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Abstract
Since their introduction in a classic paper by Rudin, Osher, and Fatemi (Physica
D 60:259–268, 1992), total variation minimizing models have become one of
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the most popular and successful methodologies for image restoration. New
developments continue to expand the capability of the basic method in various
aspects. Many faster numerical algorithms and more sophisticated applications
have been proposed. This chapter reviews some of these recent developments.

1 Introduction

Images acquired through an imaging system are inevitably degraded in various
ways. The types of degradation include noise corruption, blurring, missing values
in the pixel domain or transformed domains, intensity saturation, jittering, etc. Such
degradations can have adverse effects on high-level image processing tasks such as
object detection and recognition. Image restoration aims at recovering the original
image from its degraded version(s) to facilitate subsequent processing tasks. Image
data differ from many other kinds of data due to the presence of edges, which
are important features in human perception. It is therefore essential to preserve
and even reconstruct edges in the processing of images. Variational methods for
image restoration have been extensively studied in the past couple of decades. A
promise of these methods is that the geometric regularity of the resulting images
is explicitly controlled by using well-established descriptors in geometry. For
example, smoothness of object boundaries can be easily manipulated by controlling
their length. There has also been much research in designing variational methods
for preserving other important image features such as textures.

Among the various restoration problems, denoising is perhaps the most funda-
mental one. Indeed, all algorithms for solving ill-posed restoration problems have
to have some denoising capabilities either explicitly or implicitly, for otherwise
they cannot cope with any error (noise) introduced during image acquisition or
numerical computations. Moreover, the noise removal problem boils down to the
fundamental problem of modeling natural images which has great impacts on any
image processing tasks. Therefore, research on image denoising has been very
active.

2 Background

Total variation (TV)-based image restoration models are introduced by Rudin,
Osher, and Fatemi (ROF) in their seminal work [51] on edge-preserving image
denoising. It is one of the earliest and best-known examples of variational partial
differential equation (PDE)-based edge-preserving denoising models. In this model,
the geometric regularity of the resulting image is explicitly imposed by reducing the
amount of oscillation while allowing for discontinuities (edges). The unconstrained
version introduced in [1] reads:

inf
u2L2.�/

Z
�

jruj C �

Z
�

.u � f /2 dx:
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Here,� is the image domain, f W � ! R is the observed noisy image, u: � ! R
is the denoised image, and � � 0 is a parameter depending on the noise level. The
first term is the total variation (TV) which is a measure of the amount of oscillation
in the resulting image u. Its minimization would reduce the amount of oscillation
which presumably reduces noise. The second term is the L2 distance between u and
f , which encourages the denoised image to inherit most features from the observed
data. Thus, the model trades off the closeness to f by gaining the regularity of
u. The noise is assumed to be additive and Gaussian with zero mean. If the noise
variance level �2 is known, then the parameter � can be treated as the Lagrange
multiplier, restraining the resulting image to be consistent with the known noise
level, i.e., s�.u � f /2dx D j�j�2 [16].

The ROF model is simple and elegant for edge-preserving denoising. Since its
introduction, this model has ignited a great deal of research in constructing more
sophisticated variants which can give better reconstructed images, designing faster
numerical algorithms for solving the optimization problem numerically, and finding
new applications in various domains. In a previous book chapter [21] published
in 2005, the authors surveyed some recent progresses in the research of total
variation-based models. The present chapter aims at highlighting some exciting
latest developments in numerical methods and applications of total variation-based
methods since the last survey.

3 Mathematical Modeling and Analysis

In this section, the basic definition of total variation and some of its variants
are presented. Then, some recent TV-based mathematical models in imaging are
reviewed.

Variants of Total Variation

Basic Definition
The use of TV as a regularizer has been shown to be very effective for processing
images because of its ability to preserve edges. Being introduced for different
reasons, several variants of TV can be found in the literature. Some variants can
handle more sophisticated data such as vector-valued imagery and matrix-valued
tensors; some are designed to improve restoration quality, and some are modified
versions for the ease of numerical implementation. It is worthwhile to review the
basic definition and its variants.

In Rudin, Osher, and Fatemi’s work [51], the TV of an image f W � ! R is
defined as

Z
�

jrf j dx;
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where � � R2 is a bounded open set. Since the image f may contain discon-
tinuities, the gradient rf must be interpreted in a generalized sense. It is well
known that elements of the Sobolev space W 1;1.�/ cannot have discontinuities
[2]. Therefore, the TV cannot be defined through the completion of the space
C 1 of continuously differentiable functions under the Sobolev norm. The rf is
thus interpreted as a distributional derivative, and its integral is interpreted as a
distributional integral [40]. Under this framework, the minimization of TV naturally
leads to a PDE with a distribution as a solution.

Besides defining TV as a distributional integral, other perspectives can offer some
unique advantages. A set theoretical way is to define TV as a Radon measure of the
domain � [50]. This has an advantage of allowing � to be a more general set. But
a more practical and simple alternative is the “dual formulation.” It uses the usual
trick in defining weak derivatives – integration by parts – together with the Fenchel
transform,

Z
�

jrf j D sup

( Z
�

f divg dx

ˇ̌
ˇ̌
ˇ g 2 C 1

c

�
�;R2

�
; jg.x/j � 18x 2 �

)
(1)

where f 2 L1.�/ and div is the divergence operator. Using this definition, one can
bypass the discussion of distributions. It also plays an important role in many recent
works in dual and primal-dual methods for solving TV minimization problems. The
space BV can now be defined as

BV .�/ WD
�
f 2 L1 .�/

ˇ̌
ˇ̌
Z
�

jrf j < 1
�
:

Equipped with the norm kf kBV D kf kL1 C R
� jrf j, this space is complete and is

a proper superset of W 1;1.�/ [32].

Multichannel TV
Many practical images are acquired in a multichannel way, where each channel
emphasizes a specific kind of signal. For example, color images are often acquired
through the RGB color components, whereas microscopy images consist of mea-
surements of different fluorescent labels. The signals in the different channels
are often correlated (contain redundant information). Therefore, in many practical
situations, regularization of multichannel images should not be done independently
on each channel.

There are several existing ways to generalize TV to vectorial data. A review of
some generalizations can be found in [20]. Many generalizations are very intuitive.
But only some of them have a natural dual formulation. Sapiro and Ringach [52]
proposed to define

Z
�

jrf j WD
Z
�

vuut MX
iD1

jrfi j2dx D
Z
�

jrf jF dx;
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where f D .f1.x/; f2.x/; : : :; fM .x// is the vectorial data withM channels. Thus, it
is the integral of the Frobenius norm j � jF of the Jacobian rf . The dual formulation
given in [10] is

sup

( Z
�

hf; div gidx

ˇ̌
ˇ̌
ˇ g 2 C 1

c

�
�;R2�M �

; jg.x/jF � 18x 2 �
)
;

where hf; div gi D PM
iD1 fi div gi .

Matrix-Valued TV
In applications such as diffusion tensor imaging (DTI), the measurements at each
spatial location are represented by a diffusion tensor, which is a 3 � 3 symmetric
positive semi-definite matrix. Recent efforts have been devoted to generalize the
TV to matrix-valued images. Some natural generalizations can be obtained by
identifying an M � N matrix with an MN vector, so that a vector-valued total
variation can be applied. This was done by Tschumperlé and Deriche [57], who
generalized the vectorial TV of [7]. The main challenge is to preserve the positive
definiteness of the denoised solution. This will be elaborated in section “Diffusion
Tensors Images.”

Another interesting approach proposed by Setzer et al. [54] is the so-called
operator-based regularization. Given a matrix-valued function f D .fij .x//, define
a matrix functionA W D .aij / where aij D jrfij j2. Let˚.A/ be the matrix obtained
by replacing each eigenvalue � of A with

p
�. Then the total variation is defined to

be s� j˚.A/jF dx, where j � jF is the Frobenius norm. While this formulation seems
complicated, its first variation turns out to have a nice simple formula. However,
when combined with the ROF model, the preservation of positive definiteness is an
issue.

Discrete TV
The ROF model is cast as an infinite-dimensional optimization problem over the
BV space. To solve the problem numerically, one must discretize the problem at
some stage. The approach proposed by Rudin et al. in [51] is to “optimize then
discretize.” The gradient flow equation is discretized with a standard finite difference
scheme. This method works very well in the sense that the numerical solution
converges to a steady state which is qualitatively consistent with the expected result
of the (continuous) ROF model. However, to the best of the authors’ knowledge,
a theoretical proof of convergence of the numerical solution to the exact solution
of the gradient flow equation as the grid size tends to zero is not yet available.
A standard convergence result of finite difference schemes for nonlinear PDE is
based on the compactness of TV-bounded sets in L1 [46]. However, proving TV
boundedness in two or more dimensions is often difficult.

An alternative approach is to “discretize then optimize.” In this case, only one has
to solve a finite-dimensional optimization problem, whose numerical solution can
in many cases be shown to converge. But the convergence of the exact solution
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of the finite-dimensional problems to the exact solution of the original infinite-
dimensional problem is often hard to obtain too. So, both approaches suffer from
the theoretical convergence problem. But the latter method has a precise discrete
objective to optimize.

To discretize the ROF objective, the fitting term is often straightforward. But the
discretization of the TV term has a strong effect on the numerical schemes. The
most commonly used versions of discrete TV are

kf kT V D
m�1X
iD1

n�1X
jD1

q�
fiC1;j � fi;j

�2 C �
fi;jC1 � fi;j

�2
�x; (2)

kf kT V D
m�1X
iD1

n�1X
jD1

�ˇ̌
fiC1;j � fi;j

ˇ̌ C ˇ̌
fi;jC1 � fi;j

ˇ̌�
�x; (3)

where f D .fi;j / is the discrete image and�x is the grid size. They are sometimes
referred as the isotropic and anisotropic versions, respectively, for they are a

formal discretization of the isotropic TV
R
�

q
f 2
x C f 2

y dx and the anisotropic TV

s�.jfxj C jfy j/d x, respectively. The anisotropic TV is not rotational invariant; an
image and its rotation can have a different TV value. Therefore, the discrete TV (3)
deviates from the original isotropic TV. But being a piecewise linear function, some
numerical techniques for quadratic and linear problems can be applied. Indeed, by
introducing some auxiliary variables, the corresponding discrete ROF objective can
be converted into a canonical quadratic programming problem [30].

