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     Abbreviations 

   ABCA4    ATP-binding cassette, subfamily A, member 4   
  AMD    Age-related macular degeneration   
  BEST1    Bestrophin   
  CHM    Choroideremia   
  CRD    Cone-rod dystrophy   
  CRX    Cone-rod homeobox   
  EFEMP1    Epidermal growth factor-containing fi bulin-like extracellular matrix protein 1   
  ERG    Electroretinography   
  hESC    Human embryonic stem cells   
  iPSC    Induced pluripotent stem cells   
  LCA    Leber congenital amaurosis   
  MAK    Male germ-associated kinase   
  OAT    Ornithine aminotransferase   
  PR    Photoreceptor   
  PRPH2    Peripherin 2   
  PSC    Pluripotent stem cell   
  RCS    Royal College of Surgeon   
  REP1    Rab escort protein-1   
  RHO    Rhodopsin   
  RP    Retinitis pigmentosa   
  RP1    Retinitis pigmentosa 1   
  RP9    Retinitis pigmentosa 9   
  RPE    Retinal pigmented epithelium   
  RPE65    Retinal pigment epithelium-specifi c protein 65 kDa   
  RPGR    Retinitis pigmentosa GTPase regulator   
  TIMP3    Tissue inhibitor of metalloproteinases-3   
  USH2A    Usher syndrome 2A   
  VEGF    Vascular endothelial growth factor   

7.1           Introduction 

 The retina is the light-sensing tissue that lines the inner surface at the posterior part of 
the eye. Light is perceived by chemical and electrical signals initiated in the retina that 
stimulate retinal ganglion cells to transmit signals to the visual centres of the brain via 
the optic nerve. Within the retina, phototransduction is initiated in photoreceptors 
(PRs), specialised neurons that convert light into electrical signals that are transmitted 
and ultimately processed by the visual centres within the brain. The health and func-
tion of PRs are critically dependent on neighbouring retinal pigmented epithelium 
(RPE) cells, which separate PRs from the blood supply in the choroid. RPE cells are 
attached to Bruch’s membrane, which acts as a semi- permeable barrier between the 
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RPE and vasculature of the choroid. The choroid provides the blood supply to the 
outer retina. RPE cells perform a number of important functions that are essential to 
the overall homeostasis of the retina which include retinol cycling, nutrient transport, 
growth factor production, and phagocytosis of PR outer segments [ 1 ]. 

 Dysfunction of PRs or RPE can lead to vision loss and often causes irreversible 
degeneration of other retinal supporting or downstream cells. Retinal degenerative 
diseases affect millions of people worldwide and have an immense impact on qual-
ity of life. Unfortunately the majority of these conditions are currently untreatable. 
However, through the use of pluripotent stem cells (PSCs), new strategies for 
studying these diseases offer profound hope of ultimately identifying novel 
treatments. 

 Stem cells are unique in that they are capable of both self-renewal and subsequent 
differentiation into any number of specialised cell types. Stem cells are frequently 
defi ned according to their origin and the range or extent to which they can differenti-
ate. PSCs can differentiate into any somatic cell type of the body, whereas multipo-
tent stem cells are somewhat more restricted in the types of cells they can become. 
PSCs can be derived from various sources and include human embryonic stem cells 
(hESCs) [ 2 ,  3 ] and induced pluripotent stem cells (iPSCs) [ 4 – 6 ]. A detailed discus-
sion of hESCs and iPSCs can be found in Chap.   5    . Together, hESCs and iPSCs 
(collectively PSCs) provide a novel set of tools for the study and treatment of many 
diseases through their application in developing cellular models and therapies. 
Indeed, retinal diseases are currently targeted for clinical trials using PSC-based 
therapies, demonstrating the exciting possibility that these strategies may in fact 
translate into clinical outcomes in the near future. 

 To understand stem cell-based approaches for treating retinal diseases, we begin 
with a brief summary of the pertinent clinical features of diseases that affect the 
outer retina (i.e. from the outer plexiform layer to the RPE). A particular focus has 
been made on diseases where PSCs have been used for either disease modelling or 
cell therapy and on diseases that are strong candidates for these stem cell strategies 
given the current state of the fi eld. We then outline the potential of PSC-related 
therapies for outer retinal diseases.  

