
Buildings and s-Transitive Graphs

Richard M. Weiss

Abstract A graph is s-transitive if its automorphism group acts transitively
on the set of paths of length s. This is a notion due to William Tutte who
showed in 1947 that a finite trivalent graph can never be 6-transitive. We examine
connections between the theory of s-transitive graphs and the classification of
Moufang polygons, a class of graphs exhibiting “local” s-transitivity for large values
of s. Moufang polygons are examples of buildings. Both of these notions were
introduced by Jacques Tits in the study of algebraic groups. We give an overview
of Tits’ classification results in the theory of spherical buildings (which include the
classification of Moufang polygons as a special case) and describe, in particular, the
classification of finite buildings.
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1 Introduction

Jacques Tits’ classification of spherical buildings [8], published in 1974, is one of
the great accomplishments in group theory. Starting with only a Coxeter group
and a few combinatorial/geometrical axioms, he succeeded with this result in
characterizing a large class of simple groups which includes, as a special case, all
the finite simple groups of Lie type of rank at least 3.

R.M. Weiss (�)
Department of Mathematics, Tufts University, 503 Boston Avenue, Medford, MA 02155, USA
e-mail: rweiss@tufts.edu

R. Connelly et al. (eds.), Rigidity and Symmetry, Fields Institute
Communications 70, DOI 10.1007/978-1-4939-0781-6__18,
© Springer Science+Business Media New York 2014

357

mailto:rweiss@tufts.edu


358 R.M. Weiss

In subsequent work (mainly [10] and [12]), it emerged that Tits’ theory of
spherical buildings can be described purely in terms of graph theory and that there
are great advantages in taking this point of view. In these notes, we describe the
main steps in the classification of spherical buildings in the language of graph
theory and highlight a connection to the theory of s-transitive graphs which had
been introduced earlier by W. T. Tutte in [13].

2 s-Transitive Graphs

A graph � is called s-transitive if its automorphism group acts transitively on the
set of paths of length s in � but intransitively on the set of paths of length sC 1 (in
which case the valency of � must be greater than 2). The notion of an s-transitive
graph was introduced and developed by Tutte in [13] and [14]. If a graph � is s-
transitive and has girth � (i.e. � is the length of a shortest circuit in � ), then

� � 2s � 2:

Tutte defined a � -cage to be a connected s-transitive graph of girth � such that either
� D 2s � 2 or � D 2s � 1. If � is a � -cage, then the diameter n of � is s � 1 and
if � is even, then

� is bipartite and � D 2n. (1)

A complete graph on a set X is a 3-cage if jX j > 3 and the complete bipartite
graph on a pair of sets X and Y is a 4-cage as long as jX j D jY j > 2. The Petersen
graph is a 5-cage.

Let V be a 3-dimensional right vector space over a field or skew-field K , let X be
the set of 1-dimensional subspaces of V , let Y be the set of 2-dimensional subspaces
of V and let E be the set of pairs fx; yg such that x 2 X , y 2 Y and x � y. The
graph with vertex set X [ Y and edge set E is a 6-cage. It is also the incidence
graph of the projective plane associated with V . If jKj D 2, this graph is called the
Heawood graph.

Let W D f1; 2; 3; 4; 5; 6g, let X be the set of all 2-element subsets of W , let Y
be the set of partitions u=v=w of W into three blocks u, v and w of size 2 and let E
be the set of pairs fx; u=v=wg such that x 2 X , u=v=w 2 Y and x 2 fu; v;wg. The
graph with vertex set X [ Y and edge set E is an 8-cage. This graph is often called
Tutte’s 8-cage.

Tutte showed in [13] that the only trivalent cages are the complete graph, the
complete bipartite graph, the Petersen graph, the Heawood graph and his 8-cage. In
fact, his proof showed much more (see [6]):

Theorem 1. Let � be an arbitrary connected trivalent graph—even a tree—and
let u be a vertex of � . Suppose that G is a group acting transitively on paths of
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length s in � for some s � 1 but not on paths of length sC 1 and that the stabilizer
Gu is finite. Then s � 5 and for each value of s, the structure of Gu is uniquely
determined.

This was a result of great originality and, in some sense, far ahead of its time. It has
been generalized in a number of directions. One generalization (proved in [16] and
[18]) is the following:

Theorem 2. Let � be an arbitrary connected graph and let u be a vertex of � .
Suppose that G is a group acting transitively on paths of length s in � for some
s � 4 but not on paths of length s C 1 and that the stabilizer Gu is finite. Then
s D 4, 5 or 7 and for each value of s, the structure of Gu is uniquely determined in
an appropriate sense.

An important ingredient in the proof of Theorem 2 is the Theorem of Thompson-
Wielandt. Here is the relevant version of this result; see [4] or [15] for a proof.

Theorem 3. Let � be an arbitrary connected graph and let fu; vg be an edge of
� . Suppose that G is a group acting transitively on the vertex set of � and that the
stabilizer Gu is finite and acts primitively on �u, the set of neighbors of u in � . Then
jGŒ1�

u;vj is divisible by at most one prime, where G
Œ1�
u;v denotes the pointwise stabilizer

in G of �u [ �v.