Besides using finite difference approximations, a recent popular way is to
represent TV on graphs [27]. To make the problem fully discrete, the range of the
image is quantized to a finite set of K integers only, usually 0–255. The image is
“leveled,” so that f k

i;j D 1 if the intensity of the .i; j /th pixel is at most k, and

f k
i;j D 0 otherwise. Then, the TV is given by

kf kT V D
K�1X
kD0

X
i;j

X
s;t

wi;j;s;t
ˇ̌
ˇf k
i;j � f k

s;t

ˇ̌
ˇ; (4)

where wi;j;s;t is a nonnegative weight. A simple choice is the four-connectivity
model, where wi;j;s;t D 1 if ji � sj C jj � t j � 1 and wi;j;s;t D 0 otherwise.
In this case, it becomes the anisotropic TV (3). Different choices of the weights
penalize edges in different orientations.

A related concept introduced by Shen and Kang is the quantum total variation
[55]. They studied the ROF model when the range of an image is a finite discrete set
(preassigned or determined on the fly), but the image domain is a continuous one.
The model is suitable for problems such as bar code scanning, image quantization,
and image segmentation. An elegant analysis of the model and some stochastic
gradient descent algorithms were presented there.
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Nonlocal TV
First proposed by Buades et al. [11], the nonlocal means algorithm renounces the
use of local smoothness to denoise an image. Patches which are spatially far away
but photometrically similar are also utilized in the estimation process – a paradigm
which has been used in texture synthesis [28]. The denoising results are surprisingly
good. Since then, the use of nonlocal information becomes increasingly popular.
In particular, Bresson and Chan [10] and Gilboa and Osher [31] considered the
nonlocal TV. The nonlocal gradient rNLf for a pair of points x 2 � and y 2 � is
defined by

rNLf .x; y/ D
p

w .x; y/ .f .x/� f .y// ;

where w.x; y/ is a nonnegative weight function which is presumably a similarity
measure between a patch around x and a patch around y. As an illustration, a simple
choice of the weight function is

w .x; y/ D ˛1e
�jx�yj2=�2

1 C ˛2e
�jF .x/�F .y/j2=�2

2 ;

where ˛i and �i are positive constants, and F.x/ is a feature vector derived from
a patch around x. The constants ˛i may sometimes be defined to depend on x, so
that the total weight over all y 2 � is normalized to 1. In this case, the weight
function is nonsymmetric with respective to its arguments. The first term in w is
a measure of geometric similarity, so that nearby pixels have a higher weight. The
second term is a measure of photometric similarity. The feature vector F can be the
color histogram or any texture descriptor over a window around x. The norm of the
nonlocal gradient at x is defined by

jrNLf .x/j D
sZ

�

ŒrNLf .x; y/�
2 dy;

which adds up all the squared intensity variation relative to f .x/, weighted by
the similarity between the corresponding pair of patches. The nonlocal TV is then
naturally defined by summing up all the norms of the nonlocal gradients over the
image domain:

Z
�

jrNLf jdx:

Therefore, the nonlocal TV is small if, for each pair of similar patches, the intensity
difference between their centers is small. An advantage of using the nonlocal TV
to regularize images is its tendency to preserve highly repetitive patterns better. In
practice, the weight function is often truncated to reduce the computation costs spent
in handling the many less similar patches.
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Further Applications

Inpainting in Transformed Domains
After the release of the image compression standard JPEG2000, images can be
formatted and stored in terms of wavelet coefficients. For instance, in Acrobat 6.0 or
later, users can opt to use JPEG2000 to compress embedded images in a PDF file.
During the process of storing or transmission, some wavelet coefficients may be
lost or corrupted. This prompts the need of restoring missing information in wavelet
domains. The setup of the problem is as follows. Denote the standard orthogonal
wavelet expansion of the images f and u by

f .˛/ D
X
j;k

˛j;k j;k .x/; j 2 Z; k 2 Z
2;

and

u .ˇ/ D
X
j;k

ˇj;k j;k .x/ ; j 2 Z; k 2 Z
2;

where f‰j;kg is the wavelet basis, and f’j;kg, f“j;kg are the wavelet coefficients of
f and u given by

˛j;k D ˝
f; j;k

˛
and ˇj;k D ˝

u;  j;k
˛
;

respectively, for j 2 Z, k 2 Z
2. For convenience, u.“/ is denoted by u when there

is no ambiguity. Assume that the wavelet coefficients in the index set I are known,
i.e., the available wavelet coefficients are given by

	j;k D
�
˛j;k; .j; k/ 2 I;

0; .j; k/ 2 �nI:

The aim of wavelet domain inpainting is to reconstruct the wavelet coefficients
of u from the given coefficients 	. It is well known that the inpainting problem
is ill posed, i.e., it admits more than one solution. There are many different ways
to fill in the missing coefficients, and therefore many different reconstructions in
the pixel domain are possible. Regularization methods can be used to incorporate
prior information about the reconstruction. In [23], Chan, Shen, and Zhou used TV
to solve the wavelet inpainting problem, so that the missing coefficients are filled
while preserving sharp edges in the pixel domain faithfully. More precisely, they
considered the minimization of the following objective

F .ˇ/ D 1

2

X
j;k


j;k
�
	j;k � ˇj;k

�2 C � kukT V ; (5)
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with 
j;k D 1 if .j; k/ 2 I and 
j;k D 0 if .j; k/ 2 �nI , and � is the
regularization parameter. The first term in F is the data-fitting term, and the second
is the TV regularization term. The method Chan, Shen, and Zhou used to optimize
the objective is the standard gradient descent. The method is very robust, but it often
slows down significantly before it converges.

In [18], Chan, Wen, and Yip proposed an efficient optimization transfer algo-
rithm to minimize the objective (5). An auxiliary variable — is introduced to yield a
new objective function:

G .�; ˇ/ D 1 C �

2�

�
k
 .� � 	/k2

2 C � k� � ˇk2
2

�
C � ku .ˇ/kT V ;

where ¦ denotes a diagonal matrix with diagonal entries ¦j;k, and � is an arbitrary
positive parameter. The functionG is a quadratic majorizing function [43] of F . The
method also has a flavor of the splitting methods introduced in section “Splitting
Methods.” But a major difference is that the method here solves the original
problem (5) without any alteration. It can be easily shown that

F .ˇ/ D min
�
G .�; ˇ/

for any positive regularization parameter £. Thus, the minimization of G w.r.t.
.—; “/ is equivalent to the minimization of F w.r.t. “ for any £ > 0. Unlike the
gradient descent method of [23], the optimization transfer algorithm avoids the use
of derivatives of the TV. It also does not require smoothing out the TV to make it
differentiable. The experimental results in [18] showed that the algorithm is very
efficient and outperforms the gradient descent method.

Superresolution
Image superresolution refers to the process of increasing spatial resolution by fusing
information from a sequence of low-resolution images of the same scene. The
images are assumed to contain subpixel information (due to subpixel displacements
or blurring), so that the superresolution is possible.

In [24], Chan et al. proposed a unified TV model for superresolution imaging
problems. They focused on the problem of reconstructing a high-resolution image
from several decimated, blurred, and noisy low-resolution versions of the high-
resolution image. They derived a low-resolution image formation model which
allows multiple-shifted and blurred low-resolution image frames, so that it subsumes
several well-known models. The model also allows an arbitrary pattern of missing
pixels (in particular an arbitrary pattern of missing frames). The superresolution
image reconstruction problem is formulated as an optimization problem which
combines the image formation model and the TV inpainting model. In this method,
TV minimization is used to suppress noise amplification, repair corrupted pixels
in regions without missing pixels, and reconstruct intensity levels in regions with
missing pixels.
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Image Formation Model The observation model, Chan et al. considered, consists
of various degradation processes. Assume that a number of m � n low-resolution
frames are captured by an array of charge-coupled device (CCD) sensors. The goal
is to reconstruct an Lm �Ln high-resolution image. Thus, the resolution is increased
by a factor of L in each dimension. Let u be the ideal Lm � Ln high-resolution clean
image.

1. Formation of low-resolution frames. A low-resolution frame is given by

Dp;qCu;

where C is an averaging filter with window size L-by-L, and Dp;q is the
downsampling matrix which, starting at the (p; q)th pixel, samples every other
L pixels in both dimensions to form an m � n image.

2. Blurring of frames. This is modeled by

Hp;qDp;qCu;

where Hp;q is the blurring matrix for the .p; q/th frame.
3. Concatenation of frames. The full set of L2 frames are interlaced to form an

mL � nL image:

Au;

where

A D
X
p;q

DT
p;qHp;qDp;qC:

4. Additive Noise.

Au C 
;

where each pixel in ˜ is a Gaussian white noise.
5. Missing pixels and missing frames.

f D ƒD .Au C 
/ ;

where D denotes the set of missing pixels, and ƒD is the downsampling matrix
from the image domain to D.

6. Multiple observations. Finally, multiple observations of the same scene, but with
different noise and blurring, are allowed. This leads to the model

fr D ƒDr .Aru C 
r/ r D 1; : : : ; R; (6)
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where

Ar D
X
p;q

DT
p;qHp;q;rDp;qC:

TV Superresolution Imaging Model To invert the degradation processes in (6), a
Tikhonov-type regularization model has been used. It requires minimization of the
following energy:

F .u/ D 1

2

RX
rD1

kƒDr Aru � frk2 C � kukT V :

This model simultaneously performs denoising, deblurring, inpainting, and super-
resolution reconstruction. Experimental results show that reasonably good recon-
struction can be obtained even if five-sixth of the pixels are missing and the frames
are blurred.

