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Preface

This includes the study of the theory of rigidity as applied to discrete objects
such as bar and joint frameworks, tensegrities, body and bar frameworks especially
including such symmetric objects, periodic frameworks, and the combinatorics
when the objects are symmetric. When the configuration of points that define
the object is generic, the rigidity properties reduce to combinatorial properties
usually of some underlying graph. When the object is symmetric, it automatically
becomes non-generic, but nevertheless it is possible to consider the case when
the configuration is generic modulo the symmetry group. This leads to a lot of
interesting and intricate theory. It is useful to keep in mind that there are two
approaches to a symmetric rigid object. Incidental rigidity is when the object is rigid
and symmetric, but it is not constrained to stay rigid under a flex. Forced rigidity is
when the object is rigid and symmetric, and the symmetry is part of constraints.
Both situations occur here.

Another part concerns symmetry as applied to abstract as well as geometric
objects. Central to this theme are polytopes, the generalizations of polygons and
polyhedra to higher rank (the abstract analogue of dimension). Several articles are
devoted to regular maps on surfaces, which are just polyhedra in a general sense.
These usually permit operations – replacing faces by different edge-circuits – that
change their combinatorial type, an important idea relating different maps. Such
operations can be applied in higher rank as well. Regular and chiral polytopes
(the latter roughly speaking half-regular) often correspond to interesting groups,
particularly simple ones; such connexions are explored in several papers. Variants
of regularity, further weakening the condition, also lead to interesting questions.
Closely related to polytopes are graphs and complexes; these are the subject of

v

The thematic program on Discrete Geometry and Applications took place at the
Fields Institute for Research in Mathematical Sciences in Toronto between July 1
and December 31, 2011. The papers included in this book are based on some
research conducted during the semester and on some of the lectures there, in
particular those related to the part of the program under the heading “Rigidity and
Symmetry”.



vi Preface

other articles. More metrical in scope are papers on volume in non-euclidean spaces,
symmetric configurations in the plane, and a concept of rigidity of polytopes that
provides a bridge to the previous part.

Ithaca, NY, USA Robert Connelly
Toronto, ON, Canada Asia Ivić Weiss

Walter Whiteley
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Volumes of Polytopes in Spaces
of Constant Curvature

Nikolay Abrosimov and Alexander Mednykh

Abstract We overview volume calculations for polyhedra in Euclidean, spherical
and hyperbolic spaces. We prove the Sforza formula for the volume of an arbitrary
tetrahedron in H3 and S3. We also present some results, which provide a solution
for the Seidel problem on the volume of non-Euclidean tetrahedron. Finally, we
consider a convex hyperbolic quadrilateral inscribed in a circle, horocycle or one
branch of equidistant curve. This is a natural hyperbolic analog of the cyclic
quadrilateral in the Euclidean plane. We find several versions of the Brahmagupta
formula for the area of such quadrilateral. We also present a formula for the area of
a hyperbolic trapezoid.

Keywords Volumes of polyhedra • Constant curvature spaces • Sforza formula
• Seidel problem • Brahmagupta formula

Subject Classifications: Primary 51M20; Secondary 51M25, 51M09, 52B15

1 Volumes of Euclidean Polyhedra

Calculating volumes of polyhedra is a classical problem, that has been well known
since Euclid and remains relevant nowadays. This is partly due to the fact that the
volume of a fundamental polyhedron is one of the invariants for a three-dimensional
manifold.

One of the first results in this direction was obtained by Tartaglia (1499–1557),
who had described an algorithm for calculating the height of a tetrahedron with

N. Abrosimov (�) • A. Mednykh
Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, Russia
e-mail: abrosimov@math.nsc.ru; mednykh@math.nsc.ru

R. Connelly et al. (eds.), Rigidity and Symmetry, Fields Institute
Communications 70, DOI 10.1007/978-1-4939-0781-6__1,
© Springer Science+Business Media New York 2014
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2 N. Abrosimov and A. Mednykh

some specified lengths of its edges. The formula which expresses the volume of an
Euclidean tetrahedron in terms of its edge lengths was given by Euler (see [53],
p. 256). The multidimensional analogue of this result is known as the Cayley–
Menger formula (see [50], p. 124).

Theorem 1 (Tartaglia, XVI AD). Let T be an Euclidean tetrahedron with edge
lengths dij , 1 � i < j � 4. Then the volume V D V.T / is given by the formula

288 V 2 D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

0 1 1 1 1

1 0 d212 d 213 d 214

1 d221 0 d223 d 224

1 d231 d 232 0 d234

1 d241 d 242 d 243 0

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

:

In the above relation the volume is evaluated as a root of the quadratic equation
whose coefficients are polynomials with integer coefficients. Surprisingly, but this
result can be generalized to an arbitrary Euclidean polyhedron. About 15 years ago,
I. Kh. Sabitov [42, 43] proved the corresponding theorem for any polyhedron in
R3. Then Robert Connelly, Idzhad Sabitov and Anke Walz gave the second proof
for general orientable 2-dimensional polyhedral surfaces using the theory of places
instead of resultants [13].

Theorem 2 (Sabitov [42]; Connelly, Sabitov, and Walz [13]). Let P be
Euclidean polyhedron with triangular faces and edge lengths dij . Then the volume
V.P / is a root of a polynomial whose coefficients depend on d2ij and combinatorial
type of P only.

Note that the explicit form of the above mentioned polynomial is known only in
some special cases, in particular for octahedra with symmetries [21]. On the other
hand, Theorem 2 can be used to prove the well-known Bellows conjecture stated by
R. Connelly, N. Kuiper and D. Sullivan [11].

Bellows conjecture (Connelly, Kuiper, Sullivan, late 1970s). The generalized
volume of a flexible polyhedron does not change when it is bending.

Recalling [42] we note that the generalized volume of an oriented geometrical
polyhedron is equal to the sum of volumes of consistently oriented tetrahedra with
a common vertex and with bases on the faces of the polyhedron. Bending of a
polyhedron is a continuous isometric deformation, provided the rigidity of the faces.

Cauchy’s rigidity theorem [8] states that a convex polyhedron with rigid faces is
itself rigid. For non-convex polyhedra this is not true; there are examples of flexible
polyhedra among them. The first example of a flexible polyhedron was constructed
by Bricard [7]. It was a self-intersecting octahedron. The first example of a flexible
polyhedron embedded into Euclidean 3-space was presented by Connely [10]. The
smallest example of such polyhedron is given by Steffen. It has 14 triangular faces
and 9 vertices (see Fig. 1).
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Fig. 1 Development of Steffen’s flexible polyhedron

A flexible polyhedron keeps the same combinatorial type and the same set of
edge lengths under bending. Then, by Theorem 2 the volume of this polyhedron can
take only a finite number of values corresponding to the roots of a polynomial. Since
the bending of a polyhedron is a continuous isometric deformation, the volume is
constant.

A few months ago a new result by A. A. Gaifullin [20] was published in arXiv.
He proved an analog of Theorem 2 for the generalized volume of a n-dimensional
polyhedron. In the spherical space the analog of Theorem 2 is not true (see [4])
while in the hyperbolic space the question is still open. One will see below that in
many cases the volume of a non-Euclidean polyhedron is not expressed in terms of
elementary functions.

2 Volumes of Non-Euclidean Tetrahedra

In the hyperbolic and spherical cases, the situation becomes more complicated.
Gauss, who was one of the creators of hyperbolic geometry, referred to the
calculation of volumes in non-Euclidean geometry as die Dschungel.

It is well known that a tetrahedron in S3 or H3 is determined by an ordered set
of its dihedral angles up to isometry of the space (see, e.g., [3]). Recall that in the
Euclidean case this is true up to simility.

2.1 Orthoschemes in S3 and H3

Volume formulas for non-Euclidean tetrahedra in some special cases has been
known since Lobachevsky, Bolyai and Schläfli. For example, Schläfli [46] found the
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Fig. 2 Orthoscheme
T D T .A; B; C / with
essential dihedral angles
A;B; C , all other angles

are
�

2

volume of an orthoscheme in S3. Recall that an orthoscheme is an n-dimensional
simplex defined by a sequence of edges .v0; v1/; .v1; v2/; : : : ; .vn�1; vn/ that are
mutually orthogonal. In three dimensions, an orthoscheme is also called a birect-
angular tetrahedron (see Fig. 2).

Theorem 3 (Schläfli [45]). Let T be a spherical orthoscheme with essential
dihedral angles A;B;C . Then the volume V D V.T / is given by the formula

V D 1

4
S.A;B;C /; where S

��

2
� x; y; �

2
� z
�

D OS.x; y; z/

D
1X

mD1

�
D � sin x sin z

D C sin x sin z

�m cos 2mx � cos 2my C cos 2mz � 1
m2

� x2 C y2 � z2;

andD � p

cos2 x cos2 z � cos2 y:

The function S.x; y; z/ appeared in Theorem 3 is called the Schläfli function.
The volume of a hyperbolic orthoscheme was obtained independently by Janos
Bolyai [6] and Nikolai Lobachevsky [26]. The following theorem represents a
result of Lobachevsky as a quite simple formula. In such form it was given by
H. S. M. Coxeter [14].

Theorem 4 (Lobachevsky [26]; Coxeter [14]). Let T be a hyperbolic orthoscheme
with dihedral angles A;B;C . Then the volume V D V.T / is given by the formula

V D i

4
S.A;B;C /, where S.A;B;C / is the Schläfli function.

J. Bolyai (see, e.g., [6]) found the volume of a hyperbolic orthoscheme in terms
of planar angles and an edge length. Consider a hyperbolic orthoscheme T with
essential dihedral angles along AC;CB;BD, and all other dihedral angles equal to
�

2
(Fig. 3).
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T D T .A; B; C / with
dihedral angles A;B; C

Theorem 5 (Bolyai [6]). Let T be a hyperbolic orthoscheme with planar angles
˛; ˇ; � and edge length z. Then the volume V D V.T / is given by the formula

V D tan �

2 tanˇ

zZ

0

u sinh u du
�

cosh2 u
cos2 ˛

� 1
�q

cosh2 u
cos2 �

� 1
:

2.2 Ideal Tetrahedra

An ideal tetrahedron is a tetrahedron with all vertices at infinity. Opposite dihedral
angles of an ideal tetrahedron are pairwise equal and the sum of dihedral angles at
the edges adjacent to one vertex is ACB C C D � (see Fig. 4).

The volume of an ideal tetrahedron has been known since Lobachevsky [26].
J. Milnor presented it in very elegant form [31].

Theorem 6 (Lobachevsky [26]; Milnor [31]). Let T be an ideal hyperbolic
tetrahedron with dihedral angles A;B and C . Then the volume V D V.T / is given
by the formula

V D �.A/C�.B/C�.C/;
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where �.x/ D �
xZ

0

log j2 sin t j dt is the Lobachevsky function.

More general case of tetrahedron with at least one vertex at infinity was
investigated by E. B. Vinberg [3].

2.3 General Hyperbolic Tetrahedron

Despite the fact that partial results on the volume of non-Euclidean tetrahedra
were known a volume formula for hyperbolic tetrahedra of general type remained
unknown until recently. A general algorithm for obtaining such a formula was
indicated by W.–Yi. Hsiang in [23]. A complete solution was obtained more than
10 years later. In paper by Korean mathematicians Y. Cho and H. Kim [9] proposed a
general formula. However, it was asymmetric with respect to permutation of angles.
The next advance was achieved by Japanese mathematicians. First, J. Murakami
and Y. Yano [36] proposed a formula expressing the volume by dihedral angles
in symmetric way. A year later, A. Ushijima [52] presented a simple proof of the
Murakami–Yano’s formula. He also investigated the case of a truncated hyperbolic
tetrahedron.

It should be noted that in all these studies the volume is expressed as a linear
combination of 16 dilogarithms or Lobachevsky functions. The arguments of these
functions depend on the dihedral angles of the tetrahedron, and an additional
parameter, which is the root of a quadratic equation with complex coefficients in
a sophisticated form.

The geometric meaning of this formula was explained by P. Doyle and G. Leibon
[18] in terms of Regge symmetry. A clear description of these ideas and a complete
geometric proof of this formula was given by Yana Mohanty [34]. In particular, she
was able to prove the equivalence of Regge symmetry and homogeneity (scissors
congruence) in the hyperbolic space [35].

In 2005, D. A. Derevnin and A. D. Mednykh [16] proposed the following integral
formula for the volume of a hyperbolic tetrahedron.

Theorem 7 (Derevnin and Mednykh [16]). Let T .A;B;C;D;E; F / be a com-
pact hyperbolic tetrahedron with dihedral angles A;B;C;D;E; F . Then the
volume V D V.T / is given by the formula

V D �1
4

z2Z

z1

log
cos ACBCCCz

2
cos ACECFCz

2
cos BCDCFCz

2
cos CCDCECz

2

sin ACBCDCECz
2

sin ACCCDCFCz
2

sin BCCCECFCz
2

sin z
2

d z ;

where z1 and z2 are the roots of the integrand satisfied the condition 0 < z2�z1 < �:
More precisely,
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z1 D arctan
k3

k4
� arctan

k1

k2
; z2 D � � arctan

k3

k4
� arctan

k1

k2
; where

k1 D � cosS � cos.ACD/ � cos.B C E/� cos.C C F / � cos.D C E C F / �
� cos.D CB C C/� cos.AC E C C/� cos.AC B C F / ;

k2 D sinS C sin.ACD/C sin.B C E/C sin.C C F /C sin.D C E C F /C
C sin.D C B C C/C sin.AC E C C/C sin.AC B C F / ;

k3 D 2 .sinA sinD C sinB sinE C sinC sinF / ;

k4 D
q

k21 C k22 � k23 ;
S D AC B C C CD CE C F :

2.4 Sforza Formula for Non-Euclidean Tetrahedron

Surprisingly, more than 100 years ago, in 1907, Italian mathematician Gaetano
Sforza (or Scorza in some of his papers) found a fairly simple formula for the
volume of a non-Euclidean tetrahedron. This fact has became widely known
following the discussion between the second author and J. M. Montesinos at the
conference in El Burgo de Osma (Spain) in August, 2006. Unfortunately, the
outstanding work of Sforza [48] written in Italian has been forgotten.

The original arguments by Sforza are based on some identity given by
H. W. Richmond [40] and the Schläfli formula. He also used the Pascal’s equation
[37] for minors of Gram matrix and some routine calculations. In this section we
provide a new proof of Sforza formula for the volume of an arbitrary tetrahedron in
H3 or S3. The idea of this proof belongs to authors, it was never published before.

Consider a hyperbolic (or a spherical) tetrahedron T with dihedral angles
A;B;C; D;E; F . Assume that A;B;C are dihedral angles at the edges adjacent
to one vertex and the respectively opposite dihedral angles areD;E;F (see Fig. 5).
Then the Gram matrix G.T / is defined as follows

G D

0

B
B
B
B
@

1 � cosA � cosB � cosF

� cosA 1 � cosC � cosE

� cosB � cosC 1 � cosD

� cosF � cosE � cosD 1

1

C
C
C
C
A

:

Denote by C D hcij ii;jD1;2;3;4 a matrix of cofactors cij D .�1/iCjGij , where
Gij is .i; j /-th minor of G.

In the following proposition we collect some known results about hyperbolic
tetrahedron (see, e.g., [52]).
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Fig. 5 Tetrahedron T D T .A; B; C;D;E; F/ in H3 or S3

Proposition 1. Let T be a compact hyperbolic tetrahedron. Then

(i) detG < 0I
(ii) ci i > 0; i 2 f1; 2; 3; 4gI

(iii) cij > 0; i ¤ j I i; j 2 f1; 2; 3; 4gI
(iv) cosh `ij D cijp

ci i cjj
;

where `ij is a hyperbolic length of the edge joining vertices i and j .

Further, we need the following assertion due to Jacobi ([39], Theorem 2.5.1,
p. 12).

Proposition 2 (Jacobi theorem). Let M D hmij ii;jD1;:::;n be a matrix and � D
detM is determinant of M . Denote by C D hcij ii;jD1;:::;n the matrix of cofactors
cij D .�1/iCj detMij , where Mij is .n� 1/� .n� 1/ minor obtained by removing
i -th row and j -th column of the matrix M . Then for any k, 1 � k � n � 1 we have

dethcij ii;jD1;:::;k D �k�1 dethmij ii;jDkC1;:::;n :

One of the main tools for volume calculations in H3 and S3 is the classical
Schläfli formula.

Proposition 3 (Schläfli formula). Let Xn be a space of constant curvature K .
Consider a family of convex polyhedra P in Xn depending on one or more
parameters in a differential manner and keeping the same combinatorial type. Then
the differential of the volume V D V.P / satisfies the equation

.n � 1/K dV D
X

F

Vn�2.F / d�.F /;
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where the sum is taken over all .n� 2/-facets of P , Vn�2.F / is .n� 2/-dimensional
volume of F , and �.F / is the interior angle along F .

In the classical paper by Schläfli [45] this formula was proved for the case of a
spherical n-simplex. For the hyperbolic case, it was obtained by H. Kneser [25] (for
more details, see also [3] and [32]). In the Euclidean case this formula reduces to
the identity 0 D 0.

Now we are able to prove the following theorem.

Theorem 8 (Sforza formula in H3). Let T be a compact hyperbolic tetrahedron
with Gram matrix G. Consider G D G.A/ as a function of dihedral angle A. Then
the volume V D V.T / is given by the formula

V D 1

4

AZ

A0

log
c34.A/�

p� det G.A/ sinA

c34.A/C
p� det G.A/ sinA

dA;

where A0 is a suitable root of the equation det G.A/ D 0 and c34 D c34.A/ is
.3; 4/-cofactor of the matrix G.A/.

Proof (Abrosimov, Mednykh). Let � D det G: By the Jacobi theorem
(Proposition 2) applied to Gram matrix G for n D 4 and k D 2 we obtain

c33c44 � c234 D �.1 � cos2 A/:

By the Cosine rule (Proposition 1, (iv)) we get cosh `A D c34p
c33c44

: Hence,

sinh `A D
q

cosh2 `A � 1 D
s

c234 � c33c44
c33c44

D
p�� sinAp

c33c44
:

Since exp.˙`A/ D cosh `A ˙ sinh `A we have

exp.˙`A/ D c34 ˙
p�� sinAp
c33c44

:

Hence,

exp.2 `A/ D exp.`A/

exp.�`A/ D
c34 C

p�� sinA

c34 �
p�� sinA

and

`A D 1

2
log

c34 C
p�� sinA

c34 �
p�� sinA

:
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By the Schläfli formula (Proposition 3) for V D V.T / we have

�dV D 1

2

X

˛

`˛ d˛; ˛ 2 fA;B;C;D;E; F g:

By assumption that angle A is variable and all other angles are constant, we get

�dV D 1

2
`A dA:

Note that detG ! 0 as A ! A0. Thus, V ! 0 as A! A0. Then integrating both
sides of the equation we obtain

V D
AZ

A0

�

�`A
2

�

dA D 1

4

AZ

A0

log
c34 �

p� detG sinA

c34 C
p� detG sinA

dA;

where the lower limit A0 is a suitable root of the equation detG.A/ D 0. �

In the following proposition we collect some known results about spherical
tetrahedron (see, e.g., [27]).

Proposition 4. Let T be a spherical tetrahedron. Then

(i) detG > 0I
(ii) ci i > 0; i D 1; 2; 3; 4I

(iii) cos `ij D cijp
ci i cjj

;

where `ij is a length in S3 of the edge joining vertices i and j .

The next theorem presents a spherical version of the Sforza formula.

Theorem 9 (Sforza formula in S3). Let T be a spherical tetrahedron with Gram
matrix G. Consider G D G.A/ as a function of dihedral angle A. Then the volume
V D V.T / is given by the formula

V D 1

4i

AZ

A0

log
c34.A/C i

p

det G.A/ sinA

c34.A/� i
p

det G.A/ sinA
dA;

where A0 is a suitable root of the equation det G.A/ D 0 and c34 D c34.A/ is
.3; 4/-cofactor of the matrix G.A/.

The proof is similar to one given in the hyperbolic case.
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3 Seidel Conjecture

In 1986, J. J. Seidel [47] conjectured that the volume of an ideal hyperbolic
tetrahedron can be expressed as a function of the determinant and the permanent
of its Gram matrix. Recall that the formula expressing the volume of such
tetrahedron in terms of dihedral angles has been known since Lobachevsky and
Bolyai (Theorem 6). In spite of this, the Seidel problem had not been solved for a
long time. Ten years later, a strengthened version of Seidel conjecture was suggested
by Igor Rivin and Feng Luo. They supposed that the volume of a non-Euclidean
tetrahedron (hyperbolic or spherical one) depends only on the determinant of its
Gram matrix. It was shown in [1] and [2] that the strengthened conjecture is false,
while Seidel conjecture is true within certain conditions.

Consider a non-Euclidean tetrahedron T with dihedral angles A;B;C;D;E; F
in S3 orH3 (Fig. 5). Denote vertices by numbers 1; 2; 3; 4. LetAij denote a dihedral
angle at the edge joining vertices i and j . For convenience, we set Aii D � for
i D 1; 2; 3; 4. It is well known [4] that, in the hyperbolic and spherical spaces, the
tetrahedron T is uniquely (up to isometry) determined by its Gram matrix

G D h� cosAij ii;jD1;2;3;4 D

0

B
B
@

1 � cosA � cosB � cosF
� cosA 1 � cosC � cosE
� cosB � cosC 1 � cosD
� cosF � cosE � cosD 1

1

C
C
A
:

Recall that the permanent of a matrixM D hmij iijD1;2;:::;n is defined by

perM D
nX

iD1
mij perMij ; per .mij / D mij ;

where Mij is the matrix obtained from M by removing i -th row and the j -th
column. Conditions for the existence of spherical and hyperbolic tetrahedra in terms
of Gram matrices are given in [27] and [52], respectively.

3.1 Strengthened Conjecture

In this section we provide a counterexample to the Seidel’s strengthened problem.
In the spherical case, the answer is given by the following theorem (see [1]).

Theorem 10 (Abrosimov [1]). There exists a one-parameter family of spherical
tetrahedra with unequal volumes and the same determinant of Gram matrix.

We prove this theorem by constructing such a family. Consider a tetrahedron
T .A;D/ with two opposite dihedral angles equaled to A and D, and the remaining

dihedral angles equaled to
�

2
(Fig. 6).
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A

D

Fig. 6 Tetrahedron
T D T .A;D/

It is easy to show that the volume of such a tetrahedron equals
AD

2
and the

determinant of its Gram matrix is detG D sin2 A sin2 D. Among all tetrahedra
T .A;D/ with 0 < A;D < � , we choose a family of tetrahedra

Tc.A;D/ D T
�

A; arcsin
c

sinA

�

whose Gram matrices have the same determinant detG D c2, where c is a constant
satisfying the inequalities 0 < c < minfsinA; sinDg.

The volume of such tetrahedra is given by equation

V.Tc/ D A

2
arcsin

c

sinA
:

Thus, it depends not only on the constant c, but also on the value of the free
parameter A.

We have constructed the required family of tetrahedra. In the hyperbolic case, we
have failed to construct an elementary counterexample to the Seidel’s strengthened
conjecture. Nevertheless, a similar theorem is also valid (see [2]).

Theorem 11 (Abrosimov [1]). There exists a one-parameter family of hyperbolic
tetrahedra with unequal volumes and the same determinant of Gram matrix.

The proof of this theorem is based on the following considerations. Consider any
hyperbolic tetrahedron T with dihedral angles A;B;C;D;E; F . Assume that the
anglesA;B;C are along the edges adjacent to one vertex, andD;E;F are opposite
to them. We fix all dihedral angles except two opposite ones, say A andD. Since the
set of hyperbolic tetrahedra is open (see [27, 52]), it follows that, varying A and D
within sufficiently small limits, we obtain hyperbolic tetrahedra. In the set T .A;D/
of such tetrahedra, we choose a family of tetrahedra Tc.A;D/ with the same Gram
determinant detG D c2 < 0. The latter condition means that the differential of the
function detG is zero. Since the angles A and D vary and the remaining angles are
fixed, it follows that

�d detG D 2c12 sinAdAC 2c34 sinD dD D 0;
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where cij is .i; j /-th cofactor of the matrix G. Due to this relation, we can treat the
angleD as a function of the angle A. We have

dD

dA
D � c12 sinA

c34 sinD
:

The derivative of the volume as a composite function of the angle A equals

dV

dA
D @V

@A
C @V

@D

dD

dA
:

According to classical Schläfli formula (Proposition 3), we have

@V

@A
D �`A

2
;
@V

@D
D �`D

2
;

where `A and `D are the lengths of the corresponding edges of the tetrahedron.
In turn, the lengths of the edges can be expressed in terms of dihedral angles

(see [30, 52])

`A D arccoth

p� detG sinA

c34
;

`D D arccoth

p� detG sinD

c12
:

Comparing these expressions and performing simple calculations, we obtain

dV

dA
D � tanh `A

2

�
`A

tanh `A
� `D

tanh `D

�

:

It is required in the theorem that the volume is varying according to parameter

A, i.e.,
dV

dA
¤ 0, which is equivalent to condition `A ¤ `D .

Thus, two sufficiently closed tetrahedra from the family Tc.A;D/ have the same
Gram determinant and unequal volume provided that `A ¤ `D . It is not hard to
construct an infinite family of tetrahedra satisfying the last condition forA ¤ D. For
example, this condition is satisfied by “almost symmetric” tetrahedra with angles
A ¤ D;B D E; and C D F . Recall that, for fixed c, the family Tc.A;D/ still
depends on one free parameter.

3.2 Solution of the Seidel Conjecture

The solution of the Seidel problem, which was posed in [47], is given by the
following theorem in [2].
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Theorem 12 (Abrosimov [2]). In each of classes of acute or obtuse tetrahedra
the volumes of ideal tetrahedra are determined uniquely by the determinant and
permanent of Gram matrix.1

It is known (see, e.g., [31]), that the opposite dihedral angles of an ideal
tetrahedron are equal and the sum of dihedral angles at the edges adjacent to one
vertex is AC B C C D � (Fig. 4).

Thus, we can take C D � � A� B . The Gram matrix has the form

G D

0

B
B
@

1 � cosA � cosB cos.AC B/

� cosA 1 cos.AC B/ � cosB
� cosB cos.AC B/ 1 � cosA

cos.AC B/ � cosB � cosA 1

1

C
C
A
:

We have

detG D �4 sin2 A sin2 B sin2.AC B/;

perG D 4C 4 cos2 A cos2 B cos2.AC B/:

To prove Theorem 12, we show that the dihedral angles of an ideal tetrahedron
are uniquely (up to a permutation) determined by detG and perG in each of the
cases: for acute angled tetrahedron and for obtuse angled tetrahedron.

Without loss of generality, we can assume that 0 < A � B � C D � � A � B .
Then the dihedral angles A;B are a priori acute, and the angle C is either acute or
obtuse. In the former case, the tetrahedron under consideration is acute-angled, and
in the latter case, it is obtuse-angled.

Let us introduce the new variables

x D sinA sinB; y D cosA cosB

and show that, for a fixed left-hand side, the solutions of the system of equations

�1
4

detG D x2.1 � .y � x/2/;
1

4
perG D y2.y � x/2 C 1

correspond to one tetrahedron (up to isometry) in each of the two cases mentioned
above.

Suppose that the system has a pair of different solutions .a; b/ and .x; y/. Then
we have

1By an obtuse tetrahedron we mean a tetrahedron with at least one dihedral angle >
�

2
.



Volumes of Polytopes in Spaces of Constant Curvature 15

a2.1 � .b � a/2/ D x2.1 � .y � x/2/;
b2.b � a/2 D y2.y � x/2:

The angle C being acute means that cosA cosB � sinA sinB D cosC < 0,
i.e., both solutions satisfy the inequalities b.b � a/ < 0 and x.x � y/ < 0. If the
angle C is obtuse, then the reverse inequality. This allows us to take a square root
in the second equation without loosing solutions:

a2.1 � .b � a/2/ D x2.1 � .y � x/2/;
b .b � a/ D y .y � x/:

Expressing x from the second equation and substituting the resulting expression
into the first one, we obtain a sixth-degree polynomial equation in y. Fortunately, it
decomposes into the linear factors and the biquadratic polynomial

.b � y/ � .b C y/ � �y4 � .a2 C a4 C 2 ab � 2 a3b � b2 C 2 ab3 � b4/ y2C
a4b2 � 4 a3b3 C 6 a2b4 � 4 ab5 C b6

� D 0:

Thus, all solutions can be we found in radicals. Substituting the expressions for
x and y in terms of dihedral angles, we see that different solutions of the system
correspond to the same ideal tetrahedronT .A;B;C / up to reordering of the dihedral
angles.

Note that, in Theorem 12, the assumption that the tetrahedron is either acute-
angled or obtuse-angled cannot be dispensed with. This is demonstrated by the
following example.

Example 1. Consider a pair of ideal tetrahedra, the obtuse-angled tetrahedron

T1.s; s; � � 2s/ and the acute-angled tetrahedron T2

�

t;
� � t
2

;
� � t
2

�

, where

s D arccos

r

2C
q

4C
p

170
p
17� 698

2
p
2

;

t D arccos
�1Cp

17C
p

�26C 10
p
17

8
:

The determinants and the permanents of the Gram matrices of these tetrahedra
coincide; they are

detG.T1/ D detG.T2/ D 107� 51p17
128

;

perG.T1/ D perG.T2/ D 163C 85
p
17

128
:
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At the same time, the volumes of the tetrahedra T1 and T2 are different and equal
0:847365 and 1:01483, respectively.

4 Heron and Brahmagupta Formulas

Heron of Alexandria (c. 60 BC) is credited with the following formula that relates
the area S of a triangle to its side lengths a; b; c

S2 D .s � a/.s � b/.s � c/s;

where s D .a C b C c/=2 is the semiperimeter. For polygons with more than
three sides, the side lengths do not in general determine the area, but they do if the
polygon is convex and cyclic (inscribed in a circle). Brahmagupta, in the seventh
century, gave the analogous formula for a convex cyclic quadrilateral with side
lengths a; b; c; d

S2 D .s � a/.s � b/.s � c/.s � d/;

where s D .a C b C c C d/=2: See [15] for an elementary proof. An interesting
consideration of the problem can be found in the Möbius paper [33]. Independently,
D. P. Robbins [41] and V. V. Varfolomev [55] found a way to generalize these
formulas. The main idea of both papers was to determine the squared area S2

as a root of an algebraic equation whose coefficients are integer polynomials
in the squares of the side lengths. See also [12, 19] and [44] for more detailed
consideration.

In the present section of our work we deal with the hyperbolic plane instead of
the Euclidean one. The hyperbolic plane under consideration is equipped with a
Riemannian metric of constant curvature k D �1. All necessary definitions from
hyperbolic geometry can be found in the book [3].

By definition, a cyclic polygon in the hyperbolic plane is a convex polygon
inscribed in a circle, horocycle or one branch of equidistant curve. Useful infor-
mation about cyclic polygons can be found in [56] and [57]. In particular, it is
shown in [56] that any cyclic polygon in the hyperbolic plane is uniquely determined
(up to isometry) by the ordered sequence of its side lengths. In addition, among
all hyperbolic polygons with fixed positive side lengths there exist polygons of
maximal area. Every such a maximal polygon is cyclic (see [57]).

The following four non-Euclidean versions of the Heron formula in the hyper-
bolic plane have been known for a long time.



Volumes of Polytopes in Spaces of Constant Curvature 17

Theorem 13. Let T be a hyperbolic triangle with side lengths a; b; c. Then the area
S D S.T / is given by each of the following formulas

(i) Sine of 1/2 Area Formula

sin2
S

2
D sinh.s � a/ sinh.s � b/ sinh.s � c/ sinh.s/

4 cosh2 . a
2
/ cosh2 . b

2
/ cosh2 . c

2
/

I

(ii) Tangent of 1/4 Area Formula

tan2
S

4
D tanh

� s � a
2

�

tanh

�
s � b
2

�

tanh
�s � c

2

�

tanh
� s

2

�

I

(iii) Sine of 1/4 Area Formula

sin2
S

4
D sinh. s�a

2
/ sinh. s�b

2
/ sinh. s�c

2
/ sinh. s

2
/

cosh . a
2
/ cosh . b

2
/ cosh . c

2
/

I

(iv) Bilinski Formula

cos
S

2
D cosh aC cosh b C cosh c C 1

4 cosh . a
2
/ cosh . b

2
/ cosh . c

2
/
:

The first two formulas are contained in the book [3] (p. 66). The third formula
can be obtained by the squaring of the product of the first two. The forth one was
derived by Stanko Bilinski in [5] (see also [57]).

It should be noted that the analogous formulas in spherical space are also known.
For example, the spherical version of (i) is called the Cagnoli’s Theorem (see [51],
sec. 100), (ii) is called the Lhuilier’s Theorem (see [51], sec. 102), (iii) and (iv) are
proven in [51] (sec. 103).

4.1 Preliminary Results for Cyclic Quadrilaterals

We recall a few well known facts about cyclic quadrilaterals. A convex Euclidean
quadrilateral with interior angles A;B;C;D is cyclic if and only if A C C D
B C D D � . A similar result for hyperbolic quadrilateral was obtained by
V. F. Petrov [38] and L. Wimmer [58]. They proved the following proposition.

Proposition 5. A convex hyperbolic quadrilateral with interior angles A;B;C;D
is cyclic if and only if AC C D B CD:
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aA
B

C

D
b

c

d e f

Fig. 7 Cyclic quadrilateral
Q with angles A;B; C;D,
where AC C D B CD

Note that the sum of angles of a hyperbolic quadrilateral is less then 2�: Hence,
for any cyclic hyperbolic quadrilateral we have AC C D B CD < �:

It was shown in [56] that a cyclic n-gon is uniquely up to isometry determined
by the lengths of its sides. Denote side and diagonal lengths of a quadrilateral as
indicated on Fig. 7. Then, in the Euclidean case, a quadrilateral is cyclic if and only
if ef D a c C b d: This is the Ptolemy’s theorem. A similar result for hyperbolic
quadrilateral is contained in the paper by J. E. Valentine [54].

Proposition 6. A convex hyperbolic quadrilateral with side lengths a; b; c; d and
diagonal lengths e; f is cyclic if and only if

sinh
e

2
sinh

f

2
D sinh

a

2
sinh

c

2
C sinh

b

2
sinh

d

2
:

An important supplement to the Ptolemy’s theorem is the following property
relating lengths of the sides and diagonals

e

f
D a d C b c

a b C c d
: (1)

Together with the Ptolemy’s theorem this equation allows us to express the diagonal
lengths of a cyclic quadrilateral by its side lengths.

It was noted in [22] that the above mentioned relationships between sides and
diagonals of a cyclic quadrilateral are also valid in the hyperbolic geometry when

(the length side) a is replaced by s.a/ D sinh
a

2
: In particular, formula (1) can be

rewritten in the following way.

Proposition 7. The side lengths a; b; c; d and diagonal lengths e; f of a cyclic
hyperbolic quadrilateral are related by the following equation

s.e/

s.f /
D s.a/s.d/C s.b/s.c/

s.a/s.b/C s.c/s.d/
:

By making use of Propositions 6 and 7 we derive the following formulas for the
diagonal lengths e; f of a cyclic hyperbolic quadrilateral. Then we have
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s2.e/ D s.a/s.d/C s.b/s.c/

s.a/s.b/C s.c/s.d/
.s.a/s.c/C s.b/s.d//; (2)

s2.f / D s.a/s.b/C s.c/s.d/

s.a/s.d/C s.b/s.c/
.s.a/s.c/C s.b/s.d//: (3)

Note that formulas (2) and (3) are valid also in the Euclidean and spherical
geometries. In these cases, instead of function s.a/ one should take the functions

s.a/ D a and s.a/ D sin
a

2
respectively. See [22] and [17] for the arguments in the

spherical case.
All the above propositions will be used in the next section to obtain a few versions

of the Brahmagupta formula for a cyclic hyperbolic quadrilateral.

4.2 Area of Cyclic Hyperbolic Quadrilateral

In this section we consider the four versions of the Brahmagupta formula for a cyclic
hyperbolic quadrilateral given by second author in [29]. They are generalizations of
the respective statements (i)–(iv) of Theorem 13.

In particular, the first statement (i) has the following analog.

Theorem 14 (Sine of 1=2 area formula). Let Q be a cyclic hyperbolic quadrilat-
eral with side lengths a; b; c; d . Then the area S D S.Q/ is given by the formula

sin2
S

2
D sinh.s � a/ sinh.s � b/ sinh.s � c/ sinh.s � d/

4 cosh2 a
2

cosh2 b
2

cosh2 c
2

cosh2 d
2

.1 � "/;

where " D sinh a
2

sinh b
2

sinh c
2

sinh d
2

cosh s�a
2

cosh s�b
2

cosh s�c
2

cosh s�d
2

and s D aC b C c C d

2
.

Note that the number " vanishes if d D 0. In this case, we get formula (i) again.
The second statement (ii) for the case of a hyperbolic quadrilateral has the

following form.

Theorem 15 (Tangent of 1=4 area formula). Let Q be a cyclic hyperbolic
quadrilateral with side lengths a; b; c; d . Then the area S D S.Q/ is given by
the formula

tan2
S

4
D 1

1 � " tanh
s � a
2

tanh
s � b
2

tanh
s � c
2

tanh
s � d
2

;

where s and " are the same as in Theorem 14.
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A B

C

D
c

d
b

a

Fig. 8 Circumscribed cyclic
quadrilateral Q with side
lengths a; b; c; d

It follows from Theorem 14 that for any a; b; c; d ¤ 0 we have 1 � " > 0 and
" > 0. Hence, 0 < " < 1. Taking into account these inequalities as an immediate
consequence of Theorems 14 and 15 we obtain the following corollary.

Corollary 1. For any cyclic hyperbolic quadrilateral the following inequalities
take a place

sin2
S

2
<

sinh.s � a/ sinh.s � b/ sinh.s � c/ sinh.s � d/
4 cosh2 . a

2
/ cosh2 . b

2
/ cosh2 . c

2
/ cosh2 . d

2
/

and

tan2
S

4
> tanh

�s � a
2

�

tanh

�
s � b
2

�

tanh
�s � c

2

�

tanh

�
s � d
2

�

:

By squaring the product of formulas in Theorems 14 and 15 we obtain the
following result. It can be considered as a direct generalization of the statement
(iii) in Theorem 13.

Theorem 16 (Sine of 1=4 area formula). Let Q be a cyclic hyperbolic quadrilat-
eral with side lengths a; b; c; d . Then the area S D S.Q/ is given by the formula

sin2
S

4
D sinh s�a

2
sinh s�b

2
sinh s�c

2
sinh s�d

2

cosh a
2

cosh b
2

cosh c
2

cosh d
2

;

where s D aC b C c C d

2
.

The analogous formula in spherical space can be obtained by replacing sinh and
cosh with sin and cos correspondingly (see [28], p. 182, proposition 5).

Consider a circumscribed quadrilateral Q with side lengths a; b; c; d (Fig. 8).
In this case we have s � a D c; s � b D d; s � c D a; s � d D b. As a result we
obtain the following assertion.
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Corollary 2 (Brahmagupta formula for bicentric quadrilateral). Let Q be a
bicentric (i.e. inscribed and circumscribed) hyperbolic quadrilateral with side
lengths a; b; c; d . Then the area S D S.Q/ is given by the formula

sin2
S

4
D tanh

�a

2

�

tanh

�
b

2

�

tanh
�c

2

�

tanh

�
d

2

�

:

The analogous formula in spherical space can be given by replacing tanh with
tan (see [28], p. 46). An Euclidean version of this result is well known (see, e.g.,
[24]). In this case

S2 D a b c d:

The next theorem [29] presents a version of the Bilinski formula for a cyclic
quadrilateral.

Theorem 17 (Bilinski formula). Let Q be a cyclic hyperbolic quadrilateral with
side lengths a; b; c; d . Then the area S D S.Q/ is given by the formula

cos
S

2
D cosh aC cosh b C cosh c C cosh d � 4 sinh . a

2
/ sinh . b

2
/ sinh . c

2
/ sinh . d

2
/

4 cosh . a
2
/ cosh . b

2
/ cosh . c

2
/ cosh . d

2
/

:

4.3 Proof of Brahmagupta Formulas

Consider a cyclic hyperbolic quadrilateralQ with side lengths a; b; c; d and interior
angles A;B;C;D shown on Fig. 7. By the Gauss–Bonnet formula we get the area

S D S.Q/ D 2� �A � B � C �D:

To prove Theorem 14 let us find the quantities sin2
S

4
and cos2

S

4
in terms of

a; b; c; d . Since AC C D B CD (see Proposition 5) we have

2 sin2
S

4
D 1 � cos

S

2
D 1 � cos.� � .AC C// D 1C cos.AC C/:

Hence,

sin2
S

4
D 1C cosA cosC � sinA sinC

2
: (4)
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Now we show that cosA; cosC and the product sinA � sinC can be expressed in
terms of elementary functions in a; b; c; d . To find cosA we use the Cosine rule for
hyperbolic triangle ABD.

cosA D cosh a coshd � coshf

sinh a sinh d
: (5)

We note that coshf D 2 s2.f / C 1; cosh a D 2 s2.a/ C 1 and coshd D
2 s2.d/C 1: Putting these identities into Eqs. (3) and (5) we express cosA in terms
of a; b; c; d: After straightforward calculations we obtain

cosA D s2.a/� s2.b/ � s2.c/C s2.d/C 2s.a/ s.b/ s.c/ s.d/C 2s2.a/ s2.d/

2 .s.a/ s.d/C s.b/ s.c// cosh a
2

cosh d
2

:

(6)
In a similar way we get the formula

cosC D �s2.a/C s2.b/C s2.c/ � s2.d/C 2s.a/ s.b/ s.c/ s.d/C 2s2.b/ s2.c/

2 .s.a/ s.d/C s.b/ s.c// cosh b
2

cosh c
2

:

(7)
Note that sinA sinC > 0 and sin2 A sin2 C D .1 � cos2 A/.1 � cos2 C /. Then

we take a square root in the latter equation, where cosA and cosC are given by the
formulas (6) and (7). Thus we express a product sinA � sinC in terms of a; b; c; d .
Substituting cosA; cosC and sinA � sinC into (4) and simplifying we get

sin2
S

4
D sinh �aCbCcCd

4
sinh a�bCcCd

4
sinh aCb�cCd

4
sinh aCbCc�d

4

cosh a
2

cosh b
2

cosh c
2

cosh d
2

: (8)

This proves Theorem 16.

In a similar way, from identity 2 cos2
S

4
D 1 C cos

S

2
D 1 � cos.A C C/ we

have

cos2
S

4
D cosh aCb�c�d

4
cosh a�bCc�d

4
cosh a�b�cCd

4
cosh aCbCcCd

4

cosh a
2

cosh b
2

cosh c
2

cosh d
2

: (9)

The following lemma can be easy proved by straightforward calculations.

Lemma 1. The expression

H D cosh aCb�c�d
4

cosh a�bCc�d
4

cosh a�b�cCd
4

cosh aCbCcCd
4

cosh �aCbCcCd
4

cosh a�bCcCd
4

cosh aCb�cCd
4

cosh aCbCc�d
4
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A D

CB

a

b

d

fe
c

Fig. 9 Trapezoid
T D T .a; b; c; d/

can be rewritten in the form H D 1 � "; where

" D sinh a
2

sinh b
2

sinh c
2

sinh d
2

cosh s�a
2

cosh s�b
2

cosh s�c
2

cosh s�d
2

and s D aC b C c C d

2
:

Taking four times product of Eqs. (8) and (9) we have

sin2
S

2
D sinh �aCbCcCd

2
sinh a�bCcCd

2
sinh aCb�cCd

2
sinh aCbCc�d

2

4 cosh2 a
2

cosh2 b
2

cosh2 c
2

cosh2 d
2

�H; (10)

whereH is the same as in Lemma 1.
Then the statement of Theorem 14 follows from Eq. (10), Lemma 1 and the

evident identity s � a D �aC b C c C d

2
:

To prove Theorem 15 we divide (8) by (9). As a result we have

tan2
S

4
D sinh �aCbCcCd

4
sinh a�bCcCd

4
sinh aCb�cCd

4
sinh aCbCc�d

4

cosh aCb�c�d
4

cosh a�bCc�d
4

cosh a�b�cCd
4

cosh aCbCcCd
4

: (11)

Hence, applying Lemma 1 we obtain the statement of Theorem 15.

Finally, the Bilinski formula (Theorem 17) follows from the identity cos
S

2
D

cos2
S

4
� sin2

S

4
and the above mentioned Eqs. (8) and (9).

4.4 Area of Hyperbolic Trapezoid

In this section we give a formula for the area of a hyperbolic trapezoid in terms of
its side lengths.

A convex hyperbolic quadrilateral with interior angles A;B;C;D is called a
trapezoid if ACB D C CD (see Fig. 9). This definition is also valid for Euclidean
case.

Denote the lengths of sides and diagonals as shown on Fig. 9. We assume that
b ¤ d . Otherwise, in the case b D d , the area of trapezoid T is not determined
by lengths of its sides a; b; c; d . The next formula was obtained by Dasha Sokolova
in [49].
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Theorem 18 (Sokolova [49]). Let T be a hyperbolic trapezoid with side lengths
a; b; c; d . Then the area S D S.T / is given by the formula

tan2
S

4
D sinh2 bCd

2
sinh aCb�c�d

4
sinh aCbCc�d

4
sinh �aCbCc�d

4
sinh a�bCcCd

4

sinh2 b�d
2

cosh a�b�c�d
4

cosh a�bCc�d
4

cosh aCb�cCd
4

cosh aCbCcCd
4

:

Remark 1. The following formula gives the area of an Euclidean trapezoid in terms
of its side lengths.

SE
2 D .b C d/2.aC b � c � d/.a C b C c � d/.�a C b C c � d/.a � b C c C d/

16 .b � d/2 :

Note that tan2
S

4
�
�
SE

4

�2

for sufficiently small values of a; b; c; d .
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Cubic Cayley Graphs and Snarks

Ademir Hujdurović, Klavdija Kutnar, and Dragan Marušič

Abstract The well-known conjecture that there are no snarks amongst Cayley
graphs is considered. Combining the theory of Cayley maps with the existence
of certain kinds of independent sets of vertices in arc-transitive graphs, some
new partial results are obtained suggesting promising future research directions in
regards to this conjecture.

Keywords Snark • Cubic graph • Cayley graph • Coloring • Arc-transitive
• Independent set

Subject Classifications: 05C25, 05C15, 20E32

1 Introductory Remarks

A snark is a connected, cyclically 4-edge-connected cubic graph which is not
3-edge-colorable, that is, a connected, cyclically 4-edge-connected cubic graph
whose edges cannot be colored by three colors in such a way that adjacent edges
receive distinct colors. While examples of snarks were initially scarce – the Petersen
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graph being the first known example of a snark – infinite families of snarks are
now known to exist. The first and second Blanuša snarks, the second and third
snarks discovered [5], are actually the smallest members of two infinite families
of snarks [31].

A Cayley snark is a cubic Cayley graph which is a snark. Although most known
examples of snarks exhibit a lot of symmetry, none of them is a Cayley graph. In fact
it was conjectured in [3] that no such graphs exist.

Conjecture 1 ([3]). There are no Cayley snarks.

The proof of this conjecture would contribute significantly to various open
problems regarding Cayley graphs. One of such problems is the well-known
conjecture that every connected Cayley graph contains a Hamilton cycle. Namely,
every hamiltonian cubic graph is easily seen to be 3-edge-colorable. It is perhaps
also worth mentioning that Conjecture 1 is in fact a special case of the conjecture
that all Cayley graphs on groups of even order are 1-factorizable (see [32]). (A graph
is 1-factorizable if its edge set can be partitioned into edge-disjoint 1-factors (perfect
matchings).)

A large number of articles, directly or indirectly related to this problem, have
appeared in the literature affirming the non-existence of Cayley snarks. For example,
in [28] it is proved that the smallest example of a Cayley snark, if it exists, comes
either from a non-abelian simple group or from a group which has a single non-
trivial proper normal subgroup. The subgroup must have index two and must be
either non-abelian simple or the direct product of two isomorphic non-abelian
simple groups. In 2004, Potočnik [30], motivated by the fact that there are only
two known examples of connected cubic vertex-transitive graphs which are not
3-edge-colorable, namely, the Petersen graph and its truncation, asked whether
every connected cubic vertex-transitive graph, other than these two graphs, is
3-edge-colorable, and gave the answer for graphs admitting transitive solvable
groups of automorphisms. In particular, it is proved in [30] that every connected
cubic graph (different from the Petersen graph) whose automorphism group contains
a solvable subgroup acting transitively on the set of vertices is 3-edge-colorable.

In this paper we will present an innovative approach to finding a possible solution
to Conjecture 1 combining the theory of Cayley maps with the existence of a certain
kind of independent set of vertices in arc-transitive graphs (see Theorem 1).

The paper is organized as follows. In Sect. 2 we gather various concepts that are
needed in the subsequent sections. In Sect. 3 we discuss the structure of Cayley
snarks. In Sect. 4 we describe the above mentioned approach and then use it to
prove Conjecture 1 for a certain class of graphs in Sect. 5. Finally, in Sect. 6 we
give possible future directions in regards to the Cayley snark problem.
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2 Terminology and Notation

Throughout this paper graphs are simple and, unless otherwise specified, undirected
and connected. Furthermore, all graphs and groups are assumed to be finite.
For group-theoretic terms not defined here we refer the reader to [34].

Let X be a graph. Then for adjacent vertices u and v in X , we write u � v and
denote the corresponding edge by uv. We let V.X/, E.X/, A.X/ and AutX be the
vertex set, the edge set, the arc set and the automorphism group of X , respectively.
If u 2 V.X/ then NX.u/ denotes the set of neighbors of u. The girth of X is the
length of a shortest cycle in X . For a non-negative integer k, a k-arc in X is a
sequence of k C 1 vertices .u1; u2; : : : ; ukC1/, not necessarily all distinct, such that
any two consecutive terms are adjacent and any three consecutive terms are distinct.
For a subset U of V.X/ the subgraph of X induced by U is denoted by XŒU �.
If XŒU � is an empty graph then U is called an independent set of vertices.

A k-factor of a graph is a spanning k-regular subgraph of the graph. Therefore
a 2-factor is a collection of cycles spanning all vertices of the graph. A 2-factor is
said to be even if all of these cycles are of even length. A Hamilton path of a graph
is a simple path going through all vertices of the graph. A Hamilton cycle of a graph
is a cycle going through all vertices of the graph; in other words, it is a connected
2-factor of a graph. A graph possessing a Hamilton cycle is said to be hamiltonian.

A subgroup G � AutX is said to be vertex-transitive, edge-transitive and
arc-transitive provided it acts transitively on the set of vertices, edges and arcs
of X , respectively. A graph is said to be vertex-transitive, edge-transitive, and
arc-transitive if its automorphism group is vertex-transitive, edge-transitive and arc-
transitive, respectively. A subgroup G � AutX is said to be k-regular if it acts
transitively on the set of k-arcs and the stabilizer of a k-arc in G is trivial. A graph
X is said to be .G; k/-regular if G � AutX is k-regular. In particular, a subgroup
G � AutX is said to be 1-regular if it acts transitively on the set of arcs and the
stabilizer of an arc in G is trivial.

Given a group G and a subset S � G such that S D S�1 and 1 62 S , the
Cayley graph Cay.G; S/ onG relative to S has vertex set G and edge set fg � gs j
g 2 G; s 2 Sg. If G is cyclic then Cay.G; S/ is said to be a circulant. Note that
Cay.G; S/ is connected if and only if S is a generating set of the group G. Denote
by Aut.G; S/ the set of all automorphisms of a group G which fix the set S � G

setwise, that is,

Aut.G; S/ D f� 2 Aut.G/jS� D Sg:

It is easy to check that Aut.G; S/ is a subgroup of Aut.Cay.G; S// contained in the
stabilizer of the identity element 1 2 G: It follows from the definition of Cayley
graphs that the left regular representation GL of G induces a regular subgroup of
Aut.Cay.G; S//, implying that Cay.G; S/ is a vertex-transitive graph. Following
[38], Cay.G; S/ is called a normal Cayley graph ifGL is normal in Aut.Cay.G; S//,
that is, if Aut.G; S/ coincides with the vertex stabilizer 1 2 G. Moreover, if
Cay.G; S/ is a normal Cayley graph, then Aut.Cay.G; S// D GL Ì Aut.G; S/.
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In order to state the classification of connected arc-transitive circulants, which
has been obtained independently by Kovács [19] and Li [23], we need to recall
certain graph products. The wreath (lexicographic) product XŒY � of a graphX by a
graph Y is the graph with vertex set V.X/ � V.Y / such that f.u1; u2/; .v1; v2/g is
an edge if and only if either fu1; v1g 2 E.X/, or u1 D v1 and fu2; v2g 2 E.Y /: For
a positive integer b and a graph X; denote by bX the graph consisting of b vertex-
disjoint copies of the graph X: Then the graph XŒKb� � bX is called the deleted
wreath (deleted lexicographic) product of X and Kb, whereKb D bK1.

Proposition 1 ([19, 23]). If X is a connected arc-transitive circulant of order n,
then one of the following holds:

(i) X Š KnI
(ii) X D ˙ŒKd �; where n D md , m; d > 1 and ˙ is a connected arc-transitive

circulant of orderm;
(iii) X D ˙ŒKd � � d˙; where n D md; d > 3; gcd.d;m/ D 1 and ˙ is a

connected arc-transitive circulant of orderm;
(iv) X is a normal circulant.

