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Abstract We review some recent results in the generic rigidity theory of planar
frameworks with forced symmetry, giving a uniform treatment to the topic. We also
give new combinatorial characterizations of minimally rigid periodic frameworks
with fixed-area fundamental domain and fixed-angle fundamental domain.
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1 Introduction

The Maxwell-Laman Theorem is the prototypical result of combinatorial rigidity
theory.

Theorem 1 ([19, 29]). A generic bar-joint framework in the plane is minimally
rigid if and only if the graph defined by the frameworks edges has n vertices
m D 2n�3 edges, and, for all subgraphs on n0 vertices and m0 edges, m0 � 2n0�3.
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The key feature of this, and all such “Maxwell-Laman-type results” is that, for
almost all geometric data, rigidity is determined by the combinatorial type and can
be decided by efficient combinatorial algorithms.

1.1 Some Generalizations

Finding generalizations of the Maxwell-Laman Theorem has been the motivation
for a lot of progress in the field. The body-bar [49], body-bar-hinge [49, 51], and
panel-hinge [17] frameworks have a rich generic theory in all dimensions. Here
the “sparsity counts” are of the form m0 � Dn0 � D, where D is the dimension
of the d -dimensional Euclidean group. On the other hand, various elaborations of
the planar bar-joint model via pinning [6, 22, 35], slider-pinning [18, 46], direction-
length frameworks [44], and other geometric restrictions like incident vertices [8] or,
of more relevance here symmetry [41,42], have all shed more light on the Maxwell-
Laman Theorem itself.

In another direction, various families of graphs and hypergraphs defined by
heriditary sparsity counts of the form m0 � kn0 � `0 have been studied in terms
of combinatorial structure [20], inductive constructions [7, 20], sparsity-certifying
decompositions [45, 51] and linear representability [47], [52, Appendix A] proper-
ties. Running through much of this work is a matroidal perspective first introduced
by Lovász-Yemini [23].

While much is known about .k; `/-sparse graphs and hypergraphs, the parameter
settings that yield interesting rigidity theorems seem to be somewhat isolated,
despite the uniform combinatorial theory and many operations connecting different
sparsity families.

1.2 Forced Symmetry

For the past several years, the rigidity and flexibility of frameworks with additional
symmetry has received much attention,1 although it also goes back further. Broadly
speaking, there are two approaches to this: incidental symmetry, in which one
studies a framework that may move in unrestricted ways but starts in a symmetric
position [10, 15, 16, 32, 41, 42]; and forced symmetry [4, 24–26, 37, 39] where a
framework must maintain symmetry with respect to a specific group throughout
its motion. Forced symmetry is particularly useful as a way to study infinite
frameworks2 arising in applications to crystallography [36, 50].

1See, e.g., the recent conferences [9, 21, 40].
2Infinite frameworks with no other assumptions can exhibit quite complicated behavior [33].
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In a sequence of papers [24–26], we pioneered much of the generic and
combinatorial rigidity theory for the forced-symmetric frameworks in the plane. The
basic setup we consider is as follows: we are given a group � that acts discretely
on the plane by Euclidean isometries, a graph QG D . QV ; QE/, and a � -action ' on QG
with finite quotient that is free on the vertices and edges. A (realized) � -framework
QG.p; ˚/ is given by a point set p D .pi /i2 QV and a representation ˚ of � by

Euclidean isometries, with the compatibility condition

p� �i D ˚.�/ � pi (1)

holding for all � 2 � and i 2 QV .
Intuitively, the allowed continuous motions through QG.p; ˚/ are those that

preserve the lengths and connectivity of the bars, and symmetry with respect to
� , but the particular representation ˚ is allowed to flex. When the only allowed
motions are induced by Euclidean isometries, a framework is rigid, and otherwise it
is flexible.

The combinatorial model for � -frameworks is colored graphs, which we
describe in Sect. 2. These efficiently capture some canonical � -framework
invariants relating to how much flexibility from the group representation ˚ a
sub-framework constrains. Our combined theorems can be described uniformly as
follows:

Theorem 2 ([24–26]). Let � be one of:

• Z
2, acting on the plane by translation

• Z=kZ, for k 2 N, k � 2 acting on the plane by an order k rotation around the
origin

• Z=2Z, acting on the plane by a reflection
• A crystallographic group generated by translations and a rotation.

A generic � -framework QG.p; ˚/ is minimally rigid if and only if the associated
colored quotient graph .G;�/ has n vertices, m edges and:

• m D 2nC teich�.� / � cent.� /

• For all subgraphs G0 on n0 vertices, m0 edges, with connected components Gi

that have �-image �i ,

m0 � 2n0 C teich�.�.G0// �
X

i

cent.� 0
i / (2)

where �.G0/ is the translation subgroup associated with � 0
i .

(See Sect. 2 for definitions of teich� and cent.) Theorem 2 gives a generic rigidity
theory that is: (1) Combinatorial; (2) Computationally tractable; (3) Applica-
ble to almost all frameworks; (4) Applicable to a small geometric perturbation
of all frameworks. In other words, it carries all of the key properties of the
Maxwell-Laman-Theorem to the forced symmetry setting.
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1.3 Results and Roadmap

The classes of colored graphs appearing in Theorem 2 are a new, non-trivial,
extension of the .k; `/-sparse families that had not appeared before. The proof
of Theorem 2 relies on a direction network method (cf. [46, 51]), and the papers
[24–26] develop the required combinatorial theory for direction networks. In this
paper, we focus more on frameworks, describing the colored graph invariants that
correspond to “Maxwell-type heuristics” and showing how to explicitly compute
them. Additionally, we study periodic frameworks in a bit more detail, and derive
several new consequences of Theorem 2: conditions for a periodic framework to fix
the representation of Z2 (Propositions 5 and 9), and, as a consequence, the Maxwell-
Laman-type Theorem 4 for periodic frameworks with fixed area fundamental
domain.

