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Abstract The paper surveys highlights of the ongoing program to classify discrete
polyhedral structures in Euclidean 3-space by distinguished transitivity properties of
their symmetry groups, focussing in particular on various aspects of the classifica-
tion of regular polygonal complexes, chiral polyhedra, and more generally, two-orbit
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1 Introduction

The study of highly symmetric discrete structures in ordinary Euclidean 3-space E3

has a long and fascinating history tracing back to the early days of geometry. With
the passage of time, various notions of discrete structures with properties similar to
those of convex polyhedra have attracted attention and have brought to light new
exciting figures intimately related to finite or infinite groups of isometries.
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A radically new “skeletal” approach to polyhedra in E
3 was pioneered by

Grünbaum [16] in the 1970s, building on Coxeter’s work [5, 6]. A polyhedron is
viewed as a finite or infinite periodic geometric (edge) graph in space equipped
with additional structure imposed by the faces, and its symmetry is measured by
transitivity properties of its geometric symmetry group. For example, the geometric
graph of the cube carries four Petrie polygons, that is, polygons for which any two,
but no three, consecutive edges belong to the same square of the cube. The geometric
graph of the cube with its four hexagonal Petrie polygons constitutes one of the new
regular polyhedra introduced by Grünbaum. Throughout this paper we shall adopt
this notion of polyhedron.

Since the mid 1970s, there has been a lot of activity in this area, beginning
with the full enumeration of the “new” regular polyhedra by Grünbaum [16]
and Dress [13, 14] by around 1980 (see also McMullen-Schulte [24, Ch. 7E] or
[23] for a faster method for arriving at the complete list); moving on to the full
enumeration of the chiral polyhedra in [35, 36] by around 2005; and continuing
with the enumeration of certain classes of regular polyhedra and polytopes in higher-
dimensional spaces by McMullen [21, 22] (see also [1, 2]).

While all these structures have the essential characteristics of polyhedra and
polytopes, the more general class of discrete “polygonal complexes” in 3-space
is a hybrid of polyhedra and incidence geometries (see [3]). Every edge of a
polyhedron belongs to precisely two edges, whereas an edge of a polygonal complex
is surrounded by any number at least two. For example, the geometric edge graph of
the cube endowed with the six squares and four Petrie polygons as faces constitutes a
polygonal complex where every edge belongs to precisely four faces. In very recent
joint work, we obtained a complete enumeration of the regular polygonal complexes
in E

3 (see [29, 30]). These are periodic structures with crystallographic symmetry
groups exhibiting interesting geometric, combinatorial, and algebraic properties.

The purpose of this paper is to exhibit some of the highlights of the ongoing
program to classify discrete structures built from vertices, edges and faces in
Euclidean 3-space according to transitivity properties of their symmetry groups.
We center our attention on the recent classification of regular polygonal complexes,
chiral polyhedra, and more generally, two-orbit polyhedra.

In Sects. 2 and 3, we review basic terminology about polygonal complexes and
describe structure results for the symmetry group of regular polygonal complexes.
This is followed, in Sect. 4, by a brief description of the complete enumeration
of regular polyhedra, seen from the perspective of regular polygonal complexes.
Then Sects. 5 and 6 give an account of the regular polygonal complexes which
are not polyhedra. In the last two sections we study certain kinds of two-orbit
polyhedra in E

3, beginning with a review of the enumeration of chiral polyhedra.
Finally, Sect. 8 briefly summarizes the recent classification of regular polyhedra of
index 2, obtained in Cutler [8] and [9]; these form a distinguished class of two-orbit
polyhedra in E

3.
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2 Some Terminology

Informally, a polygonal complex is a discrete structure in E
3 consisting of vertices

(points), joined by edges (line segments) assembled in careful fashion into faces
(polygons, allowed to be finite or infinite), with at least two faces on each edge. Our
concepts of face (polygon) and polyhedron generalize those of convex polygon and
convex polyhedron.

For our purposes, a finite polygon .v1; v2; : : : ; vn/ in E
3 is a figure consisting

of n distinct points v1; : : : ; vn, together with the line segments .vi ; viC1/, for i D
1; : : : ; n� 1, and .vn; v1/. Similarly, an infinite polygon is a figure made up from an
infinite sequence of distinct points .: : : ; v�2; v�1; v0; v1; v2; : : : /, and line segments
.vi ; viC1/ for each i , such that each compact subset in E

3 meets only finitely many
line segments. In either case the points and line segments are referred to as the
vertices and edges of the polygon, respectively.

By a regular polygon we mean a finite or infinite polygon such that its geometric
symmetry group, restricted to the affine hull of the vertices, is a finite or infinite
dihedral group acting transitively on the set of incident vertex-edge pairs, called
flags. This definition covers not only the traditional (planar) convex regular polygons
but also permits star-polygons, skew polygons, zigzags, or helices as regular
polygons. A star polygon has the same vertices as a convex regular polygon; its
edges connect vertices of the convex regular polygon that are a fixed number of
steps apart on the boundary. A skew polygon lives properly in E

3 and can be
obtained from a planar finite (convex or star-) polygon by raising every other vertex
perpendicularly by the same amount (thus doubly covering the original polygon if
the number of vertices was odd); the vertex set then is contained in two parallel
planes and every edge goes from a vertex in one plane to a vertex in the other
plane. A linear apeirogon is an infinite polygon obtained by tessellating a line with
line segments (usually of the same size). Linear apeirogons will not occur as faces
of the geometric objects described in this paper, since no non-trivial connected
structure can be assembled only from linear building blocks. A zigzag is a planar
infinite polygon obtained from a linear apeirogon in a similar way as a skew polygon
is obtained from a planar finite polygon; its vertices lie on two parallel lines, and its
edges connect vertices on different lines. Finally, a helix is an infinite non-planar
polygon and it can be thought as a spring rising above a finite planar (convex or
star) polygon; more precisely, the orthogonal projection onto its axis gives a linear
apeirogon, and the orthogonal projection along its axis gives a finite planar (convex
or star-) polygon.

