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Abstract
We begin with traditional source detection algorithms in astronomy. We then
introduce the sparsity data model. The starlet wavelet transform serves as our
main focus in this article. Sparse modeling and noise modeling are described.
Applications to object detection and characterization, and to image filtering
and deconvolution, are discussed. The multiscale vision model is a further
development of this work, which can allow for image reconstruction when the
point spread function is not known or not known well. Bayesian and other
algorithms are described for image restoration. A range of examples is used to
illustrate the algorithms.

1 Introduction

Data analysis is becoming more and more important in astronomy. This can be
explained by detector evolution, which concerns all wavelengths. In the 1980s,
CCD (charge-coupled device) images had a typical size of 512 � 512 pixels, while
astronomers now have CCD mosaics with 16;000 � 16;000 pixels or even more.
At the same time, methods of analysis have become much more complex, and the
human and financial efforts to create and process the data can sometimes be of the
same order as for the construction of the instrument itself. As an example, for the
ISOCAM camera of the Infrared Space Observatory (ISO), the command software
of the instrument, and the online and offline data processing, required altogether
70 person years of development, while 200 person years were necessary for the
construction of the camera. The data analysis effort for the PLANCK project is
even larger. Furthermore, the quantity of outputs requires the use of databases, and in
parallel sophisticated tools are needed to extract ancillary astrophysical information,
generally now through the web. From the current knowledge, new questions emerge,
and it is necessary to proceed to new observations of a given object or a part of
the sky. The acquired data need to be calibrated prior to useful information for the
scientific project being extracted.
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Data analysis acts during the calibration, the scientific information extraction
process, and the database manipulation. The calibration phase consists of correcting
various instrumental effects, such as the dark current (i.e., in the absence of any light,
the camera does not return zero values, and the measured image is called the dark
image and needs to be subtracted from any observation) or the flat-field correction
(i.e., for uniform light, the detector does not return the same value for each pixel, and
a normalization needs to be performed by dividing the observed image by the “flat”
image). Hence, it is very important to know well the parameters of the detector (flat-
field image, dark image, etc.), because any error on these parameters will propagate
to the measurements. Other effects can also be corrected during this phase, such as
the removal of the cosmic ray impacts or the field distortion (the pixel surface for
each pixel does not correspond to the same surface on the sky). Depending on the
knowledge of the instrument, each of these tasks may be more or less difficult.

Once the data are calibrated, the analysis phase can start. Following the scientific
objectives, several kinds of information can be extracted from the data, such as
the detection of stars and galaxies, the measurement of their position, intensity,
and various morphological parameters. The results can be compared to existing
catalogs, obtained from previous observations. It is obviously impossible to cite
all operations we may want to carry through on an astronomical image, and we
have just mentioned the most common. In order to extract the information, it is
necessary to take into account noise and point spread function. Noise is the random
fluctuation which is added to the CCD data and comes partially from the detector
and partially from the data. In addition to the errors induced by the noise on
the different measurements, noise also limits the detection of objects and can be
responsible for false detections. The point spread function is manifested in how the
image of a star, for example, is generally spread out on several pixels, caused by
the atmosphere’s effect on the light path. The main effect is a loss of resolution,
because two sufficiently close objects cannot be separated. Once information has
been extracted, such details can be compared to our existing knowledge. This
comparison allows us to validate or reject our understanding of the universe.

In this chapter, we will discuss in detail how to detect objects in astronomical
images and how to take into account the point spread function through the
deconvolution processing.

Source Detection

As explained above, source (i.e., object) extraction from images is a fundamental
step for astronomers. For example, to build catalogs, stars and galaxies must be
identified and their position and photometry must be estimated with good accuracy.
Catalogs comprise a key result of astronomical research. Various methods have
been proposed to support the construction of catalogs. One of the now most widely
used software packages is SExtractor [6], which is capable of handling very large
images. A standard source detection approach, such as in SExtractor, consists of the
following steps:
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Fig. 1 Example of
astronomical data: a point
source and an extended
source are shown, with noise
and background. The
extended object, which can be
detected by eye, is undetected
by a standard detection
approach

3 sigma

point source

extended source

background level

detection

Flux

1. Background estimation.
2. Convolution with a mask.
3. Detection.
4. Deblending/merging.
5. Photometry.
6. Classification.

These different steps are described in the next section. Astronomical images
contain typically a large set of point-like sources (the stars), some quasi point-
like objects (faint galaxies, double stars), and some complex and diffuse structures
(galaxies, nebulae, planetary stars, clusters, etc.). These objects are often hierarchi-
cally organized: a star in a small nebula, itself embedded in a galaxy arm, itself
included in a galaxy, and so on.

The standard approach, which is presented in detail in Sect. 2, presents some
limits, when we are looking for faint extended objects embedded in noise. Figure 1
shows a typical example where a faint extended object is under the detection limit.
In order to detect such objects, more complex data modeling needs to be defined.
Section 3 presents another approach to model and represent astronomical data,
by using a sparse model in a wavelet dictionary. A specific wavelet transform,
called the starlet transform or the isotropic undecimated wavelet transform, is
presented. Based on this new modeling, several approaches are proposed in Sects. 4
and 5.

2 Standard Approaches to Source Detection

We describe here the most popular way to create a catalog of galaxies from
astronomical images.



Starlet Transform in Astronomical Data Processing 2057

The Traditional Data Model

The observed data Y can be decomposed into two parts, the signal X and the
noise N :

Y Œk; l� D XŒk; l�CNŒk; l� (1)

The imaging system can also be considered. If it is linear, the relation between the
data and the image in the same coordinate frame is a convolution:

Y Œk; l� D .HX/Œk; l�CNŒk; l� (2)

where H is the matrix related to the point spread function (PSF) of the imaging
system.

In most cases, objects of interest are superimposed on a relatively flat signal B ,
called background signal. The model becomes

Y Œk; l� D .HX/Œk; l�C BŒk; l� CNŒk; l� (3)

PSF Estimation

The PSF H can be estimated from the data or from an optical model of the
imaging telescope. In astronomical images, the data may contain stars, or one can
point towards a reference star in order to reconstruct a PSF. The drawback is the
“degradation” of this PSF because of unavoidable noise or spurious instrument
signatures in the data. So, when reconstructing a PSF from experimental data, one
has to reduce very carefully the images used (background removal for instance).
Another problem arises when the PSF is highly variable with time, as is the case
for adaptive optics (AO) images. This means usually that the PSF estimated when
observing a reference star, after or before the observation of the scientific target, has
small differences from the perfectly correct PSF.

Another approach consists of constructing a synthetic PSF. Various studies [11,
21, 38, 39] have suggested a radially symmetric approximation to the PSF:

P.r/ /
�

1 C r2

R2

��ˇ
(4)

The parameters ˇ and R are obtained by fitting the model with stars contained in
the data.

In the case of AO systems, this model can be used for the tail of the PSF (the
so-called seeing contribution), while in the central region, the system provides an
approximation of the diffraction-limited PSF. The quality of the approximation is
measured by the Strehl ratio (SR), which is defined as the ratio of the observed peak
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intensity in the image of a point source to the theoretical peak intensity of a perfect
imaging system.

Background Estimation

The background must be accurately estimated; otherwise it will introduce bias in
flux estimation. In [7,28], the image is partitioned into blocks, and the local sky level
in each block is estimated from its histogram. The pixel intensity histogram p.Y / is
modeled using three parameters, the true sky level B , the RMS (root mean square)
noise � , and a parameter describing the asymmetry in p.Y / due to the presence of
objects, and is defined by [7]:

p.Y / D 1

a
exp

�
�2=2a2�

exp Œ�.Y � B/=a� erfc

�
�

a
� .Y � B/

�

�
(5)

Median filtering can be applied to the 2D array of background measurements
in order to correct for spurious background values. Finally the background map
is obtained by a bilinear or a cubic interpolation of the 2D array. The block size
is a crucial parameter. If it is too small, the background estimation map will be
affected by the presence of objects, and if too large it will not take into account real
background variations.

In [6,15], the local sky level is calculated differently. A 3-sigma clipping around
the median is performed in each block. If the standard deviation is changed by less
than 20 % in the clipping iterations, the block is uncrowded, and the background
level is considered to be equal to the mean of the clipped histogram. Otherwise,
it is calculated by c1 � median � c2 � mean, where c1 D 3; c2 D 2 in [15] and
c1 D 2:5; c2 D 1:5 in [6]. This approach has been preferred to histogram fitting for
two reasons: it is more efficient from the computation point of view and more robust
with small sample size.

Convolution

In order to optimize the detection, the image must be convolved with a filter. The
shape of this filter optimizes the detection of objects with the same shape. Therefore,
for star detection, the optimal filter is the PSF. For extended objects, a larger filter
size is recommended. In order to have optimal detection for any object size, the
detection must be repeated several times with different filter sizes, leading to a kind
of multiscale approach.

Detection

Once the image is convolved, all pixels Y Œk; l� at location .k; l/ with a value larger
than T Œk; l� are considered as significant, i.e., belonging to an object. T Œk; l� is
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generally chosen as BŒk; l� CK� , where BŒk; l� is the background estimate at the
same position, � is the noise standard deviation, andK is a given constant (typically
chosen between 3 and 5). The thresholded image is then segmented, i.e., a label is
assigned to each group of connected pixels. The next step is to separate the blended
objects which are connected and have the same label.