Here now is how the proof of Theorem 2 begins. Let fu; vg be an edge of � .
Replacing G by the free amalgamated product Gu �Gu;v Gv, we can assume without
loss of generality that � is a tree. Let H denote the permutation group induced by
Gu on �u. The hypotheses of Theorem 2 imply that the group H acts 2-transitively
and hence primitively on �u. It can also be deduced from the hypotheses that the
subgroup G

Œ1�
u;v is non-trivial. By Theorem 3, therefore, there is a unique prime p

dividing the order of this subgroup. It follows from this that the stabilizer Hv of
a vertex v 2 �u has a non-trivial normal subgroup of order a power of p. At this
point the classification of finite 2-transitive groups (which rests on the classification
of finite simple groups) is invoked. From this it can be deduced that H contains
a normal subgroup isomorphic to the group PSL2.q/ in its natural action on
j�uj D q C 1 points. This is the conclusion reached in [18].

With this conclusion as an hypothesis, it is shown in [16] (see also [2, 3.6]) that
there is a G-compatible local isomorphism ' from the tree � to a 2.s � 1/-cage
O� . By ‘local isomorphism’ we mean that ' is a map from the vertex set of � to

the vertex set of O� such that if '.x/ D Ox, then ' induces a bijection from �x to
O� Ox, and by ‘G-compatible’ we mean that if '.x/ D '.y/, then '.xg/ D '.yg/ for

all g 2 G. It follows that G induces a group of automorphisms OG of O� and that if
Ou D '.u/, then ' induces an isomorphism from the stabilizer Gu to the stabilizer OGOu.
At this point, the proof is concluded by citing the classification of 2.s � 1/-cages.
This is a special case of the classification of Moufang polygons which we describe
in the next section.
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3 Moufang Polygons

The following notion was introduced by Tits in [7].

Definition 1. A generalized n-gon is a bipartite graph � with diameter n � 2 and
girth � such that

� D 2n:

A generalized polygon is a generalized n-gon for some n � 2. A generalized
triangle, quadrangle, etc., is a generalized n-gon for n D 3, n D 4, etc.

By (1), a � -cage for � even is automatically a generalized n-gon for n D �=2.
Note, however, that there is no group in the definition of a generalized polygon.

We say that a graph � is thick if j�uj � 3 for all vertices u, respectively, � is
thin if j�uj D 2, for all vertices u (so many graphs are neither thick nor thin).

Let � be a generalized n-gon for some n � 2. Since � is bipartite, it can be
regarded as the incidence graph of a geometry G consisting of points X and lines
Y . If � is thin, the geometry G is just the set of points and lines of an ordinary
n-gon, hence the name generalized n-gon.

Suppose that n D 2 and choose x 2 X and y 2 Y . Then the distance from x to
y in � is odd because � is bipartite. Since the diameter of � is 2, it follows that x
and y are adjacent in � . We conclude that � is a complete bipartite graph.

Suppose that n D 3 and choose distinct vertices x; y both in X . Then the distance
from x to y is even and bounded by the diameter 3 of � . Hence there is a vertex
z 2 Y adjacent to both x and y. Since the girth of � is 2n D 6, the vertex z is
unique. Thus any two points of the geometry G are incident with a unique line. By a
similar argument, any two lines of G are incident with a unique point. We conclude
that � is the incidence graph of a projective plane. Conversely, the incidence graph
of an arbitrary projective plane is a thick generalized triangle. Thus a generalized
triangle is essentially the same thing as a projective plane.

This means, in particular, that there is no hope of classifying generalized
polygons. In the appendix of [8], however, Tits introduced the notion of a Moufang
polygon and asked whether it might be possible to classify them.

Definition 2. A root of a generalized n-gon � is a path of length n. To each
root ˛ D .x0; x1; : : : ; xn/, there is a corresponding root group U˛, the pointwise
stabilizer of �x1 [ � � � [ �xn�1 in G WD Aut.� /. Thus

U˛ D GŒ1�
x1;:::;xn�1

:

A generalized n-gon � is said to satisfy the Moufang condition if it is thick, n �
3 and for each root ˛ D .x0; x1; : : : ; xn/ in � , the corresponding root group U˛

acts transitively on �xnnfxn�1g. A Moufang polygon is a generalized polygon that
satisfies the Moufang condition.
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Moufang triangles, in the guise of Moufang projective planes, were first studied
by Ruth Moufang in the 1930s, hence the name Moufang.

The automorphism group of a Moufang n-gon � does not necessarily act
transitively on the vertex set of � . If it does, however, then � is automatically
.n C 1/-transitive. It follows that a Moufang n-gon is a 2n-cage if and only if its
automorphism group acts transitively on the vertex set of � . The 2.s � 1/-cage O�
at the end of the previous section is, in fact, a Moufang n-gon with n D s � 1, and
a more accurate statement of Theorem 2 (as proved in [16] and [18]) is as follows:

Theorem 4. Let � be a thick tree and let u be a vertex of � . Suppose that G is
a group acting transitively on paths of length s in � for some s � 4 but not on
paths of length sC1 and that the stabilizer Gu is finite. Then there exists a Moufang
.s�1/-gon O� , a G-compatible local isomorphism ' from � to O� and a subgroup OG
of Aut. O� / containing all the root groups of O� such that Gu Š OG'.u/ for all vertices
u of � .

Corollary 1. Let � be a 2n-cage for some n � 2. Then either n D 2 and � is a
complete bipartite graph or n � 3 and � is a Moufang n-gon.

The classification of Moufang polygons was carried out in [12]. We use the rest
of this section to sketch how this classification works. The first step is the following
result [9]:

Theorem 5. Moufang n-gons exist only for n D 3, 4, 6 and 8.

