set fai W 1 6 i 6 qg is linearly independent.

(b) 8w 2 R
q satisfying kwk2 D 1 we have ˇ jDˆ.Ou/wj <  0.0C/

qX

iD1

jhai ;wij.

Then

OJ D f1; : : : ; qg

and there are a neighborhood O OJ � R
q containing v and a Cm�1 local minimizer

function U W O OJ ! R
p relevant to F. � ; O OJ /, yielding in particular Ou D U.v/, and
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� 2 O OJ ) hai ;U.�/i D �Œi � 8i 2 OJ D f1; : : : ; qg: (34)

More precisely, U.�/ D A�1� for any � 2 O OJ .

In the context of Corollary 2, A is invertible. Combining this with (33) and (b)
shows that

K OJ .v/ D fu 2 R
p W Au D vg D A�1v;

K OJ D ker.A/ D f0g:

Then

(
v 2 R

q W ˇ ˇ̌
Dˆ.A�1v/w

ˇ̌
<  0.0C/

qX

iD1

jhai ;wij; 8w 2 R
q n f0g; kwk2 D 1

)

� O OJ � Of1;:::; qg:

The subset on the left contains an open subset of R
q by the continuity of v 7!

Dˆ.A�1v/ combined with (b).

Significance of the results. Consider that #J > 1. The result in (32) means that
the set-valued function v ! J .U.v/; v/ is constant on O OJ , i.e., that J is constant
under small perturbations of v. Equivalently, all residuals hai ;U.v/i � vŒi � for i 2 OJ
are null on O OJ .

Theorem 11 shows that Rq contains volumes of positive measure composed of
data that lead to local minimizers which fit exactly the data entries belonging to
the same set. In general, there are volumes corresponding to various OJ so that
noisy data come across them. That is why nonsmooth data-fidelity terms generically
yield minimizers fitting exactly a certain number of the data entries. The resultant
numerical effect is observed in Fig. 12b as well as in Figs. 14 and 15.

Remark 3 (Stability of Minimizers). The fact that there is a Cm�1 local minimizer
function shows that, in spite of the nonsmoothness of F , for any v, all local
minimizers of F. � ; v/ which satisfy the conditions of the theorem are stable under
weak perturbations of data v. This result extends Lemma 1.

Example 6. Let F read

F.u; v/ D
qX

iD1

juŒi � � vŒi �j C ˇ

2

qX

iD1

.uŒi �/2 ; ˇ > 0:

It is easy to see that there is a unique local minimizer function U which is given by
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a

b

Fig. 13 Original uo and data v degraded by outliers. (a) Original uo. (b) Data v D u � outliers

U.v/Œi � D 1

ˇ
sign.vŒi �/ if jvŒi �j > 1

ˇ
;

U.v/Œi � D vŒi � if jvŒi �j 6 1

ˇ
:

Condition (c) in Theorem 11 fails to hold only for
n
v 2 R

q W jvŒi �j D 1
ˇ
; 8i 2 OJ

o
.

This set is of Lebesgue measure zero in R
q . For any J 2 f1; : : : ; qg put

OJ D
�

v 2 R
q W jvŒi �j 6 1

ˇ
; 8i 2 J and jvŒi �j > 1

ˇ
; 8i 2 J c

�
:

Obviously, every v 2 OJ gives rise to a minimizer Ou satisfying

OuŒi � D vŒi �; 8i 2 J and OuŒi � ¤ vŒi �; 8i 2 J c:

Each set OJ has a positive Lebesgue measure in R
q . Moreover, the union of all OJ

when J ranges on all subsets J � f1; : : : ; qg (including the empty set) forms a
partition of Rq .

Numerical experiment. The original image uo is shown in Fig. 13a. Data v in
Fig. 13b are obtained by replacing some pixels of uo by aberrant impulsions, called
outliers.

In all Figs. 14–17, fDi g correspond to the first-order differences between each
pixel and its four nearest neighbors. Figure 14a corresponds to an `1 data-fidelity
term for ˇ D 0:14. The outliers are well visible although their amplitudes are clearly
reduced. The image of the residuals v � Ou, shown in Fig. 14b, is null everywhere
except at the positions of the outliers in v. The pixels corresponding to nonzero
residuals (i.e., the elements of OJ c) provide a good estimate of the locations of the
outliers in v. Figure 15a shows a minimizer Ou of the same F. � ; v/ obtained for
ˇ D 0:25. This minimizer does not contain visible outliers and is very close to
the original image uo. The image of the residuals v � Ou in Fig. 15b is null only on
restricted areas but has a very small magnitude everywhere beyond the outliers.
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a b

Fig. 14 Restoration using F.u; v/ D P
i juŒi � � vŒi �j C ˇ

P
i2I jDiuj˛ ˛ D 1:1 and ˇ D 0:14.