An alternative to the thresholding/segmentation procedure is to find peaks. This
is only well suited to star detection and not to extended objects. In this case, the next
step is to merge the pixels belonging to the same object.

Deblending/Merging

This is the most delicate step. Extended objects must be considered as single
objects, while multiple objects must be well separated. In SExtractor, each group of
connected pixels is analyzed at different intensity levels, starting from the highest
down to the lowest level. The pixel group can be seen as a surface, with mountains
and valleys. At the beginning (highest level), only the highest peak is visible. When
the level decreases, several other peaks may become visible, defining therefore
several structures. At a given level, two structures may become connected, and
the decision whether they form only one (i.e., merging) or several objects (i.e.,
deblending) must be taken. This is done by comparing the integrated intensities
inside the peaks. If the ratio between them is too low, then the two structures must
be merged.

Photometry and Classification

Photometry
Several methods can be used to derive the photometry of a detected object
[7, 29]. Adaptive aperture photometry uses the first image moment to determine
the elliptical aperture from which the object flux is integrated. Kron [29] proposed
an aperture size of twice the radius of the first image moment radius r1, which leads
to recovery of most of the flux .>90 %/. In [6], the value of 2:5r1 is discussed,
leading to loss of less than 6 % of the total flux. Assuming that the intensity profiles
of the faint objects are Gaussian, flux estimates can be refined [6, 35]. When the
image contains only stars, specific methods can be developed which take the PSF
into account [18, 42].

Star–Galaxy Separation
In the case of star–galaxy classification, following the scanning of digitized images,
Kurtz [30] lists the following parameters which have been used:

1. Mean surface brightness;
2. Maximum intensity and area;
3. Maximum intensity and intensity gradient;
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4. Normalized density gradient;
5. Areal profile;
6. Radial profile;
7. Maximum intensity, 2nd and 4th order moments, and ellipticity;
8. The fit of galaxy and star models;
9. Contrast versus smoothness ratio;

10. The fit of a Gaussian model;
11. Moment invariants;
12. Standard deviation of brightness;
13. 2nd order moment;
14. Inverse effective squared radius;
15. Maximum intensity and intensity-weighted radius;
16. 2nd and 3rd order moments, number of local maxima, and maximum intensity.

References for all of these may be found in the cited work. Clearly there is
room for differing views on parameters to be chosen for what is essentially the
same problem. It is of course the case also that aspects such as the following will
help to orientate us towards a particular set of parameters in a particular case: the
quality of the data; the computational ease of measuring certain parameters; the
relevance and importance of the parameters measured relative to the data analysis
output (e.g., the classification, or the planar graphics); and, similarly, the importance
of the parameters relative to theoretical models under investigation.

GalaxyMorphology Classification
The inherent difficulty of characterizing spiral galaxies especially when not face-on
has meant that most work focuses on ellipticity in the galaxies under study. This
points to an inherent bias in the potential multivariate statistical procedures. In the
following, it will not be attempted to address problems of galaxy photometry per se
[17,44], but rather to draw some conclusions on what types of parameters or features
have been used in practice.

From the point of view of multivariate statistical algorithms, a reasonably
homogeneous set of parameters is required. Given this fact, and the available
literature on quantitative galaxy morphological classification, two approaches to
parameter selection appear to be strongly represented:

1. The luminosity profile along the major axis of the object is determined at
discrete intervals. This may be done by the fitting of elliptical contours, followed
by the integrating of light in elliptical annuli [33]. A similar approach was
used in the ESO–Uppsala survey. Noisiness and faintness require attention to
robustness in measurement: the radial profile may be determined taking into
account the assumption of a face-on optically thin axisymmetric galaxy and may
be further adjusted to yield values for circles of given radius [64]. Alternatively,
isophotal contours may determine the discrete radial values for which the profile
is determined [62].
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2. Specific morphology-related parameters may be derived instead of the profile.
The integrated magnitude within the limiting surface brightness of 25 or 26 mag.
arcsec�2 in the visual is popular [33, 61]. The logarithmic diameter .D26/ is
also supported by Okamura [43]. It may be interesting to fit to galaxies under
consideration model bulges and disks using, respectively, r

1
4 or exponential laws

[62], in order to define further parameters. Some catering for the asymmetry of
spirals may be carried out by decomposing the object into octants; furthermore,
the taking of a Fourier transform of the intensity may indicate aspects of the
spiral structure [61].

The following remarks can be made relating to image data and reduced data:

• The range of parameters to be used should be linked to the subsequent use to
which they might be put, such as to underlying physical aspects.

• Parameters can be derived from a carefully constructed luminosity profile, rather
than it being possible to derive a profile from any given set of parameters.

• The presence of both partially reduced data such as luminosity profiles, and more
fully reduced features such as integrated flux in a range of octants, is of course
not a hindrance to analysis. However, it is more useful if the analysis is carried
out on both types of data separately.

Parameter data can be analyzed by clustering algorithms, by principal component
analysis, or by methods for discriminant analysis. Profile data can be sampled at
suitable intervals and thus analyzed also by the foregoing procedures. It may be
more convenient in practice to create dissimilarities between profiles and analyze
these dissimilarities: this can be done using clustering algorithms with dissimilarity
input.

3 Mathematical Modeling

Different models may be considered to represent the data. One of the most effective
is certainly the sparsity model, especially when a specific wavelet dictionary is
chosen to represent the data. We introduce here the sparsity concept as well as the
wavelet transform decomposition, which is the most used in astronomy.

Sparsity Data Model

A signalX; X D Œx1; : : : ; xN �
T , is sparse if most of its entries are equal to zero. For

instance, a k-sparse signal is a signal where only k samples have a nonzero value. A
less strict definition is to consider a signal as weakly sparse or compressible when
only a few of its entries have a large magnitude, while most of them are close to
zero.
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If a signal is not sparse, it may be sparsified using a given data representation.
For instance, if X is a sine, it is clearly not sparse but its Fourier transform is
extremely sparse (i.e., 1-sparse). Hence, we say that a signal X is sparse in the
Fourier domain if its Fourier coefficients OXŒu�, OXŒu� D 1

N

PC1
kD�1XŒk�e2i� uk

N ;

are sparse. More generally, we can model a vector signal X 2 R
N as the

linear combination of T elementary waveforms, also called signal atoms: X D
ˆ˛ D PT

iD1 ˛Œi ��i , where ˛Œi � D ˝
X; �i

˛
are called the decomposition coef-

ficients of X in the dictionary ˆ D Œ�1; : : : ; �T � (the N � T matrix whose
columns are the atoms normalized to a unit `2-norm, i.e., 8i 2 Œ1; T �; k�ik`2 D
1).

Therefore, to get a sparse representation of our data, we need first to define the
dictionary ˆ and then to compute the coefficients ˛. x is sparse in ˆ if the sorted
coefficients in decreasing magnitude have fast decay, i.e., most coefficients ˛ vanish
except for a few.

The best dictionary is the one which leads to the sparsest representation. Hence,
we could imagine having a huge overcomplete dictionary (i.e., T � N ), but
we would be faced with prohibitive computation time cost for calculating the
˛ coefficients. Therefore, there is a trade-off between the complexity of our
analysis step (i.e., the size of the dictionary) and the computation time. Some
specific dictionaries have the advantage of having fast operators and are very good
candidates for analyzing the data.

The Isotropic Undecimated Wavelet Transform (IUWT), also called starlet
wavelet transform, is well known in the astronomical domain because it is well
adapted to astronomical data where objects are more or less isotropic in most cases
[54, 57]. For most astronomical images, the starlet dictionary is very well adapted.

The Starlet Transform

The starlet wavelet transform [53] decomposes an n � n image c0 into a coefficient
set W D fw1; : : : ;wJ ; cJ g, as a superposition of the form

c0Œk; l� D cJ Œk; l� C
JX
jD1

wj Œk; l�;

where cJ is a coarse or smooth version of the original image c0 and wj represents
the details of c0 at scale 2�j (see Starck et al. [56, 58] for more information). Thus,
the algorithm outputs J C 1 sub-band arrays of size N �N . (The present indexing
is such that j D 1 corresponds to the finest scale or high frequencies.)

The decomposition is achieved using the filter bank .h2D; g2D D ı � h2D; Qh2D D
ı; Qg2D D ı/, where h2D is the tensor product of two 1D filters h1D and ı is the Dirac
function. The passage from one resolution to the next one is obtained using the “à
trous” (“with holes”) algorithm [58]:
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Fig. 2 Left, the cubic spline function �; right, the wavelet  

cjC1Œk; l� D
X
m

X
n

h1DŒm� h1DŒn� cj Œk C 2jm; l C 2j n�;

wjC1Œk; l� D cj Œk; l� � cjC1Œk; l� ;

(6)

If we choose a B3-spline for the scaling function,

�.x/ D B3.x/ D
1

12
.j x � 2 j3 �4 j x � 1 j3 C6 j x j3 �4 j x C 1 j3 C j x C 2 j3/ (7)

the coefficients of the convolution mask in one dimension are h1D D˚
1

16 ;
1
4 ;

3
8 ;

1
4 ;

1
16

�
, and in two dimensions,

h2D D �
1=16 1=4 3=8 1=4 1=16

�
0
BBBBB@

1
16
1
4
3
8
1
4
1

16

1
CCCCCA

D

0
BBBBB@

1
256

1
64

3
128

1
64

1
256

1
64

1
16

3
32

1
16

1
64

3
128

3
32

9
64

3
32

3
128

1
64

1
16

3
32

1
16

1
64

1
256

1
64

3
128

1
64

1
256

1
CCCCCA

Figure 2 shows the scaling function and the wavelet function when a cubic spline
function is chosen as the scaling function �.