It was shown in [17] that, in fact, the following holds:

Theorem 6. Let n � 3, let � be a thick graph and let G be a subgroup of Aut.� /

such that

1. GŒ1�
x1;:::;xn�1 acts transitively on �xnnfxn�1g and

2. GŒ1�
x0;x1 \Gx0;:::;xn D 1

for all paths .x0; x1; : : : ; xn/ of length n in � . Then n D 3, 4, 6 and 8.

It is easy to see that condition (2) in Theorem 6 holds automatically if � is a
generalized n-gon. Thus Theorem 5 is a corollary of Theorem 6. If � , G and s are
as in Theorem 1 and s � 4, then the hypotheses of Theorem 6 hold with n D s�1. In
contrast to Theorem 2, the proof of Theorem 6 does not depend on the classification
of finite simple groups (or on anything else, for that matter). Note, too, that it is not
assumed in Theorems 5 and 6 that the stabilizers are finite.

The next step in the classification of Moufang polygons is to choose a circuit ˙
of length 2n in a Moufang n-gon � and label its vertices by integers modulo 2n.
We then let ˛i denote the root .i; i C 1; : : : ; i C n/ and let Ui denote the root group
U˛i as defined in Definition 2 for all i . We set

UŒi;j � D hUi; UiC1; : : : ; Uj i
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for all i; j such that i � j and UŒi;j � D 1 if j < i . Let W D UŒ1;n�. By [12, 4.11 and
5.3], the group W acts regularly on the set of circuits of length 2n containing the
edge fn; nC 1g. Since every two edges of � are contained in a circuit of length 2n,
it follows that every vertex of � is in the W -orbit of a unique vertex of ˙ and every
edge of � is in the W -orbit of a unique edge of ˙ . By [12, 7.3], the stabilizers in
W of the vertices 1; : : : ; n of ˙ are

U1; UŒ1;2�; : : : ; UŒ1;n�

and the stabilizers in W of the vertices nC 1; : : : ; 2n are

UŒ1;n�; UŒ2;n�; : : : ; Un:

It follows from these observations that the graph � can be reconstructed from the
cosets of these subgroups in W and hence that � can be reconstructed from the
.nC 1/-tuple

˝ D .W;U1; : : : ; Un/:

See [12, 7.5] for the details. We call the .nC1/-tuple ˝ a root group sequence of � .
It depends on the choice of ˙ and its labeling, but it is independent of these choices
up to conjugation and opposites. The opposite of the root group sequence ˝ is the
root group sequence

.W;Un; : : : ; U1/:

Every element of W can be written uniquely as a product a1a2 � � �an with ai 2 Ui

for all i 2 Œ1; n�. Another crucial observation is that

ŒUi ; Uj � � UŒiC1;j�1� (2)

for all i; j such that 1 � i < j � n, where ŒUi ; Uj � denotes the subgroup generated
by the commutators Œa; b� D a�1b�1ab for all a 2 Ui and all b 2 Uj . (Thus, in
particular,

ŒUi ; UiC1� D 1 (3)

for all i such that 1 � i < n.) The commutator relations (2) determine the structure
of W uniquely. We conclude that to describe the root group sequence˝ and thus the
graph� , it suffices to give the structure of the individual root groupsU1; : : : ; Un and
the commutator relations (2). In each case, these things are given in terms of certain
algebraic data.

Suppose first that n D 3. In this case the classification of Moufang polygons tells
us that there is an invariant K of � that is either a field, a skew-field or an octonion
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division algebra and there exist isomorphisms xi from the additive group of K to Ui

for i D 1, 2 and 3 such that

Œx1.s/; x3.t/� D x2.st/

for all s; t 2 K . By (3), the root group sequence ˝ and hence the generalized
triangle � are uniquely determined by K . (See [12, 9.3–9.4 and 9.11] for the
definitions of quaternion and octonion division algebras.)

There are six different families of Moufang quadrangles. In the first, there is a
triple .K;L; q/, whereK is a field, L is a vector space overK and q is an anisotropic
quadratic form on L, as well as isomorphisms xi from the additive group of K to Ui

for i D 1 and 3 and isomorphisms xi from the additive group of L to Ui for i D 2

and 4 such that ŒU1; U3� D 1,

Œx1.s/; x4.v/
�1� D x2.sv/x3.sq.v// (4)

for all s 2 K and all v 2 L and

Œx2.u/; x4.v/
�1� D x3.f .u; v// (5)

for all u; v 2 L, where f is the bilinear form associated with q. By (3), ˝ and hence
� are uniquely determined by .K;L; q/.

In the second family of Moufang quadrangles, there is a triple .K;K0; �/, where
K is a skew-field, � is an involution of K (i.e. an anti-automorphism of order 2) and
K0 is an additive subgroup of K containing 1 such that K� � K0 � K� , where

K� D faC a� j a 2 Kg

and

K� D fa j a� D ag;

and s�K0s � K0 for all s 2 K as well as isomorphisms xi from K0 to Ui for i D 1

and 3 and isomorphisms xi from the additive group of K to Ui for i D 2 and 4 such
that ŒU1; U3� D 1,

Œx1.s/; x4.t/
�1� D x2.st/x3.t

� st/

for all s 2 K0 and all t 2 K and

Œx2.r/; x4.t/
�1� D x3.r

� t C t� r/

for all r; t 2 K . By (3), ˝ and hence � are uniquely determined by .K;K0; �/.
If char.K/ ¤ 2, then a D .a C a�/=2 for all a 2 K� , so K� D K� , but if
char.K/ D 2, this is not true.
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The algebraic structures for the remaining Moufang quadrangles and the
Moufang hexagons and octagons (which, by Theorem 5, is all there is) are more
complicated. We refer the reader to Chapter 16 in [12] and all the references
there to earlier chapters of [12] for details. The general pattern is, however, the
same: In each case, there is a recipe that turns an algebraic structure of a suitable
type via commutator relations into a root group sequence ˝ from which, in turn, a
unique Moufang polygon can be constructed using cosets.