A polygonal complex, or simply complex, K in E
3 consists of a set V of points,

called vertices, a set E of line segments, called edges, and a set F of polygons,
called faces, such that the following properties are satisfied. The graph defined by
V and E , called the edge graph of K , is connected. Moreover, the vertex-figure of
K at each vertex of K is connected. Here the vertex-figure of K at a vertex v is
the graph, possibly with multiple edges, whose vertices are the neighbors of v in the
edge graph of K and whose edges are the line segments .u;w/, where .u; v/ and
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.v;w/ are edges of a common face of K . (Note that this is a small change over [29,
30], where a complex was required to have exactly r faces on each edge, for some
fixed number r > 2. However, for regular complexes with at least two faces meeting
at an edge the two definitions are equivalent.) All polygonal complexes studied in
this paper have at least two faces on each edge. Finally, K is discrete, in the sense
that each compact subset of E meets only finitely many faces of K . A complex
with exactly two faces on each edge (that is, r D 2) is also called a polyhedron.
Note that this definition extends the notion of convex polyhedron, where the faces
are convex (finite and planar) and the polyhedron itself is also finite. Polyhedra
(finite or infinite) with high symmetry properties have been extensively studied in
[24, Ch. 7E] and [1, 2, 5, 6, 16–18, 23, 26, 31, 35, 36]. The edge graphs of highly
symmetric polyhedra frequently occur as nets in crystal chemistry [12, 27, 28, 37].

A polygonal complex K is said to be regular if its geometric symmetry group
G WD G.K / is transitive on the incident vertex-edge-face triples, called flags. The
faces of a regular complex are necessarily regular polygons. The vertex-figures are
finite (flag-transitive) graphs with single or double edges. (A flag of a graph is just
an incident vertex-edge pair.) Double edges occur precisely when any two adjacent
edges of a face of K are adjacent edges of another (then uniquely determined)
face of K . If K is not a polyhedron, then G is infinite and affinely irreducible,
that is, G is a standard crystallographic group (see [29]). In particular, there are
no finite regular complexes other than polyhedra. The Platonic solids are the most
natural examples of regular polyhedra, and the 2-skeleton of the tessellation of E3

by cubes is the most natural example of a regular polygonal complex which is not a
polyhedron.

Regular polygonal complexes in E
3 can be viewed as 3-dimensional (discrete

faithful) Euclidean realizations of regular incidence complexes of rank 3 with
polygonal faces (see [11, 33]). Our description of the symmetry groups will exploit
this fact. In particular, the regular polyhedra in E

3 are precisely the 3-dimensional
discrete faithful Euclidean realizations of abstract regular polyhedra (abstract
regular 3-polytopes); for more details, see [24, Ch. 7E] and [25].

Every regular polyhedron has the property that all its faces have the same number
p of edges, and all its vertices have the same degree q. Polyhedra with this property
are called equivelar, and their Schläfli type (or Schläfli symbol) is defined to be
fp; qg. When the faces of an equivelar polyhedron are zigzags or helices, the first
entry p is 1; however, since we only consider discrete structures, q is always
finite. Similarly, in the Schläfli symbol fp; q; rg of a regular rank 4 polytope (a
combinatorial structure constructed from vertices, edges, polygons and polyhedra)
the first two entries give the Schläfli type fp; qg of any of its rank 3 faces, while
the last entry r is the number of rank 3 faces meeting around each edge (so that the
vertex-figures have Schläfli type fq; rg).

In later sections we also meet various kinds of less symmetric polygonal
complexes (in fact, polyhedra) in E

3. These have more than one flag orbit under
the symmetry group. A particularly interesting case arises when there are just two
flag orbits. We say that a polygonal complex K is a 2-orbit polygonal complex if
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K has precisely two flag-orbits under G; in this case, if K is also a polyhedron, we
call K a 2-orbit polyhedron. The cuboctahedron and icosidodecahedron are simple
examples of two-orbit polyhedra.

There are different kinds of 2-orbit polyhedra in E
3. Recall that two flags of

a polyhedron K are called i -adjacent, with i D 0, 1, or 2 respectively, if they
differ precisely in their vertices, edges, or faces (see [24, Ch. 2]). Thus, two flags
are 1-adjacent if they have the same vertices and same faces, but different edges.
Note that flags of polyhedra have unique i -adjacent flags for each i ; for polygonal
complexes which are not polyhedra, this still is true for i D 0; 1 but not for i D 2.
Now 2-orbit polyhedra naturally fall into different classes indexed by proper subsets
I of f0; 1; 2g (see Hubard [19] and [20]). In particular, a 2-orbit polyhedron K is
said to belong to the class 2I if I consists precisely of those indices i such that
any two i -adjacent flags lie in the same flag-orbit under G. The cuboctahedron and
the icosidodecahedron are examples of two orbit polyhedra in class 2f0;1g. When
I D ; this gives the class 2; of chiral polyhedra. Thus a polyhedron K is chiral
if and only if K has two flag orbits under G such that any two adjacent flags lie in
distinct orbits. (The case I D f0; 1; 2g is excluded here, as it describes the regular
polyhedra.)

3 The Symmetry Group

The symmetry group G D G.K / of a regular complex K in E
3 either acts

regularly on the set of flags or has flag-stabilizers of order 2. We call K simply flag-
transitive if its (full) symmetry group G acts regularly on the flags of K ; in other
words, G is simply transitive on the flags of K . Note that a regular complex that is
not simply flag-transitive can (in fact, always does) have a subgroup (of index 2) that
acts simply flag-transitively. Each regular polyhedron, finite or infinite, is a simply
flag-transitive regular polygonal complex.

The group G always has a well-behaved system of generators or generating
subgroups, regardless of whether K is simply flag-transitive or not. Suppose
˚ WD fF0; F1; F2g is a fixed, or base, flag of K , consisting of a vertex F0, an
edge F1, and a face F2. For each � � ˚ we let G� denote the stabilizer of � in G.
Moreover, for i D 0; 1; 2 we set Gi WD GfFj ;Fkg, where i; j; k are distinct, and write
GFi WD GfFi g for the stabilizer of Fi in G. Then G˚ is the stabilizer of ˚ and has
order 1 or 2; in particular,

G˚ D G0 \G1 D G0 \G2 D G1 \G2:

The stabilizers G0;G1;G2 form a generating set of subgroups for G, with the
property that G0 �G2 D G2 �G0 D GF1 and G� D hGj jFj … � i for each � � ˚ .
Moreover,

hGj j j 2 I i \ hGj j j 2 J i D hGj j j 2 I \ J i .I; J � f0; 1; 2g/:
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These statements about generating subgroups of G are particular instances of similar
such statements about flag-transitive subgroups of automorphism groups of regular
incidence complexes of rank 3 (or higher) obtained in [33, §2] (and also described
in [24, pp. 33,34] for polyhedra).