Near-bipartite graphs are a natural generalization of bipartite graphs. A near-
bipartite graph is a graph X in which there exists an independent set I 	 V.X/ of
vertices, such that the induced graph XŒV.X/ n I � is bipartite. A chromatic number
	.X/ of a graph X is the minimum number of colors needed to color the vertices
of X in such a way that adjacent vertices have different colors. If the graph is near-
bipartite, than we can color the vertices of this graph with three colors, since we
can color the vertices in the independent set with one color, and for the remaining
vertices two colors suffice. Therefore, near-bipartite graphs have chromatic number
at most 3. Conversely, if a graph has chromatic number 3, then it is near-bipartite,
since we can choose the vertices of one color to be the required independent set, and
the remaining vertices are colored with two colors, which means that the remaining
graph is bipartite.

The following result about chromatic numbers of tetravalent circulants will be
needed in Sect. 4.

Proposition 2 ([16, Theorem 3.2.]). Let X D Cn.a; b/ D Cay.Zn; f˙a;˙bg/ be
a tetravalent circulant of order n. Then

	.X/ D

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂

2 if a and b are odd and n is even
4 if 3 − n, n ¤ 5, and (b � ˙2a .mod n/) or a � ˙2b .mod n/
4 if n D 13 and (b � ˙5a .mod 13/ or a � ˙5b .mod 13/)
5 if n D 5

3 otherwise

:

Following [29] we say that, given a graph (or more generally a loopless
multigraph) X , a subset S of V.X/ is cyclically stable if the induced subgraph
XŒS� is acyclic, that is, a forest. The size jS j of a maximum cyclically stable subset
S of V.X/ is called the cyclic stability number of X .
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Given a connected graph X , a subset F � E.X/ of edges of X is said to be
cycle-separating ifX�F is disconnected and at least two of its components contain
cycles. We say thatX is cyclically k-edge-connected if no set of fewer than k edges
is cycle-separating inX . Furthermore, the edge-cyclic connectivity 
.X/ ofX is the
largest integer k not exceeding the Betti number jE.X/j � jV.X/j C 1 of X for
which X is cyclically k-edge-connected. (This distinction is indeed necessary as,
for example, the theta graph �2, K4 and K3;3 possess no cycle-separating sets of
edges and are thus cyclically k-edge-connected for all k, however their edge-cyclic
connectivities are 2, 3 and 4, respectively.)

Regarding the cyclic stability number, the following result may be deduced from
[29, Théorème 5].

Proposition 3 ([29]). Let X be a cyclically 4-edge-connected cubic graph of order
n, and let S be a maximum cyclically stable subset of V.X/. Then jS j D b.3n �
2/=4c and more precisely, the following hold.

(i) If n � 2 .mod 4/, then jS j D .3n � 2/=4, and XŒS� is a tree and V.X/ n S is
an independent set of vertices.

(ii) If n � 0 .mod 4/, then jS j D .3n � 4/=4, and either XŒS� is a tree and
V.X/nS induces a graph with a single edge, orXŒS� has two components and
V.X/ n S is an independent set of vertices.

The following result concerning cyclic edge connectivity of cubic vertex-
transitive graphs is proved in [27, Theorem 17].

Proposition 4 ([27]). The cyclic edge connectivity 
.X/ of a cubic connected
vertex-transitive graph X equals its girth g.X/.

3 On Cayley (Non)Snarks

Any cubic Cayley graph is bridgeless, and so, by Petersen’s theorem [33], it has a
1-factor and a 2-factor. In [20] the existence of 2-factors with long cycles in cubic
graphs is investigated, whereas, in this paper we are after even 2-factors. Namely, a
cubic graph containing such a 2-factor is not a snark for we can color the edges of
an even 2-factor with two colors and the remaining edges with the third color.

For a cubic Cayley graph Cay.G; S/ the generating set S is of two forms: either
it consists of three involutions or it consists of an involution, a non-involution
and its inverse. In the first case, Cay.G; S/ is clearly 3-edge-colorable, and we
may therefore restrict ourselves to the study of cubic Cayley graphs with respect
to generating sets with a single involution. More precisely, we consider Cayley
graphs X arising from groups having a .2; s; t/-generation, that is, from groups
G D ha; x j a2 D xs D .ax/t D 1; : : :i generated by an involution a and an
element x of order s 
 3 such that their product ax has order t . Here “: : :” denotes
the extra relations needed in the presentation of the group. Such graphs are called
.2; s; t/-Cayley graphs. If s is even, then a .2; s; t/-Cayley graph is not a snark, since



32 A. Hujdurović et al.

in this case the set of edges ffg; gxg j g 2 Gg obviously forms an even 2-factor
in X . The following proposition thus holds.

Proposition 5. A Cayley snark is a .2; s; t/-Cayley graph, where s is odd, not
possessing an even 2-factor.

As cubic graphs are of even order, by Proposition 5, the existence of a Hamilton
cycle in a cubic Cayley graph implies that the graph is 3-edge-colorable, and
thus a non-snark. In particular, Conjecture 1 is essentially a weaker form of the
folklore conjecture that every connected Cayley graph with order greater than
2 possesses a Hamilton cycle, which is in fact a Cayley variation of Lovász’s
conjecture [24] that every connected vertex-transitive graph possesses a Hamilton
path. These hamiltonicity questions have been challenging mathematicians for more
than 40 years, but only partial results have been obtained thus far. Most results
proved thus far depend on various restrictions made either on the class or the order
of the group or the structure of the corresponding generating sets. For example, one
may easily see that connected Cayley graphs on abelian groups have a Hamilton
cycle. Further, it is known that the same holds for hamiltonian groups (see [2]),
for metacyclic groups with respect to standard generating sets (see [1]), and for
groups with a cyclic commutator subgroup of prime-power order (see [9,18,25,35]).
This last result was generalized to connected vertex-transitive graphs admitting a
transitive group of automorphisms with a cyclic commutator subgroup of prime-
power order, where the Petersen graph is the only exception (see [8]). In addition,
every connected Cayley digraph on any p-group has a directed Hamilton cycle (see
[36]). On the other hand, it is still not known whether Cayley graphs on dihedral
groups have a Hamilton cycle. The best result in this respect is due to Alspach,
Chen and Dean [4] who solved the problem for generalized dihedral groups of order
divisible by 4. Furthermore, combining results from [10, 11, 22, 26] it follows that
every connected Cayley graph on a group G has a Hamilton cycle if jGj D kp,
where p is prime, 1 � k < 32, and k ¤ 24. These results show, among other,
that every connected Cayley graph on a group of order n < 120, n ¤ 72, is
hamiltonian. Moreover, since every group of order 72 is solvable, these results and
[30, Theorem 1.5.] combined together imply the following proposition.

Proposition 6 ([10, 11, 22, 26, 30]). There are no Cayley snarks of order n < 120.

For further results not explicitly mentioned or referred to here see the survey
articles [7, 21, 37].

4 Constructing Even 2-Factors in .2 ; s; t/-Cayley Graphs

The methods used in this paper to construct even 2-factors in cubic Cayley graphs
are a generalization of the methods introduced by Glover and Yang in [13]. These
methods were later used in [12, 14, 15] where the hamiltonian problem for .2; s; 3/-
Cayley graphs was considered.
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Let s 
 3 and t 
 3 be positive integers and let X D Cay.G; fa; x; x�1g/ be
a .2; s; t/-Cayley graph on a group G D ha; x j a2 D xs D .ax/t D 1; : : : i.
The graph X is cubic and has a canonical Cayley map M .X/ given by an
embedding in the closed orientable surface of genus

g D 1C jGj �
�
1

4
� 1

2s
� 1

2t

�

(1)

with jGj=s disjoint s-gons and jGj=t 2t-gons as the corresponding faces. (For a
detailed description of Cayley maps we refer the reader to [6, 17].) This map is
given using the same rotation of the x, a, x�1 edges at every vertex and results in
one s-gon and two 2t-gons adjacent to each vertex. Generalizing the approach of
[12] where the so called hexagon graph was associated with each .2; s; 3/-Cayley
graph, a 2t-gonal graph O.X/ is associated with our .2; s; t/-Cayley graph X in
the following way. Its vertex set consists of all 2t-gons in M .X/ arising from
the relation .ax/t D 1, where two such 2t-gons are adjacent if they share an
edge in X . Observe that O.X/ may also be seen as the orbital graph of the left
action of G on the set C of left cosets of the subgroup C D haxi, arising from
the suborbit faC; caC; c2aC; c3aC; : : : ct�1aC g of length t , where c D ax. More
precisely,O.X/ has vertex set C , with adjacency defined as follows: a coset yC is
adjacent to the t cosets yaC , ycaC , yc2aC , : : :, yct�2aC and yct�1aC . Clearly,
G acts 1-regularly on O.X/. Conversely, let Y be a connected arc-transitive graph
of valency t admitting a 1-regular action of a subgroup G of AutY . Let v 2 V.Y /
and let h be a generator of C D Gv Š Zt . Then there must exist an element
a 2 G such that G D ha; hi and such that Y is isomorphic to the orbital graph
of G relative to the suborbit faC; haC; h2aC; : : : ; ht�1aC g. Moreover, a short
computation shows that a may be chosen to be an involution, and letting x D ah we
get the desired generation for G. There is therefore a well-defined correspondence
between these two classes of objects. This gives us the following result.

Proposition 7. Let X be a .G; 1/-regular graph of valency t , t 
 3, with the vertex
stabilizer Gv isomorphic to Zt . Then X can be constructed via a Cayley graph on
the group G with respect to its .2; s; t/-generation. In particular, X is isomorphic
to a 2t-gonal graph of a .2; s; t/-Cayley graph on the group G.

The method for constructing an even 2-factor in X consists in identifying a
subset T of vertices V D V.O.X// inducing a bipartite subgraph in O.X/,
the complement V n T of which is an independent set of vertices. (Of course
the existence of such an even 2-factor is obvious in the case that s is even.) The
bipartite subgraph O.X/ŒT � gives rise to a “bipartite graph of faces” in X such
that every vertex in the Cayley graph X lies on the boundary of at least one of the
faces in this subgraph. (The concept of a “bipartite graph of faces” is defined in
the obvious way, see the examples below.) Since all faces in this graph of faces are
of even length (they are 2t-gonal faces), its boundary is the desired even 2-factor
in the .2; s; t/-Cayley graph X . In particular, this method works in case O.X/ is a
near-bipartite graph (see Theorem 1).
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Fig. 1 A forest of faces in the spherical Cayley map M .X/ of the .2; 5; 3/-Cayley graph X on
A5 giving rise to an even 2-factor in X , and the corresponding induced forest in the hexagon graph
Hex.X/

Example 1. On the right-hand picture of Fig. 1 we show a forest of faces whose
boundary is a 2-factor consisting of even cycles in the spherical Cayley map M .X/

of the Cayley graph X on the .2; 5; 3/-generated group A5 D ha; x j a2 D x5 D
.ax/3 D 1i. The corresponding forest in O.X/ is shown on the left-hand picture of
Fig. 1.

Example 2. On the left-hand picture of Fig. 2 we show a graph of faces whose
boundary is an even 2-factor in the spherical Cayley map of the Cayley graph on
the symmetric group S4 with respect to its .2; 3; 4/-generation ha; x j a2 D x3 D
.ax/4 D 1; : : : i, where a D .13/ and x D .234/. The corresponding bipartite
induced subgraph of O.X/ is shown on the right-hand picture of Fig. 2.

Example 3. Let G D Z4 Ë .Z3 � Z3/ D hx; y; f j x3 D y3 D f 4 D 1; xy D
x; xf D y; yf D x�1i. Then a WD f 2xy and b WD fy give rise to a .2; 4; 4/-
generation of G. Let X be a .2; 4; 4/-Cayley graph on G with respect to this
.2; 4; 4/-generation. Then using (1) it can be seen that X has a toroidal Cayley map
given by an embedding in the torus with 18 faces, 9 disjoint squares and 9 octagons.
By Proposition 7 the corresponding 8-gonal graph O.X/ is an arc-transitive graph
of order 9 admitting a 1-regular action of G with a vertex stabilizer isomorphic
to Z4. Figure 3 shows that O.X/ Š K3Œ3K1� � 3K3 is a near-bipartite graph.

Theorem 1. Let X D Cay.G; fa; x; x�1g/ be a .2; s; t/-Cayley graph on a group
G D ha; x j a2 D xs D .ax/t D 1; : : : i, s; t 
 3 and let O.X/ be the
corresponding 2t-gonal graph of X . If O.X/ is a near-bipartite graph, then X



Cubic Cayley Graphs and Snarks 35

Fig. 2 The left-hand picture shows an even 2-factor in a .2; 3; 4/-Cayley graph X D
Cay.S4; fa; x; x�1g/ on S4 D ha; x j a2 D x3 D .ax/4 D 1; : : : i, where a D .13/

and x D .234/. The right-hand picture shows the independent set of vertices in O.X/ whose
complement is a bipartite graph giving the even 2-factor in X

Fig. 3 An induced bipartite subgraph in K3Œ3K1� � 3K3 whose complement is an independent
set of three vertices. This graph is in fact the 8-gonal graph O.X/ of the .2; 4; 4/-Cayley graph X
on Z4 Ë .Z3 � Z3/

is not a snark. Moreover, if the vertex set V of O.X/ decomposes into fT; V n T g
where T induces a tree and V �T is an independent set of vertices, thenX contains
a Hamilton cycle.

Proof. Consider the canonical Cayley map M .X/ of X D Cay.G; fa; x; x�1g/
embedded with s-gonal and 2t-gonal faces in a closed orientable surface with genus
as given in (1). Suppose that the corresponding 2t-gonal graph O.X/ is near-
bipartite. Then the vertex set V of O.X/ decomposes into fT; V n T g where T
induces a bipartite graph and V n T is an independent set of vertices. Each vertex
of O.X/ corresponds to a 2t-gonal face of M .X/ as illustrated in the beginning
of this section. Since every vertex of X belongs to two 2t-gonal faces in M .X/

and V n T is an independent set of vertices, we can conclude that every vertex of
X belongs to at least one 2t-gonal faces whose corresponding vertex of O.X/ is
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in T . The bipartite graph O.X/ŒT � then translates into a graph of faces in M .X/

whose boundary contains all the vertices of X . Since all faces in this graph of faces
are of even length (they are 2t-gonal faces), its boundary is an even 2-factor in X .
By Proposition 5 it now follows that X is not a snark. Furthermore, if O.X/ŒT � is a
tree, then it translates into a tree of faces in M .X/ containing all of the vertices of
X and as a subspace of the Cayley map it is a topological disk. The boundary of this
topological disk is a (simple) cycle passing through all vertices of the Cayley graph
X , and so X is hamiltonian. �

Theorem 2. Let X D Cay.G; fa; x; x�1g/ be a .2; s; 4/-Cayley graph on a group
G D ha; x j a2 D xs D .ax/4 D 1; : : : i, s 
 3, such that the corresponding
8-gonal graphO.X/ is a circulant. Then X is not a snark.

Proof. By Proposition 7, the 8-gonal graph O.X/ is a tetravalent .G; 1/- regular
circulant, and so Proposition 1 implies that O.X/ is either isomorphic to the
complete graph K5, or to K2Œ5K1� � 5K2 Š K5;5 � 5K2, or to K2Œ4K1� Š K4;4,
or to CnŒ2K1�, or it is a normal circulant. Since the order of O.X/ is equal to
jGj=4 D jV.X/j=4, in the first three possibilities Proposition 6 implies that X is
not a snark. In what follows we may therefore assume that O.X/ is of order 
30
and we only need to consider two cases.

Case 1. O.X/ Š CnŒ2K1�.

We can clearly color the vertices of Cn with three colors (namely, Cn is near-
bipartite). With the use of such a vertex coloring of Cn we can now color the graph
CnŒ2K1� in the following way. If a vertex v of Cn is colored with color i , then we
color the two vertices corresponding to this vertex (the two vertices in the same 2K1

corresponding to v) with color i . This gives us a good 3-vertex coloring of CnŒ2K1�,
implying thatO.X/ is near bipartite, and therefore, by Theorem 1, X is not a snark.

Case 2. O.X/ is a normal circulant.

In this case O.X/ Š Cay.Zn; S/ and the stabilizer of the vertex 0 2 Cay.Zn; S/ in
the full automorphism group of O.X/ is isomorphic to Aut.Zn; S/ � Aut.Zn/ Š
Z
�
n . Since O.X/ is connected and hSi D Zn we may, without loss of generality,

assume that S D f˙1;˙1˛g for some ˛ 2 Aut.Zn/. Since O.X/ is of order 
30,
Proposition 2 implies that 	.O.X// � 3. ThereforeO.X/ is a near-bipartite graph
and thus, by Theorem 1, X is not a snark. �

5 Existence of Even 2-Factors in .2 ; s; 3/-Cayley Graphs

It was proved in [12] that a .2; s; 3/-Cayley graph on a group G has a Hamilton
path when jGj is congruent to 0 modulo 4, and has a Hamilton cycle when jGj
is congruent to 2 modulo 4. The Hamilton cycle was constructed, combining the
theory of Cayley maps with classical results on cyclic stability in cubic graphs, as
the contractible boundary of a “tree of faces” in the corresponding Cayley map.
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Further, with a generalization of these methods, the existence of a Hamilton cycle in
a .2; s; 3/-Cayley graph was proved in [14] when apart from jGj also s is congruent
to 0 modulo 4. More recently, with a further extension of the above “tree of faces”
approach, a Hamilton cycle was shown to exist whenever jGj is congruent to 0
modulo 4 and s is odd (see [15]). This leaves jGj congruent to 0 modulo 4 with
s congruent to 2 modulo 4 as the only remaining case in which the existence of
a Hamilton cycle in .2; s; 3/-Cayley graphs has not yet been proven. In this last
case, however, the “tree of faces” approach cannot be applied, and so entirely
different techniques will have to be introduced if one is to complete the proof of
the existence of Hamilton cycles in .2; s; 3/-Cayley graphs. These results combined
together with Proposition 5 imply that there are no .2; s; 3/-Cayley snarks. For the
sake of completeness, however, a self-contained proof of this fact is provided below.
These demonstrate that it is somewhat easier to deal with the snark problem than
the hamiltonian problem, bearing in mind of course that both problems are among
the hardest problems in graph theory. The following proposition, which combined
together with Proposition 3 shows that cyclically 4-edge-connected cubic graphs are
near-bipartite, will be needed in this respect. In fact, the statement of this proposition
really says that in part (ii) of Proposition 3, a particular one of the two possibilities
for the set S may be chosen.

Proposition 8. Let X be a cyclically 4-edge-connected cubic graph of order n �
0 .mod 4/. Then there exists a cyclically stable subset S of V.X/ such that XŒS� is
a forest and V.X/ n S is an independent set of vertices.

Proof. Let X be a cyclically 4-edge-connected cubic graph of order n �
0 .mod 4/. By Proposition 3(ii) we may assume that there exists a maximum
cyclically stable subset S of V.X/ such that XŒS� is a tree and V.X/ n S induces
a graph with a single edge, say uv 2 E.X/. Consider the neighbors of the vertex
u 2 V.X/ in XŒS�. Since v 2 NX.u/ \ V.X/ n S is the only neighbor of u in
V.X/ n S it follows that jNXŒS�.u/j D 2. Let NXŒS�.u/ D fui j i 2 f1; 2gg.
Then jNXŒS�.ui /j � 2, i 2 f1; 2g. Furthermore, if for some i 2 f1; 2g we have
jNXŒS�.ui /j D 2 then the set fug[S n fuig induces a forest whose complement is an
independent set of vertices. We may therefore assume that jNXŒS�.ui /j D 1 for every
i 2 f1; 2g. Also, since XŒS� is connected there exists a path P D u1w1w2 : : :wku2
between vertices u1 and u2 in XŒS�. If there exists j 2 f1; : : : ; kg such that
jNXŒS�.wj /j D 3, then the set fug [ S n fwj g induces a forest whose complement
is an independent set of vertices. Hence, we may assume that XŒS� D P . Now,
repeating the argument for the neighbors NXŒS�.v/ D fvi j i 2 f1; 2gg of the vertex
v in XŒS� it follows that we can restrict ourselves to the case that jNXŒS�.vi /j D 1

for every i 2 f1; 2g. But u1 and u2 are the only vertices of valency 1 in XŒS�, and
so fvi j i 2 f1; 2gg D fui j i 2 f1; 2gg. It follows that uvuiu, i 2 f1; 2g, is a 3-cycle
in X , a contradiction (since X is cyclically 4-edge-connected). �
Theorem 3. There are no .2; s; 3/-Cayley snarks.

Proof. Let X be a .2; s; 3/-Cayley graph on a group G D ha; x j a2 D xs D
.ax/3 D 1; : : : i, s 
 3, and let O.X/ be the corresponding 6-gonal graph of X .
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By Proposition 7,O.X/ is a .G; 1/-regular graph. By Proposition 6 we may assume
that O.X/ is of order jGj=3 
 60, and therefore [12, Proposition 3.4.] implies
that O.X/ is of girth strictly bigger than 5. Proposition 4 implies that O.X/ is a
cyclically 4-edge-connected graph, and so Propositions 3 and 8 combined together
imply that O.X/ is a near-bipartite graph. Thus, by Theorem 1, X is not a snark. �

6 Further Research Directions

By Proposition 5 and Theorem 3, a Cayley snark, if it exists, is a .2; s; t/-Cayley
graph on a group G D ha; x j a2 D xs D .ax/t D 1; : : : i, where s 
 3

is odd and t > 3, which does not have an even 2-factor, and, by Theorem 1, its
corresponding 2t-gonal graph, arising from the canonical Cayley map M .X/ given
by an embedding of it in the closed orientable surface with s-gonal and 2t-gonal
faces, is not near-bipartite. The converse is not true. In particular, there exist .2; s; t/-
Cayley graphs which are not snarks but their 2t-gonal graphs are not near-bipartite.
For example, the 2t-gonal graph arising from the spherical Cayley map of a .2; 3; 3/-
Cayley graph X on the alternating group A4 D ha; x j a2 D x3 D .ax/3 D 1i,
where a D .12/.34/ and x D .123/, is isomorphic to the complete graphK4, and it
is therefore not near-bipartite. By Proposition 6, however,X is not a snark.

In view of Proposition 7 the 2t-gonal graphO.X/ of a .2; s; t/-Cayley graph X
on a group G D ha; x j a2 D xs D .ax/t D 1; : : : i, s; t 
 3, is a .G; 1/-regular
graph of valency t with the vertex stabilizerGv isomorphic to Zt . It therefore seems
that the thoughtful study of the structure of such graphs is in order if one is to make
a progress in regards to Conjecture 1. We pose the following problem.

Problem 1. Let G be a finite group. Characterize non-near-bipartite t-valent
.G; 1/-regular graphs with the vertex stabilizer Gv isomorphic to Zt .

Since a graph is near-bipartite if and only if its vertices can be colored with less
than four colors, Problem 1 can be reformulated as follows.

Problem 2. Let G be a finite group. Characterize t-valent .G; 1/-regular graphs X
with the vertex stabilizer Gv isomorphic to Zt such that 	.X/ 
 4.
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Local, Dimensional and Universal Rigidities:
A Unified Gram Matrix Approach

A.Y. Alfakih

Abstract This chapter is a unified treatment, based on projected Gram matrices
(PGMs), of the problems of local, dimensional, and universal rigidities of bar frame-
works. This PGM-based approach makes these problems amenable to semidefinite
programming methodology; and naturally gives rise to results expressed in terms
of Gale matrices. We survey known results emphasizing numerical examples and
proofs which highlight the salient aspects of this approach.

Keywords Bar-and-joint frameworks • Infinitesimal rigidity • Rigidity matrix
• Dual rigidity matrix • Dimensional rigidity • Universal rigidity • Gram matrix
and Gale transform

Subject Classifications: 52C25, 05C50, 15A57

1 Introduction

A configuration p in R
r is a finite collection of n labelled points p1; : : : ; pn. A bar

framework (or simply a framework) in R
r , denoted by G.p/, is a configuration p

in R
r together with a simple graph G on the vertices 1; : : : ; n. A framework G.p/

in R
r is said to be r-dimensional if the dimension of the affine span of p1; : : : ; pn

is equal to r . To avoid trivialities, we assume that graph G is connected and not
complete. Figure 1 depicts three 2-dimensional frameworks in R

2.
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2

1
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a

b

c

4

21

Fig. 1 An example of three 2-dimensional frameworks in R
2. In framework .b/, the edge .2; 3/ is

shown as an arc to make the edges .2; 1/ and .1; 3/ visible

Two frameworksG.p/ and G.q/ in R
r are said to be congruent if jjqi � qj jj D

jjpi � pj jj for all i; j D 1; : : : ; n, where jj:jj denotes the Euclidean norm. Further,
two frameworksG.p/ in R

r andG.q/ in R
s are said to be equivalent if jjqi�qj jj D

jjpi � pj jj for all .i; j / 2 E.G/, where E.G/ denotes the edge set of graph G.
Each configuration p defines an n � n matrix Dp D .dij / D .jjpi � pj jj2/. Dp

is called the Euclidean distance matrix generated by p. LetH denote the adjacency
matrix of graph G, then two frameworks G.p/ and G.q/ are congruent iff Dp D
Dq; and they are equivalent iff H ıDp D H ıDq , where ı denotes the Hadamard
product, i.e., the element-wise product.

An r-dimensional framework G.p/ in R
r is said to be locally rigid if for some

� > 0, there does not exist any r-dimensional framework G.q/ in R
r such that:

(i) jjqi�pi jj � � for all i D 1; : : : ; n; and (ii)G.q/ is equivalent, but not congruent,
to G.p/. For instance, in Fig. 1, only framework .c/ is locally rigid.

We say that an r-dimensional framework G.p/ in R
r is dimensionally rigid if

there does not exist an r 0-dimensional framework G.q/ in R
r 0 that is equivalent to

G.p/, for any r 0 
 r C 1. For example, in Fig. 1, framework .b/ is dimensionally
rigid since it has no equivalent frameworks in R

3. On the other hand, frameworks
.a/ and .c/ are not dimensionally rigid since each has an infinite number of
equivalent frameworks in R

3.
An r-dimensional framework G.p/ in R

r is said to be universally rigid if every
r 0-dimensional framework G.q/ in R

r 0 , for any r 0, that is equivalent to G.p/, is in
fact congruent to G.p/. None of the frameworks in Fig. 1 is universally rigid. If a
framework is not (locally, dimensionally, universally) rigid, we say that it is (locally,
dimensionally, universally) flexible.

Finally, a framework G.p/ is generic if the coordinates of p1; : : : ; pn are
algebraically independent over the integers. That is, if there does not exist a non-
zero polynomial f with integer coefficients such that f .p1; : : : ; pn/ D 0.

The remainder of this chapter is organized as follows. Section 2 is devoted to
mathematical preliminaries. Section 3 discusses local and infinitesimal rigidities and
introduces the dual rigidity matrix. Dimensional rigidity is the subject of Sect. 4,
while universal rigidity is discussed in Sect. 5.

The related notion of global rigidity [14,18] will not be considered here as it falls
outside the scope of this chapter.
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1.1 Notation

We denote the edge set and the adjacency matrix of a simple graph G by E(G)
and H respectively. jj:jj denotes the Euclidean norm. Sn denotes the space of
n � n real symmetric matrices. Positive semi-definiteness (positive definiteness) of
a symmetric matrix A is denoted by A � 0 (A � 0). We denote by diag.A/ the
vector formed from the diagonal entries of a matrix A. The vector of all 1’s in R

n is
denoted by e. The Hadamard product of two matrices A and B is denoted by A ıB .
The n�n identity matrix is denoted by In; and 0 denotes the zero matrix or the zero
vector of the appropriate dimension. Eij denotes the n � n symmetric matrix with
1’s in the ij th and j i th entries and 0’s elsewhere. Finally, throughout this chapter,
G.p/ is a bar framework in R

r with n nodes and m edges. The number of missing
edges of G is denoted by Nm D n.n � 1/=2�m.

2 Preliminaries

An n � n real matrix A is said to be positive semidefinite if xT Ax 
 0 for all x in
R
n; and it is said to be positive definite if xT Ax > 0 for all x in R

n, x ¤ 0. Let
A D .aij /, B D .bij / and C D .cij / be n � n matrices. Then C D A ıB , i.e., C is
the Hadamard product of A and B , iff cij D aij bij for all i; j D 1; : : : ; n. The left
null space of a matrix A is the null space of AT .

2.1 Projected Gram Matrices and Euclidean Distance Matrices

In this section we present a one-to-one correspondence between the set of Euclidean
distance matrices of order n and the set of projected Gram matrices of order
n � 1. This correspondence enables us to obtain a characterization of equivalent
frameworks in terms of projected Gram matrices. To this end, let G.p/ be a given
r-dimensional framework in R

r , then the n � r matrix

P D

2

6
6
6
4

.p1/T

.p2/T

:::

.pn/T

3

7
7
7
5

(1)

is called the configuration matrix of G.p/. Thus the Gram matrix of configuration
p is given by B D PPT . Note that B is an n � n symmetric positive semidefinite
matrix with rank r . Also note that B is invariant under orthogonal transformations.
In order to make B invariant under translations, we impose the condition

Be D 0; (2)
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where e is the vector of all 1’s. This condition is equivalent to setting the origin
at the centroid of the points p1; : : : ; pn since Be D 0 iff PT e D 0. Let V be an
n � .n � 1/ matrix such that

V T e D 0 ; V T V D In�1 : (3)

Then Condition (2) is also equivalent to

B D VXV T ; (4)

where X is .n � 1/ � .n � 1/, X � 0 and rank X = r . Furthermore,

X D V TBV D V TPPT V: (5)

Accordingly, X is called the projected Gram matrix (PGM) of framework G.p/
since V V T is the orthogonal projection on e?, the orthogonal complement of e
in R

n.
Since PGMs are invariant under rigid motions, all congruent frameworks have

the same PGM. As a result, we will identify congruent frameworks. Given an
r-dimensional framework G.p/ in R

r , its PGM X is given by Eq. (5). On the
other hand, given a PGM X of rank r , then its configuration matrix P can be
recovered by factorizingB D VXV T DPPT . Moreover,P is unique since we don’t
distinguish between congruent frameworks. Our approach is based on representing
a configuration p by its corresponding PGM X .

Let D D .dij / be the Euclidean distance matrix generated by G.p/. Then

dij D jjpi � pj jj2;
D .pi /

T
pi C .pj /

T
pj � 2 .pi /T pj ;

D .PP T /i i C .PP T /jj � 2 .PPT /ij :

Therefore,

D D diag.B/eT C e.diag.B//T � 2B;
where B is the Gram matrix of G.p/.

Let SH D fA 2 Sn W diag.A/ D 0g and define the linear transformations
KV W Sn�1 ! SH and TV W SH ! Sn�1 such that

KV .A/ WD diag.VAV T /eT C e.diag.VAV T //T � 2VAV T ; (6)

and

TV .A/ WD �1
2
V TAV: (7)
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The transformations KV and TV are mutually inverse [5]. Thus, for an
r-dimensional frameworkG.p/ in R

r with PGM Xp we have

Dp D KV .Xp/ and Xp D TV .Dp/ with rank Xp D r: (8)

Now let G.q/ in R
s be an s-dimensional framework equivalent to G.p/ and let

Dq be the Euclidean distance matrix generated by G.q/. Then H ıDq D H ıDp

whereH is the adjacency matrix of graph G. Thus,

H ı .Dq �Dp/ D H ıKV .Xq � Xp/ D 0; (9)

where Xq is the PGM of G.q/.
Let Eij be the n � n symmetric matrix with 1’s in the ij th and j i th entries and

zeros elsewhere. Further, let

Mij WD TV .E
ij / D �1

2
V T Eij V: (10)

Then one can easily show that the set fMij W i ¤ j; .i; j / 62 E.G/g forms a basis
for the kernel of H ıKV . Hence, it follows from (9) that

Xq �Xp D
X

ij Wi¤j;.i;j / 62E.G/
OyijM ij ;

for some scalars Oyij . Thus,

Xq D Xp C
X

ij Wi¤j;.i;j / 62E.G/
OyijM ij � 0I (11)

and rank Xq D s, where s is the dimension of framework G.q/. Equation (11)
expresses the fact that jjqi � qj jj ¤ jjpi � pj jj only if i ¤ j; .i; j / 62 E.G/. More
precisely, it follows from (8) and (10) that

jjqi � qj jj2 D Oyij C jjpi � pj jj2 for all ij W i ¤ j; .i; j / 62 E.G/:

Let us define

X.y/ WD Xp CM .y/; where M .y/ WD
X

ij Wi¤j;.i;j / 62E.G/
yijM

ij : (12)

Then

fX.y/ W X.y/ � 0g (13)
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is the set of PGMs of all s-dimensional frameworks in R
s that are equivalent to

G.p/, where sD rankX.y/. The next theorem is an immediate consequence of (12).

Theorem 1. Let G.p/ be an .n � 1/-dimensional bar framework on n vertices in
R
n�1 and assume that G is not the complete graph. Then G.p/ is locally flexible.

Proof. SinceG.p/ is .n�1/-dimensional we haveXp � 0. The result follows since
for a sufficiently small � > 0,X.y/ D XpCM .y/ � 0 for all y such that jjyjj � �.

Let

Xp D ŒW U �

�

� 0
0 0

	 �

W T

U T

	

D Q

�

� 0
0 0

	

QT (14)

be the spectral decomposition of Xp , where Q D ŒW U � is orthogonal and � is
the r � r diagonal matrix consisting of the positive eigenvalues of Xp. Here, W
is .n � 1/ � r and U is .n � 1/ � .n � 1 � r/ where the columns of U form an
orthonormal basis for the null space of Xp.

The following lemma plays a major role in our approach. It will be used in
subsequent sections as the starting point for our discussion of local, dimensional
and universal rigidities.

Lemma 1. Let G.p/ be a given r-dimensional framework in R
r and let X.y/ and

Q D ŒW U � be as defined in (12) and (14) respectively. Then




X.y/ W QTX.y/Q D
�
�CW TM .y/W W TM .y/ U

U TM .y/W U TM .y/ U

	

� 0
�

; (15)

is the set of PGMs of all s-dimensional frameworks in R
s that are equivalent to

G.p/, where

s D rank

��
�CW TM .y/W W TM .y/ U

U TM .y/W U TM .y/ U

	�

:

Lemma 1 follows since X.y/ � 0 if and only if QTX.y/Q � 0, and since rank
QTX.y/Q D rank X.y/.

2.2 Gale Matrices and Stress Matrices

In this section we show how Gale matrices arise naturally when configurations are
represented by their PGMs. We also establish the connection between Gale matrices
and stress matrices.

Let G.p/ be an r-dimensional framework on n vertices in R
r , r � n� 2, and let

P be the configuration matrix of G.p/. Then the following .r C 1/� n matrix
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P WD
�
PT

eT

	

D
�
p1 : : : pn

1 : : : 1

	

(16)

has full row rank since p1; : : : ; pn affinely span R
r .

Definition 1. Let Nr denote the dimension of the null space of matrix P defined
in (16), that is,

Nr D n � 1 � r: (17)

Definition 2. Assume that the null space of P is nontrivial, i.e., Nr 
 1. Then any
n � Nr matrix Z whose columns form a basis of the null space of P is called a
Gale matrix of configuration p (or framework G.p/). Furthermore, the i th row of
Z, considered as a vector in R

Nr , is called a Gale transform of pi [16].

Gale transform is widely used in the theory of polytopes [21]. Note that if Z and
Z0 are two Gale matrices of G.p/, then Z0 D ZQ0 for some Nr � Nr nonsingular
matrix Q0. Hence, without loss of generality we can assume that the top Nr � Nr sub-
matrix of Z is the identity matrix INr . As a result, Z is sparse.

An equilibrium stress of a frameworkG.p/ is a real-valued function ! on E.G/
such that:

X

j W.i;j /2E.G/
!ij .p

i � pj / D 0 for all i D 1; : : : ; n: (18)

Let ! D .!ij / be an equilibrium stress for G.p/. Define the following n � n
symmetric matrix S D .sij / where

sij D
8

<

:

�!ij if i ¤ j; .i; j / 2 E.G/;
0 if i ¤ j; .i; j / 62 E.G/;
P

kW.i;k/2E.G/ !ik if i D j:

(19)

S is called a stress matrix of G.p/. Note that (16) and (19) imply that S is a stress
matrix of G.p/ if and only if

PS D 0; and sij D 0 for all ij W i ¤ j; .i; j / 62 E.G/: (20)

As the following lemma shows, Gale matrices and stress matrices are closely
related.

Lemma 2 (Alfakih [3]). Let Z and S be, respectively, a Gale matrix and a stress
matrix of an r-dimensional framework G.p/ in R

r . Then there exists an Nr � Nr
symmetric matrix  such that

S D ZZT : (21)
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1

2

3

4

5

Fig. 2 A framework in R
2 which is infinitesimally flexible and locally rigid. The edge (2,4) is

shown as an arc in order to make it visible that nodes 5 and 2, and nodes 5 and 4 are nonadjacent.
A non-trivial infinitesimal flex is ı1= ı2 D ı3 D ı4 D .0 ; 0/T , ı5 D .0 ; 1/T

On the other hand, let  0 be any Nr � Nr symmetric matrix such that .zi /T  0zj D 0

for all ij W i ¤ j; .i; j / 62 E.G/, where .zi /T denotes the i th row of Z. Then
S 0 D Z 0ZT is a stress matrix of G.p/.

For later use, observe that S D ZZT � 0, rank S D Nr if and only if  � 0.

Example 1. Consider the frameworkG.p/ in Fig. 2.G.p/ has configuration matrix

P D

2

6
6
6
6
6
4

�1:5 0

0 1

1:5 0

0 �1
0 0

3

7
7
7
7
7
5

; and a Gale matrix Z D

2

6
6
6
6
6
4

1 0

0 1

1 0

0 1

�2 �2

3

7
7
7
7
7
5

:

Moreover, the missing edges ofG are .1; 3/, .2; 5/ and .4; 5/. It is easy to show that

! D .!12 D 1; !14 D 1; !15 D �2; !23 D 1; !24 D �1; !34 D 1; !35 D �2/

is an equilibrium stress ofG.p/, and that the corresponding stress matrix S ofG.p/
can be written as

S D

2

6
6
6
6
6
4

0 �1 0 �1 2

�1 1 �1 1 0

0 �1 0 �1 2

�1 1 �1 1 0

2 0 2 0 �4

3

7
7
7
7
7
5

D Z

�
0 �1

�1 1

	

ZT :

The following lemma shows that Gale matrices are related to the null space of
projected Gram matrices. As a result, Gale matrices arise naturally in our approach.

Lemma 3. Let P be the configuration matrix of an r-dimensional frameworkG.p/
in R

r and let the matrices V , U andW be as defined in (3) and (14). Then
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1. V U is a Gale matrix of G.p/,
2. V W D PQ0 for some r � r non-singular matrix Q0.

See [4] for a proof of Lemma 3.

3 Local and Infinitesimal Rigidities

Our approach leads to a new rigidity matrix NR, called the dual rigidity matrix, which
is different from, but carries the same information as, the “usual” rigidity matrix R.
Our presentation here follows closely that in [2]. We begin by recalling how R is
derived.

Let G.p/ be a given r-dimensional framework in R
r and let G.q/ be an r-

dimensional framework in R
r that is equivalent to G.p/, where qi D pi C ıi for

i D 1; : : : ; n. Then

jjpi C ıi � pj � ıj jj2 � jjpi � pj jj2 D 0 for all .i; j / 2 E.G/: (22)

Hence, the linear (in ıi ’s) term of Eq. (22) is given by

2.pi � pj /T ıi C 2.pj � pi /T ıj D 0 for all .i; j / 2 E.G/: (23)

Any ı D Œ.ı1/T .ı2/T : : : .ın/T �T 2 R
nr that satisfies Eq. (23) is called an

infinitesimal flex of G.p/. The rigidity matrix R of an r-dimensional framework
G.p/ in R

r , with n vertices and m edges, is the m � nr matrix whose rows and
columns are indexed, respectively, by the edges and the vertices of G, where the
.i; j /th row is given by

Œ 0 : : : 0

vertex i
‚ …„ ƒ

.pi � pj /T 0 : : : 0

vertex j
‚ …„ ƒ

.pj � pi /T 0 : : : 0 �: (24)

Obviously, ı is an infinitesimal flex of frameworkG.p/ if and only if ı is in the null
space of its rigidity matrix R. Also, ! is an equilibrium stress of G.p/ if and only
if ! is in the left null space of R.

An infinitesimal flex is said to be trivial if it results from a rigid motion.
The dimension of the space of trivial flexes is r.rC1/=2. A frameworkG.p/ is said
to be infinitesimally rigid if it has only trivial infinitesimal flexes. Otherwise, G.p/
is said to be infinitesimally flexible [11, 12, 15, 20, 22]. The notion of infinitesimal
rigidity is stronger than that of local rigidity.

Theorem 2 (Gluck [17]). If a framework G.p/ is infinitesimally rigid then it is
locally rigid.

The converse of Theorem 2 is false. Figure 2 depicts a framework which is
infinitesimally flexible and locally rigid.
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It is well known [10, 17] that local rigidity is a generic property, i.e., if an
r-dimensional generic frameworkG.p/ in R

r is locally rigid, then all r-dimensional
generic frameworks G.q/ in R

r are also locally rigid. Furthermore, the notions of
local rigidity and infinitesimal rigidity coincide for generic frameworks.

Theorem 3 (Asimow and Roth [9]). Let G.p/ be a generic r-dimensional frame-
work on n vertices in R

r and let R be its rigidity matrix. Then G.p/ is locally rigid
if and only if

rank R D nr � r.r C 1/

2
: (25)

3.1 The Dual Rigidity Matrix

The following well-known lemma [23], which follows from Schur complement, will
be needed later.

Lemma 4. Let

M D
�
A B

BT C

	

be a partitioned real symmetric matrix, where A is an r � r positive definite matrix.
Then M is positive semi-definite with rank r if and only if C � BTA�1B D 0.

Our starting point in deriving the dual rigidity matrix is Lemma 1. Let Xp be the
PGM of an r-dimensional frameworkG.p/ in R

r . ThenX.y/ D XpCM .y/ is the
PGM of a framework in R

r that is equivalent to G.p/, if and only if the matrix

�
�CW TM .y/W W TM .y/U

U TM .y/W U TM .y/U

	

; (26)

defined in Lemma 1, is positive semidefinite with rank r .
Now, for a sufficiently small � > 0, the matrix � C W TM .y/W is positive

definite for all y such that jjyjj � �. Therefore, it follows from Lemma 4 that for all
y such that jjyjj � �, the matrix in (26) is positive semidefinite with rank r , if and
only if

˚.y/ WD UTM .y/U � UTM .y/W .�CW TM .y/W /�1 W TM .y/U D 0:
(27)

Thus

fX.y/ D Xp CM .y/ W ˚.y/ D 0g
is the set of PGM of all r-dimensional frameworks in R

r that are: (i) equivalent, but
not congruent, to G.p/, (ii) arbitrarily close to G.p/.
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The linear (in y) term of ˚.y/ is given by

UTM .y/U D 0: (28)

Therefore, framework G.p/ is infinitesimally flexible if and only if there exists a
non-zero y satisfying (28). Next we express Eq. (28) in terms of a Gale matrix of
G.p/.

Theorem 4 (Alfakih [2]). Let Z be a Gale matrix of an r-dimensional framework
G.p/ in R

r . ThenG.p/ is infinitesimally flexible if and only if there exists a non-zero
y D .yij / in R

Nm such that

ZT E .y/Z D 0; where E .y/ D
X

ij Wi¤j;.i;j / 62E.G/
yijE

ij ; (29)

and where Eij is the symmetric matrix of order n with 1’s in the ij th and the j i th
entries and zeros elsewhere.

Proof. This follows from Lemma 3 and Eqs. (10) and (12).

Example 2. Let G.p/ be the framework in Fig. 2 considered in Example 1. The
missing edges of G are .1; 3/, .2; 5/ and .4; 5/ and a Gale matrix Z of G.p/ was
given in Example 1. Then

ZT E .y/Z D y13 Z
TE13Z C y25 Z

TE25Z C y45 Z
TE45Z

D
�

2y13 �2y25 � 2y45
�2y25 � 2y45 �4y25 � 4y45

	

D 0

has the non-zero solution y13 D 0, y25 D �1 and y45 D 1. Thus the framework
G.p/ in Fig. 2 is infinitesimally flexible.

Equation (29) can be written as the system of linear equations NRy D 0. In the
spirit of (23), NR is called the dual rigidity matrix. Next, we show how to construct
NR in terms of Gale matrixZ using the symmetric Kronecker product. We start, first,

with some necessary definitions.
Given an n�n symmetric matrix A, let svec(A) denote the n.nC1/

2
-vector formed

by stacking the columns of A from the main diagonal downwards after having mul-
tiplied the off-diagonal entries of A by

p
2. For example, if A is a 3� 3matrix, then

svec.A/ D

2

6
6
6
6
6
6
6
4

a11p
2 a21p
2 a31
a22p

2 a32
a33

3

7
7
7
7
7
7
7
5

: (30)
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LetB be anm�nmatrix and letA be an n�n symmetric matrix. Then the symmetric
Kronecker product between B and itself, denoted by B ˝s B , is defined such that

.B ˝s B/ svec.A/ D svec.BABT /: (31)

For more details on the symmetric Kronecker product see [8].

Definition 3. Let Z be a Gale matrix of an r-dimensional framework G.p/ in R
r .

Then NRT , the transpose of the dual rigidity matrix of G.p/, is the sub-matrix of
Z ˝s Z obtained by keeping only rows that correspond to missing edges of G.

Recall that Nm denotes the number of missing edges ofG and Nr D n�1� r . Also
recall that zi

T
denotes the i th row of Z. Then the dual rigidity matrix NR of G.p/ is

the Nr.NrC1/
2

� Nm matrix whose columns are indexed by the missing edges ofG, where

the .i; j /th column is equal to 1p
2

svec(zizj T C zj zi
T ). For example, if the missing

edges of G are .i1; j1/; .i2; j2/; : : : ; .i Nm; j Nm/, then

NR D 1p
2

�

svec

�

zi1zj1
T C zj1zi1

T
�

: : : svec

�

zi Nmzj Nm
T C zj Nmzi Nm

T
�	

: (32)

Note that the dual rigidity matrix NR is usually sparse since, wlog, the top Nr � Nr
sub-matrix of Z can be chosen to be the identity matrix INr .

The following theorem, which is the analogue of Theorem 3, characterizes
infinitesimal rigidity in terms of NR.

Theorem 5 (Alfakih [2]). Let NR be the dual rigidity matrix of an r-dimensional
framework G.p/ in R

r . Then G.p/ is infinitesimally rigid if and only if NR has a
trivial null space, i.e., if and only if

rank NR D Nm: (33)

It is worth remarking that the rank of NR would not change if the factors of
p
2

are dropped from the definition of NR in (32). These factors are kept in order to make
the definition of NR in terms of the symmetric Kronecker product simple.

Example 3. The framework G.p/ in Fig. 2 considered earlier in Examples 1 and 2
has missing edges .1; 3/, .2; 5/ and .4; 5/; and a Gale matrix

Z D

2

6
6
6
6
6
4

1 0

0 1

1 0

0 1

�2 �2

3

7
7
7
7
7
5

:
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Thus Nm D 3 and Nr D 2. Therefore, the dual rigidity matrix of G.p/ is

NR D
2

4

p
2 0 0

0 �2 �2
0 �2p2 �2p2

3

5 :

Note that the rigidity matrix R of G.p/ is 7 � 10. Also note that y D .0;�1; 1/T is
a basis of the null space of NR, and x D .0;�p2; 1/T is a basis of the left null space
of NR.

3.2 Similarities and Differences Between R and NR

There are two main differences between the dual rigidity matrix NR and the rigidity
matrix R. First, NR is Nr.Nr C 1/=2-by- Nm while R is m-by-nr . Second, NR is invariant
under rigid motions while R is not. Hence, in Eq. (33), there is no need to account
for the trivial flexes as was the case in (25).
R and NR are similar in the sense that the null space and the left null space of NR

are closely related to those of R. Recall that the infinitesimal flexes ofG.p/ belong
to the null space of R, and the equilibrium stresses of G.p/ belong to the left null
space of R.

Theorem 6 (Alfakih [2]). Let R and NR be, respectively, the rigidity and the dual
rigidity matrices of an r-dimensional framework G.p/ in R

r . Then:

1. The left null space of NR is isomorphic to the left null space of R.
2. The dimension of the null space of NR D the dimension of the null space of

R � r.r C 1/

2
.

At the heart of the isomorphism between the left null spaces of R and NR is the
fact that S D ZZT is a stress matrix of G.p/ if and only if svec( ) is in the left
null space of NR. This fact is a simple consequence of Lemma 2 and the definition
of NR.

Example 4. It is easy to verify that in Examples 1 and 3

svec./ D svec

��

0 �1
�1 1

	�

D
2

4

0

�p2
1

3

5

is in the left null space of NR.
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4 Dimensional Rigidity

We will need the following well-known Farkas lemma on the cone of positive
semidefinite matrices in the proof of Theorem 7 below.

Lemma 5. Let A1; : : : ; Ak be given n � n symmetric real matrices. Then exactly
one of the following two statements holds:

1. There exists Y � 0 such that trace .AiY / D 0 for all i D 1; : : : ; k.
2. There exists x D .xi / 2 R

k such that x1A1 C � � � C xkA
k � 0;¤ 0.

For a proof of this lemma, see for example [4]. A sufficient condition for
dimensional rigidity is given in the following theorem.

Theorem 7 (Alfakih [1]). Let G.p/ be an r-dimensional bar framework on n

vertices in R
r for some r � n � 2; and let Z be a Gale matrix of G.p/. If there

exists a matrix  � 0 of order Nr such that

.zi /T  zj D 0 for all ij W i ¤ j; .i; j / 62 E.G/: (34)

Then G.p/ is dimensionally rigid.

Proof. Suppose that there exists  � 0 such that .zi /
T
 zj D 0 for all ij W i ¤

j; .i; j / 62 E.G/. Then, by Lemma 5, there does not exist y D .yij / 2 R
Nm such that

the matrix
P

ij Wi¤j;.i;j / 62E.G/ yij .zi .zj /
TCzj .zi /

T
/ is non-zero positive semidefinite.

But zi .zj /
T C zj .zi /

T D ZTEijZ. Therefore, there does not exist y D .yij / 2 R
Nm

such that ZT E .y/Z � 0;¤ 0. Hence, by Lemma 3 and (10), there does not exist
y D .yij / 2 R

Nm such that UTM .y/U � 0;¤ 0.
Now assume that G.p/ is not dimensionally rigid. Then it follows from (13)

that there exists a nonzero Oy such that X. Oy/ D Xp C M . Oy/ � 0, where rank
X. Oy/ 
 r C 1. Thus it follows from Lemma 1 that the matrix

�

�CW T M . Oy/ W W T M . Oy/ U
U T M . Oy/ W U T M . Oy/ U

	

;

defined in Lemma 1, is positive semidefinite with rank 
 r C 1. But � C
W TM . Oy/W is r � r , therefore, UTM . Oy/U � 0;¤ 0, a contradiction. Hence,
G.p/ is dimensionally rigid. �

In light of Lemma 2, Theorem 7 can also be stated in terms of stress matrices.

Theorem 8 (Alfakih [1]). Let G.p/ be an r-dimensional bar framework on n

vertices in R
r for some r � n � 2. If G.p/ admits a positive semidefinite stress

matrix S of rank Nr D n � r � 1. Then G.p/ is dimensionally rigid.
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1

2

3

4

5

Fig. 3 A dimensionally rigid framework G.p/ in R
2 that does not admit a positive semidefinite

stress matrix of rank 2. Note that the points p2; p4, and p5 are collinear. The edge .4; 5/ is drawn
as an arc to make the edges .2; 4/ and .2; 5/ visible

We remark that the converse of Theorem 7 is not true. Consider [1] the framework
G.p/ on 5 vertices in R

2, where the configuration matrix P and a Gale matrixZ of
G.p/ are given by

P D

2

6
6
6
6
6
4

�5 �3
2 1

�1 0

0 2

4 0

3

7
7
7
7
7
5

and Z D

2

6
6
6
6
6
4

1 0

0 1

�3 0

3=2 �1=2
1=2 �1=2

3

7
7
7
7
7
5

;

and where the missing edges of G are .1; 2/ and .3; 4/ (see Fig. 3). It is clear that
G.p/ is dimensionally rigid (in fact, G.p/ is also universally rigid). Moreover,
one can easily verify that there does not exist a 2 � 2 symmetric positive definite
matrix  such that .z1/T  z2 = .z3/T  z4 D 0. In other words, G.p/ has no positive
semidefinite stress matrix of rank 2.

5 Universal Rigidity

Affine motions play a pivotal role in the problem of universal rigidity.

5.1 Affine Motion

An affine motion in R
r is a map f W Rr ! R

r of the form

f .pi / D Api C b;

for all pi in R
r , where A is an r � r matrix and b is an r-vector. A rigid motion is

an affine motion where matrix A is orthogonal.
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We say that frameworkG.q/ in R
r is affinely-equivalent to a given r-dimensional

framework G.p/ in R
r if: (i) G.q/ is equivalent to G.p/ and (ii) configuration q is

obtained from configuration p by an affine motion; i.e., qi D Api C b, for all
i D 1; : : : ; n, for some r � r matrix A and an r-vector b.

Affine-equivalence can be characterized in terms of points p1; : : : ; pn and the
edges of G.

Lemma 6 (Connelly [14]). Let G.p/ be an r-dimensional bar framework on n
vertices in R

r . Then the following two conditions are equivalent:

1. There exists a bar framework G.q/ in R
r that is affinely-equivalent, but not

congruent, to G.p/,
2. There exists a non-zero symmetric r � r matrix ˚ such that

.pi � pj /T ˚.pi � pj / D 0; for all .i; j / 2 E.G/: (35)

Affine-equivalence can also be characterized in terms of Gale matrix and the
missing edges of G. Recall from (29) that

E .y/ij D


yij if i ¤ j and .i; j / 62 E.G/;
0 Otherwise :

(36)

Lemma 7 (Alfakih [3]). Let G.p/ be an r-dimensional bar framework on n

vertices in R
r and let Z be any Gale matrix of G.p/. Then the following two

conditions are equivalent:

1. There exists a bar framework G.q/ in R
r that is affinely-equivalent, but not

congruent, to G.p/,
2. There exists a non-zero y D .yij / 2 R

Nm such that:

V T E .y/Z D 0; (37)

where V is defined in (3).