1.4 Some Related Works

We remark that Theorem 2 has subsequently been shown to hold in the case where
� is any dihedral group of order 2k where k is odd [14]. From examples in the same
preprint, it appears that the above heriditary sparsity condition, while necessary, fails
to be sufficient when k is even. Another subsequent preprint of note by Tanigawa
provides somewhat different characterizations of generic rigidity for the above
frameworks in Theorem 2 when � is orientation-preserving [48]. Note that all these
results are restricted to the plane, and in fact the problem of characterizing generic
rigidity of symmetric bar-joint frameworks in higher dimensions is no easier than
that in the nonsymmetric setting, a difficult and unsolved problem. However, some
partial results in the periodic case in higher dimensions have been obtained [5].

1.5 Notation and Terminology

We use some standard terminology for .k; `/-sparse graphs: a finite graph
G D .V;E/ is .k; `/-sparse if for all subgraphs on n0 vertices and m0 edges,
m0 � kn0 � `. If equality holds for all of G, then G is a .k; `/-graph; a subgraph
for which equality holds is a .k; `/-block and maximal .k; `/-blocks are .k; `/-
components. Edge-wise minimal violations of .k; `/-sparsity are .k; `/-circuits. If
G contains a .k; `/-graph as a spanning subgraph it is .k; `/-spanning. A .k; `/-
basis of G is a maximal subgraph that is .k; `/-sparse. We refer to .2; 3/-sparse
graphs by their more conventional name: Laman-sparse graphs.

In the sequel, we will define a variety of hereditarily sparse colored graph
families. We generalize the concepts of “sparse”, “block”, “component”, “basis”
and “circuit” in the natural way for any family of colored graphs defined by a
sparsity condition.
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2 The Model and Maxwell Heuristic

We now briefly review the degree of freedom heuristic that leads to the sparsity
condition (2). As is standard, we begin with the desired form:

#.constraints/ � #.total d.o.f./ � #.trivial motions/ (3)

What distinguishes the forced symmetric setting is that the r.h.s. depends, in an
essential way, on the representation ˚ of the symmetry group. Thus, we modify
(3) to

#.constraints/ � #.total non-trivial d.o.f./ � #.rigid motions preserving ˚/ (4)

2.1 Flexibility of Symmetry Groups and Subgroups

Let � be a group as in Theorem 2. We define the representation space Rep.� /

to be the set of all faithful representations ˚ of � by Euclidean isometries. The
Teichmüller space3 Teich.� / is the quotient Rep.� /=Euc.2/ of the representation
space by Euclidean isometries. We define teich.� / to be the dimension of Teich.� /.
For frameworks, the Teichmüller space plays a central role, since teich.� / gives the
total number of non-trivial degrees of freedom associated with representations of � .

Now let � 0 < � be a subgroup of � . The restricted Teichmüller space
Teich�.�

0/ is the image of the restriction map from � ! � 0 modulo Euclidean
isometries. Equivalently it is the space of representations of � 0 that extend to
representations of � . Its dimension is defined to be teich�.�

0/.
The invariant teich�.�

0/ measures how much of the flexibility of � can be
“seen” by � 0. In general, the restricted Teichmüller space of � 0 is not the same as
its (unrestricted) Teichmüller space. For instance, the Teichmüller space Teich.Z2/

has dimension 3, but the restricted Teichmüller space Teich�.Z
2/ has dimension 1

if � contains a rotation of order 3.

2.2 Isometries of the Quotient

Now let ˚ be a representation of � . The centralizer of ˚ is the subgroup of
Euclidean isometries commuting with ˚.� /. We define cent.� / to be the dimension
of the centralizer, which is independent of ˚ (see e.g. [24, Lemma 6.1]). An
alternative interpretation of the centralizer is that it is the isometry group of the
quotient orbifold R

2=� .

3We are extending the terminology “Teichmüller space” from its more typical usage for the group
Z
2 and lattices in PSL.2;R/. Our definition of Teich.Z2/ is non-standard since the usual one allows

only unit-area fundamental domains.
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2.3 Colored Graphs

The combinatorial model for a � -framework is a colored graph .G;�/,4 which is
a finite, directed graph G D .V;E/ and an assignment � D .�ij /ij2E of a group
element in � to each edge of G. The correspondence between colored graphs .G;�/

and graphs with a � -action . QG; '/ is a straightforward specialization of covering
space theory, and we have described the dictionary in detail in [24, Section 9]. The
important facts are:

• The data . QG; '/ and a selection of a representative from each vertex and edge
orbit determine a colored graph .G;�/.

• Each colored graph .G;�/ lifts to a graph QG with a free � -action by a natural
construction.

Together these mean that the colored graph .G;�/ captures all the information
in . QG; '/.

2.4 The Homomorphism �

Let .G;�/ be a connected colored graph, and select a base vertex b of G. The
coloring on the edges then induces a natural homomorphism � W �1.G; b/ ! � .
For a closed path P defined by the sequence of edges bi2; i2i3; : : : ; i`�1b, we have

�.P / D �bi2�i2i3 : : : �i`�1b;

where �ji is taken to be ��1
ij . The key properties of � are [24, Lemmas 12.1

and 12.2]:

• The quantities teich�.�.�1.G; b/// and cent.�.�1.G; b/// depend only on the lift
. QG; '/, so, in particular, they are independent of the choice of b.

• If G1;G2; : : : ; Gc , are the connected components of a disconnected colored graph
.G;�/, there is a well-defined translation subgroup �.G/ of G.

2.5 Derivation of the Maxwell Heuristic

We are now ready to derive the degree of freedom heuristic for � -frameworks.
Let .G;�/ be a � -colored graph with n vertices, m edges, connected components
G1;G2; : : : ; Gi , with �-images � 0

i . We fill in the template (4) for the associated
� -framework QG.p; ˚/:

4Colored graphs are also known as “gain graphs” or “voltage graphs” [53]. The terminology of
colored graphs originates from [36].
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Non-trivial degrees of freedom. There are two sources of flexibility:

(A) The group representation ˚ has, by definition, teich�.�.G// degrees of
freedom, up to Euclidean isometries. These are the non trivial degrees of ˚
“seen” by G.

