Two Notes on Maps and Surface Symmetry

Thomas W. Tucker

Abstract The first note of this paper determines for which g the orientable
surface of genus g can be embedded in euclidean 3-space so as to have prismatic,
cubical/octahedral, tetrahedral, or icosahedral/dodecahedral symmetry. The second
note proves, through entirely elementary methods, that the clique number of the
graph underlying a regular map is m = 2,3, 4, 6; for m = 6 the map must be non-
orientable and for m = 4, 6 the graph has a K, factorization. Here a regular map is
one having maximal symmetry: reflections in all edges and full rotational symmetry
about every vertex, edge and face.
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In this note, we prove two unrelated results about maps and surface symmetry.

The first concerns the possible finite symmetry, under euclidean isometry, of
a surface of genus g embedded in 3-space. The theorem was inspired by a
question from Bojan Mohar asking why the sculpture “The group of genus two” by
DeWitt Godfrey [5], which appears on the cover of the journal Ars Combinatorica
Mathematica, shows almost none of the rotational symmetry of the map.

Any finite group A of euclidean isometries of 3-space fixes the barycenter O
of an orbit of A and hence leaves invariant the unit sphere centered at O. Thus
the possibilities for A are just the symmetry groups of the n-prism, the Platonic
solids (cube/octahedron, tetrahedron, and icosahedron/dodecahedron), and their
subgroups. For each of these four types of symmetry, we show that for all but
finitely many g, the surface of genus g can be embedded so as to have the given
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symmetry type, and we give the finite list of excluded g. Given a finite set X
of natural numbers, let L(X) be the set of all linear combinations of elements of
X with nonnegative integral coefficients. Note that if gcd(X) = 1, then L(X)
contains all sufficiently large integers, by the “postage stamp” problem.

Theorem A (Surface Symmetry in 3-Space). Let S be a surface of genus g. Then
S can be embedded in 3-space so as to have the symmetry of:

o Then-prismifandonly if g =1 (modn)org € L(n,n —1);

e The cube or octahedron if and only if g € L(16,18,12) + k, where k =
0,5,7,11,13;

o The tetrahedron if and only if g € L(8,6) + k, where k = 0,3,5,7;

e The isosahedron or dodecahedron if and only if g € L(40,48,30) + k where
k=0,11,19,29,31.

Moreover, S can be embedded with n-prism symmetry if and only if it can be
embedded with n-fold rotational symmetry. Similarly, S can be embedded with
full cubical (respectively, tetrahedral, icosahedral) symmetry if and only if it
can be embedded with orientation-preserving cubical (respectively, tetrahedral,
icosahedral) symmetry.

The second result concerns the clique number of a regular map. A map M is
an embedding of a finite graph G in a closed surface S such that the interior of
each face (component of S — G) is homeomorphic to an open disk; we call G the
underlying graph of the map and S the underlying surface. An automorphism of the
map is an automorphism of the graph that can be extended to a homeomorphism of
the surface (combinatorially, the automorphism must take any cycle in G bounding a
face to another such cycle). The collection of all such automorphisms forms a group,
denoted Aut(M). A map M is regular if Aut (M) acts transitively on vertex-edge-
face incidence triples (usually call flags). Intuitively, a regular map generalizes the
Platonic solids in having full rotational symmetry about each vertex and face, as
well as reflective symmetry. In particular, the stabilizer of any vertex acts on its
d neighbors as the dihedral group D, acting on the vertices of a regular d-sided
polygon; we call such an action of D, naturally dihedral. The study of regular
maps goes back to the 1920s and Coxeter and Moser [4] has a whole chapter on
them. The survey article [11] covers most of the history of regular maps, including
recent advances like [3].

Note that our use of “regular” in the case of orientable maps, is sometimes
called reflexibly regular. By contrast, a map M on an orientable surface that has
full rotational symmetry about each vertex and face center, but not necessarily
any orientation-reversing symmetry, is called orientably regular, and if there is no
orientation-reversing symmetry, it is called chiral.

The clique number of a graph G is the largest m such that the complete graph K,
is a subgraph of G. We say that G has an H -factorization if there is a collection of
edge-induced subgraphs G;, all isomorphic to H, such that every edge is an exactly
one G;.
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Theorem B (Cliques in Regular Maps). The cliqgue number of the graph G
underlying a regular (reflexible) map M is m = 2,3,4 or 6. Moreover, if
m = 6, then M must be non-orientable and for m = 4,6 the graph G has a
K, -factorization.