(a) Restoration Ou for ˇ D 0:14. (b) Residual v � Ou

a b

Fig. 15 Restoration using F.u; v/ D P
i juŒi ��vŒi �jCˇ

P
i2I jDiuj˛ for ˛ D 1:1 and ˇ D 0:25.

(a) Restoration Ou for ˇ D 0:25. (b) Residual v � Ou

a b

Fig. 16 Restoration using a smooth energy, F.u; v/ D P
i .uŒi ��vŒi �/2 Cˇ

P
i .jDiuj/2, ˇ D 0:2.

(a) Restoration Ou for ˇ D 0:2. (b) Residual v � Ou

a b

Fig. 17 Restoration using nonsmooth regularization F.u; v/ D X

i

.uŒi �� vŒi �/2 C ˇ
X

i

jDiuj,
ˇ D 0:2. (a) Restoration Ou for ˇ D 0:2. (b) Residual v � Ou

The minimizers of two different cost-functions F involving a smooth data-
fidelity term ‰, shown in Figs. 16 and 17, do not fit any data entry. In particular, the
restoration in Fig. 17 corresponds to a nonsmooth regularization and it is constant
over large regions; this effect was explained in Sect. 5.
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Applications

The possibility to keep some data samples unchanged by using nonsmooth data
fidelity is a precious property in various application fields. Nonsmooth data fidelities
are good to detect and smooth outliers. This property was exploited for deblurring
under impulse noise contamination; see, e.g., [10–12].

Denoising of frame coefficients. Consider the recovery of an original (unknown)
uo 2 R

p – a signal or an image containing smooth zones and edges – from noisy
data

v D uo C n;

where n represents a perturbation. As discussed in Sect. 4, a systematic default of
the images and signals restored using convex edge-preserving PFs � is that the
amplitude of edges is underestimated.

Shrinkage estimators operate on a decomposition of data v into a frame of `2,
say fwi W i 2 J g where J is a set of indexes. Let W be the corresponding frame
operator, i.e., .W v/Œi � D hv;wi i, 8i 2 J , and QW be a left inverse of W , giving
rise to the dual frame f Qwi W i 2 J g. The frame coefficients of v read y D W v and
are contaminated with noise W n. The inaugural work of Donoho and Johnstone
[40] considers two different shrinkage estimators: given T > 0, hard thresholding
corresponds to

yT Œi � D
�
yŒi � if i 2 J1;

0 if i 2 J0;
where

�
J0 D fi 2 J W jyŒi �j 6 T gI
J1 D J nJ0;

(35)

while in soft thresholding one takes yT Œi � D yŒi � � T sign.yŒi �/ if i 2 J1 and
yT Œi � D 0 if i 2 J0. Both soft and hard thresholding are asymptotically optimal in
the minimax sense if n is white Gaussian noise of standard deviation � and

T D �
p

2 loge p: (36)

This threshold is difficult to use in practice because it increases with the size
of u. Numerous improvements were realized; see, e.g., [4, 13, 24, 34, 38, 66, 70].
In all cases, the main problem is that smoothing large coefficients oversmooths
edges, while thresholding small coefficients can generate Gibbs-like oscillations
near edges; see Fig. 18c, d. If shrinkage is weak, noisy coefficients (outliers) remain
almost unchanged and produce artifacts having the shape of f Qwig; see Fig. 18c–e.

In order to alleviate these difficulties, several authors proposed hybrid methods
where the information contained in important coefficients yŒi � is combined with
priors in the domain of the sought-after signal or image [18,25,36,43,67]. A critical
analysis was presented in [46].

A specialized hybrid method involving `1 data fidelity on frame coefficients is
proposed in [46]. Data are initially hard thresholded – see (35) – using a suboptimal
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a b c

d e f

Fig. 18 Methods to restore the noisy signal in (a). Restored signal (—), original signal (- -). (a)
Original and data corrupted with white Gaussian noise. (b) TV regularization. (c) Sure-shrink. (d)
T D 35 optimal, OuT D P

i yT Œi � Qwi . (e) yT , T D 23, OuT D P
i yT Œi � Qwi . (f) The proposed method

threshold T in order to keep as much as possible information. (The use of another
shrinkage estimator would alter all coefficients, which is not desired.) Then

1. J1 is composed of:

• Large coefficients bearing the main features of uo that one wishes to preserve
intact

• Aberrant coefficients (outliers) that must be restored using the regularization
term

2. J0 is composed of:

• Noise coefficients that must be kept null.
• Coefficients yŒi � corresponding to edges and other details in uo – these need

to be restored in accordance with the prior incorporated in the regularization
term.