(B) The coordinates of the vertices are determined by the location of one represen-
tative of each � -orbit and ˚ . There are n such orbits, for a total of 2n degrees
of freedom

Here is the guiding intuition for (A). We want to understand how the edge lengths
can constrain the representation ˚ . It is intuitively clear that if there is no pair of
points Qpi and Qp� �i in the same � -orbit that are also connected in the lift . QG; '/,
the framework cannot constrain ˚ at all. Thus, we are interested in accounting
for constraints arising from paths in . QG; '/ between pairs of points Qpi and Qp� �i ;
in .G;�/, this corresponds to a closed path P with �.P / D � .

This reasoning leads us to consider teich�.�/ of a subgroup generated by the
�-images of some closed paths in .G;�/. After some technical analysis, the correct
subgroup is discovered to be �.G/.

Rigid motions independent of ˚ . For each connected component of QG.p; ˚/

induced by Gi : there is a cent.� 0
i /-dimensional space of these for each Gi , since

any element of the centralizer of � 0
i preserves all the edge lengths and compatibility

with ˚ . Because the components are disconnected, these motions are independent
of each other.

3 Periodic Frameworks

A � -framework with symmetry group Z
2 is called a periodic framework [4]. In this

section, we specialize (2) to this case, and relate it to an alternate counting heuristic
from [26, Section 3].

3.1 Invariants for Z2

Representations of Z2 by translations have very simple coordinates: they are given
by mapping each of the generators .1; 0/ and .0; 1/ to a vector in R

2. Thus, the space
of (possibly degenerate) representations is isomorphic to the space of 2�2 matrices
with real entries. Given such a matrix L and � 2 Z

2, the translation representing
� is simply L � � . Because of this identification, we denote realizations of periodic
frameworks by QG.p;L/, and call L the lattice representation.

Subgroups of Z
2 are always generated by k D 0; 1; 2 linearly independent

vectors; given a subgroup, we define its rank to be the minimum size of a generating
set. To specify a representation of a subgroup � 0 < Z

2, we assign a vector in R
2 to



234 J. Malestein and L. Theran

each of the k generators of � 0. Such a representation always extends to a faithful
representation of Z2. Thus, we see that the dimension of the space of representations
of Z2 restricted to � 0 is 2k.

The quotient of the representation space of Z2 by Euc.2/ is also straightforward
to describe. Each point has a representative L such that L � .1; 0/ D .�; 0/ for some
real scalar �. From this, we get:

Proposition 1. Let � 0 < Z
2 be a subgroup of Z2 with rank k. Then teichZ2 .� 0/ D

maxf2k � 1; 0g.
Finally, we compute the dimension of the centralizer of a subgroup � 0. If � 0 is

trivial, then the centralizer is the entire 3-dimensional Euclidean group. If � 0 is rank
1, then it is represented by a translation t1.p/ D pC t1, which commutes with other
translations and reflections or glides fixing a line in the direction t1. For the rank 2

case, the centralizer is just the translation subgroup of Euc.2/. We now have:

Proposition 2. Let � 0 < Z
2 be a subgroup of Z2 with rank k. Then

cent.� 0/ D
(
3 if k = 0

2 if k � 1

3.2 The Homomorphism � for Z2

Now we turn to associating a colored graph .G;�/ with a subgroup of Z2. This is
simpler than the general case because Z

2 is abelian, so we may define it as a map
� W H1.G;Z/ ! Z

2, as was done in [26]. Here are the relevant facts:

Proposition 3. Let .G;�/ be a colored graph. Then the rank of the �-image is
determined by the values of � on any homology (alternatively, cycle) basis of G,
and thus � is well-defined when G has more than one connected component.

3.3 Colored-Laman Graphs

With Propositions 1–3, the colored graph sparsity counts (2) from Theorem 2
specializes, for a Z

2-colored graph to:

m0 � 2n0 C maxf2k � 1; 0g � 3c00 � 2c0�1 (5)

where k is the rank of the Z
2-image of .G;�/, c00 is the number of connected

components with trivial Z2-image and c0�1 is the number of connected components
with non-trivial Z

2-image (i.e., k � 1). This gives a matroidal family [26,
Lemma 7.1], and we define the bases to be colored-Laman graphs.
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3.4 An Alternative Sparsity Function

A slightly different counting heuristic for a periodic framework with colored
quotient graph .G;�/ having n vertices, m edges, c connected components and
�-image with rank k is as follows:

• There are 2n variables specifying the points, and 2k variables giving a represen-
tation of the �-image.

• To remove Euclidean isometries that move the points and the lattice representa-
tion together, we pin down a connected component.

• Each of the remaining connected components may translate independently of
each other.

Adding up the degrees of freedom and subtracting three degrees of freedom for
pinning down one connected components and two each for translations of each other
connected component yields the sparsity condition from [26, Section 3, p. 14]

m0 � 2.n0 C k/ � 3 � 2.c0 � 1/ (6)

which is equivalent to the colored-Laman counts (5) by the following.

Proposition 4. Let .G;�/ be a Z
2-colored graph. Then .G;�/ satisfies (5) if and

only if it satisfies (6).

Proof. For convenience, we define the two functions:

f .G/ D 2nC maxf2k � 1; 0g � 3c0 � 2c�1 (7)

g.G/ D 2.nC k � c/ � 1 (8)

where g is easily seen to be equal to the r.h.s. of (6). The definitions imply readily
that f .G/ � g.G/, with equality when there is either one connected component in
G or all connected components have �-images with rank at least one. Thus, it will
be sufficient to show that, if .G;�/ has n vertices, m edges, and �-image of rank k,
and it is minimal with the property that f .G/ D m � 1, then g.G/ D m � 1.

