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Abstract The natural mixing construction for abstract polytopes provides a way to
build a minimal common cover of two regular or chiral polytopes. With the help of
the chirality group of a polytope, it is often possible to determine when the mix of
two chiral polytopes is still chiral. By generalizing the chirality group to a whole
family of variance groups, we can explicitly describe the structure of the mix of two
polytopes. We are also able to determine when the mix of two polytopes is invariant
under other external symmetries, such as duality and Petrie duality.
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1 Introduction

The study of abstract polytopes, together with the study of maps on surfaces, is a
vibrant area of current research. These fields bring together group theory, geometry,
and combinatorics in a satisfying way, providing many fascinating structures to
study. As in the classical theory of convex polytopes, the regular polytopes are
particularly interesting. In our context, a polytope is regular if its automorphism
group acts transitively on the flags. Also important are the chiral polytopes,
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whose defining features are that there are two flag orbits under the action of the
automorphism group, and that flags that differ in only a single element lie in
different orbits. Such polytopes occur in two mirror-image forms, but they have
full rotational symmetry.

In addition to internal symmetries, which are represented by polytope auto-
morphisms, there are a number of interesting external symmetries. Some, such as
duality, have their roots in the study of convex polytopes. Others, such as Petrie
duality, come more naturally from the study of maps on surfaces. Even the symmetry
between a chiral polytope and its mirror image may be viewed as an external
symmetry. Most of the work on external symmetries has focused on polyhedra
and maps on surfaces (see [6, 12, 13, 17]), though some work has been done with
polytopes in higher rank as well (see [10]).

Polytopes have a natural mixing construction, analogous to the join of two maps
or hypermaps [9]. This construction lets us build the minimal common cover of two
regular or chiral polytopes. Unlike joining maps, there is a significant hurdle when
mixing polytopes; namely, there is no guarantee that the mix of two polytopes is
itself a polytope. In some cases, we are able to determine whether the mix of two
polytopes is polytopal based on simple combinatorial data.

By mixing a polytope with its images under an external symmetry or a group
of symmetries, we can construct a polytope (or a slightly more general structure)
that is invariant under that symmetry or symmetries. For example, we can build
polytopes that are self-dual, self-Petrie, or both. Our goal then becomes determining
the full structure of the mixed polytope, including its combinatorial data and its
automorphism group.

Sometimes we are more interested in constructing polytopes that are not invariant
under a given external symmetry. For example, we would like to know when the mix
of two chiral polytopes is still chiral. By using the chirality group, which measures
the degree to which a polytope is chiral, we can often make this determination (see
[4, 7, 8]). The chirality group generalizes nicely, making it possible to measure how
far a polytope is from being invariant under any external symmetry.

We start by giving background information on regular and chiral polytopes
in Sect. 2. In Sect. 3, we introduce the mixing construction for polytopes and
investigate the structure of mixed polytopes. Then we develop the theory of external
symmetries in Sect. 4. The main result is Theorem 1, which uses a generalization of
the chirality group to determine when the mix of two polytopes is invariant under
an external symmetry. We then provide several consequences and examples.

2 Polytopes

General background information on abstract polytopes can be found in [15,
Chs. 2, 3], and information on chiral polytopes specifically can be found in [18].
Here we review the concepts essential for this paper.
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2.1 Definition of a Polytope

Let P be a ranked partially ordered set whose elements will be called faces. The
faces of P will range in rank from �1 to n, and a face of rank j is called a j -face.
The 0-faces, 1-faces, and .n � 1/-faces are also called vertices, edges, and facets,
respectively. A flag of P is a maximal chain. We say that two flags are adjacent
if they differ in exactly one face, and that they are j -adjacent if they differ only in
their j -face. If F and G are faces of P such that F � G, then the section G=F
consists of those faces H such that F � H � G.

We say that P is an (abstract) polytope of rank n, also called an n-polytope, if it
satisfies the following four properties:

(a) There is a unique greatest face Fn of rank n and a unique least face F�1 of
rank �1.

(b) Each flag of P has nC 2 faces.
(c) P is strongly flag-connected, meaning that if ˚ and � are two flags of P ,

then there is a sequence of flags ˚ D ˚0;˚1; : : : ; ˚k D � such that for
i D 0; : : : ; k�1, the flags˚i and˚iC1 are adjacent, and each˚i contains˚\� .

(d) (Diamond condition): Whenever F < G, where F is a .j � 1/-face and
G is a .j C 1/-face for some j , then there are exactly two j -faces H with
F < H < G.

Note that due to the diamond condition, any flag ˚ has a unique j -adjacent flag
(denoted ˚j ) for each j D 0; 1; : : : ; n � 1.

If F is a j -face and G is a k-face of a polytope with F � G, then the
sectionG=F is a (k�j�1)-polytope itself. We can identify a face F with the section
F=F�1, since ifF is a j -face, thenF=F�1 is a j -polytope. We call the sectionFn=F
the co-face at F ; the co-face at a vertex is also called a vertex-figure.

We sometimes need to work with pre-polytopes, which are ranked partially
ordered sets that satisfy the first, second, and fourth property above, but not
necessarily the third. In this paper, all of the pre-polytopes we encounter will be
flag-connected, meaning that if ˚ and � are two flags, there is a sequence of flags
˚ D ˚0;˚1; : : : ; ˚k D � such that for i D 0; : : : ; k � 1, the flags ˚i and ˚iC1 are
adjacent (but we do not require each flag to contain ˚ \ � ). When working with
pre-polytopes, we apply all the same terminology as with polytopes.

Let P and Q be two polytopes (or flag-connected pre-polytopes) of the same
rank. A function � W P ! Q is called a covering if it preserves incidence of
faces, ranks of faces, and adjacency of flags; then � is necessarily surjective, by
the flag-connectedness of Q. We say that P covers Q if there exists a covering
� W P ! Q.

2.2 Regularity

For polytopes P and Q, an isomorphism from P to Q is an incidence- and rank-
preserving bijection on the set of faces. An isomorphism from P to itself is an
automorphism of P , and the group of all automorphisms of P is denoted � .P/.
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We say that P is regular if the natural action of � .P/ on the flags of P is
transitive. For convex polytopes, this definition is equivalent to any of the usual
definitions of regularity (see [15, Sect. 1B]).

Given a regular polytope P , fix a base flag ˚ . Then the automorphism group
� .P/ is generated by the abstract reflections �0; : : : ; �n�1, where �i maps ˚ to the
unique flag ˚i that is i -adjacent to ˚ . These generators satisfy �2i D � for all i , and
.�i�j /

2 D � for all i and j such that ji � j j � 2. We say that P has (Schläfli)
type fp1; : : : ; pn�1g if for each i D 1; : : : ; n � 1 the order of �i�1�i is pi (with
2 � pi � 1).