The most general way to handle the boundaries is to consider that cŒk C N� D
cŒN �k� (“mirror”). But other methods can be used such as periodicity .cŒkCN� D
cŒN �/ or continuity .cŒk CN� D cŒk�/.

The starlet transform algorithm is:

1. We initialize j to 0 and we start with the data cj Œk; l�.
2. We carry out a discrete convolution of the data cj Œk; l� using the filter .h2D/,

using the separability in the two-dimensional case. In the case of the B3-
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Fig. 3 Wavelet transform of NGC 2997 by the IUWT. The co-addition of these six images
reproduces exactly the original image

spline, this leads to a row-by-row convolution with
�

1
16 ;

1
4 ;

3
8 ;

1
4 ;

1
16

�
, followed

by column-by-column convolution. The distance between the central pixel and
the adjacent ones is 2j .

3. After this smoothing, we obtain the discrete wavelet transform from the differ-
ence cj Œk; l� � cjC1Œk; l�.

4. If j is less than the number J of resolutions we want to compute, we increment
j and then go to step 2.

5. The set ˛ D fw1; : : : ;wJ ; cJ g represents the wavelet transform of the data.

This starlet transform is very well adapted to the detection of isotropic features,
and this explains its success for astronomical image processing, where the data
contain mostly isotropic or quasi-isotropic objects, such as stars, galaxies, or galaxy
clusters.

Figure 3 shows the starlet transform of the galaxy NGC 2997 displayed in Fig. 4.
Five wavelet scales and the final smoothed plane (lower right) are shown. The
original image is given exactly by the sum of these six images.

The Starlet Reconstruction

The reconstruction is straightforward. A simple co-addition of all wavelet scales
reproduces the original map: c0Œk; l� D cJ Œk; l� C PJ

jD1 wj Œk; l�. But because the
transform is non-subsampled, there are many ways to reconstruct the original image



Starlet Transform in Astronomical Data Processing 2065

Fig. 4 Galaxy NGC 2997

from its wavelet transform [53]. For a given wavelet filter bank .h; g/, associated
with a scaling function � and a wavelet function , any synthesis filter bank . Qh; Qg/,
which satisfies the following reconstruction condition

Oh�.�/ OQh.�/C Og�.�/ OQg.�/ D 1 ; (8)

leads to exact reconstruction. For instance, for isotropic h, if we choose Qh D h (the
synthesis scaling function Q� D �), we obtain a filter Qg defined by [53]

Qg D ı C h :

If h is a positive filter, then g is also positive. For instance, if h1D D Œ1; 4; 6; 4; 1�=16,
then Qg1D D Œ1; 4; 22; 4; 1�=16. That is, Qg1D is positive. This means that Qg is no longer
related to a wavelet function. The 1D detail synthesis function related to Qg1D is
defined by

1

2
Q 1D

�
t

2

�
D �1D.t/C 1

2
�1D

�
t

2

�
: (9)

Note that by choosing Q�1D D �1D, any synthesis function Q 1D which satisfies

OQ 1D.2�/ O 1D.2�/ D O�2
1D.�/ � O�2

1D.2�/ (10)
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Fig. 5 Left, Q�1D the 1D synthesis scaling function and right, Q 1D the 1D detail synthesis function

leads to an exact reconstruction [36] and OQ 1D.0/ can take any value. The synthesis
function Q 1D does not need to verify the admissibility condition (i.e., to have a zero
mean).

Figure 5 shows the two functions Q�1D.D �1D/ and Q 1D used in the reconstruction
in 1D, corresponding to the synthesis filters Qh1D D h1D and Qg1D D ı C h1D. More
details can be found in [53].

Starlet Transform: Second Generation

A particular case is obtained when OQ�1D D O�1D and O 1D.2�/ D O�2
1D.�/� O�2

1D.2�/
O�1D.�/

, which

leads to a filter g1D equal to ı � h1D ? h1D. In this case, the synthesis function Q 1D

is defined by 1
2

Q 1D.
t
2 / D �1D.t/, and the filter Qg1D D ı is the solution to (8).

We end up with a synthesis scheme where only the smooth part is convolved
during the reconstruction.

Deriving h from a spline scaling function, for instance B1.h1 D Œ1; 2; 1�=4/ or
B3 .h3 D Œ1; 4; 6; 4; 1�=16/ (note that h3 D h1 ? h1), since h1D is even-symmetric
(i.e.,H.z/ D H.z�1/), the z-transform of g1D is then

G.z/ D 1 �H 2.z/ D 1 � z4

�
1 C z�1

2

�8

D 1

256

��z4 � 8z3 � 28z2 � 56z C 186 � 56z�1 � 28z�2 � 8z�3 � z�4�
;

(11)

which is the z-transform of the filter

g1D D Œ�1;�8;�28;�56; 186;�56;�28;�8;�1�=256:
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We get the following filter bank:

h1D D h3 D Qh D Œ1; 4; 6; 4; 1�=16

g1D D ı � h ? h D Œ�1;�8;�28;�56; 186;�56;�28;�8;�1�=256

Qg1D D ı :

(12)

The second-generation starlet transform algorithm is:

1. We initialize j to 0 and we start with the data cj Œk�.
2. We carry out a discrete convolution of the data cj Œk� using the filter h1D. The

distance between the central pixel and the adjacent ones is 2j . We obtain cjC1Œk�.
3. We do exactly the same convolution on cjC1Œk� and we obtain c0

jC1Œk�.
4. After this two-step smoothing, we obtain the discrete starlet wavelet transform

from the difference wjC1Œk� D cj Œk� � c0
jC1Œk�.

5. If j is less than the number J of resolutions we want to compute, we increment
j and then go to step 2.

6. The set ˛ D fw1; : : : ;wJ ; cJ g represents the starlet wavelet transform of the data.

As in the standard starlet transform, extension to 2D is trivial. We just replace
the convolution with h1D by a convolution with the filter h2D, which is performed
efficiently by using the separability.

With this specific filter bank, there is a no convolution with the filter Qg1D during
the reconstruction. Only the low-pass synthesis filter Qh1D is used.

The reconstruction formula is

cj Œl� D .h
.j /
1D ? cjC1/Œl�C wjC1Œl � ; (13)

and denoting Lj D h.0/ ? � � � ? h.j�1/ and L0 D ı, we have

c0Œl � D �
LJ ? cJ

�
Œl �C

JX
jD1

�
Lj�1 ? wj

�
Œl � : (14)

Each wavelet scale is convolved with a low-pass filter.
The second-generation starlet reconstruction algorithm is:

1. The set ˛ D fw1; : : : ;wJ ; cJ g represents the input starlet wavelet transform of
the data.

2. We initialize j to J � 1 and we start with the coefficients cj Œk�.
3. We carry out a discrete convolution of the data cjC1Œk� using the filter .h1D/. The

distance between the central pixel and the adjacent ones is 2j . We obtain c0
jC1Œk�.

4. Compute cj Œk� D c0
jC1Œk�C wjC1Œk�.
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Fig. 6 Left, the �1D analysis scaling function and right, the  1D analysis wavelet function. The
synthesis functions Q�1D and Q 1D are the same as those in Fig. 5

5. If j is larger than 0, j D j � 1 and then go to step 3.
6. c0 contains the reconstructed data.

As for the transformation, the 2D extension consists just in replacing the convolution
by h1D with a convolution by h2D.

Figure 6 shows the analysis scaling and wavelet functions. The synthesis
functions Q�1D and Q 1D are the same as those in Fig. 5. As both are positive, we
have a decomposition of an imageX on positive scaling functions Q�1D and Q 1D, but
the coefficients ˛ are obtained with the starlet wavelet transform and have a zero
mean (except for cJ ), as a regular wavelet transform.

In 2D, similarly, the second-generation starlet transform leads to the representa-
tion of an image XŒk; l�:

XŒk; l� D
X
m;n

�
.1/
j;k;l .m; n/cJ Œm; n�C

JX
jD1

X
m;n

�
.2/
j;k;l .m; n/wj Œm; n� ; (15)

where �.1/j;k;l .m; n/ D 2�2j Q�1D.2�j .k � m// Q�1D.2�j .l � n// and �.2/j;k;l .m; n/ D
2�2j Q 1D.2�j .k �m// Q 1D.2�j .l � n//.
�.1/ and �.2/ are positive, and wj are zero mean 2D wavelet coefficients.
The advantage of the second-generation starlet transform will be seen in sec-

tion “Sparse Positive Decomposition” below.
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Sparse Modeling of Astronomical Images

Using the sparse modeling, we now consider that the observed signal X can be
considered as a linear combination of a few atoms of the wavelet dictionary ˆ D
Œ�1; : : : ; �T �. The model of Eq. 3 is then replaced by the following:

Y D Hˆ˛ CN C B (16)

and X D ˆ˛, and ˛ D fw1; : : : ;wJ ; cJ g. Furthermore, most of the coefficients
˛ will be equal to zero. Positions and scales of active coefficients are unknown,
but they can be estimated directly from the data Y . We define the multiresolution
supportM of an image Y by

Mj Œk; l� D
�

1 if wj Œk; l� is significant
0 if wj Œk; l� is not significant

(17)

where wj Œk; l� is the wavelet coefficient of Y at scale j and at position .k; l/. Hence,
M describes the set of active atoms in Y . IfH is compact and not too extended, then
M describes also well the active set of X . This is true because the backgroundB is
generally very smooth, and therefore, a wavelet coefficient wj Œk; l� of Y , which does
not belong to the coarsest scale, is only dependent on X andN (the term < �i ; B >

being equal to zero).