From the base vertex F0 and the symmetry group G of a regular complex K ,
with generating subgroups G0, G1, G2, we can reconstruct K by the following
procedure, often called Wythoff’s construction. First observe that the base edge F1

of K is determined by the pair of vertices fF0; F0G0g. Similarly, the vertex- and
edge-sets, respectively, of the base face F2 of K are just fF0S j S 2 hG0;G1ig and
fF1S j S 2 hG0;G1ig. This recovers the base flag of K . Finally, the set of i -faces
of K is just fFiS j S 2 Gg for each i D 0; 1; 2.

Most regular complexes K in E
3 are infinite and have an affinely irreducible

infinite discrete group of isometries as a symmetry group. In this case G is a
crystallographic group (that is, G admits a compact fundamental domain). Then the
Bieberbach theorems tell us that G contains a translation subgroup (of rank 3) such
that the quotient of G by this subgroup is finite (see [32, §7.4]). If R W x 7! xR0 C t

is a general element of G, with R0 in O.3/, the orthogonal group of E
3, and t a

translation vector in E
3 (that we may also view as a translation), then the mappings

R0 clearly form a subgroup G� of O.3/, called the special group of G. Now if T .G/

denotes the full translation subgroup of G (consisting of all translations in G), then

G� D G=T .G/;

so in particular, G� is a finite group. Thus G� is among the finite subgroups of O.3/,
which are known (see [15]). The special group of any irreducible infinite discrete
group of isometries in E

2 or E3 never contains rotations of periods other than 2; 3; 4,
or 6, and period 6 only occurs for E2 (see [24, p. 220] and [36, Lemma 3.1]).

The full translation subgroup of the symmetry group G of a regular complex
K (and often the vertex set of K itself) is given by a 3-dimensional lattice in
E
3. We frequently meet the lattices �a that are generated by a single vector a WD

.ak; 03�k/ and its images under permutations and changes of sign of coordinates;
here a > 0 and k D 1; 2; 3 (and a has k entries a and 3 � k entries 0). When
a D 1 and k D 1, 2 or 3, respectively, these are the standard cubic lattice Z

3, the
face-centered cubic lattice, and the body-centered cubic lattice.

4 Regular Polyhedra

The regular polyhedra in space are also known as the Grünbaum-Dress polyhedra
(see [34]). It is convenient to separate them from the simply flag-transitive regular
complexes that are not polyhedra, and discuss them first. We follow [24, Ch. 7E].

For a regular polyhedron K in E
3 with symmetry group G.K /, each subgroup

Gj of G.K / has order 2 and is generated by a reflection Rj in a point, line, or
plane (a reflection in a line is a half-turn about the line). Thus G.K / is generated
by R0;R1;R2. We let dim.Rj / denote the dimension of the mirror (fixed point set)
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of the reflection Rj for each j , and call the vector .d im.R0/; d im.R1/; d im.R2//

the complete mirror vector of K ; this is just the dimension vector of [24, Ch. 7E].
The use of the qualification “complete” will become clear in the next section. The
distinguished generators R0;R1;R2 of G.K / satisfy (at least) the Coxeter-type
relations

R2
0 D R2

1 D R2
2 D .R0R1/

p D .R1R2/
q D .R0R2/

2 D I; (1)

the identity mapping, where p and q determine the type fp; qg of K .
The complete enumeration of the regular polyhedra naturally splits into four steps

of varying degrees of difficulty: the finite polyhedra, the planar apeirohedra, the
blended apeirohedra, and the pure (non-blended) apeirohedra. An apeirohedron is
simply an infinite polyhedron.

There are just 18 finite regular polyhedra: the five (convex) Platonic solids

f3; 3g; f3; 4g; f4; 3g; f3; 5g; f5; 3gI

the four Kepler-Poinsot star-polyhedra

f3; 5
2
g; f 5

2
; 3g; f5; 5

2
g; f 5

2
; 5g;

where faces and vertex-figures are planar, but are allowed to be star polygons; and
the Petrie-duals of these nine polyhedra. (Recall that the Petrie dual of a regular
polyhedron P has the same vertices and edges as P; however, its faces are the
Petrie polygons of P , whose defining property is that two successive edges, but not
three, are edges of a face of P . Thus the new faces are “zig-zags”, leaving a face of
P after traversing two of its edges.)

The 6 planar regular apeirohedra comprise the three familiar regular plane
tessellations by squares, triangles, or hexagons,

f4; 4g; f3; 6g; f6; 3g;

and their Petrie-duals.
The remaining regular apeirohedra are genuinely 3-dimensional and fall into two

families.
There are exactly 12 regular apeirohedra that in some sense are reducible and

have components that are regular figures of dimensions 1 and 2. These apeirohedra
are blends of a planar regular apeirohedron, and a line segment f g or linear
apeirogon f1g. This explains why there are 12 D 6 � 2 blended (or non-pure)
aperiohedra. For example, the blend of the standard square tessellation f4; 4g and
the infinite apeirogon f1g, denoted f4; 4g#f1g, is an apeirohedron whose faces
are helical apeirogons (over squares), rising above the squares of f4; 4g, such
that 4 meet at each vertex; the orthogonal projections of f4; 4g#f1g onto their
component subspaces recover the original components, the square tessellation and
linear apeirogon.
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Table 1 The 12 pure apeirohedra in E
3

Mirror vector f3; 3g f3; 4g f4; 3g Faces Vertex-fig.