The following theorem characterizes universal rigidity in terms of dimensional
rigidity and affine-equivalence.

Theorem 9 (Alfakih [1]). Let G.p/ be an r-dimensional bar framework on n

vertices in R
r , r � n� 2. ThenG.p/ is universally rigid if and only if the following

two conditions hold:

1. G.p/ is dimensionally rigid.
2. There does not exist a bar framework G.q/ in R

r that is affinely-equivalent, but
not congruent, to G.p/.

Proof. Let G.p/ be a given r-dimensional framework on n vertices in R
r for some

r � n � 2. Clearly, if G.p/ is universally rigid then G.p/ is dimensionally rigid
and there does not exist a framework G.q/ in R

r that is affinely-equivalent, but not
congruent, to G.p/.
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To prove the other direction, assume thatG.p/ is not universally rigid. Then there
exists an s-dimensional frameworkG.q/ in R

s , that is equivalent, but not congruent,
to G.p/, for some s: 1 � s � n� 1. Therefore, it follows from (13) that there exists
a non-zero Oy in R

Nm such that X. Oy/ D Xp C M . Oy/ � 0. Now for a sufficiently
small � > 0, it follows that1

X.t Oy/ D Xp CM .t Oy/ � 0; and rank X.t Oy/ 
 r (38)

for all t W 0 � t � �. Thus it follows from Lemma 1 that for all t W 0 � t � �, the
matrix

Y.t/ D
�
�C tW T M . Oy/ W tW T M . Oy/ U

tU T M . Oy/ W tU T M . Oy/ U
	

;

defined in Lemma 1 is positive semidefinite with rank 
 r . Consequently,
UTM . Oy/U � 0 and the null space of UTM . Oy/U is a subset of the null space
of W TM . Oy/U .

Therefore, if rank Y.t0/ 
 r C 1 for some t0 W 0 < t0 � �, then we have
a contradiction since G.p/ is dimensionally rigid. Hence, rank Y.t/ D r for all
t W 0 � t � �. Thus, both matrices UTM . Oy/U and W TM . Oy/U must be zero.
This implies that M . Oy/U D 0, i.e., V T E . Oy/Z D 0, which is also a contradiction
by Lemma 7. Therefore,G.p/ is universally rigid.

By combining Theorems 9 and 7, we obtain the following sufficient condition
for universal rigidity.

Theorem 10 (Connelly [11, 13], Alfakih [1]). Let G.p/ be an r-dimensional bar
framework on n vertices in R

r , for some r � n � 2. If the following two conditions
hold:

1. There exists  � 0 such that .zi /T  zj D 0 for all ij; i ¤ j; .i; j / 62 E.G/.
2. There does not exist a bar framework G.q/ in R

r that is affinely-equivalent, but
not congruent, to G.p/.

Then G.p/ is universally rigid.

5.2 Universal Rigidity for Generic Frameworks

Theorem 10 becomes simpler if the frameworkG.p/ is assumed to be generic.

Lemma 8 (Connelly [14]). Let G.p/ be a generic r-dimensional bar framework
on n nodes in R

r . Assume that the degree of each node ofG is 
 r . Then there does
not exist a non-zero symmetric matrix ˚ such that .pi � pj /T ˚.pi � pj / D 0 for
all .i; j / 2 E.G/.

1The rank function is lower semi-continuous on the set of matrices of order n� 1.
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Therefore, if G.p/ is generic, and if the degree of each node of G is at least r .
Then it follows from Lemmas 8 and 6 that Condition 2 of Theorem 10 holds. As a
result, Theorem 10 reduces to the following theorem.

Theorem 11 (Connelly [11, 13], Alfakih [1]). Let G.p/ be an r-dimensional
generic bar framework on n vertices in R

r , for some r � n � 2. Suppose that
there exists  � 0 such that .zi /T  zj D 0 for all ij; i ¤ j; .i; j / 62 E.G/; or
equivalently, suppose that G.p/ admits a positive semidefinite stress matrix S of
rank Nr D n � r � 1. Then G.p/ is universally rigid.

The converse of Theorem 11 is also true.

Theorem 12 (Gortler and Thurston [19]). LetG.p/ be an r-dimensional generic
bar framework on n nodes in R

r , for some r � n � 2. If G.p/ is universally rigid,
then there exists a positive semidefinite stress matrix S ofG.p/ of rank Nr D n�r�1.

5.3 Universal Rigidity for Frameworks in General Position

The genericity assumption is a strong one. A weaker assumption is that of points
in general position. A configuration p (or a framework G.p/) in R

r is said to be
in general position if no r C 1 points in p1; : : : ; pn are affinely dependent. For
example, a set of points in the plane are in general position if no three of them are
collinear.

The following theorem shows that Theorem 11 still holds under the general
position assumption.

Theorem 13 (Alfakih and Ye [7]). Let G.p/ be an r-dimensional bar framework
on n nodes in general position in R

r , for some r � n � 2. Suppose that there exists
 � 0 such that .zi /T  zj D 0 for all ij; i ¤ j; .i; j / 62 E.G/; or equivalently,
suppose that G.p/ admits a positive semidefinite stress matrix S of rank Nr D n �
r � 1. Then G.p/ is universally rigid.

The proof of Theorem 13 [7] relays on the following useful property of Gale
matrices under the general position assumption.

Lemma 9. Let G.p/ be an r-dimensional bar framework on n nodes in general
position in R

r and let Z be any Gale matrix of G.p/. Then every Nr � Nr sub-matrix
of Z is nonsingular.

In particular, using Lemmas 7 and 9, it is proved in [7] that if a frameworkG.p/
in general position in R

r admits a positive semidefinite stress matrix S of rank
n�r�1, then there does not exist a frameworkG.q/ in R

r that is affinely-equivalent,
but not congruent, to G.p/.

On the other hand, a constructive proof was given in [6] that the converse of
Theorem 13 holds for r-dimensional frameworksG.p/ in R

r , whereG is an .rC1/-
lateration graph. Such frameworks were shown to be universally rigid in [24].
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A graph G on n vertices is called an .r C 1/-lateration graph if there exists a
permutation � of the vertices of G, such that:

1. The first .r C 1/ vertices, �.1/; : : : ; �.r C 1/, induce a clique in G.
2. Each remaining vertex �.j /, for j D .rC2/; : : : ; n, is adjacent to exactly .rC1/

vertices in the set f�.1/; �.2/; : : : ; �.j � 1/g.
Theorem 14 (Alfakih et al. [6]). Let G.p/ be an r-dimensional bar framework on
n nodes in general position in R

r , for some n 
 r C 2, where G is an .r C 1/-
lateration graph. Then there exists a positive semidefinite stress matrix S of G.p/
of rank n � r � 1.
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Geometric Constructions for Symmetric
6-Configurations

Leah Wrenn Berman

Abstract A geometric k-configuration is a collection of points and lines, typically
in the Euclidean plane, with k points on each line, k lines passing through each
point, and non-trivial geometric symmetry; that is, it is a .nk/. configuration for
some number n of points and lines. We say a k-configuration is symmetric if it
has non-trivial geometric symmetry. While 3-configurations have been studied since
the mid-1800s, and 4-configurations have been studied since 1990, little is known
about more highly incident configurations, such as 5- or 6-configurations. This
article surveys several known geometric construction techniques that produce highly
symmetric 6-configurations.

Keywords Configurations • Incidence geometry

Subject Classifications: 51E30, 05E30

A geometric k-configuration is a collection of points and straight lines, typically in
the Euclidean or projective plane, so that every point lies on k lines and every line
passes through k points. Since the number of point-line incidences must equal the
number of line-point incidences, the number of points and lines in a k-configuration
must be equal, and such configurations are also referred to as .nk/ configurations,
indicating that there are n points and n lines in the configuration. Other related
objects of study are topological k-configurations, where the straight lines are
replaced with topological lines, i.e., simple closed curves that pairwise transversally
intersect exactly once in the projective plane, and combinatorial k-configurations,
where the straight lines are replaced by “combinatorial lines”, i.e., sets of points
whose intersection has size at most 1. In this paper, unless otherwise indicated, by
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Fig. 1 A .1206/ configuration, with four symmetry classes of points and lines (indicated by color)

‘configuration’ we mean a geometric k-configuration for some positive integer k.
Figure 1 shows a connected 6-configuration with 120 points and lines, although we
do not require that k-configurations in general are connected.

The study of k-configurations began in the mid-1800s with various questions
about 3-configurations and certain specific combinatorial 4-configurations, but it
had mostly died out by the 1940s. The modern study of configurations began
in 1990, with the first intelligible geometric representation of a combinatorial
4-configuration, shown and discussed in the paper “The real .214/ configuration”
by Branko Grünbaum and John Rigby [19]; most papers have focused on 3- and
4-configurations. Various mathematical disciplines have been used to investigate
questions about configurations, including graph theory, the theory of oriented
matroids, projective geometry, combinatorial designs, and Euclidean geometry. Of
particular utility has been the use of various computer software, including purpose-
built programs written in various programming languages; programs to investigate
various group- and graph-theoretic questions, such as NAUTY and GAP; general-
purpose computer algebra software such as Mathematica; and drawing software
such as Geometer’s Sketchpad. (For example, the configurations shown in this paper
were produced using a combination of Geometer’s Sketchpad and Mathematica.)
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Despite some significant recent interest in the study of various types of configu-
rations, there has been relatively little study of k-configurations with k > 4. A few
papers (of the author and coauthors) discussed 5-configurations [8, 13] and a few
8-configurations were described in [9]. However, until recently, basically no general
methods for producing intelligible 6-configurations were known. Grünbaum, in
his monograph Configurations of points and lines [18, Section 1.1, 4.2] described
two known ways of constructing two specific geometric 6-configurations, but the
configurations that are produced are geometrically unintelligible. The focus of
the current paper is to describe a number of methods for producing geometric
6-configurations which have a relatively small number of points and lines and large
amounts of geometric symmetry; in addition, two of the methods produce infinite
families of 6-configurations.

1 Symmetric Configurations; Levi and Reduced Levi Graphs

A geometric configuration is symmetric if there exist nontrivial isometries of the
Euclidean or extended Euclidean plane that map the configuration to itself; the
orbits under the isometries partition the points and lines of the configuration into
various symmetry classes, which in this paper are typically indicated by color. For
example, the .1206/ configuration shown in Fig. 1 has four symmetry classes of
points, colored black, red, green and blue, and four symmetry classes of lines, also
colored black, red, green and blue. This definition of symmetric configuration is
more general than the notion of polycyclic configurations [15], which have the added
constraint that every symmetry class must contain the same number of elements
under the largest cyclic subgroup of the symmetry group of the configuration;
the more general definition of symmetric used here allows for the possibility
that, for example, lines of the configuration might pass through the center of the
configuration. (All configurations discussed in the remainder of this paper are
polycyclic, however.) Note that in other papers in the literature (e.g., [14]), following
the use of the term in combinatorial designs, the term “symmetric” has been used
to refer to configurations which have the same number of points on each line as
lines passing through each point—that is, to k-configurations. However, since the
geometry of the configuration plays such an important role in this discussion, we
follow Grünbaum [18, p. 16] and say that k-configurations are balanced, and we
reserve the use of symmetric to refer to configurations with nontrivial geometric
symmetry.

The same combinatorial configuration can have embeddings with very different
symmetry properties. For example, the .93/ Pappus configuration has embeddings
with no symmetry, with one line of mirror symmetry, with two lines of mirror
symmetry, with 3-fold rotational symmetry, and with 3-fold dihedral symmetry. In
this paper, we will not be concerned with whether or not two geometric configura-
tions are combinatorially isomorphic; indeed, there is no known general answer to
the question, even for well-understood classes of geometric configurations, such as
celestial 4-configurations (discussed in the next section).
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Often, we are interested in classifying configurations according to the number
of symmetry classes of points and lines. Following Grünbaum [18, p. 34], we
say that k-configurations with h symmetry classes of points and of lines are
h-astral configurations. For example, the configuration shown in Fig. 1 is a 4-astral
6-configuration, because there are 4 symmetry classes of points and 4 symmetry
classes of lines. If there are h1 symmetry classes of lines and h2 symmetry classes
of points, we say the configuration is .h1; h2/-astral. In the case where h D b kC1

2
c,

which is smallest possible (because in a configuration at most two points on a
given line can be in the same symmetry class, and there are k points/line), we say
the configuration is astral. Of particular interest are astral 4-configurations, with 2
symmetry classes of points and lines; note that in [3, 5] it was shown that there are
no astral k-configurations for k 
 6, and it is still open (but unlikely, see [8]) as to
whether there exist astral 5-configurations.

Given an .nk/ configuration, the Levi graph is a bipartite graph with 2n nodes,
one corresponding to each point and line of the configuration, and nk arcs, where
a line-node and a point-node are joined by an arc if and only if the line and
point are incident in the configuration. If the configuration has cyclic symmetry
of order m, then the Levi graph can be quotiented by that cyclic group to form
the reduced Levi graph, also known as a voltage graph, a bipartite multigraph
with one node for each symmetry class of points and lines, and labelled arcs
connecting the point-nodes and line-nodes indicating the incidence. In particular,
if one symmetry class of lines is labelled L, with elements of the symmetry class
labelled cyclically as L0;L1; : : : ; Lm�1, and similarly a vertex class v is labelled
cyclically as v0; : : : ; vm�1, then an arc with label a connects node L and node v
precisely when line L0 passes through vertex va. Note that this means that arcs
are labelled “from the point of view” of the vertices, which is opposite to the
labelling scheme in [15]. In particular, given a drawing of a configuration in which
the 0-th elements of each symmetry class of points and lines are highlighted, and the
rest of the symmetry classes of points and lines are labelled cyclically, to label
the corresponding reduced Levi graph, look at line L0 and then write down the
subscripts of the vertices it intersects as the labels of the arcs adjacent to L in the
reduced Levi graph.

In what follows, we often need to describe or construct the intersection of two
lines or the line that passes between two points. IfL andM are lines, the intersection
of L andM is denoted L^M ; if p and q are points, the line that passes between p
and q is denoted p _ q.

2 Celestial 4-Configurations

Several of the constructions of 6-configurations depend on using a certain type
of symmetric 4-configuration, called a celestial 4-configuration (which will be
described below), as building blocks. The configuration shown in Fig. 2a is
the smallest celestial 4-configuration. Celestial configurations are reasonably
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a b

Fig. 2 Symmetric 4-configurations. (a) The .214/ celestial configuration 7#.2; 1I 3; 2I 1; 3/, which
is 3-astral and 3-celestial: there are three symmetry classes of points and lines, and each line (resp.
point) is incident with two elements from each of two symmetry classes of points (reps. lines). (b)
A dihedrally symmetric 3-astral .204/ configuration, first discussed in [17], that is non-celestial;
the red lines are incident with points from three symmetry classes

well-understood, although they are not completely classified. Every celestial
4-configuration has a corresponding celestial symbol whose parameters must
satisfy four axioms, and given a valid symbol, there is a straightforward, iterative
construction technique, which uses nothing more than drawing straight lines
between points (given an initial starting convexm-gon of vertices) and constructing
the intersection of lines to determine the vertices and lines of the configuration.

For more details on celestial 4-configurations, the interested reader is referred to
Branko Grünbaum’s book [18, Section 3.5–3.8]; the following discussion is mostly
adapted from that reference. However, in that reference, celestial 4-configurations
are unfortunately referred to as k-astral configurations: all the configurations
discussed in those sections are celestial k-astral 4-configurations, but there are
4-configurations with k symmetry classes of points and lines (which are therefore
k-astral) that are not k-celestial; e.g., see Fig. 2b. We reserve the term k-astral to
indicate the number of symmetry classes of points and lines, and use the term
celestial to refer to a more constrained class. For other discussions of celestial
4-configurations, see [4,6,10,12], where they are referred to as celestial; referred to
as polycyclic see [15], and some early images appeared in [20].

A celestial 4-configuration has mh points and lines, for some m 
 7 and h 
 3,
and the dihedral symmetry of an m-gon, with the same number of elements in each
symmetry class. A defining characteristic is that every point has two lines from each
of two symmetry classes of lines incident with it, and every line has two points
from each of two symmetry classes incident with it. A celestial 4-configuration
with h symmetry classes of points and lines is called an h-celestial 4-configuration
(or often, simply an h-celestial configuration).
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The notation

m#.s1; t1I s2; t2I : : : I sh; th/

is called a configuration symbol; a symbol is valid if it obeys the following four
constraints on the sequence .s1; t1; : : : I sh; th/:
(A1): No adjacent entries in the sequence are equal (taken cyclically: th ¤ s1

also);
(A2): The sum .s1 � t1/C : : :C .sh � th/ is even;
(A3): No substring .sj ; tj I : : : I sk/ or .tj I sjC1; tjC1I : : : I sk; tk/ can be completed

to a valid configuration symbol using the same m;
(A4): (The cosine condition)

hY

jD1
cos

�sj �

m

�

D
hY

jD1
cos

�
tj �

m

�

:

(Axiom (A3) is quite technical and prevents extra unintended incidences; for details
on these axioms see [18, Section 3.5–3.8].)

Every celestial 4-configuration can be represented by a symbol

m#.s1; t1I s2; t2I : : : I sh; th/;

although many symbols can correspond to the same unlabeled geometric configura-
tion, and any valid symbol corresponds to an iterative construction method for the
configuration.

The iterative construction method for a configuration given a valid symbol is as
follows.

Initial steps:

• Construct vertices v0 to be the vertices of a regular convexm-gon:

.v0/i D
�

cos

�
2�i

m

�

; sin

�
2�i

m

��

:

• Construct lines .L0/i of span s1:

.L0/i D .v0/i _ .v0/iCs1
Iterative step: For 1 < j < h, construct vertices .vj /i and lines .Lj /i as

follows:

• Vertex .vj /i WD .Lj�1/i ^ .Lj�1/i�tj I this is sometimes referred to as a “tj -th
intersection point” of the .Lj�1/i .
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• Having constructed the vertices vj , the lines Lj are span sj with respect to the
vj ; that is,

.Lj /i WD .vj /i _ .vj /iCsj :

At the .h�1/-st step, we construct the vertices vh�1 to be the .t�1/-st intersection
of the lines Lh�2, and we construct the lines Lh�1 which are of span sh with respect
to the vertices vh�1. The configuration symbol is valid if the set of vertices vh
constructed as

.vh/i WD .Lh�1/i ^ .Lh�1/i�th
coincide as sets with the set of vertices v0. Then the configuration closes up.

The configuration shown in Fig. 2a may be described as the 3-celestial 4-
configuration 7#.2; 1I 3; 2I 1; 3/; in the diagram, the points and lines v0 and L0 are
blue, the points and lines v1 and L1 are red, and the points and lines v2 and L2 are
green.

Given a valid sequence .s1; t1I : : : I sh; th/, shifting the sequence cyclically by
an even number of steps corresponds to choosing a different ring of points to
label as v0 and hence to a geometrically congruent configuration, while cyclically
shifting the sequence an odd number of steps, or reversing the sequence, results in a
configuration that is the geometric polar of the configuration. If any two entries si ; sj
(or ti ; tj ) in the sequence .s1; t1I : : : I sh; th/ are switched, then the resulting sequence
satisfies axioms (A2) and (A4), which we call the cohort axioms. We can represent
a whole collection of valid configuration symbols using a more compact notation,
called cohort notation: m#fS IT g represents a collection of configurations, using
any valid assignment of si ’s and ti ’s chosen alternately from S and T , respectively,
to form the symbol of a celestial configuration. In cohort notation, the configuration
in Fig. 2a is represented as 7#ff1; 2; 3gI f1; 2; 3gg.

If S D T , then the corresponding cohort necessarily satisfies the cohort
axioms. Configuration cohorts of the form m#fS; Sg are called trivial, as are the
corresponding configurations. The configuration in Fig. 2a is trivial, with S D T D
f1; 2; 3g. Some cohorts/configurations fall into an infinite family and are called
systematic; cohorts/configurations which are provably neither systematic nor trivial
are called sporadic.

Let ı D 1
2
..s1 C : : :C sh/ � .t1 C : : :C th//, and note that by axiom (A4),

ı must be an integer; Boben and Pisanski [15] called ı the “twist” of the
configuration. The reduced Levi graph for m#.s1; t1I : : : I sh; th/ is a 2h-cycle with
all arcs doubled, with one of the parallel arcs labelled 0 and the other si or ti ,
alternately around the cycle, with the final double-arc labelled with th and ı. For
a more detailed discussion about the relationship between celestial 4-configurations
and reduced Levi graphs, see [15] (using the name voltage graphs), where the
celestial 4-configuration m#.s1; t1I : : : I sh; th/ in their notation would be denoted
C4.m; .s1; : : : ; sh/; .t1; : : : ; th/; ı/.
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A 2-celestial 4-configuration is also an astral 4-configuration, and these have
been completely classified; the first conjecture of a complete classification appeared
in [16] and a complete, albeit very technical, proof of the classification appeared
in [2]. Subsequently, Grünbaum presented a significantly more streamlined proof in
[18, Section 3.6].

The conclusion of the proof is that

1. 2-celestial configurations exist only if 6 j m and m 
 12;
2. For each m D 6k, there is a single one-parameter family of cohorts: 6k#f3k �
j; j g; f3k � 2j; 2kg.

3. If m D 30; 42; 60 there are a number of sporadic 4-configurations (see, e.g.,
Table 3.6.1 in [18, p. 207]).

The situation for h 
 3 is considerably less well-understood. In distinct contrast
to the 2-celestial case, h-celestial configurations with h > 2 can be constructed for
any “large-enough” m: in particular, it is possible to construct trivial h-celestial
configurations for any h > 2. (There are no trivial 2-celestial configurations,
because although the cohort axioms are satisfied, it is impossible to find a valid
ordering for the sequence if S contains only two numbers.) In addition, a number
of systematic families have been identified for h 
 3, including 19 infinite families
for h D 3, form divisible by 2, 3, 6, 10, 12, and 30 (these do not exhaust the known
data, however), 4 infinite families for h D 4, an infinite family when m D 2q and
h D 2kC1 for any k, and an infinite family for m D 10q and h D 4j for any j (see
[1] for details). However, no complete classification exists, even for h D 3.

3 Celestial 6-Configurations

If we extend the definition of “celestial” configurations to mean 2k-configurations
with the dihedral symmetry of an m-gon in which two lines from each of h
symmetry classes pass through each point and two points from each of h symmetry
classes of points lie on each line, we can discuss more highly incident celestial
configurations. In particular, we can try to construct celestial 6-configurations,
which have two lines from each of three symmetry classes of lines passing through
each point and two points from each of three symmetry classes of points lying on
each line.

The construction is technical, but it was motivated by the following idea: is it
possible to simultaneously construct two celestial 4-configurations in such a way
as to get extra incidences? If so, can that construction be extended to construct a
6-configuration?

Suppose you begin with the vertices of a regular convex m-gon, say, m D 11,
and then simultaneously construct two trivial 3-celestial configurations of the form
m#.a; bI c; aI b; c/ and m#.a; d I c; aI d; c/, say 11#.3; 2I 4; 3I 2; 4/ (Fig. 3a) and
11#.3; 1I 4; 3I 1; 4/ (Fig. 3b). Since a D 3 in both configurations, the first set of
points (dark blue) and lines (black) constructed will be the same (in this case, the



Geometric Constructions for Symmetric 6-Configurations 69

a b

c d

Fig. 3 Simultaneously constructing the trivial celestial configurations 11#.3; 2I 4; 3I 2; 4/ and
11#.3; 1I 4; 3I 1; 4/ results in additional lines intersecting four at a time, and a .4; 6/-
configuration. (a) 11#.3; 2I 4; 3I 2; 4/. (b) 11#.3; 1I 4; 3I 1; 4/. (c) Constructing 11#.3; 2I 4; 3I 2; 4/
and 11#.3; 1I 4; 3I 1; 4/ simultaneously. (d) Adding new points forms a (4, 6)-configuration

lines are span 3), but in Fig. 3a we chose the t1 D b D 2 point of intersection
(medium blue) and in Fig. 3b we chose the t1 D d D 1 point of intersection (cyan);
in both configurations we constructed lines of span 4 with respect to these sets of
points (also colored medium blue and cyan, respectively). In Fig. 3a, we next chose
the 3rd points of intersection of the medium blue lines to construct the third set
of points, since t2 D a D 3, and colored these burgundy, and then constructed
lines (colored dark blue) of span 2 with respect to the burgundy points; note these
lines are span 4 with respect to the original dark blue points. In Fig. 3b, we instead
constructed the 3rd (since a D t2 D 3) points of intersection of the cyan lines, which
we colored orange, and finally constructed lines of span 1 (dark blue) with respect
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a b

c d

Fig. 4 Simultaneously constructing the trivial celestial configurations 11#.3; 2I 4; 3I 2; 4/ and
11#.3; 2I 5; 3I 2; 5/ results in additional points being collinear four at a time, and a .6; 4/-
configuration. (a) 11#.3; 2I 4; 3I 2; 4/. (b) 11#.3; 2I 5; 3I 2; 5/. (c) Constructing 11#.3; 2I 4; 3I 2; 4/
and 11#.3; 2I 5; 3I 2; 5/ simultaneously. (d) Adding new lines forms a (6,4)-configuration

to these orange points. These lines are also of span 4 with respect to the original
dark blue points! If we construct all these points and lines simultaneously, by first
constructing the black points and lines, then constructing both the medium blue
and cyan points and lines at the same time, then the burgundy and orange points
and lines, and finally the dark blue lines (which were span 4 with respect to the
black vertices in both Fig. 3a, b), as in Fig. 3c, then the medium blue and cyan lines
intersect 4-at-a-time. If we place a new set of points (colored red) on this four-fold
intersection, then we have constructed a .4; 6/-configuration, shown in Fig. 3d.

On the other hand, if we begin by constructing the configurations m#.a; bI c; aI
b; c/ and m#.a; bI e; aI b; e/, say 11#.3; 2I 4; 3I 2; 4/ (repeated as Fig. 4a) and
11#.3; 2I 5; 3I 2; 5/ (Fig. 4b, using dark and light green lines of span 5 with respect
to the dark blue and medium blue points), then when we combine the two
configurations (Fig. 4c), we notice (somewhat less obviously) that the burgundy
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points and the dark green points are actually collinear; when we add in all the new
burgundy lines, we get a .6; 4/-configuration (Fig. 4d).

These coincidences and collinearities are not just happenstance; rather, they are
a consequence of the Crossing Spans Lemma [4, 6, 13], which says the following
(this lemma has been phrased in various ways in the literature): Begin with a
regular convex m-gon of points ui and construct lines Li and Ri of spans a and
b, respectively, with respect to the ui . Place new points vi arbitrarily on the lines Li
and construct new lines Ni of span b with respect to the points vi . Then the three
lines Ni;Ni�b and Ri�a all are coincident at a new point wi . If the points vi happen
to lie on an intersection of two of the linesLi , say vi D Li^Li�d , then the points wi
lie on Ni , Ni�b, Ri�a, andRi�a�d . (See [4] for a proof using elementary Euclidean
geometry results about circles and cyclic quadrilaterals; the Crossing Spans Lemma
is listed as Theorem 3.) The Dual Crossing Spans Lemma results if the roles of
points and lines are interchanged; see [6] for a careful statement.

The fact that trivial celestial configurations exist at all may be interpreted as
a consequence of the Crossing Spans Lemma or Dual Crossing Spans Lemma.
In addition, in Fig. 3, the fact that the additional burgundy points lie on the
common intersection of the medium blue lines and the cyan lines is an immediate
consequence of the extension of the Crossing Spans Lemma, using the assignments
that the burgundy points are the ui , the dark blue lines are the Li , the medium blue
lines are the Ri , the orange points are the vi , and the cyan lines are the Ni ; we
conclude that two cyan and two medium blue lines do, in fact, intersect in a single
point. Similarly, in Fig. 4, the collinearity of the burgundy and dark green points is
a consequence of the Dual Crossing Spans Lemma.

The next natural question is to ask if it is possible to extend the simultaneous con-
struction of these celestial configurations m#.a; bI c; aI b; c/, m#.a; d I c; aI d; c/
and m#.a; bI e; aI b; e/ to construct a 6-configuration. Obviously, there are
other trivial celestial configurations associated with the five discrete parameters
a; b; c; d; e, such as m#.a; d I e; aI d; e/. But there are also other implicit trivial
celestial configurations hidden away inside the configurations we’ve already
constructed: just considering the burgundy, orange and red points and the various
blue lines in Fig. 3d, we see an 11#.2; 1I 3; 2I 1; 3/ configuration, which in general
would correspond to an m#.b; cI d; bI c; d/ configuration.

Appropriately generalizing this notion of simultaneously constructing certain
trivial celestial configurations with certain discrete parameters and adding new
points and lines that satisfy certain incidences requires some careful bookkeeping.
(Proofs that the various objects have the incidences stated below, and a more
technical description of the general construction method that produces a .2s; 2t/-
configuration for any s; t 
 2, can be found in [6, 7].) The iterative construction for
producing a 6-configuration is as follows; an example, built upon the configurations
shown in Figs. 3 and 4, is shown in Fig. 5. The initial data for the construction is a
value of m that determines the symmetry of the configuration, with m 
 11, and
two pairs of sets of discrete parameters t0; t1; t2 with index set T D f0; 1; 2g and
s0; s1 with index set S D f0; 1g, where the si and ti are distinct positive integers
strictly less than m

2
. In our examples, t0 D a D 3, t1 D b D 2, t2 D d D 1 and

s0 D c D 4, s1 D e D 5.



72 L.W. Berman

Fig. 5 A 6-configuration, with m D 11, t0 D 3, t1 D 2, t2 D 1 and s0 D 4, s1 D 5, with 10
symmetry classes of points and 10 symmetry classes of lines. The 0th element of each symmetry
class is shown larger

(Note that the discrete parameters t0; t1; t2 and s0; s1 listed here are not the
same parameters as those that are listed in a general celestial configuration
m#.s1; t1I s2; t2I : : : I sh; th/.)
Step 1. Begin with a single class of lines, labelled .L;;/i (the black lines in the

previous examples and in Fig. 5), that form the extended sides of a regular
convexm-gon.
In this step we have constructed a single class of lines, corresponding to
the fact that there is one way to choose a subset of T of size 0 for the
lower index and one way to choose a subset of S of size 0 for the upper
index.
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Step 2. Construct three sets of vertices, indexed .v;0 /i , .v;1 /i , .v;2 /i , where v;j is the

tj -th intersection of the lines L;;: that is,

.v;j /i D .L;;/i ^ .L;;/i�tj :

These correspond to the dark blue, medium blue, and cyan points,
respectively, in the previous examples and in Fig. 5; the upper subscript
; refers to the fact that the new points lie on the lines L;;. In this step, we
constructed three classes of vertices, corresponding to the way to choose
a subset of S of size 0 for the upper index and a subset of T of size 1
for the lower index. (In practice, it is easier to construct the vertices .v;0 /i
first, and then construct the lines .L;;/i D .v;0 /i _ .v;0 /iCt0 .)

Step 3. Now, construct 6 new sets of lines

.L
p
j /i WD .v;j /i _ .v;j /i�sp ;

where p 2 S and j 2 T . The downstairs index j in Lpj , which is 0; 1 or

2, indicates that each .Lpj /i is incident with vertex .v;j /i , and the upstairs
index p in Lpj , which is either 0 or 1, indicates whether the lines are span

s0 or span s1 with respect to v;j . For example, the lines L01 are of span

s0 D 4 with respect to the points v;1 ; these were the lines colored medium
blue in Fig. 5. In that figure, the other span s0 D 4 lines are L00 colored
dark blue and L02 colored cyan, and the span s1 D 5 lines are L10 colored
dark green, L11 colored light green, and L12 colored yellow-green. Note
that each of the 6 classes of lines is indexed by one of the

�
3
1

�

subsets of
T that form the lower index and one of the

�
2
1

�

subsets of S that form the
upper index.

Step 4. Construct six new classes of vertices

.vpjk/i WD .L
p
j /i ^ .Lpk /i :

For example, the vertex .v012/i is the intersection of .L01/i (medium blue)
and .L02/i (cyan). That is, the vertex class .v012/ is precisely the set of red
vertices in Fig. 3a. It is not obvious from the definition, but it turns out
that vertex .vpjk/i also lies on .Lpj /i�tk and .Lpk /i�tj ; this follows from the
Crossing Spans Lemma.
As an example, in Fig. 5 (and also in Fig. 3a), where p D 0 and jk D 01

the burgundy vertex .v001/0 lies on the span s0 D 4 lines .L00/0 (thick dark
blue), .L00/�2 (thinner dark blue), .L01/0 (thick medium blue) and .L01/�3
(thinner medium blue); notice that t0 D 3 and t1 D 2. Similarly, the vertex
.v101/0 should lie on .L11/0 and .L11/�3 and .L10/0 and .L10/�2. In Fig. 4b,
the lines .L11/ are shown in light green, where they are span s1 D 5 with
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respect to the medium blue vertices .v;1 /, and the lines .L10/ are shown
in dark green, where they are span s1 D 5 with respect to the dark blue
vertices .v;0 /. Thus, the vertices .v101/ are those shown in Fig. 4b as dark
green. In Fig. 5, the vertices v001 are burgundy, v002 are orange and v012 are
red, while the vertices v001 are dark green, v002 are yellow-green and v012 are
light green. At this step, we have constructed one vertex class for each of
the

�
3

2

�

choices of subsets of T that index the vertex class downstairs and
each of the

�
2
1

�

choices of subsets of S (that is, choices of spans) that index
the vertex class upstairs, for a total of 6 vertex classes constructed at this
step.

Step 5. Construct three new line classes

.L01jk/i WD .v0jk/i _ .v1jk/i :

For example, line .L0101/0 connects vertex .v001/0 and vertex .v101/0. In
Fig. 4c, the vertices .v001/0 are burgundy, and .v101/0 are dark green, and the
line .L0101/0 is shown dashed burgundy. In that figure, we observed that the
dashed burgundy line also passes through two other vertices; in particular,
it passes through the burgundy point .v001/5 (recall s1 D 5) and the dark
green point .v101/4 (and s0 D 4). This generalizes; as a consequence of the
Dual Crossing Spans Lemma, line .L01jk/i passes through the four points

.v0jk/i ; .v
1
jk/i ; .v

0
jk/s1 , and .v1jk/s0 . In Fig. 5, the lines .L0101/ are burgundy,

.L0102/ are orange, and .L0112/ are red. Note that each line class corresponds
to using a subset of size 2 from S for the upstairs index (of which there is
only one, S itself), and a subset of size 2 from T for the downstairs index,
so we have constructed a total of three new line classes at this step.

Step 6. Finally, we construct a single new class of vertices .v01012/ defined by

.v01012/i D .L0101/i ^ .L0102/i ^ .L0112/i I

it is true but not obvious that these three lines intersect, and moreover, the
three lines .L0101/i�s2 , .L0102/i�s1 and .L0112/i�s0 also intersect at this point.
(Proving that this vertex class and its generalizations is well-defined is one
of the main results from [6, 7].) These are the white vertices in Fig. 5.

Counting everything up, we see that each vertex has six lines, two from each
of two symmetry classes, passing through it, and each line has six vertices, two
from each of two symmetry classes, so the resulting incidence structure is a
6-configuration, with 10 symmetry classes of points and lines.

The reduced Levi graph of this configuration has a very beautiful structure. The
underlying unlabeled graph is the Desargues graph with all arcs doubled; Fig. 6
shows the labelled general reduced Levi graph for the celestial 6-configuration with
m, .t0; t1; t2/, .s0; s1/ with like-labelled arcs colored the same. Unlabelled arcs have
label 0.
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Fig. 6 The reduced Levi graph, with group Zm, for the 6-configuration with parameters
m; .t0; t1; t2/; .s0; s1/ whose construction is described in Sect. 3. Unlabelled edges are considered
to have label 0 (Note pairs of edges with the same color have the same pair of labels)

4 Sporadic 6-Configurations

There are other 6-configurations that are formed by simultaneously constructing cer-
tain celestial configurations, in this case 2-celestial (a.k.a. astral) 4-configurations;
the resulting configurations have four symmetry classes of points and lines, which
is the best known, since it was shown in [3] that no astral (that is, 3-astral)
6-configurations exist. At the moment, only five such configurations are known.
They are conjectured to be sporadic.

The motivating idea behind the discovery of these configurations was the
following: when considering the list of all astral configurations with m D 30,
which is the smallest case in which there are both sporadic and systematic
astral 4-configurations, there are a number of parameters that appear in multiple
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a b

Fig. 7 A 4-astral .1206/ configuration, whose outside lines (black, green, blue) are span 10,
12, and 13 with respect to the outside (black) vertices, is formed by selecting certain 4-fold
intersections of the outside lines (the vertices colored blue, green, and red) and then adding a
particular red line that intersects two blue, two green and two red vertices. (a) If m D 30, lines of
span 10, 12, 13 have many 4-fold intersection points. (b) Choosing the right selection and adding
an extra set of lines generates a 6-configuration

configurations; in particular, several configurations use the spans 10, 11, 12, 13, 14
as “outside” spans (i.e., as spans with respect to the outermost symmetry class of
points). If all lines of, say, spans 10, 12, and 13 (drawn in black, blue and green,
respectively, in Fig. 7a) are constructed beginning with the vertices of a convex
30-gon, there are a number of points that can be constructed that lie on four lines at
a time, because they form part of some astral 4-configuration. If three appropriate
symmetry classes of intersections are chosen, one for each pair of colors (there may
be more than one choice), then the spans will have three points from each of three
symmetry classes of points lying on them. It is sometimes also possible to construct
a new set of lines that is incident with all three of the new sets of points; if so,
then we have constructed a 6-configuration. Figure 7 shows an initial set of lines,
and then a particular choice of new point classes which are collinear, leading to the
construction of a 6-configuration with 4 symmetry classes of points and lines.

There are five 6-configurations that have been found by this ad hoc technique;
they correspond to starting spans of (10, 11, 13), (10, 12, 13), (10,12,14), (11, 12,
14) and (12, 13, 14) (which was shown in Fig. 1). Of the remaining 3-subsets of
f10; 11; 12; 13; 14g, the starting spans .10; 11; 14/ and .11; 12; 13/ already form
astral .6; 4/-configurations (all three types of lines intersect in a single point), and
the rest cannot be completed to a 6-configuration in this way. The other choices of
three spans from f10; 11; 12; 13; 14g for m D 30 do not yield enough intersections
to complete to a 6-configuration with four symmetry classes, and beginning with
other possible spans for 4-configurations with m = 30 does not appear to yield other
configurations either.

These “sporadic” 6-configurations have very nice reduced Levi graphs, shown
in Figs. 8 and 9. The underlying graph for all the reduced Levi graphs is the
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Fig. 8 A 4-astral 6-configuration and its reduced Levi graph, with outside spans 10, 12, 13. Arcs in
the reduced Levi graph with a single label have the other label 0. The span of a line corresponding
to a double-arc labelled a; b is b � a. The annotations inside the cells (including the outside
cell) of the reduced Levi graph correspond to the component cohorts for the astral (2-celestial)
4-configurations; red cohorts are sporadic and blue cohorts are systematic

cubical graph with group Z30; each doubled four-cycle in the reduced Levi
graph corresponds to a certain astral 4-configuration, indicated in the center of
the cell. The red annotations list the corresponding cohort for a sporadic astral
4-configurations, while the blue cohorts are systematic; the cohorts are listed in the
order corresponding to their list in Grünbaum’s monograph [18, Tables 3.61, 3.62].

It is likely that the configuration shown in Fig. 7b and the configuration described
in Fig. 9d are polars, as are the configurations described in Fig. 9a, b, while the
configuration described in Fig. 9c, which is completely made of sporadic astral
4-configurations, is probably self-polar. However, this has not yet been proved.

By brute-force methods, it is possible to show that it is impossible to label the
edges of the cubical reduced Levi graph using only labels from the single systematic
astral cohort 6k#f3k � j; j g; f3k � 2j; 2kg. No other ways to label the cubical
reduced Levi graph using other combinations of sporadic and systematic astral
4-configurations have been found, but there is no complete proof known that there
are no others.

5 Constructing 6-Configurations with Chiral Symmetry

Recently, Jill Faudree and the author discovered a method of constructing highly
incident configurations that does not use celestial 4-configurations as building
blocks; in fact, this new method produces highly symmetric but non-celestial (and
potentially chiral) 4-configurations, in addition to 5- and 6-configurations (relevant
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Fig. 9 Reduced Levi graphs for the other four known 4-astral 6-configurations. (a) Outside spans
12, 13, 14. (b) Outside spans 10, 12, 14. (c) Outside spans 11, 12, 14. (d) Outside spans 10, 11, 13

for the current work). Details are available in [11]. The method depends on the
Configuration Construction Lemma, which may be phrased as follows:

Theorem 1. Let v0; : : : ; vm�1 be the vertices of a regularm-gon centered at O . Let
C be the circle passing through vd , O and vd�b , and let w0 be any point on C .
Finally, let wi be the rotation of w0 through 2�

m
about O . Then the points w0, wb and

vd are collinear.

(In fact, the lemma is more broadly true: if C is a circle passing through Q,
O and Q0, where Q0 is the rotation of Q through some angle ˇ about O , if R is
any point on C and if R0 is the rotation of R through angle ˇ, then R, R0 and Q
are collinear. The proof is simple enough to be an exercise for a college geometry
course, and uses only basic results about cyclic quadrilaterals.)
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The basic construction technique described below was initially developed to
analyze how to construct the 4-configuration shown in Fig. 2b. Adapted as follows,
it will produce a usually chirally symmetric 6-configuration with 16 D �

4
0

�C �
4
1

�C
�
4
2

� C �
4
3

� C �
4
4

�

symmetry classes of points and lines. Given discrete parameters
m 
 9, 1 � a; b < m

2
, and d1; d2; d3; d4 where at least di ¤ 0; a; b; a C b (the

exact constraints are tricky and technical), which may be decorated (d 0i ) or not,
we construct a 6-configuration by the following sequence of steps. In subsequent
figures, the 0th element of each symmetry class is shown larger.

Step 1: Begin with the vertices of a regular convexm-gon centered at O , labelled
cyclically as .v;/0; : : : ; .v;/m�1. Let D D f1; 2; 3; 4g be the index set
corresponding to the set of di s. In subsequent figures these are black and
slightly larger.

Step 2: Construct lines .L;/ of span a with respect to the .v;/: that is, .L;/i D
.v;/i _ .v;/iCa. In subsequent figures these are black.

Step 3: For each j in D, construct the circumcircle Cj passing through .v;/dj,
O and .v;/dj�b , and let an intersection of Cj with .L;/0 be called .vj /0.
The “decoration-status” (primed or not) of the dj determines which
intersection to choose: essentially, dj corresponds to taking the left-most
intersection, and d 0j to taking the right-most intersection. More precisely,
if .L;/0 is parameterized as

.L;/0.t/ WD .1 � t/.v;/0 C t.v;/a

and Cj intersects .L;/0 at parameter values �j ; �0j with �j < �0j , then
dj indicates that .vj /0 D .1 � �j /.v;/0 C �j .v;/a, while d 0j indicates
that .vj /0 D .1 � �0j /.v;/0 C �0j .v;/a.
Let .vj /i be the rotation of .vj /0 through 2�i

m
. In this step we have

constructed four new vertex classes. In subsequent figures these are
various shades of pink/magenta.

Step 4: Now, construct the lines .Lj /i WD .vj /i _ .vj /iCb; these are each span
b lines with respect to the just-created vertices, and by the Configura-
tion Construction Lemma, each line .Lj /i also passes through vertex
.v;/iCdj . We have constructed 4 line classes at this step. In subsequent
figures these are various shades of pink/magenta.

Step 5: For each pair of lines .Lj /i and .Lk/i , define .vjk/i to be the intersec-
tion. This creates

�
4
2

�

new vertex classes, one for each subset of size 2
from the index set D. In subsequent figures these are various shades of
blue.

Step 6: Define .Ljk/i WD .vjk/i _ .vjk/iCa to be lines of span a with respect to
the vertices created in the previous step. In subsequent figures these are
various shades of blue.

Step 7: Now, for each choice of 3-subset jkl from D, it turns out that the three
lines .Ljk/i , .Ljl /i and .Lkl /i are all concurrent! (This is not obvious,
and is part of the main content of [11].) We define .vjkl/i to be the
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common point of intersection. We have constructed
�
4
3

�

symmetry classes
of points at this step. In subsequent figures these are various shades of
green.

Step 8: We define .Ljkl /i WD .vjkl /i _ .vjkl /iCb to be lines of span b with
respect to the just-defined vertices. It again is true but not obvious that
line .Ljkl /i passes through .vjk/iCdl , .vjl /iCdk and .vkl /iCdj , as well
as the vertices .vjkl /i and .vjkl /iCb, for a total of 5 vertices so far. We
have constructed

�
4
3

�

symmetry classes of lines at this step. In subsequent
figures these are various shades of green.

Step 9: Finally, the four lines .L123/i , .L124/i , .L134/i and .L234/i all intersect
in a single point! We name this final class of points .v1234/i . This class is
shown in red.

Step 10: The last line class is .L1234/i WD .v1234/i _ .v1234/iCa; in addition
to .v1234/i and .v1234/iCa, this passes through .v123/iCd4 , .v124/iCd3 ,
.v134/iCd2 , and .v234/iCd1 . This class is also shown in red.

Figure 10 shows a completed, chirally symmetric .2726/ configuration (m D 17),
and Fig. 11 shows a .2406/ configuration .m D 15/ constructed using this technique
that has dihedral symmetry. While many 6-configurations constructed using the
chiral construction technique are so cluttered that they are almost unintelligible,
some are very attractive, and some are rather strange. The example shown in Fig. 11
is both very pretty and has the unexpected property that although there are 16
symmetry classes, there are only 9 distinct radii, and four distinct symmetry classes
have the same radius.

6 Small 6-Configurations

The chiral construction technique for 6-configurations generalizes: given a collec-
tion of parameters m, a, b, d1; : : : ; dk�2, with index set D D f1; 2; : : : ; k � 2g
constructing all the points v� and lines L� for each � � D analogously to
the above construction produces a k-configuration called A .mI a; bI d1; : : : ; dk�2/,
where each dj may be primed (as d 0j ) or not, as described in Step 3 of the
construction algorithm, to determine which intersection of the circle and line should
be chosen. In particular, the configuration shown in Fig. 2b may be denoted as
A .5I 2; 2I 10; 3/.

If the same construction technique is used to construct A .12I 4; 4I 10; 30; 5/
then the resulting configuration—which should be a 5-configuration—has extra
incidences and actually produces a 6-configuration! This results because the con-
figuration described as A .12I 4; 4I 10/ actually produces the astral 4-configuration
12#.4; 1I 4; 5/, rather than a 3-configuration, which would be expected from the
general construction technique. The configuration A .12I 4; 4I 10; 30; 5/ is a .966/
configuration, shown in Fig. 12, and this is the smallest known 6-configuration.
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Fig. 10 A chirally symmetric 6-configuration, withm D 17, a D 5, b D 5, and .d1; d2; d3; d4/ D
.10; 20; 30; 40/. The vertices and lines v

;

and L
;

are black (and the black vertices are slightly larger
than the other symmetry classes), vertices and lines vj and Lj are various shades of pink/magenta
(j D 1; 2; 3; 4), vertices vjk and linesLjk are various shades of blue (jk D 12; 13; 14; 23; 24; 34),
vertices and lines vjkl and Ljkl are various shades of green (jkl D 123; 124; 134; 234), and the
vertices and lines v1234 and L1234 are red. The 0th element of each symmetry class is shown larger

The smallest topological 6-configuration known to the author is an .886/ pseu-
doline configuration constructed analogously to the .966/ configuration described
above, only using an 11-gon as a starting point; it has several embedded topological
astral .224/ configurations. While there are other A .mI a; bI d1; : : : ; dk�2/ configu-
rations that are “more incident” than expected because of the existence of embedded
astral 4-configurations, none are smaller than .966/.

Other small geometric 6-configurations are .1106/ from the nested celestial
construction in Sect. 3, with m D 11; .t1; t2; t3/ D .3; 2; 1/; .s1; s2/ D .4; 5/

(shown in Fig. 5), .1126/ from the chiral construction, as A .7I 3; 3I 1; 2; 4; 5/
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Fig. 11 The attractive, dihedrally symmetric configuration A .15I 3; 4I 10; 20; 5; 6/ has four sym-
metry classes of vertices with the same radius, and a total of 9 distinct radii for the 16 symmetry
classes of points

(unfortunately, the inner rings of points are clustered so close to the center of the
configuration that the configuration is not really intelligible), and various .1206/
configurations (both the sporadic 4-astral 6-configurations described in Sect. 4 and
systematic 10-astral configurations with m D 12).

7 Open Questions

Question 1. The construction method described in Sect. 3 essentially “nests” a
collection of trivial 3-celestial 4-configurations to produce a 6-configuration. Is it
possible to determine a new construction technique by considering other choices for
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Fig. 12 The smallest known 6-configuration, a .966/ configuration formed by applying the chiral
configuration method to construct A .12I 4; 4I 10; 30; 5/. In this figure, the vertices and lines vj and
Lj are blue, the vertices and lines vjk and Ljk are green, and the vertices and lines v123 and L123
are red

labels for the reduced Levi graph? Is it possible to nest collections of other celestial
4-configurations to produce other 6-configurations? Is it possible to construct
infinite families?

Question 2. Are the configurations shown in Fig. 7b and the configuration shown
in Fig. 9d are polars? Are the configurations shown in Fig. 9a, b polars? Is the
configuration in Fig. 9c self-polar?

Question 3. Is it possible to label the cubical reduced Levi graph using other com-
binations of sporadic and systematic astral 4-configurations than those described in
Sect. 4?
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Question 4. Does the construction method described in Sect. 4 generalize in some
way? For example:

• The cubical graph is a 4-prism graph. Is it possible to construct a 6-configuration
whose reduced Levi graph is a 6-prism graph whose edges are all doubled?
This would correspond to a configuration which has two embedded 3-celestial
4-configurations and six 2-celestial 4-configurations. No such construction is
known. What about q-prism graphs with doubled edges for some other q?

• Both the cubical graph and the Desargues graph are bipartite Kneser graphs.
Is it possible to construct 6-configurations whose reduced Levi graphs are other
bipartite Kneser graphs?

• Both the cubical graph and the Desargues graph are bipartite, symmetric, cubic
graphs. There are other very nice bipartite, symmetric, cubic graphs, such as the
Pappus graph. Is it possible to construct celestial 6-configurations in which the
underlying reduced Levi graph is the Pappus graph with all edges doubled? Since
the girth of the Pappus graph is 6 (like the Desargues graph), any such configu-
rations would have 3-celestial 4-configurations as component graphs; unlike the
6-configurations described in Sect. 3, it is likely that such a configuration would
need to use at least some systematic or sporadic configurations as components.

Question 5. What is the minimal n for the existence of a geometric .n6/ configura-
tion. What is the minimal n for the existence of a topological .n6/ configuration?

Question 6. It is likely that there are more iterative construction methods for
constructing highly incident geometric configurations, but so far no other methods
have been discovered. What are some other iterative methods for producing
6-configurations?

Acknowledgements The author thanks Jill Faudree, University of Alaska Fairbanks, for many
helpful discussions, and the anonymous referee for useful comments. As always, the author thanks
Branko Grünbaum for inspiration.
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On External Symmetry Groups of Regular Maps

Marston D.E. Conder, Young Soo Kwon, and Jozef Širáň

Abstract Regular maps are embeddings of graphs or multigraphs on closed
surfaces (which may be orientable or non-orientable), in which the automorphism
group of the embedding acts regularly on flags. Such maps may admit exter-
nal symmetries that are not automorphisms of the embedding, but correspond
to combinations of well known operators that may transform the map into an
isomorphic copy: duality, Petrie duality, and the ‘hole operators’, also known as
‘taking exponents’. The group generated by the external symmetries admitted by a
regular map is the external symmetry group of the map. We will be interested in
external symmetry groups of regular maps in the case when the map admits both
the above dualities (that is, if it has trinity symmetry) and all feasible hole operators
(that is, if it is kaleidoscopic). Existence of finite kaleidoscopic regular maps was
conjectured for every even valency by Wilson, and proved by Archdeacon, Conder
and Širáň (2010).

It is well known that regular maps may be identified with quotients of extended
triangle groups. In other words, these groups may be regarded as ‘universal’ for
constructions of regular maps. It is therefore interesting to ask if similar ‘universal’
groups exist for kaleidoscopic regular maps with trinity symmetry. A satisfactory
answer, however, is likely to be very complex, if indeed feasible at all. We
demonstrate this (and other things) by a construction of an infinite family of
finite kaleidoscopic regular maps with trinity symmetry, all of valency 8, such that
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the orders of their external symmetry groups are unbounded. Also we explicitly
determine the external symmetry groups for the family of kaleidoscopic regular
maps of even valency mentioned above.

Keywords Regular map • Group of external symmetries

Subject Classifications: 05E18, 20B25, 57M15

1 Introduction and Preliminaries

A regular map ia an embedding of a graph on a surface, such that the automorphism
group of the embedding is transitive, and hence regular, on the flags of the
embedding. Flags may be identified with mutually incident vertex-edge-face triples,
except in the case of degenerate maps which are not considered here. Regular maps
have been studied extensively, and we therefore assume that the basics are known,
except for the association of regular maps with certain groups as described below.
We refer the reader to the survey articles [3, 9, 13] for details concerning algebraic
and topological representations of regular maps and for their further connections
with group theory and the theory of Riemann surfaces.