Selection of Significant Coefficients Through NoiseModeling
We need now to determine when a wavelet coefficient is significant. Wavelet
coefficients of Y are corrupted by noise, which follows in many cases a Gaussian
distribution, a Poisson distribution, or a combination of both. It is important to detect
the wavelet coefficients which are “significant,” i.e., the wavelet coefficients which
have an absolute value too large to be due to noise.

For Gaussian noise, it is easy to derive an estimation of the noise standard
deviation �j at scale j from the noise standard deviation, which can be evaluated
with good accuracy in an automated way [55]. To detect the significant wavelet
coefficients, it suffices to compare the wavelet coefficients wj Œk; l� to a threshold
level tj . tj is generally taken equal to K�j , and K , as noted in Sect. 2, is chosen
between 3 and 5. The value of 3 corresponds to a probability of false detection of
0:27 %. If wj Œk; l� is small, then it is not significant and could be due to noise. If
wj Œk; l� is large, it is significant:

if j wj Œk; l� j � tj then wj Œk; l� is significant
if j wj Œk; l� j < tj then wj Œk; l� is not significant

(18)

When the noise is not Gaussian, other strategies may be used:
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• Poisson noise: if the noise in the data Y is Poisson, the transformation [1]

A.Y / D 2
q
Y C 3

8 acts as if the data arose from a Gaussian white noise model,
with � D 1, under the assumption that the mean value of Y is sufficiently large.
However, this transform has some limits, and it has been shown that it cannot be
applied for data with less than 20 counts (due to photons) per pixel. So for X-ray
or gamma ray data, other solutions have to be chosen, which manage the case of
a reduced number of events or photons under assumptions of Poisson statistics.

• Gaussian + Poisson noise: the generalization of variance stabilization [40] is

G.Y Œk; l�/ D 2

˛

r
˛Y Œk; l�C 3

8
˛2 C �2 � ˛g

where ˛ is the gain of the detector and g and � are the mean and the standard
deviation of the readout noise.

• Poisson noise with few events using the MS-VST: for images with very few
photons, one solution consists in using the Multi-Scale Variance Stabilization
Transform (MS-VST) [66]. The MS-VST combines both the Anscombe trans-
form and the starlet transform in order to produce stabilized wavelet coefficients,
i.e., coefficients corrupted by a Gaussian noise with a standard deviation equal to
1. In this framework, wavelet coefficients are now calculated by

Starlet
C

MS-VST

8<
:
cj D P

m

P
n h1DŒm�h1DŒn�

cj�1Œk C 2j�1m; l C 2j�1n�

wj D Aj�1.cj�1/� Aj .cj /

(19)

where Aj is the VST operator at scale j defined by

Aj .cj / D b.j /
q

jcj C e.j /j (20)

where the variance stabilization constants b.j / and e.j / only depend on the
filter h1D and the scale level j . They can all be precomputed once for any
given h1D [66]. The multiresolution support is computed from the MS-VST
coefficients, considering a Gaussian noise with a standard deviation equal to 1.
This stabilization procedure is also invertible as we have

c0 D A�1
0

2
4AJ .aJ /C

JX
jD1

wj

3
5 (21)

For other kinds of noise (correlated noise, nonstationary noise, etc.), other solutions
have been proposed to derive the multiresolution support [57].
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Sparse Positive Decomposition

Many astronomical images can be modeled as a sum of positive features, like stars
and galaxies, which are more or less isotropic. The previous representation, based
on the starlet transform, is well adapted to the representation of isotropic objects,
but does not introduce any prior relative to the positivity of the features contained
in our image. A positive and sparse modeling of astronomical images is similar to
Eq. 16:

Y D Hˆ˛ CN C B (22)

or

Y D ˆ˛ CN C B (23)

if we do not take into account the point spread function. All coefficients in ˛
are now positive, and all atoms in the dictionary ˆ are positive functions. Such
a decomposition normally requires computationally intensive algorithms such as
matching pursuit [37]. The second-generation starlet transform offers us a new
way to perform such a decomposition. Indeed, we have seen in section “Starlet
Transform: Second Generation” that, using a specific filter bank, we can decompose
an image Y on a positive dictionary ˆ (see Fig. 5) and obtain a set of coefficients
˛.Y /, where ˛.Y / D WY D fw1; : : : ;wJ ; cJ g, W being the starlet wavelet
transform operator. ˛ coefficients are positive and negative and are obtained
using the standard starlet wavelet transform algorithm. Hence, by thresholding all
negative (respectively, positive) coefficients, the reconstruction is always positive
(respectively, negative), since ˆ contains only positive atoms.

Hence, we would like to have a sparse set of positive coefficients Q̨ which verify
ˆ Q̨ D Y . But in order to take into account the background and the noise, we need
to define the constraint in the wavelet space (i.e., Wˆ Q̨ D WY D ˛.Y /), and this
constraint must be applied only to the subset of coefficients in ˛.Y / which are larger
than the detection level. Therefore, to get a sparse positive decomposition on ˆ, we
need to minimize

Q̨ D min
˛

k ˛ k1 s.t. MW˚˛ D M˛.Y / ; (24)

where M is the multiresolution support defined in the previous section (i.e.,
Mj Œk; l� D 1 if a significant coefficient is detected at scale j and at position .k; l/,
and zero otherwise). To remove the background, we have to set MJC1Œk; l� D 0 for
all .k; l/.

It was shown that such optimization problems can be efficiently solved through
an iterative soft thresholding (IST) algorithm [14, 24, 52]. The following algorithm,
based on the IST, allows to take into account the noise modeling through the
multiresolution support and force the coefficients to be all positive:
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1. Taking the second-generation starlet wavelet transform of the data Y , we obtain
˛.Y /.

2. From a given noise model, determine the multiresolution supportM .
3. Set the number of iterationsNiter, the first threshold, �.0/ D MAX.˛.Y //, and the

solution Q̨ .0/ D 0.
4. For 0 D 1; Niter do:

• Reconstruct the image QY .i/ from Q̨ .i/ W QY .i/ D ˆ Q̨ .i/.
• Taking the second-generation starlet wavelet transform of the data QY .i/, we

obtain ˛ QY .i/ D Wˆ Q̨ .i/.
• Compute the significant residual r.i/:

r.i/ D M
�
˛.Y / � ˛

QY .i/	 D M
�
˛.Y / � Wˆ Q̨ .i/� (25)

• Calculate the value �.i/ D �.0/.1 � i=Niter/

• Update the solution, by adding the residual, applying a soft thresholding on
positive coefficients using the threshold level �.i/, and setting all negative
coefficients to zero.

Q̨ .iC1/ D � Q̨ .i/ C r.i/ � �.i/
�

C
D � Q̨ .i/ CM

�
˛.Y / � Wˆ Q̨ .i/� � �.i/

�
C

(26)

• i D i C 1.

5. The set Q̨ D Q̨ .Niter/ represents the sparse positive decomposition of the data.

The threshold parameter �.i/ decreases with the iteration number, and it plays a role
similar to the cooling parameter of the simulated annealing techniques, i.e., it allows
the solution to escape from local minima.

Example 1: Sparse Positive Decomposition of NGC 2997
Figure 7 shows the positive starlet decomposition, using 100 iterations, and can be
compared to Fig. 3.

Example 2: Sparse Positive Starlet Decomposition of a Simulated Image
The next example compares the standard starlet transform to the positive starlet
decomposition (PSD) on a simulated image.

Figure 8 shows respectively from top to bottom and left to right (a) the original
simulated image, (b) the noisy data, (c) the reconstruction from the PSD coefficients,
and (d) the residual between the noisy data and the PSD reconstructed image
(i.e., image b–image c). Hence, the PSD reconstructed image gives a very good
approximation of the original image. No structures can be seen in the residual, and
all sources are well detected.
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Fig. 7 Positive starlet decomposition of the galaxy NGC 2997 with six scales

The first PSD scale does not contain any nonzero coefficient. Figure 9, top, shows
the first four scales of the wavelet transform, and Fig. 9, bottom, the first four scales
of the PSD.

4 Source Detection Using a Sparsity Model

As described is the previous section, the wavelet coefficients of Y which do not
belong to the coarsest scale cJ are not dependent on the background. This is
a serious disadvantage, since the background estimation can be sometimes very
problematic.

Two approaches have been proposed to detect sources, assuming the signal is
sparse in the wavelet domain. The first consists in first removing the noise and the
background and then applying the standard approach described in Sect. 2. It has been
used for many years for X-ray source detection [45,59]. The second approach, called
Multiscale Vision Model [8], attempts to define directly an astronomical object in
the wavelet space.