(2,1,2) f6; 6j3g f6; 4j4g f4; 6j4g Planar Skew
(1,1,2) f1; 6g4;4 f1; 4g6;4 f1; 6g6;3 Helical Skew
(1,2,1) f6; 6g4 f6; 4g6 f4; 6g6 Skew Planar
(1,1,1) f1; 3g.a/ f1; 4g

�;�3 f1; 3g.b/ Helical Planar

Note that each blended polyhedron really represents an entire family of polyhedra
of the same kind, where the polyhedra in a family are determined by a parameter
describing the relative scale of the two component figures. Thus there are infinitely
many polyhedra of each kind, up to similarity, and our original count really refers
to the 12 kinds rather than individual polyhedra.

Finally there are 12 regular apeirohedra that are irreducible, or pure (non-
blended). In a sense, they fall into a single family, derived from the standard regular
cubical tessellation. The 12 polyhedra in this family naturally are interrelated by
a net of geometric operations (on polyhedra) and algebraic operations (on sym-
metry groups), which include the following: the duality operation; the previously
mentioned Petrie-operation (of passing to the Petrie-dual); the facetting operation
(of replacing the faces of a regular polyhedron by its holes, which are edge paths
that successively take the second exit on the right at each vertex, while keeping all
the vertices and edges unchanged); two lesser known operations called halving and
skewing; and certain combinations of these operations.

We list these 12 pure apeirohedra in Table 1 taken from [24, p. 225], which also
highlights the fact that there are just 12 polyhedra of this kind.

In this table, the first column gives the complete mirror vector, and the last two
describe if the faces and vertex-figures are planar, skew or helical regular polygons;
the geometric nature of the faces and vertex-figures only depends on the mirror
vector. The second, third, and fourth column are indexed by the finite Platonic
polyhedra whose rotation or full symmetry group is intimately related to the special
group.

The three polyhedra along the top row are the famous Petrie-Coxeter polyhedra,
which along with those in the third row comprise the pure regular polyhedra with
finite faces. The pure polyhedra with infinite, helical faces are listed in the second
and last row; those in the last row occur in two enantiomorphic (mirror image)
forms, since their symmetry group is generated by half-turns and consists only
of proper isometries. The fine Schläfli symbols for the polyhedra in the table
signify defining relations for the symmetry groups; for example, extra relations
often specify the orders of the elements R0R1R2, R0R1R2R1 or R0.R1R2/

2. These
orders correspond to the lengths of the Petrie paths, of the holes (paths traversing
edges where the new edge is chosen to be the second on the right according to some
local orientation), and of the 2-zigzags (paths traversing edges where the new edge
is chosen to be the second on the right, but reversing orientation on each step).

The regular polyhedron f1; 3g.b/ is illustrated in Fig. 1; three helical faces meet
at each vertex. Some faces have a vertical axis; they are helices over squares, like
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Fig. 1 The helix-faced regular polyhedron f1; 3g.b/, with symmetry group requiring the single
extra relation .R0R1/

4.R0R1R2/
3 D .R0R1R2/

3.R0R1/
4

the ones shown on the left, and are joined by horizontal edges. The remaining faces
have axes parallel to the remaining two coordinate axes; one copy of each is shown
on the right.

In summary we have

Theorem 1. There are precisely 48 regular polyhedra in E
3, up to similarity and

scaling of components (when applicable). The list comprises 18 finite polyhedra and
30 apeirohedra.

5 Non-simply Flag-Transitive Complexes

In order to complete the classification of regular polygonal complexes in E
3 it

remains to consider complexes with three or more faces around each edge. For
convenience we split the discussion into two cases according to the size of the flag
stabilizers. Throughout this and the next section we follow [29, 30].

Quite surprisingly, up to similarity, there are just four regular polygonal
complexes that are not simply flag-transitive. They can be characterized as the
regular complexes K that occur as 2-skeletons of regular 4-apeirotopes P in
E
3 (see [24, Ch. 7F]). The 2-skeleton of a 4-apeirotope is the incidence structure

determined by its vertices, edges and polygons. These 4-apeirotopes in E
3 are, by

definition, the discrete faithful realizations of abstract regular polytopes of rank 4

in E
3, so their combinatorial rank is 1 higher than the dimension of the ambient

space.
There are precisely eight regular 4-apeirotopes P in E

3, occurring in pairs of
Petrie-duals as shown in (2). The Petrie-dual of a regular 4-apeirotope P is obtained
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by replacing the distinguished involutory generators T0; T1; T2; T3 of its symmetry
group G.P/ by the new involutory generators

T0; T1T3; T2; T3

of G.P/, and then applying Wythoff’s construction with these new generators and
with the same initial vertex as for P itself. Every pair of Petrie-duals contributes just
one regular polygonal complex K , since Petrie-duals have isomorphic 2-skeletons.
Thus there are just four such complexes K . Two of the eight apeirotopes P have
(finite convex) square 2-faces, 4 occurring at each edge; and six have (infinite planar)
zigzag 2-faces, with either 3 or 4 at each edge. Our notation follows [24, Ch. 7F].

f4; 3; 4g ff4; 6 j 4g; f6; 4g3g
ff1; 3g6#f g; f3; 3gg ff1; 4g4#f1g; f4; 3g3g
ff1; 3g6#f g; f3; 4gg ff1; 6g3#f1g; f6; 4g3g
ff1; 4g4#f g; f4; 3gg ff1; 6g3#f1g; f6; 3g4g

(2)

The two apeirotopes in the top row are the standard cubical tessellation f4; 3; 4g
in E

3; and its Petrie-dual ff4; 6 j 4g; f6; 4g3g, whose rank 3 faces are Petrie-Coxeter
polyhedra f4; 6 j 4g and whose vertex-figures are Petrie-duals f6; 4g3 of octahedra
f3; 4g6. The 2-skeleton of the cubical tessellation is the simplest regular polygonal
complex that is not simply flag-transitive.

The other six apeirotopes have finite crystallographic regular polyhedra as
vertex-figures, namely either tetrahedra f3; 3g, octahedra f3; 4g, or cubes f4; 3g, or
Petrie-duals of one of those; their rank 3 faces are blends, namely of the Petrie-duals
f1; 3g6 or f1; 4g4 of the plane tessellations f6; 3g or f4; 4g, respectively, with the
line segment f g or linear apeirogon f1g (see [24, Ch.7E]).

The number of faces r around an edge of the 2-skeleton K is just the last entry
in the Schläfli symbol (the basic symbol fp; q; rg) of the underlying 4-apeirotope
P (or, equivalently, of the Petrie dual of P). Hence, r D 4, 3, 4 or 3, respectively.