We also give the following purely graph-theoretic version:

Theorem C (Cliques in Graphs with Dihedral Vertex Stabilizers). Let G be
a graph with A C Aut(G) such that for each vertex v, the action of the vertex
stabilizer A, on edges incident to v is naturally dihedral. Then the clique number of
Gism = 2,3,4,6. If m > 3, the action of A is vertex-transitive and if m = 4,6,
then G has a K,,-factorization.

The proofs for the clique results are astonishingly simple and depend on the
measure of an angle, which appears to be a new concept for maps. Corollaries
of Theorem B are classical theorems on the possible complete graphs underlying
regular orientable and non-orientable maps, obtained using entirely algebraic
methods, especially Frobenius groups.

1 Surface Symmetry in 3-Space

Our proof of Theorem A is by cases. We first recall some facts from [6] about a
finite group acting A on a closed orientable surface S by orientation-preserving
homeomorphisms. If x € S, let A, be the stabilizer of x in A. Then x
has a neighborhood N, that is equivariant under A, that is if a € A, then
a(N,) = N, and otherwise N, and a(N,) are disjoint. Moreover, A, is cyclic
with a generator a, that on N, looks like the map z — 7" in the complex plane,
where r = |A,|.

Associated with the action of A on § is the quotient map p : S — S/A, where
S/ A is the surface obtained by identifying each orbit under A to a single point. Note
that S/ A is a surface since p(N,) is a disk about p(x).Let X = {x € S : |A,| > 1}
and let Y = p(X). Then p is a local homeomorphism except at x € X, making
p a (regular) branched covering with branch set Y = p(X). For each y € Y, the
common number r, = |A,| for any x € p~!(y) is called the order of the branch
point y. If S has genus g and S/A has genus 4, then Euler’s formula 2g — 2 =
E — V — F gives us the Riemann-Hurwitz equation:

26— 2= |A] ((2h—2) +Ser (1 - ri))

y

For later use, we observe that if 7 = 0, then a generating set for A is obtained by
choosing, for each y € Y, one x € p~'(y) and a generator for A,.
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Prismatic symmetry. We first consider a surface § with n-fold rotational
symmetry about an axis in 3-space. Since the axis intersects S in an even number
of points, the number of branch points is even and each has order n — 1. Thus:

—1
2g—2:n((2h—2)+2bn—) sog=14+h—-Dn+bn-1).
n
If b = 0, then g = 1 (mod n). Otherwise,
g=1+h-Dn—-1+b-1n-D+m—-1)=hn+bB-1)n-1)

sointhiscase g € L(n,n —1).

To show these conditions on g are sufficient, we construct for each case a model
of surface S in 3-space having the required symmetry. For g = 1 (mod n), we take
the standard torus in 3-space and attach n surfaces of genus 4 along n disks invariant
under the rotation. For g = hn + (b — 1)n, where b > 0, we begin with a surface
P, in 3-space obtained from the boundary of a thickening of a dipole consisting
of two vertices with n edges connecting the vertices, so that the dipole is invariant
under an n-fold rotation about the axis through the two vertices. The genus of P, is
n — 1. We can then string together b — 1, copies of P, to obtain a surface of genus
(b—1)(n—1) having n-fold rotational symmetry about a central axis with 2b branch
points of order n (for b — 1 = 0, we have simply a sphere with branch points of
order n at the north and south poles). Then we can add n surfaces of genus 4 at n
disks symmetrically placed either on the midpoints of edges of the central dipole (if
b — 1 is odd) or around a neck dividing the surface in half (if » — 1 is even). The
result is a surface of genus g = hn + (b — 1)n with the required symmetry.

We observe that the models we have constructed also have antipodal and reflec-
tive symmetry on 7 planes passing through the axis of rotation. Thus these models
have full n-prism symmetry. Conversely, if any surface has n-prism symmetry, it
also must also have n-fold rotational symmetry, and hence must satisfy g = 1
(modn)org = hn+ (b —1)nforb > 0.