Let ˝ D .W;U1; : : : ; Un/ be a root group system of a Moufang polygon � .
Then G D Aut.� / acts transitively on the vertex set of � and hence � is a 2n-cage
if and only if there is an automorphism ' of W such that U'

i D UnC1�i for each
i 2 Œ1; n�, i.e. if and only if ˝ is isomorphic to its opposite. If n D 3 and K is the
invariant of � described above, then � is a 6-cage if and only if K is isomorphic to
its opposite. In particular, � is always a 6-cage if K is a field or an octonion division
algebra (which always has involutions). If � is the Moufang quadrangle determined
by an anisotropic quadratic space .K;L; q/, then � is an 8-cage non-zero, if the
characteristic of K is 2, L D K and q.t/ D t2 for each t 2 K , and if K is the
field with two elements, then � is, in fact, isomorphic to Tutte’s 8-cage as described
in Sect. 2 above. A complete list of Moufang polygons whose root group system is
isomorphic to its opposite is given in [12, 37.5]. In particular, we can observe that
there exist 6-, 8 and 12-cages but no 16-cages.

Tits discovered the notion of a generalized polygon and the Moufang condition
by studying the structure of “absolutely simple” algebraic groups. In particular,
every absolutely simple algebraic groups “of relative rank 2” has a Moufang
polygon associated to it. Not all Moufang polygons come from absolutely simple
algebraic groups, however. For example, a Moufang triangle defined by a skew-field
K comes from an absolutely simple algebraic group if and only if K is finite-
dimensional over its center.

An important notion in the theory of buildings is that of a .B;N /-pair. By the
results in Chapter 5 of [5], a group G has a spherical .B;N /-pair of rank 2 if and
only if

1. There is a generalized n-gon � for some n � 2 on which G acts; and
2. G acts transitively on the set of pairs .˙; e/, where ˙ is circuit of length 2n in

� and e is an edge of ˙ .

Given (1), condition (2) holds if and only if for each vertex u of � , the group G acts
transitively on the set of paths of length nC 1 in � beginning at u. In other words,
G has a .B;N /-pair of rank 2 if and only if it acts locally .n C 1/-transitively on
a generalized n-gon. If � is a Moufang polygon and G is a subgroup of Aut.� /

containing all the root groups of � , then condition (2) holds. It does not follow
from conditions (1) and (2), however, that � is Moufang.

In Sect. 5 we will describe the connection between Moufang polygons and
buildings.
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4 Coxeter Complexes

Before we can introduce buildings in the next section, we need to say a few things
about Coxeter groups.

A Coxeter diagram is a graph ˘ whose edges are labeled with elements of the
set f3; 4; : : : ;1g. Let ˘ be a Coxeter diagram with vertex set S and edge set E
and for each edge fi; j g of ˘ let mij be its label. Let mij D 2 for all 2-element
subsets fi; j g of V that are not in E , let mii D 1 for all i 2 S , let R be a collection
of symbols ri , one for each i 2 S , and let W denote the corresponding Coxeter
group

hR j .ri rj /mij D 1 for all i; j 2 Si:

By [19, Thm. 2.3], the elements ofR have order 2 and ri ¤ rj if i ¤ j . In particular,
we can identify R with its image in W .

Let ˙˘ denote the Cayley graph associated with this data. Thus ˙˘ is the graph
whose vertices are the elements of W and whose edges are the 2-element subsets
fx; yg of W such that x�1y 2 R. We endow ˙˘ with the edge coloring obtained
by assigning to each edge fx; yg of W the color i 2 S if and only if x�1y D ri .
Thus S is simultaneously the set of vertices of ˘ and the set of colors on the edges
of ˙˘ . We call ˙˘ the Coxeter complex associated with ˘ . (˙˘ is not, in fact, a
complex, but it is easy to see that our definition of the Coxeter complex is equivalent
to the more traditional notion of the Coxeter complex.)

The edge-colored graphs˙˘ have many remarkable properties. We mention only
one, a proof of which can be found in [19, 3.11]:

Proposition 1. Let ˙ D ˙˘ be a Coxeter complex and let fx; yg be an edge of ˙ .
Let ˛ be the set of vertices nearer to x than to y in ˙ and let ˇ be the set of vertices
nearer to y than to x. Then the vertex set W of ˙ is partitioned by ˛ and ˇ. A root
of ˙ is a subset of W of the form ˛ or ˇ for some edge fx; yg.

Suppose, for example, that jS j D 2 and jW j < 1. In this case,W is generated by
two elements of order 2 and ˙ D ˙˘ is a circuit of length 2n for some n � 2 with
two alternating colors on its edges. Let e and f be an opposite pair of edges of ˙ .
The roots associated with e are the vertex sets of the two connected components of
the graph obtained from ˙ by deleting e and f (but without deleting any vertices).
Note that if ˙ is the edge-graph of a 2n-circuit in a generalized 2n-gon, then these
two roots are roots in the sense of Definition 2.