Among the regular polygonal complexes K , the non-simply transitive com-
plexes can also be characterized as those that have face mirrors. A face mirror of
K is an affine plane in E

3 that contains a face of K and is the mirror of a plane
reflection in G.K /. Clearly, regular complexes K with face mirrors must have
planar faces, and every face must span a face mirror; moreover, the plane reflection
in a face mirror of K fixes every flag of K that lies in this face mirror, and hence
generates the corresponding flag stabilizer.

In summary we have

Theorem 2. Up to similarity, there are just four non-simply flag-transitive regular
polygonal complexes in E

3, each given by the common 2-skeleton of the two regular
4-apeirotopes from a pair of Petrie-duals. These infinite complexes are precisely the
regular polygonal complexes in E

3 that have face mirrors.
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6 Simply Flag-Transitive Complexes

The class of simply flag-transitive regular polygonal complexes in E
3 is much richer

and comprises all finite or infinite regular polyhedra. As we have already described
the regular polyhedra in Sect. 4, we can confine ourselves here to those complexes
that are not polyhedra.

Thus let K be an (infinite) simply flag-transitive complex such that G D G.K /

is affinely irreducible, let r > 3, and let fF0; F1; F2g denote the base flag. Then
the two subgroups G0 and G1 of G are again of order 2, and are generated by
some point, line, or plane reflection R0, and some line or plane reflection R1,
respectively; however, G2 is a cyclic or dihedral group of order r . The mirror
vector .d im.R0/; d im.R1// of K now has only two components recording the
dimensions dim.R0/ and dim.R1/ of the mirrors of R0 and R1, respectively. (For
polyhedra, G2 is also generated by a reflection, and the complete mirror vector
records the dimensions of all three mirrors.)

The vertex-stabilizer subgroup GF0 in G of the base vertex F0 is called the vertex-
figure group of K at F0, and is a finite group since K is discrete. In particular,
GF0 D hR1;G2i, and GF0 acts simply flag-transitively on the graph that forms the
vertex-figure of K at F0. Similarly, the face-stabilizer GF2 in G of the base face F2

is given by GF2 D hR0;R1i and is isomorphic to a (finite or infinite) dihedral group
acting simply transitively on the flags of K containing F2.

The enumeration of the simply flag-transitive regular complexes for a given
mirror vector is typically rather involved. A good number of complexes must be
discovered by direct geometric or algebraic methods. Others then can be derived
by operations applied to these complexes; that is, the new complexes are obtained
by suitably modifying R0 and R1 while keeping the base vertex and preserving
the group hG0;G1;G2i as a (possibly proper) subgroup of symmetries. In this
vein, the explicit enumeration of the simply flag-transitive complexes begins in [29]
with the determination of the complexes with mirror vector .1; 2/, and then proceeds
in [30] with the description of those for the remaining mirror vectors, accomplished
by a mix of direct methods, applications of operations, and elimination of certain
cases. At the end, we arrive at the following theorem.

Theorem 3. Up to similarity, there are exactly 21 simply flag-transitive regular
polygonal complexes in E

3 that are not regular polyhedra.

Thus, counting also the regular polyhedra from Theorem 1, there is total of 69
simply flag-transitive regular complexes, up to similarity and scaling of components
for blended polyhedra.

Table 2 lists the 21 simply flag-transitive complexes by mirror vector, and records
their data concerning the pointwise edge stabilizer G2, the number r of faces
surrounding an edge, the structure of the faces and vertex-figures, the vertex-set,
and the structure of the special group G�. In the face column we have used the
symbols pc , ps , 12, or 1k with k D 3 or 4, respectively, to indicate that the faces
are convex p-gons, skew p-gons, planar zigzags, or helical polygons over k-gons.
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Table 2 The 21 simply flag-transitive regular complexes in E
3 which are not regular polyhedra

Mirror Special
vector Complex G2 r Face Vertex-figure Vertex-set group

.1; 2/ K1.1; 2/ D2 4 4s Cuboctahedron �.a;a;0/ Œ3; 4�

K2.1; 2/ C3 3 4s Cube �.a;a;a/ Œ3; 4�

K3.1; 2/ D3 6 4s Double cube �.a;a;a/ Œ3; 4�

K4.1; 2/ D2 4 6s Octahedron aZ3 Œ3; 4�

K5.1; 2/ D2 4 6s Double square Va Œ3; 4�

K6.1; 2/ D4 8 6s Double octahedron aZ3 Œ3; 4�

K7.1; 2/ D3 6 6s Double tetrahedron Wa Œ3; 4�

K8.1; 2/ D2 4 6s Cuboctahedron �.a;a;0/ Œ3; 4�

.1; 1/ K1.1; 1/ D3 6 13 Double cube �.a;a;a/ Œ3; 4�

K2.1; 1/ D2 4 13 Double square Va Œ3; 4�

K3.1; 1/ D4 8 13 Double octahedron aZ3 Œ3; 4�

K4.1; 1/ D3 6 14 Double tetrahedron Wa Œ3; 4�

K5.1; 1/ D2 4 14 ns-cuboctahedron �.a;a;0/ Œ3; 4�

K6.1; 1/ C3 3 14 Tetrahedron Wa Œ3; 4�C

K7.1; 1/ C4 4 13 Octahedron aZ3 Œ3; 4�C

K8.1; 1/ D2 4 13 ns-cuboctahedron �.a;a;0/ Œ3; 4�

K9.1; 1/ C3 3 13 Cube �.a;a;a/ Œ3; 4�C

.0; 1/ K .0; 1/ D2 4 12 ns-cuboctahedron �.a;a;0/ Œ3; 4�

.0; 2/ K .0; 2/ D2 4 12 Cuboctahedron �.a;a;0/ Œ3; 4�

.2; 1/ K .2; 1/ D2 4 6c ns-cuboctahedron �.a;a;0/ Œ3; 4�

.2; 2/ K .2; 2/ D2 4 3c Cuboctahedron �.a;a;0/ Œ3; 4�

(A planar zigzag is viewed as a helix over a 2-gon, hence our notation. Clearly, the
subscript in 3c is redundant.) We also set

Va WD aZ3n..0; 0; a/C�.a;a;a//; Wa WD 2�.a;a;0/ [ ..a;�a; a/C2�.a;a;0//;

to have a short symbol available for the vertex-sets of some complexes. The
vertex-figures of polygonal complexes are finite geometric graphs, so an entry
in the vertex-figure column describing a solid figure is meant to represent the
edge-graph of this figure, with “double” indicating the double edge-graph. The
abbreviation “ns-cuboctahedron” stands for the edge graph of a certain “non-
standard cuboctahedron”, a realization in E

3 of the (abstract) cuboctahedron with
non-planar square faces.