Image Segmentation
TV minimization problems also arise from image segmentation. When one seeks for
a partition of the image into homogeneous segments, it is often helpful to regularize
the shape of the segments. This can increase the robustness of the algorithm against
noise and avoid spurious segments. It may also allow the selection of features
of different scales. In the classical Mumford-Shah model [47], the regularization
is done by minimizing the total length of the boundary of the segments. In this
case, if one represents a segment by its characteristic function, then the length
of its boundary is exactly the TV of the characteristic function. Therefore, the
minimization of length becomes the minimization of TV of characteristic functions.

Given an observed image f on an image domain �, the piecewise constant
Mumford-Shah model seeks a set of curves C and a set of constant c D
.c1; c2; : : : ; cL/ which minimize the energy functional given by

FMS .C; c/ D
LX
lD1

Z
�l

Œf .x/� cl �
2 dx C ˇ � Length .C / :

The curves in C partition the image into L mutually exclusive segments �l for
l D 1; 2; : : : ; L. The idea is to partition the image, so that the intensity of f in each
segment �l is well approximated by a constant cl . The goodness of fit is measured
by the L2 difference between f and cl . On the other hand, a minimum description
length principle is employed which requires the curves C to be as short as possible.
This increases the robustness to noise and avoids spurious segments. The parameter
“ > 0 controls the trade-off between the goodness of fit and the length of the
curves C . The Mumford-Shah objective is nontrivial to optimize especially when
the curves need to be split and merged. Chan and Vese [24] proposed a level set-
based method which can handle topological changes effectively. In the two-phase
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version of this method, the curves are represented by the zero level set of a Lipschitz
level set function ˆ defined on the image domain. The objective function then
becomes

F CV .�; c1; c2/ D
Z
�

H .� .x// Œf .x/� c1�
2 dx

C
Z
�

Œ1 �H .� .x//� Œf .x/� c2�
2 dx C ˇ

Z
�

jrH .�/j :

The functionH is the Heaviside function defined byH.x/ D 1 if x � 0,H.x/ D 0
otherwise. In practice, we replaceH by a smooth approximationH©, e.g.,

H" .x/ D 1

2

�
1 C 2

�
arctan

�x
"

�	
:

Although this method makes splitting and merging of curves a simple matter, the
energy functional is non-convex which possesses many local minima. These local
minima may correspond to undesirable segmentations; see [45].

Interestingly, for fixed c1 and c2, the above non-convex objective can be refor-
mulated as a convex problem, so that a global minimum can be easily computed;
see [22, 56]. The globalized objective is given by

F CEN .u; c1; c2/ D
Z
�

n
Œf .x/� c1�

2 � Œf .x/� c2�
2
o

u .x/ dx C ˇ

Z
�

jruj
(7)

which is minimized over all u satisfying the bilateral constraints 0 � u � 1 and
all scalars c1 and c2. After a solution u is obtained, a global solution to the original
two-phase Mumford-Shah objective can be obtained by thresholding u with � for
almost every � 2 [0,1], see [22, 56]. Some other proposals for computing global
solutions can be found in [45].

To optimize the globalized objective function (7), Chan et al. [22] proposed to
use an exact penalty method to convert the bilaterally constrained problem to an
unconstrained problem. Then the gradient descent method is applied. This method
is very robust and easy to implement. Moreover, the exact penalty method treats the
constraints gracefully, as if there is no constraint at all. But of course the gradient
descent is not particular fast.

In [42], Krishnan et al. considered the following discrete two-phase Mumford-
Shah model:

F CEN .u; c1; c2/ D hs; ui C ˇ kukT V C ˛

2





u � 1

2






2

;

where h � ; � i is the l2 inner product, s D .si;j /, and

si;j D �
fi;j � c1

�2 � �
fi;j � c2

�2
:
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The variable u is bounded by the bilateral constraints 0 � u � 1. When ’ D 0,
this problem is convex but not strictly convex. When ’ > 0, this problem is
strictly convex. The additive constant 1

2 is introduced in the third term so that
the minimizer does not bias toward u D 0 or u D 1. This problem is exactly a
TV denoising problem with bound constraints. Krishnan et al. proposed to use the
primal-dual active-set method to solve the problem. Superlinear convergence has
been established.

Diffusion Tensors Images
Recently, diffusion tensor imaging (DTI), a kind of magnetic resonance (MR)
modality, becomes increasingly popular. It enables the study of anatomical struc-
tures such as nerve fibers in human brains noninvasively. Moreover, the use of
direction-sensitive acquisitions results in its lower signal-to-noise ratio compared to
convectional MR. At each voxel in the imaging domain, the anisotropy of diffusion
water molecules is interested. Such an anisotropy can be described by a diffusion
tensorD, which is a 3 � 3 positive semi-definite matrix. By standard spectral theory
results, D can be factorized into

D D VƒV T ;

where V is an orthogonal matrix whose columns are the eigenvectors ofD, and� is
a diagonal matrix whose diagonal entries are the corresponding eigenvalues. These
eigenvalues provide the diffusion rate along the three orthogonal directions defined
by the eigenvectors. The goal is to estimate the matrix D (one at each voxel) from
the data. Under the Stejskal-Tanner model, the measurement Sk from the imaging
device and the diffusion tensor are related by

Sk D S0e
�bgTk Dgk ; (8)

where S0 is the baseline measurement, gk is the prescribed direction in which the
measurement is done, and b > 0 is a scalar depending the strength of the magnetic
field applied and the acquisition time. Since D has six degrees of freedom, six
measurements at different orientations are needed to reconstruct D. In practice,
the measurements are very noisy. Thus, matrix D obtained by directly solving (8)
for k D 1; 2; : : : ; 6 may not be positive semi-definite and is error-prone. It is thus
often helpful to take more than six measurements and to use some least squares
methods or regularization to obtain a robust estimate while preserving the positive
semi-definiteness for physical correctness.

In [60] Wang et al. and in [25] Christiansen et al. proposed an extension of the
ROF to denoise tensor-valued data. Two major differences between the two works
are that the former regularizes the Cholesky factor of D and uses a channel-by-
channel TV regularization, whereas the latter regularizes the tensor D directly and
uses a multichannel TV.

The method in [25] is two staged. The first stage is to estimate the diffusion
tensors from the raw data based on the Stejskal-Tanner model (8). The obtained
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tensors are often noisy and may not be positive semi-definite. The next stage is to
use the ROF model to denoise the tensor while restricting the results to be positive
semi-definite. The trick they used to ensure positive semi-definiteness is very simple
and practical. They observed that a symmetric matrix is positive semi-definite if and
only if it has a Cholesky factorization of the form

D D LLT ;

where L is a lower triangular matrix

L D
2
4 l11 0 0
l21 l22 0
l31 l32 l33

3
5 :

Then one can easily express D in terms of lij for 1 � j � i � 3:

D D D .L/ D

2
64

l2
11 l11l21 l11l31

l11l21 l2
21 C l2

22 l21l31 C l22l32

l11l31 l21l31 C l22l32 l
2
31 C l2

32 C l2
33

3
75 :

The ROF problem, written in a continuous domain, is then formulated as

min
L

8<
:

1

2

X
ij

Z
�

h
dij .L/ � Odij

i2
dx C �

vuutX
ij

�Z
�

ˇ̌rdij .L/ˇ̌
	2

9=
; ;

where OD D . Odij / is the observed noisy tensor field, and L is the unknown lower
triangular matrix-valued function from � to R3�3. Here, the matrix-valued version
of TV is used. The objective is then differentiated w.r.t. the lower triangular part of
L to obtain a system of six first-order optimality conditions. Once the optimal L
is obtained, the tensor D can be formed by taking D D LLT which is a positive
semi-definite.

The original ROF problem is strictly convex so that one can obtain the globally
optimal solution. However, in this problem, due to the nonlinear change of variables
from D to L, the problem becomes non-convex. But the authors of [25] reported
that in their experiments, different initial data often resulted in the same solution, so
that the non-convexity does not pose any significant difficulty to the optimization of
the objective.

4 Numerical Methods and Case Examples

Fast numerical methods for TV minimization continue to be an active research
area. Researchers from different fields have been bringing many fresh ideas to the
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problem and led to many exciting results. Some categories of particular mention
are dual/primal-dual methods, Bregman iterative methods, and graph cut methods.
Many of these methods have a long history with a great deal of general theories
developed. But when it comes to their application to the ROF model, many
further properties and specialized refinements can be exploited to obtain even faster
methods. Having said so, different algorithms may adopt different versions of TV.
They have different properties and thus may be used for different purposes. Thus,
some caution needs to be taken when one attempts to draw conclusions such as
method A is faster than method B. Moreover, different methods have different
degree of generality. Some methods can be extended directly to deblurring, while
some can only be applied to denoising. (Of course, one can use an outer iteration
to solve a deblurring problem by a sequence of denoising problems, so that any
denoising algorithm can be used. But the convergence of the outer iteration has little,
if not none, to do with the inner denoising algorithm.) This section surveys some
recent methods for TV denoising and/or deblurring. The model considered here is a
generalized ROF model which simultaneously performs denoising and deblurring.
The objective function reads

F .u/ D 1

2

Z
�

.Ku � f /2 dx C �

Z
�

jruj; (9)

where K is a blurring operator and � > 0 is the regularization parameter. For
simplicity, we assume that K is invertible. When K is the identity operator, (9)
is the ROF denoising model.