Cubical symmetry. We first assume that the surface S embedded in 3-space is
invariant under the orientation-preserving automorphism group A of a cube centered
at the origin Oj; it is well known that A is isomorphic to the full symmetric group Sy.
The cube has four axes of 3-fold rotational symmetry, three of 4-fold rotational
symmetry, and six of 2-fold symmetry. Each axis passes through O and pierces the
surface S in the same number of points in each half. If O is inside the solid bounded
by S, this number must be odd; if O is outside the solid, then this number is even.
Thus, if O is inside S, we have:

2 3 1
2g—2:24(2h—2+(2b+1)§+(2c+1)z+(2d+1)§)
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Simplifying, we get g = 160 + 18¢ + 12(2h + d) so g € L(16, 18, 12).
If O is outside S, then

26 —2 = 24((2h—2)+2b% —}-2cE +2dl)

3 4 2
Simplifying, we get g = —23 + 16b + 18¢ + 12(2h + d). In this second case, if
at least two of the coefficients of b, ¢, (2h + d) is nonzero, then it is easily checked
that g € L(16,18,12) 4+ k, where k = 5,7,11. If h = 0, it is impossible for only
one of b, ¢, d to be nonzero, since otherwise A is generated by A, with all x on the
same axis, making A cyclic. Thus we can assume that 4 > 0. The only cases for
g ¢ L(16,18,12) + k, fork = 5,7,11 are g = 1 for (h,d) = (1,0) and g = 13
for (h,d) = (1, 1). But the only groups acting without fixed points on the torus are
abelian [6] so g = 1 is impossible.

We conclude that for orientation-preserving cubical symmetry, we need g €
L(16,18,12) + k, where k = 0,5,7, 11, 13. Now we build a model surface S for
all these cases, based on the branch point information in the coefficients b, ¢, d, h.
We begin with a cube centered at O and consider first the cases where O is inside
the surface S. We attach to each vertex a string of 2b thickened dipoles Ps, to the
center of each face a string of 2¢ thickened dipoles P4, to the midpoint of each edge
a string of 2d thickened dipoles P,, and to each point in the orbit of a nonbranch
point a string of & thickened dipoles P,. The boundary of the resulting solid has
genus

25(8) + 3¢(6) + (2h + d)12 = 16b + 18¢ + 12(2h + d).

If we take the resulting solid and drill a hole between antipodal vertices through the
center O, we add 8 —1 = 7 to the genus. Holes between antipodal face-centers adds
6 — 1 = 5 and holes between antipodal edge-midpoints, adds 12 — 1 = 11. If we
drill holes between both vertices and face-centers, we add 8 + 6 — 1 = 13 to the
genus. Thus we get all:

g € L(16,18,12) + k where k = 0,5,7,11, 13.

Tetrahedral symmetry. Again, we start with a tetrahedron centered at O and
consider only orientation-preserving symmetries; the group in this case is the
alternating group A4. There are four axes of 3-fold symmetry between each vertex
and the center of the opposing face and three axes between midpoints of opposite
edges. If O is inside the surface, there are an odd number 25’ + 1 and 2b” + 1 of
intersection points on each half of a vertex-face axis and 2¢ + 1 on each edge-edge
axis. Thus if b = b’ + b” + 1, we have:

2 1
2g—2=12(2h—2~|—2b§+(2c+1)5) sog =8b+6(2h +c)—8.
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Since b > 1, we have g € L(8,6). If instead C is outside the surface, we get:
2 1
20 —2=12 2h—2~|—2b§~|—2c§ sog =8b+6(2h+c)—11.

Then g = 1forh = 1,b = 0,c =0orb = 0,h = 0,c = 2. The first is again
impossible since any group acting without fixed points on the torus is abelian. The
second is impossible since then the group action would be generated by rotations
around only one axis. In all other cases, g € L(8,6) + k fork = 3,5,7.

For the models, we start with the tetrahedron and attach a string of b dipoles P3
at each of the four vertices and a string of ¢ dipoles P, at the midpoint of each edge
to make a surface of genus g = 8b + 6¢ with orientation-preserving tetrahedral
symmetry. Drilling holes from each vertex to the center or each edge midpoint to
the center or both, gives, as desired, all;

g€ L(8,6)+ k wherek =0,3,5,7.

Icosahedral symmetry. We start again with an icosahedron centered at O and
consider only orientation-preserving symmetries; the group in this case is A5. From
the Riemann-Hurwitz equation, the situation is exactly the same as for the cube,
only with branch points of order 3, 5 and 2. If the center is inside the surface, we get
g = 40D + 48c + 30(2h + d). If the center is outside the surface, we get

g = 40b + 48¢ + 302h + d) — 59.