Let .G;�/ have these properties, and let G have connected components Gi with,
ni vertices, mi edges, and �-images of rank ki . The minimality hypothesis implies
that for any Gi , the number of edges in G nGi is

m �mi � f .G nGi/ (9)

but, if ki is zero, the rank of the �-image of G n Gi is k, and mi � 2ni � 3.
Computing, we find that

m �mi � 2nC maxf2k � 1; 0g � 3c0 � 2c�1 C 1 � 2ni C 3

D 2.n � ni /C maxf2k � 1; 0g � 3.c0 � 1/ � 2c�1 C 1

D f .G nGi/C 1
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which is a contradiction to (9). We conclude that either there is one connected
component in G or that none of the ki were zero. In either of these cases f .G/ D
g.G/, which completes the proof. �

3.5 Example: Disconnected Circuits

The proof of Proposition 4 generalizes the folklore fact that, for Laman rigidity, we
get the same class of graphs from “m0 � 2n0 � 3” and the more precise “m0 �
2n0 � 3c0”. In the periodic setting the additional precision is required:

• There are periodic frameworks with dependent edges in different connected
components of the colored quotient graph [26, Figure 20].

• There are connected Z
2-colored graphs that are not colored-Laman sparse but

satisfy (5) for all induced or connected subgraphs [26, Figure 8].

The intuition leading to the discovery of (6) is that connected components of a
periodic framework’s colored graph interact via the representation L when they have
the same �-image.

3.6 Example: Disconnected Minimally Rigid Periodic
Frameworks

Another phenomenon associated with periodic rigidity that is not seen in finite
frameworks is that although the colored quotient graph .G;�/ must be connected
[26, Lemmas 4.2 and 7.3], the periodic framework QG.p; ˚/ does not need to be
as in [26, Figure 9]. To see this, we simply note that (5) depends only on the
rank of the �-image, which is unchanged by multiplying the entries of the colors
�ij on the edges .G;�/ by an integer q. On the other hand, this increases the
number of connected components by a factor of q2. There is no paradox because
periodic symmetry is being forced: once we know the realization of one connected
component of QG.p; ˚/, we can reconstruct the rest of them from the representation
˚ of Z2.

3.7 Conditions for Fixing the Lattice

The definition of rigidity for periodic frameworks implies that a rigid framework
fixes the representation L of Z

2 up to a Euclidean isometry. It then follows that
any periodic framework with a non-trivial rigid component must do the same.
However, this is not the only possibility. Figure 1 shows a framework without a rigid
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(1,0) (0,1)

(1,1)
a b

Fig. 1 A flexible periodic framework that determines the lattice representation: (a) the associated
colored graph; (b) the periodic framework

component that fixes the lattice representation and its associated colored graph. The
framework’s non-trivial motion is a rotation of each of the triangles. This example
is an instance of a more general phenomenon.

Proposition 5. Suppose that .G;�/ is a colored graph such that an associated
generic periodic framework QG.p; ˚/ fixes the lattice representation. Then .G;�/

contains a subgraph G0 with m edges and rank 2 �-image such that m D f .G0/,
where f is the sparsity function defined in (7).

Proof. We may assume without loss of generality that .G;�/ is colored-Laman
sparse. Let 	 2 Z

2 be a vector that is linearly independent of any �-image of
any rank 1 subgraph of .G;�/. Such an 	 exists since there are only finitely many
subgraphs of .G;�/. Because QG.p; ˚/ is generic and fixes the lattice, Theorem 2
implies that adding a self-loop ` with color 	 leads to a colored graph that is not
colored-Laman-sparse. This implies that there is a minimal subgraph .G0 C `;�/

of .G C `;�/ that is not colored-Laman sparse. The �-image of G0 must be rank 2

because, if it were not, the rank of the �-image of G0 C ` would be strictly larger
than that of G0, thus .G0 C `;�/ would again be colored-Laman sparse. It follows
that G0 satisfies the conclusion of the Proposition. �

4 Specializations of Periodic Frameworks

Because Theorem 2 is quite general, we can deduce Laman-type theorems for many
restricted versions of periodic frameworks from Theorem 2. In this section, we
describe three of these in detail and discuss connections with some others.

4.1 The Periodic Rigidity Matrix

The proof of Theorem 2 relies on giving a combinatorial characterization of
infinitesimal rigidity with forced symmetry constraints. The rigidity matrix, which is
the formal differential of the length equations plays an important role. For periodic
frameworks, this has the following form, which was first computed in [4]:
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0

@

i j L1 L2

: : : : : : : : : : : : : : : : : : : : :

ij : : : �	ij : : : 	ij : : : �1
ij 	ij �2

ij 	ij
: : : : : : : : : : : : : : : : : : : : :

1

A (10)

Here, 	ij D pj C L � �ij � pi is the vector describing a representative of an edge
orbit in QG.p;L/, which we identify with a colored edge of the quotient .G;�/.
There is one row for each edge in the quotient graph G. The column groups L1 and
L2 correspond to the derivatives with respect to the variables in the rows of L D�
a b

c d

�
. A framework is infinitesimally rigid if the rigidity matrix has corank 3, and

infinitesimally flexible with d degrees of freedom if the rigidity matrix has corank
3C d . A framework is generic if the rank of the rigidity matrix is maximal over all
frameworks with the same colored quotient graph. We will require some standard
facts about infinitesimal rigidity that transfer from the finite to the periodic setting.

Proposition 6. Let QG.p;L/ be a periodic framework with quotient graph .G;�/.
Then:

• For generic frameworks, infinitesimal rigidity and flexibility coincide with rigid-
ity and flexibility [4, 26].

• Infinitesimal rigidity and flexibility are affinely invariant [4], with non-trivial
infinitesimal motions mapped to non-trivial infinitesimal motions.

4.2 One Flexible Period

A very simple restriction of the periodic model is to consider frameworks with one
flexible period. The symmetry group is then Z, acting on the plane by translations;
we call such a framework a cylinder framework. We model the situation with
Z-colored graphs, and a single vector l 2 R

2 representing the period lattice. In this
case, the �-image of a colored graph always has rank 0 or 1.