As an example, the faces of the complex K6.1; 2/ are the Petrie polygons of
all cubes of the cubical tessellation of E3; so in particular, the vertices and edges
of K6.1; 2/, respectively, comprise all vertices and edges of the cubical tessellation.
Recall that every edge of a cube belongs to precisely two Petrie polygons of the same
cube. Since every edge belongs to four cubes in the cubical tessellation, every edge
must belong to eight Petrie polygons of cubes in K6.1; 2/. The complex K4.1; 2/

is a proper subcomplex of K6.1; 2/ obtained by taking only the Petrie polygons of
alternate cubes. The complex K5.1; 2/ is another subcomplex of K6.1; 2/ consisting
only of the Petrie polygons with vertices in the set Va defined above.
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7 Chiral Polyhedra

Chiral polyhedra in E
3 are the most interesting kind of nearly regular polyhedra;

their geometric symmetry groups have two orbits on the flags, such that adjacent
flags are in distinct orbits.

The structure results for the symmetry groups of regular polygonal complexes
carry over to chiral polyhedra as follows (see [35,36]). Let K be a chiral polyhedron
in E

3 with symmetry group G D G.K /, let ˚ WD fF0; F1; F2g be a base flag of K ,
and let F 0

0; F
0
1; F

0
2 denote the faces of K with F 0

0 < F1, F0 < F 0
1 < F2, F1 < F 0

2

and F 0
j ¤ Fj for j D 0; 1; 2. Then G is generated by symmetries S1; S2 of K ,

called the distinguished generators of G (relative to ˚), where S1 leaves the base
face F2 invariant and cyclically permutes the vertices of F2 such that F1S1 D F 0

1

(and thus F 0
0S1 D F0), and S2 leaves the base vertex F0 invariant and cyclically

permutes the vertices in the vertex-figure at F0 such that F2S2 D F 0
2 (and thus

F 0
1S2 D F1). Then, in analogy to (1),

S
p
1 D S

q
2 D .S1S2/

2 D I; (3)

where fp; qg is the Schläfli type of K . The involutory symmetry T WD S1S2

interchanges the two end vertices of F1 as well as the two faces meeting at F1;
that is, combinatorially, T acts like a half-turn about the midpoint of an edge. This
symmetry T plays a critical role, in that it allows to employ a variant of Wythoff’s
construction (see [6]) to reconstruct a chiral polyhedron from its symmetry group.

Note that the symmetry groups of regular polyhedra in E
3 have a subgroup

of index at most 2 with properties very similar to those of the group of a
chiral polyhedron. In fact, if P is a regular polyhedron and R0;R1;R2 are the
distinguished generators of its symmetry group G.P / (relative to ˚), then OS1 WD
R0R1 and OS2 WD R1R2 generate the combinatorial rotation subgroup, or even
subgroup, GC.P/ WD h OS1; OS2i of G.P /, of index 1 or 2. Now OT WD OS1

OS2 D R0R2

has properties similar to T . Whenever GC.P/ has index 2 in G.P/ we say that P
is directly regular or orientable.

Combinatorially speaking, chiral polyhedra have maximal “rotational” symmetry
but no “reflexive” symmetry. (This does not mean that S1 and S2 are actually
geometric rotations!) Thus our term “chiral” really means “maximal chiral”. By con-
trast, again combinatorially speaking, regular polytopes have maximal “reflexive”
symmetry. (Here R0;R1;R2 are actually reflections, in points, lines, or planes.)

Chirality, in this sense of “maximal chirality”, does not make any appearance
in the classical theory of highly-symmetric figures in Euclidean spaces. This may
explain why chiral polyhedra were only described and enumerated quite recently, in
[35, 36].

The complete classification starts off with the observation that chiral polyhedra
are necessarily pure apeirohedra; that is, infinite polyhedra that are not naturally
“blends” of two lower-dimensional structures, and hence have an affinely irreducible
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Table 3 The finite-faced chiral polyhedra, along with their related regular polyhedra

Type f6; 6g f4; 6g f6; 4g
Notation P.a; b/ Q.c; d/ Q.c; d/�

Parameters a; b 2 Z; .a; b/ D 1 c; d 2 Z; .c; d/ D 1 c; d 2 Z; .c; d/ D 1

Chiral b ¤ ˙a c; d ¤ 0 c; d ¤ 0

Regular polyhedra P.a;�a/Df6;6g4 Q.a;0/Df4;6g6 Q.a;0/�Df6;4g6
P.a;a/Df6;6j3g Q.0;a/Df4;6j4g Q.0;a/�Df6;4j4g
Geom.self-dual,

P.a; b/� Š P.a; b/

Special group Œ3; 3�C � h�I i Œ3; 4� Œ3; 4�

Table 4 The helix-faced chiral polyhedra, along with their related regular polyhedra

Type f1; 3g f1; 3g f1; 4g
Notation P1.a; b/ P2.c; d/ P3.c; d/

Parameters a; b 2 R c; d 2 R c; d 2 R

Chiral b ¤ ˙a c; d ¤ 0 c; d ¤ 0

Regular polyhedra P1.1;�1/ D f1; 3g.a/ P2.1; 0/ D f1; 3g.b/ P3.0; 1/ D f1; 4g
�;�3

P1.1; 1/ D f3; 3g P2.0; 1/ D f4; 3g P3.1; 0/ D f3; 4g
Helices over Triangles Squares Triangles
Special group Œ3; 3�C Œ3; 4�C Œ3; 4�C

symmetry group. In short, unlike regular polyhedra, chiral polyhedra can neither be
finite nor planar or blended.