7.2     Outer Retina Diseases 

7.2.1     Age-Related Macular Degeneration 

 Age-related macular degeneration (AMD) (OMIM #603075, reviewed in [ 7 ]) is a 
multifactorial disorder with both genetic and environmental risk factors and involves 
progressive degeneration of PRs and underlying RPE cells in the macula, the part of 
the eye responsible for central vision. The clinical hallmarks of AMD include the 
accumulation of extracellular deposits, termed drusen, beneath the RPE on Bruch’s 
membrane and pigment abnormalities from dysfunctional RPE cells. Advanced 
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stages are characterised by central visual loss due to geographic atrophy of the RPE 
(‘dry’ AMD) and/or choroidal neovascularisation (‘wet’ AMD). AMD is the leading 
cause of blindness in the Western world and the most common cause of acquired 
visual impairment in the elderly, affecting over seven million people in the US and 
approximately 1 in 7 people over the age of 50 in Australia [ 8 ,  9 ]. The vast majority 
of patients have the atrophic, or ‘dry’, form of the disease, for which there is 
currently no treatment. A subset of people with atrophic AMD go on to develop 
exudative, or ‘wet’, AMD, which is currently managed if diagnosed early by serial 
injections of anti-angiogenic drugs that block vascular endothelial growth factor 
(VEGF)-induced neovascularisation [ 10 ]. This treatment often halts or slows vision 
loss and many patients experience restoration in vision with timely intervention.  

7.2.2     Stargardt Disease 

 Stargardt disease (OMIM #248200, reviewed in [ 11 ]) is an autosomal recessive, juve-
nile-onset macular dystrophy caused by mutations in the  ATP-binding cassette, sub-
family A, member 4  ( ABCA4 ) gene. Clinically it is characterised by loss of visual 
acuity, though peripheral visual fi elds remain normal, and rapid progressive degenera-
tion of the macula region of the retina. Histologically, it is characterised by subretinal 
deposition of lipofuscin-like material in RPE cells and PR segments. Later stages of 
the disease involve abnormal slowing of the rod and cone retinoid cycle and death of 
RPE and PRs. There are no treatments available for Stargardt disease.  

7.2.3     Best Disease 

 Best Disease (OMIM #153700, reviewed in [ 12 ]) is an autosomal dominant, early 
onset macular dystrophy frequently caused by mutations in the Bestrophin ( BEST1 ) 
gene [ 13 ]. Clinically it is characterised by the bilateral presence of bright yellow 
lesion containing lipofuscin-like material in the subretinal space that resemble a 
sunny-side-up egg, termed ‘vitelliform’, upon examination. In many individuals 
these lesions eventually rupture, giving a ‘scrambled egg’ appearance and leading 
to deposits and fl uid in the affected area of the macula, pigment abnormalities, atro-
phy of the underlying RPE, and progressive reduction in central vision. Unfortunately 
there are currently no treatments for this retinal dystrophy.  

7.2.4     Doyne Honeycomb Retinal Dystrophy 

 Doyne Honeycomb Retinal Dystrophy (OMIM #126600, reviewed in [ 14 ]) is an 
inherited disorder predominantly caused by mutations in the epidermal growth 
factor- containing fi bulin-like extracellular matrix protein 1 ( EFEMP1 ) gene. 
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Clinically, it resembles AMD, with sub-RPE drusen developing in early adult life 
and a progressive irreversible loss of central vision. Build up of large drusen, which 
generally forms a honeycomb-like pattern within the macula, causes progression of 
the disease. Unfortunately, there are no means by which to defi nitively treat this 
uncommon retinal dystrophy.  