We define a cylinder-Laman graph to be a Z-colored graph .G;�/ such that:
G has n vertices, 2n � 1 edges, and satisfies, for all subgraphs, on n0 vertices, m0
edges, �-image of rank k, c00 connected components with trivial �-image, and c01
connected components with non-trivial �-image:

m0 � 2n0 C k � 3c00 � 2c01 (11)

Comparing (11) with (5), we see readily:

Proposition 7. The family of cylinder-Laman graphs corresponds bijectively with
the maximal colored-Laman sparse graphs that have colors of the form �ij D .�; 0/.
Theorem 3. A generic cylinder framework is minimally rigid if and only if its
associated colored graph is cylinder-Laman.
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Proof. The rigidity matrix for a cylinder framework has the same form as (10),
except with the column group labeled L2 discarded. Proposition 7 and then
Theorem 2 yield the desired statement. �

4.3 Unit Area Fundamental Domain

Next, we consider the class of unit-area frameworks, for which the allowed motions
preserve the area of the fundamental domain of the Z

2-action on the plane induced
by the Z

2-representation L.
We define a unit-area-Laman graph to be a Z

2-colored graph .G;�/ with n

vertices, m D 2n edges, and satisfying, for all subgraphs on n0 vertices, m0 edges,
and c0k connected components with �-image of rank k

m0 � 2n0 � 3c00 if c02 D c01 D 0 (12)

m0 � 2n0 � 1 � 3c00 � 2.c01 � 1/ if c02 D 0 and c01 > 0 (13)

m0 � 2n0 � 3c00 � 2.c01 C c02 � 1/ if c02 > 0 (14)

Theorem 4. A generic unit-area framework is minimally rigid if and only if its
associated colored graph .G;�/ is unit-area-Laman.

Proof of Theorem 4. The proof is comprised of three key propositions. The first is a
combinatorial equivalence.

Proposition 8. A Z
2-colored graph .G;�/ is unit-area-Laman if and only if it is

colored-Laman-sparse and has n vertices, 2n edges, and no subgraph with rank 2

�-image and (5) holding with equality.

Proof of Proposition 8. Comparing (5) with (12,13) and (14), we see that unit-area-
Laman graphs are exactly those which, after following the construction used to
prove Proposition 5, become colored-Laman. �

The Maxwell direction. For the geometric part of the proof, we first derive the

rigidity matrix. If L D
�
a b

c d

�
, and we coordinatize infinitesimal motions as

.v;M/ with M D
�
p q

r s

�
, then this has the form of (10) plus one additional row

corresponding to the equation

h.d;�c;�b; a/; .p; q; r; s/i D 0 (15)

Violations of unit-area-Laman-sparsity come in two types, according to the rank k

of the �-image. For k D 0; 1, these are all violations of colored-Laman sparsity,
implying, by Theorem 2, a generic dependency in the unit-area rigidity matrix
that does not involve the row (15). For k D 2, Proposition 8 implies a new type
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of violation: a subgraph .G0;�/ with n0 vertices, �-image of rank 2, and f .G0/
edges. If such a subgraph forces a generic periodic framework to fix the lattice
representation L, then Eq. (15) is dependent on the equations corresponding to edge
lengths. The Maxwell direction then follows from the converse of Proposition 5.

Proposition 9. Let .G;�/ be a colored-Laman sparse graph with �-image of rank
2 and (5) met with equality. Then an associated generic framework has only motions
that act trivially on the Z

2-representation L.

Proof of Proposition 9. Let .G;�/ have n vertices, and c connected components.
It is sufficient to consider .G;�/ that is minimal with respect to the hypotheses
of the proposition, which forces every connected component to have �-image with
rank at least one. In this case, there are m D 2n C 3 � 2c edges. By Theorem 2,
the kernel of the rigidity matrix has dimension 2n C 4 � m D 2c C 1. Since the
connected components can translate independently, and the whole framework can
rotate, there are at least 2c C 1 dimensions of infinitesimal motions acting trivially
on the lattice. �

The Laman direction. Now let .G;�/ be a unit-area-Laman graph. Theorem 2
implies that any generic periodic framework on .G;�/ has a 4-dimensional space
of infinitesimal motions, and that any non-trivial infinitesimal motion is a linear
combination of 3 trivial ones and some other infinitesimal motion .v;M/. Since the
trivial infinitesimal motions act trivially on the lattice representation L, if .v;M/

does as well, then a generic framework on .G;�/ fixes the lattice representation.
By Propositions 8 and 5 this is impossible, implying that .v;M/ does not act trivially
on the lattice representation. However, it might preserve the area of the fundamental
domain, which would make (15) part of a dependency in the unit-area rigidity
matrix. The Laman direction will then follow once we can exhibit a generic periodic
framework on .G;�/ for which .v;M/ does not preserve the area of the fundamental
domain.

To do this, we recall, from Proposition 6, that a generic linear transformation

A D
�
a b

c d

�
(16)

preserves infinitesimal rigidity and sends the non-trivial infinitesimal motion .v;M/

to another non-trivial infinitesimal motion .v0;M0/, which is given by

v0i D A� � vi for all i 2 V.G/

M0 D A� � M
where

A� D det.A/�1

�
d �c
�b a

�
(17)

is the transpose of A�1. The main step is this next proposition which says that
satisfying (15) is not affinely invariant.
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Proposition 10. Let .G;�/ be a unit-area-Laman graph, and let QG.p;L/ be a
generic realization with L being the identity matrix, let A be a generic linear
transformation, and let the infinitesimal motions .v;M/ and .v0;M0/ be defined as
above. If .v;M/ preserves the area of the fundamental domain, then .v0;M0/ does
not.