Dual and Primal-Dual Methods

The ROF objective is non-differentiable in flat regions where jruj D 0. This
leads to much difficulty in the optimization process since gradient information
(hence, Taylor’s expansion) becomes unreliable in predicting the function value
even locally. Indeed, the staircase effects of TV minimization can introduce some
flat regions which make the problem worse. Even if the standard procedure of
replacing the TV with a reasonably smoothed version is used so that the objective
becomes differentiable, the Euler-Lagrange equation for (9) is still very stiff to solve.
Higher-order methods such as Newton’s methods often fail to work because higher-
order derivatives are even less reliable.

Due to the difficulty in optimizing the ROF objective directly, much recent
research has been directed toward solving some reformulated versions. In particular,
methods based on dual and primal-dual formulations have been shown to be very
fast in practice. Actually, the dual problem (see (12) below) also has its own
numerical difficulties to face, e.g., the objective is rank deficient and some extra
work is needed to deal with the constraints. But the dual formulation brings many
well-developed ideas and techniques from numerical optimization to bear on this
problem. Primal-dual methods have also been studied to combine information from
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the primal and dual solutions. Several successful dual and primal-dual methods are
reviewed.

Chan-Golub-Mulet’s Primal-Dual Method
Some early work in dual and primal-dual methods for the ROF model can be found
in [13, 20]. In particular, Chan, Golub, and Mulet (CGM) [20] introduced a primal-
dual system involving a primal variable u and a Fenchel dual variable p. It remains
one of the most efficient methods today and is perhaps the most intuitive one. It is
worthwhile to review it and see how it relates to the more recent methods. Their idea
is to start with the Euler-Lagrange equation of (9):

KTKu �KTf � �div

0
B@ ruq

jruj2 C "

1
CA D 0: (10)

Owing to the singularity of the third term, they introduced an auxiliary variable

p D ruq
jruj2 C "

to form the system

p
q

jruj2 C " D ru

KTKu �KTf � �divp D 0:

Thus, the blowup singularity is canceled. They proposed to solve this system by
Newton’s method which is well known to converge quadratically locally if the
Jacobian of the system is Lipschitz. Global convergence is observed when coupled
with a simple Armijo line search [8]. The variable p is indeed the same as the
Fenchel dual variable g in (1) when ru ¤ 0 and © D 0. Thus, p is a smoothed
version of the dual variable g. Without the introduction of the dual variable, a direct
application of the Newton’s method to the Euler-Lagrange equation (10) often fails
to converge because of the small domain of convergence.

Chambolle’s Dual Method
A pure dual method is proposed by Chambolle in [14], where the ROF objective is
written solely in terms of the dual variable. By the definition of TV in (1), it can be
deduced using duality theory that

inf
u

�
1

2

Z
�

.Ku � f /2 dx C �

Z
�

jruj
�

” inf
u

sup
jpj�1

�
1

2

Z
�

.Ku � f /2 dx C �

Z
�

udivp dx
�

(11)
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” sup
jpj�1

inf
u

�
1

2

Z
�

.Ku � f /2 dx C �

Z
�

udivpdx
�

” sup
jpj�1

(
��

2

2

Z
�

ˇ̌
ˇ̌K�T divp � f

�

ˇ̌
ˇ̌2

dx

)
: (12)

The resulting problem has a quadratic objective with quadratic constraints. In
contrast, the primal objective is only piecewise smooth which is badly behaved
when ru D 0. Thus the dual objective function is very simple, but additional
efforts are needed to handle the constraints. One can write down the Karush-Kuhn-
Tucker (KKT) optimality system [8] of the discretized objective, which amounts
to solving a nonlinear system of equations involving complementarity conditions
and inequality constraints on the Lagrange multipliers. Interestingly, the Lagrange
multipliers have a closed-form solution which greatly simplifies the problem. More
precisely, the KKT system consists of the equations

�p D H .p/ (13)

�
�
jpj2 � 1

�
D 0 (14)

� � 0 (15)

jpj2 � 1; (16)

where � is the nonnegative Lagrange multiplier and

H .p/ WD r
��
KTK

��1
divp � 1

�
K�1f

	
:

Since
� jpj D jH .p/j ;

if jpj D 1, then � D jH.p/j; if jpj < 1, then the complementarity (14) implies
� D 0 and by (13) H.p/ D 0, so that � is also equal to jH.p/j. This simplifies the
KKT system into a nonlinear system of p only

jH .p/j p D H .p/ :

Chambolle proposes a simple semi-implicit scheme to solve the system:

pnC1 D pn C �H .pn/
pn C � jH .pn/j :

Here, £ is a positive parameter controlling the stepsize. The method is proven to be
convergent for any

� � 1

8




�
KTK

��1



 ; (17)
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where jj � jj is the spectral norm. This method is also faithful to the original ROF
problem; it does not require approximating the TV by smoothing.

The convergence rate of this method is at most linear, but for denoising problems,
it usually converges fast (measured by the relative residual norm of the optimality
condition) in the beginning but stagnates after some iterations (at a level several
orders of magnitude higher than the machine epsilon). This is very typical for simple
relaxation methods. Fortunately, visually good results (measured by the number of
pixels having a gray level different from the optimal one after they are quantized
to their 8-bit representation) are often achieved before the method stagnates [64].
However, when applied to deblurring, K is usually ill conditioned, so that the
stepsize restriction (17) is too stringent. In this case, another outer iteration is often
used in conjunction with the method; see the splitting methods in section “Splitting
Methods.”

Chambolle’s method has been successfully adapted to solve a variety of related
image processing problems, e.g., the ROF with nonlocal TV [9], multichannel
TV [10], and segmentation problems [4]. We remark that many other approaches
for solving (12) have been proposed. A discussion of some first-order methods
including projected gradient methods and Nesterov methods can be found in
[3, 26, 61].

Primal-Dual Hybrid Gradient Method
As mentioned in the beginning of Sect. 4, the primal and dual problems have
their own advantages and numerical difficulties to face. It is therefore tempting to
combine the best of both. In [64], Zhu and Chan proposed the primal-dual hybrid
gradient (PDHG) algorithm which alternates between primal and dual formulations.

The method is based on the primal-dual formulation

G .u;p/ WD 1

2

Z
�

.Ku � f /2 dx C �

Z
�

udivp dx ! inf
u

sup
jpj�1

I

cf. formulation (11). By fixing its two variables one at a time, this saddle point
formulation has two subproblems:

sup
jpj�1

G .u;p/ and inf
u
G .u;p/ :

While one may obtain an optimal solution by solving the two subproblems to a
high accuracy alternatively, the PDHG method applies only one step of gradient
descent/ascent to each of the two subproblems alternatively. The rationale is that
when neither of the two variables are optimal, there is little to gain by iterating each
subproblem until convergence. Starting with an initial guess u0, the following two
steps are repeated:

pkC1 D Pjpj�1
�
pk � �kruk

�
ukC1 D uk � �k

�
KT

�
Kuk � f � C �divpkC1

�
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Here, Pjpj�1 is the projector onto the feasible set fp W jpj � 1g. The stepsizes
£k and ™k can be chosen to optimize the performance. Some stepping strategies
were presented in [64]. In [65], Zhu, Wright, and Chan studied a variety of stepping
strategies for a related dual method.

Numerical results in [64] show that this simple algorithm is faster than the split
Bregman iteration (see section “Split Bregman Iteration”), which is faster than
Chambolle’s semi-implicit dual method (see section “Chambolle’s Dual Method”).
Some interesting connections between the PDHG algorithm and other algorithms
such as proximal forward-backward splitting, alternating minimization, alternating
direction method of multipliers, Douglas-Rachford splitting, split inexact Uzawa,
and averaged gradient methods applied to different formulations of the ROF model
are studied by Esser et al. in [29]. Such connections reveal some convergence theory
of the PDHG algorithm in several important cases (special choices of the stepsizes)
in a more general setting.

Semi-smooth Newton’s Method
Given the dual problem, it is natural to consider other methods to solve its
optimality conditions (13)–(16). A standard technique in optimization to handle
complementarity and Lagrange multipliers is to combine them into a single equality
constraint. Observe that the constraints a � 0, b � 0 and ab D 0 can be
consolidated into the equality constraint

� .a; b/ WD
p
a2 C b2 � a � b D 0; (18)

where ¥ is known as the Fischer-Burmeister function. Therefore, the KKT sys-
tem (13)–(16) can be written as

�p D H .p/

�
�
�; 1 � jpj2

�
D 0:

Ng et al. [48] observed that this system is semi-smooth and therefore proposed
solving this system using a semi-smooth Newton’s method. In this method, if the
Jacobian of the system is not defined in the classical sense due to the system’s
lack of enough smoothness, then the Jacobian is replaced by a generalized Jacobian
evaluated at a nearby point. It is proven that this method converges superlinearly
if the system to solve is at least semi-smooth and if the generalized Jacobians
at convergence satisfy some invertibility conditions. For the dual problem (12),
the Newton’s equation may be singular. This problem is fixed by regularizing the
Jacobian.

Primal-Dual Active-Set Method
Hintermüller and Kunisch [37] considered the Fenchel dual approach to formulate
a constrained quadratic dual problem and derived a very effective active-set method
to handle the constraints. The method separates the variables into active and inactive
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sets, so that they can be treated differently accordingly to their characteristics. They
considered the case of anisotropic discrete TV norm (3), so that the dual variable
is bilaterally constrained, i.e., �1 � p � 1, whereas the constraints in (12) are
quadratic. In this setting, superlinear convergence can be established.