Regular maps on surfaces can be identified with three-generator presentations
.GI a; b; c/ of groups G D ha; b; c j a2 D b2 D c2 D .ab/k D .bc/m D .ca/2 D
: : : D 1i. A corresponding surface embedding may be obtained by interpreting the
left cosets of the subgroups ha; bi, hb; ci, hc; ai and hci as vertices, face boundaries,
edges and darts (ordered pairs of adjacent vertices), with their mutual incidence
given by non-empty intersection of the cosets. In particular, k andm are the valency
and the length of the face boundary walks of the map, and the pair .k;m/ is called
the type of the map. Although in most cases k andmwill be finite, we do not exclude
cases when one or both these parameters can be infinite. Observe that hab; bci is a
subgroup of G of index at most 2, and it is well known that this index is equal to 2
if and only if the supporting surface of the map is orientable. It is easy to show [12]
that two regular maps .GI a; b; c/ and .G0I a0; b0; c0; / are isomorphic if and only if
there is an isomorphismG ! G0 that takes a, b and c to a0, b0 and c0, respectively.

Such an algebraic setting immediately implies that regular maps of type .k;m/
are smooth quotients of the extended triangle group ET .k;m; 2/ with presentation
hx; y; z j x2 D y2 D z2 D .xy/k D .yz/m D .zx/2 D 1i. (Here ‘smooth’
simply means that the orders of x; y; z; xy; yz and zx are preserved in the quotient.)
The group ET .k;m; 2/ itself is also the automorphism group of a regular map
U.k;m/, which is a tessellation of a simply connected surface by congruentm-sided
polygons, k of which meet at every vertex. The underlying surface for U.k;m/ is
the sphere, the Euclidean plane, and the hyperbolic plane, depending on whether
the quantity 1=k C 1=m is greater than 1=2, equal to 1=2, or smaller than 1=2. In
fact, a group epimorphism ET .k;m; 2/ ! G sending the ordered triple .x; y; z/
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onto .a; b; c/ corresponds to a smooth covering of the regular map .GI a; b; c/ by
the regular map U.k;m/. The group ET .k;m; 2/ and the tessellation U.k;m/ may
thus be regarded as ‘universal’ objects from which all regular maps of type .k;m/
may be obtained by taking quotients. All these considerations are valid if one or
both k and m are infinite; see [9].

The two most frequently studied operations on maps are duality and Petrie
duality, which were thoroughly investigated in [16] and [10]. A regular map
.GI a; b; c/ is self-dual if it is isomorphic to the map .GI a0; b0; c0/ where a0 D c,
b0 D b and c0 D a, and self-Petrie-dual if the map is isomorphic to .GI a0; b0; c0/
where a0 D a, b0 D b and c0 D ac. In view of the above necessary and sufficient
condition for map isomorphism, the map .GI a; b; c/ is self-dual if and only if G
admits an automorphism D fixing b and interchanging a with c, and self-Petrie-
dual if and only if G has an automorphism P fixing a and b and interchanging
c with ac. Note that if a regular map of type .k;m/ is self-dual, then necessarily
k D m. Similarly, if we define the ‘extended’ type of the map as .k;m/n, where
n is the order of abc (which is equal to the length of the Petrie polygons of the
map), then necessarily m D n if the map is self-Petrie-dual. If G admits both D
and P as automorphisms, the regular maps is said to have trinity symmetry, by
[1]. In such a case the group generated by D and P is isomorphic to S3, inducing
outer automorphisms of the group ha; ci D f1; a; c; acg Š Z2 � Z2 (and all six
permutations of the parameters k;m and n), as already observed in [16].

Further operations on maps can be introduced in the context of studying different
embeddings of the same graph. In a topological representation of a regular map
.GI a; b; c/ in the form of a graph � embedded on a surface as described earlier,
right multiplication by the element ab induces a cyclic permutation of darts around a
vertex v, while multiplication by bc induces a cyclic permutation of the darts around
a face f incident with v. These are known as ‘rotations’ of the map about v and f
respectively. The order of ab is, of course, equal to the valency of the map, while the
order of bc equals the face-size (or ‘co-valency’). Note that if the supporting surface
of the map is orientable, then these two rotations completely determine the way the
underlying graph embeds. By the same token, one may take any power .ab/j of the
rotation for j coprime to k (that is, j 2 Z

�
k ), and embed the same graph � in an

orientable surface with the new rotation .ab/j , leaving a and c intact (and taking
.ab/ to .ab/j and therefore b to a.ab/j ). The new embedding may or may not be
isomorphic to the original one; if it is, then j is said to be an exponent of the map.

Exponents were studied by Nedela and Škoviera in [11], but in fact the same
concept was introduced earlier in [15, 16] by Wilson, who attributes it to Coxeter.
Using Coxeter’s terminology, for each j 2 Z

�
k the mapping that takes the triple

.a; b; c/ to the triple .a; a.ab/j ; c/ is now known as the j th hole operator Hj .
These ‘hole operators’ play an important role in determining the number of ways a
given graph embeds on a surface.

In particular, for a regular map .GI a; b; c/ of valency k, the unit j 2 Z
�
k is an

exponent of the map precisely when the group G admits an automorphismHj that
fixes a and c and takes b to a.ab/j . Any regular map of valency k that admits every
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unit j 2 Z
�
k as an exponent is called kaleidoscopic [1], in which case the group

generated by the automorphismsHj is isomorphic to Z
�
k .

Any one of the duality, Petrie duality and hole operators that preserves a regular
map may be called an external symmetry of the map, as can any combination of these
operators. Regular maps that are preserved by all of them are kaleidoscopic and have
trinity symmetry. Such maps were investigated in [1], along with a construction that
yields an example of such a finite map for every even valency. In this article, we ask
how many external symmetries are possible. This question and its motivation are
explained further in the next section.

2 Universal Groups and the Main Problem

In view of the ‘universal’ objects ET .k;m/ and U.k;m/ for construction of
regular maps of type .k;m/, one may ask what could be the analogous objects
for construction of all regular maps with trinity symmetry. This question can be
approached in two ways.

The first involves considering the tessellationU.1;1/ and the extended triangle
group ET .1;1; 2/ D hx; y; z j x2 D y2 D z2 D .zx/2 D 1i, which is isomorphic
to the free product .Z2 � Z2/  Z2. Since this group admits the duality and Petrie
automorphisms, for which we will borrow the notationD and P as above, we know
that all regular maps with trinity symmetry are quotients ofET .1;1; 2/ by normal
subgroups invariant under the action of D and P . Equivalently, one may consider
the natural extensionET .1;1; 2/Ì hD;P i containingET .1;1; 2/ as a normal
subgroup of index 6, and then all regular maps with trinity symmetry correspond
to subgroups of ET .1;1; 2/ that are normal in ET .1;1; 2/ Ì hD;P i. This
principle was used in [12] to construct infinite families of finite regular maps with
trinity symmetry with the help of residual finiteness of the group ET .1;1; 2/.

The second approach is to add the necessary relations to the presentation of a
group to admit the duality and the Petrie duality automorphisms. This means that
the groupG of a regular map .GI a; b; c/ of type .k; k/ with trinity symmetry must,
at the very least, have a presentation of the form ha; b; c j a2 D b2 D c2 D .ab/k D
.bc/k D .ca/2 D .abc/k D : : : D 1i. Equivalently, G must be a smooth quotient
of the group Gk;k;k D hx; y; z j x2 D y2 D z2 D .xy/k D .yz/k D .zx/2 D
.xyz/k D 1i, admitting both the duality and Petrie duality automorphisms. The
groups Gk;k;k , introduced and studied long time ago [6, 7], are finite if k � 5 and
are known to be infinite for all k 
 6; see [8].

Comparing the two approaches, we note that the first one is easy to apply but
does not offer control over the degree of the resulting maps, while in the second,
we do not know the corresponding ‘universal map’ and we know very little about
the structure of the ‘universal group’; in particular, it appears to be not known if the
groupsGk;k;k are residually finite, even though they are known to have an abundance
of quotients (see [4] for example).
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Similarly, it is natural to ask what the ‘universal’ objects for constructions of
all kaleidoscopic regular maps of a given valence k could be. The answer is, to
some extent, similar to the one for dualities, but there are also important differences.
One may begin with the universal tessellation U.k;1/ and its automorphism group
ET .k;1; 2/ Š .Zk  Z2/ Ì Z2 with presentation hx; y; z j x2 D y2 D z2 D
.xy/k D .zx/2 D 1i. The group ET .k;1; 2/ clearly admits automorphisms
Hj W x 7! x; y 7! x.xy/j ; z 7! z for all j 2 Z

�
k , and one can form the

split extension ET .k;1; 2/ Ì Z
�
k in which ET .k;1; 2/ is normal of index '.k/,

the value of the Euler function at k. All kaleidoscopic regular maps of valency k
are then quotients of T .k;1; 2/ by normal subgroups not containing any generator
or any power .xy/i for 1 � i < k, but invariant under the automorphisms Hj for
every j 2 Z

�
k ; equivalently, such maps are quotients by subgroups of ET .k;1; 2/

normal in ET .k;1; 2/ Ì Z
�
k and not containing any generator or any power .xy/i

for 1 � i < k. In [14] this method was used in combination with residual finiteness
to construct infinite families of finite kaleidoscopic regular maps of any valency
k 
 3. For the second approach, which also takes account of the face length m,
one might consider adding to the presentation of a regular map .GI a; b; c/ of type
.k;m/ all the relations implied by the supposed existence of automorphisms Hj

for all j 2 Z
�
k . This, however, is treacherous for at least two reasons. One reason

is that for finite pairs .k;m/ with k 
 7, writing down the new relations yields
presentations which do not appear to resemble any of the classes of groups studied
in the past. Another reason is even worse: it is not true that kaleidoscopic regular
maps exist for all types .k;m/. For example, it follows from [14] that there are no
such maps of type .k; 3/ for any k 
 5 such that k � ˙1 mod 6.

The main and interesting problem now is to ‘marry’ the above approaches, and
identify possible ‘universal’ kaleidoscopic regular maps having trinity symmetry,
and the associated ‘universal’ groups. We do not see how this could be possible
at the level of extended triangle groups, with (at least) one of the parameters
being infinite. Indeed, a group ET .k;m; 2/ admits the duality automorphism if
and only if k D m, which leaves us with considering ET .1;1; 2/; but for this
group, when j ¤ ˙1 the assignment .a; ab; c/ 7! .a; .ab/j ; c/ extends just to an
endomorphism of ET .1;1; 2/, and not to an automorphism. From the previous
analysis, it follows that the only viable option seems to be to consider implications of
the assumption that .GI a; b; c/ is a kaleidoscopic regular map with trinity symmetry
on the structure of G, for given finite valency k.

Before proceeding we introduce some terminology. In general, if .GI a; b; c/ is a
regular map of valency k, then any of the operatorsD, P andHj (for j 2 Z

�
k ) that

are admitted by the map will be called an elementary external symmetry of the map
(and of the group G), and any combination of these admitted by the map called an
external symmetry of the map. Also the group generated by the external symmetries
will be called the external symmetry group of the map (and of G). Intuitively, one
obtains the richest external symmetry groups from regular maps that admit both
duality and Petrie duality, and all of the hole operators. This is the reason why we
focus, in what follows, on external symmetry groups of kaleidoscopic regular maps
with trinity symmetry.
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Let .GI a; b; c/ be a kaleidoscopic regular map of valency k with trinity
symmetry, and let E be the external symmetry group of the map—that is, the
subgroup of the automorphism group ofG generated by the operatorsD, P andHj

for all j 2 Z
�
k . Observe that every conjugate of Hj by an element of hD;P i Š S3

fixes both a and c, while every non-trivial element of hD;P i fixes at most one of a
and c. It follows that E is a semi-direct product F Ì hD;P i where F is the normal
subgroup of E generated by all hD;P i-conjugates of the hole operators Hj , for
j 2 Z

�
k . In particular, E contains a subgroup isomorphic to Z

�
k generated by all

the Hj , and even contains a subgroup isomorphic to Z
�
k � Z2, because each Hj

commutes with P .
Also Hk�1 acts on G like conjugation by a, while its conjugate H D

k�1 D
DHk�1D acts like conjugation by c, and so commutes with Hk�1; moreover, P
conjugatesH D

k�1 to the product Hk�1H D
k�1. In particular, if the valency k is 4 or 6,

then the only non-trivial hole operator isHk�1, and it follows that the largest number
of external symmetries possible for valency 4 or 6 is 24, with external symmetry
group isomorphic to .Z2 �Z2/ÌS3. (Note: valency 3 is impossible, since the group
G3;3;3 is trivial.)

Apart from these observations, however, when writing down relations implied
by the presence of the operatorsD, P and all the Hj , there appear to be no further
general properties that can be exploited.

As we shall see, this is no accident, because in Sect. 3 we establish the existence
of a kaleidoscopic map .GI a; b; c/ of valency 8 from an infinite quotient G of
the group G8;8;8, with an infinite external symmetry group. We also construct
an infinite family of finite kaleidoscopic regular maps of valency 8 with trinity
symmetry, the external symmetry groups of which are finite but of unbounded
orders. These two results indicate that if there is a satisfactory answer to the question
of existence of ‘universal’ objects for constructing kaleidoscopic regular maps with
trinity symmetry, then it is likely to be very complex—even for the very restricted
valency 8, let alone for general valency.

On a positive note, in Sect. 4 we determine the external symmetry group of each
member of the family of kaleidoscopic maps of even degree that were constructed in
[1]. This further illustrates the complexity of the general problem, from a different
point of view.

3 Maps of Valency Eight with Unbounded Orders
of External Symmetry Groups

The following observation destroys hope for existence of a ‘nice’ universal group for
construction of all kaleidoscopic regular maps with trinity symmetry having a given
valency. Part of the proof relies upon computations performed using the MAGMA

package [2].
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Theorem 1. There exists an infinite kaleidoscopic regular map of valency 8 with
trinity symmetry whose external symmetry group is infinite, and an infinite family of
finite kaleidoscopic regular maps of valency 8 with trinity symmetry whose external
symmetry groups have arbitrarily large orders.

Proof. Consider the (infinite) group G D G8;8;8 with presentation G D
ha; b; c j a2 D b2 D c2 D .ab/8 D .bc/8 D .ca/2 D .abc/8 D 1i. With the
help of MAGMA, we have identified a normal subgroup N of index 128 in G,
such that N is the normal closure of the elements .ab/4.bc/4 and .ab/4.bac/4 (or
equivalently, G=N has presentation ha; b; c j a2 D b2 D c2 D .ab/8 D .bc/8 D
.ca/2 D .abc/8 D .ab/4.bc/4 D .ab/4.bac/4 D 1i). Based on this information, it
can be checked that N is preserved by the duality operator D, the Petrie operator
P , and by all of the hole operators for k D 8, that is, by Hj for j 2 f1; 3; 5; 7g.
Note that H1 is the identity, and H7 is simply conjugation by a, while H3 takes the
ordered triple .a; b; c/ to .a; babab; c/, and H5 takes .a; b; c/ to .a; abababa; c/.

A further computation using MAGMA (but is also possible using the
Reidemeister-Schreier process) reveals that N is actually generated by 16 elements
subject to 8 relations, with each of the 16 generators appearing in each of the 8
relators with zero exponent sum. It follows that all the relations become trivial in
the abelianisation N=N 0, and therefore N=N 0 Š Z

16. Since N 0 is characteristic in
N , it is preserved by the elementary external symmetries D, P , and Hj for j 2
f1; 3; 5; 7g. It follows that the (infinite) regular map M D .G=N 0I aN 0; bN 0; cN 0/
of valency 8 is kaleidoscopic and has trinity symmetry.

Furthermore, we observe that for every positive integer m, the group Km D
N 0Nm (generated by all commutators and all mth powers of elements of N ) is a
normal subgroup of index 128m16 inG, with the quotientG=Km being an extension
of .Zm/16 by G=N . Since Km is characteristic in N , it is also preserved by each
of the elementary external automorphisms. This gives, for every m 
 1, a finite
kaleidoscopic regular mapMm D .G=KmI aKm; bKm; cKm/ with trinity symmetry,
of valency 8 and with automorphism group of order 128m3.

Now consider more carefully the effect of the external symmetries on the abelian
subgroup N=Km Š .Zm/

16 of G=Km. Each of D, P , H3, H5 and H7 induces
an automorphism of N=Km order 2, while DP induces one of order 3. Similarly,
each of PH3, PH5 and PH7 induces an automorphism of N=Km of order 2, while
DH7 induces one of order 4. On the other hand, each of DH3 and DH5 induces an
automorphism of N=Km of order 2m if m is even, and 4m if m is odd. Hence in
particular, the order of the external symmetry group of the mapMm is at least 12m.

We conclude that this family .Mm/m2N of finite kaleidoscopic regular maps
of valency 8 with trinity symmetry contains infinitely many maps whose external
symmetry groups have order larger than any given positive integer. This also implies
that the infinite kaleidoscopic regular map M of valency 8 with trinity symmetry
constructed above from the group G=N 0 has an infinite external symmetry group,
despite its finite valency. ut
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4 External Symmetry Groups of a Family of Maps

As mentioned earlier, the definition of a kaleidoscopic regular map was introduced
in [1], along with a construction of such a map M �k D .Gk I a; b; c/ of valency 2k
for every k 
 1, with Gk D ha; b; c j a2 D b2 D c2 D .ab/2k D .bc/2k D .ca/2 D
.abc/2k D .abacbcb/2 D 1i. We sum up the relevant facts regarding the structure
of this group, which were proved in (or easily follow from) [1]. The group Gk has
order 8k3, and has a characteristic subgroup Nk isomorphic to .Zk/3, generated by
the three mutually commuting elements u D .ab/2, v D .bc/2 and w D a.uv/�1a;
indeed Nk is generated by the squares of all elements of Gk . In particular, Gk is
isomorphic to an extension of Nk Š .Zk/

3 by Gk=Nk Š .Z2/
3.

For each k, the regular map M �k admits all the elementary external symmetries
D, P and Hr (for r 2 Z

�
2k), and hence is kaleidoscopic with trinity symmetry.

We now determine its external symmetry group Ek . In Sect. 2 we saw that Ek D
Fk Ì hD;P i, where Fk is the normal subgroup ofEk generated by conjugates of the
hole operatorsHr . It is not difficult to show (with the help of a coset diagram forNk
in Gk , or by direct verification) that conjugation by D, P and Hr of the generators
u, v and w of Nk is given by

D W
u 7! v�1
v 7! u�1
w 7! w

P W
u 7! u
v 7! w�1
w 7! v�1

Hr W
u 7! ur

v 7! u�iviC1wi
w 7! uiviwiC1

;

where r � 2iC1mod 2k. SinceP commutes with eachHr , it follows that the group
Fk is generated by all automorphisms Hr , H 0s D DHsD, and H 00t D PDHtDP ,
where r , s and t are relatively prime to 2k. The above details showing the effects
of the elementary external symmetries on the generators of Nk imply that Fk has a
faithful representation as a subgroup Lk of GL.3;Zk/, given by Hr 7! Ar , H 0s 7!
A0s andH 00t 7! A00t , where

Ar D
2

4

r �i i

0 i C 1 i

0 i i C 1

3

5 ; A0s D
2

4

j C 1 0 �j
�j s �j
�j 0 j C 1

3

5 ; A00t D
2

4

`C 1 ` 0

` `C 1 0

` �` t

3

5 ;

for r � 2i C 1 mod 2k, s � 2j C 1 mod 2k, and t � 2`C 1 mod 2k.
It is a simple task to check that all of these matrices commute with each other,

and hence that the subgroup Lk Š Fk is Abelian. To determine the order of Lk , it
is sufficient to investigate conditions under which the product

ArA
0
sA
00
t D

2

4

.j C `C 1/r .` � i/s .i � j /t
.` � j /r .i C `C 1/s .i � j /t
.` � j /r .i � `/s .i C j C 1/t

3

5
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is equal to the identity matrix. This is easily seen to happen if and only if r D s D t

and r2 � 1 mod k. Then since there are '.2k/ possibilities for each of r , s and t , it
follows that the order of Lk is equal to .'.2k/3/=m, wherem is the number of units
r in Z2k that are solutions of r2 � 1 mod k (and ' is the Euler function).

By elementary number theory, if k has d distinct prime factors, then the number
of distinct solutions mod k of the congruence r2 � 1 mod k is equal to 2dC1, 2d or
2d�1, depending on whether k � 0 mod 8, or either k � 4 mod 8 or k is odd, or
k � 2 mod 4, respectively. To find the number of r in Z2k that satisfy r2 � 1 mod
k, we observe the following: if k is odd, then the units mod 2k are in one-to-one
correspondence with the units mod k, while on the other hand, if k is even, then for
every unit r 0 mod k, both r 0 and r 0Ck are units mod 2k, and so the number of units
mod 2k is twice the number of units mod k. Combining these facts, we find that
m D 2dC2 if k � 0 mod 8, while m D 2dC1 if k � 4 mod 8, and m D 2d if either
k � 2 mod 4 or k is odd.

Taking into account these observations and the fact that jEkj D 6jFkj, we obtain
the following:

Theorem 2. Let d be the number of distinct prime factors of k. Then the external
symmetry groupEk of the kaleidoscopic regular mapM �k of valency 2k with trinity
symmetry has order 6.'.2k//3=2ˇ; where ˇ D d C 2, d C 1 or d , depending on
whether k � 0 mod 8, k � 4 mod 8, or k 6� 0 mod 4, respectively. Moreover, Ek is
isomorphic to a semi-direct product Fk Ì hD;P i, where Fk is a quotient of .Z �2k/3.

�
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Variance Groups and the Structure
of Mixed Polytopes

Gabe Cunningham

Abstract The natural mixing construction for abstract polytopes provides a way to
build a minimal common cover of two regular or chiral polytopes. With the help of
the chirality group of a polytope, it is often possible to determine when the mix of
two chiral polytopes is still chiral. By generalizing the chirality group to a whole
family of variance groups, we can explicitly describe the structure of the mix of two
polytopes. We are also able to determine when the mix of two polytopes is invariant
under other external symmetries, such as duality and Petrie duality.

Keywords Abstract regular polytope • Chiral polytope • Self-dual polytope
• Chiral map • Petrie dual • External symmetry

Subject Classifications: Primary 52B15; Secondary: 51M20, 05C25

1 Introduction

The study of abstract polytopes, together with the study of maps on surfaces, is a
vibrant area of current research. These fields bring together group theory, geometry,
and combinatorics in a satisfying way, providing many fascinating structures to
study. As in the classical theory of convex polytopes, the regular polytopes are
particularly interesting. In our context, a polytope is regular if its automorphism
group acts transitively on the flags. Also important are the chiral polytopes,
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whose defining features are that there are two flag orbits under the action of the
automorphism group, and that flags that differ in only a single element lie in
different orbits. Such polytopes occur in two mirror-image forms, but they have
full rotational symmetry.

In addition to internal symmetries, which are represented by polytope auto-
morphisms, there are a number of interesting external symmetries. Some, such as
duality, have their roots in the study of convex polytopes. Others, such as Petrie
duality, come more naturally from the study of maps on surfaces. Even the symmetry
between a chiral polytope and its mirror image may be viewed as an external
symmetry. Most of the work on external symmetries has focused on polyhedra
and maps on surfaces (see [6, 12, 13, 17]), though some work has been done with
polytopes in higher rank as well (see [10]).

Polytopes have a natural mixing construction, analogous to the join of two maps
or hypermaps [9]. This construction lets us build the minimal common cover of two
regular or chiral polytopes. Unlike joining maps, there is a significant hurdle when
mixing polytopes; namely, there is no guarantee that the mix of two polytopes is
itself a polytope. In some cases, we are able to determine whether the mix of two
polytopes is polytopal based on simple combinatorial data.

By mixing a polytope with its images under an external symmetry or a group
of symmetries, we can construct a polytope (or a slightly more general structure)
that is invariant under that symmetry or symmetries. For example, we can build
polytopes that are self-dual, self-Petrie, or both. Our goal then becomes determining
the full structure of the mixed polytope, including its combinatorial data and its
automorphism group.

Sometimes we are more interested in constructing polytopes that are not invariant
under a given external symmetry. For example, we would like to know when the mix
of two chiral polytopes is still chiral. By using the chirality group, which measures
the degree to which a polytope is chiral, we can often make this determination (see
[4, 7, 8]). The chirality group generalizes nicely, making it possible to measure how
far a polytope is from being invariant under any external symmetry.

We start by giving background information on regular and chiral polytopes
in Sect. 2. In Sect. 3, we introduce the mixing construction for polytopes and
investigate the structure of mixed polytopes. Then we develop the theory of external
symmetries in Sect. 4. The main result is Theorem 1, which uses a generalization of
the chirality group to determine when the mix of two polytopes is invariant under
an external symmetry. We then provide several consequences and examples.

2 Polytopes

General background information on abstract polytopes can be found in [15,
Chs. 2, 3], and information on chiral polytopes specifically can be found in [18].
Here we review the concepts essential for this paper.
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2.1 Definition of a Polytope

Let P be a ranked partially ordered set whose elements will be called faces. The
faces of P will range in rank from �1 to n, and a face of rank j is called a j -face.
The 0-faces, 1-faces, and .n � 1/-faces are also called vertices, edges, and facets,
respectively. A flag of P is a maximal chain. We say that two flags are adjacent
if they differ in exactly one face, and that they are j -adjacent if they differ only in
their j -face. If F and G are faces of P such that F � G, then the section G=F
consists of those faces H such that F � H � G.

We say that P is an (abstract) polytope of rank n, also called an n-polytope, if it
satisfies the following four properties:

(a) There is a unique greatest face Fn of rank n and a unique least face F�1 of
rank �1.

(b) Each flag of P has nC 2 faces.
(c) P is strongly flag-connected, meaning that if ˚ and  are two flags of P ,

then there is a sequence of flags ˚ D ˚0;˚1; : : : ; ˚k D  such that for
i D 0; : : : ; k�1, the flags˚i and˚iC1 are adjacent, and each˚i contains˚\ .

(d) (Diamond condition): Whenever F < G, where F is a .j � 1/-face and
G is a .j C 1/-face for some j , then there are exactly two j -faces H with
F < H < G.

Note that due to the diamond condition, any flag ˚ has a unique j -adjacent flag
(denoted ˚j ) for each j D 0; 1; : : : ; n � 1.

If F is a j -face and G is a k-face of a polytope with F � G, then the
sectionG=F is a (k�j�1)-polytope itself. We can identify a faceF with the section
F=F�1, since if F is a j -face, thenF=F�1 is a j -polytope. We call the sectionFn=F
the co-face at F ; the co-face at a vertex is also called a vertex-figure.

We sometimes need to work with pre-polytopes, which are ranked partially
ordered sets that satisfy the first, second, and fourth property above, but not
necessarily the third. In this paper, all of the pre-polytopes we encounter will be
flag-connected, meaning that if ˚ and  are two flags, there is a sequence of flags
˚ D ˚0;˚1; : : : ; ˚k D  such that for i D 0; : : : ; k � 1, the flags ˚i and ˚iC1 are
adjacent (but we do not require each flag to contain ˚ \  ). When working with
pre-polytopes, we apply all the same terminology as with polytopes.

Let P and Q be two polytopes (or flag-connected pre-polytopes) of the same
rank. A function � W P ! Q is called a covering if it preserves incidence of
faces, ranks of faces, and adjacency of flags; then � is necessarily surjective, by
the flag-connectedness of Q. We say that P covers Q if there exists a covering
� W P ! Q.

2.2 Regularity

For polytopes P and Q, an isomorphism from P to Q is an incidence- and rank-
preserving bijection on the set of faces. An isomorphism from P to itself is an
automorphism of P , and the group of all automorphisms of P is denoted � .P/.
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We say that P is regular if the natural action of � .P/ on the flags of P is
transitive. For convex polytopes, this definition is equivalent to any of the usual
definitions of regularity (see [15, Sect. 1B]).

Given a regular polytope P , fix a base flag ˚ . Then the automorphism group
� .P/ is generated by the abstract reflections �0; : : : ; �n�1, where �i maps ˚ to the
unique flag ˚i that is i -adjacent to ˚ . These generators satisfy �2i D � for all i , and
.�i�j /

2 D � for all i and j such that ji � j j 
 2. We say that P has (Schläfli)
type fp1; : : : ; pn�1g if for each i D 1; : : : ; n � 1 the order of �i�1�i is pi (with
2 � pi � 1).

For I � f0; 1; : : : ; n � 1g and a group � D h�0; : : : ; �n�1i, we define �I WD
h�i j i 2 I i. The strong flag-connectivity of regular polytopes induces the following
intersection condition in the group:

�I \ �J D �I\J for I; J � f0; : : : ; n � 1g: (1)

In general, if � D h�0; : : : ; �n�1i is a group such that each �i has order 2 and
such that .�i�j /2 D � whenever ji � j j 
 2, then we say that � is a string group
generated by involutions (or sggi). If � also satisfies the intersection condition (1)
given above, then we call � a string C-group. There is a natural way of building
a regular polytope P.� / from a string C-group � such that � .P.� // D � and
P.� .P// D P (see [15, Ch. 2E]). In particular, the i -faces of P.� / are taken to
be the cosets of

�i WD h�j j j ¤ ii;

where �i' � �j if and only if i � j and �i' \ �j ¤ ;. This construction
is also easily applied to any sggi (not just string C-groups), but in that case, the
resulting poset is not necessarily a polytope.

If P and Q are regular n-polytopes, their automorphism groups are both
quotients of the Coxeter group

Wn WD Œ1; : : : ;1� D h�0; : : : ; �n�1 j �20 D � � � D �2n�1 D �;

.�i �j /
2 D � when ji � j j 
 2i: (2)

Therefore there are normal subgroups M and K of Wn such that � .P/ D Wn=M

and � .Q/ D Wn=K . Then P covers Q if and only if M � K .

2.3 Direct Regularity and Chirality

If P is a regular polytope with automorphism group � .P/ generated by
�0; : : : ; �n�1, then the abstract rotations
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�i WD �i�1�i .i D 1; : : : ; n � 1/

generate the rotation subgroup � C.P/ of � .P/, which has index at most 2. We
say that P is directly regular if this index is 2. This is essentially an orientability
condition; for example, the directly regular polyhedra correspond to orientable
regular maps. The convex regular polytopes are all directly regular.

We say that an n-polytope P is chiral if the action of � .P/ on the flags of P
has two orbits such that adjacent flags are always in distinct orbits. For convenience,
we define� C.P/ WD � .P/wheneverP is chiral. Given a chiral polytopeP with
base flag ˚ D fF�1; F0; : : : ; Fng, the automorphism group � C.P/ is generated by
elements �1; : : : ; �n�1, where �i acts on˚ the same way that �i�1�i acts on the base
flag of a regular polytope. That is, �i sends ˚ to .˚i /i�1 (which is usually denoted
˚i;i�1). For i < j , the product �i � � ��j is an involution. In analogy to regular
polytopes, if the order of each �i is pi , we say that the type of P is fp1; : : : ; pn�1g.

The automorphism groups of chiral polytopes and the rotation groups of directly
regular polytopes satisfy an intersection property analogous to that for string
C-groups. Let � C WD � C.P/ D h�1; : : : ; �n�1i be the automorphism group of
a chiral polytope or the rotation subgroup of a directly regular polytope P . For
1 � i < j � n� 1 define �i;j WD �i � � ��j . By convention, we also define �i;i D �i ,
and for 0 � i � n, we define �0;i D �i;n D �. For I � f0; : : : ; n � 1g, set

� CI WD h�i;j j i � j and i � 1; j 2 I i:

Then the intersection property for � C is given by:

� CI \ � CJ D � CI\J for I; J � f0; : : : ; n � 1g: (3)

If � C is a group generated by elements �1; : : : ; �n�1 such that .�i � � ��j /2 D �

for i < j , and if � C satisfies the intersection property (3) above, then � C is either
the automorphism group of a chiral n-polytope or the rotation subgroup of a directly
regular n-polytope. In particular, it is the rotation subgroup of a directly regular
polytope if and only if there is a group automorphism of � C that sends �1 to ��11 ,
�2 to �21 �2, and fixes every other generator.

Suppose P is a chiral polytope with base flag ˚ and with

� C.P/ D h�1; : : : ; �n�1i:

Let P be the chiral polytope with the same underlying face-set as P , but with base
flag˚0. Then � C.P/ D h��11 ; �21 �2; �3; : : : ; �n�1i. We call P the enantiomorphic
form or mirror image of P . Though P ' P , there is no automorphism of P that
takes ˚ to ˚0.

Let � C D h�1; : : : ; �n�1i, and let w be a word in the free group on these
generators. We define the enantiomorphic (or mirror image) word w of w to be the
word obtained from w by replacing every occurrence of �1 by ��11 and �2 by �21 �2,
while keeping all �j with j 
 3 unchanged. Then if � C is the rotation subgroup
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of a directly regular polytope, the elements of � C corresponding to w and w are
conjugate in the full group � . On the other hand, if � C is the automorphism group
of a chiral polytope, then w and w need not even have the same period. Note that
w D w for all words w.

The sections of a regular polytope are again regular, and the sections of a chiral
polytope are either directly regular or chiral. Furthermore, for a chiral n-polytope,
all the .n � 2/-faces and all the co-faces at edges must be directly regular [18]. As
a consequence, if P is a chiral polytope, it may be possible to extend it to a chiral
polytope with facets isomorphic to P , but it will then be impossible to extend that
polytope once more to a chiral polytope.

Chiral polytopes only exist in ranks 3 and higher. The simplest examples are the
torus maps f4; 4g.b;c/, f3; 6g.b;c/ and f6; 3g.b;c/, with b; c ¤ 0 and b ¤ c (see [2]).
These give rise to chiral 4-polytopes having toroidal maps as facets and/or vertex-
figures. More examples of chiral 4- and 5-polytopes can be found in [1].

If a regular or chiral n-polytope P has facets K and vertex-figures L , we say
that P is of type fK ;L g. If P is of type fK ;L g and it covers every other
polytope of the same type, then we say that P is the universal polytope of type
fK ;L g, and we simply denote it by fK ;L g.

If P and Q are chiral or directly regular n-polytopes, their rotation groups are
both quotients of

W Cn WD Œ1; : : : ;1�C D h�1; : : : ; �n�1 j .�i � � ��j /2 D � for 1 � i < j � n � 1i:
Therefore there are normal subgroups M and K of W Cn such that � C.P/ D
W Cn =M and � C.Q/ D W Cn =K . Then P covers Q if and only if M � K .

Let P be a chiral or directly regular polytope with � C.P/ D W Cn =M . We
define

M D fw j w 2 M g:
Note that M D �0M�0, where as before, �0 is the first standard generator of Wn.
If M D M , then P is directly regular. Otherwise, P is chiral, and � C.P/ D
W Cn =M .

2.4 Duality and Petrie Duality

For any polytope P , we obtain the dual of P (denoted Pı) by simply reversing
the partial order. A duality from P to Q is an anti-isomorphism, that is, a bijection
ı between the face sets such that F < G in P if and only if ı.F / > ı.G/ in Q. If
a polytope is isomorphic to its dual, then it is called self-dual.

If P is of type fK ;L g, then Pı is of type fL ı;K ıg. Therefore, in order for
P to be self-dual, it is necessary (but not sufficient) that K be isomorphic to L ı

(in which case it is also true that K ı is isomorphic to L ).
A self-dual regular polytope always possesses a duality that fixes the base flag.

For chiral polytopes, this may not be the case. If a self-dual chiral polytope P
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possesses a duality that sends the base flag to another flag in the same orbit (but
reversing its direction), then there is a duality that fixes the base flag, and we say
that P is properly self-dual [11]. In this case, the groups � C.P/ and � C.Pı/

have identical presentations. If a self-dual chiral polytope has no duality that fixes
the base flag, then every duality sends the base flag to a flag in the other orbit, and
P is said to be improperly self-dual. In this case, the groups � C.P/ and � C.Pı/

have identical presentations instead.
If P is a regular polytope with � .P/ D h�0; : : : ; �n�1i, then the group of Pı

is � .Pı/ D h�00; : : : ; �0n�1i, where �0i D �n�1�i . If P is a directly regular or
chiral polytope with � C.P/ D h�1; : : : ; �n�1i, then the rotation group of Pı

is � C.Pı/ D h� 01; : : : ; � 0n�1i, where � 0i D ��1n�i . Equivalently, if � C.P/ has
presentation

h�1; : : : ; �n�1 j w1; : : : ;wki
then � C.Pı/ has presentation

h� 01; : : : ; � 0n�1 j ı.w1/; : : : ; ı.wk/i;
where if w D �i1 � � ��ij , then ı.w/ D .� 0n�i1 /

�1 � � � .� 0n�ij /�1.
Suppose P is a chiral or directly regular polytope with � C.P/ D W Cn =M .

Then � C.Pı/ D W Cn =ı.M/, where ı.M/ D fı.w/ j w 2 M g. If ı.M/ D M ,
then � C.P/ D � C.Pı/, so P is properly self-dual.

If P is a chiral polytope, then Pı is naturally isomorphic to P
ı
. Indeed, if w is

a word in the generators �1; : : : ; �n�1 of � C.P/, then

ı.w/ D .�1�2 � � ��n�1/ı.w/.�1�2 � � ��n�1/�1;

so we see that the presentation for Pı is equivalent to that of P
ı
. In particular, if

� C.P/ D W Cn =M , then

ı.M/ D ı.M/ WD fı.w/ j w 2M g;

since M is a normal subgroup ofW Cn , and thus ı.ı.M// DM .
There is also a second duality operation that is defined on abstract polyhedra. To

start with, a Petrie polygon of a polyhedron is a maximal edge-path such that every
two successive edges lie on a common face, but no three successive edges do. Given
a polyhedron P , its Petrie dual P� consists of the same vertices and edges as P ,
but its faces are the Petrie polygons of P . Taking the Petrie dual of a polyhedron
also forces the old faces to be the new Petrie polygons, so that P�� ' P . If P is
isomorphic to P� , then we say that P is self-Petrie.

The Petrie dual of an arbitrary polyhedron need not be a polyhedron itself. In par-
ticular, a Petrie polygon may visit a single vertex multiple times, causing there to be
more than two edges incident on that Petrie polygon and vertex. When P is regular,
however, the Petrie dual is a polyhedron except in rare cases; see [15, Sect. 7B].
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3 Mixing Polytopes

The mixing operation on polytopes [15, 16] is analogous to the parallel product of
groups [20], the tensor product of graphs, and the join of maps and hypermaps [9].
It gives us a natural way to find the minimal common cover of two regular or chiral
polytopes. The basic method is to find the parallel product of the automorphism
groups (or rotation groups) of two polytopes, and then to build a poset (usually a pre-
polytope) from the resulting group. There are two main challenges. First, we want
to determine how the structure of the mix depends on the two component polytopes.
Second, we want to know when the mix of two polytopes is a polytope, and not
just a pre-polytope. In a wide variety of cases, it is possible to easily determine the
structure and polytopality of the mix.

3.1 Mixing Finitely Generated Groups

Let � D hx1; : : : ; xni and � 0 D hx01; : : : ; x0ni be finitely generated groups on n gen-
erators. Then the elements zi WD .xi ; x

0
i / 2 � �� 0 (for i D 1; : : : ; n) generate a sub-

group of � �� 0 that we call the mix of � and � 0, denoted � ˘� 0 (see [15, Ch.7A]).
If P and Q are regular polytopes, then we can mix their automorphism groups

� .P/ and � .Q/. The result will be an sggi, but not necessarily a string C-group.
In any case, we can always build a ranked poset from � .P/˘� .Q/, and the result,
which we emphasize might not be a polytope, is called the mix of P and Q and is
denoted P ˘ Q. Similarly, if P and Q are chiral or directly regular, we can mix
� C.P/ and � C.Q/ and build a poset from the resulting group. That poset is also
called the mix of P and Q and denoted P ˘Q. There is no chance for confusion,
since if P and Q are both directly regular, then the poset built from � .P/˘� .Q/
is the same as that built from � C.P/ ˘ � C.Q/.

If the facets of P are isomorphic to K and the facets of Q are isomorphic to
L , then the facets of P ˘ Q are isomorphic to K ˘ L . The vertex-figures of
P ˘Q are analogously obtained. If P is of type fp1; : : : ; pn�1g and Q is of type
fq1; : : : ; qn�1g, then P ˘ Q is of type f`1; : : : ; `n�1g, where `i D lcm.pi ; qi / for
i 2 f1; : : : ; n � 1g.

In order to avoid duplication, we shall usually assume that P and Q are chiral or
directly regular, and we will work with � C.P/˘� C.Q/ instead of � .P/˘� .Q/.
Most of our results are easily modified to work for � .P/ ˘ � .Q/ when necessary.

The automorphism group of a chiral or directly regular n-polytope can always
be written as a natural quotient of W Cn . The mix of two polytopes has a simple
interpretation in terms of these quotients [8]:

Proposition 1. Let P and Q be chiral or directly regular n-polytopes with
� C.P/ D W Cn =M and � C.Q/ D W Cn =K . Then � C.P ˘Q/ ' W Cn =.M \K/.
Corollary 1. Let P , Q, and R be chiral or directly regular n-polytopes. If R
covers P and Q, then it covers P ˘Q.
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Dual to the mix is the comix of two groups. We define the comix � �� 0 to be the
amalgamated free product that identifies the generators of � with the corresponding
generators of � 0. That is, if � has presentation hx1; : : : ; xn j Ri and � 0 has
presentation hx01; : : : ; x0n j Si, then ��� 0 has presentation

hx1; x01; : : : ; xn; x0n j R;S; x�11 x01; : : : ; x�1n x0ni:
Equivalently, we can just add the relations from � 0 to those of � , replacing each x0i
with xi .

Just as the mix of two rotation groups has a simple description in terms of
quotients of W Cn , so does the comix of two rotation groups [3]:

Proposition 2. Let P and Q be chiral or directly regular n-polytopes with
� C.P/ D W Cn =M and � C.Q/ D W Cn =K . Then � C.P/�� C.Q/ '
W Cn =MK .

The mixing and comixing operations on polytopes are commutative and asso-
ciative in the sense that, for example, P ˘ Q is naturally isomorphic to Q ˘ P .
Furthermore, P ˘ P and P�P are both naturally isomorphic to P . However,
even if P ' Q, it may be the case that P ˘Q 6' P . For example, if P is a chiral
polytope, then P ' P, but P ˘P is not isomorphic to P .

3.2 Variance Groups and the Structure of the Mix

There is a natural epimorphism from � C.P/ ˘ � C.Q/ to � C.P/, sending
each generator .�i ; � 0i / to �i . By studying the kernel of this epimorphism and
the analogous epimorphism to � C.Q/, we can determine the structure of the
� C.P/ ˘ � C.Q/.
Definition 1. Let P and Q be chiral or directly regular n-polytopes. We denote
the kernel of the natural epimorphism

f W � C.P/ ˘ � C.Q/! � C.P/

by X.QjP/, and we call it the variance group of Q with respect to P . Similarly,
we denote the kernel of the natural epimorphism

f 0 W � C.P/ ˘ � C.Q/! � C.Q/

by X.PjQ/ and we call it the variance group of P with respect to Q. In other
words, X.QjP/ consists of the elements of � C.P/ ˘ � C.Q/ of the form .�;w0/
(with w0 2 � C.Q/), and X.PjQ/ consists of the elements of � C.P/ ˘ � C.Q/
of the form .w; �/ (with w 2 � C.P/).

By representing � C.P/ as W Cn =M and � C.Q/ as W Cn =K , we easily obtain
the following:
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Proposition 3. Let P and Q be chiral or directly regular n-polytopes, with
� C.P/ D W Cn =M and � C.Q/ D W Cn =K . Then:

(a) X.PjQ/ ' K=.M \ K/ ' MK=M and X.QjP/ ' M=.M \ K/ '
MK=K .

(b) Let g W � C.P/ ! � C.P/�� C.Q/ and g0 W � C.Q/ ! � C.P/�� C.Q/
be the natural epimorphisms. Then kerg ' X.PjQ/ and kerg0 ' X.QjP/.
In particular, X.PjQ/ and X.QjP/ can be viewed as normal subgroups of
� C.P/ and � C.Q/, respectively.

The fact that the natural epimorphisms f 0 W � C.P/ ˘ � C.Q/ ! � C.Q/
and g W � C.P/ ! � C.P/�� C.Q/ have isomorphic kernels allows us to use
the comix of two polytopes to derive information about the mix. The following
properties are immediate:

Proposition 4. Let P and Q be finite chiral or directly regular n-polytopes.
Then:

(a) � C.P/ ˘ � C.Q/ is finite, and

j� C.P/ ˘ � C.Q/j D jX.PjQ/j � j� C.Q/j D jX.QjP/j � j� C.P/j:

(b) � C.P/�� C.Q/ is finite, and

j� C.P/�� C.Q/j D j� C.P/j
jX.PjQ/j D

j� C.Q/j
jX.QjP/j :

(c)

j� C.P/ ˘ � C.Q/j � j� C.P/�� C.Q/j D j� C.P/j � j� C.Q/j:

(d)

jX.PjQ/j
jX.QjP/j D

j� C.P/j
j� C.Q/j

Intuitively speaking, the group X.QjP/ tells us something about how many
elements of � C.Q/ do not correspond to elements of � C.P/. If � C.P/

covers � C.Q/, then X.QjP/ is trivial. At the other extreme, if � C.P/ ˘
� C.Q/ D � C.P/ � � C.Q/, then � C.P/ and � C.Q/ have trivial overlap, and
X.QjP/ ' � C.Q/.

The group � C.P/˘� C.Q/ is a subdirect product of � C.P/ and � C.Q/, and
we can determine its structure explicitly:

Proposition 5. Let P and Q be chiral or directly regular n-polytopes, with
� C.P/ D h�1; : : : ; �ni and � C.Q/ D h� 01; : : : ; � 0ni. Let N D X.PjQ/ and
N 0 D X.QjP/, and let h W � C.P/=N ! � C.Q/=N 0 be the isomorphism
sending �iN to � 0iN 0. Then
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� C.P/ ˘ � C.Q/ D f.u; v/ 2 � C.P/ � � C.Q/ j h.uN/ D vN 0g:

In particular, X.PjQ/�X.QjP/ is a normal subgroup of � C.P/ ˘ � C.Q/.
Proof. First of all, by Proposition 3,

� C.P/=N ' � C.P/�� C.Q/ ' � C.Q/=N 0;

so that h really is an isomorphism. Let f W � C.P/ ˘ � C.Q/ ! � C.P/ and
f 0 W � C.P/ ˘ � C.Q/ ! � C.Q/ be the natural epimorphisms, so that N 0 D
kerf and N D kerf 0 (see Definition 1). Then the first part follows directly by
Goursat’s Lemma [14]. For the last part, note that if u 2 N and v 2 N 0, then
uN D N and vN 0 D N 0. Therefore, h.uN/ D h.N / D N 0 D vN 0, so that .u; v/ 2
� C.P/ ˘ � C.Q/. Then we see that N �N 0 is a subgroup of � C.P/ ˘ � C.Q/,
and since N is a normal subgroup of � C.P/ and N 0 is a normal subgroup of
� C.Q/, it immediately follows that N �N 0 (i.e., X.PjQ/�X.QjP/) is normal
in � C.P/ ˘ � C.Q/.

Now we are able to refine Proposition 4 to include infinite groups.

Proposition 6. Let P and Q be chiral or directly regular n-polytopes. If
� C.P/�� C.Q/ is finite of order k, then the index of � C.P/ ˘ � C.Q/ in
� C.P/ � � C.Q/ is k.

Proof. If � C.P/ and � C.Q/ are finite, this follows immediately from the third
equation of Proposition 4. Now let � C.P/ and � C.Q/ be of arbitrary size, and
set N D X.PjQ/ and N 0 D X.QjP/, as in Proposition 5. If � C.P/�� C.Q/
is finite of order k, then N 0 has index k in � C.Q/. For each fixed u 2 � C.P/,
Proposition 5 says that the element .u; v/ is in � C.P/ ˘ � C.Q/ if and only if
h.uN/ D vN 0. In other words, having fixed u we can pick any v that lies in the
same (corresponding) coset. Then sinceN 0 has index k in � C.Q/, the set of .u; v/ 2
� C.P/ ˘ � C.Q/ for a fixed u has “index” k in fug � � C.Q/. Therefore, letting
u range over all elements of � C.P/, we see that � C.P/ ˘ � C.Q/ has index k in
� C.P/ � � C.Q/.
Corollary 2. Let P and Q be chiral or directly regular n-polytopes. If
� C.P/�� C.Q/ is trivial, then � C.P/ ˘ � C.Q/ D � C.P/ � � C.Q/.

3.3 Polytopality of the Mix

Our main goal is to use the mixing operation to construct new polytopes. In some
cases, we can mix a polytope with a pre-polytope and still get a polytope:

Proposition 7. Let P be a chiral or directly regular n-polytope with facets
isomorphic to K . Let Q be a chiral or directly regular n-pre-polytope with facets
isomorphic to K 0. If K covers K 0, then P ˘Q is polytopal.
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Proof. Since K covers K 0, the facets of P ˘Q are isomorphic to K . Therefore,
the canonical projection from � C.P/ ˘ � C.Q/ ! � C.P/ is one-to-one on the
subgroup of the facets, and by [8, Lemma 3.2], the group � C.P/˘� C.Q/ has the
intersection property. Therefore, P ˘Q is a polytope.

In general, there is no guarantee that the mix of a two polytopes is a polytope.
For example, for n 
 4, the mix of the n-cube with the n-orthotope is not a polytope
[5]. In rank 3, however, polytopality is automatic [4]:

Proposition 8. Let P and Q be chiral or directly regular polyhedra (3-polytopes).
Then P ˘Q is a chiral or directly regular polyhedron.

Theorem 3.7 in [4] is one example of a result that works in any rank:

Proposition 9. Let P be a chiral or directly regular n-polytope of type
fp1; : : : ; pn�1g, and let Q be a chiral or directly regular n-polytope of type
fq1; : : : ; qn�1g. If pi and qi are relatively prime for each i D 2; : : : ; n � 2 (but
not necessarily for i D 1 or i D n � 1), then P ˘Q is a chiral or directly regular
n-polytope. Furthermore, if n 
 4, then � C.P/ ˘ � C.Q/ is a subgroup of index
4 or less in � C.P/ � � C.Q/.

We conclude this section with a negative result.

Proposition 10. Let P and Q be chiral or directly regular n-polytopes. Suppose
P is of type fp1; : : : ; pn�1g, and that Q is of type fq1; : : : ; qn�1g. Let ri D
gcd.pi ; qi / for i 2 f1; : : : ; n�1g. If there is an integerm 2 f2; : : : ; n�2g such that
rm�1 D rmC1 D 1 and rm 
 3, then P ˘Q is not a polytope.

Proof. Let � C.P/ D h�1; : : : ; �n�1i, � C.Q/ D h� 01; : : : ; � 0n�1i, and ˇi D .�i ; �
0
i /

for each i 2 f1; : : : ; n�1g. To show that P ˘Q is not polytopal, it suffices to show
that

hˇm�1; ˇmi \ hˇm; ˇmC1i ¤ hˇmi:

Now, since pm�1 and qm�1 are relatively prime, there is an integer k such that
kpm�1 � 1 (mod qm�1). Then since the order of �m�1 is pm�1 and the order of
� 0m�1 is qm�1, we see that

ˇ
kpm�1

m�1 D .�
kpm�1

m�1 ; .� 0m�1/kpm�1 / D .�; � 0m�1/;

and therefore

.ˇ
kpm�1

m�1 ˇm/
2 D .�2m; .�

0
m�1� 0m/2/ D .�2m; �/;

since we have .� 0i � 0iC1/2 D � for any i 2 f1; : : : ; n�2g. Thus, .�2m; �/ 2 hˇm�1; ˇmi.
Similarly, there is an integer k0 such that k0pmC1 � 1 (mod qmC1), and thus

.ˇmˇ
k0pmC1

mC1 /2 D .�2m; .�
0
m�
0
mC1/2/ D .�2m; �/:
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Therefore, .�2m; �/ 2 hˇm; ˇmC1i as well. So we see that

.�2m; �/ 2 hˇm�1; ˇmi \ hˇm; ˇmC1i:

Now, since rm 
 3, there is no integer k such that �km D �2m and .� 0m/k D �.
Therefore, .�2m; �/ 62 hˇmi, and that proves the claim.

4 Measuring Invariance

In this section, we develop the theory of internal and external invariance of
polytopes; the distinction is similar to that between inner and outer automorphisms
of a group. Our framework provides a unified way to measure the extent to which
a polytope is chiral, self-dual, or self-Petrie. Our goal is then to understand how
the variance of P ˘ Q depends on P and Q, and to use this knowledge to build
polytopes with or without specified symmetries.

4.1 External and Internal Invariance

Our study of invariance starts with the symmetries of

Wn WD Œ1; : : : ;1� D h�0; : : : ; �n�1 j �20 D � � � D �2n�1 D �;

.�i �j /
2 D � when ji � j j 
 2i;

the automorphism group of the universal n-polytope. Let P be a regular n-polytope
with base flag ˚ . The group Wn acts on the flags of P by ˚j1;:::;jk �i D ˚i;j1;:::;jk.
If M is the stabilizer of the base flag ˚ under this action, then M is normal in Wn

and � .P/ D Wn=M .
Suppose ' is in Aut.Wn/, the group of group automorphisms of Wn, and define

P' to be the flagged poset built from Wn='.M/. If ' fixes M (globally), then P
and P' are naturally isomorphic, and we shall consider them equal. On the other
hand, if '.M/ ¤ M , then the polytopes P and P' are distinct, and they need
not be isomorphic, even though ' induces an isomorphism of their automorphism
groups.

Similarly, if P is a chiral or directly regular n-polytope with base flag ˚ , then

W Cn WD Œ1; : : : ;1�C D h�1; : : : ; �n�1 j .�i � � ��j /2 D � for 1 � i < j � n � 1i
acts on the flags of P by ˚j1;:::;jk�i D ˚i;i�1;j1;:::;jk. If M is the stabilizer of the
base flag under this action, thenM is normal inW Cn and � C.P/ D W Cn =M . Now,
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taking ' 2 Aut.W Cn /, we similarly define P' to be the flagged poset built from
W Cn ='.M/.