Proof of Proposition 10. Because L is the identity, M has the form

M D
�
� 


� ��
�

(18)

either by direction computation, or by observing that it is an element of the Lie
algebra sl.2/, as discussed above, we know that �
 ¤ �, since .v;M/ does not act
trivially on L. In particular, 
 and � are not both zero. Plugging in to (17) we get

M0 D det.A/�1

�
d� � c� c�C d


a� � b� �a� � b


�
(19)

Plugging entries of M0 in to the l.h.s. of (15) to obtain:

det.A/�1
�
�.d2 C b2 � a2 � c2/ � .
C �/.ab C cd/

�
(20)

which is generically non-zero in the entries of A: the conditions for (20) to vanish
are that its columns are the same length and orthogonal to each other. �

We now observe that, by Proposition 6, there is a generic realization QG.p;L/
of a framework with unit-area-Laman colored quotient .G;�/ in which L is the
identity. If the non-trivial infinitesimal motion .v;M/ does not satisfy (15), we are
done. Otherwise, the hypothesis of Proposition 10 are met, and, thus, after applying
a generic linear transformation, the proof is complete. ut

4.4 Fixed-Lattice Frameworks

Another restricted class of periodic frameworks are fixed-lattice frameworks. These
are periodic frameworks, with the restriction that the allowed motions act trivially
on the lattice representation. This model was introduced by Whiteley [51] in the
first investigation of generic rigidity with forced symmetry. More recently, Ross
discovered the following5 complete characterization of minimal rigidity for fixed-
lattice frameworks.

5The sparsity counts we describe here are slightly different from what is stated in
[38, Theorem 4.2.1], but they are equivalent by an argument similar to that in the proof of
Proposition 4. This presentation highlights the connection to colored-Laman graphs.
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Theorem 5 ([37] and [38, Theorem 4.2.1]). Let QG.p/ be a generic fixed-lattice
framework. Then QG.p/ is minimally rigid if and only if the associated colored
graph .G;�/ has n vertices, m D 2n � 2 edges and, for all subgraphs G0 of G
with n0 vertices, m0 edges, c00 connected components with trivial �-image, and c0�1

connected components with non-trivial �-image:

m0 � 2n0 � 3c00 � 2c0�1 (21)

We define the family of graphs appearing in Theorem 5 to be Ross graphs. In [26],
we gave an alternate proof based on Theorem 2. The two steps are similar to the
ones used to prove Theorem 4, except we can take a “shortcut” in the argument by
simulating fixing the lattice by adding self-loops to the colored graph. The geometric
step is:

Theorem 6 ([26, Section 19.1]). Let QG.p/ be a generic fixed-lattice framework.
Then QG.p/ is minimally rigid if and only if the associated colored graph .G;�/ plus
three self-loops colored .1; 0/, .0; 1/, .1; 1/ added to any vertex is colored-Laman.

Theorem 5 then follows from the following combinatorial statement that generalizes
an idea of Lovász-Yemini [23] and Recski [34] (cf. [12, 13]).

Proposition 11 ([26, Lemma 19.1]). A colored graph .G;�/ is a Ross graph if and
only if adding three self-loops colored .1; 0/, .0; 1/, .1; 1/ to any vertex results in a
colored-Laman graph.

4.5 Further Connections

Theorems 3 and 4 suggest a more general methodology for obtaining Maxwell-
Laman-type theorems for restrictions of periodic frameworks:

• Add an equation that restricts the allowed lattice representations L.
• Identify which generic periodic frameworks are the maximal ones that do not

imply the new restriction.

Our proof of Theorem 5 works this way as well: adding self-loops adds three
equations constraining the lattice representation. Another perspective is that we
are enlarging the class of trivial infinitesimal motions by forcing one or more
vectors into the kernel of the periodic rigidity matrix. The most general form of this
operation is known as the “Elementary Quotient” or “Dilworth Truncation”, and
it preserves representability of .k; `/-sparsity matroids [47], but obtaining rigidity
results (e.g., [23]) requires geometric analysis specific to each case. This section
gives a family of examples where we find new rigidity matroids from each other
using a specialized version of Dilworth Truncation.
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Ross [38, Section 5] has studied some restrictions of periodic frameworks as
generalizations of the fixed-lattice model. In this section we close the circle of ideas,
showing how to study them as specializations of the flexible-lattice model.

4.6 One More Variant

We end this section with one more variation of the periodic model. A fixed-
angle framework is defined to be a periodic framework where the allowed motions
preserve the angle between the sides of the fundamental domain.

Theorem 7. A generic fixed angle framework is minimally rigid if and only if its
associated colored graph is unit-area-Laman.

Proof Sketch. The steps are similar to the proof of Theorem 4. The new row in the
rigidity matrix corresponds to (in the same notation) the partial derivatives of the
equation:

�
.a; c/

jj.a; c/jj ;
.b; d/

jj.b; d/jj
�
D const (22)

so the new row in the rigidity matrix corresponds to:

˝
det.L/

�
cjj.b; d/jj2;�d jj.a; c/jj2; ajj.b; d/jj2;�bjj.a; c/jj2�; .p; q; r; s/˛ D 0

(23)

The Maxwell direction’s proof is exactly the same as for Theorem 4. For the Laman
direction, we again start with a generic framework where L is the identity. If the
non-trivial infinitesimal motion .v;M/ does not preserve (23), then we are done.
Otherwise, M has the form

M D
�

 �

�� �

�
(24)

with 
 and � not both zero, because M does not act trivially on L. We then construct
a new generic framework by applying a linear map

A D
�
1 b

0 d

�
(25)

A computation, similar to that for (20) yields

� b
�
b2
C d2
C �

�

jj.b; d/jj3 (26)

which is, generically, not zero. �
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5 Cone and Reflection Frameworks

The next cases of Theorem 2 are those of Z=2Z acting on the plane by a single
reflection and Z=kZ acting on the plane by rotation through angle 2�=k. The
sparsity invariants are particularly easy to characterize in these two cases:

• The Teichmüller space is empty, since any rotation center or reflection axis can
be moved on to another by an isometry.

• The centralizer is all of Euc.2/ for the trivial subgroup and otherwise consists of
rotation around a fixed center or translation parallel to the reflection axis.

Since the rank k of the �-image of a Z=kZ-colored graph is always zero or one, we
specialize (2) to obtain the sparsity condition for subgraphs on n0 vertices, m0 edges,
c00 connected components with trivial �-image and c01 connected components with
non-trivial �-image.

m0 � 2n0 � 3c00 � c01 (27)

We define the family of Z-colored graphs .G;�/ corresponding to minimally
rigid frameworks to be cone-Laman graphs. The name cone-Laman comes from
considering the quotient of the plane by a rotation through angle 2�=k, which is a
flat cone, as shown in Fig. 2. Cone-Laman graphs are closely related to .2; 1/-sparse
graphs [20], and in this section we use some sparse graph machinery to obtain
combinatorial results on them.