To deal with the bilateral constraints on p, they proposed to use the primal-dual
active-set (PDAS) algorithm. Consider the general quadratic problem,

min
y;y� 

1

2
hy;Ayi � hf; yi ;

where  is a given vector in Rn. This problem includes (12) as a special instance.
The KKT conditions are given by

Ay C � D f;

� ˇ . � y/ D 0;
� � 0;

 � y � 0;

where � is a vector of Lagrange multipliers and ˇ denotes the entrywise product.
The idea of the PDAS algorithm is to predict the active variables A and inactive
variables I to speed up the determination of the final active and inactive variables.
The prediction is done by comparing the closeness of � and  � y to zero. If  � y
is c times closer to zero than � does, then the variable is predicted as active. The
PDAS algorithm is given by

1. Initialize y0, �0. Set k D 0.
2. Set Ik D ˚

i W vki � c. � yk/i � 0
�

and Ak D ˚
i W vki � c. � yk/i > 0

�
.

3. Solve

AykC1 C �kC1 D f;

ykC1 D  on Ak;

�kC1 D 0 on Ik:

4. Stop or set k D k C 1 and return to Step 2.
Notice that the constraints a � 0, b � 0, and ab D 0 can be combined as a

single equality constraint:

min .a; cb/ D 0

for any positive constant c. Thus, the KKT system can be written as

Ay C � D f;

C .y; �/ D 0;

where C.y; �/ D min.�; c. � y// for an arbitrary positive constant c. The
function C is piecewise linear, whereas the Fisher-Burmeister formulation (18)
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is nonlinear. More importantly, applying Newton’s method (using a generalized
derivative) to such a KKT system yields exactly the PDAS algorithm. This
allows Hintermüller et al. to explain the local superlinear convergence of the
PDAS algorithm for a class of optimization problems that include the dual of
the anisotropic TV deblurring problem [36]. In [37], some conditional global
convergence results based on the properties of the blurring matrix K have also
been derived. Their formulation is based on the anisotropic TV norm, and the
dual problem requires an extra l2 regularization term when a deblurring problem
is solved.

The dual problem (12) is rank deficient and does not have a unique solution in
general. In [37], Hintermüller and Kunisch proposed to add a regularization term,
so that the solution is unique. The regularized objective function is

Z
�

ˇ̌
K�1divp � ��1f

ˇ̌2
dx C �

Z
�

jPpj2 dx;

where P is the orthogonal projector onto the null space of the divergence operator
div. Later in [38], Hintermüller and Stadler showed that adding such a regularization
term to the dual objective is equivalent to smoothing out the singularity of the TV in
the primal objective. More precisely, the smoothed TV is given by s� ˚.jrf j/ d x,
where

ˆ.s/ D
(

s if jsj � �;
�

2 C 1
2� s

2 if jsj < �:

An advantage of using this smoothed TV is that the staircase artifacts are reduced.
In [41, 42], Krishnan et al. considered the TV deblurring problem with bound

constraints on the image u. An algorithm, called nonnegatively constrained CGM,
combining the CGM and the PDAS algorithms has been proposed. The image u and
its dual p are treated as in the CGM method, whereas the bound constraints on u
are treated as in the PDAS method. The resulting optimality conditions are shown
to be semi-smooth. The scheme can also be interpreted as a semi-smooth quasi-
Newton’s method and is proven to converge superlinearly. The method is formulated
for isotropic TV, but it can also be applied to anisotropic TV after minor changes.

However, Hintermüller and Kunisch’s PDAS method [37] can only be applied to
anisotropic TV because they used PDAS that can only handle linear constraints to
treat the constraints on p.

Bregman Iteration

Original Bregman Iteration
The Bregman iteration is proposed by Osher et al. in [49] for TV denoising. It has
also been generalized to solving many convex inverse problems, e.g., [12]. In each
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step, the signal removed in the previous step is added back. This is shown to alleviate
the loss of contrast problem presented in the ROF model. Starting with the noisy
image f0 D f , the following steps are repeated for j D 0; 1; 2; : : ::

1. Set

ujC1 D arg min
u

�
1

2

Z
�

�
u � fj

�2
dx C �

Z
�

jruj
�
:

2. Set fjC1 D fj C .f � ujC1/.
In the particular case when f consists of a disk over a constant background, it

can be proved that the loss of contrast can be totally recovered. Some theoretical
analysis of the method can be found in [49].

For a general regularization functional J.u/, the Bregman distance is defined as

D
p
J .u; v/ D J .u/� J .v/� hp; u � vi ;

where p is an element of the subgradient of J . In case of TV denoising, J.u/ D
� s� jruj. Then, starting with f0 D f , the Bregman iteration is given by

1. Set

ujC1 D arg min
u

�
1

2

Z
�

.u � f /2 dx CD
pj
J

�
u; uj

��
:

2. Set fjC1 D fj C .f � ujC1/.
3. Set pjC1 D fjC1 � f .

In fact, steps 2 and 3 can be combined to pjC1 D pj C f � ujC1 without
the need of keeping track of fj . The above expression is for illustrating how the
residual is added back to fj . In this iteration, it has been shown that the Bregman
distance between uj and the clean image is monotonically decreasing as long as
the L2-distance is larger than the magnitude of the noise component. But if one
iterates until convergence, then uj ! f , i.e., one just gets the noisy image back.
This counterintuitive feature is indeed essential to solving other TV minimization
problems, e.g., the basis pursuit problem presented next.

The Basis Pursuit Problem
An interesting feature of the Bregman iteration is that, in the discrete setting, if one
replaces the term jju � f jj2 in the objective by jjAu � f jj2, where Au D f is
underdetermined, then upon convergence of the Bregman iterations, one obtains the
solution of the following basis pursuit problem [63]:

min
u

fJ .u/ jAu D f g :
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When jjAu�f jj2 is used in the objective instead of jju�f jj2, the Bregman iteration
is given by:

1. Set

ujC1 D arg min
u

�
1

2

Z
�

.Au � f /2 dx CD
pj
J

�
u; uj

��
:

2. Set fjC1 D fj C .f � AujC1/.
3. Set pjC1 D AT .fjC1 � f /.

Split Bregman Iteration
Recently, Goldstein and Osher [35] proposed the split Bregman iteration which can
be applied to solve the ROF problem efficiently. The main idea is to introduce a
new variable so that the TV minimization becomes an L1 minimization problem
which can be solved efficiently by the Bregman iteration. This departs from the
original Bregman iteration which solves a sequence of ROF problems to improve the
quality of the restored image by bringing back the loss signal. The original Bregman
iteration is not iterated until convergence. Moreover, it assumes the availability of
a basic ROF solver. The split Bregman method, on the other hand, is an iterative
method whose iterates converge to the solution of the ROF problem. In this method,
a new variable q D ru is introduced into the objective function:

min
u;q

�
1

2

Z
�

.u � f /2 dx C �

Z
�

jqj dx
�
: (19)

This problem is solved using a penalty method to enforce the constraint q D ru.
The objective with an added penalty is given by

G .u;q/ D ˛

2

Z
�

jq � ruj2 dx C 1

2

Z
�

.u � f /2 dx C �

Z
�

jqjdx: (20)

Notice that if the variables .u; q/ are denoted by y, then the above objective can be
identified as

min
y

�
˛

2

Z
�

jAyj2 dx C J .y/
�
;

where

Ay D q � ru;
J .y/ D 1

2

R
�
.u � f /2 dx C �

R
� jqjdx

:

This is exactly the basis pursuit problem when ˛ ! 1. Actually, even with a fixed
finite ˛, as mentioned in section “The Basis Pursuit Problem,” when the Bregman
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iteration is used, it converges to the solution of the problem

min
y

fJ .y/ jAy D 0g ;

so that the constraint q D ru is satisfied at convergence.
It is interesting to note that the split Bregman iteration can be viewed as a

forward-backward splitting method [53]. Yet another point of view is provided next.

Augmented LagrangianMethod
In [62, 63], it is recognized that the split Bregman iteration is an augmented
Lagrangian method [33]. This explains some good convergence behaviour of the
split Bregman iteration. To motivate the augmented Lagrangian method, consider
a general objective function J.u/ with equality constraint H.u/ D 0. The idea of
penalty methods is to solve a sequence of unconstrained problems

min
u

�
J .u/C 1

ˇ
kH .u/k2

�

with ˇ ! 0C, so that the constraintH.u/ D 0 is enforced asymptotically. However,
one may run into the embarrassing situation where bothH.u.“// (where u.“/ is the
optimal u for a given “) and “ converge to zero in the limit. This could mean that the
objective function is stiff when ˇ is very small. The idea of augmented Lagrangian
methods is to use a fixed parameter. But the penalty term is added to the Lagrangian
function, so that the resulting problem is equivalent to the original problem even
without letting “ ! 0C. The augmented Lagrangian function is

L.u; �/ D J .u/C � �H .u/C 1

ˇ
kH .u/k2 ;

where � is a vector of Lagrange multipliers. Solving @L
@u D @L

@v D 0 for a
saddle point yields exactly H.u/ D 0 for any “ > 0. The Bregman iteration
applied to the penalized objective (20) is indeed computing a saddle point of the
augmented Lagrangian function of (19) rather than optimizing (20) itself. Therefore,
the constraint ru D q accompanied with (19) is exact even with a fixed ˛.

Graph Cut Methods

Recently, there is a burst of interest in graph cut methods for solving various
variational problems. The promises of these methods are that they are fast for many
practical problems and they can provide globally optimal solution even for “non-
convex problems.” The discussion below is extracted from [15, 27]. Readers are
referred to [15, 27] and the references therein for a more thorough discussion of the
subject. Since graph cut problems are combinatoric, the objective has to be cast in
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a fully discrete way. That is, not only the image domain has to be discretized to a
finite set but also the range of the intensity values. Therefore, in this framework, the
given m-by-n image f is a function from Zm � Zn to ZK . The ROF problem thus
becomes

F .u/ D 1

2

mX
iD1

nX
jD1

�
ui;j; � fi;j

�2 C � kukT V ! min
uWZm�Zn!ZK

;

where jjujjTV is a discrete TV (4). The next question is how to transform this
problem to a graph cut problem in such a way that it can be solved efficiently.
It turns out that the (fully discretized) ROF problem can be converted to a finite
sequence of graph cut problems. This is due to the co-area formula which is unique
to TV. Details are described next.