In this case, as long as at least two of b,c,2h + d is nonzero, then g €
L(40,48,30)+k, where k = 11, 19, 29. As with the cube, if 2 = 0, it is impossible
for only one of b, c,d to be nonzero. Then the only remaining case is g = 1 for
(h,d) = (1,0) and g = 31 for (h,d) = (1,1). Again, g = 1 is impossible since
As is not abelian, so we have g € L(40,48,30) + k, where k = 11, 19,29, 31.

For models, we attach b dipoles P; at vertices, ¢ dipoles Ps at face centers, and
¢ dipoles P, at edge midpoints. We can also drill 6 tunnels between antipodal ver-
tices, 10 between antipodal face centers, and 15 between antipodal edge midpoints,
or any combination, giving all

g € L(40,48,30) + k, where k = 0,11, 19,29, 31.

For the cube, tetrahedron, and icosahedron, our models all can be constructed
to have reflective symmetry, so our conditions on g guarantee not only orientation-
preserving symmetry of the desired type, but also the full symmetry. Conversely, any
surface of genus g having full symmetry automatically has orientation-preserving
symmetry so g must satisfy our conditions. O

For the cube and tetrahedron, the given formulas for g lead to a list of
excluded g. For the cube, itis g = 1,2,3,4,6,8,9,10, 14, 15,20, 22, 26, 38. For
the tetrahedron, the excluded list is g = 1,4, 10. For the icosahedron, the list is
long, but finite.
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For prismatic symmetry, we have g = 1 (mod n) or b > 0 and
g=hn+Ob-1)n—-1)n=gn—rwhereq=h+b—-1>r=>b-1

Notice if r > n, we can write instead g = (¢ — 1)n — (r —n) withg — 1> (n —r)
so we can assume r < n. If we fix n, the pattern for the genera g allowing n-fold
rotational symmetry is clear. For example, when n = 6, we first have all g = 0, 1
(mod 6). The we slowly fill in the remaining residues classes as g increases. In the
following sequence we have put the missing g in parenthesis:

g=0,1,(2—4)5,6,7(8 —9),10,11, 12,13, (14), 15, 16, - - -

Since we can always handle » = n — 1 using g = 1 (mod n), the largest r we have
to worry about is ¥ = n — 2. Thus we have:

Corollary 1. Givenn > 1, all surfaces of genus g > (n—3)n—(n-2) = (n—2)>-2
can be embedded with n-fold rotational symmetry in 3-space.

In general, given a group A, we can ask for the genera g such that A acts,
preserving orientation, on the surface of genus g, where now we do not require
the action come from an embedding in 3-space. Kulkarni’s Theorem [8] shows that
there is a number n(A) such that if A acts on the surface of genus g preserving
orientation, then g = 1 (mod n(A)) and that there is an action for all but finitely
many such g. The number n(A) follows from the Riemann-Hurwitz equation and is
easily computed from the exponent of the Sylow p-subgroups of A, with an extra
technical condition for p = 2. In particular, a group A acts on almost all surfaces if
and only if it is almost Sylow cyclic and does not contain Z, x Z4 [12]; the group 4
is almost Sylow cyclic if its Sylow p-subgroup A4, is cyclic when p is odd and has a
cyclic group of index two, when p = 2. On the other hand, for any A4, determining
the finite exceptions is almost impossible, even for the case of the cyclic group of
order n, when n is highly composite (see for example, [10]).

In addition to changing the group A, we can also consider immersed surfaces,
which would allow non-orientable surfaces in 3-space. That problem is consid-
ered in [9]. The situation for bordered surfaces is considered by Cavendish and
Conway [2].

2 The Clique Number of a Regular Map

Let M be a map. If u and w are vertices adjacent to v, we call uvw an angle at v.
A local orientation of the map at a vertex v of valence d defines a cyclic order
uy, uz,---uq to the vertices adjacent to v We define the measure of angle u;vu;,
denoted m (u;vu, ), as the smaller of | — j | and d —|i — j |; in particular, m (u;vu;) <
d /2. Map automorphisms preserve angle measure, since they preserve or reverse
local orientations. If M is regular, because of the dihedral action of the stabilizer



352 T.W. Tucker

of v, given any angle uvw, there is an automorphism fixing v and interchanging u
and w. It follows that if uvw is a triangle (3-cycle) in G, then all its angles have the
same measure.