For I � f0; 1; : : : ; n � 1g and a group � D h�0; : : : ; �n�1i, we define �I WD
h�i j i 2 I i. The strong flag-connectivity of regular polytopes induces the following
intersection condition in the group:

�I \ �J D �I\J for I; J � f0; : : : ; n � 1g: (1)

In general, if � D h�0; : : : ; �n�1i is a group such that each �i has order 2 and
such that .�i�j /2 D � whenever ji � j j � 2, then we say that � is a string group
generated by involutions (or sggi). If � also satisfies the intersection condition (1)
given above, then we call � a string C-group. There is a natural way of building
a regular polytope P.� / from a string C-group � such that � .P.� // D � and
P.� .P// D P (see [15, Ch. 2E]). In particular, the i -faces of P.� / are taken to
be the cosets of

�i WD h�j j j ¤ ii;

where �i' � �j if and only if i � j and �i' \ �j ¤ ;. This construction
is also easily applied to any sggi (not just string C-groups), but in that case, the
resulting poset is not necessarily a polytope.

If P and Q are regular n-polytopes, their automorphism groups are both
quotients of the Coxeter group

Wn WD Œ1; : : : ;1� D h�0; : : : ; �n�1 j �20 D � � � D �2n�1 D �;

.�i�j /
2 D � when ji � j j � 2i: (2)

Therefore there are normal subgroups M and K of Wn such that � .P/ D Wn=M

and � .Q/ D Wn=K. Then P covers Q if and only if M � K.

2.3 Direct Regularity and Chirality

If P is a regular polytope with automorphism group � .P/ generated by
�0; : : : ; �n�1, then the abstract rotations
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�i WD �i�1�i .i D 1; : : : ; n � 1/

generate the rotation subgroup � C.P/ of � .P/, which has index at most 2. We
say that P is directly regular if this index is 2. This is essentially an orientability
condition; for example, the directly regular polyhedra correspond to orientable
regular maps. The convex regular polytopes are all directly regular.

We say that an n-polytope P is chiral if the action of � .P/ on the flags of P
has two orbits such that adjacent flags are always in distinct orbits. For convenience,
we define � C.P/ WD � .P/whenever P is chiral. Given a chiral polytope P with
base flag ˚ D fF�1; F0; : : : ; Fng, the automorphism group � C.P/ is generated by
elements �1; : : : ; �n�1, where �i acts on˚ the same way that �i�1�i acts on the base
flag of a regular polytope. That is, �i sends ˚ to .˚i /i�1 (which is usually denoted
˚i;i�1). For i < j , the product �i � � � �j is an involution. In analogy to regular
polytopes, if the order of each �i is pi , we say that the type of P is fp1; : : : ; pn�1g.

The automorphism groups of chiral polytopes and the rotation groups of directly
regular polytopes satisfy an intersection property analogous to that for string
C-groups. Let � C WD � C.P/ D h�1; : : : ; �n�1i be the automorphism group of
a chiral polytope or the rotation subgroup of a directly regular polytope P . For
1 � i < j � n� 1 define 	i;j WD �i � � � �j . By convention, we also define 	i;i D �i ,
and for 0 � i � n, we define 	0;i D 	i;n D �. For I � f0; : : : ; n � 1g, set

� C
I WD h	i;j j i � j and i � 1; j 2 I i:

Then the intersection property for � C is given by:

� C
I \ � C

J D � C
I\J for I; J � f0; : : : ; n � 1g: (3)

If � C is a group generated by elements �1; : : : ; �n�1 such that .�i � � � �j /2 D �

for i < j , and if � C satisfies the intersection property (3) above, then � C is either
the automorphism group of a chiral n-polytope or the rotation subgroup of a directly
regular n-polytope. In particular, it is the rotation subgroup of a directly regular
polytope if and only if there is a group automorphism of � C that sends �1 to ��1

1 ,
�2 to �21 �2, and fixes every other generator.

Suppose P is a chiral polytope with base flag ˚ and with

� C.P/ D h�1; : : : ; �n�1i:

Let P be the chiral polytope with the same underlying face-set as P , but with base
flag˚0. Then � C.P/ D h��1

1 ; �21 �2; �3; : : : ; �n�1i. We call P the enantiomorphic
form or mirror image of P . Though P ' P , there is no automorphism of P that
takes ˚ to ˚0.

Let � C D h�1; : : : ; �n�1i, and let w be a word in the free group on these
generators. We define the enantiomorphic (or mirror image) word w of w to be the
word obtained from w by replacing every occurrence of �1 by ��1

1 and �2 by �21 �2,
while keeping all �j with j � 3 unchanged. Then if � C is the rotation subgroup
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of a directly regular polytope, the elements of � C corresponding to w and w are
conjugate in the full group � . On the other hand, if � C is the automorphism group
of a chiral polytope, then w and w need not even have the same period. Note that
w D w for all words w.

The sections of a regular polytope are again regular, and the sections of a chiral
polytope are either directly regular or chiral. Furthermore, for a chiral n-polytope,
all the .n � 2/-faces and all the co-faces at edges must be directly regular [18]. As
a consequence, if P is a chiral polytope, it may be possible to extend it to a chiral
polytope with facets isomorphic to P , but it will then be impossible to extend that
polytope once more to a chiral polytope.

Chiral polytopes only exist in ranks 3 and higher. The simplest examples are the
torus maps f4; 4g.b;c/, f3; 6g.b;c/ and f6; 3g.b;c/, with b; c ¤ 0 and b ¤ c (see [2]).
These give rise to chiral 4-polytopes having toroidal maps as facets and/or vertex-
figures. More examples of chiral 4- and 5-polytopes can be found in [1].

If a regular or chiral n-polytope P has facets K and vertex-figures L , we say
that P is of type fK ;L g. If P is of type fK ;L g and it covers every other
polytope of the same type, then we say that P is the universal polytope of type
fK ;L g, and we simply denote it by fK ;L g.

If P and Q are chiral or directly regular n-polytopes, their rotation groups are
both quotients of

W C
n WD Œ1; : : : ;1�C D h�1; : : : ; �n�1 j .�i � � � �j /2 D � for 1 � i < j � n � 1i:

Therefore there are normal subgroups M and K of W C
n such that � C.P/ D

W C
n =M and � C.Q/ D W C

n =K. Then P covers Q if and only if M � K.
Let P be a chiral or directly regular polytope with � C.P/ D W C

n =M . We
define

M D fw j w 2M g:
Note that M D �0M�0, where as before, �0 is the first standard generator of Wn.
If M D M , then P is directly regular. Otherwise, P is chiral, and � C.P/ D
W C
n =M .