In order to reach the goals formulated in 1 and 2 above, denoised coefficients Ox are
defined as a minimizer of the hybrid energy F.:; y/ given below:

F.x; y/ D �1

X

i2J1

jxŒi � � yŒi �j C �0

X

i2J0

jxŒi �j C
X

i2I
�

�kDi
QW xk2

�
; �0;1 > 0;

(37)
where � is convex and edge preserving. Then the sought-after denoised image or
signal is
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Ou D QW Ox D
X

i2J
Qwi OxŒi �:

Several properties relevant to the minimizers of F in (37), the parameters �i , i 2
f0; 1g, and the solution Ou are outlined in [46].

Noisy data v are shown along with the original uo in Fig. 18a. The restoration in
Fig. 18b minimizes F.u/ D kAu � vk2

2 C ˇTV – homogeneous regions remain
noisy, edges are smoothed, and spikes are eroded. Figure 18c is obtained using
the sure-shrink method [41] from the toolbox WaveLab. The other restorations use
thresholded Daubechies wavelet coefficients with eight vanishing moments. The
optimal value for the hard thresholding obtained using (36) is T D 35. The relevant
restoration – Fig. 18d – exhibits important Gibbs-like oscillations as well as wavelet-
shaped artifacts. For T D 23 the coefficients have a richer information content,
but QW yT , shown in Fig. 18e, manifests Gibbs artifacts and many wavelet-shaped
artifacts. Introducing the thresholded coefficients of Fig. 18e in the specialized
energy F in (37) leads to Fig. 18f: edges are clean and piecewise polynomial parts
are well recovered.

7 Nonsmooth Data Fidelity and Regularization

The L1-TV Case

For discrete signals of finite length, energies of the form F.u; v/ D ku � vk1 C
ˇ

Pp�1
iD1 juŒi C 1�� uŒi �j were considered by Alliney in 1992 [1].

Following [1, 78, 79], S. Esedoglu and T. Chan explored in [28] the minimizers
of the L1-TV functional given below

F.u; v/ D
Z

Rd

ju.x/� v.x/jdx C ˇ

Z

Rd

jru.x/jdx; (38)

where the sought-after minimizer Ou belongs to the space of bounded variation
functions on R

d . The main focus is on images, i.e., d D 2. The analysis in [28]
is based on a representation of F in (38) in terms of the level sets of u and v. Most
of the results are established for data v given by the characteristic function �† of a
bounded domain† � R

d . Theorem 5.2 in [28] says that if v D �†, where † � R
d

is bounded, then F. � ; v/ admits a minimizer of the form Ou D � O† (with possibly
O† ¤ †). Furthermore, Corollary 5.3. in [28] states that if in addition † is convex,
then for almost every ˇ > 0, F. � ; v/ admits a unique minimizer and Ou D � O†
with O† 	 †. Moreover, it is shown that small features in the image maintain
their contrast intact up to some value of ˇ, while for a larger ˇ they suddenly
disappear.
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Noisy binary Restored binary

Fig. 19 Restoration of a binary noisy image by minimizing L1-TV

Denoising of Binary Images and Convex Relaxation
Many problems such as text denoising and document processing, two-phase image
segmentation, shape restoration, and fairing of surfaces in computer graphics are
naturally stated as the minimization of an energy over the set of the binary images.
These energies are obviously nonconvex since the constraint set is finite. Their
global minimizer was shown in [29] to be also the minimizer of the convex L1-
TV functional which is convex. This result yielded much simpler algorithms for
binary image restoration. An illustration is given on Fig. 19.

Since then, L1-TV relaxations have became a common tool for convex relax-
ations; see, e.g., among many others [84] and the references therein.

Also, L1-TV energies were revealed very successful in image decomposition;
see, e.g., [8, 48].