7.2.5     Retinitis Pigmentosa 

 Retinitis pigmentosa (RP) (OMIM #268000, reviewed in [ 15 ]) is a heterogeneous 
group of ocular diseases which are clinically characterised by progressive loss 
of central or peripheral vision and night blindness, secondary to degeneration of the 
RPE and PRs. Most cases of RP are monogenic. To date more than 50 genes have 
been identifi ed to cause RP, including rhodopsin ( RHO ), Usher syndrome 2A 
( USH2A ), and retinitis pigmentosa GTPase regulator ( RPGR ), which collectively 
account for approximately 30 % of all cases [ 16 ,  17 ]. To date there is no means by 
which to defi nitively treat this blinding condition.  

7.2.6     Sorsby Dystrophy 

 Sorsby Dystrophy (OMIM #136900, reviewed in [ 18 ]) is a fully penetrant, autosomal 
dominant disorder caused by missense mutations in the tissue inhibitor of metalloprotein-
ases-3 ( TIMP3 ) gene. Clinically it is characterised by bilateral loss of central vision due to 
subretinal neovascularisation and RPE atrophy at the macula. Similar to other retinal dys-
trophies currently there are no means by which to defi nitively treat this disease.  

7.2.7     Cone-Rod dystrophy 

 Cone-rod dystrophy (CRD) (OMIM #120970, reviewed in [ 19 ]) is a progressive 
retinal degenerative disease which can be inherited in an autosomal dominant, 
recessive or X-linked pattern. It can be caused by mutations in a number of different 
genes, including cone-rod homeobox ( CRX ),  ABCA4 , and others. Clinically, it man-
ifests by progressive vision impairment typically beginning with loss of colour 
vision, reduced visual acuity and sensitivity to light, followed by night blindness 
and loss of peripheral visual fi elds. Histologically CRD is characterised by degen-
eration, and eventually a complete loss, of outer nuclear layer PRs (generally either 
cones proceeding rods or vice versa). Upon examination, pigment abnormalities 
and atrophy of the RPE may also be observed in addition to abnormal cone function 
on electroretinography (ERG), a test that measures the electrical response of cells in 
the retina. Currently there is no treatment for CRD; however, tinted lenses and low 
vision aids may help with managing symptoms.  
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7.2.8     Leber Congenital Amaurosis 

 Leber congenital amaurosis (LCA) (OMIM #204000, reviewed in [ 20 ]) comprises 
a group of autosomal recessive early onset childhood retinal dystrophies caused 
by mutations in a number of different genes. Clinically, it is characterised by 
vision loss, nystagmus, and severe retinal dysfunction often manifesting in the 
early postnatal period. Progressive degeneration in the cellular structure of the 
retina causes ERG responses to be severely attenuated or non-recordable and may 
also lead to structural changes in the cornea that cause it to thin and adopt a coni-
cal shape, further distorting vision [ 20 ]. Most forms of LCA involve severe 
degeneration and death of PRs and have no available treatments. A rare form of 
LCA caused by mutations in retinal pigment epithelium-specifi c protein 65 kDa 
( RPE65 ) (OMIM #204100) results in dysfunctional, but relatively preserved, reti-
nal cells. Mutations in this gene cause a defi ciency in retinoid isomerase, which 
leads to a biochemical blockage of the retinoid cycle and degeneration of PRs. 
Gene therapy trials aimed at restoring the visual cycle in surviving PRs via adeno-
associated virus delivery of  RPE65  have shown partial reversal of the dysfunc-
tion, although the reconstituted retinoid cycle is not completely normal and PR 
degeneration still occurs [ 21 ,  22 ]. Importantly though, patients who received gene 
therapy have shown remarkable and lasting improvements in visual function 
despite ongoing loss of PRs [ 21 ,  22 ].  

7.2.9     Gyrate Atrophy 

 Gyrate atrophy (OMIM #258870, reviewed in [ 23 ]) is an autosomal recessive disor-
der characterised by slowly progressive atrophy of the choroid, RPE, and retina. 
Mutations in the ornithine aminotransferase ( OAT ) gene are known to cause gyrate 
atrophy, and dietary restriction arginine has been shown to halt visual loss [ 24 ].  