A Coxeter diagram ˘ is called spherical if the corresponding Coxeter complex
˙˘ is finite. Coxeter himself classified spherical Coxeter diagrams. Their connected
components are the Coxeter diagrams underlying Dynkin diagrams, all Coxeter
diagrams with at most 2 vertices but without the label 1, plus two more Coxeter
diagrams, H3 and H4. These last two are the Coxeter diagrams obtained from the
Coxeter diagrams B3 and B4 by replacing the unique label 4 by a 5.
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5 Spherical Buildings

We fix an arbitrary Coxeter diagram ˘ and let S and ˙˘ be as in the previous
section.

Suppose � is an arbitrary graph whose edges are colored by elements of the set
S , one color per edge. For each subset J of S , we let �J denote the graph � with
all edges deleted whose color is not in J (but with no vertices deleted). A J -residue
of � for some J � S is a connected component of �J . Thus for each subset J of S
and each vertex x of �, there is a unique J -residue of � containing x. In particular,
for a given J , any two J -residues of � are disjoint. A residue of � is a J -residue
for some J � S .

A path .u0; u1; : : : ; um/ of length m in a graph � is called minimal if there is no
path of length less than m in � from the vertex u0 to the vertex um. We say that
a subset X of the vertex set of a graph � is convex in � if for every two vertices
x; y in X and every minimal path .u0; u1; : : : ; um/ from u0 D x to um D y, all the
intermediate vertices u1; : : : ; um�1 also lie in X .

There are several ways to define a building. Given [19, 4.2 and 8.9], it is not
difficult to show that the following is equivalent to the definition given in [19, 7.1]:

Definition 3. A building of type ˘ (for a given Coxeter diagram ˘ with vertex set
S ) is a graph � whose edges are colored by elements of the set S satisfying the
following properties:

1. The fig-residues of � are complete graphs with at least 2 vertices for each i 2 S .
2. Every two vertices of � are contained in some subgraph that is isomorphic to

˙˘ (as an edge-colored graph).
3. The vertex set of every subgraph isomorphic to ˙˘ is convex in �.

The subgraphs of � that are isomorphic to ˙˘ are called apartments of �. The
fig-residues for some i 2 S are called panels or i -panels.

Let � be a building of type ˘ . The vertices of � are, for historical reasons, called
chambers. By condition (1) of Definition 3, J is precisely the set of colors that
appear on the edges of an arbitrary J -residue. Thus J is an invariant of a J -residue.
The set J is called the type of a J -residue (or of a J -panel) and the cardinality jJ j
is called the rank of a J -residue. Thus panels are residues of rank 1. It follows from
condition (2) in Definition 3 that � is connected and hence � itself is the only S -
residue and its rank is jS j. If jS j D 1, then � consists of a single panel and thus �
is just a complete graph with all its edges painted the same color.

Suppose that jS j D 2 and let n be the label on the one edge of the Coxeter
diagram ˘ if there is an edge; otherwise let n D 2. Suppose first that n < 1. In this
case, an apartment of � is a circuit of length 2n whose edges display, alternatingly,
the two colors in S . Let � be the graph with vertex set the set of panels of �, where
two panels are adjacent in � if and only if they contain a chamber in common.
Distinct panels of the same type are disjoint. Therefore � is a bipartite graph.
Apartments of � correspond to circuits of length 2n in � . From condition (2) in
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Definition 3, it follows that the diameter of � is at most n and from condition (3),
that the girth of � is 2n. This is enough to deduce that � is a generalized n-gon.
This construction is also reversible. In other words, a building of rank 2 with finite
apartments is essentially the same thing as a generalized polygon. If the label n
equals 1, on the other hand, then � is a tree and the apartments are the connected
subgraphs of valency 2.

For an elementary example of a building of arbitrary rank r with finite apartments
arising from a vector space of dimension r C 1, see [19, 7.4].

A building � is called irreducible if its Coxeter diagram ˘ is connected. All
buildings are direct products of irreducible buildings in an appropriate sense, so it
is, for most purposes, sufficient to study irreducible buildings. A building� is called
thick if all its panels contain at least 3 chambers, thin if all its panels contain exactly
2 chambers. Thus ˙˘ is an example of a thin building of type ˙˘ and, in fact, it is
the only thin building of type ˙˘ . A building � is called spherical if its diagram ˘

is spherical. In other words, a spherical building is a building whose apartments are
finite.

Every J -residue of a building of type ˘ (for a given subset J of S ) is itself
a building. The type of this building is ˘J , where ˘J denotes the subdiagram of
˘ spanned by J . Thus it makes sense to say whether a residue is irreducible or
spherical: A J -residue is irreducible if and only if the diagram ˘J is connected,
and a J -residue is spherical if and only if the diagram ˘J is spherical. Thus every
residue of a spherical building is spherical, but it is, of course, not true that every
residue of an irreducible building is irreducible.

If jJ j D 2, then a J -residue is irreducible if and only if the two elements of J are
joined by an edge in ˘ and a J -residue is spherical if and only if the two elements
of J are not joined by an edge labeled 1.

For each chamber x of �, there is a unique irreducible residue of rank 2
containing x corresponding to each edge of ˘ . We denote by

�2.x/ (6)

the subgraph of � spanned by the union of the chamber sets of all these irreducible
rank 2 residues.