2.4 Duality and Petrie Duality

For any polytope P , we obtain the dual of P (denoted Pı) by simply reversing
the partial order. A duality from P to Q is an anti-isomorphism, that is, a bijection
ı between the face sets such that F < G in P if and only if ı.F / > ı.G/ in Q. If
a polytope is isomorphic to its dual, then it is called self-dual.

If P is of type fK ;L g, then Pı is of type fL ı;K ıg. Therefore, in order for
P to be self-dual, it is necessary (but not sufficient) that K be isomorphic to L ı

(in which case it is also true that K ı is isomorphic to L ).
A self-dual regular polytope always possesses a duality that fixes the base flag.

For chiral polytopes, this may not be the case. If a self-dual chiral polytope P
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possesses a duality that sends the base flag to another flag in the same orbit (but
reversing its direction), then there is a duality that fixes the base flag, and we say
that P is properly self-dual [11]. In this case, the groups � C.P/ and � C.Pı/

have identical presentations. If a self-dual chiral polytope has no duality that fixes
the base flag, then every duality sends the base flag to a flag in the other orbit, and
P is said to be improperly self-dual. In this case, the groups � C.P/ and � C.Pı/

have identical presentations instead.
If P is a regular polytope with � .P/ D h�0; : : : ; �n�1i, then the group of Pı

is � .Pı/ D h�00; : : : ; �0n�1i, where �0i D �n�1�i . If P is a directly regular or
chiral polytope with � C.P/ D h�1; : : : ; �n�1i, then the rotation group of Pı

is � C.Pı/ D h� 0
1; : : : ; �

0
n�1i, where � 0

i D ��1
n�i . Equivalently, if � C.P/ has

presentation

h�1; : : : ; �n�1 j w1; : : : ;wki
then � C.Pı/ has presentation

h� 0
1; : : : ; �

0
n�1 j ı.w1/; : : : ; ı.wk/i;

where if w D �i1 � � � �ij , then ı.w/ D .� 0
n�i1 /

�1 � � � .� 0
n�ij /

�1.
Suppose P is a chiral or directly regular polytope with � C.P/ D W C

n =M .
Then � C.Pı/ D W C

n =ı.M/, where ı.M/ D fı.w/ j w 2 M g. If ı.M/ D M ,
then � C.P/ D � C.Pı/, so P is properly self-dual.

If P is a chiral polytope, then Pı is naturally isomorphic to P
ı
. Indeed, if w is

a word in the generators �1; : : : ; �n�1 of � C.P/, then

ı.w/ D .�1�2 � � � �n�1/ı.w/.�1�2 � � � �n�1/�1;

so we see that the presentation for Pı is equivalent to that of P
ı
. In particular, if

� C.P/ D W C
n =M , then

ı.M/ D ı.M/ WD fı.w/ j w 2M g;

since M is a normal subgroup of W C
n , and thus ı.ı.M// DM .

There is also a second duality operation that is defined on abstract polyhedra. To
start with, a Petrie polygon of a polyhedron is a maximal edge-path such that every
two successive edges lie on a common face, but no three successive edges do. Given
a polyhedron P , its Petrie dual P
 consists of the same vertices and edges as P ,
but its faces are the Petrie polygons of P . Taking the Petrie dual of a polyhedron
also forces the old faces to be the new Petrie polygons, so that P

 ' P . If P is
isomorphic to P
 , then we say that P is self-Petrie.

The Petrie dual of an arbitrary polyhedron need not be a polyhedron itself. In par-
ticular, a Petrie polygon may visit a single vertex multiple times, causing there to be
more than two edges incident on that Petrie polygon and vertex. When P is regular,
however, the Petrie dual is a polyhedron except in rare cases; see [15, Sect. 7B].
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3 Mixing Polytopes

The mixing operation on polytopes [15, 16] is analogous to the parallel product of
groups [20], the tensor product of graphs, and the join of maps and hypermaps [9].
It gives us a natural way to find the minimal common cover of two regular or chiral
polytopes. The basic method is to find the parallel product of the automorphism
groups (or rotation groups) of two polytopes, and then to build a poset (usually a pre-
polytope) from the resulting group. There are two main challenges. First, we want
to determine how the structure of the mix depends on the two component polytopes.
Second, we want to know when the mix of two polytopes is a polytope, and not
just a pre-polytope. In a wide variety of cases, it is possible to easily determine the
structure and polytopality of the mix.

3.1 Mixing Finitely Generated Groups

Let � D hx1; : : : ; xni and � 0 D hx01; : : : ; x0ni be finitely generated groups on n gen-
erators. Then the elements zi WD .xi ; x

0
i / 2 � �� 0 (for i D 1; : : : ; n) generate a sub-

group of � �� 0 that we call the mix of � and � 0, denoted � ˘� 0 (see [15, Ch.7A]).
If P and Q are regular polytopes, then we can mix their automorphism groups

� .P/ and � .Q/. The result will be an sggi, but not necessarily a string C-group.
In any case, we can always build a ranked poset from � .P/˘� .Q/, and the result,
which we emphasize might not be a polytope, is called the mix of P and Q and is
denoted P ˘ Q. Similarly, if P and Q are chiral or directly regular, we can mix
� C.P/ and � C.Q/ and build a poset from the resulting group. That poset is also
called the mix of P and Q and denoted P ˘Q. There is no chance for confusion,
since if P and Q are both directly regular, then the poset built from � .P/˘� .Q/
is the same as that built from � C.P/ ˘ � C.Q/.

If the facets of P are isomorphic to K and the facets of Q are isomorphic to
L , then the facets of P ˘ Q are isomorphic to K ˘ L . The vertex-figures of
P ˘Q are analogously obtained. If P is of type fp1; : : : ; pn�1g and Q is of type
fq1; : : : ; qn�1g, then P ˘ Q is of type f`1; : : : ; `n�1g, where `i D lcm.pi ; qi / for
i 2 f1; : : : ; n � 1g.

In order to avoid duplication, we shall usually assume that P and Q are chiral or
directly regular, and we will work with � C.P/˘� C.Q/ instead of � .P/˘� .Q/.
Most of our results are easily modified to work for � .P/ ˘ � .Q/ when necessary.