Detection ThroughWavelet Denoising

The most commonly used filtering method is hard thresholding, which consists of
setting to 0 all wavelet coefficients of Y which have an absolute value lower than a
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Fig. 8 (a and b) Original simulated image and the same image contaminated by a Gaussian noise.
(c and d) Reconstructed image for the positive starlet coefficients of the noisy image using 50
iterations, and residual (i.e., noisy image – reconstructed image)

threshold tj :

Qwj Œk; l� D
�

wj Œk; l� if j wj Œk; l� j> tj
0 otherwise

(27)

More generally, for a given sparse representation (i.e., wavelet) with its associated
fast transform W and fast reconstruction R, we can derive a hard threshold denoising
solutionX from the data Y , by first estimating the multiresolution supportM using
a given noise model, and then calculating

X D RMWY: (28)

We transform the data, multiply the coefficients by the support, and reconstruct the
solution.

The solution can however be improved by considering the following optimization
problem, minX k M.WY � WX/ k2

2, whereM is the multiresolution support of Y .
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Fig. 9 Top, starlet transform, and bottom, positive starlet decomposition of a simulated astronom-
ical image

A solution can be obtained using the Landweber iterative scheme [51, 58]:

XnC1 D Xn C RM ŒWY � WXn� (29)

If the solution is known to be positive, the positivity constraint can be introduced
using the following equation:

XnC1 D PC .Xn C RM ŒWY � WXn�/ (30)

where PC is the projection on the cone of nonnegative images.
This algorithm allows us to constrain the residual to have a zero value within the

multiresolution support [58]. For astronomical image filtering, iterating improves
significantly the results, especially for the photometry (i.e., the integrated number
of photons in a given object).

Removing the background in the solution is straightforward. The algorithm does
not need to be modified. We only need to set to zero the coefficients related to the
coarsest scale in the multiresolution support: 8k MJ Œk; l� D 0.

TheMultiscale Vision Model

Introduction
The wavelet transform of an image Y by the starlet transform produces at each scale
j a set fwj g. This has the same number of pixels as the image. The original image
I can be expressed as the sum of all the wavelet scales and the smoothed array cJ
by the expression
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Y Œk; l� D cJ Œk; l�C
JX
jD1

wj Œk; l�: (31)

Hence, we have a multiscale pixel representation, i.e., each pixel of the input image
is associated with a set of pixels of the multiscale transform. A further step is to
consider a multiscale object representation, which would associate with an object
contained in the data a volume in the multiscale transform. Such a representation
obviously depends on the kind of image we need to analyze, and we present here a
model which has been developed for astronomical data. It may however be used for
other kinds of data, to the extent that such data are similar to astronomical data. We
assume that an image Y can be decomposed into a set of components:

Y Œk; l� D
NoX
iD1

XiŒk; l� C BŒk; l�CNŒk; l� (32)

where No is the number of components, Xi are the components contained in the
data (stars, galaxies, etc.), B is the background image, and N is the noise.

To perform such a decomposition, we have to detect, to extract, to measure,
and to recognize the significant structures. This is done by first computing the
multiresolution support of the image (i.e., the set of significant active coeffi-
cients) and by applying a segmentation scale by scale. The wavelet space of
a 2D direct space is a 3D volume. An object, associated with a component,
has to be defined in this space. A general idea for object definition lies in the
connectivity property. An object occupies a physical region, and in this region
we can join any pixel to other pixels based on significant adjacency. Connectivity
in direct space has to be transported into wavelet transform space. In order to
define the objects, we have to identify the wavelet transform space pixels we
can attribute to the objects. We describe in this section the different steps of this
method.

Multiscale VisionModel Definition
The multiscale vision model, MVM [8], described an object as a hierarchical set of
structures. It uses the following definitions:

• Significant wavelet coefficient: a wavelet coefficient is significant when its
absolute value is above a given detection limit. The detection limit depends on
the noise model (Gaussian noise, Poisson noise, and so on). See section “Sparse
Modeling of Astronomical Images” for more details.

• Structure: a structure Sj;k is a set of significant connected wavelet coefficients at
the same scale j :

Sj;k D fwj Œk1; l1�;wj Œk2; l2�; : : : ;wj Œkp; lp�g (33)
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where p is the number of significant coefficients included in the structure Sj;k
and wj Œxi ; yi � is a wavelet coefficient at scale j and at position .xi ; yi /.

• Object: an object is a set of structures:

Ol D fSj1;k1 ; : : : ; Sjn;kng (34)

We define also the operator L which indicates to which object a given structure
belongs: L.Sj;k/ D l is Sj;k 2 Ol , and L.Sj;k/ D 0 otherwise.

• Object scale: the scale of an object is given by the scale of the maximum of its
wavelet coefficients.

• Interscale relation: the criterion allowing us to connect two structures into a
single object is called the “interscale relation.”

• Sub-object: a sub-object is a part of an object. It appears when an object has
a local wavelet maximum. Hence, an object can be composed of several sub-
objects. Each sub-object can also be analyzed.

FromWavelet Coefficients to Object Identification
Multiresolution Support Segmentation
Once the multiresolution support has been calculated, we have at each scale a
Boolean image (i.e., pixel intensity equals 1 when a significant coefficient has
been detected, and 0 otherwise). The segmentation consists of labeling the Boolean
scales. Each group of connected pixels having a “1” value gets a label value between
1 and Lmax, Lmax being the number of groups. This process is repeated at each scale
of the multiresolution support. We define a “structure” Sj;i as the group of connected
significant pixels which has the label i at a given scale j .

Interscale Connectivity Graph
An object is described as a hierarchical set of structures. The rule which
allows us to connect two structures into a single object is called “interscale
relation.” Figure 10 shows how several structures at different scales are linked
together and form objects. We have now to define the interscale relation. Let
us consider two structures at two successive scales, Sj;k and SjC1;l . Each
structure is located in one of the individual images of the decomposition
and corresponds to a region in this image where the signal is significant.
Denoting .xm; ym/ the pixel position of the maximum wavelet coefficient value
of Sj;k, Sj;k is said to be connected to SjC1;l if SjC1;l contains the pixel
position .xm; ym/ (i.e., the pixel position of the maximum wavelet coefficient
of the structure Sj;k must also be contained in the structure SjC1;l). Several
structures appearing in successive wavelet coefficient images can be connected
in such a way, which we call an object in the interscale connectivity graph.
Hence, we identify no objects in the wavelet space, each object Oi being
defined by a set of structures, and we can assign to each structure a label
i , with i 2 Œ1; no�: L.Sj;k/ D i if the structure Sj;k belongs to the
i th object.
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Fig. 10 Example of connectivity in wavelet space: contiguous significant wavelet coefficients
form a structure, and following an interscale relation, a set of structures forms an object. Two
structures Sj ; SjC1 at two successive scales belong to the same object if the position pixel of the
maximum wavelet coefficient value of Sj is included in SjC1

Filtering
Statistically, some significant structures can be due to the noise. They contain very
few pixels and are generally isolated, i.e., connected to no field at upper and lower
scales. So, to avoid false detection, the isolated fields can be removed from the initial
interscale connection graph. Structures at the border of the images may also have
been detected because of the border problem and can be removed.

Merging/Deblending
As in the standard approach, true objects which are too close may generate a set of
connected structures, initially associated with the same object, and a decision must
be taken whether to consider such a case as one or two objects. Several cases may
be distinguished:

• Two (or more) close objects, approximately of the same size, generate a set of
structures. At a given scale j , two separate structures Sj;1 and Sj;2 are detected,
while at the scale jC1, only one structure is detected SjC1;1, which is connected
to the Sj;1 and Sj;2.

• Two (or more) close objects of different sizes generate a set of structures, from
scale j to scale k (k > j ).
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In the wavelet space, the merging/deblending decision will be based on the local
maxima values of the different structures belonging to this object. A new object
(i.e., deblending) is derived from the structure Sj;k if there exists at least one other
structure at the same scale belonging to the same object (i.e., there exists one
structure SjC1;a and at least one structure Sj;b such that L.SjC1;a/ D L.Sj;b/ D
L.Sj;k/) and if the following relationship is verified: wmj > wmj�1 and wmj > wmjC1,
where:

• wmj is the maximum wavelet coefficient of the structure Sj;k: wmj D Max.Sj;k/:
– wmj�1 D 0 if Sj;k is not connected to any structure at scale j � 1.
– wmj�1 is the maximum wavelet coefficient of the structure Sj�1;l , where Sj�1;l

is such that L.Sj�1;l / D L.Sj;k/ and the position of its highest wavelet
coefficient is the closest to the position of the maximum of Sj;k.

• wmjC1 D MaxfwjC1;x1;y1 ; : : : ;wjC1;xn;yng, where all wavelet coefficients wjC1;x;y

are at a position which belongs also to Sj;k (i.e., wj;x;y 2 Sj;k).

When these conditions are verified, Sj;k and all structures at smaller scales which
are directly or indirectly connected to Sj;k will define a new object.

Object Identification
We can now summarize this method allowing us to identify all the objects in a given
image Y :

1. We compute the wavelet transform with the starlet algorithm, which leads to a
set ˛ D WY D fw1; : : : ;wJ ; cJ g. Each scale wj has the same size as the input
image.

2. We determine the noise standard deviation in w1.
3. We deduce the thresholds at each scale from the noise modeling.
4. We threshold scale by scale and we do an image labeling.
5. We determine the interscale relations.
6. We identify all the wavelet coefficient maxima of the wavelet transform space.
7. We extract all the connected trees resulting from each wavelet transform space

maximum.