Definition 2. Let P be a regular or chiral n-polytope (or, more generally, a regular
or chiral n-pre-polytope). Let ' be a group automorphism ofWn orW Cn (whichever
is appropriate), and let P' be defined as above.

(a) If P D P' , we say that P is internally '-invariant; otherwise we say that P
is internally '-variant.

(b) If P ' P' , we say that P is externally '-invariant; otherwise we say that P
is externally '-variant.

Of course, if a polytope is internally '-invariant, it must also be externally
'-invariant. Similarly, if a polytope is externally '-variant, it must also be internally
'-variant.

Let us consider several applications. Let P be a regular polytope with � .P/ D
Wn=M , and let 	w 2 Aut.Wn/ be conjugation by w 2 Wn. Then since M is normal
in Wn, 	w fixes M . Therefore, every regular polytope is internally 	w-invariant.

Similarly, for any element w 2 Wn there is an automorphism 	w 2 Aut.W Cn /.
If w is even (i.e., if w 2 W Cn ), then every chiral polytope is internally 	w-invariant.
On the other hand, consider the automorphism 	 WD 	�0 . This automorphism sends
�1 to ��11 and �2 to �21 �2 while fixing all other generators �i . Then if P is a chiral
polytope, P	 is the enantiomorphic form P of P . In particular, a chiral or directly
regular polytope P is chiral if and only if it is not internally 	-invariant. (But note
that in any case, if P is chiral or directly regular, it is externally 	-invariant.)

Moving on, let ı be the automorphism of Wn that sends each �i to �n�i�1,
and let P be a regular n-polytope. Then Pı is the dual of P (and indeed,
our notation for the dual was chosen in anticipation of this fact). The polytope
P is externally ı-invariant if and only if it is self-dual. Every regular self-dual
polytope has a duality that fixes the base flag while reversing the order [15], and
therefore if P is regular and self-dual, the polytopes P and Pı have the same flag-
stabilizer in Wn. Thus we see that a regular self-dual polytope is always internally
ı-invariant.

Similarly, there is an automorphism ıC of W Cn that sends each �i to ��1n�i . This
is the automorphism induced by ı in the previous example (and by an abuse of
notation, we frequently use ı to denote this automorphism of W Cn as well). Then a
directly regular or chiral polytope P is externally ıC-invariant if and only if it is
self-dual. If P is properly self-dual (i.e., if there is a duality that fixes the base flag),
then it is internally ıC-invariant; otherwise P is improperly self-dual and internally
ıC-variant.

For our final example, let � be the automorphism ofW3 that sends �0 to �0�2 and
fixes every other �i . If P is a regular polyhedron, then P� is the Petrie dual of P .

We will now explore the connection between invariance and polytope covers.

Proposition 11. Let P be a chiral or regular n-polytope, and let ' be an
automorphism of Wn or W Cn , as appropriate. Suppose Q is a chiral or regular
internally '-invariant n-polytope that covers P . Then Q covers P' .



Variance Groups and the Structure of Mixed Polytopes 111

Proof. Suppose P and Q are both regular; the proof is essentially the same in
the other cases. We have � .P/ D Wn=M and � .Q/ D Wn=K for some normal
subgroups M and K of Wn. Since Q covers P , K � M . Then '.K/ � '.M/ as
well, and since Q is internally '-invariant, '.K/ D K . ThereforeK � '.M/, and
so Q covers P' .

Corollary 3. Let P be a chiral or regular n-polytope, and let ' be an automor-
phism of Wn or W Cn , as appropriate. Suppose that ' has finite order k, and that
Q is a chiral or regular internally '-invariant n-polytope that covers P . Then Q

covers P ˘P' ˘ � � � ˘P'k�1 .

Proof. Repeated application of Proposition 11 shows that Q covers P' , P'2 ; : : :,
and P'k�1 . Therefore, by Corollary 1, it covers their mix.

As we shall see shortly, the mix P ˘P' ˘ � � � ˘P'k�1 is actually the minimal
internally '-invariant cover of P . As such, we make the following definition.

Definition 3. Let P be a chiral or regular n-polytope, and let ' be an automor-
phism of Wn or W Cn (as appropriate) of finite order k. Then we define P˘' to be
P ˘P' ˘ � � � ˘P'k�1 .

Proposition 12. Let P be a chiral or regular n-polytope, and let ' be an
automorphism of Wn or W Cn (as appropriate) of order finite k. Then P˘' is the
minimal chiral or regular internally '-invariant cover of P .

Proof. Since P'k D P , it is clear that .P˘'/' D P˘' . So P˘' is internally '-
invariant. By Corollary 3, every internally '-invariant cover of P must cover P˘'
as well. Thus it follows that P˘' is minimal.

In the rest of Sect. 4, we will usually assume that ' is an automorphism of W Cn ,
and that any polytopes we deal with are chiral or directly regular. Note, however,
that the definitions below all still make sense if we work with automorphisms ofWn

instead and assume that our polytopes are regular.
Given an automorphism ' of W Cn and a chiral or directly regular polytope P ,

we can consider the variance groups X.PjP'/ and X.P'jP/. By Proposition 3,
if � C.P/ D W Cn =M , then the former is isomorphic to M'.M/=M , and the latter
is isomorphic to M'.M/='.M/. Since M ' '.M/, the groups X.PjP'/ and
X.P'jP/ are isomorphic. We make the following definition:

Definition 4. Let P be a chiral or directly regular polytope of rank n. Let ' 2
Aut.W Cn /. We define

X'.P/ WD X.PjP'/;

and we call this the internal '-variance group of P or simply the '-variance group
of P .
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In other words,X'.P/ is the kernel of the natural epimorphism from � C.P/˘
� C.P'/ to� C.P'/ (and also the kernel of the natural epimorphism from� C.P/

to � C.P/�� C.P'/).
The group X'.P/ gives us a measure of how different P is from P' . At one

extreme, X'.P/ might be trivial, in which case P is internally '-invariant. At the
other extreme, X'.P/ might coincide with the whole group � C.P/; in that case,
we say that P is totally (internally) '-variant. (Again, we usually drop the word
‘internally’ for brevity.)

Let P be a chiral polytope and let 	 be the automorphism of W Cn that sends �1
to ��11 and �2 to �21 while fixing every other �i . Then the variance group X	.P/

is identical to the chirality group X.P/, introduced in [8] for polytopes and earlier
in [7] for maps and hypermaps. We can thus view '-variance groups as a natural
generalization of chirality groups.

4.2 Variance of the Mix

Using the tools we have developed, our goal now is to determine how X'.P ˘Q/
depends on X'.P/ and X'.Q/. We start with a simple result.

Proposition 13. Let P and Q be chiral or directly regular n-polytopes, and let
' 2 Aut.W Cn / have finite order. Then .P ˘Q/' D P' ˘Q' and .P ˘Q/˘' D
P˘' ˘Q˘' .

The following lemma completely characterizes the invariance of P ˘Q in terms
of polytope covers.

Lemma 1. Let P and Q be chiral or directly regular n-polytopes, and let ' 2
Aut.W Cn / have finite order. Then P ˘ Q is internally '-invariant if and only if it
covers P˘' and Q˘' .

Proof. If P˘Q is internally '-invariant, then by Corollary 3, it covers .P˘Q/˘' .
Furthermore, by Proposition 13, the latter polytope is equal to P˘' ˘Q˘' , which
covers both P˘' and Q˘' . Conversely, if P ˘ Q covers P˘' and Q˘' , then it
covers .P˘Q/˘' , which itself coversP˘Q. Then we must have that .P˘Q/˘' D
P ˘Q; that is, P ˘Q must be internally '-invariant.

Lemma 1 has several applications. For example, it tells us that P ˘Q is directly
regular if and only if it covers P ˘ P and Q ˘ Q. Similarly, P ˘ Q is properly
self-dual if and only if it covers P ˘ Pı and Q ˘ Qı , and it is self-Petrie if and
only if it covers P ˘P� and Q ˘Q� .

We now give the main theorem of this section.

Theorem 1. Let P and Q be chiral or directly regular n-polytopes, and let ' 2
Aut.W Cn / have finite order. Suppose P ˘ Q is internally '-invariant. Then there
is a natural epimorphism from � C.P/ ˘ � C.Q/ to � C.P/ ˘ � C.P'/, and it
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restricts to an epimorphism from X.QjP/ to X'.P'/ D X.P'jP/. Similarly,
there is a natural epimorphism from � C.P/ ˘ � C.Q/ to � C.Q/ ˘ � C.Q'/ that
restricts to an epimorphism from X.PjQ/ to X'.Q'/ D X.Q' jQ/.
Proof. Let � C.P/ D W Cn =M and � C.Q/ D W Cn =K . By Lemma 1, since
P ˘Q is internally '-invariant, it covers P˘' , which covers P ˘P' . Therefore,
� C.P/ ˘ � C.Q/ naturally covers � C.P/ ˘ � C.P'/. Since

� C.P/ ˘ � C.Q/ D W Cn =.M \K/

and

� C.P/ ˘ � C.P'/ D W Cn =.M \ '.M//;

this means that M \ K � M \ '.M/. Thus, the group M=.M \ K/ naturally
coversM=.M \ '.M//. By Proposition 3, the former is the subgroup X.QjP/ of
� C.P/˘� C.Q/, and the latter is the subgroupX.P'jP/ of � C.P/˘� C.P'/.
The result then follows by symmetry.

Corollary 4. Let P and Q be finite chiral or directly regular n-polytopes, and let
' 2 Aut.W Cn / have finite order. If P ˘Q is internally '-invariant, then jX'.P/j
divides jX.QjP/j and jX'.Q/j divides jX.PjQ/j.
Corollary 5. Let P and Q be chiral or directly regular n-polytopes, and let ' 2
Aut.W Cn / have finite order. Suppose that P has infinite '-variance group X'.P/

and that Q is finite. Then P ˘ Q is internally '-variant (that is, not internally
'-invariant).

Proof. Since X.QjP/ is isomorphic to a subgroup of � C.Q/, it must be finite.
Then there is no epimorphism from the finite group X.QjP/ to the infinite group
X'.P

'/ ' X'.P/, and thus by Theorem 1, P ˘Q must be internally '-variant.

Corollary 6. Let P and Q be chiral or directly regular n-polytopes, and let ' 2
Aut.W Cn / have finite order. Suppose P is internally '-variant and that Q has a
rotation group � C.Q/ that is simple. If X'.P/ is not isomorphic to � C.Q/, then
P ˘Q is internally '-variant.

Proof. Theorem 1 says that if P˘Q is internally '-invariant, thenX.QjP/ covers
X'.P'/. Now, since P is internally '-variant, X'.P'/ is nontrivial, and since
� C.Q/ is simple, the normal subgroup X.QjP/ of � C.Q/ is either trivial or the
whole group � C.Q/. The only way forX.QjP/ to coverX'.P'/ is forX.QjP/

to be � C.Q/, and then the only nontrivial group it covers is itself. Therefore, if
X'.P/ (and thus X'.P'/) is not isomorphic to � C.Q/, then X.QjP/ cannot
coverX'.P'/, and the mix P ˘Q is internally '-variant.

We see that there are several simple tests that we can apply to determine whether
P ˘ Q is internally '-invariant. We would like to extend the results to the mix
of three or more polytopes. In order to do that, however, we need to know more
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about the size of X'.P ˘ Q/. The following results are an easy generalization of
Lemma 5.5 and Remark 5.1 in [8].

Proposition 14. Let P and Q be chiral or directly regular n-polytopes, and let
' 2 Aut.W Cn / have finite order. Then X'.P ˘Q/ is isomorphic to a subgroup of
X'.P/ �X'.Q/.
Proposition 15. Let P and Q be chiral or directly regular n-polytopes, and let
' 2 Aut.W Cn / have finite order. Suppose that Q is internally '-invariant. Then
X'.P ˘Q/ is a normal subgroup of X'.P/.

Next we generalize Corollary 4 to find a lower bound for jX'.P ˘Q/j.
Theorem 2. Let P and Q be finite chiral or directly regular n-polytopes, and
let ' 2 Aut.W Cn / have finite order. Then jX'.P ˘ Q/j is an integer multiple of
jX'.P/j=jX.QjP/j.
Proof. Since

P ˘Q ˘P' ˘Q' D .P ˘Q/ ˘ .P ˘Q/' ;

the latter covers P ˘P' . Therefore, j� C.P/˘� C.P'/j divides j� C.P ˘Q/˘
� C..P ˘Q/'/j. By Proposition 4, the former has size j� C.P/j � jX'.P/j, while
the latter has size

j� C.P ˘Q/j � jX'.P ˘Q/j D j� C.P/j � jX.QjP/j � jX'.P ˘Q/j:

Therefore, jX'.P/j divides jX.QjP/j � jX'.P ˘ Q/j, and thus jX'.P ˘Q/j is
an integer multiple of jX'.P/j=jX.QjP/j.

Thus we see that, for instance, if P has a large '-variance group X'.P/ and if
Q is comparatively small (which forces X.QjP/ to be small), then X'.P ˘Q/ is
still large.

A careful refinement lets us make a similar statement about infinite '-variance
groups:

Theorem 3. Let P and Q be chiral or directly regular n-polytopes, and let ' 2
Aut.W Cn / have finite order. IfX.QjP/ is finite andX'.P/ is infinite, then jX'.P˘
Q/j is infinite.

Proof. Consider the commutative diagram below, where the maps are all the natural
epimorphisms:

� C.P ˘P' ˘Q ˘Q'/
f1

��

f2

��

� C.P ˘P'/

g1

��

� C.P ˘Q/
g2

�� � C.P/
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Then ker.g1ıf1/ D ker.g2ıf2/. SinceX'.P/ D kerg1 is infinite by assumption, it
follows that ker.g1 ıf1/ is infinite. Therefore, ker.g2 ıf2/ is infinite, and thus kerg2
and kerf2 cannot both be finite. Now, kerf2 D X'.P˘Q/ and kerg2 D X.QjP/.
Since X.QjP/ is finite by assumption, it follows thatX'.P ˘Q/must be infinite.

It is sometimes possible to fully determine X'.P ˘Q/:

Theorem 4. Let P and Q be finite chiral or directly regular n-polytopes, and let
' 2 Aut.W Cn / have finite order. Suppose that P is internally '-variant, thatX'.P/

is simple, and that Q is internally '-invariant. If jX'.P/j does not divide j� C.Q/j,
then X'.P ˘Q/ D X'.P/.

Proof. Since jX'.P/j does not divide j� C.Q/j, the mix P ˘ Q is internally '-
variant, by Corollary 4. Then by Proposition 15, X'.P ˘Q/ is a nontrivial normal
subgroup of the simple groupX'.P/. Therefore,X'.P ˘Q/ D X'.P/.

Now we will consider the interaction between two automorphisms ' and  
of W Cn .

Theorem 5. Let P be a finite chiral or directly regular n-polytope, and let '; 2
Aut.W Cn / have finite order. If P ˘ P is internally '-invariant, then jX'.P/j
divides jX .P/j.
Proof. Apply Corollary 4 with Q D P .

Corollary 7. Let P be a finite chiral n-polytope, and suppose that jX.P/j (that
is, jX	.P/j) does not divide jXı.P/j. Then P ˘Pı is a chiral pre-polytope.

For example, let P D ff4; 4g.1;2/; f4; 4g.4;2/g, a locally toroidal chiral polytope
with j� C.P/j D 480. Then a calculation with GAP [19] shows that jX.P/j D 60

and jXı.P/j D 4. Therefore, by Corollary 7, P ˘Pı is a chiral pre-polytope.
Corollary 7 is essentially a restatement of [3, Thm. 5.2], and it highlights one of

the principal uses of Theorem 5; namely, constructing chiral polytopes with certain
external symmetries. Similar methods could be used to construct polyhedra P such
that P D P�ı but where P is neither self-dual or self-Petrie; see [13] for some
work on constructing such polyhedra.

Finally, we note that the methods explored here could be somewhat more
generalized by working with quotients of groups other than Wn and W Cn . For
example, given a polyhedronP of type fp; qg, the group � .P/ can be represented
as a quotient of the Coxeter group Œp; q�, or of Œp;1�. These groups provide new
automorphisms thatWn lacks, and would be a further source of external symmetries.
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10. Hubard, I., Orbanić, A., Ivić Weiss, A.: Monodromy groups and self-invariance. Canad. J.

Math. 61(6), 1300–1324 (2009). MR 2588424 (2011a:52032)
11. Hubard, I., Weiss, A.I.: Self-duality of chiral polytopes. J. Comb. Theory Ser. A 111(1),

128–136 (2005). MR 2144859 (2006b:52011)
12. Jones, G.A., Thornton, J.S.: Operations on maps, and outer automorphisms. J. Comb. Theory

Ser. B 35(2), 93–103 (1983). MR 733017 (85m:05036)
13. Jones, G.A., Poulton, A.: Maps admitting trialities but not dualities. Eur. J. Comb. 31(7),

1805–1818 (2010). MR 2673020 (2011m:20004)
14. Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer, New York

(2002). MR 1878556 (2003e:00003)
15. McMullen, P., Schulte, E.: Abstract regular polytopes. Encyclopedia of Mathematics and

Its Applications, vol. 92. Cambridge University Press, Cambridge (2002). MR 1965665
(2004a:52020)

16. McMullen, P., Schulte, E.: The mix of a regular polytope with a face. Ann. Comb. 6(1), 77–86
(2002). MR 1923089 (2003h:52012)

17. Richter, R.B., Širán, J., Wang, Y.: Self-dual and self-petrie-dual regular maps. J. Graph Theory
69(2), 152–159 (2012)

18. Schulte, E., Weiss, A.I.: Chiral polytopes. Applied Geometry and Discrete Mathemat-
ics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4,
pp. 493–516. American Mathematical Society, Providence (1991). MR 1116373 (92f:51018)

19. The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.4; 2014.
(http://www.gap-system.org)

20. Wilson, S.E.: Parallel products in groups and maps. J. Algebra 167(3), 539–546 (1994). MR
1287058 (95d:20067)



Mobility in Symmetry-Regular Bar-and-Joint
Frameworks

P.W. Fowler, S.D. Guest, and B. Schulze

Abstract In a symmetry-regular bar-and-joint framework of given point-group
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metry elements. The symmetry-extended form of Maxwell’s Rule is applied to
this simplest type of framework and is used to derive counts within irreducible
representations for infinitesimal mechanisms and states of self stress. In partic-
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1 Introduction

In 1864, James Clerk Maxwell published a counting rule that set out a necessary
condition for a bar-and-joint framework to possess static and kinematic determinacy
[22]. In the modern form due to Pellegrino and Calladine [23], the rule is

m � s D 3j � b � 6; (1)

wherem is the number of mechanisms, s the number of states of self stress, b is the
number of bars and j the number of joints in the framework. The form (1) applies to
a free-standing three-dimensional framework, but is easily altered for frameworks
attached to fixed supports and/or frameworks with other dimensionality.

A symmetry-extended form of the rule has been stated by Fowler and Guest [6]
in terms of point-group representations. The aim was to incorporate information not
only on numbers of structural components and motifs, but also on the symmetries
spanned by them in the point group of the framework, G . In the language of point-
group representations, the Maxwell Rule (1) becomes

� .m/ � � .s/ D � .j / � �T � � .b/� �T � �R; (2)

where each � is the vector (or ordered set) of the traces of the corresponding
representation matrices. Each such � is known in applied group theory as a
representation of G [3], or in mathematical group theory as a character [17]. In
this paper, the term character is reserved to denote an entry of a representation, i.e.,
the trace of a representation matrix. � .m/, � .s/, � .j / and � .b/ are respectively
the representations of mechanisms and states of self stress, and permutation
representations of joints and bars. �T and �R are representations of the rigid-body
translations and rotations. An equivalent statement in terms of the behaviour of the
different objects under individual symmetry operations S is

	m.S/� 	s.S/ D 	j .S/	T .S/� 	b.S/� 	T .S/ � 	R.S/; (3)

where the various 	 denote characters (i.e., traces of representation matrices) under
operation S . For a permutation representation of a set of structureless objects, the
character 	.S/ is the number of objects left unshifted by S . For other types of
object, the effects of the operation on signs and phases of the object must be taken
into account. Techniques for calculation and manipulation of representations are
described in many chemistry and physics texts, e.g., Bishop [3], and comprehensive
sets of character tables are available [1, 2].

Equations (2) and (3) deal with the full set of mechanisms and states of self stress,
and lead to a larger set of necessary conditions, row by row or column by column of
the character table, which can often lead to the detection of mechanisms, states of
self stress, or both, that may have escaped the pure counting approach embodied in
(1) [5,7–11,13,14,18–21,25,26]. However, it has also proved fruitful in the study of,
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for example, protein mobility, to confine attention to mechanisms that are totally
symmetric within the point group of the framework [27]. In such large systems, few
if any structural elements occupy positions of non-trivial site symmetry, and useful
global conclusions can be drawn from the study of frameworks under the restriction
that all bars and joints are in general position. These restrictions, in particular the
requirement that joints be in general position, also facilitate the construction of orbit
rigidity matrices [27] with rows and columns indexed by the orbits of bars and
joints, respectively, leading to practical and theoretical advantages for prediction of
mechanisms and states of self stress belonging to given irreducible representations.

The present note shows how this restriction to components in general positions,
when applied to the symmetry-extended Maxwell Rule (2), leads to general
consequences for the distributions of mechanisms and states of self stress across
the symmetries available within the point group.

2 Mobility of a Symmetry-Regular Framework

We call a bar-and-joint framework symmetry-regular if all joints and bars lie in
general position with respect to the symmetry elements of the point group G that
fixes the framework as a whole. In other words, no joint or bar in a symmetry-
regular framework lies on any symmetry element of G , and all joints and bars fall
into (typically multiple) sets of equivalent objects permuted by all jG j operations of
G . These sets are regular orbits [24] of G . If the framework has j joints and b bars,
then

j D j0jG j; (4)

b D b0jG j; (5)

where j0 and b0 are the respective numbers of regular orbits of joints and bars,
respectively. Realisation of some point groups requires the presence of multiple
orbits and hence b0Cj0 > 1 [16], but this condition is in fact trivially satisfied for the
symmetry-regular frameworks of physical interest. The permutation representation
of any single regular orbit of objects is �reg, which has character 	reg.E/ D jG j
under the identity and 	reg.S/ D 0 under all other operations. For all but the trivial
point group G D C1, �reg is reducible, and is the sum

�reg D
X

i

gi�i ; (6)

where the summation runs over all the irreducible representations of the group,
and gi is the dimension of irreducible representation �i , i.e., 	i .E/. Thus, �reg

contains one copy each of representations of types A and B , two of those of type E
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(or only one if E is a separably degenerate representation in an Abelian point group
with complex characters), and three, four and five for those of types T , G and H ,
respectively [3, 24].

From the expression for 	reg.S/, it is clear that the product of �reg with any
reducible representation � is simply g�reg, where g is the dimension of � (equal to
	.E/ for � ).

For symmetry-regular frameworks, we have

� .j / D j0�reg; (7)

� .b/ D b0�reg; (8)

and hence the symmetry-extended Maxwell Rule (2) reduces to

� .m/ � � .s/ D .3j0 � b0/�reg � �T � �R: (9)

Three cases can be distinguished, according to the mobility m � s computed with
the scalar counting version of the Maxwell Rule. A symmetry-regular framework
may have:

Case (i) 3j0 � b0 < 0, and hence (by Eqs. (1), (4) and (5))

m � s D 3j � b � 6 D .3j0 � b0/jG j � 6 < �6I

Case (ii) 3j0 � b0 D 0, and hence

m� s D 3j � b � 6 D �6I

Case (iii) 3j0 � b0 > 0, and hence

m � s D 3j � b � 6 D .3j0 � b0/jG j � 6 > �6:

In Case (i), j.3j0�b0/jjG jC6 states of self stress are detectable by symmetry. Since
3j0 � b0 < 0, it follows from Eqs. (6) and (9) that there are at least gi states of self
stress for each irreducible representation �i , augmented by a further six states of self
stress that match the symmetries of the translations and rotations in the point group.
Thus, every irreducible representation of the point group occurs as the symmetry of
a state of self stress in this case.

In Case (ii), Eq. (9) becomes� .m/�� .s/ D ��T ��R, and hence the only states of
self stress detectable by symmetry are six that match the translations and rotations
in the point group, and again no mechanisms are detectable by symmetry counting
alone.

Example 1. Consider the Case-(ii) symmetry-regular framework with point group
C2 depicted in Fig. 1. This framework is a ring of four edge-sharing tetrahedra with
four additional bars which correspond to the four diagonals of the cube formed by
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C2
Fig. 1 A symmetry-regular
framework with point
group C2

the eight vertices. For this framework, the scalar counting version of the Maxwell
Rule detects six states of self stress, because 3j � 6 � b D 3 � 8 � 6 � 24 D �6.
The character table for the group C2 is

C2 E C2 Symmetry of rigid motions

A 1 1 z, Rz

B 1 �1 x, y, Rx , Ry

So, since j0 D 4 and b0 D 12, we have 3j0 � b0 D 0, and Eq. (9) becomes

� .m/ � � .s/ D ��T � �R D �.AC 2B/� .AC 2B/ D �2A� 4B:

Thus, there exist two states of self stress of symmetry A (fully symmetric self
stresses) and four states of self stress of symmetry B (anti-symmetric self stresses).
In particular, we detect a self stress for each irreducible representation of the group.
For frameworks satisfying the condition of Case (ii), this is not true in general
(since for certain point groups, �T C �R does not contain each of the irreducible
representations of the group [3]).

In Case (iii), the precise prediction for the mobility depends on the numerical value
of m � s and on the point group.

If an irreducible representation �i has a positive weight on the LHS of Eq. (9),
then every framework which is symmetric with the given group has an infinitesimal
motion of symmetry �i . Clearly, if the infinitesimal motion is totally symmetric
(i.e., if �i is the trivial irreducible representation which assigns the scalar 1 to
each symmetry operation of the group), then it also extends to a finite symmetry-
preserving mechanism, provided that the framework is ‘generic’ modulo the given
symmetry constraints (or equivalently, if the orbit rigidity matrix of the framework
has maximal rank). See Schulze [26] and Schulze and Whiteley [27] for details.
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Similarly, an infinitesimal motion which is symmetric with respect to �i , where�i is
not the totally symmetric irreducible representation, extends to a finite mechanism,
provided that the framework is at a ‘regular point’ for the algebraic variety of all �i -
symmetric configurations (see again Schulze [26] for details). Such a mechanism
preserves the sub-symmetry described by the kernel of the representation �i [see
13, 26].

While it is in general difficult to check whether a framework is at a regular point
for a given (not-totally-symmetric) irreducible representation �i , there exist some
special situations, where the presence of a finite mechanism can easily be deduced
from the existence of an infinitesimal motion of symmetry �i . As shown in Guest
and Fowler [13], a �i -symmetric motion will be finite if, in the point group of the
undisplaced framework, there is neither a �i -symmetric nor a totally symmetric self
stress. This will be the case in many of the following examples, which do not possess
a state of self stress.

As noted above, if all irreducible representations have positive weight on the
LHS of (9), then there are symmetry-detectable mechanisms of all symmetries; if,
however, some have zero or negative weight, there are gaps in the symmetries of
the detectable mechanisms, and for those irreducible representations with negative
weights, there are corresponding symmetry-detectable states of self stress. As the
representation of the rigid-body motions, �T C �R, has fixed dimension 6, the
detailed prediction for Case (iii) depends on the size and composition of �reg in
G . Defining

�rigid D �T C �R D
X

i

ni�i ; (10)

it is convenient to sub-divide Case (iii) according to the values in the sets fni g
vs fgi g, as follows. In what follows, we will use ‘detectable’ as a synonym for
‘detectable by symmetry’. The three sub-cases are:

Sub-case (iii)(a) 3j0 � b0 > 0 and �rigid is an exact multiple of �reg, i.e., �rigid D
k�reg, k 2 N; k 
 1;

Sub-case (iii)(b) 3j0 � b0 > 0 and �rigid is contained in �reg, i.e., ni � gi for all
irreducible representations �i ;

Sub-case (iii)(c) 3j0 � b0 > 0 and �rigid is contained in k�reg, i.e., ni � kgi for
all i (where k D 2 or 4).

We next consider each case in turn.

Sub-case (iii)(a): Since �rigid is an exact multiple of �reg, it follows from the
dimensions of the representations that �rigid D .6=jG j/�reg, with jG j � 6. The
mobility representation obeys

� .m/ � � .s/ D .3j0 � b0 � 6

jG j /�reg; (11)



Mobility in Symmetry-Regular Bar-and-Joint Frameworks 123

Fig. 2 An example of an
isostatic framework with
reflection symmetry (the
mirror plane is indicated by a
dotted line). This
Cs-symmetric framework is
non-planar. Larger and
smaller circles indicate joints
that lie respectively in front
of, and behind, the median
plane of the framework
parallel with the plane of the
paper

with jG j D 1; 2; 3; 6. The groups of this type are: C1 with jG j D 1, Cs and Ci , with
jG j D 2, C3 with jG j D 3, and C3v, C3h and S6 with jG j D 6.

For 3j0 � b0 < 6=jG j (and jG j < 6), there are detectable states of self stress
spanning all symmetries. If 3j0 � b0 D 6=jG j, symmetry detects neither states of
self stress nor mechanisms. If 3j0 � b0 > 6=jG j, symmetry detects mechanisms in
all irreducible representations.

In particular, note that detectable states of self stress occur only for the groups
C1;Cs;Ci and C3.

Example 2. Consider the symmetry-regular Cs-symmetric framework with j0 D 3

illustrated in Fig. 2. Here, b0 has been chosen as 6, to achieve the isostatic count of
3j0 � b0 � 3 D 0. Successive removal of orbits of bars, one orbit at a time, adds
two mechanisms at each stage. By Eq. (11), the extra pair of mechanisms spans
�reg D A0 C A00, i.e., one of the extra mechanisms is symmetric and the other is
anti-symmetric with respect to the mirror.

Sub-case (iii)(b): If the inequalities are strict for all i , (i.e., if ni < gi for all i ) then
it follows from Eq. (9) that the framework has detectable mechanisms belonging to
every irreducible representation of the group. The groups of this type are: T , Td,
Th, O , Oh, I , Ih.

Example 3. Consider a realisation of the cuboctahedron with point group symmetry
T — the group of rotational symmetries of the regular tetrahedron (see also Fig. 3).
This framework satisfies the condition of Case (iii) since 3j0 � b0 D 3 � 1 � 2 D
1 > 0. Moreover, from the character table of the group T

T E 4C3 4C2
3 3C2 Symmetry of rigid motions

A 1 1 1 1
E 2 �1 �1 2
T 3 0 0 �1 x, y, z, Rx , Ry , Rz

it follows that �reg � �rigid D .ACE C 3T /� 2T D ACE C T . Thus, we detect
a mechanism for each of the irreducible representations of T , one of symmetry
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Fig. 3 A bar-and-joint
framework connected as the
skeleton of the cuboctahedron

Table 1 List of groups with
ni D gi , and the list of
missing irreducible
representations in � .m/ for
.3j0 � b0/ D 1

Point group Missing irreducible representations

Cnv, with n � 4 A1, A2, E.1/
Cnh, with n � 4 A0=Ag , A00=Au, E 0=Eg , E 00=Eu

D2h all except Ag and Au

Dnh, with n � 3 A0

2=A2g , A00

2 =A2u

D2d A2, B2 and E
Dnd, with n � 3 A2.g/, A2.u/=B2
S4n, with n > 1 A, B , E1, E.n=2�1/
S4n+2, with n � 1 Ag , Au, E.1/g , E.1/u

A, two of symmetry E , and three of symmetry T . Each of these mechanisms
is finite since the framework clearly does not have any self stress (it is obtained
from a triangulated convex polyhedron, which is isostatic by Cauchy’s theorem, by
removing six bars).

If, instead, ni D gi for some i , there are systematic absences in the list of
detectable mechanisms for .3j0 � b0/ D 1: where ni D gi , �i is missing from
the list. For .3j0 � b0/ 
 2, however, all irreducible representations are present in
� .m/. The groups of this type, and the irreducible representations missing from
� .m/ are presented in Table 1.1

Example 4. The framework in Fig. 4 is symmetry-regular with respect to the
symmetry group C4h and satisfies j0 D 1 and b0 D 2, so that .3j0 � b0/ D 1.
(Note that the point group of the framework is actually the group D4h. However, the
framework is not symmetry-regular with respect to D4h.) Since �reg D Ag C Bg C
EgCAuCBuCEu and �rigid D AgCEgCAuCEu, we detect two motions, one of
symmetry Bg (which preserves the sub-group C2h) and one of symmetry Bu (which
preserves the sub-group S4). Both of these mechanisms can be shown to be finite,
although the framework also has a self stress (and hence an additional infinitesimal
motion).

1Many published character tables for S8 correctly assign � .x; y/ toE1 but also incorrectly assign
� .Rx; Ry/ to E1 instead of to E3 [28]. The problem extends to some tables for S12, S16 and S20

[1], where the correct assignment is in fact � .Rx; Ry/ D E.n=2�1/.
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C4

Fig. 4 A framework which is symmetry-regular with respect to C4h

Fig. 5 An example of an over-constrained framework with C2v symmetry based on a non-planar
realisation of the complete bipartite graphK4;4. As in Fig. 2, dotted lines indicate mirror planes and
larger and smaller circles indicate joints that lie respectively in front of, and behind, the median
plane of the framework parallel with the plane of the paper

Sub-case (iii)(c): The groups with ni � kgi for all i (where k D 2 or 4) are: C2

(k D 4), C2v (k D 2), C2h (k D 2), Dn with n 
 2 (k D 2), S4 (k D 2), and Cn,
with n 
 4 (k D 2).

When ni D kgi , the representation �i is the symmetry of a detectable state of
self stress, a detectable mechanism, or absent from both lists, depending on whether
.3j0 � b0/ < k, .3j0 � b0/ > k, or .3j0 � b0/ D k, respectively.

When ni D .k=2/gi , �i is either the symmetry of a detectable mechanism, or is
absent from the lists of both mechanisms and self stresses, depending on whether
.3j0 � b0/ > k=2 or .3j0 � b0/ D k=2.

In the groups Cn, with n 
 4, ni D 0 for all but A and E.1/. Hence for these
groups, all irreducible representations, except A and E.1/, are present in the list of
detectable mechanisms for all positive .3j0 � b0/.
Example 5. The symmetry-regular framework with C2v symmetry shown in Fig. 5
is a three-dimensional realisation of the complete bipartite graph, K4;4. When
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considered in the 3D setting, this framework is underbraced by two bars, and hence
has two finite mechanisms if realised generically without symmetry. For C2v, we
have k D 2, �reg D A1 C A2 C B1 C B2, and �rigid D A1 C A2 C 2B1 C 2B2, so
that

� .m/ � � .s/ D .3j0 � b0/�reg � �rigid

D .3j0 � b0 � 1/�reg � B1 � B2:

For the example shown, we have j0 D 2, b0 D 4 (and hence .3j0 � b0/ D 2 D
k). Thus, � .m/ � � .s/ D A1 C A2, i.e., the framework has two infinitesimal
mechanisms, one totally symmetric and one preserving only the C2 rotational
symmetry. Except at specific singular geometric configurations [27], the framework
does not have a state of self stress, and hence these infinitesimal mechanisms
are in fact finite. Projected into a horizontal plane, the A1 motion corresponds
to the Bottema mechanism [4]. The A2 motion has quadrupolar character, and
displacement along the A2 path reduces the overall symmetry to C2, where k D 4,
�reg D AC B , and �rigid D 2AC 4B , so that

� .m/� � .s/ D .3j0 � b0 � 2/�reg � 2B;

where now j0 D 4, b0 D 8, and .3j0 � b0/ D 4 D k, as jG j has fallen to 2. Hence,
in the lower symmetry group there are two totally symmetric mechanisms.

3 Restriction to the Plane

The discussion has concentrated on the Maxwell Rule for bar-and-joint frameworks
in 3D, but similar conclusions are readily obtained for frameworks restricted to 2D.

The 2D restriction is made by deletion of terms from �T and �R. The counting
rule, symmetry theorem and the theorem for symmetry-regular frameworks equiva-
lent to (1), (2) and (9) are then:

m � s D 2j � b � 3; (12)

� .m/ � � .s/ D � .j / � �T .x; y/ � � .b/� �T .x; y/ � �R.xy/; (13)

� .m/ � � .s/ D .2j0 � b0/�reg � �T .x; y/ � �R.xy/; (14)

where the framework is supposed to be confined to the xy plane, �T .x; y/ is the
representation of the two translations in the framework plane, and �R.xy/ is the
representation of the rotation in that plane.
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In 2D, the possible point groups are Cn and Cnv (with C1v � Cs). It follows
from the character tables of these groups that the representations of the rigid-body
motions in the xy plane have the following form:

2D point group �rigid.x; y/

C1 3A
C2 AC 2B
Cn, n � 3 AC E(1)

Cs A0 C 2A00

C2v A2 C B1 C B2
Cnv, n � 3 A2 C E(1)

In direct analogy with the 3D mobility analysis, the 2D analysis falls into the
following three cases:

Case (i) 2j0 � b0 < 0, and hence

m � s D 2j � b � 3 D .2j0 � b0/jG j � 3 < �3I

Case (ii) 2j0 � b0 D 0, and hence

m � s D 2j � b � 3 D �3I

Case (iii) 2j0 � b0 > 0, and hence

m � s D 2j � b � 3 D .2j0 � b0/jG j � 3 > �3:

As in 3D, mechanisms can be detected only in Case (iii). Note that for the
groups C1 and C3, �rigid.x; y/ is an exact multiple of �reg (for C3, we even have
�rigid.x; y/ D �reg). The groups for which �rigid.x; y/ is contained in �reg are Cn,
n > 3, and Cnv, n 
 2, and the groups for which �rigid.x; y/ is contained in k�reg,
where k D 2, are C2 and Cs .

4 Extension to Body-and-Joint Frameworks

Similar reasoning can be applied to the analysis of mobility of body-and-joint
frameworks in 3D, where the joints may be of any type, e.g. revolute hinges, screw
joints or spherical joints. The mobility criterion for a linkage consisting of v bodies
connected by e joints, where joint i permits fi relative freedoms, is [15]

m � s D 6.v � 1/� 6e C
eX

iD1
fi : (15)



128 P.W. Fowler et al.

C2
Fig. 6 A schematic view of a
6-loop, adapted from Guest
and Fowler [14]. Six curved
bodies are connected by six
in-line revolute joints, each of
which allows a single,
twisting, degree of freedom

The symmetry-extended version of the mobility rule is then [12]

� .m/�� .s/ D � .v; C /�.�TC�R/��T ��R��k.e; C /�.�TC�R/C�f; (16)

where the notation is motivated by the association of the bodies with the vertices
of a ‘contact polyhedron’ C and the hinges with the edges of that polyhedron.
�k.e; C / is the representation of a set of vectors along the edges of C , and �f is
the representation of the total set of freedoms allowed by the joints. Calculation of
�f requires specification of the types of hinges, but is straightforwardly calculated
for each type.

In the case of a symmetry-regular body-and-joint framework with a contact
polyhedron belonging to point group G , the bodies and hinges are all in general
position, and both � .v; C / and �k.e; C / consist of sets of copies of the regular
representation. The hinges may admit different types and numbers of freedoms, but
again �f consists of a number of complete copies of the regular representation. The
form of (16) applicable to symmetry-regular frameworks is therefore

� .m/ � � .s/ D .6v0 � 6e0 C F0/ � �reg � �T � �R; (17)

where the orbit counts are v0 D v=jG j for bodies, e0 D e=jG j for joints, and F0 for
total freedoms, where

F0 D
5X

iD1
i f0;i (18)

and f0;i is the number of orbits of hinges that admit i freedoms. Given this equation,
the analysis follows the same course as for pin-jointed frameworks, with 6.v0�e0/C
F0 playing the role of 3j0 � b0 in the arguments.

Example 6. Consider the body-and-joint framework shown in Fig. 6, which is a
representative of the twist-boat conformation of cyclohexane, or the 6-loop [14].
The point-group symmetry is C2, where �T � �R D 2A C 4B and all bodies
and joints lie in general position with respect to the C2 axis. We have 6 bodies,
6 joints and 6 freedoms spanning v0 D 3, e0 D 3 and F0 D 3 copies of the
regular representation A C B . Thus, the symmetry-extended mobility rule, (17),
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gives � .m/� � .s/ D .6v0 � 6e0C F0/� �reg � �T � �R D A�B . Hence, � .m/
is �reg minus the B representation, and � .m/ is �reg minus the A representation.
Simple scalar counting is consistent with an isostatic framework, but symmetry has
revealed a totally symmetric (and hence finite) mechanism, and an antisymmetric
state of self stress.
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Generic Global Rigidity in Complex
and Pseudo-Euclidean Spaces

Steven J. Gortler and Dylan P. Thurston

Abstract In this paper we study the property of generic global rigidity for frame-
works of graphs embedded in d-dimensional complex space and in a d-dimensional
pseudo-Euclidean space (Rd with a metric of indefinite signature). We show that a
graph is generically globally rigid in Euclidean space iff it is generically globally
rigid in a complex or pseudo-Euclidean space. We also establish that global rigidity
is always a generic property of a graph in complex space, and give a sufficient
condition for it to be a generic property in a pseudo-Euclidean space. Extensions to
hyperbolic space are also discussed.

Keywords Metric geometry

Subject Classifications: 52C25, 51M10, 05C62

1 Introduction

The property of generic global rigidity of a graph in d-dimensional Euclidean space
has recently been fully characterized [4, 7]. It is quite natural to study this property
in other spaces as well. For example, recent work of Owen and Jackson [8] has
studied the number of equivalent realizations of frameworks in C
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we study the property of generic global rigidity of graphs embedded in C
d as well

as graphs embedded in a pseudo Euclidean space (Rd equipped with an indefinite
metric signature).

We show that a graph � is generically globally rigid (GGR) in d-dimensional
Euclidean space iff � is GGR in d-dimensional complex space. Moreover, for any
metric signature, s, We show that a graph � is GGR in d-dimensional Euclidean
space iff � is GGR in d-dimensional real space under the signature s. Combining
this with results from [5] also allows us to equate this property with generic global
rigidity in hyperbolic space.

In the Euclidean and complex cases, global rigidity can be shown to be a generic
property: a given graph is either generically globally rigid, or generically globally
flexible. In the pseudo Euclidean (and equivalently the hyperbolic) case, though,
we do not know this to be true. In this paper we do establish that global rigidity in
pseudo Euclidean spaces is a generic property for graphs that contain a large enough
GGR subgraph (such as a d-simplex).

2 Initial Definitions

Definition 1. We equip R
d with pseudo Euclidean metric in order to measure

lengths. The metric is specified with a non negative integer s that determines how
many of its coordinate directions are subtracted from the total. The squared length
of a vector w is jwj2 WD �Ps

iD1 w2
i C

Pd
iDsC1 w2

i . We will use the symbol Sd

to denote the space R
d equipped with some fixed metric s. If s D 0, we have the

Euclidean metric and the space may be denoted E
d .

For complex space, The squared length of a vector w in C
d is jwj2 WD P

i w2
i .

Note here that we do not use conjugation, and thus vectors have complex squared
lengths. (The use of conjugation would essentially reduce d-dimensional complex
rigidity questions to 2d-dimensional Euclidean questions.)

Definition 2. A graph � is a set of v vertices V .� / and e edges E .� /, where
E .� / is a set of two element subsets of V .� /. We will typically drop the graph �
from this notation.

For F 2 fE;S;Cg, a configuration of the vertices V .� / of a graph in F
d is a

mapping p from V .� / to F
d . Let CFd .V / be the space of configurations in F

d .
For p 2 CFd .V /with u 2 V .� /, we write p.u/ 2 F

d for the image of u underp.
A framework � D .p; � / of a graph is the pair of a graph and a configuration

of its vertices. CFd .� / is the space of frameworks .p; � / with graph � and
configurations in F

d .
We may also write �.u/ for p.u/ where � D .p; � / is a framework of the

configuration p.

Definition 3. Two frameworks � and � in CFd .� / are equivalent if for all ft; ug 2
E we have j�.t/ � �.u/j2 D j�.t/ � �.u/j2.
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Definition 4. Two configurations p and q in CFd .V / are congruent if for all vertex
pairs, ft; ug, we have jp.t/ � p.u/j2 D jq.t/� q.u/j2.

Two configurations p and q in CFd .V / are strongly congruent if they are related
by a translation composed with an element of the orthogonal group of Fd .

Remark 1. In E
d, there is no difference between congruence and strong congruence.

In other spaces, though, there can be some subtle differences. For the simplest
example, in C

2, the vectors .0; 0/ and .i; 1/ both have zero length, but are not related
by a complex orthogonal transform. Such non-zero vectors with zero squared length
are called isotropic. Thus the framework made up of a single edge connecting a
vertex at the origin to a vertex at .i; 1/ is congruent to the framework with both
vertices at the origin, but the two frameworks are not strongly congruent.

Fortunately, these differences are easy to avoid; for example, congruence and
strong congruence coincide for points with a d-dimensional affine span. These
notions will also coincide when there are fewer than d C 1 points, as long as the
points are in affine general position. For more details, see Sect. 10.

We can now, finally, define global rigidity and flexibility.

Definition 5. A framework � 2 CFd .� / is globally rigid in F
d if, for any other

framework � 2 CFd .� / to which � is equivalent, we also have that � is congruent
to � . Otherwise we say that � is globally flexible in F

d .

Definition 6. A configuration p in CFd .V / is generic if the coordinates do
not satisfy any non-zero algebraic equation with rational coefficients. We call a
framework generic if its configuration is generic. (See Sect. 9 for more background
on (semi) algebraic sets and genericity.)

Definition 7. A graph � is generically globally rigid (resp. flexible) in F
d if all

generic frameworks in CFd .� / are globally rigid (resp. flexible). These properties
are abbreviated GGR and GGF.

Definition 8. A property is generic if, for every graph, either all generic frame-
works in CFd .� / have the property or none do. For instance, global rigidity in E

d

is a generic property of a graph [7]. So in this case, if a graph is not GGR, it must
be GGF.

3 Complex Generic Global Rigidity

Our main theorem in this section is

Theorem 1. A graph � is generically globally rigid in C
d iff it is generically

globally rigid in E
d .

Remark 2. This fully describes the generic situation for complex frameworks as it
is easy to see that generic global rigidity in C

d is a generic property of a graph.
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Recall that a complex algebraically constructible set is a finite Boolean
combination of complex algebraic sets. Also, an irreducible complex algebraic
set V cannot have two disjoint constructible subsets with the same dimension as V .

Chevalley’s theorem states that the image under a polynomial map of a complex
algebraically constructible set, all defined over Q, is also a complex algebraically
constructible set defined over Q [1, Theorem 1.22]. Chevalley’s theorem allows
one to apply elimination, effectively replacing all quantifiers in a Boolean-algebraic
expression with algebraic equations and Boolean set operations.

Now, let us assume � is locally rigid in C
d . We can partition CCd .� / such that

in each part, Pn, all of the frameworks have the same number, n, of equivalent
and non-congruent frameworks. In light of Chevalley’s theorem, each of these parts
is constructible. And exactly one of them, Pn0 , must be of full dimension. This
part contains all of the generic points and represents the generic behavior of the
framework. If n0 D 1 then the graph is GGR, while if n0 > 1 then it must be GGF.

3.1 ) of Theorem 1

The implication from Complex to Euclidean GGR follows almost directly from their
definitions. For this argument we model each Euclidean framework � inCEd .V / as a
Complex framework �C in CCd .V / that happens to have all purely real coordinates.
Clearly, for such configurations, the complex squared length measurement coincides
with the Euclidean metric on real configurations.

Proof. Let � be a generic framework in CEd .� / and let �C be its corresponding real
valued framework in CCd .� /. By our definitions, �C is also generic when thought
of as complex framework.

Since � is generically globally rigid in C
d , �C can have no equivalent and non-

congruent framework in CCd .� /, and thus it has no real valued, equivalent and
non-congruent framework in CCd .� /. Thus � has no equivalent and non-congruent
framework in CEd .� /.

3.2 ( of Theorem 1

For the other direction of Theorem 1, we start with a complex version of a theorem
by Connelly [4]:

Theorem 2. Let � be a generic framework in CCd .� /. If � has a complex
equilibrium stress matrix of rank v � d � 1, then � is generically globally rigid
in C

d .

Proof. The proof of the complex version of this theorem follows identically to
Connelly’s proof of the Euclidean version. In particular, the proof shows that any
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framework with the same complex squared edge lengths as � must be strongly
congruent, and thus congruent to it.

(The interested reader can see [4] for the definition of an equilibrium stress
matrix.)

Next, we recall a theorem from Gortler, Healy and Thurston [7]

Theorem 3. Let � be a generic framework in CEd .� / with at least d C 2 vertices.
If � does not have a real equilibrium stress matrix of rank v � d � 1, then �
is generically globally flexible in E

d . Moreover, there must be an even number of
noncongruent frameworks with the same squared edge lengths as � in E

d .

And now we can prove this direction of our Theorem.

Proof. From Theorem 2, if � is not generically globally rigid in C
d , there is no

generic framework in CCd .� / that has a complex equilibrium stress matrix of rank
v � d � 1. Thus there can be no real valued and generic framework in CCd .� / with
complex equilibrium stress matrix of rank v�d �1, and thus no generic framework
in CEd .� / with a complex or real equilibrium stress matrix of rank v � d � 1. Thus
from Theorem 3, � is generically globally flexible in E

d .

4 Pseudo Euclidean Generic Global Rigidity: Results

Our main theorem on pseudo Euclidean generic global rigidity is as follows:

Theorem 4. For any pseudo Euclidean space Sd, a graph � is generically globally
rigid in E

d iff it is generically globally rigid in S
d .

Unfortunately we do not know if generic global rigidity is a generic property
in S

d . It is conceivable that there are some graphs that are not GGR in S
d but that

do have some generic frameworks that are globally rigid in S
d . We leave this as an

open question. We do have the following partial result

Theorem 5. If a graph � is not GGR in S
d and it has a GGR subgraph �0 with

d C 1 or more vertices, then � must be GGF in S
d .

5 ) of Theorem 4

This argument is essentially identical to that of Sect. 3.1.

Definition 9. Given a pseudo Euclidean space S
d with signature s, we model each

configuration � 2 CSd .V / as a Complex configurations �C 2 CCd .V / that happens
to have the first s of its coordinates purely imaginary and the remaining d � s

of its coordinates purely real. We call this an s-signature, real valued complex
configuration. We will shorten this to simply an s-valued configuration.
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It is easy to verify that for such configurations, the complex squared length
measurement coincides with the metric on S

d .

And now we can prove this direction of our Theorem.

Proof. Let � be a generic framework in CSd .� /. We model this with �C, an s-valued
complex framework in CCd .� /.
�C must be a generic framework in CCd .� /. For suppose there is a non-zero

polynomial �C with rational coefficients, that vanishes on �C. Then there is a
polynomial � with coefficients in Q.i/ that vanishes on the real coordinates of �.
Let N� be the polynomial obtained by taking the conjugate of every coefficient in �,
and let  WD �  N�. Then  is non zero and vanishes on �. Since  is fixed by
conjugation, it has coefficients in Q. This polynomial would make � non generic,
leading to a contradiction.

Since � is generically globally rigid in E
d , from Theorem 1 it is also generically

globally rigid in C
d . Thus �C can have no equivalent and non-congruent framework

in CCd .� /, and thus it can have no s-valued, equivalent and non-congruent
framework inCCd .� /. Thus � can have no equivalent and non-congruent framework
in CSd .� /.

6 ( of Theorem 4

Remark 3. For this proof, we cannot apply the same reasoning as Sect. 3.2, as many
of the stress matrix arguments and conclusions from [7] simply do not carry over
to pseudo Euclidean spaces. Indeed, Jackson and Owen [8] have found a graph,
they call G3, that is GGF in E

2, but for which there is always an odd number
of equivalent realizations in 2-dimensional Minkowski space. Moreover, it is not
even clear that for general pseudo Euclidean spaces of dimension 3 or greater, the
“number of equivalent realizations mod 2” is even a generic property.

For this direction, we will show the contrapositive: namely, if there is a generic
Euclidean framework that is not globally rigid, then there must be a generic frame-
work in S

d that is not globally rigid. To do this, we will apply a basic construction by
Saliola and Whiteley (personal communication, 2012) that takes a pair of equivalent
Euclidean frameworks and produces a pair of equivalent frameworks in the desired
space CSd .� /. Whiteley refers to this recipe as a generalized Pogorelov map
(Whiteley, W., personal communication, 2012).

Definition 10. Let P be the map from pairs of frameworks in CEd .� / to pairs of
frameworks in CSd .� / defined as follows:

Step 1: Let � and � be two frameworks in E
d . Take their average to obtain a WD

�C�
2

. Take their difference to obtain f WD ���
2

.
Step 2: Let Qa be the framework in CSd .� / with the same (real) coordinates of a.

Let Qf be defined by negating the first s of the coordinates in f .
Step 3: Finally, set P.�; �/ WD . Q�; Q�/ where Q� WD QaC Qf and Q� WD Qa � Qf .



Generic Global Rigidity in Complex and Pseudo-Euclidean Spaces 137

The Pogorelov map is useful due to the following (Whiteley, W., personal
communication, 2012):

Theorem 6. Let � and � be two equivalent frameworks in CEd .� /. Then P.�; �/
are a pair of equivalent frameworks in CSd .� /.

Proof. Using the notation of Definition 10 we see the following.

Step 1: From the averaging principal [3], a must be infinitesimally flexible with
flex f .

Step 2: Qf must be an infinitesimal flex for Qa in CSd .� / [10].
Step 3: From the flex-antiflex principal [3] (also sometimes called the

de-averaging principal), Q� must be equivalent to Q� in CSd .� /.