Suppose that jJ j D 2 and that ˘J is spherical. Let n be the label on the unique
edge of ˘J if ˘J is connected; if ˘J is not connected, we set n D 2. Then every
J -residue is a building of rank 2 and of type ˘J . Hence every J -residue is the
building associated with a generalized n-gon, as explained above. In fact, we can
simply think of these residues as generalize n-gons.

A root of a building � of type ˘ is the image under an isomorphism from ˙˘

into � of a root of ˙˘ as defined in Proposition 1. Thus a root is always contained
in an apartment; in fact, roots are contained in many apartments as long as � is
thick. For each root ˛ of �, the root group U˛ is the pointwise stabilizer in Aut.�/

of the set of chambers contained in some panel containing two chambers of ˛. A
building is called Moufang if it is irreducible, thick, spherical and of rank at least 2
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and if for each root ˛, the root group U˛ acts transitively on the set of apartments of
� that contain ˛. If jS j D 2, the notion of a root group and the Moufang property
coincide with the notions introduced in Sect. 3.

The main result of [8] is a classification of thick, irreducible spherical buildings
of rank at least 3. (We have already observed that buildings of rank 2, namely
generalized polygons, include all projective planes and are not, therefore, in any
reasonable sense classifiable without additional hypotheses.) This classification
rests on the following deep result [8, 4.1.2] of Tits:

Theorem 7. Let � and O� be two thick irreducible spherical buildings of the same
type ˘ and let x and Ox be chambers of � and O�. Suppose that ' is an isomorphism
from �2.x/ to O�2. Ox/—as defined in (6)—mapping x to Ox. Then ' extends to an
isomorphism from � to O�.

In other words, a building � with all the adjectives in Theorem 7 is uniquely
determined by the subgraph �2.x/. The following is an important consequence of
Theorem 7:

Theorem 8. Every thick irreducible spherical building of rank n � 3 as well as all
the irreducible residues of rank at least 2 of such a building are Moufang.

For a self-contained proof of these remarkable results carried out entirely in the
language of graph theory, see [19, 10.2, 11.6 and 11.8].

Theorems 7 and 8 tell us that, given the classification of Moufang polygons,
to classify thick irreducible spherical buildings of rank n � 3, it suffices for each
spherical Coxeter diagram ˘ to examine how Moufang polygons, one for each edge
of ˘ , can be assembled to form the subgraph �2.x/ of a building �. (Note that two
rank 2 residues contained in �2.x/ overlap in a panel if their types have a nonempty
intersection, so the various rank 2 residues really do have to be “assembled” to form
a viable �2.x/.)

Suppose first that ˘ is the Coxeter diagram An with n � 3. Then all the
irreducible rank 2 residues are Moufang triangles. It turns out that they must all be
isomorphic to each other, that there is just one way to assemble them into a �2.x/

and that the division ring K defining these triangles must be a field or a skew-field
(i.e. not an octonion division algebra). In other words, for each field or skew-field
K , there is just one building of type An “defined over K .” The situation is even
simpler when ˘ is the one of the diagrams Dn, E6, E7 or E8. In these cases, there
is exactly one building of a given type ˘ for each commutative field K .

Suppose next that ˘ is the Coxeter diagram Bn (which is the same as the Coxeter
diagram Cn) with n � 3. In this case, there is exactly one irreducible residue R1

containing a given chamber x which is a generalized quadrangle and one irreducible
rank 2 residue R2 containing x and intersecting R1 in a panel P . Suppose that R1 is
isomorphic to the quadrangle defined by an anisotropic quadratic space .K;L; q/.
It turns out that there is exactly one way to assemble a �2.x/ starting with the root
group sequence

˝ D .W;U1; U2; U3; U4/ (7)



Buildings and s-Transitive Graphs 369

determined by .K;L; q/ and Eqs. (4) and (5) in its “standard orientation,” in which
ŒU1; U3� D 1. In the corresponding building, which we denote by Bn.K;L; q/, the
root groups acting on the panel P are those parametrized by the additive group of
K and all the other irreducible rank 2 residues containing the chamber x, including
R2, are isomorphic to the Moufang triangle defined by K . If, on the other hand, we
use ˝op rather than ˝ to assemble a �2.x/, we obtain as second building of type
Bn, which we call Cn.K;L; q/, in which the root groups acting on the panel P are
those parametrized by the additive group of L, but this second building Cn.K;L; q/

exists only when .K;L; q/ is in one of the following cases:

1. L is a field of characteristic 2, K is a subfield containing L2 and q.x/ D x2 for
all x 2 L.

2. L D K and q.x/ D x2 for all x 2 L.
3. L=K is a separable quadratic extension and q is the norm of this extension.
4. L is a quaternion division algebra with center K and q is the reduced norm of L.
5. L is an octonion division algebra with center K and q is the reduced norm of L.

In each of these five cases, all the irreducible rank 2 residues of Cn.K;L; q/

containing x other than R1, including R2, are isomorphic to the Moufang triangle
defined by L. Furthermore, case (5) can only occur when n D 3, there is a unique
building F4.�/ of type F4 for each anisotropic quadratic space � D .K;L; q/ in
one of the cases (1)–(5), the building F4.�/ has residues isomorphic to B3.K;L; q/

and others isomorphic to C3.K;L; q/, and these are the only buildings of type F4.
For some anisotropic quadratic spaces � D .K;L; q/, the root group sequences ˝
and ˝op are isomorphic. In these cases, � is in case (1) or (2), char.K/ D 2 and
Cn.�/ is isomorphic to Bn.�/. In general, however,Bn.�/ and Cn.�/ are different.