Source Reconstruction

Partial Reconstruction as an Inverse Problem
A set of structures Si (Si D fSj;k; : : : ; Sj 0;k0g) defines an object Oi which can be
reconstructed separately from other objects, in order to provide the componentsXi .
The co-addition of all reconstructed objects is a filtered version of the input data. We
will denote ˛i the set of wavelet coefficients belonging to the object Oi . Therefore,
˛i is a subset of the wavelet transform of Xi , Q̨ i D WXi . Indeed, the last scale of
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Q̨ i is unknown, as well as many wavelet coefficients which have not been detected.
Then the reconstruction problem consists of searching for an image Xi such that
its wavelet transform reproduces the coefficients ˛i (i.e., they are the same as those
of Si , the detected structures). If W describes the wavelet transform operator and
Pw the projection operator in the subspace of the detected coefficients (i.e., having
set to zero all coefficients at scales and positions where nothing was detected), the
solution is found by minimization of

min
Xi

k ˛i � Pw .WXi/ k2 (35)

The size of the restored image Xi is arbitrary, and it can be easily set greater than
the number of known coefficients. It is certain that there exists at least one imageXi
which gives exactly ˛i , i.e., the original one. But generally we have an infinity of
solutions, and we have to choose among them the one which is considered as correct.
An image is always a positive function, which leads us to constrain the solution, but
this is not sufficient to get a unique solution. More details on the reconstruction
algorithm can be found in [8, 57].

Examples

Band Extraction
We simulated a spectrum which contains an emission band at 3:50�m and a
nonstationary noise superimposed on a smooth continuum. The band is a Gaussian
of width FWHM D 0:01�m (FWHM = full width at half-maximum) and
normalized such that its maximum value equals ten times the local noise standard
deviation.

Figure 11 (top) contains the simulated spectrum. The wavelet analysis results
in the detection of an emission band at 3:50�m above 3� . Figure 11 (middle)
shows the reconstruction of the detected band in the simulated spectrum. The real
feature is overplotted as a dashed line. Figure 11 (bottom) contains the original
simulation with the reconstructed band subtracted. It can be seen that there are no
strong residuals near the location of the band, which indicates that the band is well
reconstructed. The center position of the band, its FWHM, and its maximum can
then be estimated via a Gaussian fit. More details about the use of MVM for spectral
analysis can be found in [60].

Star Extraction in NGC 2997
We applied MVM to the galaxy NGC 2997 (Fig. 12, top left). Two images were
created by co-adding objects detected from scales 1 and 2 and from scales 3 to 6.
They are displayed, respectively, in Fig. 12, top right and bottom left. Figure 12,
bottom right, shows the difference between the input data and the image which
contained the objects from scales 1 and 2. As we can see, all small objects have
been removed, and the galaxy can be better analyzed.
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Fig. 11 Top: simulated spectrum. Middle: reconstructed simulated band (full line) and original
band (dashed line). Bottom: simulated spectrum minus the reconstructed band

Galaxy Nucleus Extraction
Figure 13 shows the extracted nucleus of NGC 2997 using the MVM method and
the difference between the galaxy image and the nucleus image.

5 Deconvolution

Up to now, the PSF H has not been considered in the source detection. This means
that all morphological parameters (size, ellipticity, etc.) derived from the detected
objects need to be corrected from the PSF. Very close objects may also be seen
as a single object because H acts as a blurring operator on the data. A solution
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Fig. 12 (a) Galaxy NGC 2997, (b) objects detected from scales 1 and 2, (c) objects detected from
scales 3 to 6, and (d) difference between (a) and (b)

may consist in deconvolving first the data and carrying out the source detection
afterwards.

The problem of image deconvolution is ill-posed [3], and as a consequence,
the matrix H modeling the imaging system is ill-conditioned. If Y is the
observed image and X the unknown object, the equation HX D Y has
not a unique and stable solution. Therefore, one must look for approximate
solutions of this equation that are also physically meaningful. One approach
is Tikhonov regularization theory [23]; however, a more general approach
is provided by the so-called Bayes paradigm [25], even if it is applicable
only to discrete problems. In this framework one can both take into account
statistical properties of the data (Tikhonov regularization is obtained by assuming
additive Gaussian noise) and also introduce a priori information on the unknown
object.
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Fig. 13 Upper left, galaxy NGC 2997; upper right, extracted nucleus; bottom, difference between
the two previous images

Statistical Approach to Deconvolution

We assume that the detected image Y is the realization of a multivalued random
variable I corresponding to the (unknown) value X of another multivalued random
variable, the object O . Moreover, we assume that the conditional probability
distribution pI .Y jX/ is known. Since the unknown object appears as a set of
unknown parameters, the problem of image deconvolution can be considered as a
classical problem of parameter estimation. The standard approach is the maximum
likelihood (ML) method. In our specific application, for a given detected image Y ,
this consists of introducing the likelihood function defined by

LY .X/ D pI .Y IX/ : (36)
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Then the ML estimate of the unknown object is any maximizerX� of the likelihood
function

X� D argmax
X2Rn LY .X/ ; (37)

if it exists.
In our applications the likelihood function is the product of a very large number

of terms (the data components are assumed to be statistically independent), so that
it is convenient to take the logarithm of this function; moreover, if we consider its
negative logarithm, the maximization problem is transformed into a minimization
one. Let us consider the function

J0.X IY / D �A ln LY .X/CB ; (38)

where A;B are suitable constants. They are introduced in order to obtain a function
which has a simple expression and is also nonnegative since, in our applications,
the negative logarithm of the likelihood is bounded from below. Then, it is easy to
verify that the problem of Eq. 37 is equivalent to the following one:

X� D arg min
X2Rn J0.X IY / : (39)

We consider now the model of Eq. 2 with three different examples of noise.

Example 1. In the case of additive white Gaussian noise, by a suitable choice of the
constants A;B , we obtain (we assume here that the backgroundB is not subtracted
even if it must be estimated)

J0.X IY / D jjHX C B � Y jj2 ; (40)

and therefore, the ML approach coincides with the well-known least-squares (LS)
approach. It is also well known that the function of Eq. 40 is convex and strictly
convex if and only if the equationHX D 0 has only the solutionX D 0. Moreover,
it has always absolute minimizers, i.e., the LS problem has always a solution; but
the problem is ill-conditioned because it is equivalent to the solution of the Euler
equation:

HTH X D HT .Y � B/ : (41)

We remark that the ill-posedness of the LS problem is the starting point of Tikhonov
regularization theory (see, for instance, [23,63]), and therefore, this theory is based
on the tacit assumption that the noise affecting the data is additive and Gaussian.

We remark that, in the case of object reconstruction, since objects are non-
negative, we should consider the minimization of the function of Eq. 40 on the
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nonnegative orthant. With such a constraint the problem is not treatable in the
standard framework of regularization theory.

Example 2. In the case of Poisson noise, if we introduce the so-called generalized
Kullback–Leibler (KL) divergence of a vectorZ from a vector Y , defined by

DKL.Y;Z/ D
mX
iD1

�
yi ln

Yi

Zi
CZi � Yi



; (42)

then, with a suitable choice of the constantsA;B , the function J0.X IY / is given by

J0.X IY / D DKL.Y IHX C B/

D
mX
iD1

�
Yi ln

yi

.HX C B/i
C .HX C B/i � yi



:

(43)

It is quite natural to take the nonnegative orthant as the domain of this function.
Moreover, it is well known that it is convex (strictly convex if the equationHX D 0
has only the solution X D 0), nonnegative, and coercive. Therefore, it has absolute
minimizers. However, these minimizers are strongly affected by noise, and the
specific effect of the noise in this problem is known as checkerboard effect [41],
since many components of the minimizers are zero.

Example 3. In the case of Gauss+Poisson noise, the function J0.X IY / is given by
a much more complex form. This function is also convex (strictly convex if the
equation Hx D 0 has the unique solution x D 0), nonnegative, and coercive [2].
Therefore, it also has absolute minimizer on the nonnegative orthant.

The previous examples demonstrate that, in the case of image reconstruction, ML
problems are ill-posed or ill-conditioned. That means that one is not interested in
computing the minimum points X� of the functions corresponding to the different
noise models because they do not provide sensible estimates NX of the unknown
object.

The previous remark is not surprising in the framework of inverse problem
theory. Indeed it is generally accepted that, if the formulation of the problem does
not use some additional information on the object, then the resulting problem is
ill-posed. This is what happens in the maximum likelihood approach because we
only use information about the noise with, possibly, the addition of the constraint of
non-negativity.

The additional information may consist, for instance, of prescribed bounds on the
solution and/or its derivatives up to a certain order (in general not greater than two).
These prescribed bounds can be introduced in the problem as additional constraints
in the variational formulation provided by ML. However, in a quite natural



2086 J.-L. Starck et al.

probabilistic approach, called the Bayesian approach, the additional information
is given in the form of statistical properties of the object [25].

In other words, one assumes that the unknown object X is a realization of a
vector-valued random variable O and that the probability distribution of O , the
so-called prior denoted by pO.X/, is also known or can be deduced from known
properties of the object. The most frequently used priors are Markov random fields
or, equivalently, Gibbs random fields, i.e., they have the following form:

pO.X/ D 1

Z
e�	˝.X/ ; (44)

where Z is a normalization constant, 	 is a positive parameter (a hyperparameter
in statistical language, a regularization parameter in the language of regularization
theory), while ˝.X/ is a function, possibly convex.