Remark 4. It is, perhaps, interesting to note that in our case, the map has the very
simple form of “coordinate swapping”. In particular, it is an easy calculation to see
that Q� will be made up of the first s coordinates of � and the remaining coordinates
of � , while Q� will be made up of the first s coordinates of � and the remaining
coordinates of �. It is also an simple calculation to directly verify, without using
the averaging principle, that coordinate swapping will map pairs of equivalent
Euclidean frameworks to pairs of equivalent frameworks in CSd .� /.

Additionally, we can ensure that Q� is not congruent to Q� .

Lemma 1. Let � and � be two equivalent frameworks in CEd .� /. And let . Q�; Q�/ WD
P.�; �/. Then � and � are congruent in CEd .� / iff Q� and Q� are congruent in
CSd .� /.

Proof. Congruence between configurations is the same as equivalence between
complete graphs over these configurations. Thus this property must map across the
Pogorelov map (which does not depend on the edge set), and its inverse.

6.1 Genericity

The main (annoyingly) difficult technical issue left is to show that this construction
can create a generic framework in CSd .� / that is globally flexible. A priori, it is
conceivable that the image of the Pogorelov map, acting on all pairs of equivalent
and non-congruent Euclidean frameworks, can only produce pseudo Euclidean
configurations that lie on some subvariety of CSd .� /. In this section, we rule this
possibility out.

In this discussion, we will assume that � is generically locally rigid (otherwise
we are done), but that it is not GGR in E

d .

Definition 11. Let EC (‘E’ for ‘equivalent’) be the algebraic subset of CEd .� / �
CEd .� / consisting of pairs of equivalent tuples. Let CC (‘C’ for ‘congruent’) be the
algebraic subset of CEd .� / � CEd .� / consisting of pairs of congruent tuples. Let
�1 be the projection from a pair of frameworks onto its first factor.
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Definition 12. Since � is not GGR in E
d , dim.�1.ECnCC// D v  d and so EC

must have at least one irreducible componentE , with dim.�1.E// D vd and such
that it contains at least one tuple of non-congruent frameworks. We choose one such
component and call it E . As per Remark 8, E must be defined over some algebraic
extension of Q. Thus if e is generic in E , then �1.e/ is a generic framework in
CEd .� /.

Lemma 2. Let e WD .�; �/ 2 E be generic. Then � is not congruent to � .

Proof. Congruence is a relation that can be expressed with polynomials over Q.
By our assumptions on E , these polynomials do not vanish identically over E .

Lemma 3. The (real) dimension ofE is vdC�dC1
2

�

. Moreover, if .�; �/ is generic
in E , then for all �c in the congruence class Œ��, .�; �c/ must be in E .

Proof. We will pick a generic e D .�; �/ 2 E , and look at the dimension of the
fiber ��11 .�/ near this point e. (By considering only this neighborhood, we can
avoid dealing with any non-smooth points of E , and thus can view this as a smooth
map between manifolds.) The dimension of E must be the sum of the dimension of
the span of �1.E/, which is v  d , and the dimension of this fiber.

Since e is generic in E , � must be generic in CEd .� /. Thus, from Lemma 11
(below), � must be locally rigid and with non degenerate affine span. Thus its
congruence class has dimension

�
dC1
2

�

.
Since e is generic in E , from Lemma 24, all nearby points in EC must, in fact,

lie in E . In particular, for �c 2 Œ�� and close to � , the point .�; �c/ must be in E .
Thus the dimension of the fiber in E near e must be

�
dC1
2

�

. This gives us the desired
dimension.

Moreover, since E is algebraic, for any �c 2 Œ��, the point .�; �c/ must be in E .
This follows from the fact that the (Zariski) closure of a subset must be a subset of
the closure.

Corollary 1. Let �2 be the projection of a pair onto its second factor. The (real)
dimension of �2.E/ is v  d . And if e is generic in E , �2.e/ is generic in CEd .� /.

To study the behavior of P onE , we move our discussion over to complex space.

Definition 13. Let EC
C

be the algebraic subset of CCd .� / � CCd .� / consisting of
pairs of equivalent tuples. Let EC be any component of EC

C
that includes E . (This

can be done as the complexification of E must be irreducible – see Definition 28.)
From Corollary 2, below, we will also soon see that there is only one such
component.

Lemma 4. The (complex) dimension of EC is v  d C �
dC1
2

�

.

Proof. EC includes the complexification of E (see Definition 28), and so by
assumption, the complex dimension of �1.EC/ must be at least v  d , and thus
must be equal to v  d . We can then follow the proof of Lemma 3 to establish the
complex dimension of the generic �1 fibers of EC
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Corollary 2. EC is the complexification ofE . A generic point ofE is generic inEC.

Proof. By assumption, EC is irreducible and contains E . Moreover the complex
dimension of EC equals the real dimension of E . Thus EC cannot be larger
than the complexification of E . Genericity carries across complexification (see
Definition 28).

To study P , we will look at a complex Pogorelov map PC, that essentially
reproduces the behavior of P when restricted to real input. In particular, this map
will take real valued complex pairs, to s-valued complex pairs. We define PC as the
composition of some very simple maps.

Definition 14. LetHC, (a Haar like transform) be the invertible map from .�C; �C/,
a pair of frameworks in CCd .� /, to the pair . �CC�C

2
;
�C��C
2
/.

Let SC be the invertible map that takes .aC; fC/, a pair of frameworks in CCd .� /,
to the pair . QaC; QfC/, where the QaC is obtained from aC by multiplying its first s
coordinates by i , while QfC is obtained from fC by multiplying its first s coordinates
by �i .
H�1

C
. QaC; QfC/, the inverse Haar map, is simply . QaC C QfC; QaC � QfC/.

Given this, PC WD H�1
C

ı SC ıHC.
This complex Pogorelov map coincides with the real map described above.

In particular suppose � and � are in CEd .� /, and suppose �C and �C are the
corresponding real valued frameworks in CCd .� /. Let . Q�; Q�/ WD P.�; �/ and
. Q�C; Q�C/ WD PC.�C; �C/. Then Q�C and Q�C are the s-valued complex representations
of Q� and Q� .

Clearly PC maps EC
C

to itself. But a priori, it might map the component EC

to some other component of EC
C

, and this other component might project under
�1 and �2 onto a subvariety of (non generic) frameworks CCd .� /. Our goal will
be to show that this does not happen; instead EC maps to itself under PC. As this
map preservers genericity, and generic points of EC project under �1 to generic
frameworks in CCd .� /, we will then be done. (See Fig. 1.)

Definition 15. Let BC WD .HC.EC//, (‘B’ for ‘bundles’ of flexes over frame-
works). Since BC is isomorphic to EC, it too must be an algebraic set. For any
.aC; fC/ 2 BC, from the averaging principle, fC is an infinitesimal flex for aC. BC

is irreducible (Lemma 22). And if eC is generic in EC, HC.eC/ (from Lemma 25)
must be generic in BC.

Lemma 5. Let bC 2 BC be generic. Let b0
C

WD .a0
C
; f 0

C
/ be a nearby tuple in

CCd .� / � CCd .� / such that f 0
C

is an infinitesimal flex for a0
C

. Then b0
C
2 BC.

Proof. The tuple, eC WD H�1
C
.bC/, is generic in E . From the flex/antiflex principal,

.�0
C
; � 0

C
/ WD e0

C
WD H�1

C
.a0

C
; f 0

C
/must be an equivalent pair of frameworks and thus

in EC
C

, and e0
C

must be near eC. From Lemma 24, all nearby points in EC
C

must, in
fact, lie in EC. Thus e0

C
must be inEC, and from our definitions,HC.e

0
C
/ D b0

C
must

be in BC.
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Fig. 1 Left: The space of pairs of complex frameworks. (All C subscripts are dropped for clarity.)
The locus of equivalent pairs, EC

C
, is shown in solid and dotted black. At least one component,

EC, shown in solid black, has the property that dim.�1.EC// D v � d . Right: The space of pairs
of complex frameworks. The variety BC WD HC.EC/ is made up of some frameworks and their
flexes. (The image under HC of the other components of EC

C
is not shown.) The map SC maps BC

to itself, and thus the Pogorelov map is an automorphism of EC

Definition 16. Let .aC; fC/ D bC be a pair of framework in CCd .� /. One can
apply coordinate scaling to bC by multiplying one chosen coordinate (out of the
d coordinates in C

d ) of all the vertices in aC by some complex scalar � and the
corresponding coordinate in all the vertices in fC by 1=�.

Lemma 6. The set BC is invariant to coordinate scaling.

Proof. Let .aC; fC/ D bC 2 BC be generic. fC is an infinitesimal flex for aC. Let
us apply coordinate scaling to bC with a scalar � close to 1 and let us denote the
result by b0

C
D .a0

C
; f 0

C
/. Looking at the effect of the rigidity matrix, we see that f 0

C

must be an infinitesimal flex for a0
C

, and from Lemma 5 must be in BC.
This means that BC is invariant to nearly-unit coordinate scaling. Since BC is

algebraic, it must thus be invariant to all coordinate scaling. (This follows from the
fact that the (Zariski) closure of a subset must be a subset of the closure.)

Corollary 3. SC is an automorphism of BC. Thus PC is an automorphism of EC.
Thus if eC 2 EC is generic, then PC.eC/ is generic in EC and both �1.PC.eC// and
�2.PC.eC// are generic in CCd .� /.

With this we can finish the proof of this direction of Theorem 4.

Proof. Assume that � is not GGR in E
d . Pick a generic .�; �/ 2 E (Definition 12).

From Theorem 6, P.�; �/ DW . Q�; Q�/ is a pair of equivalent frameworks CSd .� /

which are not congruent from Lemma 2.
Let �C and �C be the real valued complex frameworks corresponding to � and � .

From Corollary 2, .�C; �C/ is generic in EC. Meanwhile, PC.�C; �C/ D . Q�C; Q�C/,
where Q�C is the s-valued, complex representation of Q�, and Q�C is the s-valued,
complex representation of Q� . From Corollary 3, Q�C is generic in CCd .� /. Therefore
Q� must be generic in CSd .� /, and we can conclude that � is not GGR in S

d .
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7 Proof of Theorem 5

We will prove the theorem by first showing that the existence of a large enough
GGR subgraph �0 is sufficient to rule out any “cross-talk” between different real
signatures. In particular, if we have an s-valued framework of �0, then �0 cannot
have a congruent framework that is s0-valued where s ¤ s0. Thus, if we have an
s-valued framework of � , then � cannot have an equivalent framework that is
s0-valued where s ¤ s0. With such cross talk ruled out, we will be able to apply
an algebraic degree argument to show that � is GGF in S

d .
In this section we will model congruence classes of frameworks in CCd .V / using

complex symmetric matrices of rank d or less. First we spell out some basic facts
about these matrices, and their relationship to configurations, as well as the notions
of congruence and equivalence.

Definition 17. Let G be the set of symmetric v � 1 by v � 1 complex matrices of
rank d or less. This is a determinantal variety which is irreducible. Assuming that
v 
 d C 1, G is of complex dimension v  d � �dC1

2

�

, and any generic M 2 G will
have rank d .

For any configuration p 2 CCd .V / (or framework � 2 CCd .� /) we associate its
g-matrix G.p/ 2 G as follows. We first translate p so its first vertex is at the origin.
For any two remaining vertices t; u, we define the corresponding matrix entry as

G.p/t;u WD
dX

iD1
p.t/i p.u/i (1)

(This is like a Gram matrix, but there is no conjugation involved.) Overloading this
notation, if � is a framework with configuration p, we define G.�/ WD G.p/.

Definition 18. For any pair ft; ug, of distinct vertices in p, there is a linear map �t;u
that computes the squared lengths between that pair using the entries in G.p/. In the
case where t is the first vertex (that was mapped to the origin), we have

�t;u.G.p// D G.p/u;u (2)

Otherwise, and in general,

�t;u.G.p// D G.p/t;t C G.p/u;u � 2G.p/t;u (3)

Applying this to all pairs of distinct vertices induces a linear map �K from the set
G to the set of symmetric v by v complex matrices with zeros on the diagonal.

Lemma 7. The map �K is injective.

Proof. We just need to show that the kernel of �K is 0. Let M be a matrix in the
kernel of �K . Starting with the first vertex at the origin, we find from Eq. (2) that
all of the diagonal entries, Mu;u must vanish. Then, from Eq. (3), all the off diagonal
entries of M must vanish as well.
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Lemma 8. p is congruent to q iff �K.G.p// D �K.G.q// and iff G.p/ D G.q/.

Proof. The first relation follows from the definition of congruence. The second
follows from Lemma 7.

Corollary 4. The map G acting on the quotient CCd .V /=congruence is injective.

Lemma 9. G is the Zariski closure of G.CCd .V //. Moreover, if p is generic in
CCd .V /, then G.p/ is generic in G .

Proof. Using Corollary 4, a dimension count verifies that the image G.CCd .V //
must hit an open neighborhood of G (i.e. a subset of full dimension). The results
follow as G is irreducible.

Equivalence of frameworks can be defined through their g-matrices as well:

Definition 19. Let �E be the linear mapping from G to C
e defined by applying �t;u

to each of the edges in E .� /.
� is equivalent to � , iff �E .G.�// D �E .G.�//.
If � is generic in CCd .� /, then (assuming v 
 d C 1) �E .G.�// is generic in

�E .G /.

The following Lemma will be useful when examining the cardinality of a fiber
of �E .

Lemma 10. Let M be any matrix in G . If �E .M/ is real valued, there must be an
even number of non real matrices in ��1E .�E .M//.

Proof. �E is defined over R and thus if M0 is in ��1E .�E .M//, so must its complex
conjugate M0. If such an M0 is not real, then it is not equal to its conjugate.

The following lemma is useful above in the proof of Lemma 3.

Lemma 11. Let � be generically locally rigid (in C
d ). Let � be generic in CCd .� /.

Let � be equivalent to �. Then � is infinitesimally rigid.

Proof. If � has less than d C 2 vertices and is generically locally rigid, it must be
a simplex, and we are done.

From Corollary 4 and Lemma 9, the set of congruence classes of configurations
has dimension dim.G /, which is vd��dC1

2

�

. Due to local rigidity, its measurement
set, �E .G /, has the same dimension.

Similarly, the set of frameworks with a degenerate affine span must map to g-
matrices with rank no greater than d � 1, and thus their measurement set must have
dimension at most v  .d � 1/ � �d

2

�

. Thus such degenerate measurements are non
generic in �E .G /.

Meanwhile, the set of infinitesimally flexible frameworks with non-degenerate
span, is non generic in CCd .V /, and so has dimension no larger than v  d � 1.
Its measurement set has dimension no larger than v  d � 1 � �

dC1
2

�

. Thus the
infinitesimally flexible measurements are non generic in the measurement set.
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Thus a generic � cannot map under the edge squared-length map to any
measurement arising from an infinitesimally flexible framework.

A real valued matrix in G corresponds with an s-valued configuration. At the
heart of this correspondence is Sylvester’s law of inertia.

Law 1. Suppose M is a real valued symmetric matrix of size v � 1 and rank d .
Suppose that M D BtDB, where B is a real non-singular matrix, and where D is a
real diagonal matrix with s negative diagonal entries, d�s positive diagonal entries,
and v � 1 � d zero diagonal entries. Let us call the triple .s; d � s; v � 1 � d/ the
signature of D.

Then M cannot be written as M D B0tD0B0, where B0 is real non-singular and D0
is real diagonal with a different signature. Thus we can call .s; d � s; v � 1� d/ the
signature of M.

Since every real symmetric matrix has an orthogonal eigen-decomposition, it
must have a signature.

Lemma 12. Suppose some M 2 G has all real entries and has signature .s; d 0 �
s; v�1�d 0/ for some s and d 0 (with d 0 � d ). There exists an s-valued configuration
p with an affine span of dimension d 0 and with G.p/ D M.

Proof. By assumption M D BtDB where D has signature .s; d 0�s; v�1�d 0/. Wlog,
let us assume that the entries in D appear in an order that matches the signature. Let
us drop the last v � 1 � d 0 rows of B. Let us divide the j th row of B by

pjDj;j j to
obtain an d 0 by v�1matrix P0. Then we can write M D P0tSP0, where S is an d 0 by
d 0 diagonal “signature” matrix with its first s diagonal entries of �1 and remaining
d 0 � s diagonal entries of 1. Since B is non-singular, P0 has rank d 0.

Multiplying the first s rows of P0 by
p
1, we can write M D PtP. The columns

of P (along with the origin) then give us the complex coordinates of an s-valued
configuration p 2 CCd .V / with G.p/ D M.

Remark 5. When d 0 < d , this does not rule out the possibility of other frameworks
with a different dimensional affine span, and different real metric signature. When
d 0 D d , Corollary 5 (below) will in fact rule out any other signatures and span
dimensions.

Lemma 13. Let p 2 CCd .V / be an s-valued configuration, then G.p/ is real.
If p has an affine span of dimension d 0 � d , then G.p/ has rank no more than
d 0. Moreover, if p has an affine span of dimension d , then G.p/ has signature
.s; d � s; v � 1 � d/.
Proof. Since p is s-valued, G.p/ can be written in coordinates as P0tSP0, where P0
is a d by v�1 real matrix. And S is a diagonal matrix with s entries of �1 and d � s
entries of 1. The rank of G.p/ cannot exceed the rank of P0 which is d 0.

If the affine span of p has dimension d , then P0 has rank d . Since the rows of P0
are linearly independent, we can use those rows as the first d rows of a non singular
v� 1 by v� 1 matrix B. We can use S as the upper left block of a diagonal matrix D
with the rest of the entries zeroed out. Then we can write M D BtDB giving us the
stated signature.
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Corollary 5. Let p 2 CCd .V / be an s-valued configuration with an affine span of
dimension d . Let q 2 CCd .V / be an s’-valued configuration that is congruent to p.
Then q has an affine span of dimension d and s D s0

Proof. From Lemma 13, G.p/ has signature .s; d �s; v�1�d/. By the congruence
assumption and Corollary 4, , G.p/ D G.q/. As G.q/ has rank d , q must have an
affine span no less than d , and thus equal to d . From Lemma 13, G.q/ must have
signature .s0; d � s0; v � 1 � d/. Thus s D s0.

Now we can establish that when there is a GGR subgraph, the signature of all
real matrices in a fiber of �E is fixed.

Lemma 14. Let � be a graph and �0 a GGR subgraph with v0 vertices where v0 

d C 1. Let � be an s-valued framework in CCd .� / for some s, with configuration p.
Suppose also that the affine span of the vertices of �0 in p is all of Cd . Then all of the
real matrices in the fiber ��1E .�E .G.�/// must have signature .s; d � s; v � 1� d/.
Proof. Wlog, let �0 include the first vertex, and let its vertex set be V0. We denote
by p0 the configuration p restricted to V0. p0, as a restriction of p, is s-valued.

Let M be any real matrix in the fiber, and let it have signature .s0; d 0 � s0; v �
1 � d 0/ for some s0 and d 0. From Lemma 12, there must be some q, an s0-valued
configuration, with G.q/ D M. When restricted to V0, the configuration q0 must
also be s0-valued. Since �0 is complex GGR, p0 must be congruent to q0. Then
from Corollary 5 q0 must be s-valued and have affine span of dimension d . Thus
s D s0. Since q, as a super-set of q0, must have affine span of dimension d , then
from Lemma 13, M must have signature .s; d � s; v � 1� d/.
Definition 20. Let V and W be irreducible complex algebraic sets of the same
dimension and f W V ! W be a surjective (or just dominant) algebraic map,
all defined over k. Then the number of points in the fiber f �1.w/ for any generic
w 2 W is a constant. This constant is called the algebraic degree of f .

With this, we can complete the proof of Theorem 5 by applying a degree
argument:

Proof. We will assume� is generically locally rigid, otherwise we are already done.
Let � be generic in CEd .� /. From Lemma 13 G.�/ is real with signature

.0; d; v � 1 � d/ (i.e. it is PSD). Because of the existence of a GGR subgraph,
from Lemma 14, all of the real matrices in the fiber ��1E .�E .G.�/// must have
the same signature. From Lemma 13 and Corollary 4, these matrices are in one to
one correspondence with the congruence classes Œ�i � of equivalent frameworks in
CEd .� /. Since � is not GGR, from Theorem 3, there must be an even number of
such classes and thus an even number of real matrices in the fiber.

From Lemma 10, there are an even number of non real matrices in the fiber
and we see that the total cardinality of ��1E .�E .G.�/// is even. Since �E .G.�// is
generic in the image �E .G /, this means that the algebraic degree of �E must be
even.
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Now suppose � is generic in CSd .� /, which we model as a generic s-valued
framework in CCd .� /. G.�/ is real valued and has signature .s; d � s; v � 1 � d/.
From Lemma 14 all of the real matrices in the fiber ��1E .�E .G.�/// must have the
same signature .s; d � s; v � 1 � d/.

Since G.�/ is real, then so is �E .G.�// so from Lemma 10 there must be an even
number of non real matrices in the fiber ��1E .�E .G.�///, and thus an even number
of real matrices in the fiber, all with signature .s; d � s; v � 1 � d/.

From Lemma 13 and Corollary 4, these are in one to one correspondence with
the congruence classes Œ�i � of equivalent s-valued frameworks in CCd .� /. Thus �
is generically globally flexible in S

d .

Remark 6. The reasoning in the above proof does not hold when � does not
have the required GGR subgraph. In particular, the non-GGR graph G3 of Jackson
and Owen [8] generically has an odd number (namely 45) of equivalent complex
realizations in C

2.

8 Extension to Hyperbolic Space

Combining ideas from the previous section with results from Connelly and White-
ley [5], we can transfer the property of generic global rigidity to hyperbolic space
H
d as well.

Corollary 6. A graph � is generically globally rigid in E
d iff it is generically

globally rigid in H
d .

This can be done using the coning operation explored in [5], and the proof is
developed below.

Definition 21. Given a graph � and a new vertex u, the coned graph �  fcg is the
graph obtained starting with � , adding the vertex c and adding an edge connecting
c to each vertex in � .

Theorem 7 (Connelly and Whiteley [5]). A graph � is generically globally rigid
in E

d iff �  fcg is generically globally rigid in E
dC1.

(This theorem is proven using an argument about equilibrium stress matrices. See
Fig. 2.)

By modeling spherical d-space within a Euclidean d + 1 space, Connelly and
Whiteley then show the equivalence between Euclidean GGR of �  fcg and
spherical GGR of � .

In a similar manner, one can model hyperbolic space H
d within the d + 1 dimen-

sional pseudo Euclidean space that has one negative coordinate in its signature. We
denote this Minkowski space as M

dC1. In particular, we model Hd as the subset
of vectors v 2 M

dC1 such that jvj2 D �1 under the Minkowski metric, and such
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Minkowski

Complex

Euclidean

Stress Matrix

[C05]

[GHT10]

[CW10]

[CW10]

[CW10]

Coned Stress Matrix

Coned Euclidean

(see left side)

(see left side)

Spherical

Coned Minkowski Hyperbolic

Fig. 2 Implications between generic global rigidity in various spaces. Black lines show implica-
tions proven in this paper

that v1 > 0, where v1 is the first coordinate of v. For two vectors v and w on
this “hyperbolic locus”, their distance in H

d corresponds to the arcosh of their
Minkowski inner product.

8.1 Proof of Corollary )

We begin with a hyperbolic lemma that mirrors a spherical lemma in [5].

Lemma 15. Let � and � be two equivalent and non congruent frameworks of � in
H
d , then there is a corresponding pair .�00

M
; � 00

M
/ of equivalent and non congruent

frameworks of �  fcg in M
dC1. Moreover, if � (or �) is generic in H

d , then we can
find a corresponding �00

M
(or � 00

M
) that is generic in M

dC1.

Proof. Given � and � , we model these as �M and �M, two frameworks of �  fcg
in M

dC1, with the cone vertex c at the origin and the rest of the vertices on the
hyperbolic locus. For each vertex t 2 V .� /, we pick a generic positive scale ˛t
and multiply all of the d C 1 coordinates of �M.t/ and �M.t/ by this ˛t . Let us call
the resulting pair, �0

M
.t/ and � 0

M
.t/. As in [5], �0

M
.t/ and � 0

M
.t/ are equivalent and

non congruent in M
dC1. By translating these frameworks by some generic offset,

we obtain the desired pair �00
M

and � 00
M

.

Proof (Proof of corollary )). Suppose a graph � is not GGR in H
d then from

Lemma 15, �  fcg is not GGR in M
dC1. Then from Theorem 4, �  fcg is not

GGR in E
dC1. Then from Theorem 7, � is not GGR in E

d . See Fig. 2.
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8.2 Proof of Corollary (

In order to prove the other direction we restrict ourselves to Minkowski frameworks
that can be moved to the hyperbolic locus using positive scaling.

Definition 22. We say that a framework � of �  fcg in M
dC1 is upper coned if for

all vertices t 2 V .� /, we have j�.t/ � �.c/j2 < 0 and .�.t/ � �.c//1 > 0. We say
that � is lower coned if for all vertices t 2 V .� /, we have j�.t/ � �.c/j2 < 0 and
.�.t/ � �.c//1 < 0.

The following lemma is the needed partial converse of Lemma 15.

Lemma 16. Let � and � be two equivalent and non congruent frameworks of � 
fcg in M

dC1. And let us also assume that � and � are upper coned. Then there is
a corresponding pair .�H; �H/ of equivalent and non congruent frameworks of �
in H

d . Moreover, if � (or �) is generic in M
dC1, then �H (or �H) is generic in H

d .

Proof. Given � and � , we first translate the frameworks, moving the cone vertex,
c, to the origin in M

dC1. Let us call the resulting pair �0 and � 0. For each vertex
t 2 V .� /, we then divide all of the d C 1 coordinates of �0.t/ and � 0.t/ by the
positive quantity, �j�.t/ � �.c/j2 (which is the same as �j�.t/ � �.c/j2). Let us
call the resulting pair, �00 and � 00. Due to our upper coned assumption, these vertices
all lie on the hyperbolic locus and correspond to a pair of frameworks �H and �H of
� in H

d . As in [5], the resulting frameworks, �H and �H, of � are equivalent, non
congruent, and generic in H

d .

In order to ultimately get upper coned Minkowski frameworks, we also define
the following special framework classes.

Definition 23. We say that a framework � of �  fcg in E
dC1 is spiky if for one

vertex t0 2 V .� /, we have j�.t0/ � �.c/j > 2 and for all edges .t; u/ 2 E .� /, we
have j�.t/ � �.u/j < 1

v .

Definition 24. We say that a framework � of � fcg in F
dC1 is upper cylindrical if

for all vertices t 2 V .� /, we have .�.t/��.c//1 > 1 and
PdC1

iD2 .�.t/��.c//2i < 1.

Lemma 17. Let � be connected. If a framework � of �  fcg in E
dC1 is spiky, then

it is congruent to a framework which is upper cylindrical.

Proof. We can find a rotation that moves �.t0/� �.c/ onto the first axis, with a first
coordinate greater than 2. Since � is connected, it has diameter no larger than v.
From the triangle inequality, all of the coordinates of all of the vertices must satisfy
the upper cylindrical conditions.

Lemma 18. Let � and � be two upper cylindrical frameworks of �  fcg in E
dC1.

Then the resulting frameworks from the Pogorelov map to M
dC1, . Q�; Q�/ WD P.�; �/,

are both upper cylindrical.

Proof. This follows from directly the “coordinate swapping” interpretation of the
Pogorelov map from Remark 4.
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Lemma 19. If a framework � of �  fcg in M
dC1 is upper cylindrical, then it is

upper coned.

Proof. By definition, the first coordinates of all vertices have the required sign.
Moreover, for any t 2 V .� /,

j�.t/ � �.c/j2 D �.�.t/ � �.c//21 C
dC1X

iD2
.�.t/ � �.c//2i < 0: (4)

And thus it is upper coned.

With these simple facts established, we can now apply the machinery from Sect. 6
to the problem at hand.

Lemma 20. Let �  fcg be generically locally rigid in E
dC1. Suppose �  fcg is

not GGR in E
dC1, then �  fcg has an pair of generic frameworks in M

dC1, that
are equivalent, non congruent, and upper coned.

Proof. The proof follows that of Sect. 6. The only issue is ensuring the upper coned-
ness of the result.

When picking the component E (see Definition 12) we choose a component of
EC such that E contains some non-congruent pair, dim.�1.E// D v  d , and such
that �1.E/ contains a framework � that is spiky.

Since the set of frameworks that are spiky is of dimension v  d , and by
assumption, �  fcg is not GGR in E

dC1, and thus GGF in E
dC1, the projection

�1.E
CnCC/must include a set of spiky frameworks with dimension vd . Thus, at

least one component with the stated properties must exist. We will chose one such
component and will call it E .

Pick an e WD .�; �/ 2 E in the fiber above �. Since � is spiky, and spikiness
only depends on edge lengths, � must be spiky as well. Next, we perturb e in E to
get e0 DW .�0; � 0/ that is generic in E . Since spikiness is an open property, for small
enough perturbations, both �0 and � 0 will still be spiky.

Since �  fcg is generically locally rigid in E
dC1, � must be connected. Thus

from Lemma 17, we can choose an upper cylindrical � 0c that is congruent to � 0 and
an upper cylindrical �0c that is congruent to �0. From Lemma 3, since e0 is generic
in E the point e0c WD .�0c; � 0c/ must be in E as well.

Next we perturb e0c within E to get e0c0 DW .�0c0; � 0c0/ which is generic in E .
Since upper cylindricality is an open property, for small enough perturbations, both
�0c0 and � 0c0 will still be upper cylindrical.

Now when we apply the Pogorelov map, .f�0c0;e� 0c0/ WD P.e0c0/. As in the proof
of Theorem 4, f�0c0 and e� 0c0 are equivalent, non congruent and generic frameworks
in M

dC1. From Lemma 18 both f�0c0 and e� 0c0 must be upper cylindrical, and from
Lemma 19, both f�0c0 ande� 0c0 must be upper coned,

Proof (Proof of corollary (). Suppose a graph � is not GGR in E
d then from

Theorem 7, �  fcg is not GGR in E
dC1. Then from Lemma 20, �  fcg has an



Generic Global Rigidity in Complex and Pseudo-Euclidean Spaces 149

pair of generic frameworks in M
dC1 that are equivalent, non congruent, and upper

coned. Then from Lemma 16, � is not GGR in H
d .

Remark 7. In Section 7 of [5], there is a brief sketch describing how to directly
use a Pogorelov type map to equate Euclidean GGR and hyperbolic GGR. That
discussion does not go into the details showing that their construction hits an open
neighborhood of frameworks (i.e. a generic framework), which is the main technical
contribution of our Theorem 4.

8.3 Hyperbolic GGF

Using coning, we can also prove a hyperbolic version of Theorem 5, namely:

Corollary 7. If a graph � is not GGR in H
d , and it has a GGR subgraph �0 with

d C 1 or more vertices, then � must be GGF in H
d .

Proof. Having established that generic global rigidity transfers between Pseudo
Euclidean spaces and through coning, we know that �  fcg, is not GGR in M

dC1.
Likewise, it has a coned subgraph with at least d C 2 vertices, �0  fcg, that is GGR
in M

dC1. Thus, from Theorem 5, �  fcg must be GGF in M
dC1.

Let � be a framework of � in H
d . We model this as �M, a framework of �  fcg

in M
dC1, with the cone vertex c at the origin and the rest of the vertices on the

hyperbolic locus. For each vertex t 2 V .� /, we pick a generic positive scale ˛t and
multiply all of the d C 1 coordinates of �M.t/ by this ˛t . Let us call the resulting
framework �0

M
.t/. By translating this frameworks by some generic offset, we obtain

�00
M

, a generic framework of the coned graph in M
dC1. Since the ˛t are all positive,

�00
M

must be upper coned.
Since �  fcg is GGF in M

dC1, �00
M

must have an equivalent and non-congruent
framework, � 00

M
. From Lemma 21 (below), we can choose � 00

M
to be upper coned.

Then from Lemma 16, there must be a framework, � , of � in H
d , that is equivalent

and non congruent to �.

Lemma 21. Let � be a connected graph. Let .�; �/ be a pair of equivalent
frameworks of �  fcg in M

dC1. Let us also assume that � is in general position. If
� is upper coned, then either � is upper coned or it is lower coned.

Proof. Let t and u be two vertices of V .� / that are connected by an edge in � .
Along with the edges ft; cg and fu; cg, this defines a triangle T , which is a subgraph
of �  fcg. Since � is equivalent to �, these frameworks when restricted to T , must
be, by definition, congruent.

Since � is in general position, from Corollary 8 these two frameworks of T
must be strongly congruent. Thus, there is an orthogonal transform of MdC1 map-
ping .�.t/ � �.c// to .�.t/ � �.c// and mapping .�.u/� �.c// to .�.u/� �.c//.
An orthogonal transform either maps the entire upper cone to the upper cone, or it



150 S.J. Gortler and D.P. Thurston

maps the entire upper cone to the lower cone. Since � is connected, this makes �
either upper coned or lower coned. (Moreover, by negating all of the coordinates in
� we can always obtain an upper coned equivalent framework.)

9 Algebraic Geometry Background

We start with some preliminaries from real and complex algebraic geometry,
somewhat specialized to our particular case. For a general reference, see, for
instance, the book by Bochnak, Coste, and Roy [2]. Much of this is adapted from [7].

Definition 25. An affine, real (resp. complex) algebraic set or variety V defined
over a field k contained in R (resp. C) is a subset of Rn (resp C

n) that is defined by
a set of algebraic equations with coefficients in k.

An algebraic set is closed in the Euclidean topology.
An algebraic set is irreducible if it is not the union of two proper algebraic subsets

defined over R (resp C). Any reducible algebraic set V can be uniquely described as
the union of a finite number of maximal irreducible subsets called the components
of V .

A real (resp. complex) algebraic set has a real (resp. complex) dimension dim.V /,
which we will define as the largest t for which there is an open subset of V , in the
Euclidean topology, that is isomorphic to R

t (resp. Ct ). Any algebraic subset of an
irreducible algebraic set must be of strictly lower dimension.

A point x of an irreducible algebraic set V is smooth (in the differential geometric
sense) if it has a neighborhood that is smoothly isomorphic to R

dim.V / (resp.
C

dim.V /). (Note that in a real variety, there may be points with neighborhoods
isomorphic to R

n for some n < dim.V /; we will not consider these points to be
smooth.)

Definition 26. Let k be a subfield of R. A semi-algebraic set S defined over k is a
subset of Rn defined by algebraic equalities and inequalities with coefficients in k;
alternatively, it is the image of a real algebraic set (defined only by equalities) under
an algebraic map with coefficients in k. A semi-algebraic set has a well defined
(maximal) dimension t .

The real Zariski closure of S is the smallest real algebraic set defined over R
containing it. (Loosely speaking, we can get an algebraic set by keeping all algebraic
equalities and dropping the inequalities. We may need to enlarge the field to cut out
the smallest algebraic set containing S but a finite extension will always suffice.)

We call S irreducible if its real Zariski closure is irreducible. An irreducible
semi-algebraic set S has the same real dimension as its real Zariski closure.

A point on S is smooth if it has a neighborhood in S smoothly isomorphic to
R

dim.S/.

Lemma 22. The image of an irreducible real algebraic or semi-algebraic set under
a polynomial map is an irreducible semi-algebraic set. The image of an irreducible
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complex algebraic set under a polynomial map is an irreducible complex algebraic
set, possibly with a finite number of subvarieties cut out from it.

We next define genericity in larger generality and give some basic properties.

Definition 27. A point in a (semi-)algebraic set V defined over k is generic if its
coordinates do not satisfy any algebraic equation with coefficients in k besides those
that are satisfied by every point on V .

Almost every point in an irreducible (semi) algebraic set V is generic.

Remark 8. Note that the defining field might change when we take the real Zariski
closure V of a semi-algebraic set S . For example, in R

1, the single point
p
2 can be

described using equalities and inequalities with coefficients in Q, and thus it is semi-
algebraic and defined over Q. But as a real variety, the defining equation for this
single-point variety requires coordinates in Q.

p
2/. Indeed, the smallest variety that

contains the point
p
2 and that is defined over Q must also include the point �p2.

However, this complication does not matter for the purposes of genericity.
Specifically, if k is a finite algebraic extension of Q and x is a generic point in an

irreducible semi-algebraic set S defined over k, then x is also generic in V , the real
Zariski closure of S , defined over an appropriate field. This follows from a three step
argument. First, a dimensionality argument shows that V must be a component of
V Ck , the smallest real algebraic variety that is defined over k and containsS . Second,
it is a standard algebraic fact that if a real (resp. complex) varietyW C is defined over
k, a subfield of R (resp. C), then any of its components is defined over some field k0,
a subfield of R (resp. C), which is a finite extension of k. Finally, from Lemma 23
(below), any non generic point x 2 V (i.e. satisfying some algebraic equation with
coefficients in k0) must also satisfy some algebraic equation with coefficients in k
(or even Q) that is non-zero over V .

Lemma 23. Let k0 be some algebraic extension of Q. Let V be an irreducible
algebraic set defined over k0. Suppose a point x 2 V satisfies an algebraic equation
� with coefficients in k0 that is non-zero over V , then x must also satisfy some
algebraic equation  with coefficients in Q that is non-zero over V .

Proof. LetH be the Galois group of the (normal closure of) k0 over Q. For hi 2 H ,
denote hi .�/ to be the polynomial where hi is applied to each coefficient in �. Let
A be the (possibly empty) “annihilating set”, such that 8hi 2 A, hi.�/ vanishes
identically over V .

Let

�˙ WD � C
X

hi2A
�ihi .�/ (5)

(Where the �i 2 Q are simply an additional set of blending weights.)
�˙ has the following properties:

• �˙.x/ D 0.
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• (For almost every �), for any h 2 H , h.�˙/ does not vanish identically over V .
This follows since h.�˙/ is made up of a sum of jAj C 1 polynomials, where no
more than jAj of them can vanish identically over V . Under almost any blending
weights �, their sum will not cancel.

Let

 WD
Y

hi2H
hi .�

˙/ (6)

 has the following properties:

•  .x/ D 0.
•  does not vanish over V .
• h. / D  . Thus  has coefficients in the fixed field, Q.

The following propositions are standard [7]:

Proposition 1. Every generic point of a (semi-)algebraic set is smooth.

Lemma 24. Let V C be a (semi) algebraic set, not necessarily irreducible, defined
over k. Let V be a component of V C. Let x be generic in V . Then x does not lie on
any other component of V C. Moreover, any point x0 2 V C that is sufficiently close
to x cannot lie on any other component of V C.

Proof. As per Remark 8 any component must be defined over an algebraic extension
of k. The defining equations of any other component would produce an equation
obstructing the genericity of x in V . Since a variety is a closed set in the Euclidean
topology, no other component of V C can approach x.

Lemma 25. Let V and W be (semi) algebraic sets with V irreducible, and let f W
V ! W be a surjective (or just dominant) algebraic map (i.e. where each of the
coordinates of f .x/ is a some polynomial expression in the coordinates of x), all
defined over k. Then if x 2 V is generic, f .x/ is generic inside W.

Definition 28. The complexification V � of a real variety V is the smallest complex
variety that contains V [11]. The complex dimension of V � is equal to the real
dimension of V . If V is irreducible, then so is V �. If V is defined over k, so is V �.
A generic point in V is also generic in V �.

10 Congruence

The following material is standard and is included here for completeness. This
presentation is adapted from [6, 9].

In all discussions in this section, we will assume that we have first translated any
configuration, say p 2 CCd .V / so that its first vertex lies at the origin. We then treat
the rest of the vertices as vectors in C

d , and call them the vectors of p.
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Definition 29. We define the symmetric bilinear form ˇ.v;w/ over pairs of vectors,
fv;wg in C

d as ˇ.v;w/ WD VtW where V is the d by 1 (canonical) coordinate vector
of v. (No conjugation is used here.) IfO is an orthogonal transformation on C

d , we
have ˇ.v;w/ D ˇ.O.v/;O.w//.
ˇ is non degenerate: there is no non-zero vector, v, such that ˇ.v;w/ D 0 for all

w 2 C
d .

The squared length of a vector v is simply ˇ.v; v/

With this notation, the v�1 by v�1 g-matrix has entries G.p/t;u D ˇ.
��!
p.t/;

��!
p.u//.

For the case of the pseudo Euclidean space S
d we define ˇ.v;w/ WD VtSW,

where S is the d by d diagonal “signature matrix” having its first s diagonal entries
�1, and the remaining diagonal entries 1.

Lemma 26. Let p0 be a configuration of d C 1 points in C
d , with affine span of

dimension d . Then G.p0/ has rank d . The same is true in a pseudo Euclidean
space Sd .

Proof. The matrix G.p0/ represents the form ˇ, over all of Cd , expressed in the
basis defined by the vectors of p0. Since ˇ is a non-degenerate form, G.p0/ must
have rank d .

Lemma 27. Let p0 and q0 be two congruent configurations of a C 1 points in C
d ,

both with affine span of dimension a. Then p0 is strongly congruent to q0. The same
is true in a pseudo Euclidean space Sd .

Proof. Since the vectors of p0 and q0 are in general linear position, we can find an
invertible linear transformO0 such that, for all of the vectors of p0 and q0, indexed

by a vertex t , we have
��!
q.t/ D O0.

��!
p.t//. (The action of O0 is uniquely defined

between span.p0/ and span.q0/, the a-dimensional linear spaces spanned by the
vectors of p0 and the vectors of q0.)

The matrix G.p0/ represents the form ˇ, restricted to span.p0/, expressed in the
basis defined by the vectors of p0, while G.q0/ represents ˇ, restricted to span.q0/,
expressed in the basis defined by the vectors of q0, Since G.p0/ D G.q0/, the map
O0 must act as an isometry between all of span.p0/ and span.q0/.

If a D d we are done. Otherwise, from Witt’s theorem (see [9]), the isometric
action of O0 between span.p0/ and span.q0/ can be can be extended to an
isometry,O , acting on all of Cd . Thus p0 and q0 must be strongly congruent.

Lemma 28. Let p and q be two congruent configurations of v points in C
d , both

with affine span of dimension a. Suppose also that G.p/ D G.q/ has rank a. Then
p is strongly congruent to q. The same is true in a pseudo Euclidean space Sd .

Proof. Since G.p/ has rank a, it must have some a by a non-singular principal
submatrix, associated with a subset of a vertices. The vertices in this subset must
have a linear span of dimension a in bothp and q. We denote byp0 the configuration
p restricted to the aC1 vertices comprised of this subset together with the first vertex
(at the origin). And likewise for q0. From Lemma 27 there must be an isometry O

of Cd , such that for any vertex t in p0, we have
���!
q0.t/ D O.

���!
p0.t//.
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For any vertex u 2 V , by our assumption on the dimension of the affine span of

p and q, we have
��!
p.u/ 2 span.p0/ and

��!
q.u/ 2 span.q0/. Since G.p0/ D G.q0/

is invertible, the coordinates of
��!
p.u/ with respect to the basis p0, can be determined

from the appropriate entries in G.p/. Likewise, the coordinates of
��!
q.u/ with respect

to the basis q0, can be determined from G.q/. Since G.p/ D G.q/ these coordinates

must be the same. Thus
��!
q.u/ D O.

��!
q.u//, and p and q are strongly congruent.

Corollary 8. Let p and q be two congruent configurations of v 
 d C 1 points
in C

d , both with a d-dimensional affine span. Then p is strongly congruent to q.
If v < d C1, and p and q are in general position, then p is strongly congruent to q.

The same is true in a pseudo Euclidean space Sd .

Proof. For the first statement, we can pick d vertices, together with the first vertex
at the origin, to form a subset of size d C 1, that has a linear span of dimension d in
p. We denote by p0 the configuration p restricted to this subset. From Lemma 26,
the principal submatrix of G.p/ associated with this basis must have rank d . The
result then follows from Lemma 28.

If v � dC1 and the points are in general position, then the result follows directly
from Lemma 27.
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Chiral Polytopes and Suzuki Simple Groups

Isabel Hubard and Dimitri Leemans

Abstract For each q ¤ 2 an odd power of 2, we show that the Suzuki simple group
S D Sz.q/ is the automorphism group of considerably more chiral polyhedra than
regular polyhedra. Furthermore, we show that S cannot be the automorphism group
of an abstract chiral polytope of rank greater than 4. For each almost simple group
G such that S < G � Aut.S/, we prove that G is not the automorphism group of
an abstract chiral polytope of rank greater than 3, and produce examples of chiral
3-polytopes for each such group G.

Keywords Abstract chiral polytopes • Suzuki simple groups

Subject Classifications: 52B11, 20D06

1 Introduction

Abstract polytopes are combinatorial structures that resemble the classical convex
polytopes. Traditionally, the main interest in their study is that of their symmetries.
In that vein, the regular ones are, by far, the most studied. For the last 6 years,
abstract regular polytopes have been investigated by starting from some group G
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and determining all abstract polytopes having G as regular automorphism group.
Thanks to experimental data collected over the years by Leemans, Vauthier, Hartley,
Hulpke and Mixer on abstract regular polytopes, several general results have been
proved for infinite families of (almost) simple groups. The aim of this paper is to
give the state of the art in that very recent field of research and to provide the first
similar results on chiral polytopes. In fact, our results deal with chiral polytopes and
Suzuki groups. These results are summarized in the following theorem.

Theorem 1. Let S � G � Aut.S/ where S is the Suzuki group Sz.q/, with
q D 22eC1 and e is a positive integer. Then,

1. There exists at least one chiral polyhedron with automorphism group isomorphic
to G;

2. There are no chiral polytopes of rank 5 or higher with automorphism group G;
3. Up to isomorphism and duality, there are

P

nj2eC1 �. 2eC1n /.22n/.2n � 2/
2e C 1

chiral polyhedra whose automorphism group is the Suzuki group Sz.q/;
4. If there exists a chiral polytope of rank 4 with automorphism group G, then
G D S and 2e C 1 is not a prime number.

5. Let P be a chiral 4-polytope such that the automorphism group � .P/ WD
h�1; �2; �3i is S . Then h�1; �2i Š h�2; �3i Š Sz.q0/ for some q0 such that
q D q0m with m an odd integer.

The techniques developed in this paper to prove this result are very likely to be
applicable for other families of groups to obtain similar results.

The paper is organised as follows. Section 2 contains the basic theory about
regular and chiral abstract polytopes. Section 3 surveys the state of the art with
respect to regular abstract polytopes and almost simple groups. In Sect. 4 we give
a brief introduction to Suzuki groups. In the last two sections we relate chiral
polytopes with almost simple groups of Suzuki type. In particular, points 1 and 2 of
Theorem 1 are shown in Sect. 5, points 3, 4 and 5 are proven in Sect. 6. Furthermore,
the proof of the last point of Theorem 1, together with some experimental data leads
us to conjecture that no chiral polytopes of rank 4 exist for Suzuki groups.

2 Regular and Chiral Abstract Polytopes

In this section, we review the basic properties about regular and chiral abstract
polytopes. For details about this we refer the reader to [27] and [30].

An (abstract) polytope of rank n or an n-polytope is a partially ordered set P
endowed with a strictly monotone rank function having range f�1; : : : ; ng. The
elements of P are called faces. Moreover, for �1 � j � n, a face of rank j is
often called a j -face and the faces of rank 0; 1 and n � 1 are usually called the
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vertices, edges and facets of the polytope, respectively. We shall ask that P has a
smallest face F�1, and a greatest face Fn (called the improper faces of P), and that
each flag (that is, maximal chain of the order) of P contains exactly n C 2 faces.
Given two flags, we say that they are adjacent if they differ by exactly one face, or
that they are j -adjacent, if the rank of the face they differ on is precisely j . We also
require that P be strongly flag-connected, that is, any two flags ˚; 2 F .P/

can be joined by a sequence of flags ˚ D ˚0;˚1; : : : ; ˚k D  such that each two
successive flags ˚i�1 and ˚i are adjacent with ˚ \  � ˚i for all i . Finally, we
require the diamond condition, namely, wheneverF � G, with rank.F / D j�1 and
rank.G/ D j C 1, there are exactly two faces H of rank j such that F � H � G.

The diamond condition implies that, given a flag ˚ of P , for each i 2
f0; : : : ; n� 1g there exists a unique i -adjacent flag to ˚ , denoted by ˚i . We extend
this notation by induction by letting .˚i0;i1;:::;ik�1 /ik DW ˚i0;i1;:::;ik . We further denote
by .˚/i the i -face of the flag ˚ and note that .˚/i D .˚j /i if and only if i ¤ j .

Given two faces F and G of a polytope P such that F � G, the section G=F
of P is the set of faces fH 2 P jF � H � Gg. If F0 is a vertex, then the section
Fn=F0 is called the vertex-figure of F0. Note that every section G=F of a polytope
P is also a polytope and has rank rank.G=F / D rank.G/ � rank.F /� 1.

Observe that a finite 3-polytope is a map (that is, a 2-cellular embedding of a
connected graph on a compact surface); however the other way around is not true,
as maps need not satisfy the diamond condition.

Let P and Q be two n-polytopes. An isomorphism from P to Q is a bijection
� W P ! Q such that � and ��1 preserve order. An anti-isomorphism ı W P ! Q
is an order-reversing bijection, in which case P and Q are said to be duals of each
other, and the usual convention is to denote Q by P�. (Note that .P�/� Š P .)
An isomorphism from P onto itself is called an automorphism of P . The set of all
automorphisms of P forms a group, its automorphism group, denoted by � .P/.
It is not difficult to see that � .P/ acts freely (that is, with trivial kernel) on F .P/,
the set of all flags of P . An anti-isomorphism from P to itself is called a duality.
When a duality of P exists, P is said to be self-dual. Note that the set of all
dualities is not a group as the product of two dualities is in fact an automorphism.
Hence, the set of all dualities and automorphisms of P form a group, the extended
group of P , denoted by N� .P/.

The main focus of the study of abstract polytopes has been that of symmetries,
in particular that of highly symmetric polytopes. A polytope P is said to be regular
if � .P/ is transitive on the flags of P . The automorphism group of a regular
polytope P is generated by n involutions �0; �1; : : : ; �n�1, such that each �i maps a
given (base) flag˚ to the i -adjacent flag,˚i . These distinguished generators satisfy
(among others) the relations

.�i�j /
pij D � for 0 � i; j � n � 1; (1)

where � is the identity element of � .P/, pii D 1 for all i , and pji D pij whenever
ji � j j D 1, and pij D 2 otherwise. Letting pi D pi�1;i D pi;i�1 for 1 � i < n,
we say that P has Schläfli type fp1; : : : ; pn�1g.
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Furthermore, the generators �i for � .P/ satisfy an additional condition, often
called the intersection condition, namely

h �i j i 2 I i\h �i j i 2 J i D h �i j i 2 I\J i for every I; J � f0; 1; : : : ; n�1g:
(2)

Conversely, if � is a permutation group generated by elements �0; �1; : : : ; �n�1
which satisfy the relations (1) and condition (2), then there exists a regular polytope
P with � .P/ Š � .

A group � generated by involutions �0; : : : ; �n�1 that satisfy condition (2) is
called a C-group. If moreover it satisfies relations (1), it is called a string-C-group.

When starting with a group � , determining all regular abstract polytopes of
rank n with automorphism group isomorphic to � is equivalent to determining
non-isomorphic (ordered) n-tuples .�0; : : : ; �n�1/ of generating involutions of �
satisfying relations (1) as well as the intersection condition (2). Two n-tuples
.�0; : : : ; �n�1/ and .�00; : : : ; �0n�1/ are said to be isomorphic if there exists an element
g 2 Aut.� / such that .�0; : : : ; �n�1/g D .�00; : : : ; �0n�1/.

Every regular polytope P has a rotation subgroup � C.P/ of � .P/ gener-
ated by

�i WD �i�1�i ; i D 1; 2; : : : ; n � 1:
These �i satisfy at least the relations

�
pi
i D � for 1 � i � n � 1; (3)

.�i�iC1 : : : �j /2 D � for 1 � i < j � n � 1: (4)

Here again fp1; p2; : : : ; pn�1g is the Schläfli type of P . The group � C.P/ has
index at most two in � .P/. A regular n-polytope P is called directly regular if
� C.P/ has index 2 in � .P/. Note that a regular polytope P is a directly regular
polytope if and only if the flags of P can be coloured with two colours, in such a
way that adjacent flags have different colours. In fact, this colouring divides the set
of flags in two different sets, each of them being one orbit of flags under the action
of � C.P/.

An n-polytope P with base flag ˚ is called chiral if it is not regular, but there
exist automorphisms �1; �2; : : : ; �n�1 such that each �i fixes all faces in ˚ different
from .˚/i�1 and .˚/i , and cyclically permutes consecutive i -faces of P in the rank
2 section .˚/iC1=.˚/i�2 of P . Such automorphisms generate � .P/ and are called
the distinguished generators of � .P/ with respect to ˚ . Note that we may choose
the orientation of the �i such that

˚�i D ˚i;i�1:

It follows that, for i < j ,

˚�i�iC1 : : : �j D .˚�iC1 : : : �j /i;i�1 D ˚j;j�1;j�1;:::;iC1;i;i;i�1 D ˚j;i�1;
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so that the �i satisfy the relations (4). Denoting by pi the order of the generator
�i , we have that fp1; : : : ; pn�1g is the Schläfli type of P . These relations imply
that the automorphism group of a rank n chiral polytope is generated by involutions
whenever n 
 4. (However, this is not true for chiral maps, that is when n D 3. For
example chiral maps on the torus are never generated by involutions, as it is proved
in Section 6 of [16].)