The automorphism group of a chiral or directly regular n-polytope can always
be written as a natural quotient of W C

n . The mix of two polytopes has a simple
interpretation in terms of these quotients [8]:

Proposition 1. Let P and Q be chiral or directly regular n-polytopes with
� C.P/ D W C

n =M and � C.Q/ D W C
n =K. Then � C.P ˘Q/ ' W C

n =.M \K/.
Corollary 1. Let P , Q, and R be chiral or directly regular n-polytopes. If R
covers P and Q, then it covers P ˘Q.
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Dual to the mix is the comix of two groups. We define the comix � �� 0 to be the
amalgamated free product that identifies the generators of � with the corresponding
generators of � 0. That is, if � has presentation hx1; : : : ; xn j Ri and � 0 has
presentation hx01; : : : ; x0n j Si, then ��� 0 has presentation

hx1; x01; : : : ; xn; x0n j R;S; x�11 x01; : : : ; x�1n x0ni:
Equivalently, we can just add the relations from � 0 to those of � , replacing each x0i
with xi .

Just as the mix of two rotation groups has a simple description in terms of
quotients of W C

n , so does the comix of two rotation groups [3]:

Proposition 2. Let P and Q be chiral or directly regular n-polytopes with
� C.P/ D W C

n =M and � C.Q/ D W C
n =K. Then � C.P/�� C.Q/ '

W C
n =MK.

The mixing and comixing operations on polytopes are commutative and asso-
ciative in the sense that, for example, P ˘ Q is naturally isomorphic to Q ˘ P .
Furthermore, P ˘ P and P�P are both naturally isomorphic to P . However,
even if P ' Q, it may be the case that P ˘Q 6' P . For example, if P is a chiral
polytope, then P ' P , but P ˘P is not isomorphic to P .

3.2 Variance Groups and the Structure of the Mix

There is a natural epimorphism from � C.P/ ˘ � C.Q/ to � C.P/, sending
each generator .�i ; � 0

i / to �i . By studying the kernel of this epimorphism and
the analogous epimorphism to � C.Q/, we can determine the structure of the
� C.P/ ˘ � C.Q/.

Definition 1. Let P and Q be chiral or directly regular n-polytopes. We denote
the kernel of the natural epimorphism

f W � C.P/ ˘ � C.Q/! � C.P/

by X.QjP/, and we call it the variance group of Q with respect to P . Similarly,
we denote the kernel of the natural epimorphism

f 0 W � C.P/ ˘ � C.Q/! � C.Q/

by X.PjQ/ and we call it the variance group of P with respect to Q. In other
words, X.QjP/ consists of the elements of � C.P/ ˘ � C.Q/ of the form .�;w0/
(with w0 2 � C.Q/), and X.PjQ/ consists of the elements of � C.P/ ˘ � C.Q/
of the form .w; �/ (with w 2 � C.P/).

By representing � C.P/ as W C
n =M and � C.Q/ as W C

n =K, we easily obtain
the following:
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Proposition 3. Let P and Q be chiral or directly regular n-polytopes, with
� C.P/ D W C

n =M and � C.Q/ D W C
n =K. Then:

(a) X.PjQ/ ' K=.M \ K/ ' MK=M and X.QjP/ ' M=.M \ K/ '
MK=K.

(b) Let g W � C.P/ ! � C.P/�� C.Q/ and g0 W � C.Q/ ! � C.P/�� C.Q/
be the natural epimorphisms. Then kerg ' X.PjQ/ and kerg0 ' X.QjP/.
In particular, X.PjQ/ and X.QjP/ can be viewed as normal subgroups of
� C.P/ and � C.Q/, respectively.

The fact that the natural epimorphisms f 0 W � C.P/ ˘ � C.Q/ ! � C.Q/
and g W � C.P/ ! � C.P/�� C.Q/ have isomorphic kernels allows us to use
the comix of two polytopes to derive information about the mix. The following
properties are immediate:

Proposition 4. Let P and Q be finite chiral or directly regular n-polytopes.
Then:

(a) � C.P/ ˘ � C.Q/ is finite, and

j� C.P/ ˘ � C.Q/j D jX.PjQ/j � j� C.Q/j D jX.QjP/j � j� C.P/j:

(b) � C.P/�� C.Q/ is finite, and

j� C.P/�� C.Q/j D j� C.P/j
jX.PjQ/j D

j� C.Q/j
jX.QjP/j :

(c)

j� C.P/ ˘ � C.Q/j � j� C.P/�� C.Q/j D j� C.P/j � j� C.Q/j:

(d)

jX.PjQ/j
jX.QjP/j D

j� C.P/j
j� C.Q/j

Intuitively speaking, the group X.QjP/ tells us something about how many
elements of � C.Q/ do not correspond to elements of � C.P/. If � C.P/

covers � C.Q/, then X.QjP/ is trivial. At the other extreme, if � C.P/ ˘
� C.Q/ D � C.P/ � � C.Q/, then � C.P/ and � C.Q/ have trivial overlap, and
X.QjP/ ' � C.Q/.

The group � C.P/˘� C.Q/ is a subdirect product of � C.P/ and � C.Q/, and
we can determine its structure explicitly:

Proposition 5. Let P and Q be chiral or directly regular n-polytopes, with
� C.P/ D h�1; : : : ; �ni and � C.Q/ D h� 0

1; : : : ; �
0
ni. Let N D X.PjQ/ and

N 0 D X.QjP/, and let h W � C.P/=N ! � C.Q/=N 0 be the isomorphism
sending �iN to � 0

iN
0. Then
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� C.P/ ˘ � C.Q/ D f.u; v/ 2 � C.P/ � � C.Q/ j h.uN/ D vN 0g:

In particular, X.PjQ/ �X.QjP/ is a normal subgroup of � C.P/ ˘ � C.Q/.

Proof. First of all, by Proposition 3,

� C.P/=N ' � C.P/�� C.Q/ ' � C.Q/=N 0;

so that h really is an isomorphism. Let f W � C.P/ ˘ � C.Q/ ! � C.P/ and
f 0 W � C.P/ ˘ � C.Q/ ! � C.Q/ be the natural epimorphisms, so that N 0 D
ker f and N D ker f 0 (see Definition 1). Then the first part follows directly by
Goursat’s Lemma [14]. For the last part, note that if u 2 N and v 2 N 0, then
uN D N and vN 0 D N 0. Therefore, h.uN/ D h.N / D N 0 D vN 0, so that .u; v/ 2
� C.P/ ˘ � C.Q/. Then we see that N � N 0 is a subgroup of � C.P/ ˘ � C.Q/,
and since N is a normal subgroup of � C.P/ and N 0 is a normal subgroup of
� C.Q/, it immediately follows that N �N 0 (i.e., X.PjQ/ �X.QjP/) is normal
in � C.P/ ˘ � C.Q/.