7.2.10     Choroideremia 

 Choroideremia (OMIM #303100, reviewed in [ 25 ]) is an X-linked disease caused 
by mutations in the choroideremia ( CHM ) gene, which encodes Rab escort protein-
 1 (REP1), that lead to degeneration of the choriocapillaris, RPE, and PRs. All 
known  CHM  mutations produce truncated protein products, resulting in a complete 
loss of functional REP1 protein. In affected males, it is characterised by nyctalopia, 
progressive loss of peripheral and central vision as a result of complete atrophy of 
the choroid and retina. Heterozygous females have no visual defect, but may exhibit 
pigment abnormalities and atrophy around the optic disc. Unfortunately there is no 
effective treatment for CHM.   
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7.3     Induced Pluripotent Stem Cells for Retinal Disease 
Modelling 

 The extreme diffi culty in obtaining ocular tissue from living people currently represents 
a major barrier to studying the molecular mechanisms of blinding disease. The 
ability to generate iPSCs from patients with specifi c diseases provides an extremely 
powerful means to investigate the underlying pathogenesis. Generating iPSCs 
directly from patients with a particular disease allows cells to be differentiated into 
specifi c cell types for disease modelling, drug screening, and understanding funda-
mental mechanisms underlying cell biology. 

 Despite the relatively large of number diseases affecting the outer retina, to date 
there have only been a small number of studies describing the development and 
characterisation of patient-specifi c iPSCs (Table  7.1 ). This is compounded further 
by the relatively large degree of genetic heterogeneity amongst these diseases. 
Despite this, particular insight in the pathogenesis of retinitis pigmentosa 9 ( RP9 )-
related RP has been made, whereby  RP9  mutations appear to cause disease, at least in 
part, through oxidative stress pathways [ 26 ]. Conversely,  RHO  and  USH2A  mutations 
are associated with an increase in endoplasmic reticulum stress [ 26 ,  27 ].

7.4        Pluripotent Stem Cells for Retinal Cell Replacement 

 Although a number of genetic mutations and variants have been identifi ed that 
cause or confer risk for diseases of the outer retina, in many cases the disease mech-
anisms remain poorly understood. Few treatment options exist to preserve or restore 
vision for a majority of these diseases, and available treatments may only treat 
symptoms rather than the underlying disease cause. However, the cell types whose 
degeneration and/or dysfunction lead to vision loss in most cases are known: pre-
dominantly RPE, PRs, or a combination thereof. One potential option for treatment 
involves replacing the degenerative or dysfunctional cells within the outer retina 
with new healthy cells to restore function and, hopefully, improve vision. Transplanted 
cells may also protect endogenous retinal cells from further degeneration, minimis-
ing future vision loss. This approach, termed cell replacement therapy, is an attrac-
tive strategy for many retinal diseases because the population of cells that are 
defective or have degenerated are generally well characterised and, surgically, the 
eye is easily accessible. Moreover, as an immune-privileged site, the eye should have 
a low risk of rejecting transplanted material [ 28 ], though results from early clinical 
trials with allogenic foetal RPE transplants indicate that immunosuppression may 
still be required if the blood–retinal barrier is compromised due to disease [ 29 – 31 ]. 

 For cell replacement therapy to be feasible, one needs a readily available cellular 
source from which to generate suffi cient numbers of healthy retinal cells for trans-
plantation. Transplant of foetal tissue has shown some promise in a clinical setting 
[ 32 ,  33 ], but this material is diffi cult to obtain. As described previously, PSCs can 
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be expanded indefi nitely  in vitro  and can also potentially be differentiated into any 
cell type in the body, including retinal cells; thus, they provide an unlimited and 
renewable source of cells for transplant. Furthermore, methods to differentiate 
PSCs to functional RPE [ 34 – 39 ] and PRs [ 40 – 46 ] are well established. 