Leveling the Objective
Some notations and basic concepts are in place. For simplicity, the following
discrete TV is adopted:

kukT V D
m�1X
iD1

n�1X
jD1

ˇ̌
uiC1;j � ui;j

ˇ̌ C ˇ̌
ui;jC1 � ui;j

ˇ̌
;

which is the anisotropic TV in (3), but with the range of u restricted to ZK . Recall
that the binary image uk is defined such that each uki;j equals 1 if ui;j � k and equals
0 otherwise. Thus, it is the kth lower level set of u. Then the co-area formula states
that the discrete TV can be written as

kukT V D
K�2X
kD0



uk



T V
:

Thus, it reduces to the TV of each “layer”. Note that the TV of the .K � 1/st level
set must be zero, and therefore the above sum is only up to K � 2.

The fitting term in the objective can also be treated similarly as follows. Notice
that for any function gi;j .s/, it holds that

gi;j .s/ D
s�1P
kD0

�
gi;j .k C 1/� gi;j .k/


 C gi;j .0/

D
K�2P
kD0

�
gi;j .k C 1/� gi;j .k/




k<s C gi;j .0/ ;
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where ¦k<s D 1 if k < s and 0 otherwise. Define gi;j .k/ D 1
2 .s � fi;j /2. Then,

1
2

�
ui;j � fi;j

�2 D gi;j
�
ui;j

�
D

K�2P
kD0

�
gi;j .k C 1/ � gi;j .k/




k<ui;j C gi;j .0/

D
K�2P
kD0

�
gi;j .k C 1/ � gi;j .k/


 �
1 � uki;j

�
C gi;j .0/ :

As a result, the ROF objective can be expressed as

K�2X
kD0

8<
:

X
i;j

�
gi;j .k C 1/ � gi;j .k/


 �
1 � uki;j

�
C �



uk



T V

9=
; C C;

where C D P
i;j gi;j (0).

By defining the objective function

F k
�
vk

� D
X
i;j

�
gi;j .k C 1/� gi;j .k/


 �
1 � vki;j

�
C �



vk



T V
;

where �k is a binary function, the ROF problem is seen to be equivalent to

min
v1;v2;:::;vK�2

K�2X
kD0

F k
�
vk

�

subject to the inclusion constraints �ki;j � �kC1
i;j for all i , j , k. The constraints make

sure the binary functions f�kgk define the lower level sets of some function �. A
very important result is that the minimization can be done independently for each
�k; amazingly, the solutions f�kg satisfy the inclusion property automatically! See
[27] for further details.

Defining a Graph
To minimize each F k w.r.t. a binary function �k , a graph cut method is used. First
observe that since gi;j .k/ D 1

2 .k � fi;j /
2, F k can be simplified to

F k
�
vk

� D
X
i;j

�
1

2
C �

k � fi;j
�	 �

1 � vki;j

�
C �



vk



T V
:

By absorbing some constants and dropping the superscript on �k, the objective takes
the following form:

F k .v/ D
X
i;j

�
fi;j � k � 1

2

�
vi;j C � kvk

T V

: (21)
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Then, a graph with mn C 2 nodes is constructed in the following way:

1. Each of the mn pixels is a node, labeled by .i; j / for i D 1; 2; : : : ; m and j D
1; 2; : : : ; n.

2. Add two additional nodes, called the source S and the sink T .
3. For each .i; j /, connect it to .i ˙ 1; j / and .i; j ˙ 1/ with capacity �.
4. For each .i; j /, connect S to it with capacity 1

2 C k � fi;j if 1
2 C k � fi;j > 0

and connect it to T with capacity fi;j � k � 1
2 if fi;j � k � 1

2 > 0.

A cut (a.k.a. an st-cut) in the graph is a partition .S; T / such that S 2 S and
T 2 T . The cost of the cut C.S; T / is defined as the sum of the capacities of all
edges from S to T . For a given cut, let �i;j equals 1 if .i; j / 2 S and equals 0 if
.i; j / 2 T . Then it can be verified that

C.S; T / D
X
i;j

max

�
1

2
C k � fi;j ; 0

�
vi;j C max

�
fi;j � k � 1

2
; 0

�

.1 � vi;j /C �


vk




T V

which is the same as F k in (21), up to the constant˙i;j max ffi;j �k, 0}. Therefore,
computing the minimum cut is equivalent to minimizing (21). It is also well known
that the minimum cut problem is equivalent to the maximum flow problem.

Recall that there are K � 1 graphs to cut. A simple way is to do them one by
one using any classical maximum flow algorithm. But one can exploit the inclusion
property to reduce the work; for instance, see the divide-and-conquer algorithm
proposed in [27].

In graph cut methods, a fundamental question is what kind of optimization
problems can be transformed to a graph cut problem. A particularly relevant
question is whether a function is levelable, i.e., its minimization can be done by
first solving the simpler problem on each of its level set, followed by assembling the
resulting level sets. Interestingly, the only levelable convex regularization function
(satisfying some very natural and mild conditions) is TV [27]. This indicates that
TV is much more than just an ordinary semi-norm.

Quadratic Programming

The discrete anisotropic TV is a piecewise linear function. Fu et al. [30] showed
that by introducing some auxiliary variables, one can transform the TV to a linear
function but with some additional linear constraints. Together with the fitting term,
the problem to solve has a quadratic objective function with linear constraints.

The objective function considered is by Fu et al.

F .u/ D 1

2
kKu � f k2 C �

X
i;j

ˇ̌
uiC1;j � ui;j

ˇ̌ C ˇ̌
ui;jC1 � ui;j

ˇ̌
;
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which can also be written as

F .u/ D 1

2
kKu � f k2 C � kRuk1

where R is a 2mn-by-mn matrix. If the original isotropic TV is used, then it cannot
be written in this form.

The trick they used is to let � D Ru and then split it into positive and negative
parts: �C D max.�; 0/ and �� D max.��; 0/. Then, the objective can be written as

G
�
u; vC; v�� D 1

2
kKu � f k2 C �

�
1T vC C 1T v��

;

which is a quadratic function. But some linear constraints are added:

Ru D vC � v�;
vC; v� � 0:

Now, this problem can be solved by standard primal-dual interior-point methods.
Here, “dual” refers to the Lagrange multipliers for the linear constraints. The major
steps can be summarized as follows:

1. Write down the KKT system of optimality conditions, which has a form of
f .x; �; s/ D 0, where x � 0 is the variable of the original problem .x D
.u; �C; ��/ in the present case); � is the Lagrange multipliers for the equality
constraints; and s � 0 is the Lagrange multipliers for the inequality constraints.

2. Relax the complementarity xs D 0 (part of f .x; �; s/ D 0/ to xs D �, where
� > 0.

3. Solve the relaxed problem f�.x; �; s/ D 0 by Newton’s method.
4. After each Newton’s iteration, reduce the value of � so that the solution of
f .x; �; s/ D 0 is obtained at convergence.

In this method, the relaxed complementarity xs D � forces the variables x, s
to lie in the interior of the feasible region. Once the variables are away from the
boundary, the problem becomes a nice unconstrained quadratic problem locally.
The main challenge here is that the linear system to solve in each Newton’s iteration
becomes increasingly ill conditioned. Under this framework, bound constraints
such as umin � u � umax or any linear equality constraints can be easily
added.

Second-Order Cone Programming

The trick to “linearize” the TV presented in the last section does not work for
isotropic TV. Goldfarb and Yin [34] proposed a second-order cone programming
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(SOCP) formulation which works for the isotropic version (2). Moreover, its
connection to SOCP allows the use of available SOCP solvers to obtain the
solutions. The problem they considered is the constrained ROF problem:

min
u

kukT V
subject to

ku � f k � �;

where � is the standard deviation of the noise which is assumed to be known.
Let wxi;j D uiC1;j � ui;j and wyi;j D ui;jC1 � ui;j . The TV becomes

X
i;j

r�
wxi;j

�2 C
�

wyi;j

�2
:

By introducing the variables � D f � u and t and the constraint

�
wxi;j

�2 C
�

wyi;j

�2 � t2i;j ;

the TV minimization problem becomes

min
P
i;j

ti;j

s:t: u C v D f

wxi;j D uiC1;j � ui;j
wyi;j D ui;jC1 � ui;j
.�; v/ 2 conemnC1�
ti;j ;wxi;j ;w

y
i;j

�
2 cone3:

Here, cone n is the second-order cone in Rn:

fx 2 R
n W k.x2; x3; : : : ; xn/k � x1g :

The optimal solution satisfies

t2i;j D
�

wxi;j
�2 C

�
wyi;j

�2
;

so that

X
i;j

ti;j D
X
i;j

r�
wxi;j

�2 C
�

wyi;j

�2 D kukT V :

A SOCP formulation of the dual ROF problem is also given in [34].
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The SOCP can be solved by interior-point methods. The above formulation can
be slightly simplified by eliminating u. But the number of variables (hence, the size
of the Newton’s equation) is still several times larger than the original problem.
Goldfarb and Yin proposed a domain decomposition method to split the large
programming problem into smaller ones, so that each subproblem can be solved
efficiently. Of course, the convergence rate of the method deteriorates as the domain
is further split.

Majorization-Minimization

Majorization-minimization(MM) (or minorization-maximization) [43] is a well-
studied technique in optimization. The main idea is that at each step of the method,
the objective function is replaced by a simple one, called the surrogate function,
such that its minimization is easy to carry out and the result gives a smaller objective
value of the original problem. For a given objective, usually many surrogate
functions are possible. In many cases, one can even reduce multidimensional
problems into a set of one-dimensional problems. Methods of this class have
been heavily used in statistics communities. Indeed expectation-maximization (EM)
algorithms are special cases of MM.