Now we are able to refine Proposition 4 to include infinite groups.

Proposition 6. Let P and Q be chiral or directly regular n-polytopes. If
� C.P/�� C.Q/ is finite of order k, then the index of � C.P/ ˘ � C.Q/ in
� C.P/ � � C.Q/ is k.

Proof. If � C.P/ and � C.Q/ are finite, this follows immediately from the third
equation of Proposition 4. Now let � C.P/ and � C.Q/ be of arbitrary size, and
set N D X.PjQ/ and N 0 D X.QjP/, as in Proposition 5. If � C.P/�� C.Q/
is finite of order k, then N 0 has index k in � C.Q/. For each fixed u 2 � C.P/,
Proposition 5 says that the element .u; v/ is in � C.P/ ˘ � C.Q/ if and only if
h.uN/ D vN 0. In other words, having fixed u we can pick any v that lies in the
same (corresponding) coset. Then sinceN 0 has index k in � C.Q/, the set of .u; v/ 2
� C.P/ ˘ � C.Q/ for a fixed u has “index” k in fug � � C.Q/. Therefore, letting
u range over all elements of � C.P/, we see that � C.P/ ˘ � C.Q/ has index k in
� C.P/ � � C.Q/.

Corollary 2. Let P and Q be chiral or directly regular n-polytopes. If
� C.P/�� C.Q/ is trivial, then � C.P/ ˘ � C.Q/ D � C.P/ � � C.Q/.

3.3 Polytopality of the Mix

Our main goal is to use the mixing operation to construct new polytopes. In some
cases, we can mix a polytope with a pre-polytope and still get a polytope:

Proposition 7. Let P be a chiral or directly regular n-polytope with facets
isomorphic to K . Let Q be a chiral or directly regular n-pre-polytope with facets
isomorphic to K 0. If K covers K 0, then P ˘Q is polytopal.
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Proof. Since K covers K 0, the facets of P ˘Q are isomorphic to K . Therefore,
the canonical projection from � C.P/ ˘ � C.Q/ ! � C.P/ is one-to-one on the
subgroup of the facets, and by [8, Lemma 3.2], the group � C.P/˘� C.Q/ has the
intersection property. Therefore, P ˘Q is a polytope.

In general, there is no guarantee that the mix of a two polytopes is a polytope.
For example, for n � 4, the mix of the n-cube with the n-orthotope is not a polytope
[5]. In rank 3, however, polytopality is automatic [4]:

Proposition 8. Let P and Q be chiral or directly regular polyhedra (3-polytopes).
Then P ˘Q is a chiral or directly regular polyhedron.

Theorem 3.7 in [4] is one example of a result that works in any rank:

Proposition 9. Let P be a chiral or directly regular n-polytope of type
fp1; : : : ; pn�1g, and let Q be a chiral or directly regular n-polytope of type
fq1; : : : ; qn�1g. If pi and qi are relatively prime for each i D 2; : : : ; n � 2 (but
not necessarily for i D 1 or i D n � 1), then P ˘Q is a chiral or directly regular
n-polytope. Furthermore, if n � 4, then � C.P/ ˘ � C.Q/ is a subgroup of index
4 or less in � C.P/ � � C.Q/.

We conclude this section with a negative result.

Proposition 10. Let P and Q be chiral or directly regular n-polytopes. Suppose
P is of type fp1; : : : ; pn�1g, and that Q is of type fq1; : : : ; qn�1g. Let ri D
gcd.pi ; qi / for i 2 f1; : : : ; n�1g. If there is an integerm 2 f2; : : : ; n�2g such that
rm�1 D rmC1 D 1 and rm � 3, then P ˘Q is not a polytope.

Proof. Let � C.P/ D h�1; : : : ; �n�1i, � C.Q/ D h� 0
1; : : : ; �

0
n�1i, and ˇi D .�i ; �

0
i /

for each i 2 f1; : : : ; n�1g. To show that P ˘Q is not polytopal, it suffices to show
that

hˇm�1; ˇmi \ hˇm; ˇmC1i ¤ hˇmi:

Now, since pm�1 and qm�1 are relatively prime, there is an integer k such that
kpm�1 � 1 (mod qm�1). Then since the order of �m�1 is pm�1 and the order of
� 0
m�1 is qm�1, we see that

ˇ
kpm�1

m�1 D .�
kpm�1

m�1 ; .� 0
m�1/kpm�1 / D .�; � 0

m�1/;

and therefore

.ˇ
kpm�1

m�1 ˇm/
2 D .�2m; .�

0
m�1� 0

m/
2/ D .�2m; �/;

since we have .� 0
i �

0
iC1/2 D � for any i 2 f1; : : : ; n�2g. Thus, .�2m; �/ 2 hˇm�1; ˇmi.

Similarly, there is an integer k0 such that k0pmC1 � 1 (mod qmC1), and thus

.ˇmˇ
k0pmC1

mC1 /2 D .�2m; .�
0
m�

0
mC1/2/ D .�2m; �/:
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Therefore, .�2m; �/ 2 hˇm; ˇmC1i as well. So we see that

.�2m; �/ 2 hˇm�1; ˇmi \ hˇm; ˇmC1i:

Now, since rm � 3, there is no integer k such that �km D �2m and .� 0
m/
k D �.

Therefore, .�2m; �/ 62 hˇmi, and that proves the claim.

4 Measuring Invariance

In this section, we develop the theory of internal and external invariance of
polytopes; the distinction is similar to that between inner and outer automorphisms
of a group. Our framework provides a unified way to measure the extent to which
a polytope is chiral, self-dual, or self-Petrie. Our goal is then to understand how
the variance of P ˘ Q depends on P and Q, and to use this knowledge to build
polytopes with or without specified symmetries.

4.1 External and Internal Invariance

Our study of invariance starts with the symmetries of

Wn WD Œ1; : : : ;1� D h�0; : : : ; �n�1 j �20 D � � � D �2n�1 D �;

.�i�j /
2 D � when ji � j j � 2i;

the automorphism group of the universal n-polytope. Let P be a regular n-polytope
with base flag ˚ . The group Wn acts on the flags of P by ˚j1;:::;jk �i D ˚i;j1;:::;jk.
If M is the stabilizer of the base flag ˚ under this action, then M is normal in Wn

and � .P/ D Wn=M .
Suppose ' is in Aut.Wn/, the group of group automorphisms of Wn, and define

P' to be the flagged poset built from Wn='.M/. If ' fixes M (globally), then P
and P' are naturally isomorphic, and we shall consider them equal. On the other
hand, if '.M/ ¤ M , then the polytopes P and P' are distinct, and they need
not be isomorphic, even though ' induces an isomorphism of their automorphism
groups.