Let  be a flag of a polytope P . We say that  is even with respect to ˚ if there
exists a sequence of adjacent flags˚ D ˚0; ˚1; : : : ˚2k�1; ˚2k D . If 2 F .P/

is not even, then we say that it is odd (with respect to ˚). It is not hard to see that
the orbit of ˚ under the automorphism group of a chiral polytope P is precisely
the set of all even flags with respect to ˚ (see [30] for details). This implies that
odd flags exist in P and thus, the automorphism group of a chiral polytope has two
orbits on the flags (the set of even flags and the set of odd flags). Furthermore, all
the flags adjacent to an even flag are odd (and all flags adjacent to an odd flag are
even). Hence, chiral polytopes are precisely those polytopes whose automorphism
group has exactly two orbits on the flags, with adjacent flags in different orbits. This
implies that the automorphism group of a chiral polytope is transitive on the faces
of each rank. Furthermore, every section of a chiral polytope is itself either a chiral
or a directly regular polytope. In particular the following proposition states a well-
known property of chiral polytopes (see [30]) that we add as it will be of great use
in our discussion in Sect. 6.

Proposition 1. For every k 2 f0; : : : ; n� 2g, the k-faces of a chiral n-polytope are
directly regular, as abstract polytopes.

Chiral polytopes are said to occur in pairs of enantiomorphic forms, with one
being the ‘mirror image’ of the other (see [30] for a precise discussion of this
notion).

In a similar way as for the regular case, the distinguished generators of the
automorphism group of a chiral polytope satisfy an intersection condition, arising
from considering the stabilisers of the chains ˚ NJ WD f.˚/j j j … J g, for each
J � f0; 1; : : : ; n � 1g.

The intersection condition for chiral polytopes of rank 5 and higher is not
straightforward to state and it depends on the so-called “half-turns” of the polytope
(see [30]). For rank 3, the intersection condition states that

h�1i \ h�2i D f�g;

while for rank 4, it says that for i; j; k 2 f1; 2; 3g with i ¤ j ¤ k ¤ i ,

h�i i \ h�j i D f�g; (5)

and

h�i ; �j i \ h�j ; �ki D h�j i: (6)
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Conversely, if � is any permutation group generated by elements �1; �2; : : : ; �n�1
which satisfy the relations (3) and (4), as well as the appropriate intersection
condition, then there exists a polytope P of rank n which is either directly regular
or chiral, such that � .P/ Š � if P is chiral, or � C.P/ Š � if P is directly
regular. Moreover, P is directly regular if and only if there exists an involutory
group automorphism � W � ! � such that �.�1/ D ��11 , �.�2/ D �21 �2, and
�.�i / D �i for 3 � i � n � 1 (that is, the group automorphism � acts like
conjugation by the generator �1 in the directly regular case).

The following lemma shall be of great help when dealing with chiral polytopes
coming from Suzuki groups.

Lemma 1. Let P be a chiral polytope of rank n, and let �1; : : : ; �n�1 be the
distinguished generators of � .P/ with respect to some base flag ˚ .

1. If n 
 5, then �i and ��1i are conjugate in � .P/ for every i D 1; : : : n � 1.
2. If n D 4, then �1 and ��11 are conjugate and �3 and ��13 are conjugate in � .P/.

Proof. We prove both statements at the same time. We first recall that �i�iC1 : : : �j
is of order 2 for every 1 � i < j � n � 1. Hence, if i � n � 3,

��1i D �iC1 : : : �n�1�i�iC1 : : : �n�1 D .�iC1 : : : �n�1/�1.�i /.�iC1 : : : �n�1/I

and if j 
 3,

��1j D �1 : : : �j�1�j �1 : : : �j�1 D .�1 : : : �j�1/�1.�j /.�1 : : : �j�1/:

Therefore if n 
 5 every �i is conjugate to its inverse, while if n D 4 this is true for
i D 1; 3 (but might not hold for i D 2).

3 Abstract Polytopes and Almost Simple Groups

The question of which finite simple groups occur as the automorphism group of
regular maps appears already in the Kourovka Notebook [25] in 1980 and has
naturally extended recently to that of regular and chiral polytopes. The aim of this
section is to survey the state of the art with respect to abstract polytopes and almost
simple groups, including what is known for regular maps.

We, however, start with a simple but important proposition about regular
polytopes and simple groups.

Proposition 2. If the automorphism group of an abstract regular polytope P is a
simple group G, then P cannot be a directly regular polytope.

Proof. Suppose otherwise. Then the rotational subgroup � C.P/ has index 2 in
� .P/ D G. This implies that � C.P/ is a normal subgroup of G, contradicting
the fact that G is a simple group.
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3.1 Regular Maps and Almost Simple Groups

The first main results on regular maps with automorphism group An were obtained
by Conder in his doctoral thesis, published in [3, 4]. These were the first results
dealing with simple groups and regular maps. He proved that for every k > 6, all but
finitely manyAn are the automorphism group of a regular map of type f3; kg. In fact,
he also showed that all but few cases of symmetric groups can be generated by
three involutions, two of which commute. Some years later Sjerve and Cherkassoff
extended Conder’s results by showing in [32] that Sn is a group generated by three
involutions, two of which commute, provided that n 
 4.

During the 1990s several people studied different families of almost simple
groups in relation with regular maps. Jones and Silver (see [18]) took care of the
Suzuki simple groups Sz.q/ and showed that each of them acts as the automorphism
group of a regular map of type f4; 5g. In [32], Sjerve and Cherkassoff showed that,
except for few cases, the PSL.2; q/ and PGL.2; q/ groups can be generated by
three involutions, two of which commute.

Some years later, Nuzhin focused his attention on all simple groups except the
sporadic groups (see [29] and its references). He completely determined which of
them are automorphisms groups of regular maps. The sporadic groups were handled
by Abasheec and Norton (see [26]).

Putting together the results of all of them, we now have the following theorem.

Theorem 2. All finite simple groups are automorphism groups of regular maps
except the following ones: A6 D L2.9/, A7, A8, L2.7/, L3.q/, L4.2n/, U4.2n/,
U3.q/, PSp4.3/, M11, M22, M23, McL.

3.2 Regular Polytopes and Almost Simple Groups

Although already in 1896, E. H. Moore gave in [28] a set of involutions of Sn that
corresponds to the .n � 1/-simplex, showing that for every n, there is a regular
polytope of rank n�1 whose automorphism group is Sn, the first results concerning
regular abstract polytopes (and not only regular maps or convex polytopes) and
almost simple groups are due to Leemans. In [20], he proved that if G D Sz.q/
with q ¤ 2 an odd power of 2, then all the abstract regular polytopes having G as
automorphism group are of rank 3 (and there exists at least one such polytope for
each value of q). Moreover, if Sz.q/ < G � Aut.Sz.q//, Leemans showed that G
is not a C-group and therefore that there cannot exist an abstract regular polytope
having G as automorphism group.

Leemans started the study of the Suzuki groups as automorphism groups of
regular polytopes as a result of previous work on abstract polytopes. In 2003,
Leemans and Hartley came to the conclusion that building atlases of polytopes
would help understand how polytopes arise in some families of groups. To this end
they made use of the computational software GAP and MAGMA [1].
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Hartley then decided to build an atlas of regular polytopes whose automorphism
group is a group of order less than 2,000, but not 1,024 nor 1,536 [13]. In parallel,
Leemans, together with Laurence Vauthier, built an atlas of such polytopes for all
groups G such that S � G � Aut.S/, with S a simple group in the Atlas of
Finite Groups, of order less than 900,000 [24]. More recently in [14], Hartley and
Alexander Hulpke classified all polytopes for the sporadic groups as large as the
Held group (of order 4,030,387,200), and very recently, Leemans and Mark Mixer
managed to compute all regular polytopes associated to Co3 [21].

These collections of data have permitted to state a series of conjectures. Many of
them are now proven. They have given rise to the study of several families of almost
simple groups in association with regular polytopes. In the remainder of this section
we survey this work.

In 2005, Leemans and Vauthier proved that if G Š PSL.2; q/ is such that
.G; f�0; : : : ; �n�1g/ is a string C-group, then n � 4. Not long after that, together
with Schulte, Leemans classified the rank 4 polytopes for groups PSL.2; q/
and PGL.2; q/ and showed that the highest rank is also 4 for the PGL.2; q/
groups. Finally, in 2010 Brooksbank and Vincinsky studied regular polytopes with
automorphism group G with PSL.3; q/ � G � PGL.3; q/. The known results
with respect to almost simple groups of PSL.n; q/ type can be summarized the
following theorem.

Theorem 3. 1. Let G Š PSL.2; q/. If P is a polytope of rank 4 on which G acts
regularly, then q D 11 or 19 [22].

2. Let G Š PGL.2; q/. If P is a polytope of rank 
 4 on which G acts regularly,
then n D 4 and q D 5 [23].

3. If PSL.3; q/ � G � PGL.3; q/, then G is not the automorphism group of an
abstract regular polytope [2].

We finally turn our attention to almost simple groups of alternating type and
their relation with abstract regular polytopes. As we pointed out before, Conder and
Sjerve and Cherkassoff studied these groups in relation with regular maps. More
recently Fernandes and Leemans studied the symmetric groups (see [10]), and then,
together with Mixer took care of the alternating groups (see [11] and [12]).

Among other things, they showed that whenever n ¤ 4, up to isomorphism,
the .n � 1/-simplex is the unique regular polytope of rank n with automorphism
group Sn. In Hartley’s atlas [13] we can see that for n D 4 there are three
regular polyhedra, namely the tetrahedron, the hemicube and the hemioctahedron.
Fernandes and Leemans furthermore showed that for n 
 7, up to isomorphism,
there exist exactly two regular polytopes of rank n�2 with automorphism group Sn,
whose Schläfli types are f4; 6; 3n�5g and f3n�5; 6; 4g, respectively and observe
that the condition n 
 7 is mandatory here. Indeed, there are four polytopes
of rank 4, of respective Schläfli symbols f3; 4; 4g, f3; 6; 4g, f4; 4; 4g and f4; 6; 4g
whose automorphism group is S6; there are four polytopes of rank 3, of respective
Schläfli symbols f4; 5g, f4; 6g, f5; 6g and f6; 6g whose automorphism group is S5.

Finally, they proved that there is no gap in the ranks of polytopes associated to Sn,
which can be stated as follows.
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Theorem 4 ([10]). For every positive integer r 
 3, there are but finitely many
groups Sn that are not automorphism groups of an abstract regular polytope of
rank r .

The results obtained for the symmetric groups by Fernandes and Leemans
permitted them to show that the group An, with n 
 7, is not the automorphism
group of an abstract regular polytope of rank n�2. In fact, together with Mixer (see
[11]), they showed that for each n … f3; 4; 5; 6; 7; 8; 11g, there is a rank b n�1

2
c string

C-group representation of the alternating groupAn, and conjecture that, for n 
 12,
the highest rank of a string C-group having An as automorphism group is b n�1

2
c.

Finally, they also proved the following theorem.

Theorem 5 ([12]). For each rank k 
 3, there is a regular k-polytope P
with automorphism group isomorphic to an alternating group An for some n. In
particular, for each even rank r 
 4, there is a regular polytope with Schläfli type
f10; 3r�2g and group isomorphic to A2rC1, and for each odd rank q 
 5, there is a
regular polytope with Schläfli type f10; 3q�4; 6; 4g and group isomorphic to A2qC3.

3.3 Chiral Polytopes and Almost Simple Groups

In contrast with regular polytopes, little is known with respect to chiral polytopes
whose automorphism group is an almost simple group.

Conder studied chiral maps associated with symmetric and alternating groups
[3,4], as well as those associated with then Matthieu groups [5]. Jones computed the
symmetric genus of maps having a Suzuki [18] or a Ree [17] group as automorphism
group, and gave families of chiral maps associated with such groups. Recently,
Conder, Potočnik and Širáň [7] studied regular and chiral maps and hypermaps with
automorphism group PSL.2; q/ and PGL.2; q/, for every prime power q.

For higher ranks, examples of chiral polytopes of rank 4, having PSL.2; pr/,
for p Š 1 (mod 8), and p Š 1 (mod 12), were constructed by Schulte and
Weiss in [31]. Recently, Conder, Hubard, O’Reilly and Pellicer (see [8, 9]) have
constructed examples of rank 4 chiral polytopes for all but finitely many symmetric
and alternating groups. They also found, for each n 
 5, an example of a rank n
chiral polytope with automorphism group isomorphic to either a symmetric or an
alternating group.

On the other hand, some experimental data has been obtained. Hartley, Hubard
and Leemans [15] used MAGMA to produce an Atlas of Chiral Polytopes from
Almost Simple Groups, where they compute, for each almost simple group G such
that S � G � Aut.S/, where S is a simple group of order less than 900,000 listed
in the Atlas of Finite Groups, up to isomorphism, all the possible chiral polytopes
that have G as their automorphism group.
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4 Suzuki Groups

The aim of the remainder of this paper is to prove similar results as in [20], but in the
chiral case. In this section we give a brief introduction to Suzuki groups and state
here some properties of them that we shall make use of in the following sections.
We refer the reader to [33] for the basic properties of Suzuki groups.

In the projective 3-space over the finite field GF .q/, for q D 22eC1, PG.3; q/, an
ovoid D is a set of q2 C 1 points satisfying the following axioms:

1. No three points are collinear;
2. For everyp 2 D, there exists a hyperplaneE of PG.3; q/ such thatD\E D fpg;
3. For each such p 2 D and E , for every line ` of PG.3; q/ through p that is not

contained in E , there exists a point p0 2 D \ ` with p0 ¤ p.

For instance, quadrics are ovoids in PG.3; q/. Jacques Tits exhibited a class
of ovoids that are not quadrics, but occur as the fixed points of an involutary
automorphism ofPSp.4; q/ [34]. Those ovoids are now called Tits ovoids or Suzuki
ovoids. The Suzuki group Sz.q/ is defined as the subgroup of the collineations of
PG.3; q/ that leave a Suzuki-Tits ovoid invariant. Tits showed that the choice of
different Suzuki-Tits ovoids D (of the same projective space PG.3; q/) gives rise
to conjugate groups in the group of all collineations of PG.3; q/. Thus, for each
q D 22eC1, where e is a positive integer, Sz.q/ is a well defined group. Suzuki [33]
showed that such a group is simple.

Throughout this paper we shall use several properties of Suzuki groups, their
subgroups and their elements. Given q D 22eC1, the maximal subgroups of Sz.q/
have one of the following structures:

.Eq O� Eq/ W Cq�1; D2.q�1/; C˛q W C4; Cˇq W C4; Sz.q0/;

where the symbol O� stands for a non-split extension, ˛q WD q C p
2q C 1, ˇq WD

q �p
2q C 1 and q0 D 22e

0C1 such that 2e0 C 1 divides 2e C 1. Note that D2.q�1/
is the dihedral group of order 2.q � 1/. Clearly, if 2e C 1 is a prime number, then
Sz.q/ has no proper subgroups of Suzuki type. In such case, the elements of Sz.q/
have order 2, 4 or d , where d is a divisor of either q � 1; ˛q or ˇq .

The following proposition encapsulates results about involutions and elements of
order 4 in Suzuki groups and their action on ovoids that we shall need for this paper.

Proposition 3. LetD be an ovoid and let Sz.q/, for q D 22eC1 be its Suzuki group.
Then:

1. If � is an involution of Sz.q/, then � stabilizes exactly one point ofD. The other
q2 points of D are divided into q sets of q points and � stabilizes each of them,
switching their elements pairwise.

2. All involutions are in the same conjugacy class of Sz.q/.
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3. Aut.Sz.q// Š Sz.q/ W C2eC1; hence, for every involution � of Aut.Sz.q// we
have that � 2 Sz.q/. In particular, if Sz.q/ < G � Aut.Sz.q//, then G cannot
be generated by involutions.

4. There is a unique conjugacy class of subgroups C4.
5. There are two conjugacy classes of elements of order 4 in Sz.q/. An element g

of order 4 and it inverse g�1 are never in the same conjugacy class.

Each maximal subgroup of Sz.q/ can be described as the stabilizer of a set of
point on the ovoid. Namely, a group .Eq O�Eq/ W Cq�1 is the stabilizer of one point of
the ovoid.D2.q�1/ is the stabilizer of a pair of points, while the pointwise stabilizer
of two points is either Cq�1 or �. Hence, if the pointwise stabilizer of two points is
a Cq�1, this is the intersection of a .Eq O� Eq/ W Cq�1 and a D2.q�1/. The pointwise
stabilizer of three different points is �. Subgroups C˛q W C4 and Cˇq W C4 are the
stabilizers of curves with ˛q or ˇq points, respectively. Finally, subgroups of Suzuki
type are stabilizers of sub-ovoids.

Every Cq�1 is the pointwise stabilizer of two points and hence the intersection of
any two Cq�1’s is identity (as otherwise it would stabilize too many things).

The intersection of D2.q�1/ and C˛q W C4 (or Cˇq W C4) is either C2 or �. The
intersection of C˛q W C4 and Cˇq W C4 is either C4, C2 or �.

The structure of the subgroups of a Suzuki group Sz.q/ implies the following
lemma that is closely related with regular abstract polytopes.

Lemma 2. Let �0; �2 be two commuting involutions of a Suzuki group Sz.q/, where
q D 22eC1. If � 2 Sz.q/ is an involution that does not commute with �0, then
h�0; �; �2i is a group of Suzuki type. In particular if 2e C 1 is a prime number, then
h�0; �; �2i D Sz.q/.

The .Eq O� Eq/ W Cq�1 Subgroups

Let us now take a look at a group G D .Eq O� Eq/ W Cq�1 � Sz.q/. It has q2.q � 1/
elements and, as we said before, it is the stabilizer of a point, say U .

The elements of this group are divided into three types: the involutions, the
elements of order 4, and the elements of odd order. Note that the elements of odd
order are all inside some Cq�1 and hence they fix at least two points. Furthermore,
the intersection of any two such Cq�1 is the identity, as such an intersection fixes
three points.

Now, any such Cq�1 stabilizes two points, one of them being U . Since the ovoid
has q2 � 1 points, the subgroups Cq�1 are in one to one correspondence with the
other q2 points of the ovoid. And since each Cq�1 has q � 2 elements different than
identity, then there are q2.q � 2/ elements of odd order.

The remaining q2�1 elements are of order 2 or 4. More precisely, there are q�1
involutions and q2 � q elements of order 4.
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5 Regular and Chiral Polyhedra and Almost Simple Groups
of Suzuki Type

Recently Leemans [20] showed that there exist no regular polyhedra with automor-
phism group G, where Sz.q/ < G � Aut.Sz.q// D Sz.q/ W C2eC1. In [18]
Jones and Silver studied the symmetric genus of maps having Suzuki simple groups
as automorphism groups. They constructed, for each Sz.q/, with q D 22eC1 with
e a positive integer, a rotary map of type f4; 5g and showed that all such maps
are indeed chiral. We now give, for each q D 22eC1 with e a positive integer,
a construction for a chiral polyhedron with automorphism group G, for certain
Sz.q/ < G � Aut.Sz.q//.

Theorem 6. Let G WD Sz.q/ W h�i with � an outer automorphism of order d j
2e C 1. There exists at least one chiral polyhedron having G as automorphism
group.

Proof. The group G is the semi-direct product H Ì K , where of G FH Š Sz.q/
and K WD h�i is a cyclic group. Its elements may be written as pairs .k; h/ with
k 2 K and h 2 H . The product is defined by .k1; h1/  .k2; h2/ D .k1k2; h

k2
1 h2/.

We denote by 1G , 1K and 1H respectively the identity elements of G, K and H .
Take the map of Jones and Silver. It is a map of type f4; 5g generated by some

elements �1 and �2 ofH . The element of order 4 is conjugate to an element of order
4 of Sz.2/ � H that is obviously centralised by � as Sz.2/ has all its matrices
with entries in GF.2/. Therefore, we may assume that the map of type f4; 5g is
obtained by some generators �1 and �2 such that �1 is an element of order 4 of
Sz.2/ and �2 is an element of order 5. Take �2 D .�; �2/. Now, let �1 D .��1; �1/.
Clearly, �1�2 D .1K; �

�
1 �2/ D .1K; �/ is an involution of G. The group h�1; �2i

contains .1K; �/, .�; 1H / and also .1K; �2/, hence it is G itself. It remains to check
that h�1i \ h�2i D 1G . We have that h�2i D h.1K; �2/i � h.�; 1H /i. Moreover, by
construction, h.1K; �1/i\h.1K; �2/i D 1G . So the only possibility for h�1i\h�2i ¤
1G is to have .��1; �1/k D .�; 1H /

l for some integers k and l . But that requires
both sides to be the identity which in not the case. Therefore, we can conclude that
f�1; �2g gives us a chiral polyhedron for G. Indeed, this cannot be regular as it is
shown in [20] that G cannot be generated by three involutions.

5.1 Number of Non-isomorphic Regular and Chiral Polyhedra
Associated to S z.q/

The question “Are there more regular or chiral polytopes?” has been a discussion
topic in the last few years. Although intuition hints us to think that there are more
chiral polytopes, experimental data for maps tells us otherwise. In fact, for almost
every genus g, with g � 200, Conder’s database [6] shows that there are more
regular than chiral maps on a surface of genus g.
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In this section we count, for each q D 22eC1, the number of regular and chiral
polyhedra that have Sz.q/ as its automorphism group. We then conclude that every
Suzuki simple group Sz.q/ is the automorphism group of more chiral than regular
polyhedra.

In [19], Kiefer and Leemans determined, up to isomorphism and duality, the
number of abstract regular polyhedra having a Suzuki groupSz.q/ as automorphism
group. None of these are self-dual and therefore, the number up to isomorphism is
also known. It suffices to multiply by 2 the number given by Kiefer and Leemans.

Their computation may be greatly simplified by observing that outer automor-
phisms give orbits of maximum possible size in Sz.q/. Therefore, we can first count
possibilities up to conjugacy and that is done in [19]. They obtain .q � 2/.q � 1/
possible triples of involutions, two of which commute, and that generate a Suzuki
group. If 2e C 1 is not a prime, Sz.q/ has subgroups of Suzuki type. Therefore, to
obtain the number of polyhedra up to isomorphism and duality, we have to remove
those triples that generate only a sub-Suzuki group. We then get the following
formula.

P

nj2eC1 �. 2eC1n /.2n � 1/.2n � 2/
2e C 1

:

Up to isomorphism we get the same number multiplied by 2, that is

2 �
P

nj2eC1 �. 2eC1n /.2n � 1/.2n � 2/
2e C 1

:

To count the number of regular or chiral polyhedra for a Suzuki group, we first
pick an involution � (there is a unique choice up to isomorphism and duality) and
then we look for elements � 2 Sz.q/ such that h�; �i D Sz.q/. First we just ask
� and � to generate a Suzuki group. The elements � that do not generate a Suzuki
group with � generate a subgroup of one ofEq .̂Eq W .q�1/,D2.q�1/, ˛q W 4 or ˇq W 4.
We can count how many such elements there are. We get the following result.

Lemma 3. Given an involution � 2 Sz.q/, there are q2.4q � 3/ elements � such
that h�; �i is not a Suzuki group.

Proof. The possible orders of elements of a Suzuki group are 1, 2, 4 or divisors of
q � 1, ˛q or ˇq . There are .q2 C 1/.q � 1/ involutions that, taken with � will only
generate a dihedral group.

The elements of order d j q � 1 are either in a Eq .̂Eq W .q � 1/ or a D2.q�1/
containing � . Simple computations show that in the first case, we have q3 � 2q2

such elements and in the second case, we have q3=2� q2 such elements.
Similarly, by means of elementary computations, one can show that there are

q2=4.˛q C ˇq � 2/ D q3=2 elements of order d j ˛qˇq , and there are q2=2.˛q C
ˇq � 2/C q2 � q D q3 C q2 � q elements of order 4.
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It remains to sum these numbers together and add 1 for the identity element. This
gives

1C .q2C 1/.q � 1/C q3 � 2q2C q3=2� q2C q3=2C q3C q2 � q D q2.4q � 3/:

The previous result leads to the following corollary.

Corollary 1. Given an involution � 2 Sz.q/, there are q4.q�1/�q2.3.q�1/C1/
elements � such that h�; �i is a Suzuki group.

Proof. The group Sz.q/ has .q2C 1/q2.q � 1/ elements. Lemma 3 states that there
are q2.4q � 3/ elements that, together with � do not generate G. Hence, there are
.q2 C 1/q2.q � 1/� q2.4q � 3/ that do.

Lemma 4. Up to conjugacy, there are q2.q � 1/ � .3.q � 1/C 1/ pairs .�; �/ of
elements of Sz.q/ such that � is an involution and h�; �i is a Suzuki group.

Proof. By Corollary 1, for a given � , there are q4.q�1/�q2.3.q�1/C1/ elements
� such that h�; �i is a Suzuki group. As the centralizer of � in G is of order q2

and does not stabilize any of the �’s, the number of pairs .�; �/ that are pairwise

nonconjugate in G is q4.q�1/�q2.3.q�1/C1/
q2

.

Some of these pairs of elements generate a sub-Suzuki group. Again, by Moebius
inversion, we get the following Theorem.

Theorem 7. Up to isomorphism, there are

P

nj2eC1 �. 2eC1n /.22n C 2n � 1/.2n � 2/
2e C 1

pairs .�; �/ of elements of Sz.q/ such that � is an involution and h�; �i D Sz.q/.

Proof. This is again a simple application of Moebius inversion.

Now, this result gives us either chiral polytopes or rotational subgroups of
directly regular polytopes. However, Lemma 2 implies that all these polytopes are
indeed chiral.

This construction may be applied to each abstract regular polytope of Sz.q/ to
construct an abstract regular polytope of Sz.q/ � 2 whose rotational subgroup is
Sz.q/. So, out of the

P

nj2eC1 �. 2eC1n /.22n C 2n � 1/.2n � 2/
2e C 1

pairs that we get, there are

P

nj2eC1 �. 2eC1n /.2n � 1/.2n � 2/
2e C 1
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pairs that give the rotational subgroup of a regular polytope of Sz.q/ � 2. All the
other ones give chiral polytopes. Subtracting the pairs that give rotational subgroups,
we get the following result.

Theorem 8. Up to isomorphism and duality, there are

P

nj2eC1 �. 2eC1n /.22n/.2n � 2/
2e C 1

chiral polyhedra whose automorphism group is the group Sz.q/.

We can now compare the numbers obtained in this section. It is clear that

P

nj2eC1 �. 2eC1n /.22n/.2n � 2/
2e C 1

>

P

nj2eC1 �. 2eC1n /.2n � 1/.2n � 2/
2e C 1

and therefore we may conclude that Suzuki groups are much more chiral than
regular. Given a Suzuki group Sz.q/, let f .q/ and g.q/ be the number of regular
and chiral polyhedra, respectively, that Sz.q/ has, up to isomorphism and duality.
From the above discussion we observe that g.q/ D O.q � f .q//.

6 Almost Simple Groups of Suzuki Type and Chiral
Polytopes

This section provides the first known results relating a family of almost simple
groups and chiral polytopes by analysing almost simple groups of Suzuki type in
relation with chiral polytopes.

Our aim is to construct chiral polytopes whose automorphism groups are (almost)
simple groups of Suzuki type. To this end, we need to find generators �1; : : : ; �n�1
(for some appropriate n) of the group that satisfy the relations (3) and (4) as well
as some intersection condition. In this way we would be constructing a chiral or
directly regular polytope, whose rotational subgroup is the prescribed group. We
start this section by showing that whenever we can find the required generators of a
Suzuki group Sz.q/, the polytope constructed is always chiral.

Proposition 4. A Suzuki group Sz.q/ (with q D 22eC1) is not the rotational
subgroup of a directly regular polytope.

Proof. We prove this proposition by contradiction. Suppose Sz.q/ is the rotational
subgroup of a directly regular polytope P of rank n. Then, there exist �1; : : : �n�1
that generate Sz.q/ and satisfy conditions (3) and (4), as well as the appropriate
intersection condition. Furthermore, there exists an involutory group automorphism
� W Sz.q/ ! Sz.q/ such that �.�1/ D ��11 , �.�2/ D �21 �2, and �.�i / D �i for
3 � i � n�1. Hence, � .P/ D hSz.q/; �i � Aut.Sz.q// D Sz.q/ W C2eC1, so that
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� .P/ D Sz.q/ W Ck , where k > 2 is an integer. We then get a contradiction as the
automorphism group of a regular polytope can always be generated by involutions.

In the following two theorems we restrict the rank of a chiral polytope whose
automorphism group is an almost simple group of Suzuki type.

Theorem 9. Let G Š Sz.q/ with q D 22eC1 where e is a strictly positive integer.
Then, the rank of a chiral polytope having G as automorphism group is at most 4.

Proof. Let P be a chiral polytope such that � .P/ D Sz.q/ and suppose the rank
is n 
 5. By Proposition 1, the k-faces or P must be directly regular, for every
k � n � 2. The fact that n 
 5 implies in particular that all the 3-faces of P are
directly regular.

Let Q be a 3-face of P and let �0; �1; �2 2 Sz.q/ be the distinguished generators
of � .Q/. Lemma 2 implies that h�0; �1; �2i is of Suzuki type. However this would
imply that Q is a directly regular polytope whose group is a simple group, which is
a contradiction to Proposition 2. Therefore n � 4.

Theorem 10. Let Sz.q/ < G � Aut.Sz.q//; with q D 22eC1 where e is a strictly
positive integer. ThenG is not the automorphism group of a regular polytope of rank

 3 or a chiral polytope of rank 
 4.

Proof. Since all the involutions ofG are involutions of Sz.q/, the groupG cannot be
generated by involutions. In contrast, the automorphism group of regular polytopes
as well as that of chiral polytopes of rank 
 4 can be always generated by
involutions.

Observe that the regular part of this result was already proven in [20].

6.1 Rank 4 Chiral Polytopes from S z.q/

Theorem 9 permits us to restrict ourselves to ranks 3 and 4. In this section we
give restrictions to the possible Schläfli types that a chiral 4-polytope with an
automorphism group of Suzuki type can have. We first show that no entry in the
Schläfli type may be equal to 4.

Proposition 5. Let P be a chiral 4-polytope of Schläfli type fp1; p2; p3g such that
the automorphism group � .P/ is a Suzuki group Sz.q/. Then pi ¤ 4, for i D
1; 2; 3.

Proof. By Lemma 1 and Proposition 3 it is immediate to see that p1; p3 ¤ 4.
Suppose that p2 D 4. That is, the order of �2 is 4. The group C4 WD h�2i is

then contained in Sz.q0/ WD h�1; �2i and Sz.q00/ WD h�2; �3i. Let us show that any
subgroup C4 lying in the intersection Sz.q0/ \ Sz.q00/ is necessarily contained in a
C4 � C2 also lying in Sz.q0/ \ Sz.q00/, contradicting the intersection condition.

There are subgroups C4 � C2 in Sz.q/. Their normalizer NSz.q/.C4 � C2/ is of
order 4q. The normalizer of a C4 in Sz.q/ is, on the other hand, of order 2q.
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Suppose q0 ¤ q00 and count the triplesH 
 C4 � J whereH and J are isomorphic
to Sz.q0/ and Sz.q00/ respectively. There are jSz.q/j

jSz.q0/j � jSz.q0/j
j2q0j � q

q0
D q�jSz.q/j

2qq00
such

triples. Now, count the triples H 
 C4 � C2 � J where H and J are isomorphic
to Sz.q0/ and Sz.q00/ respectively. There are jSz.q/j

jSz.q0/j � jSz.q0/j
j4q0j � q

q0
D1=2 � q�jSz.q/j

2qq00
such

triples. But each C4 � C2 contains exactly two C4. Hence if Sz.q0/\ Sz.q00/ 
 C4,
their intersection must contain a C4 � C2 that contains the C4. Suppose now that
q0 D q00 and count the triples H 
 C4 � J where H and J are isomorphic
to Sz.q0/. There are jSz.q/j

jSz.q0/j � jSz.q0/j
j2q0 j � . q

q0
� 1/ such triples. Now, count the triples

H 
 C4 � C2 � J where H and J are isomorphic to Sz.q0/ and H ¤ J . Again,
there are jSz.q/j

jSz.q0/j � jSz.q0/j
j4q0j � . q

q0
� 1/ such triples. Hence if Sz.q0/\Sz.q00/ 
 C4, their

intersection must also contain a C4 � C2 that contains the C4.

Recall that ˛q WD q Cp
2q C 1 and ˇq WD q �p

2q C 1.

Proposition 6. LetG D Sz.q/, with q D 22eC1 and 2eC 1 a prime number, be the
automorphism group of a chiral 4-polytope P . Let �1; �2; �3 be the distinguished
generators of � .P/ D G with respect to some base flag. Then, the order of �i
cannot divide ˛q nor ˇq .

Proof. We shall show this by analyzing the subgroup H � G generated by �1 and
�2. Note that:

.�1�2/
2 D "I (7)

H D h�1; �2i ¤ GI (8)

h�1i \ h�2i D f"g;

and hence H is of even order.
Suppose that the order of �1, o.�1/, divides ˛q . For (8) to be satisfied, H �

C˛q W C4 and hence the order of �2, o.�2/, must be either 4 or a divisor of ˛q . Since
˛q is odd, if o.�2/ divides ˛q , then H � C˛q and (7) is not satisfied. Therefore
o.�2/ D 4, a contradiction with Proposition 5. Hence o.�1/ cannot divide ˛q .
A similar argument can be used to show that o.�1/ cannot divide ˇq .

Note that in the above argument we only used the structure of C˛q W C4 < Sz.q/;
as well as (7) and (8). Since the conditions (7) and (8) are symmetric with respect
to �1 and �2, a similar argument as the one above shows that o.�2/ does not divide
either ˛q nor ˇq .

Using the dual of P we can conclude that the order of �3 does not divide either
˛q nor ˇq .

Proposition 7. Let P be a chiral 4-polytope, with Schläfli type fp1; p2; p3g and
such that the automorphism group � .P/ is a Suzuki group Sz.q/. If p1 and p2 are
divisors of q � 1 then h�1; �2i is a Suzuki group Sz.q0/ where q0a D q for some
integer a > 1.
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Proof. By Proposition 5, all the pi ’s have to be of odd order. Suppose that p1 and
p2 divide q�1. Let �1; �2; �3 be the distinguished generators of � .P/ with respect
to some base flag ˚ . Then, for each i D 1; 2, the generator �i is an element of
odd order that lies within a Cq�1; that is, h�i i � Cq�1 D StabSz.q/.xi ; yi /, for
some points xi ; yi of the ovoid. Therefore h�i i � StabSz.q/.xi / \ StabSz.q/.yi / \
StabSz.q/fxi ; yi g � EqO�Eq W Cq�1 \D2.q�1/.

Note that since P is of rank 4, the elements �1 and �2 do not generate the entire
group Sz.q/; let h�1; �2i < Sz.q/. Then h�1; �2i lies within a maximal subgroupH
of Sz.q/. We now prove that H has to be isomorphic to some Sz.q0/.

Suppose that H Š D2.q�1/. Then, since �1�2 is an involution, h�1; �2i D D2k ,
for some kjq � 1. But since both �1 and �2 are of odd order, then �1 2 Ck < D2k

and �2 2 Ck < D2k , implying that D2k D h�1; �2i � Ck < D2k , which is a
contradiction.

Suppose now that h�1; �2i � EqO�Eq W Cq�1.
Then �1 and �2 fix a point implying that without loss of generality we can assume

that x1 D x2.
Now, since ��1�23 D ��13 ,

��13 .x1/ D �1�2�3.x1/I
��23 .x1/ D ��13 �1�2�3.x1/:

Since �1�2 is of order 2, then so is ��13 �1�2�3, implying that ��43 .x1/ D x1.
As �3 is of odd order, it necessarily fixes x1 as well. Hence, p3 must divide q � 1
and h�1; �2; �3i � EqO�Eq W Cq�1, implying that � .P/ ¤ Sz.q/, which is a
contradiction. Therefore, h�1; �2i must be a group of Suzuki type.

Proposition 8. Let P be a chiral 4-polytope, of Schläfli type fp1; p2; p3g and such
that the automorphism group � .P/ is a Suzuki group Sz.q/ for some q D 22eC1.
Then, 2e C 1 is not a prime.

Proof. Suppose 2e C 1 is a prime. By Proposition 5 the pi ’s are not 4, while by
Proposition 6, they do not divide q2 C 1. So they are all divisors of q � 1. Suppose
that p1, p2 and p3 all divide q� 1. Proposition 7 then shows that �1 and �2 generate
a Suzuki group and as 2e C 1 is prime, we have h�1; �2i D Sz.q/, a contradiction.

The following corollary is a direct consequence of Theorem 9 and Proposition 8.

Corollary 2. Let G Š Sz.q/ with q D 22eC1 and 2e C 1 prime. Then, the highest
rank of a chiral polytope having G as automorphism group is 3.

Lemma 5. Let P be a chiral 4-polytope, of Schläfli type fp1; p2; p3g and such that
the automorphism group � .P/ is a Suzuki group Sz.q/. If p2 is a divisor of q2C1,
then h�1; �2i Š h�2; �3i Š Sz.q0/ for some q0 such that q D q0m with m an odd
integer.

Proof. Suppose p2 is a divisor of q2C 1. Then it divides one of ˛q or ˇq , say �q . In
order to satisfy the intersection condition, we must have h�1; �2i \ h�2; �3i D h�2i.
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Also, we know that H WD h�1; �2i Š Sz.q0/ and J WD h�2; �3i Š Sz.q00/ where q0
and q00 may be equal. We now prove that if two non isomorphic sub-Suzuki groups
both contain a given cyclic group Cd of order a divisor of q2 C 1, they must have at
least a subgroup of order 4d in common.

Suppose thus that q0 ¤ q00. We count the number of triplesH > Cd W 4 < J with
H ¤ J . There are jSz.q/j

jSz.q0/j � jSz.q0/j
4d

� 1 D jSz.q/j
4d

such triples. Now, count the number

of triplesH > Cd < J with H ¤ J . There are jSz.q/j
jSz.q0/j � jSz.q0/j

4� 0q
� �q
� 00q

D jSz.q/j��q
4� 0q�

00

q
such

triples. But dDgcd.� 0q; � 00q /, for otherwise, there is a bigger cyclic group containing
Cd and contained inH \J . That implies that �qDd �m1 �m2 and � 0q� 00q D d2m1m2.
Hence �q

� 0q�
00

q
D 1
d

. Therefore the number of triples H > Cd W 4 < J is equal to the

number of triplesH > Cd < J and henceH \J 
 Cd W 4. This is in contradiction
with the intersection condition.

Lemma 6. Let P be a chiral 4-polytope, of Schläfli type fp1; p2; p3g and such that
the automorphism group � .P/ is a Suzuki group Sz.q/. If p2 is a divisor of q � 1,
then h�1; �2i Š h�2; �3i Š Sz.q0/ for some q0 such that q D q0m with m an odd
integer.

Proof. Let p2 j q � 1. As in the previous Lemma, H WD h�1; �2i Š Sz.q0/ and
J WD h�2; �3i Š Sz.q00/ where q0 and q00 may be equal. Suppose that q0 ¤ q00.
We count the number of triples H > Cd W 2 < J with H ¤ J . There are jSz.q/j

jSz.q0/j �
jSz.q0/j
2d

� 1 D jSz.q/j
2d

such triples. Now, count the number of triples H > Cd < J

with H ¤ J . There are jSz.q/j
jSz.q0/j � jSz.q0/j

2.q0�1/ � q�1
q00�1 D jSz.q/j�.q�1/

2.q0�1/.q00�1/ such triples. But
d D gcd.q0�1; q00�1/, for otherwise, there is a bigger cyclic group containingCd
and contained inH \J . That implies that q�1 D d �m1 �m2 and .q0�1/.q00�1/ D
d2m1m2. Hence .q�1/

.q0�1/.q00�1/ D 1
d

. Therefore the number of triplesH > Cd W 2 < J
is equal to the number of triples H > Cd < J and hence H \ J 
 Cd W 2. This is
in contradiction with the intersection condition.

Corollary 3. Let P be a chiral 4-polytope, of Schläfli type fp1; p2; p3g and such
that the automorphism group � .P/ is a Suzuki group Sz.q/. Then h�1; �2i Š
h�2; �3i Š Sz.q0/ for some q0 such that q D q0m with m an odd integer.

Proof. This is just a combination of Proposition 5, Lemmas 5 and 6.

By the above corollary, if rank 4 polytopes exist for some Suzuki group Sz.q/, it
is sufficient for it to have one conjugacy class of sub-Suzuki groups as h�1�2i and
h�2; �3i must be isomorphic sub-Suzuki groups. Hence, the smallest Suzuki group
that has sub-Suzuki groups, that is Sz.29/, is a good case to consider when trying
to construct a rank 4 chiral polytope. Computations with Sz.29/ where we tried to
extend each chiral polyhedron of Sz.23/ to a chiral polytope of rank 4 of Sz.29/
showed us that this was impossible. Indeed, when �1 and �2 are chosen in Sz.29/
in such a way that �1�2 is an involution and these two elements generate a sub-
Suzuki group, it is not possible to find a �3 that generates a sub-Suzuki group with
�2 in Sz.29/ and such that both �1�2�3 and �2�3 are involutions. Indeed, adding
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a third generator �3 satisfying .�1�2�3/2 D .�2�3/
2 D � always ended up having

h�2; �3i D Sz.29/. We have a strong feeling that this will be the case in general.
This leads us to conclude this paper with the following conjecture.

Conjecture 1. Let Sz.q/ � G � Aut.Sz.q// with q D 22eC1 where e is a strictly
positive integer. Then, the rank of any chiral polytope having G as automorphism
group is 3.

Acknowledgements We would like to thank the Fields Institute for the support we received during
the Discrete Geometry and Applications Thematic Program, part of this work was done when
the authors visited the Institute. We also gratefully acknowledge financial support of “PAPIIT
– México (Grant IN106811)” the “Fonds David et Alice Van Buuren” and the “Communauté
Française de Belgique – Action de Recherche Concertée” for this project. Finally, we thank the
referee for the careful reading of our paper and the suggestions to improve this paper.

References

1. Bosma, W., Cannon, C., Playoust, C.: The Magma algebra system I: the user language. J. Symb.
Comput. 24, 235–265 (1997)

2. Brooksbank, P.A., Vicinsky, D.A.: Three-dimensional classical groups acting on polytopes.
Discret. Comput. Geom. 44(3), 654–659 (2010)

3. Conder, M.D.E.: Generators for alternating and symmetric groups. J. Lond. Math. Soc. (2),
22(1), 75–86 (1980)

4. Conder, M.D.E.: More on generators for alternating and symmetric groups. Quart. J. Math.
Oxf. Ser. (2), 32(126), 137–163 (1981)

5. Conder, M.D.E.: The symmetric genus of the Mathieu groups. Bull. Lond. Math. Soc. 23,
445–453 (1991)

6. Conder, M.D.E.: Conder’s webpage. http://www.math.auckland.ac.nz/~conder/
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Globally Linked Pairs of Vertices in Rigid
Frameworks

Bill Jackson, Tibor Jordán, and Zoltán Szabadka

Abstract A 2-dimensional framework .G; p/ is a graph G D .V;E/ together with
a map p W V ! R

2. We consider the framework to be a straight line realization of
G in R

2. Two realizations of G are equivalent if the corresponding edges in the two
frameworks have the same length. A pair of vertices fu; vg is globally linked in G if
the distance between the points corresponding to u and v is the same in all pairs of
equivalent generic realizations of G.

In this paper we extend our previous results on globally linked pairs and complete
the characterization of globally linked pairs in minimally rigid graphs. We also
show that the Henneberg 1-extension operation on a non-redundant edge preserves
the property of being not globally linked, which can be used to identify globally
linked pairs in broader families of graphs. We prove that if .G; p/ is generic then
the set of globally linked pairs does not change if we perturb the coordinates
slightly. Finally, we investigate when we can choose a non-redundant edge e of
G and then continuously deform a generic realization of G � e to obtain equivalent
generic realizations of G in which the distances between a given pair of vertices are
different.
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Keywords Global rigidity • Rigid framework • Bar-and-joint framework •
Globally linked pair • Minimally rigid graph

Subject Classifications: 52C25, 05C10

1 Introduction

We shall consider finite graphs without loops, multiple edges or isolated vertices.
A d -dimensional framework is a pair .G; p/, where G D .V;E/ is a graph and p
is a map from V to R

d . We consider the framework to be a straight line realization
of G in R

d . Two frameworks .G; p/ and .G; q/ are equivalent if jjp.u/� p.v/jj D
jjq.u/� q.v/jj holds for all pairs u; v with uv 2 E , where jj:jj denotes the Euclidean
norm in R

d . Frameworks .G; p/, .G; q/ are congruent if jjp.u/�p.v/jj D jjq.u/�
q.v/jj holds for all pairs u; v with u; v 2 V . This is the same as saying that .G; q/
can be obtained from .G; p/ by an isometry of Rd .

We say that .G; p/ is globally rigid if every framework which is equivalent to
.G; p/ is congruent to .G; p/. The framework .G; p/ is rigid if there exists an
� > 0 such that, if .G; q/ is equivalent to .G; p/ and jjp.u/ � q.u/jj < � for all
v 2 V , then .G; q/ is congruent to .G; p/. Intuitively, this means that if we think of
a d -dimensional framework .G; p/ as a collection of bars and joints where points
correspond to joints and each edge to a rigid bar joining its end-points, then the
framework is rigid if it has no non-trivial continuous deformations (see [9], [28,
Section 3.2]). It seems to be a hard problem to decide if a given framework is rigid
or globally rigid. Indeed Saxe [22] showed that it is NP-hard to decide if even a
1-dimensional framework is globally rigid and Abbot [1] showed that the rigidity
problem is NP-hard for 2-dimensional frameworks. These problems become more
tractable, however, if we consider generic frameworks i.e. frameworks in which
there are no algebraic dependencies between the coordinates of the vertices.

It is known, see [28], that the rigidity of frameworks in R
d is a generic property,

that is, the rigidity of .G; p/ depends only on the graph G and not the particular
realization p, if .G; p/ is generic. We say that the graph G is rigid in R

d if every
(or equivalently, if some) generic realization of G in R

d is rigid. The problem of
characterizing when a graph is rigid in R

d has been solved for d D 1; 2 (and is a
major open problem for d 
 3). See Sect. 2 for more details.

A similar situation holds for global rigidity: the problem of characterizing when
a generic framework is globally rigid in R

d has also been solved for d D 1; 2.
A 1-dimensional generic framework .G; p/ is globally rigid if and only if either G
is the complete graph on two vertices or G is 2-connected. The characterization for
d D 2 is as follows. We say that G is redundantly rigid in R

d if G � e is rigid in
R
d for all edges e of G.



Globally Linked Pairs of Vertices in Rigid Frameworks 179

v

u

x
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y
Fig. 1 A realization .G; p/
of a rigid graph G in R

2. The
pair fu; vg is globally linked
in .G; p/

Theorem 1 ([15]). Let .G; p/ be a 2-dimensional generic framework. Then .G; p/
is globally rigid if and only if either G is a complete graph on two or three vertices,
or G is 3-connected and redundantly rigid in R

2.

It follows that the global rigidity of d -dimensional frameworks is a generic
property when d D 1; 2. Gortler, Healy and Thurston [10] proved that this holds for
all d 
 1. We say that a graph G is globally rigid in R

d if every (or equivalently,
if some) generic realization of G in R

d is globally rigid. As for rigidity, it is
an important open problem to characterize globally rigid graphs when d 
 3.
Hendrickson [12] showed that redundant rigidity and .d C 1/-connectivity are
necessary conditions for all d 
 1 (provided G has at least d C 2 vertices) but
there are examples showing that these conditions are not sufficient when d 
 3,
see [5, 7].

We refer the reader to [11,16,28] for a detailed survey of rigid and globally rigid
d -dimensional frameworks and their applications.

We will consider properties of 2-dimensional generic frameworks which are
weaker than global rigidity. We assume henceforth that d D 2, unless specified
otherwise. A pair of vertices fu; vg in a framework .G; p/ is globally linked in .G; p/
if, in all equivalent frameworks .G; q/, we have jjp.u/�p.v/jj D jjq.u/�q.v/jj. The
pair fu; vg is globally linked in G if it is globally linked in all generic frameworks
.G; p/. Thus G is globally rigid if and only if all pairs of vertices of G are globally
linked. Unlike global rigidity, however, ‘global linkedness’ is not a generic property
in R

2. Figures 1 and 2 give an example of a pair of vertices in a rigid graphG which
is globally linked in one generic realization, but not in another.

We initiated the study of globally linked pairs in [18]. We next summarize the
main results and conjectures from this paper.

The Henneberg 1-extension operation [13] (on edge xy and vertex w) deletes an
edge xy from a graphH and adds a new vertex z and new edges zx; zy; zw for some
vertex w 2 V.H/� fx; yg. We showed that the 1-extension operation preserves the
property that a pair of vertices is globally linked as long asH � xy is rigid.

Theorem 2 ([18]). Let G;H be graphs such that G is obtained from H by a
1-extension on edge xy and vertex w. Suppose that H � xy is rigid and that fu; vg
is globally linked in H . Then fu; vg is globally linked in G.
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Fig. 2 Two equivalent realizations of the rigid graph G of Fig. 1, which show that the pair fu; vg
is not globally linked in G in R

2

Let H D .V;E/ be a graph and x; y 2 V . We use �H.x; y/ to denote the
maximum number of pairwise openly disjoint xy-paths in H . Note that if xy … E
then, by Menger’s theorem, �H .x; y/ is equal to the size of a smallest set S �
V.H/� fx; yg for which there is no xy-path in H � S .

Lemma 1 ([18]). Let .G; p/ be a generic framework, x; y 2 V.G/, xy … E.G/,
and suppose that �G.x; y/ � 2. Then fx; yg is not globally linked in .G; p/.

We used Theorem 2 and Lemma 1 to characterize globally linked pairs for the
family of M -connected graphs, i.e graphs whose 2-dimensional rigidity matroid is
connected (see Sect. 2 for formal definitions). This family lies strictly between the
families of globally rigid graphs and redundantly rigid graphs.

Theorem 3 ([18]). Let G D .V;E/ be anM -connected graph and x; y 2 V . Then
fx; yg is globally linked in G if and only if �G.x; y/ 
 3.

An M -component of a graph G is a maximal M -connected subgraph of G.
Theorem 3 has the following immediate corollary.

Corollary 1 ([18]). Let G D .V;E/ be a graph and x; y 2 V . If either xy 2 E ,
or there is an M -componentH of G with fx; yg � V.H/ and �H .x; y/ 
 3, then
fx; yg is globally linked in G.

We conjectured that the converse is also true.

Conjecture 2 ([18]). The pair fx; yg is globally linked in a graphG D .V;E/ if and
only if either xy 2 E or there is an M -component H of G with fx; yg � V.H/

and �H .x; y/ 
 3.

A redundantly rigid component of a graph G is a maximal redundantly rigid
subgraph of G (see Sect. 2). We showed in [18] that Conjecture 2 is equivalent to
the following pair of conjectures concerning the redundantly rigid components ofG.

Conjecture 3 ([18]). Suppose that fx; yg is a globally linked pair in a graph G.
Then there is a redundantly rigid componentR of G with fx; yg � V.R/.
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Conjecture 4 ([18]). Let G be a graph. Suppose that there is a redundantly rigid
component R of G with fx; yg � V.R/ and fx; yg is globally linked in G. Then
fx; yg is globally linked in R.

The Henneberg 0-extension operation on vertices x; y in a graph H adds a new
vertex z and new edges xz; yz to H . We showed that the 0-extension operation
preserves the property that a pair of vertices is not globally linked.

Lemma 2 ([18]). If fu; vg is not globally linked in H and G is a 0-extension of H
then fu; vg is not globally linked in G.

The purpose of this paper is to extend the results of [18] in several directions.
In Sect. 3 we prove that the 1-extension operation preserves the property that a
pair of vertices is not globally linked whenever it is applied to a non-redundant
edge in an arbitrary rigid graph. We use this to deduce that Conjecture 2 holds
for minimally rigid graphs. (Since the M -components of a minimally rigid graph
are all isomorphic to K2 this is equivalent to showing that a pair of vertices
in a minimally rigid graph is globally linked if and only if they are adjacent.)
We consider frameworks with the property that all equivalent frameworks are
infinitesimally rigid in Sect. 4. We show that for such a framework .G; p/, the
number of equivalent pairwise non-congruent frameworks does not increase if
we make small perturbations to the positions of its vertices. This extends a result
of Connelly and Whiteley [6] on infinitesimally rigid globally rigid frameworks.
We deduce that if p is generic, then the set of globally linked pairs in .G; p/
does not change if we make small perturbations to the positions of its vertices. In
Sect. 5 we investigate when we can choose a non-redundant edge e in a graph G
and then continuously deform a generic realization of G � e to obtain equivalent
generic realizations of G in which the distances between a given pair of vertices are
different.

2 Preliminaries

In this section we summarize the definitions and results from rigidity theory that we
shall use later.

2.1 The Rigidity Matroid

The rigidity matroid of a graphG is a matroid defined on the set of edges ofG which
reflects the rigidity properties of all generic realizations of G. We will need basic
definitions and results on this matroid to define M -connected graphs. The reader is
referred to [21] for basic definitions and results of matroid theory.
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Let .G; p/ be a realization of a graph G D .V;E/. The rigidity matrix of
the framework .G; p/ is the matrix R.G; p/ of size jEj � 2jV j, where, for each
edge vivj 2 E , in the row corresponding to vivj , the entries in the two columns
corresponding to vertices vi and vj contain the two coordinates of .p.vi / � p.vj //
and .p.vj / � p.vi //, respectively, and the remaining entries are zeros. See [28] for
more details. The rigidity matrix of .G; p/ defines the rigidity matroid of .G; p/ on
the ground set E by linear independence of rows of the rigidity matrix. Any two
generic frameworks .G; p/ and .G; q/ have the same rigidity matroid. We call this
the rigidity matroid R.G/ D .E; r/ of the graph G. We denote the rank of R.G/
by r.G/. Gluck characterized rigid graphs in terms of their rank.

Theorem 4 ([9]). LetG D .V;E/ be a graph. ThenG is rigid if and only if r.G/ D
2jV j � 3.