Theorem B. Let M be a regular map whose underlying graph G has no multiple
edges. Then the clique number of G is m = 2,3,4,6. In the case m = 4, any
4-clique H is invariant under a 3-fold rotation about any vertex in H and under a
reflection in any edge of H, in particular, the valence d of G is divisible by 3. For
m = 6, a 6-clique H is invariant under a 5-fold rotation about any vertex of H and
under a reflection in any edge of H ; in particular, d is divisible by 5. Moreover, for
m = 6, the map must be non-orientable. For both m = 4 and m = 6, the graph G
has a K,,-factorization.

Proof. Suppose that G has a K, subgraph H with vertices u, v, w, x with u,v,w
consecutive around x. Let m(uxv) = a,m(vxw) = b, and m(uxw) = c. Without
loss of generality, we can assume that @ < b < c¢. There are two possibilities: either
a+b>c,inwhichcasea+b+c=d,ora+b=c.

Suppose first that a + b + ¢ = d. There are four triangles in H. One has all
angles a, one b and one c. The fourth triangle has angles d — (a + b),d — (b + ¢)
and d — (¢ + a). Thus

d—(a+b)y=d—-(b+c)=d—(c+a).

Sincea + b + ¢ = d,wehavea = b = ¢ = d/3. Note that in this case, H is
invariant under 3-fold rotation about x and reflection in the edge xv. Since x and v
are arbitrary vertices of H, the same is true for all vertices and edges.

Suppose instead that @ + b = c. Then again, of the four triangles in H, one has
all angles a, one b, and one c. The fourth triangle has one angle ¢ + b = ¢, so all
angles in the triangle have measure c. At the second angle, where angles @ and ¢
meet, we have ¢ = d — (a + ¢), since ¢ = a + c is impossible. Similarly, at the
third angle we have ¢ = d — (b + ¢). Thus

a=d—2candb =d — 2c,

soa =b =d—2c.Sincea+b = ¢, we have (d —2c¢) + (d —2¢) = ¢, so
¢ = d /5. In particular, d is divisible by 5. Let u; = u and let u5, - - - u5 be vertices in
cyclic order about x making consecutive angles of d /5, so that u; - - - u5 are invariant
under a 5-fold rotation about x. We can assume that u, = v and u3 = w. By the
5-fold symmetry about x, there are edges between all the vertices in uy, - - - us, so
the subgraph induced by those vertices together with x is a 6-clique and is invariant
under 5-fold rotations about any vertex in H and under reflection in any edge.

We claim for the case m = 6, the map M is non-orientable. Suppose
not. Let H is a 6-clique and B the subgroup of Aut(M) leaving H invariant.
As we have observed, B includes a reflection in each edge and 5-fold rotations
about every vertex, so B acts transitively on H with vertex stabilizers Ds. Thus
|B| = 6-10 = 60. Let C C B be the subgroup generated by orientation-preserving
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automorphisms. Since B contains reflections, C has index two in B, so |C| = 30.
Since C contains the rotations about each of the 6 vertices, it has 24 elements of
order 5 and hence is generated by these vertex rotations, which as elements of
the symmetric group Se are even permutations. Thus C C Ag. Any involution
in Ag fixes two vertices u,v and hence the edge uv in H. Since |C| is even, it
has an involution, but no orientation-preserving automorphism can fix an edge. We
conclude that M is not orientable.

We have shown that any K4 subgraph H has either all angles measure d /3 or
all measure d/5,2d /5. Since any clique of maximal size m has many different K4
subgraphs for m > 4, they cannot all have angles d/3 or d/5,2d/5, so the only
possibility for m is 4 or 6.

For m = 4, 6, we have described completely the m-cliques containing any vertex
v and shown that each edge incident to m is in one and only one clique. Thus the
m-cliques give a K,,-factorization of G. O

Orientably regular maps with underlying graph K, have been studied for many
years. By the work of Biggs [1] and James and Jones [7] (see also [11]), such maps
only occur for n = p¢ for prime p and are in one-to-one correspondence with
generators of the cyclic multiplicative group of the finite field GF (p¢). With this
information, it is not hard to show all such maps are chiral except for n = 22. The
methods used are entirely algebraic. Theorem B is entirely geometric and provides:

Corollary 2. Any orientably regular map with underlying graph K,,n > 4, is
chiral.