Similarly, if P is a chiral or directly regular n-polytope with base flag ˚ , then

W C
n WD Œ1; : : : ;1�C D h�1; : : : ; �n�1 j .�i � � � �j /2 D � for 1 � i < j � n � 1i

acts on the flags of P by ˚j1;:::;jk �i D ˚i;i�1;j1;:::;jk. If M is the stabilizer of the
base flag under this action, thenM is normal inW C

n and � C.P/ D W C
n =M . Now,
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taking ' 2 Aut.W C
n /, we similarly define P' to be the flagged poset built from

W C
n ='.M/.

Definition 2. Let P be a regular or chiral n-polytope (or, more generally, a regular
or chiral n-pre-polytope). Let ' be a group automorphism ofWn orW C

n (whichever
is appropriate), and let P' be defined as above.

(a) If P D P' , we say that P is internally '-invariant; otherwise we say that P
is internally '-variant.

(b) If P ' P' , we say that P is externally '-invariant; otherwise we say that P
is externally '-variant.

Of course, if a polytope is internally '-invariant, it must also be externally
'-invariant. Similarly, if a polytope is externally '-variant, it must also be internally
'-variant.

Let us consider several applications. Let P be a regular polytope with � .P/ D
Wn=M , and let �w 2 Aut.Wn/ be conjugation by w 2 Wn. Then since M is normal
in Wn, �w fixes M . Therefore, every regular polytope is internally �w-invariant.

Similarly, for any element w 2 Wn there is an automorphism �w 2 Aut.W C
n /.

If w is even (i.e., if w 2 W C
n ), then every chiral polytope is internally �w-invariant.

On the other hand, consider the automorphism � WD ��0 . This automorphism sends
�1 to ��1

1 and �2 to �21 �2 while fixing all other generators �i . Then if P is a chiral
polytope, P� is the enantiomorphic form P of P . In particular, a chiral or directly
regular polytope P is chiral if and only if it is not internally �-invariant. (But note
that in any case, if P is chiral or directly regular, it is externally �-invariant.)

Moving on, let ı be the automorphism of Wn that sends each �i to �n�i�1,
and let P be a regular n-polytope. Then Pı is the dual of P (and indeed,
our notation for the dual was chosen in anticipation of this fact). The polytope
P is externally ı-invariant if and only if it is self-dual. Every regular self-dual
polytope has a duality that fixes the base flag while reversing the order [15], and
therefore if P is regular and self-dual, the polytopes P and Pı have the same flag-
stabilizer in Wn. Thus we see that a regular self-dual polytope is always internally
ı-invariant.

Similarly, there is an automorphism ıC of W C
n that sends each �i to ��1

n�i . This
is the automorphism induced by ı in the previous example (and by an abuse of
notation, we frequently use ı to denote this automorphism of W C

n as well). Then a
directly regular or chiral polytope P is externally ıC-invariant if and only if it is
self-dual. If P is properly self-dual (i.e., if there is a duality that fixes the base flag),
then it is internally ıC-invariant; otherwise P is improperly self-dual and internally
ıC-variant.

For our final example, let 
 be the automorphism ofW3 that sends �0 to �0�2 and
fixes every other �i . If P is a regular polyhedron, then P
 is the Petrie dual of P .

We will now explore the connection between invariance and polytope covers.

Proposition 11. Let P be a chiral or regular n-polytope, and let ' be an
automorphism of Wn or W C

n , as appropriate. Suppose Q is a chiral or regular
internally '-invariant n-polytope that covers P . Then Q covers P' .
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Proof. Suppose P and Q are both regular; the proof is essentially the same in
the other cases. We have � .P/ D Wn=M and � .Q/ D Wn=K for some normal
subgroups M and K of Wn. Since Q covers P , K � M . Then '.K/ � '.M/ as
well, and since Q is internally '-invariant, '.K/ D K. Therefore K � '.M/, and
so Q covers P' .

Corollary 3. Let P be a chiral or regular n-polytope, and let ' be an automor-
phism of Wn or W C

n , as appropriate. Suppose that ' has finite order k, and that
Q is a chiral or regular internally '-invariant n-polytope that covers P . Then Q

covers P ˘P' ˘ � � � ˘P'k�1 .

Proof. Repeated application of Proposition 11 shows that Q covers P' , P'2 ; : : :,
and P'k�1 . Therefore, by Corollary 1, it covers their mix.

As we shall see shortly, the mix P ˘P' ˘ � � � ˘P'k�1 is actually the minimal
internally '-invariant cover of P . As such, we make the following definition.

Definition 3. Let P be a chiral or regular n-polytope, and let ' be an automor-
phism of Wn or W C

n (as appropriate) of finite order k. Then we define P˘' to be
P ˘P' ˘ � � � ˘P'k�1 .

Proposition 12. Let P be a chiral or regular n-polytope, and let ' be an
automorphism of Wn or W C

n (as appropriate) of order finite k. Then P˘' is the
minimal chiral or regular internally '-invariant cover of P .

Proof. Since P'k D P , it is clear that .P˘'/' D P˘' . So P˘' is internally '-
invariant. By Corollary 3, every internally '-invariant cover of P must cover P˘'
as well. Thus it follows that P˘' is minimal.

In the rest of Sect. 4, we will usually assume that ' is an automorphism of W C
n ,

and that any polytopes we deal with are chiral or directly regular. Note, however,
that the definitions below all still make sense if we work with automorphisms ofWn

instead and assume that our polytopes are regular.
Given an automorphism ' of W C

n and a chiral or directly regular polytope P ,
we can consider the variance groups X.PjP'/ and X.P' jP/. By Proposition 3,
if � C.P/ D W C

n =M , then the former is isomorphic to M'.M/=M , and the latter
is isomorphic to M'.M/='.M/. Since M ' '.M/, the groups X.PjP'/ and
X.P' jP/ are isomorphic. We make the following definition:

Definition 4. Let P be a chiral or directly regular polytope of rank n. Let ' 2
Aut.W C

n /. We define

X'.P/ WD X.PjP'/;

and we call this the internal '-variance group of P or simply the '-variance group
of P .