The use of MM to solving discrete TV problems can be traced back to the study
of emission and transmission tomography reconstruction problems by Lange and
Carson in [44]. Recently, some authors have applied the method to solving TV
deblurring problems [6]. However, the method is actually the same as the classical
lagged diffusivity fixed point iteration proposed by [58] for the particular surrogate
function used in [6]. Nevertheless, it is still worthy to present the framework here
because other surrogate functions can lead to different schemes.

Denote by uk the kth iterate. In this method, the surrogate function (majorizer)
Q.ujuk/ is defined such that

F
�
uk

� D Q
�
ukjuk�

F .u/ � Q
�
ujuk� ; for all u

Then, the next iterate is defined to be the minimizer of the surrogate function

ukC1 WD arg min
u

Q
�
ujuk� :

In this way, the following monotonic decreasing property holds

F
�
ukC1� � Q

�
ukC1juk� � Q

�
ukjuk� D F

�
uk

�
:

Presumably, the function Q should be chosen so that its minimum is easy to
compute. In many applications, it may even be chosen to have a separable form

Q
�
ujuk� D Q1

�
u1juk� CQ2

�
u2juk� C � � � CQn

�
unjuk

�
;
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so that its minimization reduces to n’s one-dimensional (1D) problems. A promise
of this method is that each iteration is very easy to carry out, which compensates its
linear-only convergence. To construct a surrogateQTV for TV, first note that

p
a D

�
4
p
b
� �p

a
4
p
b

�
�

p
b

2
C a

2
p
b

for all a, b � 0. Let Dx and Dy be the forward difference operator in x and in y
directions, respectively. Then,

kukT V D P
i;j

q�
Dxui;j

�2 C �
Dyui;j

�2

� 1
2

P
i;j

r�
Dxuki;j

�2 C
�
Dyuki;j

�2 C 1
2

P
i;j

.Dxui;j /
2C.Dyui;j /

2

r�
Dxuki;j

�2C
�
Dyuki;j

�2

The surrogate is thus defined as

QTV

�
ujuk� D 1

2



uk



T V

C 1

2

X
i;j

�
Dxui;j

�2 C �
Dyui;j

�2

r�
Dxuki;j

�2 C
�
Dyuki;j

�2

which is quadratic in u. Notice that the 2D discrete gradient matrix is given by

r D
� rn ˝ Im
In ˝ rm

	
;

where rm is the m-by-m1D forward difference matrix (under Neumann boundary
conditions)

rm D

2
666664

�1 1
�1 1

: : :
: : :

�1 1
0

3
777775

Let �ki;j D 1=

r�
Dxuki;j

�2 C
�
Dyuki;j

�2
and let

ƒk D diag
�
�k1;1; : : : ; �

k
m;n; �

k
1;1; : : : ; �

k
m;n

�
:

The surrogate becomes

QTV

�
ujuk� D 1

2



uk



T V

C 1

2
uTrTƒkru:
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In this case, the minimization of QTV cannot be reduced to a set of 1D problems.
But it does become quadratic.

Finally, the majorizer for the ROF model is

Q
�
ujuk� D 1

2
kKu � f k2 C �QTV

�
ujuk� :

While this method completely bypasses the need to optimize the TV term directly,
each iteration requires solving the linear system

�
KTK C �rTƒkr�

ukC1 D KTf:

This scheme is exactly the lagged diffusivity fixed point iteration. Assume that
K is full rank, then the linear system is positive definite. A standard way is to
use preconditioned conjugate gradient to solve. Many preconditioners have been
proposed for this problem in the 1990s, e.g., cosine transform and multigrid and
multiplicative operator splitting; see [17] and the references therein. However, due
to the highly varying coefficients in ƒk , it can be nontrivial to solve efficiently.

SplittingMethods

Recently, there have been several proposals for solving TV deblurring problems
based on the idea of separating the deblurring process and the TV regularization
process. Many of them are based on the idea that the minimization of an objective
of the form

F .u/ D J1 .u/C J2 .Au/ ;

with Aa linear operator, can be approximated by the minimization of either of the
following two objectives:

G .u; v/ D J1 .u/C ˛
2 ku � vk2 C J2 .Av/ ;

G .u; v/ D J1 .u/C ˛
2 kAu � vk2 C J2 .v/ ;

where ’ is a large scalar. Then G is minimized w.r.t. u and � alternatively. In this
way, at each iteration, the minimization of J1 and J2 is done separately. The same
idea can be generalized to split an objective with n terms to an objective with n
variables.

Consider the discrete ROF model:

F .u/ D 1

2
kKu � f k2 C � kjrujk1 :

Huang et al. [39] and Bresson and Chan [10] considered the splitting
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G .u; v/ D 1

2
kKu � f k2 C ˛

2
ku � vk2 C � kjrvjk1 :

In this case, the minimization w.r.t. u becomes

�
KTK C ˛I

�
u D KT f C ˛v;

which can be solved with the fast Fourier transform (FFT) inO.N logN/ operations
when the blurring matrix K can be diagonalized by a fast transform matrix. The
minimization w.r.t. � is the ROF denoising problem which can be solved using any
of the aforementioned denoising method. Both [39] and [10] employed Chambolle’s
dual algorithm. The point is that solving TV denoising is much easier than solving
TV deblurring (directly). Moreover, some algorithms such as those based on graph
cut cannot be applied to deblurring directly. The reason is that the pixel values in the
fitting are no longer separable, which in turn makes the fitting term not “levelable.”
However, using the splitting technique, one can now apply graph cut methods to
solve each denoising problem.

This method is generally very fast. Moreover, it often works for a large range
of ˛. But when ˛ is too large, the Chambolle’s iteration may slow down. This
splitting method has also been applied to other image processing problems such
as segmentation [10].

An alternative splitting is proposed by Wang et al. [59]. The bivariate function
they used is given by

G .u; v/ D 1

2
kKu � f k2 C ˛

2
kjru � vjk2 C � kjvjk1 :

The minimization w.r.t. u requires solving

�
KTK � ˛�

�
u D KT f C ˛v;

where � is the 2D Laplacian. This equation can again be solved with FFT in
O.N logN/ operations. The minimization w.r.t. �gs decoupled into N minimiza-
tion problems (one for each pixel) of two variables. A simple closed-form solution
for the 2D minimization problems is available. Therefore, the computation cost per
iteration is even less than the approach taken in [39] and [10]. Remark that this
objective is indeed the same as the split Bregman method (20). A difference is that
when the split Bregman iteration converges, it holds exactly that ru D �. But the
simple alternating minimization used in most splitting methods does not guarantee
ru D � at convergence.

An alternative splitting is introduced by Bect et al. in [5]. It is based on the
observation that, for any symmetric positive definite matrix B with jjBjj < 1, it
holds that

hBv; vi D min
u2RN

n
ku � vk2 C hCu; ui

o
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for all � 2 RN , where C D B.I � B/�1. Then, the ROF model can be formulated
as the minimization of the following bivariate function:

G .u; v/ D 1

2�

�
ku � vk2 C hCu; ui

�
C 1

2

�
kf k2 � 2 hKv; f i

�
C � kjrvjk1 ;

where � > 0 such that �jjKTKjj < 1 and B D �KTK . The minimization of G
w.r.t. u has a closed-form solution u D .I�B/� D .I��KTK/�. The minimization
of G w.r.t. � is a TV denoising problem. At convergence, the minimizer of F is
exactly recovered. An interesting property of this splitting is that it does not involve
any matrix inversion in the alternating minimization of G.

5 Conclusion

In this chapter, some recent developments of numerical methods for TV minimiza-
tion and their applications are reviewed. The chosen topics only reflect the interest
of the authors and are by no means comprehensive. It is also hoped that this chapter
can serve as a guide to recent literature on some of these recent developments.

Cross-References

�Compressive Sensing
�Duality and Convex Programming
�Energy Minimization Methods
�Large-Scale Inverse Problems in Imaging
�Mumford and Shah Model and Its Applications to Image Segmentation and Image

Restoration
�Numerical Methods and Applications in Total Variation Image Restoration
�Regularization Methods for Ill-Posed Problems
�Total Variation in Imaging
�Variational Methods in Shape Analysis

References

1. Acar, A., Vogel, C.: Analysis of bounded variation penalty methods for ill-posed problems.
Inverse Probl. 10(6), 1217–1229 (1994)

2. Adams, R., Fournier, J.: Sobolev Spaces. Volume 140 of Pure and Applied Mathematics, 2nd
edn. Academic, New York (2003)

3. Aujol, J.-F.: Some first-order algorithms for total variation based image restoration. J. Math.
Imaging Vis. 34(3), 307–327 (2009)

4. Aujol, J.-F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition –
modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67(1), 111–136 (2006)

http://dx.doi.org/10.1007/978-1-4939-0790-8_6
http://dx.doi.org/10.1007/978-1-4939-0790-8_7
http://dx.doi.org/10.1007/978-1-4939-0790-8_5
http://dx.doi.org/10.1007/978-1-4939-0790-8_2
http://dx.doi.org/10.1007/978-1-4939-0790-8_25
http://dx.doi.org/10.1007/978-1-4939-0790-8_24
http://dx.doi.org/10.1007/978-1-4939-0790-8_3
http://dx.doi.org/10.1007/978-1-4939-0790-8_23
http://dx.doi.org/10.1007/978-1-4939-0790-8_56


Numerical Methods and Applications in Total Variation Image Restoration 1535

5. Bect, J., Blanc-Féraud, L., Aubert, G., Chambolle, A.: A l1-unified variational framework
for image restoration. In: Proceedings of ECCV. Volume 3024 of Lecture Notes in Computer
Sciences, Prague, Czech Republic, pp. 1–13 (2004)