The classification of chiral apeirohedra is quite elaborate and naturally breaks
down into analyzing the finite-faced and the helix-faced polyhedra (see [35, 36]).
The possible apeirohedra fall into six infinite 2-parameter families (up to congru-
ence). In each family, all but two polyhedra are chiral; the two exceptional polyhedra
are regular and are among those described in Sect. 4. Tables 3 and 4 list the families
of polyhedra by Schläfli type, along with the two regular polyhedra occurring in
each family; in the three families in Table 4, one exceptional polyhedron is finite.
Also included is data about the special group of a polyhedron, that is, the quotient of
the geometric symmetry group by its translation subgroup; here Œ3; 3�C and Œ3; 4�C
denote the tetrahedral or octahedral rotation group, respectively, and Œ3; 4� the full
octahedral group.

It is quite remarkable that a regular polyhedron cannot have both skew faces
and skew vertex-figures. However, finite-faced chiral polyhedra must necessarily
have both skew faces and skew vertex-figures. In fact, the generators S1; S2 of the
symmetry group must be rotatory reflections in this case, resulting in skew faces
and skew vertex-figures. Note, however, that the rotation subgroups for the regular
polyhedra occurring in the three families of finite-faced polyhedra of Table 3 also
have generators S1; S2 which are rotatory reflections, but here the position of the
base vertex forces planarity of faces or vertex-figures.
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Fig. 2 The vertex-neigborhoods of the finite-faced chiral apeirohedra P.1; 0/ and Q.1; 1/, of
types f6; 6g and f4; 6g, respectively. Depicted is the neighborhood of a single vertex, where 6

skew hexagonal faces or 6 skew square faces meet. Each apeirohedron expands in a consistent
manner throughout space such that all vertex neighborhoods are congruent to the one shown

Chiral apeirohedra with infinite faces must necessarily have helical faces spiral-
ing over triangles or squares, as well as planar vertex-figures. The symmetry group
is generated by a screw motion S1 and a rotation S2 in this case. Chiral helix-faced
polyhedra unravel, in a sense, a “crystallographic” Platonic polyhedron, namely the
finite regular polyhedron in their respective family.

The regular polyhedra listed in Tables 3 and 4 comprise 9 of the 12 pure
regular apeirohedra in E

3, namely those listed in Table 1 with complete mirror
vectors .1; 2; 1/, .1; 1; 1/ or .2; 1; 2/, as well as the three crystallographic Platonic
polyhedra. The three remaining pure regular apeirohedra f1; 6g4;4, f1; 4g6;4 and
f1; 6g6;3 all have complete mirror vector .1; 1; 2/ and do not occur in families
alongside chiral polyhedra.

These six families of chiral (or regular) polyhedra have some amazing prop-
erties. For example, any two distinct finite-faced polyhedra of the same type are
combinatorially non-isomorphic. In fact, P.a; b/ and P.a0; b0/ are isomorphic if
and only if .a0; b0/ D ˙.a; b/;˙.b; a/; and similarly, Q.c; d/ and Q.c0; d 0/ are
isomorphic if and only if .c0; d 0/ D ˙.c; d/;˙.�c; d/. Thus there are very many
combinatorially distinct finite-faced chiral polyhedra (Fig. 2). By contrast, as shown
in Pellicer-Weiss [31], every helix-faced chiral polyhedron P1.a; b/ or P2.c; d/ is
combinatorially isomorphic to the infinite regular polyhedron in its family. On the
other hand, since the polyhedron f1; 4g�;�3 is not orientable, it cannot have chiral
realizations. Every chiral polyhedron P3.c; d/ is then isomorphic to the (combi-
natorial) orientable double cover of f1; 4g�;�3. Thus, up to isomorphism, there are
just three helix-faced chiral polyhedra, each represented by a helix-faced regular
polyhedron. But even more is true: in a sense that can be made precise, the helix-
faced chiral polyhedra can be thought of as continuous “chiral deformations” of
helix-faced regular polyhedra (see [31]). This surprising phenomenon is illustrated
for the helix-faced polyhedra P2.c; d/ in Fig. 3; shown is the effect on the location of
the “vertical” helical faces, as a result of continuously changing the parameters c; d .
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Fig. 3 The helix-faced polyhedron P2.1; 0/ and its deformations P2.1; d/. The solid black or
green dotted lines show the projection of the entire polyhedron P2.1; 0/ or P2.1; d/, respectively,
onto a “horizontal” plane perpendicular to the axis of a “vertical” helical face. The vertical
helical faces of P2.1; 0/ or P2.1; d/, respectively, then project onto the small black squares or
small green squares; one black square, resulting from one vertical helical face of P2.1; 0/, is
emphasized. As the parameter d is changed continuously, the vertical and “horizontal” helical
faces move in such a way that the axes of corresponding faces remain parallel throughout the
process. Accordingly, the projections of P2.1; d/ move continuously as well. The figures on the
left and right, respectively, show projections of P2.1; d/ when d is small or when d gets larger

Finally, helix-faced chiral polyhedra are combinatorially regular, as they are
isomorphic to regular polyhedra. However, by contrast, finite-faced chiral polyhedra
are combinatorially chiral, meaning that the combinatorial automorphism group has
two flag-orbits such that adjacent flags are in distinct orbits (see [31]).

In summary, we have the following

Theorem 4. Up to congruence, the chiral polyhedra in E
3 fall into six infinite, 2-

parameter families of apeirohedra, each containing alongside chiral apeirohedra
also two regular polyhedra. Three families consist of finite-faced apeirohedra, and
three of helix-faced polyhedra. The finite-faced polyhedra are also combinatorially
chiral, but the helix-faced polyhedra are combinatorially regular.