112 G. Cunningham

In other words, X'.P/ is the kernel of the natural epimorphism from � C.P/˘
� C.P'/ to � C.P'/ (and also the kernel of the natural epimorphism from � C.P/

to � C.P/�� C.P'/).
The group X'.P/ gives us a measure of how different P is from P' . At one

extreme, X'.P/ might be trivial, in which case P is internally '-invariant. At the
other extreme, X'.P/ might coincide with the whole group � C.P/; in that case,
we say that P is totally (internally) '-variant. (Again, we usually drop the word
‘internally’ for brevity.)

Let P be a chiral polytope and let � be the automorphism of W C
n that sends �1

to ��1
1 and �2 to �21 while fixing every other �i . Then the variance group X�.P/

is identical to the chirality group X.P/, introduced in [8] for polytopes and earlier
in [7] for maps and hypermaps. We can thus view '-variance groups as a natural
generalization of chirality groups.

4.2 Variance of the Mix

Using the tools we have developed, our goal now is to determine how X'.P ˘Q/
depends on X'.P/ and X'.Q/. We start with a simple result.

Proposition 13. Let P and Q be chiral or directly regular n-polytopes, and let
' 2 Aut.W C

n / have finite order. Then .P ˘Q/' D P' ˘Q' and .P ˘Q/˘' D
P˘' ˘Q˘' .

The following lemma completely characterizes the invariance of P ˘Q in terms
of polytope covers.

Lemma 1. Let P and Q be chiral or directly regular n-polytopes, and let ' 2
Aut.W C

n / have finite order. Then P ˘ Q is internally '-invariant if and only if it
covers P˘' and Q˘' .

Proof. If P˘Q is internally '-invariant, then by Corollary 3, it covers .P˘Q/˘' .
Furthermore, by Proposition 13, the latter polytope is equal to P˘' ˘Q˘' , which
covers both P˘' and Q˘' . Conversely, if P ˘ Q covers P˘' and Q˘' , then it
covers .P˘Q/˘' , which itself covers P˘Q. Then we must have that .P˘Q/˘' D
P ˘Q; that is, P ˘Q must be internally '-invariant.

Lemma 1 has several applications. For example, it tells us that P ˘Q is directly
regular if and only if it covers P ˘ P and Q ˘ Q. Similarly, P ˘ Q is properly
self-dual if and only if it covers P ˘ Pı and Q ˘ Qı , and it is self-Petrie if and
only if it covers P ˘P
 and Q ˘Q
 .

We now give the main theorem of this section.

Theorem 1. Let P and Q be chiral or directly regular n-polytopes, and let ' 2
Aut.W C

n / have finite order. Suppose P ˘ Q is internally '-invariant. Then there
is a natural epimorphism from � C.P/ ˘ � C.Q/ to � C.P/ ˘ � C.P'/, and it
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restricts to an epimorphism from X.QjP/ to X'.P'/ D X.P' jP/. Similarly,
there is a natural epimorphism from � C.P/ ˘ � C.Q/ to � C.Q/ ˘ � C.Q'/ that
restricts to an epimorphism from X.PjQ/ to X'.Q'/ D X.Q' jQ/.
Proof. Let � C.P/ D W C

n =M and � C.Q/ D W C
n =K. By Lemma 1, since

P ˘Q is internally '-invariant, it covers P˘' , which covers P ˘P' . Therefore,
� C.P/ ˘ � C.Q/ naturally covers � C.P/ ˘ � C.P'/. Since

� C.P/ ˘ � C.Q/ D W C
n =.M \K/

and

� C.P/ ˘ � C.P'/ D W C
n =.M \ '.M//;

this means that M \ K � M \ '.M/. Thus, the group M=.M \ K/ naturally
covers M=.M \ '.M//. By Proposition 3, the former is the subgroup X.QjP/ of
� C.P/˘� C.Q/, and the latter is the subgroupX.P' jP/ of � C.P/˘� C.P'/.
The result then follows by symmetry.

Corollary 4. Let P and Q be finite chiral or directly regular n-polytopes, and let
' 2 Aut.W C

n / have finite order. If P ˘Q is internally '-invariant, then jX'.P/j
divides jX.QjP/j and jX'.Q/j divides jX.PjQ/j.
Corollary 5. Let P and Q be chiral or directly regular n-polytopes, and let ' 2
Aut.W C

n / have finite order. Suppose that P has infinite '-variance group X'.P/

and that Q is finite. Then P ˘ Q is internally '-variant (that is, not internally
'-invariant).

Proof. Since X.QjP/ is isomorphic to a subgroup of � C.Q/, it must be finite.
Then there is no epimorphism from the finite group X.QjP/ to the infinite group
X'.P'/ ' X'.P/, and thus by Theorem 1, P ˘Q must be internally '-variant.

Corollary 6. Let P and Q be chiral or directly regular n-polytopes, and let ' 2
Aut.W C

n / have finite order. Suppose P is internally '-variant and that Q has a
rotation group � C.Q/ that is simple. If X'.P/ is not isomorphic to � C.Q/, then
P ˘Q is internally '-variant.

Proof. Theorem 1 says that if P˘Q is internally '-invariant, thenX.QjP/ covers
X'.P'/. Now, since P is internally '-variant, X'.P'/ is nontrivial, and since
� C.Q/ is simple, the normal subgroup X.QjP/ of � C.Q/ is either trivial or the
whole group � C.Q/. The only way forX.QjP/ to cover X'.P'/ is forX.QjP/

to be � C.Q/, and then the only nontrivial group it covers is itself. Therefore, if
X'.P/ (and thus X'.P'/) is not isomorphic to � C.Q/, then X.QjP/ cannot
cover X'.P'/, and the mix P ˘Q is internally '-variant.

We see that there are several simple tests that we can apply to determine whether
P ˘ Q is internally '-invariant. We would like to extend the results to the mix
of three or more polytopes. In order to do that, however, we need to know more
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about the size of X'.P ˘ Q/. The following results are an easy generalization of
Lemma 5.5 and Remark 5.1 in [8].

Proposition 14. Let P and Q be chiral or directly regular n-polytopes, and let
' 2 Aut.W C

n / have finite order. Then X'.P ˘ Q/ is isomorphic to a subgroup of
X'.P/ �X'.Q/.
Proposition 15. Let P and Q be chiral or directly regular n-polytopes, and let
' 2 Aut.W C

n / have finite order. Suppose that Q is internally '-invariant. Then
X'.P ˘Q/ is a normal subgroup of X'.P/.