There is just one further family of buildings of type Bn for n � 3. The buildings
in this family are defined by pseudo-quadratic spaces (possible of dimensionm D 0)
over a skew-field with involution. This is the family in [20, 30.14(iv)] for m D 0

and [20, 30.14(vii)] for m > 0. See also Chapter 11 of [12].
This completes the list of thick irreducible spherical buildings of rank n � 3. In

particular, there are no thick buildings of type H3 and H4. If there were, then by
Theorem 8, there would be residues which are Moufang 5-gons, but by Theorem 5,
no such Moufang polygons exist.

When he published [8], Tits still had no proof that thick buildings of type H3

or H4 do not exist. A short time later, he introduced the Moufang property and
showed that there are no Moufang pentagons precisely in order to eliminate these
two diagrams. Carrying this out, Tits noticed that he could extend his methods to
yield Theorem 5 and it was this success that led him to conjecture that Moufang
polygons could, in fact, be classified.

In every case, the relevant algebraic structure is defined in terms of a field or
a skew-field or an octonion division algebra K . The ring K is an invariant of the
corresponding building �. We call it the defining field of �, even though it is not
always a field. (This does not coincide entirely with the notion of defining field as
it is used in the theory of algebraic groups.) See [20, 30.29–30.31] for details. We
will refer to the defining field K in Sect. 7.
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6 Finite Buildings

Let � be a thick irreducible spherical building of rank n � 2 and suppose that � is
Moufang if n D 2. (By Theorem 8, the Moufang property is automatic if n > 2.)
Let G� be the subgroup of Aut.�/ generated by all the root groups of �. With only
three exceptions, G� is a simple group. In the three exceptions, n D 2 and G� is
isomorphic to PSp4.2/,

2F4.2/ or G2.2/.
Now suppose that G is an arbitrary non-abelian simple group. Then the classifi-

cation of finite simple groups tells us that one of the following holds:

1. G Š PSL2.q/, U3.q/, Suz.q/ or Ree.q/ for some prime power q.
2. G is isomorphic to the group G� generated by all the root groups for some finite

thick irreducible building of rank n � 2 satisfying the Moufang condition if
n D 2.

3. G is an alternating group or one of the 26 sporadic groups.

Each group in case (1) is a 2-transitive permutation group on a set X having a
conjugacy class of subgroups fUx j x 2 Xg such that for each x 2 X , Ux fixes
x and acts sharply transitively on Xnfxg. A permutation group satisfying these
properties is called a Moufang set. Moufang sets have not been classified without
the assumption of finiteness. Although considerable progress toward a classification
of arbitrary Moufang sets has been made in recent years (see, in particular, [3]), this
seems to be a very difficult problem.

The finite simple groups in cases (1) and (2) are the groups of Lie type. More
precisely, the groups in case (1) are the groups of Lie type of rank n D 1 and
those in case (2) are the groups of Lie type of rank n. The groups in case (1) also
have associated buildings, but these buildings are of rank 1. As we observed in the
previous section, buildings of rank 1 are simply complete graphs. The underlying
set of chambers of this building is precisely the set X on which the group forms a
Moufang set.

A finite building has, of course, finite apartments and is thus automatically
spherical. As we have seen in the previous section, thick irreducible buildings of
rank n � 2 satisfying the Moufang condition if n D 2 can all be described in terms
of suitable algebraic data. The assumption that the building (and hence the algebraic
data) is finite imposes severe restrictions on the types of algebraic structures that can
occur, as we now explain.

Suppose, to start, that the Coxeter diagram ˘ of our building � is An, Dn or
En for n D 6, 7 or 8. There are no finite non-commutative skew-fields, no finite
octonion division algebras and just one field Fq for each prime power q. Thus � is
uniquely determined by ˘ and a prime power q. The corresponding simple groups
G� are

An.q/ D PSLnC1.q/;Dn.q/ D OC
2n.q/ and En.q/:

Suppose that ˘ D F4. We saw in the last section that � is determined by
an anisotropic quadratic space .K;L;Q/ in one of five cases (1)–(5). (We use
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an uppercase Q here rather than q for the quadratic form, since in this section q

is always a prime power.) In fact, � depends only on the similarity class of this
quadratic space. By finiteness K D Fq for some prime power q. Furthermore, there
are only two anisotropic quadratic spaces over Fq up to similarity: either L D K

and Q.x/ D x2 for all x 2 L or L D Fq2 and Q is the norm of the extension
L=K . Each of them does, in fact, give rise to a unique building of type F4. The
corresponding simple groups are

F4.q/ and 2E6.q
2/:

(The superscript in the name 2E6.q
2/ indicates that this group can be constructed as

the centralizer in the groupE6.q
2/ of an outer automorphism of order 2 that involves

the element of order 2 in the Galois group of the extension L=K . In fact, we can
interpret the rank 1 groupsU3.q/, Suz.q/ and Ree.q/ analogously as 2A2.q

2/, 2B2.q/

and 2G2.q/, where B2.q/ and G2.q/ are as described below.)
Suppose that ˘ D G2. The relevant algebraic structure in this case is a “quadratic