Multiplicative Noise Removal
In various active imaging systems, such as synthetic aperture radar (SAR), laser, or
ultrasound imaging, the data representing the underlying (unknown image) S0 are
corrupted with multiplicative noise. Such a noise is a severe degradation; see Fig. 20.
When possible, a few independent measurements for the same scene are realized,
†k D S0�k for k 2 f1; : : : ; Kg, where the noise �k is typically modeled by the
one-sided exponential distribution. The data † used for denoising is the average of
the set of all K measurements:

† D 1

K

KX

kD1

†k D S0�: (39)

The combined multiplicative noise follows a Gamma distribution. Adaptive filtering
works only if the noise is weak. For strong noise, variational methods often use TV
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Fig. 20 Aerial image of the town of Nîmes (512 � 512) for K D 4 in (39). Restorations using
different methods. Parameters: [6] for � D 120; [47] T D 2

p
 1.K/; �0 D 1:5; �1 D 10

regularization. In [6] the log-likelihood of the raw data (39) is regularized using TV.
Instead, the properties of L1-TV are used to design an energy in [47]. First, the log-
data v D log† is decomposed into a curvelet transform yielding noisy coefficients
y D W v. A suboptimal hard thresholding is applied for T adapted to the expectation
of the log noise. Let I0 D fi W jyŒi � 6 T g and I1 D fi W jyŒi � > T g. Since the
threshold is low, I1 contains outliers. Coefficients Ox are restored by minimizing

F.x/ D �1

X

i2I1

j.x � y/Œi �j C �0

X

i2I0

jxŒi �j C TV.x/ :

The restored image OS , shown in Fig. 20, is obtained as OS D exp. QW . Ox//B where QW
is a left inverse of W and B is a bias correction.
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Fig. 21 Minimizers of F. � ; v/ as given in (40) for �.t/ D ln.˛t C1/, ˛ D 2 and different values
of ˇ. Data samples (ı ı ı), minimizer samples OuŒi � (C C C)

5 20 53 71
0

10

5 20 53 71
0

10

a b

Fig. 22 Minimizers of F. � ; v/ as given in (40) for different PFs �. Data are corrupted with
Gaussian noise. Data samples vŒi � are marked with (ı ı ı), samples OuŒi � of the minimizer – with
(C C C). The original signal is reminded in (� � �). (a) �.t/ D ˛ t

˛ tC1 , ˛ D 4, ˇ D 3. (b)
�.t/ D t , ˇ D 0:8

`1 Data Fidelity with Regularization Concave onRC

One could expect that `1 data fidelity regularized with a PF concave on RC should
somehow reinforce the properties of `1 � TV. The question was recently examined
in [83]. Consider the energy

F.u; v/ D
X

i2I
jhai ; ui � vŒi �j C ˇ

X

j2J
�.jDiuj/ (40)

for I
defD f1; : : : ; qg and J

defD f1; : : : ; rg

where � W RC ! RC is continuous and concave on RC (e.g., (f10), (f11), and (f12)
in Table 1).

Motivation
Figures 21 and 22 depict (the global) minimizers of F.u; v/ in (40) for a one-
dimensional signal where A D Id, fDig are first-order differences, and � is smooth
and concave on RC.

The tests in Figs. 21 and 22 show that a PF concave on RC considerably
reinforces the properties of `1�TV. One observes that the minimizer satisfies exactly
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part of the data term and part of the prior term (corresponding to constant pieces).
In Fig. 22b, the previous `1 � TV model is considered. Figure 21 shows also that
the minimizer remains unchanged for some range of values of ˇ and that after a
threshold value, it is simplified.

Example 7 below furnishes a first intuition on the reasons underlying the
phenomena observed in Figs. 21 and 22.

Example 7. Given v 2 R, consider the function F. � ; v/ W R ! R given below

F.u; v/ D ju � vj C ˇ�.juj/ for � obeying H : (41)

The necessary conditions for F. � ; v/ to have a (local) minimum at Ou ¤ 0 and Ou ¤ v
– that its first differential meetsD1F.Ou; v/ D 0 and that its second differential obeys
D2

1F.Ou; v/ > 0 – do not hold:

Ou 62 f0; vg )
8
<

:

D1F.Ou; v/ D sign.Ou � v/C ˇ' 0.jOuj/sign.Ou/ D 0 ;

D2
1F.Ou; v/ D ˇ' 00.jOuj/ < 0 ;

where the last inequality comes from the strict concavity of � onR�C. Hence,F. � ; v/
cannot have a minimizer such that Ou ¤ 0 and Ou ¤ v, for any v 2 R. Being coercive,
F. � ; v/ does have minimizers. Consequently, any (local) minimizer of F in (41)
satisfies

Ou 2 f0; vg :

Main Theoretical Results
The PFs considered here are concave on RC and smooth on R

�C. More precisely,
they satisfy H1 (Sect. 1), H8, and H10 (section “Assumptions on Potential Functions
�”). One can see Fig. 3, right, for an illustration of the assumptions.