7.4.1     Moving Towards Stem Cell-Based RPE Cell Therapy 

 The aim of PSC-based cellular therapy is to ultimately replace degenerative retinal 
cells with new healthy cells that survive, integrate, and remain functionally active 
long term. As proof of principle, it has been shown that RPE cells can survive post-
transplantation and improve visual function in rodent models of retinal degeneration 
[ 47 – 50 ]. Similarly, human PSC-derived RPE can functionally integrate and improve 
visual function in rodent models of retinal degenerative diseases [ 51 ,  52 ]. In a 
mouse model of RP ( Rpe65   rdl2/rdl2  ), human iPSC-derived RPE cells survived long 
term and improved retinal function over the lifetime of the mice [ 52 ]. In the dystro-
phic Royal College of Surgeon (RCS) rat in which a primary defect in RPE phago-
cytosis leads to PR degeneration, one study found that iPSC-derived RPE did not 
survive beyond 13 weeks; however, long-term visual function was maintained, sug-
gesting the effect may be due to a secondary host response [ 51 ]. In another study, 
hESC-derived RPE survived long term (>100 days) following subretinal injection 
into RCS rats and led to reduced PR degeneration and preserved visual function [ 53 ]. 
Whether visual improvement observed with transplanted PSC-derived RPE is due to 
bona fi de functional cell replacement or indirect paracrine effects remains to be 
determined. Nonetheless, PSC-based RPE cell therapy appears very feasible. 

 Towards this goal, phase I/IIa clinical trials of cell replacement therapy for AMD 
and Stargardt disease are currently underway using allogenic hESC-derived RPE 
cell transplants [ 54 ] (NCT01345006, NCT01344993, NCT 01469832, Advanced 
Cell Technology; and NCT01674829, CHA Bio and Diostech). IPSC technology 
has the added advantage of allowing for generation of patient-matched cells for 
autologous transplant to mitigate the need for immunosuppression. Recently, the 
fi rst iPSC-derived RPE clinical trials were approved for AMD in Japan (RIKEN). It is 
important to note that for diseases caused by specifi c Mendelian mutations, gene 
correction may be required in iPSCs from the affected patient prior to transplant.  

7.4.2     Feasibility of Photoreceptor Cell Therapy 

 Cell replacement therapy for PRs has not yet advanced into clinical trials; however, 
promising results from animal studies suggest this may be feasible in the near 
future. Proof of principle experiments demonstrate that rod precursor cells isolated 
from postnatal mice can survive transplant, integrate and differentiate into mature 
PRs, and improve visual function in mouse models of PR dysfunction ( Gnat   −/−  ) [ 55 ] 
and rod degeneration ( Rd1  [ 56 ] and  Rho   −/−   [ 57 ]). HESC-derived retinal progenitor 
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cells also can survive transplant, differentiate to functional PRs, and improve visual 
responses in a mouse model of LCA ( Crx   −/−   mice) [ 58 ]. Similarly, iPSC- derived 
retinal progenitor cells integrate and differentiate into PRs  in vivo  [ 43 ]. 

 One complicating factor for potential PR replacement therapy in humans is that in 
many retinal diseases involving PR degeneration, the RPE is often implicated as well. 
Thus, it is likely that PR cell transplantation may need to be conducted in combination 
with RPE cells in a dual replacement strategy. Towards this goal, efforts to construct 
a two-layered patch graft of RPE and PRs are underway that utilise a thin plastic fi lm 
to anchor a monolayer of PSC-derived RPE cells [ 59 ] with a second layer of PR pre-
cursor cells adhered via a biodegradable gel [ 60 ]. This research is still in the early 
stages of development. Other efforts to generate striated tissue constructs containing 
RPE and PRs from PSCs  in vitro  have been reported via self-assembled optic cup [ 61 ] 
and optic vesicle-like structures [ 45 ,  62 ] and retinal progenitor sheets [ 63 ].  

7.4.3     Bioengineered Substrates for Cell Transplants 

 Native RPE exist as a polarised monolayer, and this cellular architecture is critical 
to their function. Previous studies in animals have demonstrated that sheets of reti-
nal cells survive better following transplantation than dissociated cells [ 64 ]. 
Furthermore, RPE may fail to survive or function on damaged Bruch’s membrane, 
which is a common feature of ageing and some retinal diseases such as AMD [ 65 , 
 66 ]. Given these concerns, artifi cial substrates on which to seed RPE cells are being 
developed to facilitate transplant of intact, polarised sheets of cells. These include 
polyester membranes [ 67 ], ultrathin parylene fi lms [ 59 ], plasma polymers [ 68 ], and 
polyimide membranes [ 69 ]. Current clinical trials deliver hESC-derived RPE cells 
as suspensions via subretinal injection, but a clinical trial application has been sub-
mitted to transplant hESC-derived RPE immobilised on a polyester membrane to 
address this potential issue (NCT01691261) [ 70 ].  