Next we generalize Corollary 4 to find a lower bound for jX'.P ˘Q/j.
Theorem 2. Let P and Q be finite chiral or directly regular n-polytopes, and
let ' 2 Aut.W C

n / have finite order. Then jX'.P ˘ Q/j is an integer multiple of
jX'.P/j=jX.QjP/j.
Proof. Since

P ˘Q ˘P' ˘Q' D .P ˘Q/ ˘ .P ˘Q/';

the latter covers P ˘P' . Therefore, j� C.P/˘� C.P'/j divides j� C.P ˘Q/˘
� C..P ˘Q/'/j. By Proposition 4, the former has size j� C.P/j � jX'.P/j, while
the latter has size

j� C.P ˘Q/j � jX'.P ˘Q/j D j� C.P/j � jX.QjP/j � jX'.P ˘Q/j:

Therefore, jX'.P/j divides jX.QjP/j � jX'.P ˘ Q/j, and thus jX'.P ˘ Q/j is
an integer multiple of jX'.P/j=jX.QjP/j.

Thus we see that, for instance, if P has a large '-variance group X'.P/ and if
Q is comparatively small (which forces X.QjP/ to be small), then X'.P ˘Q/ is
still large.

A careful refinement lets us make a similar statement about infinite '-variance
groups:

Theorem 3. Let P and Q be chiral or directly regular n-polytopes, and let ' 2
Aut.W C

n / have finite order. IfX.QjP/ is finite andX'.P/ is infinite, then jX'.P˘
Q/j is infinite.

Proof. Consider the commutative diagram below, where the maps are all the natural
epimorphisms:

� C.P ˘P' ˘Q ˘Q'/
f1

��

f2

��

� C.P ˘P'/

g1

��

� C.P ˘Q/
g2

�� � C.P/
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Then ker.g1ıf1/ D ker.g2ıf2/. SinceX'.P/ D kerg1 is infinite by assumption, it
follows that ker.g1ıf1/ is infinite. Therefore, ker.g2ıf2/ is infinite, and thus kerg2
and ker f2 cannot both be finite. Now, ker f2 D X'.P˘Q/ and kerg2 D X.QjP/.
Since X.QjP/ is finite by assumption, it follows that X'.P ˘Q/must be infinite.

It is sometimes possible to fully determine X'.P ˘Q/:

Theorem 4. Let P and Q be finite chiral or directly regular n-polytopes, and let
' 2 Aut.W C

n / have finite order. Suppose that P is internally '-variant, thatX'.P/

is simple, and that Q is internally '-invariant. If jX'.P/j does not divide j� C.Q/j,
then X'.P ˘Q/ D X'.P/.

Proof. Since jX'.P/j does not divide j� C.Q/j, the mix P ˘ Q is internally '-
variant, by Corollary 4. Then by Proposition 15, X'.P ˘Q/ is a nontrivial normal
subgroup of the simple group X'.P/. Therefore, X'.P ˘Q/ D X'.P/.

Now we will consider the interaction between two automorphisms ' and  
of W C

n .

Theorem 5. Let P be a finite chiral or directly regular n-polytope, and let '; 2
Aut.W C

n / have finite order. If P ˘ P is internally '-invariant, then jX'.P/j
divides jX .P/j.
Proof. Apply Corollary 4 with Q D P .

Corollary 7. Let P be a finite chiral n-polytope, and suppose that jX.P/j (that
is, jX�.P/j) does not divide jXı.P/j. Then P ˘Pı is a chiral pre-polytope.

For example, let P D ff4; 4g.1;2/; f4; 4g.4;2/g, a locally toroidal chiral polytope
with j� C.P/j D 480. Then a calculation with GAP [19] shows that jX.P/j D 60

and jXı.P/j D 4. Therefore, by Corollary 7, P ˘Pı is a chiral pre-polytope.
Corollary 7 is essentially a restatement of [3, Thm. 5.2], and it highlights one of

the principal uses of Theorem 5; namely, constructing chiral polytopes with certain
external symmetries. Similar methods could be used to construct polyhedra P such
that P D P
ı but where P is neither self-dual or self-Petrie; see [13] for some
work on constructing such polyhedra.

Finally, we note that the methods explored here could be somewhat more
generalized by working with quotients of groups other than Wn and W C

n . For
example, given a polyhedron P of type fp; qg, the group � .P/ can be represented
as a quotient of the Coxeter group Œp; q�, or of Œp;1�. These groups provide new
automorphisms thatWn lacks, and would be a further source of external symmetries.
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10. Hubard, I., Orbanić, A., Ivić Weiss, A.: Monodromy groups and self-invariance. Canad. J.

Math. 61(6), 1300–1324 (2009). MR 2588424 (2011a:52032)
11. Hubard, I., Weiss, A.I.: Self-duality of chiral polytopes. J. Comb. Theory Ser. A 111(1),

128–136 (2005). MR 2144859 (2006b:52011)
12. Jones, G.A., Thornton, J.S.: Operations on maps, and outer automorphisms. J. Comb. Theory

Ser. B 35(2), 93–103 (1983). MR 733017 (85m:05036)
13. Jones, G.A., Poulton, A.: Maps admitting trialities but not dualities. Eur. J. Comb. 31(7),

1805–1818 (2010). MR 2673020 (2011m:20004)
14. Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer, New York

(2002). MR 1878556 (2003e:00003)
15. McMullen, P., Schulte, E.: Abstract regular polytopes. Encyclopedia of Mathematics and

Its Applications, vol. 92. Cambridge University Press, Cambridge (2002). MR 1965665
(2004a:52020)

16. McMullen, P., Schulte, E.: The mix of a regular polytope with a face. Ann. Comb. 6(1), 77–86
(2002). MR 1923089 (2003h:52012)

17. Richter, R.B., Širán, J., Wang, Y.: Self-dual and self-petrie-dual regular maps. J. Graph Theory
69(2), 152–159 (2012)

18. Schulte, E., Weiss, A.I.: Chiral polytopes. Applied Geometry and Discrete Mathemat-
ics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4,
pp. 493–516. American Mathematical Society, Providence (1991). MR 1116373 (92f:51018)

19. The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.4; 2014.
(http://www.gap-system.org)

20. Wilson, S.E.: Parallel products in groups and maps. J. Algebra 167(3), 539–546 (1994). MR
1287058 (95d:20067)


	Variance Groups and the Structure of Mixed Polytopes
	1 Introduction
	2 Polytopes
	2.1 Definition of a Polytope
	2.2 Regularity
	2.3 Direct Regularity and Chirality
	2.4 Duality and Petrie Duality

	3 Mixing Polytopes
	3.1 Mixing Finitely Generated Groups
	3.2 Variance Groups and the Structure of the Mix
	3.3 Polytopality of the Mix

	4 Measuring Invariance
	4.1 External and Internal Invariance
	4.2 Variance of the Mix

	References