Proposition 3. Let F. � ; v/ read as in (40). Assume that H3 (Sect. 3) holds and that
� satisfies H1 (Sect. 1), H8, and H10. Then for any v, F. � ; v/ has global minimizers.

Given v 2 R
q , with each Ou 2 R

p the following subsets are associated:

OI0
defD fi 2 I j hai Oui D vŒi �g and OI c0 defD I n OI0;

OJ0
defD fi 2 J j Di Ou D 0g and OJ c0 defD J n OJ0 :

(42)

Proposition 4. For F. � ; v/ as in (40) satisfying H1, H8, and H10, let Ou be a (local)
minimizer of F. � ; v/. Then

� OI0 [ OJ0
� ¤ ¿ :
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H14 The point Ou 2 R
p is such that OI0 ¤ ¿ and that

w 2 ker D n f0g ) 9i 2 OI0 such that hai ;wi ¤ 0 : (43)

If rank D D p, then (43) is trivial. Anyway, (43) is not a strong requirement.

Theorem 12. Consider F. � ; v/, as given in (40), satisfying H3, as well as H1, H8,
and H10. Let Ou be a (local) minimizer of F. � ; v/ meeting OJ c0 ¤ ¿ and H14. Then Ou
is the unique solution of the full column rank linear system given below

� hai ;wi D vŒi � 8i 2 OI0 ;

Djw D 0 8j 2 OJ0 :
(44)

Significance of the Results
An immediate consequence of Theorem 12 is the following:

I Each (local) minimizer of F. � ; v/ is strict.

Another consequence is that the matrix H with rows
�
a�
i ;8i 2 OI0 and Dj ;8j 2

OJ0
�

has full column rank. This provides a strong necessary condition for a (local)
minimizer of F. � ; v/. And since Ou in (44) solves a linear system, it involves the
same kind of “contrast invariance” as the L1 � TV model. A detailed inspection
of the minimizers in Figs. 21 and 22 corroborate Theorem 12. A more practical
interpretation of this result reads as follows:

I Each pixel of a (local) minimizer Ou of F. � ; v/ is involved in (at least) one
data equation that is fitted exactly hai ; Oui D vŒi � or in (at least) one vanishing
operator Dj Ou D 0 or in both types of equations.

This remarkable property can be used in different ways.

Applications
An energy F. � ; v/ of the form in (40) with a PF � strictly concave on RC is a good
choice when

• There are some nearly faithful data points vŒi �;
• The matrix D provides a very reliable prior on the sought-after solution.

A natural way for such a prior is to construct for D an application-dependent
dictionary.

MR Image Reconstruction from Highly Undersampled Data
In the experiment in Fig. 23, only 5 % randomly chosen noisy data samples in the
k-space (i.e., individual noisy Fourier coefficients) are available; see (a). Data are
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Fig. 23 Reconstructed images from 5 % noisy randomly selected samples in the k-space using
different methods. (a) Zero-filling Fourier recovery. (b) `2 � TV. (c) F. � ; v/ in (40)

contaminated with SNR = 37 dB white centered Gaussian noise. This is a highly
underdetermined, ill-posed inverse problem. It can be related to compressed sensing
in MRI; see, e.g., [58]. The Shepp-Logan phantom being locally constant with oval
shapes, the linear operators fDig in (40) yield the usual discrete gradient of the
image, so that the regularization term provides a correct prior. Indeed, Duo is the
sparsest linear transform for this image. Clearly, A is the undersampled Fourier
transform corresponding to the 5 % randomly chosen k-samples. For Gaussian
noise, an `2 quadratic data fitting term is a classical choice. The `2 � TV cost-
function kAu � vk2

2 C ˇTV.u/ is the standard tool to solve this kind of problems.
The result is shown in Fig. 23b.

8 Conclusion

This chapter provided some theoretical results relating the shape of the energy F
to minimize and the salient features of its minimizers Ou (see (7), section “The Main
Features of the Minimizers as a Function of the Energy”). These results can serve as
a kind of inverse modeling: given an inverse problem along with our requirements
(priors) on its solution, they guide us how to construct an energy functional whose
minimizers properly incorporate all this information. The theoretical results are
illustrated using numerical examples. Various application fields can take a benefit
from these results. The problem of such an inverse modeling remains open because
of the diversity of the inverse problems to solve and the possible energy functionals.

Cross-References
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