8 Two-Orbit Polyhedra

The chiral polyhedra in E
3 are by definition the 2-orbit polyhedra in E

3 in the class
2I with I D ;. It is desirable to extend the classification of chiral polyhedra to
2-orbit polyhedra in arbitrary classes 2I , with I ¨ f0; 1; 2g. We saw that chirality
cannot occur among finite polyhedra; however, as the example of the cuboctahedron
(in class 2f0;1g) shows, finite 2-orbit polyhedra already occur among the familiar
convex polyhedra. Thus a good first step would be the complete enumeration of the
finite 2-orbit polyhedra in E

3.
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Significant progress towards this goal has already been made for regular
polyhedra of index 2. A polyhedron K is said to be a regular polyhedron of
index 2 if its combinatorial automorphism group � .K / acts flag-transitively on K
and contains the geometric symmetry group G.K / as a subgroup of index 2. In
other words, K is combinatorially regular but “fails geometric regularity by a factor
of 2”. For any such polyhedron, the symmetry group has two orbits on the flags,
and at most two orbits on the vertices, edges, and faces. Note that the helix-faced
chiral polyhedra discussed in the previous section are examples of infinite regular
polyhedra of index 2.

The finite regular polyhedra of index 2 were recently enumerated in Cutler-
Schulte [9] and Cutler [8] (see also Wills [38]). The following theorem summarizes
the results.

Theorem 5. Up to similarity, there are exactly 22 infinite families of regular
polyhedra of index 2 with vertices on two orbits under the symmetry group, where
two polyhedra belong to the same family if they differ only in the relative size of
the spheres containing their vertex orbits. In addition, up to similarity, there are
exactly 10 (individual) polyhedra with vertices on one orbit under the symmetry
group.

In describing the polyhedra, we slightly abuse terminology and say that a
polyhedron K is of type fp; qgr if the underlying regular map has (Schläfli) type
fp; qg and Petrie polygons of length r . Note here that we are not requiring the map to
be the universal regular map of type fp; qg with Petrie polygons of length r (denoted
fp; qgr in [7]). However, in some case the map actually is universal (see [10]).

Table 5 records the 22 infinite families of polyhedra by combinatorial isomor-
phism type. For example, the last entry in row 5 indicates that there are 2 infinite
families with polyhedra isomorphic to Gordan’s (universal) map f4; 5g6. The third
column gives the name of the map in the notation of Conder [4] (when applicable),
with R or N , respectively, indicating an orientable or non-orientable regular map;
the number before the period is the genus, and an asterisk indicates the dual. The
polyhedra in these 22 families have their vertices located at those of a pair of similar,
aligned or opposed, Platonic solids with the same symmetry group. There are
respectively 4, 2 and 16 families with full tetrahedral, octahedral, and icosahedral
symmetry. The symmetry group is face-transitive in each case, and each polyhedron
is orientable. Among all polyhedra (in all families), there are just two polyhedra
with planar faces. Figure 4 shows one face of a regular polyhedron of index 2 and
type f10; 5g6 belonging to one of the four families in the last row of Table 5.

The 10 (individual) regular polyhedra of index 2 with vertices on one orbit
are listed in Table 6. Each has full icosahedral symmetry. There are orientable
and non-orientable examples. Figure 4 depicts one face of the planar-faced regular
polyhedron of index 2 and type f6; 6g6 listed in the first row of Table 6.



342 D. Pellicer and E. Schulte

Table 5 The 22 infinite
families of regular polyhedra
of index 2 with two vertex
orbits, listed by combinatorial
isomorphism type. The
polyhedra in the first two
rows have full tetrahedral
symmetry, and those in the
third row full octahedral
symmetry; all others have full
icosahedral symmetry

Type Face vector
fp; qgr .f0; f1; f2/ Map # Families

f4; 3g6 .8; 12; 6/ Sphere 2
f6; 3g4 .8; 12; 4/ Torus 2
f6; 4g6 .12; 24; 8/ R3:4� 2
f10; 3g10 .40; 60; 12/ R5:2� 4
f4; 5g6 .24; 60; 30/ R4:2 2
f6; 5g4 .24; 60; 20/ R9:16� 2
f6; 5g10 .24; 60; 20/ R9:15� 4
f10; 5g6 .24; 60; 12/ R13:8� 4

Fig. 4 Two regular polyhedra of index 2. The polyhedron on the left is a representative of one
of the four infinite families of type f10; 5g6 with two vertex-orbits; its vertices lie on a pair of
concentric icosahedra. The planar-faced polyhedron on the right has type f6; 6g6 and one vertex-
orbit; its vertices are those of a dodecahedron. Only one face is shown in each case; the other faces
are obtained by applying all icosahedral or dodecahedral symmetries

Table 6 The 10 (individual)
regular polyhedra of index 2

with one vertex orbits. Each
has full icosahedral symmetry

Type Face vector
fp; qgr .f0; f1; f2/ Map Notes

f6; 6g6 .20; 60; 20/ R11:5 Planar faces,
self-dual map

f6; 6g6 .20; 60; 20/ N22:3 Face transitive
f4; 6g5 .20; 60; 30/ N12:1

f5; 6g4 .20; 60; 24/ R9:16 Planar faces
f6; 4g5 .30; 60; 20/ N12:1�

f5; 4g6 .30; 60; 24/ R4:2� Planar faces
f4; 6g10 .20; 60; 30/ R6:2

f10; 6g4 .20; 60; 12/ N30:11�

f6; 4g10 .30; 60; 20/ R6:2�

f10; 4g6 .30; 60; 12/ N20:1�
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9 Conclusions

The recent history of symmetric structures in Euclidean 3-space E
3 suggests a

rich variety of objects yet to be discovered. All geometrically regular polygonal
complexes (including polyhedra), and all regular 4-polytopes, in Euclidean 3-space
have now been classified; by contrast, little is known about polygonal complexes
and 4-polytopes with slightly less symmetry. Two natural open questions concern
the enumeration of all 2-orbit polyhedra and all edge-transitive polyhedra in E

3. It
appears more challenging to widen the scope of these problems to general polygonal
complexes. A good starting point in this direction is a detailed classification of the
finite 2-orbit, or edge-transitive, polygonal complexes that are not polyhedra; or a
proof that such complexes cannot exist.

Significant progress has been made in the theory of realizations (in any dimen-
sion) for regular polytopes of any rank, mostly by McMullen; the state of the art
will be summarized in his forthcoming monograph on “Geometric Regular Poly-
topes” [22], but many results can also be found in [24, Chapter 5]. However, little
is known about realizations of other kinds of polytopes or polygonal complexes.
The complete enumeration of particularly interesting families of such objects will
greatly contribute to our basic understanding of geometric realizations of incidence
structures.
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