5.1 Some Background in .k; `/-Sparse Graphs

In this section, we relate cone-Laman graphs to Laman graphs, and we will
repeatedly appeal to some standard results about .k; `/-sparse graphs from [20].
In addition, we will require:

1

1

a

b

Fig. 2 Figures from [1]. (a) A cone-Laman graph. (b) A realization of (a) as a framework in a
cone with opening angle 2�=3
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Proposition 12. Let G be a .2; 1/-graph. If there is exactly one .2; 2/-circuit in
G, then G is .2; 2/-spanning. Otherwise, G is not .2; 2/-spanning and the .2; 2/-
circuits in G are vertex-disjoint.

Proof. Let G have n vertices. First assume that G has exactly one .2; 2/-circuit.
Then G is a .2; 2/-sparse graph G0 plus one edge; since G has 2n � 1 edges, G0
is a .2; 2/-graph. Otherwise there is more than one .2; 2/-circuit. Pick a .2; 2/-
basis G0 of G. In this case G0 does not have enough edges to be a .2; 2/-graph,
so it decomposes, by [20, Theorem 5], into vertex-disjoint .2; 2/-components that
span all of the edges in G n G0. Because G is .2; 1/-sparse, it follows that each
.2; 2/-component spans at most one edge of G n G0, and thus at most one .2; 2/-
circuit. We have now shown that the vertex sets of the .2; 2/-circuits in G are each
contained in a different .2; 2/-component of G0. �

5.2 Cone-Laman vs. Cylinder-Laman

By comparing the cylinder-Laman counts (11) with the cone-Laman counts (27), we
can see that every cylinder-Laman graph, interpreted as having Z=kZ colors, is also
cone-Laman for k large enough. However, the two classes are not equivalent. One
can see this geometrically by considering a colored graph with two disconnected
vertices and a self-loop with the color 1 on each vertex: this is evidently dependent
in the cylinder, and independent in the cone. The conclusion is that the interplay
between teich�.�/ and cent.�/, can yield two different, geometrically interesting
sparse colored families on .2; 1/-graphs. The combinatorial relation is:

Theorem 8. A Z-colored graph .G;�/ is cylinder-Laman if and only if it is cone-
Laman when interpreted as having Z=kZ-colors for a sufficiently large k and G is
.2; 2/-spanning.

Proof. The only difficult thing to check is that a cylinder-Laman graph .G;�/ is
.2; 2/-spanning. Assuming that G is not .2; 2/-spanning, Proposition 12 supplies
two vertex-disjoint .2; 1/-blocks. If the union spans n0 vertices, there are 2n0 � 2

edges, which violates (11). �

5.3 Connections to Symmetric Finite Frameworks

The following theorem of Schulze is superficially similar to Theorem 2 for k D 3:

Theorem 9 ([42, Theorem 5.1]). Let G be a Laman-graph with a free Z=3Z action
'. Then a generic framework embedded such that ' is realized by a rotation through
angle 2�=3 is minimally rigid.
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We highlight this result to draw a distinction between forced and incidental
symmetry: while Theorem 9 is related to Theorem 2, it is not implied by it. The
issue is that while infinitesimal motions of the cone-framework lift to infinitesimal
motions, only symmetric infinitesimal motions of the lift project to infinitesimal
motions of the associated cone-framework. Thus, from Theorem 2, we learn that
the lift of a generic minimally rigid cone framework for k D 3 has no symmetric
infinitesimal motion as a finite framework, but there may be a non-symmetric motion
induced by the added symmetry. An interesting question is whether the natural
generalization of Schulze’s Theorem holds:

Question 1. Let k > 3, and let .G; '/ be a graph with a free Z=kZ-action. Are
generic frameworks with Z=kZ-symmetry rigid if and only if G is Laman-spanning
and its colored quotient is cone-Laman-spanning?

That G must be Laman-spanning is clear. On the other hand, the discussion
above and Theorem 2 imply that to avoid a symmetric non-trivial infinitesimal
motion, a generic Z=kZ-symmetric finite framework must have cone-Laman-
spanning quotient. Ross, Schulze and Whiteley [39] and Schulze and Whiteley
[43] use this same idea in a number of interesting 3-dimensional applications. The
graphs described in the question are a family of simple .2; 0/-graphs; simple .2; 1/-
graphs have recently played a role in the theory of frameworks restricted to lie in
surfaces embedded in R

3 [30, 31].

5.4 The Lift of a Cone-Laman Graph

The lift . QG; '/, defined in Sect. 2.3, of a Z=kZ-colored graph is itself a finite graph
.G; '/ with a free action by Z=kZ. For k � 3 prime, cone-Laman graphs have a
close connection to Laman graphs.

Proposition 13 ([1, Lemma 6]). Let k � 3 be prime. A Z=kZ-colored graph is
cone-Laman if and only if its lift .G; '/ has as its underlying graph a Laman-sparse
graph G with Qn vertices and 2 Qn � k edges.

As noted in [1], this statement is false for k D 2, so while we can relax the
hypothesis somewhat at the expense of a more complicated statement, they cannot
all be removed.

Although it is simple, Proposition 13 is surprisingly powerful, since it shows
that one can study cone-Laman graphs using all the combinatorial tools related to
Laman graphs. Proposition 13 depends in a fundamental way on the fact that cone-
Laman graphs have 2n � 1 edges, and it does not have a naive generalization to
colored-Laman or unit-area-Laman graphs.

Question 2. What are the Z
2-colored graphs .G;�/ with the property that every

finite subgraph of the periodic lift . QG; '/ is Laman-sparse?
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We expect that this should be a more general family than unit-area-Laman graphs.
On the other hand, it has been observed by Guest and Hutchinson [11] that (in our
language) the lift of a colored-Laman graph is not Laman-sparse.