The previous assumptions imply that the joint probability density of the random
variablesO; I is given by

pOI .X; Y / D pI .Y jX/pO.X/ : (45)

If we introduce the marginal probability density of the image I

pI .Y / D
Z
pOI .X; Y / dX ; (46)

from Bayes’ formula we obtain the conditional probability density of O for a given
value Y of I :

pO.X jY / D pOI .X; Y /

pI .Y /
D pI .Y jX/pO.X/

pI .Y /
: (47)

If in this equation we insert the detected value Y of the image, we obtain the a
posteriori probability density of X :

PY .X/ D pO.X jY / D LY .X/
pO.X/

pI .Y /
: (48)

Then, a maximum a posteriori (MAP) estimate of the unknown object is defined as
any object X� that maximizes the a posteriori probability density:

X� D argmax
X2Rn PY .X/ : (49)

As in the case of the likelihood, it is convenient to consider the negative
logarithm of PY .X/. If we assume a Gibbs prior as that given in Eq. 44 and
we take into account the definition of Eq. 38, we can introduce the following
function:
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J.X IY / D �A lnPY .X/C B � A ln Z

� A ln pI .Y / D J0.X IY /C 	JR.X/ ;
(50)

where JR.X/ D A
.X/. Therefore, the MAP estimates are also given
by

X� D arg min
X2Rn J.X IY / (51)

and again one must look for the minimizers satisfying the non-negativity con-
straint.

The Richardson–Lucy Algorithm

One of the most frequently used methods for image deconvolution in astronomy is
an iterative algorithm known as the Richardson–Lucy (RL) algorithm [34, 48]. In
emission tomography it is also denoted as expectation maximization (EM) because,
as shown in [49], it can be obtained by applying to the ML problem with Poisson
noise a general EM method introduced in [19] for obtaining ML estimates.

In [49] it is shown that, if the iteration converges, then the limit is just an ML
estimate in the case of Poisson data. Subsequently the convergence of the algorithm
was proved by several authors in the case B D 0. An account can be found in [41].

The iteration is as follows: it is initialized with a positive image X.0/ (a constant
array, in general); then, given X.n/, X.nC1/ is computed by

X.nC1/ D X.n/HT Y

HX.n/ C B
: (52)

This algorithm has some nice features. First, the result of each iteration is auto-
matically a positive array; second, in the case B D 0, the result of each iteration
has the same flux of the detected image Y , and this property is interesting from the
photometric point of view.

The limit of the RL iteration is, in general, very noisy and sparse in
pixel space (see the remark at the end of Example 2 in the previous section)
and can provide satisfactory results in the case of star systems (see [4],
section 3.1); in the case of complex systems, a reasonable solution can be
obtained by a suitable stopping of the algorithm before convergence. This
can be seen as a kind of regularization, and this property is called semi-
convergence [3], i.e., the iteration first approaches the correct solution and then
goes away. An example of RL reconstruction is shown in Fig. 14 (lower left
panel).

The main drawback of RL is that, in general, it is very slow and may require
hundreds or thousands of iterations. The proposed acceleration approaches are based
on the remark that RL is a scaled gradient method since it can be written in the



2088 J.-L. Starck et al.

following form:

X.nC1/ D X.n/ �X.n/rXJ0.X
.n/IY / ; (53)

where rX denotes the gradient with respect to X and J0.X IY / is the data-fidelity
function defined in Eq. 43. Therefore, a reduction of the number of iterations can be
obtained by means of a suitable line search along the descent direction. This is the
approach proposed by several authors. However, this structure of RL has inspired a
recently proposed optimization method, known as scaled gradient projection (SGP)
[10], which can be viewed as a general method for the constrained minimization of
differentiable functions.

If J.X/ is the function to be minimized on the nonnegative orthant, then the
method is based on the descent direction:

D.n/ D PC
�
X.n/ � �nS

.n/rXJ.X
.n//

� � X.n/ (54)

where PC is the projection on the nonnegative orthant, S.n/ is the (diagonal) scaling
matrix, and �n is a suitably chosen step length [10]. Then iteration X.nC1/ is
obtained by a line search along the descent direction based on the Armijo rule. We
can add that the method can be easily extended to the case where the convex set of
the admissible solutions is defined by box and equality constraints.

In the case of the minimization of the KL divergence, the diagonal scaling matrix
is that suggested by RL, i.e., S.n/ D X.n/ (with the addition of suitable upper and
lower bounds), and the method shows the semi-convergence property as RL, but
requires a much smaller number of iterations for obtaining a sensible reconstruction.
In an application to the deconvolution of astronomical images [46], it has been
shown that, even if the computational cost per iteration is about 30 % greater than
that of RL, thanks to the reduction of the number of iterations it is possible to obtain
a speedup, with respect to RL, ranging from 4 to more than 30, depending on the
astronomical source and the noise level. Moreover, implementation on graphics
processing units (GPU) allows to deconvolve a 2;048 � 2;048 image in a few
seconds.

Several iterative methods, modeled on RL, have been introduced for
computing MAP estimates corresponding to different kinds of priors. A recent
account can be found in [4]. A nice feature of SGP, whose convergence
is proved in [10], is that it can be easily applied to this problem, i.e., to
the minimization of the function of Eq. 50 (again, with the addition of box
and equality constraints). The scaling is taken from the split-gradient method
(SGM), proposed in [31], since this scaling is always nonnegative, while the
scaling proposed in [26] may take negative values. In general the choice of
the scaling is as follows. If the gradient of JR.X/ is split in the following
way:

� rXJR.X/ D UR.X/ � VR.X/; (55)
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where UR; VR are nonnegative arrays, then the scaling is given by the
array

S D X

1 C 	VR.X/
: (56)

Of course SGP can be applied if JR.X/ is differentiable, and therefore, it can
cover both smoothing regularization as given by Tikhonov and also edge-preserving
regularization as given by smoothed TV (total variation) [12,65]. Finally, a difficult
problem in the case of regularized problems is the choice of the value of the regu-
larization parameter. An attempt in the direction of solving this problem is provided
by a recently proposed discrepancy principle for Poisson data deconvolution [5].

Blind Deconvolution

Blind deconvolution is the problem of image deblurring when the blur is unknown.
In the case of a space-invariant model, the naive problem formulation is to solve
the problem Y D H � X where only Y is known, where � denotes convolution.
It is obvious that this problem is extremely undetermined and that there is an
infinite set of pairs solving the equation. Among them also is the trivial solution
X D Y; H D ı, where ı denotes the usual delta function. Therefore, the problem
must be formulated by introducing as far as possible all available constraints on both
the object X and the PSF H .

In the case of Poisson noise, several iterative methods have been proposed, which
consist of alternating updates of the object and PSF by means of RL iterations or
accelerated RL iterations. For instance, in [27] one RL iteration is used both on the
object and the PSF. This algorithm was investigated, in the context of nonnegative
matrix factorization (NMF), by Lee and Seung [32], but their convergence proof
is incomplete, since only the monotonic decrease of the objective function is
shown while, for a general descent method to be convergent, strongest Armijo-like
decreasing conditions have to be verified. In general, the proposed approaches to
blind deconvolution with Poisson data could be classified as methods of inexact
alternating minimization applied to the KL divergence, as a function of both object
and PSF.

In a recent paper [9], in the context of NMF, convergence of inexact alternating
minimization is proved if the iterative algorithm used for the inner iterations satisfies
suitable conditions, which are satisfied by SGP. Therefore, this approach looks very
suitable for the problem of blind deconvolution with Poisson data. The approach is
applied in [47] using constraints both on the object and the PSF. The method applies
to the imaging by ground-based telescopes since, as suggested in [20], one of the
constraints on the PSF is provided by the Strehl ratio (SR; see Sect. 2), a parameter
measuring the quality of the AO correction. Indeed we recall that the advantage of
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SGP is not only fast convergence, if a suitable scaling of the gradient is used, but also
the possibility of introducing suitable box and equality constraints on the solution.
In particular the SR constraint excludes the trivial solution mentioned above. The
method works well in the case of star systems.

Deconvolution with a Sparsity Prior

Another approach is to use the sparsity to model the data. A sparse model can
be interpreted from a Bayesian standpoint, by assuming the coefficients ˛ of the
solution in the dictionary ˚ follow a leptokurtic PDF with heavy tails such as the
generalized Gaussian distribution form:

pdf˛.˛1; : : : ; ˛K/ /
KY
kD1

exp
�
�� k˛ikpp

	
0 � p < 2 : (57)

Between all possible solutions, we want the one which has the sparsest represen-
tation in the dictionary ˚ . Putting together the log-likelihood function in the case
of Gaussian noise � and the priors on ˛, the MAP estimator leads to the following
optimization problem:

min
˛1;:::;˛K

1

2�
kY � ˚˛k2 C �

KX
kD1

k˛kkpp ; 0 � p < 2 : (58)

The sparsity can be measured through the k˛k0 norm (i.e., p D 0). This counts
in fact the number of nonzero elements in the sequence. It was also proposed to
convexify the constraint by substituting the convex k˛k1 norm for the k˛k0 norm
[13]. Depending on the H operator, there are several ways to obtain the solution of
this equation.