6. Bioucas-Dias, J., Figueiredo, M., Nowak, R.: Total variation-based image deconvolution: a
majorization-minimization approach. In: Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP 2006), Toulouse, France, vol. 2, pp. 14–
19 (2006)

7. Blomgren, P., Chan, T.: Color TV: total variation methods for restoration of vector-valued
images. IEEE Trans. Image Process. 7, 304–309 (1998)

8. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge
(2004)

9. Bresson, X., Chan, T.: Non-local unsupervised variational image segmentation models. UCLA
CAM Report, 08–67 (2008)

10. Bresson, X., Chan, T.: Fast dual minimization of the vectorial total variation norm and
applications to color image processing. Inverse Probl. Imaging 2(4), 455–484 (2008)

11. Buades, A., Coll, B., Morel, J.: A review of image denoising algorithms, with a new one.
Multiscale Model. Simul. 4(2), 490–530 (2005)

12. Burger, M., Frick, K., Osher, S., Scherzer, O.: Inverse total variation flow. Multiscale Model.
Simul. 6(2), 366–395 (2007)

13. Carter, J.: Dual methods for total variation-based image restoration. Ph.D. thesis, UCLA, Los
Angeles (2001)

14. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math.
Imaging Vis. 20, 89–97 (2004)

15. Chambolle, A., Darbon, J.: On total variation minimization and surface evolution using
parametric maximum flows. Int. J. Comput. Vis. 84(3), 288–307 (1997)

16. Chambolle, A., Lions, P.: Image recovery via total variation minimization and related problems.
Numer. Math. 76, 167–188 (1997)

17. Chan, R., Chan, T., Wong, C.: Cosine transform based preconditioners for total variation
deblurring. IEEE Trans. Image Process. 8, 1472–1478 (1999)

18. Chan, R., Wen, Y., Yip, A.: A fast optimization transfer algorithm for image inpainting in
wavelet domains. IEEE Trans. Image Process. 18(7), 1467–1476 (2009)

19. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277
(2001)

20. Chan, T., Golub, G., Mulet, P.: A nonlinear primal-dual method for total variation-based image
restoration. SIAM J. Sci. Comput. 20, 1964–1977 (1999)
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22. Chan, T., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image
segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

23. Chan, T., Shen, J., Zhou, H.: Total variation wavelet inpainting. J. Math. Imaging Vis. 25(1),
107–125 (2006)

24. Chan, T., Ng, M., Yau, C., Yip, A.: Superresolution image reconstruction using fast inpainting
algorithms. Appl. Comput. Harmon. Anal. 23(1), 3–24 (2007)

25. Christiansen, O., Lee, T., Lie, J., Sinha, U., Chan, T.: Total variation regularization of matrix-
valued images. Int. J. Biomed. Imaging 2007, 27432 (2007)

26. Combettes, P., Wajs, V.: Signal recovery by proximal forward-backward splitting. Multiscale
Model. Simul. 4(4), 1168–1200 (2004)

27. Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation part I: fast
and exact optimization. J. Math. Imaging Vis. 26, 261–276 (2006)

28. Efros, A., Leung, T.: Texture synthesis by non-parametric sampling. In: Proceedings of the
IEEE International Conference on Computer Vision, Corfu, vol. 2, pp. 1033–1038 (1999)

29. Esser, E., Zhang, X., Chan, T.: A general framework for a class of first order primal-dual
algorithms for TV minimization. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)



1536 R. Chan et al.

30. Fu, H., Ng, M., Nikolova, M., Barlow, J.: Efficient minimization methods of mixed l2-l1 and
l1-l1 norms for image restoration. SIAM J. Sci. Comput. 27(6), 1881–1902 (2006)

31. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale
Model. Simul. 7(3), 1005–1028 (2008)

32. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984)
33. Glowinki, R., Le Tallec, P.: Augmented Lagrangians and Operator-Splitting Methods in

Nonlinear Mechanics. SIAM, Philadelphia (1989)
34. Goldfarb, D., Yin, W.: Second-order cone programming methods for total variation based

image restoration. SIAM J. Sci. Comput. 27(2), 622–645 (2005)
35. Goldstein, T., Osher, S.: The split Bregman method for l1-regularization problems. SIAM J.

Imaging Sci. 2(2), 323–343 (2009)
36. Hintermüller, M., Kunisch, K.: Total bounded variation regularization as a bilaterally con-

strained optimisation problem. SIAM J. Appl. Math. 64, 1311–1333 (2004)
37. Hintermüller, M., Stadler, G.: A primal-dual algorithm for TV-based inf-convolution-type

image restoration. SIAM J. Sci. Comput. 28, 1–23 (2006)
38. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth

Newton’s method. SIAM J. Optim. 13(3), 865–888 (2003)
39. Huang, Y., Ng, M., Wen, Y.: A fast total variation minimization method for image restoration.

Multiscale Model. Simul. 7(2), 774–795 (2008)
40. Kanwal, R.P.: Generalized Functions: Theory and Applications. Birkhäuser, Boston (2004)
41. Krishnan, D., Lin, P., Yip, A.: A primal-dual active-set method for non-negativity constrained

total variation deblurring problems. IEEE Trans. Image Process. 16(2), 2766–2777 (2007)
42. Krishnan, D., Pham, Q., Yip, A.: A primal dual active set algorithm for bilaterally constrained

total variation deblurring and piecewise constant Mumford-Shah segmentation problems. Adv.
Comput. Math. 31(1–3), 237–266 (2009)

43. Lange, K.: (2004) Optimization. Springer, New York
44. Lange, K., Carson, R.: (1984) EM reconstruction algorithms for emission and transmission

tomography. J. Comput. Assist. Tomogr. 8, 306–316
45. Law, Y., Lee, H., Yip, A.: A multi-resolution stochastic level set method for Mumford-Shah

image segmentation. IEEE Trans. Image Process. 17(3), 2289–2300 (2008)
46. LeVeque, R.: Numerical Methods for Conservation Laws, 2nd edn. Birkhäuser, Basel (2005)
47. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated

variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)
48. Ng, M., Qi, L., Tang, Y., Huang, Y.: On semismooth Newton’s methods for total variation

minimization. J. Math. Imaging Vis. 27(3), 265–276 (2007)
49. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total

variation based image restoration. Multiscale Model. Simul. 4, 460–489 (2005)
50. Royden, H.: Real Analysis, 3rd edn. Prentice-Hall, Englewood Cliffs (1988)
51. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms.

Physica D 60, 259–268 (1992)
52. Sapiro, G., Ringach, D.: Anisotropic diffusion of multivalued images with applications to color

filtering. IEEE Trans. Image Process. 5, 1582–1586 (1996)
53. Setzer, S.: Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage. In:

Proceedings of Scale-Space, Voss, Norway, pp. 464–476 (2009)
54. Setzer, S., Steidl, G., Popilka, B., Burgeth, B.: Variational methods for denoising matrix fields.

In: Laidlaw, D., Weickert, J. (eds.) Visualization and Processing of Tensor Fields: Advances
and Perspectives, Mathematics and Visualization, pp. 341–360. Springer, Berlin (2009)

55. Shen, J., Kang, S.: Quantum TV and application in image processing. Inverse Probl. Imaging
1(3), 557–575 (2007)

56. Strang, G.: Maximal flow through a domain. Math. Program. 26(2), 123–143 (1983)
57. Tschumperlé, D., Deriche, R.: Diffusion tensor regularization with constraints preservation.

In: Proceedings of 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Kauai, vol. 1, pp. 948–953. IEEE Computer Science Press (2001)



Numerical Methods and Applications in Total Variation Image Restoration 1537

58. Vogel, C., Oman, M.: Iteration methods for total variation denoising. SIAM J. Sci. Comput.
17, 227–238 (1996)

59. Wang, Y, Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total
variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)

60. Wang, Z., Vemuri, B., Chen, Y., Mareci, T.: A constrained variational principle for direct
estimation and smoothing of the diffusion tensor field from complex DWI. IEEE Trans. Med.
Imaging 23(8), 930–939 (2004)

61. Weiss, P., Aubert, G., Blanc-Fèraud, L.: Efficient schemes for total variation minimization
under constraints in image processing. SIAM J. Sci. Comput. 31(3), 2047–2080 (2009)

62. Wu, C., Tai, X.C.: Augmented Lagrangian method, dual methods, and split Bregman iteration
for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)

63. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for l1-minimization
with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)

64. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image
restoration. UCLA CAM Report, 08–34 (2008)

65. Zhu, M., Wright, S.J., Chan, T.F.: Duality-based algorithms for total-variation-regularized
image restoration. Comput. Optim. Appl. 47(3), 377–400 (2010)


	Numerical Methods and Applications in Total Variation Image Restoration
	1 Introduction
	2 Background
	3 Mathematical Modeling and Analysis
	Variants of Total Variation
	Basic Definition
	Multichannel TV
	Matrix-Valued TV
	Discrete TV
	Nonlocal TV

	Further Applications
	Inpainting in Transformed Domains
	Superresolution
	Image Segmentation
	Diffusion Tensors Images


	4 Numerical Methods and Case Examples
	Dual and Primal-Dual Methods
	Chan-Golub-Mulet's Primal-Dual Method
	Chambolle's Dual Method
	Primal-Dual Hybrid Gradient Method
	Semi-smooth Newton's Method
	Primal-Dual Active-Set Method

	Bregman Iteration
	Original Bregman Iteration
	The Basis Pursuit Problem
	Split Bregman Iteration
	Augmented Lagrangian Method

	Graph Cut Methods
	Leveling the Objective
	Defining a Graph

	Quadratic Programming
	Second-Order Cone Programming
	Majorization-Minimization
	Splitting Methods

	5 Conclusion
	References