Wilson [13] investigated non-orientable regular maps with underlying graph K,,.
HIs main result again follows immediately from Theorem B:

Corollary 3. The only non-orientable regular maps with underlying graph K, are
forn =3,4,6.

We have assumed that our underlying graph G has no multiple edges. On the
other hand, multiple edges arise naturally in an algebraic treatment of maps, as
in [3]. Note that loops in G are not an issue when M is regular: by the rotational
symmetry at any vertex, if one edge is a loop, then all are, so M has only one vertex.
Our result for clique numbers also applies to maps with multiple edges:

Theorem 1. Let M be any regular map, possibly with multiple edges. Then the
clique number of M is 2,3, 4, 6.

Proof. Suppose that M is a regular map with multiple edges and automorphism
group A. Let the cyclic order of edges incident to vertex v be ey, ---e; and let the
other endpoint of edge e; be u;, for i = 1,---d; if there are multiple edges, the
vertices up, ---ug are not all distinct. Let k be the smallest value such that u; =
uy. Then by the rotational symmetry about v, we have u; 4+, = u; for all i, where
subscripts are treated as residues mod d; moreover, u; # u; if |i — j| < k.Let f be
the automorphism that rotates about v by the angle of measure k (so f is a rotation
about v of order d/k). Since u; = u;1, then f fixes not only v but all vertices
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adjacent to v. In addition, since f take e; at vertex u; to e;yj also at vertex u;, we
must have that f also performs a rotation by angle k (of order d/k) at all vertices
adjacent to v. Thus f fixes all vertices and performs a rotation of order d / k about
all vertices.

In particular, the subgroup B generated by f in A is normal, since it fixes all
vertices and is normal in A, for each vertex v. Thus the quotient map M/B is
regular with Aut(M/B) = A/B. The underlying graph G/B for M/B has the
same vertices as G, since f fixes all vertices, and each set of n/k multiple edges
between v and u; is identified to a single edge. In particular, the clique number of
G/B is the same as the clique number of G. Since M/B is regular, that clique
number is 2, 3, 4, 6. O

Note that in the case of multiple edges, the edges incident to v in a particular
clique H may not be symmetrically located around v, since we may choose any
edge we want from each set of multiple edges.

There are infinitely many regular orientable maps with clique number 4, and their
Petrie duals [11] give non-orientable regular maps. For example, the family:

(XY X" =Y =(XY) = 1L.X"y"? =1).

from [3] gives regular maps where the underlying graph G is K4 with each edge
replaced by n multiple edges. A natural question to ask is whether there are infinitely
many with simple underlying graphs. Computer evidence suggests the answer is yes
(Conder, personal communication).

There are also infinitely many regular (necessarily non-orientable) maps with
clique number 6. Again, from [3], the family:

(XY X" =Y = (XY)’ = XY = 1),

gives orientably regular, reflexible maps where the underlying graph is the icosa-
hedron with each edge replaced by n multiple edges. There is a natural antipodal
automorphism (orientation-reversing involution fixing no vertices) such that the
orbit map is regular, non-orientable, with underlying graph K4 with each edge
replaced by n multiple edges. Again, a natural question to ask is whether there are
infinitely many with simple underlying graphs and the computer evidence suggests
the answer is again yes (Conder, personal communication).
Theorem B also applies to graphs, rather than maps:

Theorem C. Let G be a graph and A C Aut (G) such that the action of each vertex
stabilizer A, on edges incident to v is naturally dihedral. Then the clique number of
Gism =12,3,4,6.Ifm > 3, then A is vertex-transitive. [f m = 4,6, then G has a
K., factorization.

Proof. Suppose that the clique number is at least 3. We claim that A is vertex-
transitive. Indeed, by the dihedral actions of vertex stabilizers, the action of A4 is
edge-transitive. Moreover, G has a triangle uvw, and the dihedral action of A,
reverses the edge uw. Thus for every edge there is an a € A reversing the edge,
making A vertex-transitive.
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We can then use A to define an angle measure at every vertex that is preserved by

A. First, fix a vertex v and choose a generator b of the index-two cyclic subgroup B,
of A,. Since all other vertex stabilizers are conjugate to A, and B is characteristic in
A,, we can use conjugates of b to define a cyclic ordering around every vertex that
is preserved by A, which can then be used to define angle measure.

The proof then proceeds in exactly the same way as for regular maps. O
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