Jordan division algebra of degree 3;” see Chapter 15 of [12] for details. Let J be the
underlying vector space over a field K of one of these algebras. In the finite case,
K D Fq for some prime power q, either J D K or J D Fq3 and in both cases the
Jordan algebra is uniquely determined by q. The corresponding simple groups are

G2.q/ and 3D4.q
3/:

Suppose that n D 2 and that the Moufang polygon associated with � is
an octagon. In this case, � is defined by a pair .K; �/, where K is a field of
characteristic 2 and � is an endomorphism of K whose square is the Frobenius
map x 7! x2. In the finite case, K is the field with q D 2m elements for some odd
m and for each odd m, the endomorphism � is unique. The corresponding simple
group is

2F4.q/:

Suppose next that � is one of the two buildings Bn.K;L;Q/ or Cn.K;L;Q/

for some anisotropic quadratic space .K;L;Q/ described in Sect. 5. Then K D Fq

for some prime power q and, as in the case F4, either L D K and Q.x/ D x2 or
L D Fq2 and Q is the norm of the extension L=K . If jLj D q, the simple groups
coming from Bn.K;L;Q/ and Cn.K;L;Q/ are

O2nC1.q/ and PSp2n.q/:

and when jLj D q2, they are

O�
2nC2.q/ D 2DnC1.q

2/ and U2n.q/ D 2A2n�1.q
2/:

If L D K and char.K/ D 2, then the root group sequence ˝ in (7) is isomorphic
to its opposite and hence Bn.K;L;Q/ is isomorphic to Cn.K;L;Q/. Therefore
O2nC1.q/ Š PSp2n.q/ for q even. When n D 2, this is the group referred to as
B2.q/ above.
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There is just one more family of finite buildings with Coxeter diagram ˘ D Bn,
one for each prime power q. These are the buildings described in [20, 30.14(vii)]
that are finite. They yield the simple groups

U2nC1.q/ D 2A2n.q
2/:

These are the only finite buildings of type Bn not all of whose root groups are
abelian. Let q be a prime power and let � be the corresponding building. The
non-abelian root groups of � can be described as follows. Let L=K be the unique
quadratic extension with jKj D q, let N be the norm of this extension, let � be
the unique non-trivial element in Gal.L=K/, let ˇ D ˛ � ˛� for some ˛ 2 L not
contained in K and let S be the set f.a; b/ 2 L � L j ˛N.a/ � b 2 Kg endowed
with the multiplication

.a; b/ � .c; d / D .aC c; b C d C ˇa�c/:

Then S is a group of order q3 whose center is .0;K/, where

.a; b/�1 D .�a;�b�/

for all .a; b/ 2 S . Every root group of � is isomorphic either to S or to the additive
group of K .

7 Affine Buildings

Another celebrated result of Tits is his classification of affine buildings in [11]. A
connected Coxeter diagram is called affine if it is the Coxeter diagram QXn underlying
the extended Dynkin diagram attached to the Dynkin diagram Xn for X D A, B , C ,
D, E , F or G and for some n � 1, and a building with Coxeter diagram ˘ is affine
if each connected component of ˘ is affine. (See the figure on page 1 of [20].)

Suppose that 	 is a thick irreducible affine building. Thus its type ˘ is QXn for
some X and n. The apartments of 	 have a natural embedding into a Euclidean (or
affine) space of dimension n. For this reason, affine buildings are sometimes called
Euclidean buildings. The principle structural feature of the building 	 (apart from
its apartments and residues) is its building at infinity, � WD 	1. The building �

is thick and of type Xn and thus spherical and irreducible. (If Xn D A1, then 	 is
a tree, �, a building of rank 1, is the set of ends of this tree and the apartments of
	 , which are the connected subgraphs of valency 2, can be thought of as Euclidean
spaces of dimension 1.) We call 	 a Bruhat-Tits building if its building at infinity
� satisfies the Moufang condition (which requires that n � 2). These are the
buildings studied systematically in [1]. By Theorem 8, 	 is automatically a Bruhat-
Tits building if n � 3, but not if n D 2. What Tits showed is that 	 is uniquely
determined by � if n � 2 and that a given thick, irreducible spherical building
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satisfying the Moufang condition is the building at infinity of a Bruhat-Tits buildings
if and only if the defining field K of � as defined at the end of Sect. 5 above is
complete with respect to a discrete valuation. (This statement is not quite accurate
if the algebraic data determining � is infinite dimensional or in certain other ways
“exotic”, but it is not so far from begin accurate. See Chapter 27 of [20] for exact
statements.) Thus the theory of Bruhat-Tits buildings brings out deep connections
not just between group theory and geometry but number theory as well.

Of particular interest both to number theorists and to differential geometers is the
case that 	 is locally finite (in the usual sense of graph theory). This corresponds
to the special case that the field K is a local field, by which we mean not only that
K is complete with respect to a discrete valuation, but also that the residue field of
K is finite. Every local field is a finite extension of a p-adic field for some prime p
or a field of Laurent series over a finite field. In the locally finite case, it is possible
to carry out a precise classification of all the possible algebraic structures that can
occur in the spirit of the previous section. For example, if .K;L; q/ is an anisotropic
quadratic space and K is a local field, then dimK L � 4 and if dimK L D 4, then q is
the reduced norm of a quaternion division algebra with center K and, furthermore,
there is only one such quaternion division algebra. See Chapter 28 of [20] for all the
details.
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