A first iterative thresholding deconvolution method was proposed in [51] which
consists of the following iterative scheme:

X.nC1/ D PC
�
X.n/ CHT

�
WDenM.n/

�
Y �HX.n/

���
(59)

where PC is the projection on the cone of nonnegative images and WDen is an
operator which performs a wavelet thresholding, i.e., applies the wavelet transform
of the residualR.n/ (i.e., R.n/ D Y �HX.n/), thresholds some wavelet coefficients,
and applies the inverse wavelet transform. Only coefficients that belong to the
multiresolution supportM.n/ [51] are kept, while the others are set to zero. At each
iteration, the multiresolution supportM.n/ is updated by selecting new coefficients
in the wavelet transform of the residual which have an absolute value larger than
a given threshold. The threshold is automatically derived assuming a given noise
distribution such as Gaussian or Poisson noise.
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More recently, it was shown [14, 16, 24] that a solution of Eq. 58 for p D 1 can
be obtained through a thresholded Landweber iteration:

X.nC1/ D PC
�
WDen�

�
X.n/ CHT

�
Y �HX.n/

���
; (60)

with kHk D 1. In the framework of monotone operator splitting theory, it was
shown that for frame dictionaries, a slight modification of this algorithm converges
to the solution [14]. Extension to constrained nonlinear deconvolution is proposed
in [22].

Constraints in the Object or Image Domains
Let us define the object domain O as the space in which the solution belongs and
the image domain I as the space in which the observed data belongs (i.e., if X 2 O
then HX 2 I). The constraint in (59) was applied in the image domain, while in
(60) we have considered constraints on the solution. Hence, two different wavelet-
based strategies can be chosen in order to regularize the deconvolution problem.
The constraint in the image domain through the multiresolution support leads to a
very robust way to control the noise. Indeed, whatever the nature of the noise, we
can always derive robust detection levels in the wavelet space and determine scales
and positions of the important coefficients. A drawback of the image constraints is
that there is no guarantee that the solution is free of artifacts such as ringing around
point sources. A second drawback is that image constraints can be used only if the
point spread function is relatively compact, i.e., does not smear the information over
the whole image.

The property of introducing robust noise modeling is lost when applying the
constraint in the object domain. For example, in the case of Poisson noise, there is no
way (except using time-consuming Monte Carlo techniques) to estimate the level of
the noise in the solution and to adjust properly the thresholds. The second problem
with this approach is that, in fact, we try to solve two problems simultaneously
(noise amplification and artifact control in the solution) with one parameter (i.e.,
�). The choice of this parameter is crucial, while such a parameter is implicit when
using the multiresolution support.

Ideally, constraints should be added in both the object and image domains in
order to better control the noise by using the multiresolution support and avoid such
a ringing artifact.

Example
A simulated Hubble Space Telescope Wide Field Camera image of a distant cluster
of galaxies is shown in Fig. 14, upper left. The simulated data are shown in
Fig. 14, upper right. The Richardson–Lucy and the wavelet solutions are shown,
respectively, in Fig. 14, lower left and right. The Richardson–Lucy method amplifies
the noise, which implies that the faintest objects disappear in the deconvolved
image, while the wavelet starlet solution is stable for any kind of PSF, and any
kind of noise modeling can be considered.
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Fig. 14 Simulated Hubble Space Telescope Wide Field Camera image of a distant cluster of
galaxies. Upper left: original, unaberrated, and noise-free. Upper right: input, aberrated, noise
added. Lower left: restoration, Richardson–Lucy. Lower right, restoration starlet deconvolution

Detection and Deconvolution

The PSF is not needed with MVM. This is an advantage when the PSF is unknown
or difficult to estimate, which happens relatively often when it is space variant.
However, when the PSF is well determined, it becomes a drawback because known
information is not used for the object reconstruction. This can lead to systematic
errors in the photometry, which depends on the PSF and on the source signal-to-
noise ratio. In order to preempt such a bias, a kind of calibration must be performed
using simulations [50]. This section shows how the PSF can be used in the MVM,
leading to a deconvolution.

Object Reconstruction Using the PSF

A reconstructed and deconvolved object Xi can be obtained by searching for a
signal Xi such that the wavelet coefficients of HXi are the same as those of the
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detected structures ˛i . If W describes the wavelet transform operator and Pw the
projection operator in the subspace of the detected coefficients, the solution is found
by minimization of

min
Xi

k ˛i � Pw .WHXi/ k2 (61)

where ˛i represents the detected wavelet coefficients of the object Oi and H is the
PSF. In this approach, each object is deconvolved separately. The flux related to the
extent of the PSF will be taken into account. For point sources, the solution will
be close to that obtained by PSF fitting. This problem is also different from global
deconvolution in the sense that it is well constrained. Except for the positivity of the
solution which is always true and must be used, no other constraint is needed. This
is due to the fact that the reconstruction is performed from a small set of wavelet
coefficients (those above a detection limit). The number of objects is the same as
those obtained by the MVM, but the photometry and the morphology are different.
The astrometry may also be affected.

The Algorithm

Any minimizing method can be used to obtain the solution Xi . Since there is
no problem of convergence, noise amplification, or ringing effect, the Van Cittert
method was proposed on the grounds of its simplicity [57]. It leads to the following
iterative scheme:

X
.nC1/
i D X

.n/
i C R

�
˛i � Pw

�
WHX

.n/
i

		
(62)

where R is the inverse wavelet transform, and the algorithm is:

1. Set n to 0.
2. Find the initial estimation X.n/

i by applying an inverse wavelet transform to the
set ˛i corresponding to the detected wavelet coefficients in the data.

3. ConvolveX.n/
i with the PSF H : Y .n/i D HX

.n/
i .

4. Determine the wavelet transform ˛.Y
.n/
i / of Y .n/i .

5. Threshold all wavelet coefficients in ˛.Y
.n/
i / at position and scales where nothing

has been detected (i.e., Pw operator). We get ˛
.Y

.n/
i /

t .

6. Determine the residual ˛r D ˛i � ˛.Y
.n/
i /

t .
7. Reconstruct the residual image R.n/ by applying an inverse wavelet transform.
8. Add the residual to the solution:X.nC1/

i D X
.n/
i CR.n/.

9. Threshold negative values in X.nC1/
i .

10. If �.R.n//=�.X.0/
i / < �, then n D nC 1 and go to step 3.

11. X.nC1/
i contains the deconvolved reconstructed object.
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In practice, convergence is very fast (less than 20 iterations). The reconstructed
image (not deconvolved) can also be obtained just by reconvolving the solution with
the PSF.

Space-Variant PSF

Deconvolution methods generally do not take into account the case of a space-
variant PSF. The standard approach when the PSF varies is to decompose the image
into blocks and to consider the PSF constant inside a given block. Blocks which
are too small lead to a problem of computation time (the FFT cannot be used),
while blocks which are too large introduce errors due to the use of an incorrect PSF.
Blocking artifacts may also appear. Combining source detection and deconvolution
opens up an elegant way for deconvolution with a space-variant PSF. Indeed, a
straightforward method is derived by just replacing the constant PSF at step 3 of
the algorithm with the PSF at the center of the object. This means that it is not the
image which is deconvolved, but its constituent objects.

Undersampled Point Spread Function

If the PSF is undersampled, it can be used in the same way, but results may not be
optimal due to the fact that the sampled PSF varies depending on the position of the
source. If an oversampled PSF is available, resulting from theoretical calculation or
from a set of observations, it should be used to improve the solution. In this case,
each reconstructed object will be oversampled. Equation 61 must be replaced by

min
Xi

k ˛i � Pw .WDlHXi / k2 (63)

where Dl is the averaging-decimation operator, consisting of averaging the data in
the window of size l � l and keeping only one average pixel for each l � l block.

Example: Application to Abell 1689 ISOCAMData

Figure 15 (left) shows the detections (isophotes) obtained using the MVM method
without deconvolution on ISOCAM data. The data were collected using the 6 arcsec
lens at 6:75�m. This was a raster observation with 10 s integration time, 16 raster
positions, and 25 frames per raster position. The noise is nonstationary, and the
detection of the significant wavelet coefficients was carried out using the root mean
square error map R�.x; y/ by the method described in [50]. The isophotes are
overplotted on an optical image (NTT, band V) in order to identify the infrared
source. Figure 15 (right) shows the same treatment but using the MVM method
with deconvolution. The objects are the same, but the photometry is improved, and
it is clearly easier to identify the optical counterpart of the infrared sources.
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Fig. 15 Abell 1689: left, ISOCAM source detection (isophotes) overplotted on an optical image
(NTT, band V). The ISOCAM image is a raster observation at 7�m. Right, ISOCAM source
detection using the PSF (isophotes) overplotted on the optical image. Compared to the left panel,
it is clearly easier to identify the detected infrared sources in the optical image

6 Conclusion

In this chapter we have used the sparsity principle that now occupies a very central
role in signal processing. We have discussed the vision models within which the
sparsity principle is applied. Finally, we have reviewed the use of the starlet wavelet
transform as a prime technique in order to apply the sparsity principle in the
context of vision models in various application domains. Among the latter are object
detection coupled with denoising, deconvolution and ltering generally. Issues of
algorithmic optimization and of statistical modeling entered into our discussion
on various occasions. Many examples and case studies were used to demonstrate
the powerfulness of the approaches described for astronomical data analysis and
processing.
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