6 Groups with Rotations and Translations

The final case of Theorem 2 is that of crystallographic groups acting discretely and
cocompactly by translations and rotations. It is a classical fact [2, 3] that all such
groups other than Z

2 are semi-direct products of the form

�k WD Z
2 Ì Z=kZ

where k D 2; 3; 4; 6. The action on Z
2 by the generator of Z=kZ is given by the

following table.

k 2 3 4 6

Matrix

��1 0

0 �1

� �
0 �1

1 �1

� �
0 �1

1 0

� �
0 �1

1 1

�

6.1 The Quantities teich.�/ and cent.�/ for Subgroups

For any discrete faithful representation ˚ W �k ! Euc.2/, it is a (non-obvious)
fact that for any element t 2 Z

2 in �k , the image ˚.t/ is necessarily a translation,
and for any r 2 �k n Z

2, the image ˚.r/ is necessarily a rotation. Consequently,
we respectively call such elements of �k translations and rotations, and we call
�.�k/ D Z

2 the translation subgroup of �k . For any subgroup � 0 < �k , its
translation subgroup is �.� 0/ D � 0 \�.�k/.

Let ˚ be a representation of �k . In the cases k ¤ 2, we must have ˚.�.�k//

preserved by an order k rotation, and so the image of �.�k/ is determined by the
image of a single nontrivial t 2 �.�k/. Furthermore, by acting on ˚ by a rotation in
Euc.2/, we can always obtain a new representation ˚ 0 such that ˚.t/ has translation
vector .�; 0/ for some � 2 R. Consequently, we have shown the following.

Proposition 14. Let � 0 be a subgroup of �k for kD3; 4; 6. Then, teich�k
.�.� 0//D

1 if �.� 0/ is nontrivial and is 0 otherwise.

In the case of k D 2, it turns out that since order 2 rotations preserve all lattices,
this puts no constraint on how ˚ embeds �.�2/. Consequently, we have teich values
similar to the periodic case.
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Proposition 15. Let � 0 be a subgroup of �2. Then, teich�k
.�.� 0// D max.2` �

1; 0/ where ` D rk.�.� 0//.

The dimension of the centralizer, similarly, is concrete and computable. If a
subgroup contains a translation t , then ˚.t/ commutes precisely with translations
of Euc.2/. If a subgroup � 0 of �k is a cyclic subgroup of rotations, then ˚.� 0/ is
a group of rotations with the same rotation center, and it is easy to see that such a
group commutes precisely with the (1-dimensional) subgroup in Euc.2/ of rotations
with that center. Consequently, we obtain the following characterization of cent.

Proposition 16. Suppose that � 0 is a subgroup of �k . Then,

cent.� 0/ D

8
ˆ̂<

ˆ̂:

3 if � 0 is trivial
2 if � 0 contains only translations
1 if � 0 contains only rotations
0 if � 0 contains both rotations and translations

6.2 The Quantities teich.�/ and cent.�/ for Colored Graphs

For any �k-colored graph .G0;�/, we associate subgroups of �k . Suppose G

has components G0
1; : : : ; G

0
c and choose base vertices b1; : : : ; bc . We set � 0

i D
�.�1.G

0
i ; bi //, and

�.G1/ D h�.� 0
1 /;�.� 0

2 /; : : : ; �.� 0
c /i

The � -Laman sparsity counts are defined in terms of teich.�.G// and cent.� 0
i /.

Since we chose base vertices bi , one might worry that these quantities are not
well-defined. However, changing the base vertex in Gi has the effect of conjugating
� 0
i . In �k , conjugates of translations are translations and conjugates of rotations are

rotations, so cent.�/ is then well-defined by Proposition 16, and teich.�.G// for
k D 3; 4; 6 by Proposition 14. Indeed, for k D 3; 4; 6, teich.�.G// D 1 if any
�.� 0

i / is nontrivial and is 0 otherwise. In �2, all translation subgroups are normal,
so �.� 0

i / itself does not depend on the choice of base vertex.

6.3 Computing teich and cent for �2-Colored Graphs

A quick and simple algorithm exists to compute teich.�.G// and cent.� 0
i / which

relies on finding a suitable generating set for � 0
i . A generating set for �1.G

0
i ; bi / can

be constructed as follows. Find a spanning tree Ti of component Gi . Then for each
edge jk 2 Gi � Ti , let Pjk be the path traversing the (unique) path bi to j in Ti ,
then jk, and then the (unique) path k to bi in Ti . The Pjk ranging over jk 2 Gi�Ti

generate �1.G
0
i ; bi /, and so 	jk WD �.Pjk/ ranging over the same set generates � 0

i .
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Next, relabel the generators of � 0
i as rj;i ; tj;i where the rj;i are rotations and the

tj;i are translations. If there are only translations, no modifications are required and
�.� 0

i / D � 0
i . Otherwise, set t 0j;i D r1;i rj;i for j � 2. Since all rotations are order

2, the t 0j;i are all translations and � 0
i is generated by r1;i , the t 0j;i and the tj;i . At this

point, checking cent� 0
i is straightforward. Furthermore, one can show that �.� 0

i /

is generated by the t 0j;i and tj;i , and so �.G/ is generated by the t 0j;i and the tj;i over
all i and j . Then, computing rk.�.G// is basic linear algebra, and teich.�.G// is
given by Proposition 15.

6.4 Computing teich and cent for �k-Colored Graphs
for k ¤ 2

In this case, all that needs to be determined is whether each � 0
i contains rotations,

translations, or both. Compute generators rj;i ; tj;i for � 0
i as above. Then, � 0

i contains
a rotation if and only if there is at least one rj;i . The only real difficulty is
determining if � 0

i contains translations when the generators are all rotations. Any
group consisting entirely of rotations is cyclic (see, e.g., [24, Lemma 4.2]), and so it
suffices to compute the commutators r1;i rj;i r�1

1;i r
�1
j;i for j � 2. The group contains

no translations if and only if these commutators are all trivial.
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