7.4.4     Pluripotent Stem Cells Recapitulate Retinal Ontogeny 

 One further advantage of using PSC-derived retinal cells for transplantation is the 
ability to generate cells at various ontogenetic stages of development. This is impor-
tant because studies have shown that human foetal RPE and early postnatal mouse 
PRs function signifi cantly better  in vivo  than the same respective cells isolated from 
older tissue [ 56 ,  57 ,  71 ]. HESC- and iPSC-derived PRs behave similar to early 
postnatal mouse PRs when transplanted into mice [ 43 ,  58 ]. Likewise, hESC-derived 
RPE resemble human foetal RPE  in vitro  and  in vivo  [ 36 ,  72 – 75 ], albeit with some 
differences in growth factor expression and attachment to Bruch’s membrane [ 66 ]. 
In both cases however, published results demonstrate the feasibility of generating 
PSC-derived retinal cells that functionally resemble early developmental stages 
most useful for transplantation.  
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7.4.5     Stem Cell Transplants for Trophic Support 

 It is conceivable that transplanted cells could produce trophic factors that provide a 
neuroprotective effect in the retina without functional integration    [ 76 ]. This strategy 
of transplanting cells to provide paracrine support has shown improved visual out-
comes in animal models of retinal degeneration using mesenchymal stem cells [ 77 ] 
and umbilical tissue-derived stem cells [ 78 ]. Both of these types of stem cells are not 
pluripotent, meaning they are restricted in the range of cell types they can generate 
and may not be capable of becoming retinal cells. Mesenchymal stem cells can be 
obtained from various adult tissues and have an innate ability to home to a site of 
injury and mitigate endogenous tissue repair in part through modulation of the immune 
response (reviewed in [ 79 ]). However, their ability to differentiate into functional, 
mature retinal cells remains questionable [ 80 ,  81 ]. Thus, these non-PCSs may be inef-
fective for replacement therapy. However, transplanting cells to provide trophic sup-
port to the retina is a practical treatment strategy, and there are currently several 
clinical trials underway using cells isolated from bone marrow (NCT01531348) and 
umbilical tissue (NCT01226628) for RP and atrophic AMD, respectively.  

7.4.6     Receptivity of the Diseased Retina 

 A fi nal requirement for cell replacement therapy is that the diseased environment 
must allow for integration and function of transplanted cells in the retina. One par-
ticular concern for retinal diseases with complex or unknown genetic infl uences 
(such as some types of RP) or with strong environmental infl uences (such as AMD) 
is that degeneration may be an indirect effect of complex or yet unknown disease 
processes rather than an intrinsic defect in the retinal cells themselves. If this is the 
case, then it is conceivable that transplanted retinal cells may also succumb to the 
diseased environment and eventually die along with endogenous cells if the under-
lying cause of the disease is not addressed. Nevertheless, if cell therapy signifi -
cantly delays this degenerative process then it will serve as a valuable treatment 
option.   

7.5     Concluding Remarks 

 In summary, the development of stem cell strategies to treat retinal diseases offers 
exciting possibilities for the future. PSC-derived RPE cells have now progressed into 
clinical trials, while the ability to create  in vitro  human models using iPSCs has revo-
lutionised the fi eld by providing a platform to study disease pathogenesis and to 
screen therapeutic compounds. There are still many unanswered questions, including 
whether multigenic diseases or those with unknown genetic, strong environmental or 
epigenetic infl uences can be modelled effectively with iPSCs. It also remains to be 
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determined whether improvements from cell therapies in animal models will translate 
to human conditions and whether the diseased retina will facilitate long-term function 
of cell transplants. Regardless of these uncertainties, stem cell approaches provide 
hope for new insight and treatments for a large number of retinal diseases.     
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