We say that a graph G D .V;E/ is M -independent if E is independent in
R.G/. Knowing when subgraphs of G are M -independent allows us to determine
the rank of G. This can be accomplished using the following characterization of
M -independent graphs due to Laman. For X � V , let EG.X/ denote the set, and
iG.X/ the number, of edges in G joining vertices in X .

Theorem 5 ([19]). A graph G D .V;E/ is M -independent if and only if iG.X/ �
2jX j � 3 for all X � V with jX j 
 2.

A graph G D .V;E/ is minimally rigid if G is rigid, but G � e is not rigid for
all e 2 E . Theorems 4 and 5 imply that G is minimally rigid if and only if G is
M -independent and jEj D 2jV j � 3. Note that, if G is rigid, then the edge sets of
the minimally rigid spanning subgraphs of G form the bases in the rigidity matroid
of G.

A pair of vertices fu; vg in a framework .G; p/ is linked in .G; p/ if there exists
an � > 0 such that, if .G; q/ is equivalent to .G; p/ and jjp.w/ � q.w/jj < � for all
w 2 V , then we have jjp.u/ � p.v/jj D jjq.u/ � q.v/jj. Using Theorems 4 and 5,
it can be seen that this is a generic property and that fu; vg is linked in a generic
framework .G; p/ if and only if G has a rigid subgraphH with fu; vg � V.H/.

A compact characterization of all linked pairs can be deduced as follows. We
define a rigid component of G to be a maximal rigid subgraph of G. It is well-
known (see e.g. [15, Corollary 2.14]), that any two rigid components of G intersect
in at most one vertex and hence that the edge sets of the rigid components of G
partition the edge set of G. Thus fu; vg is linked in a generic framework .G; p/ if
and only if fu; vg � V.H/ for some rigid componentH of G.

Recall the definitions of the 0- and 1-extension operations from Sect. 1. The basic
result about 0-extensions is the following.

Lemma 3 ([27]). LetH be a graph and letG be obtained fromH by a 0-extension.
Then G is minimally rigid if and only if H is minimally rigid.

It is known that the 1-extension operation preserves rigidity [27]. We shall need
the following lemma about the inverse operation of 1-extension on minimally rigid
graphs.
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Lemma 4 ([27]). Let G D .V;E/ be a minimally rigid graph and let v 2 V be a
vertex with d.v/ D 3. Then v has two non-adjacent neighbours u;w such that the
graphH D G � v C uw is minimally rigid.

By observing that a minimally rigid graph on at least three vertices has a vertex
of degree two or three, it follows that a graph is minimally rigid if and only if it can
be constructed from an edge by a sequence of 0-extensions and 1-extensions.

2.2 M -Connected Graphs and M -Components

Given a graph G D .V;E/, a subgraph H D .W;C / is said to be an M -circuit in
G if C is a circuit (i.e. a minimal dependent set) in R.G/. In particular, G is an
M -circuit if E is a circuit in R.G/. Using Theorem 5 we may deduce that G is an
M -circuit if and only if jEj D 2jV j � 2 and G � e is minimally rigid for all e 2 E .
Recall that a graph G is redundantly rigid if G � e is rigid for all e 2 E . Note also
that a graph G is redundantly rigid if and only if G is rigid and each edge of G
belongs to a circuit in R.G/ i.e. an M -circuit of G.

Any two maximal redundantly rigid subgraphs of a graph G D .V;E/ can have
at most one vertex in common, and hence are edge-disjoint (see [15]). Defining
a redundantly rigid component of G to be either a maximal redundantly rigid
subgraph of G, or a subgraph induced by an edge which belongs to no M -circuit
of G, we deduce that the edge sets of the redundantly rigid components of G
partition E . Since each redundantly rigid component is rigid, this partition is a
refinement of the partition of E given by the rigid components of G. Note that
the redundantly rigid components of G are induced subgraphs of G.

Given a matroidM D .E;I /, we define a relation onE by saying that e; f 2 E
are related if e D f or if there is a circuit C in M with e; f 2 C . It is well-
known that this is an equivalence relation. The equivalence classes are called the
components of M . If M has at least two elements and only one component then
M is said to be connected.

We say that a graph G D .V;E/ is M -connected if R.G/ is connected. Thus
M -circuits are examples of M -connected graphs. Another example is the complete
bipartite graph K3;m, which is M -connected for all m 
 4. (This follows because
K3;4 is an M -circuit and any pair of edges of K3;m are contained in a copy of K3;4.)
The M -components of G are the subgraphs of G induced by the components of
R.G/. Since each M -component with at least two edges is redundantly rigid, the
partition of E given by the M -components is a refinement of the partition given
by the redundantly rigid components of G. Note that the M -components of G
are induced subgraphs. For more examples and basic properties of M -circuits and
M -connected graphs see [3, 15].

Note that the rigid components, redundantly rigid components, andM -components
of a graph can all be determined in polynomial time, see for example [4].
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2.3 Rigidity, Infinitesimal Rigidity, and Flexes

In this subsection we consider d -dimensional frameworks for arbitrary d 
 1.
Let .G; p/ be a d -dimensional framework. A flexing of the framework .G; p/ is
a continuous function � W .�1; 1/ � V ! R

d such that �0 D p, and such
that the frameworks .G; p/ and .G; �t / are equivalent for all t 2 .�1; 1/, where
�t W V ! R

d is defined by �t .v/ D �.t; v/ for all v 2 V . The flexing � is trivial if
the frameworks .G; p/ and .G; �t / are congruent for all t 2 .�1; 1/. A framework
is said to be flexible if it has a non-trivial flexing. It is known [2,9] that non-rigidity,
flexibility and the existence of a non-trivial smooth flexing are all equivalent.

The first-order version of a flexing of the framework .G; p/ is called an
infinitesimal motion. This is an assignment of infinitesimal velocities to the vertices,
Qp W V ! R

d satisfying

.p.u/� p.v//. Qp.u/� Qp.v// D 0 for all pairs u; v with uv 2 E . (1)

If � is a smooth flexing of .G; p/, then P�0 WD d�
dt
jtD0 is an infinitesimal motion

of .G; p/. A trivial infinitesimal motion of .G; p/ has the form Qp.v/ D Ap.v/ C
b, for all v 2 V , for some d � d antisymmetric matrix A and some b 2 R

d .
It is easy to see that these are indeed infinitesimal motions. A framework .G; p/
is infinitesimally flexible if it has a non-trivial infinitesimal motion, otherwise it is
infinitesimally rigid.

The set of infinitesimal motions of a framework .G; p/ is a linear subspace of
R
d jV j, given by the system of jEj linear equations (1). The matrix of this system of

linear equations is the rigidity matrixR.G; p/ of .G; p/ defined earlier. The rigidity
map for a graph G D .V;E/ is the map fG W Rd jV j ! R

jEj, given by

fG.p/ D .: : : ; jjp.u/� p.v/jj2; : : : / :

Note that the Jacobian of fG at some point p 2 R
d jV j is given by 2R.G; p/:

Gluck [9] proved that if a framework .G; p/ is infinitesimally rigid, then it
is rigid. The converse of this is not true in general, but if we exclude certain
‘degenerate’ configurations, then rigidity and infinitesimal rigidity are equivalent.
In order to establish this, let us recall some notions from differential topology. Given
two smooth manifolds, M and N and a smooth map f W M ! N , we denote the
derivative of f at some point p 2 M by df jp , which is a linear map from TpM ,
the tangent space of M at p, to Tf.p/N . Let k be the maximum rank of df jq over
all q 2 M . A point p 2 M is said to be a regular point of f , if rank df jp D k,
and a critical point, if rank df jp < k. We say that a framework .G; p/ is regular, if
p is a regular point of fG . Using the inverse function theorem, it can be shown (see
for example [2, Proposition 2]) that if .G; p/ is a regular framework, then there is a
neighbourhood Up of p, such that f �1G .fG.p// \ Up is a manifold, whose tangent
space at p is the kernel of dfp . This has the following corollary.
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Fig. 3 Two regular realizations of a graph G. The first one is globally rigid, but the second is not,
since it can fold around one of the diagonals

Theorem 6 ([2]). Let .G; p/ be a regular framework. If .G; p/ is infinitesimally
flexible, then it is flexible. Furthermore, if Qp is a non-trivial infinitesimal motion of
.G; p/, then there is a non-trivial smooth flexing � of .G; p/ such that P�0 D Qp.

Since the rank of the rigidity matrix for a given graphG is constant on the set of
regular points of fG and infinitesimal rigidity of a framework .G; p/ depends only
on the rank ofR.G; p/ it follows that if a regular framework .G; p/ is infinitesimally
rigid, then all other regular frameworks .G; q/ are infinitesimally rigid as well.

3 Extensions and Globally Linked Pairs

In this section we prove that the 1-extension operation preserves the property that
a pair of vertices is not globally linked assuming that it is performed on a non-
redundant edge. By using this result we shall complete the characterization of
globally linked pairs in minimally rigid graphs.

Given a field K � C we use K to denote the algebraic closure of K . We say
that a point P D .x; y/ 2 C

2 is generic over K , if the set fx; yg is algebraically
independent over K . To prove the framework extension result of this section, we
need a lemma concerning polynomials whose zeros are algebraically dependent
over K . For a polynomial f 2 KŒX1;X2�, we denote the set of zeros of f
in K2 by V.f;K/. We will use the following facts concerning two polynomials
f; g 2 KŒX1;X2�.
Fact 1: if g is irreducible over an algebraically closed subfield of C then g is

irreducible over C, see [14, page 76, Corollary to Theorem IV].
Fact 2: if V.f;K/\ V.g;K/ is infinite then f and g have a non-trivial common

factor in KŒX1;X2�, see [8, Chapter 1, Proposition 2].

Lemma 5. LetL be an algebraically closed subfield of C andK D L\R. Suppose
that g 2 KŒX1;X2� is irreducible overK . Then g is irreducible over R.
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Proof. Let g D g1g2 : : : gm be the factorization of g into irreducible factors overL.
Then g D g1g2 : : : gm is also the factorization of g into irreducible factors over C
by Fact 1. Now suppose that g D h1h2 is a non-trivial factorization of g over R.
Relabeling if necessary and using the fact that CŒX1;X2� is a unique factorization
domain we have h1 D g1g2 : : : gs and h2 D gsC1gsC2 : : : gm for some 1 � s �
m� 1. This implies that h1; h2 2 LŒX1;X2�. Since we also have h1; h2 2 RŒX1;X2�

we get h1; h2 2 KŒX1;X2�. This contradicts the irreducibility of g overK .

Lemma 6. Let L be a countable algebraically closed subfield of C, K D L \ R,
and f 2 RŒX1;X2� be irreducible over R. Suppose that V.f;R/ is uncountable
and each .x1; x2/ 2 V.f;R/ is algebraically dependent over K . Then there exists
� 2 R n f0g such that �f 2 KŒX1;X2�.
Proof. Since each .x1; x2/ 2 V.f;R/ is algebraically dependent over K , each
.x1; x2/ 2 V.f;R/ is a root of an irreducible polynomial in KŒX1;X2�. Since
KŒX1;X2� is countable and V.f;R/ is uncountable there exists an irreducible
polynomial g 2 KŒX1;X2� such that V.f;R/ \ V.g;R/ is uncountable. Since L
is algebraically closed, Lemma 5 implies that g is irreducible over R. Since
V.f;R/\V.g;R/ is infinite, Fact 2 implies that f and g have a non-trivial common
factor in RŒX1;X2�. Since they are both irreducible over R, we have f D �g for
some � 2 R n f0g.

A framework .G; p/ is quasi-generic if it is congruent to a generic framework.
It is in standard position with respect to two vertices .v1; v2/ if p.v1/ lies at the
origin and p.v2/ lies on the second coordinate axis. We may use a translation and
a rotation to transform every framework to a congruent framework which is in
standard position with respect to any two given vertices. The next result determines
what happens when we apply such a transformation to a quasi-generic framework.

Lemma 7 ([18, Lemma 3.5]). Let .G; p/ be a realisation of a graph G D .V;E/

where V D fv1; v2; : : : ; vng. Let .G; q/ be a congruent realisation which is in
standard position with respect to .v1; v2/. Suppose q.vi / D .xi ; yi / for 1 �
i � n (so x1 D y1 D x2 D 0). Then .G; p/ is quasi-generic if and only if
fy2; x3; y3; : : : ; xn; yng is algebraically independent over Q.

The following rather technical lemma is fundamental to our proof that construct-
ing a 1-extension by deleting a non-redundant edge from a graph H preserves the
property that two given vertices of H are not globally linked.

Lemma 8. Let G D .V;E/ be a graph and v be a vertex of G of degree three with
neighbour set fu;w; zg. Let .G�v; p/ and .G�v; q/ be equivalent frameworks which
are in standard position with respect to .u;w/. Suppose that p is quasi-generic,
q.u/, q.w/ and q.z/ are not collinear, and jjq.u/� q.w/jj2 … Q.p/. Then there are
equivalent frameworks .G; p�/ and .G; q�/ where p� is quasi-generic,p�jV�v D p

and q�jV�v D q.

Proof. Let L D Q.p/ and K D L \ R. We have p.u/ D .0; 0/, p.w/ D .0; p3/,
p.z/ D .p4; p5/, q.u/ D .0; 0/, q.w/ D .0; q3/ and q.z/ D .q4; q5/. Since q.u/,
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q.w/ and q.z/ are not collinear, q3 ¤ 0 ¤ q4. Moreover q23 D jjq.u/�q.w/jj2 … K .
By reflecting the configuration q on the second coordinate axis, if necessary, we
may assume that q4 ¤ p4. By Lemma 7, fp3; p4; p5g is algebraically independent
over Q.

We call a point .p1; p2/ 2 R
2 feasible, if there exists a point .q1; q2/ 2 R

2, such
that the extended frameworks .G; p�/ and .G; q�/ are equivalent, where p�jV�v D
p, q�jV�v D q, p�.v/ D .p1; p2/ and q�.v/ D .q1; q2/. We will prove the lemma
by finding a feasible point that is generic overK and then applying Lemma 7.

The set of feasible points can be described by the following system of equations:

q21 C q22 D p21 C p22 (2)

q21 C .q2 � q3/2 D p21 C .p2 � p3/2 (3)

.q1 � q4/2 C .q2 � q5/2 D .p1 � p4/2 C .p2 � p5/2 : (4)

Equations (2) and (3) give

q2 D q23 � p23 C 2p2p3

2q3
: (5)

Equations (2), (4) and (5) now give

q1 D
q24 C q25 � p24 � p25 C 2p1p4 C 2p2p5 � q5. q

2
3�p23C2p2p3

q3
/

2q4
: (6)

We can use (5) and (6) to eliminate q2; q1 from (2) and obtain

4q23q
2
4.q

2
1Cq22�p21�p22/ D a11p

2
1Ca22p22Ca12p1p2Ca1p1Ca2p2Ca0 D 0 (7)

where

a11 D 4q23.p
2
4 � q24/

a22 D 4q24.p
2
3 � q23/C 4.q3p5 � p3q5/2

a12 D 8p4q3.q3p5 � p3q5/
a1 D 4p4q3.q3.r C s/ � q5.q23 � p23//
a2 D 4.q3p5 � p3q5/.q3.r C s/ � q5.q23 � p23//C 4p3q

2
4.q

2
3 � p23/

a0 D .q3.r C s/ � q5.q23 � p23//2 C q24.q
2
3 � p23/2

taking r D q25 � p25 and s D q24 � p24 . Note that any real solution .p1; p2/ to (7)
gives a real solution .q1; q2/ to (5) and (6). Thus the set of feasible points is the set
of points lying on the conic f D 0 where
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f D a11X
2
1 C a22X

2
2 C a12X1X2 C a1X1 C a2X2 C a0 2 RŒX1;X2�:

Note that since q23 62 K we have q23 ¤ p23 , and since q4 ¤ 0, this gives a0 > 0.

Claim 1. The conic f D 0 is not empty and is not a single point.

Proof. Since q4 ¤ p4, the line segments Œp.w/; q.w/� and Œp.z/; q.z/� are not
parallel. It is easy to see that the point of intersection of the perpendicular bisectors
of these line segments is feasible. Thus the point

A D
�
r C s C .p3 C q3/.p5 � q5/

2.q4 � p4/ ;
p3 C q3

2

�

lies on f D 0. We may reflect .G; q/ in the first coordinate axis and then apply the
same construction to deduce that, if q4 ¤ �p4, then f D 0 also contains the point

B D
�
r C s C .p3 � q3/.p5 C q5/

�2.q4 C p4/
;
p3 � q3
2

�

;

and A ¤ B since q3 ¤ 0. Hence we may suppose that q4 D �p4. In this case
a11 D 0. Thus f ¤ .b1X1 � b2/2 C .b3X2 � b4/2 for all b1; b2; b3; b4 2 R with
b1 ¤ 0 ¤ b3 so the conic cannot be a single point.

Let us suppose indirectly, that:

no point on the conic f D 0 is generic overK . (8)

Since this conic is not empty, and is not a single point, it follows from the
classification of conics that it is either an ellipse, a parabola, a hyperbola or the union
of two lines. Applying Lemma 6 to the irreducible components of f we deduce that
there is a � 2 R n f0g, such that �f 2 KŒX1;X2�. Hence

f�a11; �a12; �a22; �a1; �a2; �a0g 	 K: (9)

Claim 2. q24 D p24 and a11 D 0.

Proof. Suppose that q24 ¤ p24 . Consider the following two polynomials g; h 2
RŒX�:

g D a212.p
2
3a

2
12 � 4a21/X3 C 8p24a11

�

p23a22a
2
12 C 2a21.a11 � a22/� 2a212a0



X2

C16p44a211
�

4.a11 � a22/a0 C p23a
2
22 C a21



X C 64p64a
3
11a0;

h D .4p24q
2
4a

2
11 � 4sp24a22a11 � s2a212/X � 4p23p24q24a211:

Since q23 ¤ 0 and q24 ¤ p24 , a11 ¤ 0. The fact that p3; p4; q4; a0 are non-zero now
implies that the constant terms of both g and h are non-zero and hence neither h nor
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g is identically zero. Substituting all coefficients with their appropriate expressions
we see that g.q24 � p24/ D 0 and h.q23/ D 0. We have �4g 2 KŒX� by (9). Since
g.q24 � p24/ D 0, q24 � p24 2 Q.p/ and hence q4 2 Q.p/. Thus q4 2 K . This and (9)
imply that �2h 2 KŒX� and we may use a similar argument to deduce that q23 2 K ,
which is a contradiction. Hence q24 D p24 and a11 D 0.

Claim 3. a12 ¤ 0.

Proof. Suppose a12 D 0. Then q3p5 �p3q5 D 0, a22 D 4p24.p
2
3 � q23/, and a22 ¤ 0

since q23 ¤ p23 . Consider the polynomial

g D p5.p3 � p5/a22X � p23p4a1 2 RŒX�:

Since a22 ¤ 0, g is not identically zero. On the other hand g.q23/ D 0. We may now
use (9) to deduce that �g 2 KŒX� and the argument of Claim 2 gives q23 2 K , which
is a contradiction.

Claim 4. Either q5 2 K or there is � 2 K such that q5 D �q3.

Proof. Suppose 2a1Cp3a12 ¤ 0. Substituting all coefficients with their appropriate
expressions we see that

� .Œ2p4.a2 C p3a22/� p5.2a1 C p3a12/� q3 C p3.2a1 C p3a12/q5/ D 0:

We may now use (9) to deduce that q5 D �q3 for some � 2 K .
Hence we may suppose that

2a1 C p3a12 D 8p4q
2
3.q

2
5 � q3q5 � p25 C p3p5/ D 0;

and thus q25�q3q5 D p25�p3p5. In this case q25 is a zero of the following polynomial
g 2 RŒX�:

g D �

..p3 � p5/2 � p24/a12 C 2p4.p3 � p5/a22


X2

C �

.2p5.p3 � p5/.p25 � p24 � 2p3p5/C p23p
2
4/a12

C 2p5p4.p
2
3 � 3p3p5 C 2p25/a22



X

C p25.p3 � p5/2..p25 � p24/a12 � 2p5p4a22/:

We may now use (9) and the argument of Claim 2 to deduce that �g 2 KŒX�, and
hence that q5 2 K , as long as g is not identically zero. Let us suppose indirectly,
that g D 0. Equating the coefficient of X2 and the constant term of g to zero gives
the following system of linear equations for a12; a22:

Œ.p3 � p5/2 � p24� a12 C 2p4.p3 � p5/ a22 D 0

.p25 � p24/ a12 � 2p5p4 a22 D 0 :
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Since a12 ¤ 0 by Claim 3, the determinant of this system, which is a non-zero
polynomial in p3; p4; p5 with integer coefficients, must be zero. This contradicts
the fact that fp3; p4; p5g is algebraically independent over Q.

We can now complete the proof of the lemma. Consider the following polynomial
g 2 RŒX; Y �:

g D �

.p25 � p24/a12 � 2p5p4a22


X2C2p3.p4a22�p5a12/XYCp23a12Y 2Cp23p24a12:

We have g.q3; q5/ D 0.
Suppose q5 2 K . Let h D g.X; q5/. Then h is not identically zero since its

constant term, p23a12.q
2
5 C p24/ ¤ 0. On the other hand h.q3/ D g.q3; q5/ D 0. We

may use (9) to deduce that �h 2 KŒX� and then use the argument of Claim 2 to
deduce that q3 2 K , which is a contradiction. Thus q5 62 K .

By Claim 4, q3 D �q5 for some � 2 K . Let h0 D g.X;�X/. Then h0 is not
identically zero since its constant term, p23p

2
4a12 ¤ 0. On the other hand h0.q3/ D

g.q3; q5/ D 0. We may use (9) to deduce that �h0 2 KŒX�. The argument of Claim 2
then gives q3 2 K , which is a contradiction.

The only way out of this contradiction is that our assumption (8) must be false.
Hence some point .p1; p2/ on the conic f D 0 is generic overK . This gives us the
required quasi-generic realisation .G; p�/ by Lemma 7.

We can use Lemma 8 to show that, if G is obtained by performing a 1-extension
on a non-redundant edge, then the end-vertices of this edge are not globally linked
in G.

Theorem 7. Let H D .V;E/ be a rigid graph and let G be a 1-extension of H on
some edge uw 2 E . Suppose the H � uw is not rigid. Then fu;wg is not globally
linked in G.

Proof. Let .H; p/ be a quasi-generic framework which is in standard position with
respect to .u;w/. Since .H; p/ is infinitesimally rigid, but .H � uw; p/ is not
infinitesimally rigid, there is an infinitesimal motion Qp of .H � uw; p/, such that

.p.u/� p.w//. Qp.u/� Qp.w// ¤ 0:

Theorem 6 gives a smooth flexing � W .�1; 1/ � V ! R
2 of the framework .H �

uw; p/ such that P�0 D Qp.
Suppose that G is the 1-extension of H with a new vertex v with neighbour set

fu;w; zg. Since p is quasi-generic, p.u/, p.w/ and p.z/ are not collinear. Since �
is continuous, we can choose t1 > 0 such that �t1.u/, �t1 .w/ and �t1 .z/ are not
collinear for all 0 < t < t1. Let

f .t/ D jj�t .u/� �t .w/jj2:
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Then df

dt
jtD0 D 2.p.u/ � p.w//. Qp.u/ � Qp.w// ¤ 0: Since Q.p/ is countable, it

follows that f .t2/ … Q.p/ for some 0 < t2 < t1. In particular,

jj�t2.u/� �t2.w/jj ¤ jjp.u/� p.w/jj:

Let .G� v; q/ be a framework which is congruent to .G� v; �t2/ and in standard
position with respect to .u;w/. Applying Lemma 8 to .G � v; p/ and .G � v; q/ we
can find equivalent frameworks .G; p�/ and .G; q�/ such that p� is quasi-generic,
p�jV�v D p and q�jV�v D �t2 . This gives

jjq�.u/� q�.w/jj D jj�t2.u/� �t2 .w/jj ¤ jjp.u/� p.w/jj D jjp�.u/� p�.w/jj:

Hence fu;wg is not globally linked in G.

We next use Lemma 8 to prove a counterpart of Theorem 2.

Theorem 8. Let H D .V;E/ be a rigid graph and let G be a 1-extension of H on
some edge uw 2 E . Suppose thatH � uw is not rigid and that fx; yg is not globally
linked in H for some x; y 2 V . Then fx; yg is not globally linked in G.

Proof. Since fx; yg is not globally linked in H , there are equivalent frameworks
.H; p1/ and .H; p2/ in standard position with respect to .u;w/ and such that p1 is
quasi-generic and

jjp1.x/ � p1.y/jj ¤ jjp2.x/ � p2.y/jj:

Since H is rigid and .H; p1/ is quasi-generic, [18, Corollary 3.7] implies that
.H; p2/ is quasi-generic. Hence .H; p2/ is infinitesimally rigid and .H � uw; p2/
is not infinitesimally rigid. It follows that there is an infinitesimal motion Qp of
.H � uw; p2/ such that

.p2.u/� p2.w//. Qp.u/� Qp.w// ¤ 0:

Theorem 6 gives a smooth flexing � W Œ�1; 1� � V ! R
2 of the framework .H �

uw; p2/ such that P�0 D Qp.
Suppose that G is the 1-extension of H with a new vertex v with neighbour set

fu;w; zg. Since p2 is quasi-generic, p2.u/, p2.w/ and p2.z/ are not collinear. Since
� is continuous, we may choose t1 > 0 such that �t .u/, �t .w/ and �t .z/ are not
collinear and jj�t .x/� �t .y/jj ¤ jjp1.x/ � p1.y/jj for all 0 < t < t1. Let

f .t/ D jj�t .u/� �t .w/jj2:

Then df

dt
jtD0 D 2.p.u/ � p.w//. Qp.u/ � Qp.w// ¤ 0: Since Q.p/ is countable, it

follows that f .t2/ … Q.p/ for some 0 < t2 < t1.
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Let .G� v; q/ be a framework which is congruent to .G� v; �t2/ and in standard
position with respect to .u;w/. Applying Lemma 8 to .G� v; p1/ and .G� v; q/ we
can find equivalent frameworks .G; p�/ and .G; q�/ such that p� is quasi-generic,
p�jV�v D p1 and q�jV�v D q. Therefore

jjq�.x/� q�.y/jj D jj�t2.x/� �t2.y/jj ¤ jjp1.x/� p1.y/jj D jjp�.x/� p�.y/jj:

Hence fx; yg is not globally linked in G.

We can use Theorems 7 and 8 to deduce that Conjectures 3 and 4 hold for graphs
with at most one non-trivial redundantly rigid component.

Theorem 9. Let G D .V;E/ be a rigid graph, u; v 2 V , and R D .U; F / be a
redundantly rigid component ofG. Suppose thatG�e is not rigid for all e 2 E�F .
Then fu; vg is globally linked in G if and only if uv 2 E or fu; vg is globally linked
in R.

Proof. Sufficiency is clear so we need only prove necessity. Suppose fu; vg is
globally linked in G. If U D V then G D R and the result is trivially true. Hence
we may suppose that U ¤ V .

We first show that there exists either a vertex of V � U of degree two in G or
at least three vertices of V � U of degree three in G. Since G is rigid every vertex
of G has degree at least two. We have jE � F j D r.G/ � r.R/ D 2jV � U j.
If jV �U j D 1 this implies that the unique vertex of V �U has degree two. Hence
we may suppose that jV � U j 
 2. The rigidity of G now implies that there are at
least three edges between U and V � U . Hence

X

x2V�U
dG.x/ � 2jE � F j � 3 D 4jV � U j � 3:

The assertion about vertices of degree two or three in V � U now follows.
Suppose there exists x 2 V � U with d.x/ D 2. It is not difficult to see that x is

only globally linked to its neighbours in G. Hence the theorem holds if x 2 fu; vg
and we may suppose that this is not the case. LetH D G�x. Then .H;R/ satisfies
the hypotheses of the theorem. The result now follows by applying induction and
Lemma 2.

Hence we may assume that there are at least three vertices of V � U of degree
three. Choose x 2 V � U with d.x/ D 3 and x 62 fu; vg. By Lemma 4 there is a
pair y; z of neighbors of x for which H D G � x C yz is rigid. The rigidity of H
implies that fy; zg 6� U and that .H;R/ satisfies the hypotheses of the theorem. The
result now follows by applying induction and Theorem 8 when fy; zg ¤ fu; vg, and
by Theorem 7 when fy; zg D fu; vg.

Conjectures 3 and 4 follow for a (not necessarily rigid) graph G with at most
one non-trivial redundantly rigid component by applying Theorem 9 to the rigid
components of G (and using the fact that pairs of vertices belonging to different
rigid components are not globally linked).
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The special case of Theorem 9 when G has no non-trivial redundantly rigid
components characterises globally linked pairs in minimally rigid graphs.

Corollary 2. LetG D .V;E/ be a minimally rigid graph and u; v 2 V . Then fu; vg
is globally linked in G if and only if uv 2 E .

Suppose we apply a 1-extension on a non-redundant edge xy of a rigid graphH .
Then Theorem 7 implies that fx; yg is not globally linked in the resulting graph G.
On the other hand, Conjecture 2 would imply that this is the only pair of globally
linked vertices of H which is not globally linked in G.

Conjecture 5. Suppose G is a 1-extension on a non-redundant edge xy of a rigid
graphH and fu; vg ¤ fx; yg is globally linked in H . Then fu; vg is globally linked
in G.

4 Neighbourhood Stability

In this section we obtain analogues of the following result of Connelly and Whiteley
for globally linked pairs.

Theorem 10 ([6, Theorem 13]). Given a framework .G; p/ which is globally rigid
and infinitesimally rigid in R

d , there is an open neighborhood U of p such that for
all q 2 U the framework .G; q/ is globally rigid and infinitesimally rigid.

We will concentrate on the 2-dimensional case.1 We will need the following well
known ‘averaging’ result, see for example the proof of [6, Theorem 13].

Lemma 9. Suppose that .G; p/ and .G; q/ are equivalent but non-congruent
frameworks. Then p � q is a non-trivial infinitesimal motion of .G; p C q/.

We say that an infinitesimally rigid framework .G; p/ is regular valued if all
equivalent frameworks are infinitesimally rigid.2 It is known that an infinitesimally
rigid, regular valued framework .G; p/ has only finitely many equivalent and
pairwise non-congruent realisations.3 We denote this number by r.G; p/. This
parameter is related to global linkedness by the fact that two vertices u; v are globally

1We believe that our results extend to the d -dimensional case but the proofs become more
complicated because of their reliance on ‘special position’ arguments. In particular we would need
a d -dimensional version of Lemma 7.
2This is equivalent to saying that fG.p/ is a regular value of the rigidity map ofG i.e. q is a regular
point of fG for all q 2 f �1

G .fG.p//.
3Since fG.p/ is a regular value of fG , f �1

G .fG.p// is a 0-dimensional manifold. Compactness
and the fact that .G; q/ is infinitesimally rigid (and hence rigid) for all q 2 f �1

G .fG.p// now tells
us that f �1

G .fG.p// is finite.
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linked in an infinitesimally rigid, regular valued framework .G; p/ if and only if
r.G; p/ D r.G C uv; p/. Our first result shows that, for such a framework .G; p/,
r.G; p/ does not increase in some open neighbourhood of p.

Theorem 11. Suppose that .G; p/ is an infinitesimally rigid, regular valued frame-
work. Then there exists an open neighbourhood U of p such that, for all q 2 U ,
.G; q/ is an infinitesimally rigid, regular valued framework with r.G; q/ � r.G; p/.

Proof. The theorem is trivially true if G has at most two vertices. Hence we may
suppose that jV.G/j 
 3. Since .G; p/ is infinitesimally rigid we have p.u/ ¤ p.v/
for some edge uv of G.

We first show that there exists an open neighbourhoodU of p such that .G; q/ is
an infinitesimally rigid, regular valued framework for all q 2 U . Suppose not. Then
there exists a sequence of realisations .G; pk/ with pk ! p, and such that .G; pk/
is not infinitesimally rigid and regular valued for all k. Since .G; q/ is infinitesimally
rigid for q close enough to p, we may suppose that .G; pk/ is infinitesimally rigid
and not regular valued for all k. Hence .G; pk/ has an equivalent realisation .G; qk/
which is not infinitesimally rigid. We may assume that each .G; qk/ is in standard
position with respect to .u; v/. By compactness qk has a convergent subsequence
qm ! q. Since qm is equivalent to pm and pm ! p, .G; q/ is equivalent to .G; p/.
Since .G; p/ is regular valued, .G; q/ is infinitesimally rigid. This contradicts the
fact that qm ! q and .G; qm/ is not infinitesimally rigid for all m.

We next show that there exists an open neighbourhood U of p such that
r.G; q/ � r.G; p/ for all q 2 U . Suppose not. Then, by the previous para-
graph, there exists a sequence of infinitesimally rigid, regular valued realisations
.G; pk/ with pk ! p and r.G; pk/ > r.G; p/ for all k 
 1. Let S D
f.G; p1/; .G; p2/; : : : ; .G; ps/g be the set of all equivalent realisations which are
in standard position with respect to .u; v/. Since .G; p/ is infinitesimally rigid and
regular valued, each of the .G; pi / is infinitesimally rigid and hence, in particular,
does not have all its vertices on a line. This implies that each congruence class
of .G; p/ will be represented exactly four times in S and hence s D 4r.G; p/.
Since r.G; pk/ > r.G; p/ for each k 
 1, we may choose a set fqk1 ; qk2 ; : : : ; qksC1g
of realisations which are equivalent to .G; pk/ and are in standard position with
respect to .u; v/. By compactness there exist convergent subsequences qmi ! qi for
all 1 � i � s C 1. Since qmi is equivalent to pm and pm ! p, each qi is equivalent
to p. Hence qi D pj for some 1 � j � s. By the pigeon hole principle, we may
choose two sequences qm1 ; q

m
2 say, converging to the same realisation, .G; p1/ say,

of G. By Lemma 9, qm1 � qm2 is a non-trivial infinitesimal motion of .G; qm1 C qm2 /,
and hence .G; qm1 C qm2 / it is not infinitesimally rigid. Since qm1 C qm2 ! 2p1,
.G; 2p1/ is not infinitesimally rigid. This implies that .G; p1/ is not infinitesimally
rigid and contradicts the hypothesis that all equivalent realisations of .G; p/ are
infinitesimally rigid.

Note that Theorem 11 generalises (the 2-dimensional version of) Theorem 10 since
an infinitesimally rigid, globally rigid framework .G; p/ is regular valued and has
r.G; p/ D 1.
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We can have r.G; q/ < r.G; p/ for any framework .G; p/ satisfying the
hypotheses of Theorem 11 and q arbitrarily close to p. Consider for example the
realisation .G; p/ of a wheel in which the central vertex and two nonconsecutive rim
vertices are collinear, see Fig. 3. Then r.G; p/ D 2 but r.G; q/ D 1 for all generic q.
We will show, however, that r.G; p/ is constant in some open neighbourhood of p
if either G is minimally rigid or p is generic.

Theorem 12. Suppose that .G; p/ is an infinitesimally rigid, regular valued real-
isation of a minimally rigid graph G D .V;E/. Then there exists an open
neighbourhood U of p such that, for all q 2 U , .G; q/ is infinitesimally rigid,
regular valued, and has r.G; q/ D r.G; p/.

Proof. By Theorem 11, it will suffice to show that an arbitrary sequence of
infinitesimally rigid realisations .G; pk/ with pk ! p has r.G; pk/ 
 r.G; p/

for k large enough. Since .G; p/ is infinitesimally rigid we have p.u/ ¤ p.v/ for
some uv 2 E . Let fp1; p2; : : : ; psg be the set of all realisations in standard position
with respect to .u; v/ which are equivalent to .G; p/. Then s D 4r.G; p/ as in the
proof of Theorem 11.

We consider fG W R2jV j�3 ! R
jEj by restricting the domain of fG to realisations

in standard position with respect to .u; v/. By the inverse function theorem, we may
choose disjoint neighbourhoods Ui of pi in R

2jV j�3 and W of fG.p/ in R
jEj such

that fG maps Ui diffeomorphically onto W for all 1 � i � s. We may also assume
that p D p1 and hence that pk 2 U1 for k large enough, say k 
 K . Then fG.pk/ 2
W and hence there exists pki 2 Ui with fG.pki / D fG.p

k/ for all 1 � i � s

and all k 
 K . This implies that there are at least s distinct realisations .G; pki /
in standard position with respect to .u; v/ which are equivalent to .G; pk/. Hence
r.G; pk/ 
 r.G; p/ for k 
 K .

Corollary 3. Suppose that .G; p/ is an infinitesimally rigid, regular valued real-
isation of a minimally rigid graph G D .V;E/. Then there exists an open
neighbourhood U of p such that, for all u; v 2 V and all q 2 U , fu; vg is not
globally linked in .G; q/ if fu; vg is not globally linked in .G; p/.

Proof. This follows from Theorems 11 and 12 and the fact that, for any infinites-
imally rigid, regular valued realisation .G; q/, fu; vg is globally linked in .G; q/ if
and only if r.G; q/ D r.G C uv; q/.

The example in Fig. 4 shows that there can exist pairs of vertices which are
globally linked in .G; p/ but are not globally linked in .G; q/ for q arbitrarily close
to p.

We next show that r.G; p/ remains constant in an open neighbourhood of p
for any rigid graph G when p is generic. Our proof uses the Tarski-Seidenberg
theorem on semi-algebraic sets. A subset S of Rn is semi-algebraic over Q if it can
be expressed as a finite union of sets of the form

fx 2 R
n W Pi.x/ D 0 for 1 � i � s and Qj .x/ > 0 for 1 � j � tg;
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v1 v2

v3

v4

u

v

Fig. 4 A regular realisation .G; p/ of a minimally rigid graph. The line through u; v4 is
perpendicular to the line through v1; v and passes through v3. There are exactly four equivalent
realisations which keep the triangle v1v2v3 fixed, and they can be obtained by reflecting v in the
line through v3v4 and/or reflecting u in the line through v1v4. The distance between u and v is the
same in all such realisations so .u; v/ is globally linked in .G; p/. On the other hand, .u; v/ is not
globally linked in any generic realisation .G; q/

where Pi 2 QŒX1; : : : ; Xn� for 1 � i � s, andQj 2 QŒX1; : : : ; Xn� for 1 � j � t .4

Theorem 13 ([26]). Let S � R
nCk be semi-algebraic over Q and � W RnCk ! R

n

be the projection onto the first n coordinates. Then �.S/ is semi-algebraic over Q.

Theorem 14. Suppose that G D .V;E/ is rigid and .G; p/ is generic. Then
there exists an open neighbourhood U of p such that, for all q 2 U , .G; q/ is
infinitesimally rigid, regular valued, and has r.G; p/ D r.G; q/.

Proof. The hypothesis that .G; p/ is generic implies that fG.p/ is a regular value of
fG by [18, Corollary 3.7]. Hence .G; q/ is infinitesimally rigid and regular valued
for q in some open neighbourhood of p by Theorem 11.

Let V D fv1; v2; : : : ; vng, jEj D m and suppose that v1v2 2 E . Choose a
realisation .G; p1/ which is congruent to p and is in standard position with respect
to .v1; v2/. We will consider the set of all realisations of G which are in standard
position with respect to .v1; v2/. For any such realisation .G; q/ the first three
coordinates of q are zero. We will abuse notation and consider q 2 R

2n�3. Similarly
we will consider the rigidity map fG to be a map from R

2n�3 to R
m.

Let s D 4r.G; p/, and let S be the set of all s-tuples of vectors .q1; q2; : : : ; qs/
where qi 2 R

2n�3 and f.G; q1/; .G; q2/; : : : ; .G; qs/g is a set of distinct pairwise
equivalent realisations of G in standard position with respect to .v1; v2/. Then S �
R
s.2n�3/ and we may represent S as

4The usual definition for a semi-algebraic set uses polynomials with coefficients in R, or more
generally in a real closed field. The fact that the Tarski-Seidenberg Theorem holds for semi-
algebraic sets over Q follows from the original papers [23, 26].
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S D f.q1; q2; : : : ; qs/ W qi 2 R
2n�3, fG.qi / D fG.q1/, qi ¤ qj for 1 � i ¤ j � sg:

Hence S is semi-algebraic over Q. Let

S1 D fq1 2 R
2n�3 W .q1; q2; : : : ; qs/ 2 S for some q2; q3; : : : ; qs 2 R

2n�3g

be the projection of S onto the first 2n � 3 coordinates. Then S1 is the set of all
q 2 R

2n�3 such that .G; q/ has s distinct pairwise equivalent realisations in standard
position with respect to .v1; v2/. Thus p1 2 S1.

By Theorem 13, S1 is semi-algebraic over Q. Since p is generic, the (non-
zero) coordinates of p1 are algebraically independent over Q by Lemma 7. Hence
P.p1/ ¤ 0 for all P 2 QŒX1; : : : ; X2n�3�. Since p1 2 S1 and S1 is semi-algebraic
over Q, we must have p1 2 S2 for some S2 � S1 of the form

S2 D fq 2 R
2n�3 W Qj .q/ > 0 for 1 � j � tg;

where Qj 2 QŒX1; : : : ; X2n�3� for 1 � j � t . We may choose an open
neighbourhood U of p1 in R

2n�3 such that Qj .q/ > 0 for all q 2 U and all
1 � j � t . Then q 2 S2 � S1 for all q 2 U . By the first paragraph of the proof,
we may choose U small enough so that .G; q/ is infinitesimally rigid and regular
valued for all q 2 U . Then r.G; q/ 
 s=4 D r.G; p/ for all q 2 U . Theorem 11
now implies that there exists a possibly even smaller open neighbourhoodU 0 of p1
in R

2n�3 with r.G; q/ D r.G; p/ for all q 2 U 0. We can now complete the proof by
choosing an open neighbourhoodU 00 of p in R

2n such that, for each q 2 U 00, .G; q/
is congruent to .G; q1/ for some q1 2 U 0.
Corollary 4. Suppose that G D .V;E/ is rigid and .G; p/ is generic. Then there
exists an open neighbourhood U of p such that, for all u; v 2 V and all q 2 U ,
fu; vg is globally linked in .G; p/ if and only if fu; vg is globally linked in .G; q/.

Proof. This follows immediately from Theorem 14 and the fact that, for any
infinitesimally rigid, regular valued realisation .G; q/, fu; vg is globally linked in
.G; q/ if and only if r.G; q/ D r.G C uv; q/.

The realisation .G; p/ of a wheel in which the central vertex and two nonconsec-
utive rim vertices are collinear (see Fig. 3) shows that Corollaries 3 and 4 become
false if we remove the respective hypotheses that G is minimally rigid or p is
generic. The problem is that there are pairs of vertices which are not globally linked
in .G; p/ but are globally linked in .G; q/ for q arbitrarily close to p. The example
after Corollary 3 shows that we can also have pairs of vertices which are globally
linked in .G; p/ but are not globally linked in .G; q/ for q arbitrarily close to p, if
we remove the hypothesis that .G; p/ is generic.
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5 Finding Equivalent Realizations by Flexing

In this section we describe a possible approach to verifying Conjecture 3 which
is analogous to that used by Hendrickson [12] to show that redundant rigidity is a
necessary condition for global rigidity. We need to show that if two vertices u; v are
not contained in the same redundantly rigid component of a rigid graphG then they
are not globally linked.5 The idea is to find an edge e D wx in G such that u; v
do not belong to the same rigid component of G � e. We then choose a flexing of a
generic realisation .G�e; p/ to find another realisation .G�e; q/with the properties
that kq.w/ � q.x/k D kp.w/ � p.x/k and kq.u/ � q.v/k ¤ kp.u/ � p.v/k. The
equivalent realisations .G; p/ and .G; q/ will then certify that fu; vg is not globally
linked in G. The first step in this approach is to show that we can find a suitable
edge e.

Lemma 10. Let G D .V;E/ be a rigid graph and u; v 2 V with uv 62 E . Then
fu; vg is contained in a redundantly rigid component of G if and only if fu; vg is
contained in a rigid component of G � e for all e 2 E .

Proof. We first prove necessity. Suppose u; v is contained in a redundantly rigid
component H of G. Then H ¤ K2 and so H � e is a rigid subgraph of G for all
e 2 E . Hence u; v is contained in a rigid component of G � e for all e 2 E .

We next prove sufficiency. Suppose u; v is not contained in a redundantly rigid
component ofG. ThenG is not redundantly rigid so at least one edge ofG is anM -
bridge, that is, it does not belong to any M -circuit in G. Let F D fe1; e2; : : : ; emg
be the set of M -bridges of G. It is not hard to see that the rigid components of
G � F are exactly the non-trivial redundantly rigid components of G. Thus u; v is
not contained in a rigid component of G�F . LetH 0 be a maximalM -independent
subgraph of G �F . Note that the vertex sets of the rigid components of G �F and
H 0 are the same and H 0 C F is an M -independent (and rigid) spanning subgraph
of G.

Let F 0 be a maximal proper subset of F for which u; v is not contained in a rigid
component ofH 0CF 0. If F �F 0 D ff g then we are done by choosing e D f . This
follows from the fact that u; v is not contained in a rigid component of H 0 � f and
hence is not contained in a rigid component of G � f as well. So we may suppose
that we have two distinct edges f1; f2 2 F �F 0. By the maximality of F 0 there is a
rigid subgraphGi D .Vi ; Ei / ofH 0CF 0Cfi which contains u and v, for i D 1; 2.
SinceH 0CF isM -independent, these subgraphs are induced subgraphs ofH 0CF
and we must have f1; f2 … G1 \G2. Then G1 \G2 is a rigid subgraph of H 0 C F 0
which contains u and v. This contradicts the choice of F 0.

Our next result implies that the ‘flexing approach’ to showing that fu; vg is not
globally linked in G works when G C uv is an M -circuit.

5It is straightforward to reduce Conjecture 3 to rigid graphs since pairs of vertices which do not
belong to the same rigid component of a graph cannot be globally linked.



Globally Linked Pairs of Vertices in Rigid Frameworks 199

Lemma 11. Let .C; p0/ be a quasi-generic realisation of an M -circuit C D
.V;E/, e1 D uv and e2 D wx be edges of C and H D C � fe1; e2g. Let
F be the set of all frameworks which can be obtained by a flexing of .H; p0/.
Then there exists .H; p1/ 2 F with kp0.u/ � p0.v/k ¤ kp1.u/ � p1.v/k and
kp0.w/ � p0.x/k D kp1.w/ � p1.x/k.

Proof. We suppose that all realisations of H considered are in standard position
with respect to .w; x/. For each such realisation .H; q/ we suppress the (zero)
coordinates of q corresponding to q.w/ and the first coordinate of q.x/ and consider
q 2 R

2jV j�3.
Let

S D fp 2 R
2jV j�3 W .H; p/ 2 F g:

Let F W R2jV j�3 ! R be given by F.q/ D kq.w/ � q.x/k2 (in the corresponding
realisation .H; q/) and let f be the restriction of F to S . We can also view the
rigidity maps fHCe2 ; fH as maps on S . Note that the rigidity map fHCe2 is obtained
from fH by adding an extra coordinate corresponding to e2 i.e. the length of the edge
e2 in the realisation ofH C e2.

We can adapt the proof technique of [12] to show that S is a 1-dimensional
manifold diffeomorphic to a circle. For each p 2 S , [17, Lemma 3.4] gives

rank df jp D rank dfHCe2 jp � rank dfH jp D rank R.H C e2; p/� rank R.H;p/.

Thus, for every generic point p 2 S , we have rank df jp D 1 so p is a regular point
of f .

Choose a direction for traversing S and let p1 be the first point after p0 we
reach when traversing S which satisfies kp0.w/ � p0.x/k D kp1.w/ � p1.x/k. We
will show that kp0.u/ � p0.v/k ¤ kp1.u/ � p1.v/k. Suppose to the contrary that
kp0.u/� p0.v/k D kp1.u/� p1.v/k. Then .C; p0/ is equivalent to .C; p1/.

We first consider the case when C is 3-connected. Then C is globally rigid by
[3] so .C; p0/ is congruent to .C; p1/. Since .C; p0/ and .C; p1/ are in standard
position .C; p1/ D ˛.C; p0/, where ˛ is a reflection in one of the two coordinate
axes or a rotation of � about the origin. Let a W Œ0; 1�! S be the smooth path from
p0 to p1 induced by the diffeomorphism from S to the circle, and let b W Œ0; 1�! S

be obtained by putting b.t/ D ˛.a.t// for all 0 � t � 1. Then b is a smooth
path in S from p1 to p0. Furthermore, we claim that a and b do not have the same
image in S . For suppose to the contrary that a and b traverse some path P in S in
opposite directions. Then by the intermediate value theorem there is some t 2 Œ0; 1�
with a.t/ D b.t/. This implies that .H; a.t// has all vertices on one of the two
coordinate axes, which is impossible since .H; p/, and hence also .H; a.t//, has
2jV.H/j � 4 algebraically independent edge-lengths. It follows that a and b trace
out two paths that together form the entire manifold S . We can choose t1; t2 2 Œ0; 1�
with f .a.t1// < f .p0/ and f .a.t2// > f .p0/. Now the intermediate value theorem
gives some t between t1 and t2 with f .a.t// D f .p0/. This contradicts the choice
of p1.
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We next consider the case when C is not 3-connected. Let C1C2 : : : Cm be the
path in the cleavage unit tree of C with e1 2 E.C1/ and e2 2 E.Cm/. (We refer the
reader to [15, Section 3] for more details on cleavage unit trees of M -circuits.) Let
C 0 D C1˚2 C2˚2 : : :˚2 Cm. If C 0 ¤ C then we can apply induction to C 0. Hence
we may assume that C 0 D C . We will proceed by adapting the proof of the case
when C is 3-connected.

Let V.Ci / \ V.CiC1/ D fxi ;wi g for 1 � i < m. For each p 2 S , let `i .p/
be the line through p.wi /; p.xi / for 1 � i < m. Let �i .C; p/ be the realisation
of C obtained from .C; p/ by reflecting C1; C2; : : : ; Ci in the line through `i .p/.
For each T D fi1; i2; : : : ; isg � f1; 2; : : : ; mg, let �T .C; p/ be the realisation of
C obtained recursively from .C; p/ by applying �is to �T�is .C; p/, and taking
�T .C; p/ D .C; p/ when T D ;.6 Since .C; p1/ is equivalent to .C; p0/, it
follows from the proof of [18, Theorem 8.2] that .C; p1/ D ˛�T .C; p0/ for some
; ¤ T 0 � f1; 2; : : : ; mg, where ˛ is either the identity, a reflection in one of
the two coordinate axes, or a rotation of � about the origin. Let a W Œ0; 1� ! S

be the smooth path from p0 to p1 induced by the diffeomorphism from S to
the circle, and let b W Œ0; 1� ! S be obtained by putting b.t/ D a.t/ for all
0 � t � 1, where .C; a.t// D ˛�T 0.C; a.t//. Then b is a smooth path in S from
p1 to p0. Furthermore, we claim that a and b do not have the same image in S .
For suppose to the contrary that a and b traverse some path P in S in opposite
directions. Then by the intermediate value theorem there is some t 2 Œ0; 1� with
a.t/ D b.t/ D p2, say. But this implies that .C; p2/ D ˛�T 0.C; p2/, and in
particular .C1; p2/ D ˛�T 0.C1; p2/. Since the action of �T 0 on .C; p2/ is a non-
empty sequence of reflections through lines with algebraically independent slopes it
is either a rotation or a reflection. Since .C1; p2/ remains fixed under this action, all
vertices of .C1; p2/ must lie on the same line. This is impossible since jV.C1/j 
 4,
and .H; p/, and hence also .H; p2/, have 2jV.H/j � 4 algebraically independent
edge-lengths. It follows that a and b trace out two paths that together form the
entire manifold S . We can choose t1; t2 2 Œ0; 1� with f .a.t1// < f .p0/ and
f .a.t2// > f .p0/. Now the intermediate value theorem gives some t between t1
and t2 with f .a.t// D f .p0/. This contradicts the choice of p1.

Lemma 11 gives the following strengthening of Corollary 2 for a special family
of minimally rigid graphs. We say that a pair of vertices fu; vg is globally loose in a
graph G if fu; vg is not globally linked in all generic realisations of G.

Corollary 5. Suppose G is minimally rigid and G C uv is an M -circuit for two
non-adjacent vertices u; v of G. Then fu; vg is globally loose.

The special case of Corollary 5, whenGCuv is a 3-connectedM -circuit, follows
from [18, Theorem 7.1]. The example in Fig. 1 shows that the stronger conclusion,

6It can be shown that �i .�j .C; p// D �j .�i .C; p// and hence �T .C; p/ is independent of the
ordering of the elements of T . We will not use this fact in our proof.
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that fu; vg is not globally linked in all generic realisations of G, may not hold when
GC uv is not an M -circuit. On the other hand, we can try to apply Lemma 11 to an
arbitrary rigid graph as follows.

Given a framework .G; p/ let F .G; p/ be the set of all frameworks which can
be obtained by a flexing of .G; p/. We refer to F .G; p/ as the flex of .G; p/.

Suppose that G and H are minimally rigid graphs with at least three vertices
and H � G. Let e be an edge of H and .G; p/ be a realisation of G. We say that
.G� e; p/ is free forH � e if, for every .H � e; q0/ 2 F .H � e; pjH/, there exists
a .G � e; q/ 2 F .G � e; p/ such that q0 D qjH . Intuitively .G � e; p/ is free for
H � e if the edges of E.G/ n E.H/ put no restriction on the flex of .H � e; pjH/.
We conjecture that such realisations always exist.

Conjecture 6. Let G be a minimally rigid graph, H be a minimally rigid subgraph
of G with at least three vertices and e be an edge of H . Then there exists a generic
realisation .G; p/ of G such that .G � e; p/ is free for H � e.

We can use Lemmas 10 and 11 to show that Conjecture 3 would follow from
Conjecture 6.

Lemma 12. Suppose Conjecture 6 is true. Let G D .V;E/ be a rigid graph, and
u; v 2 V be such that fu; vg is not contained in any redundantly rigid component of
G. Then fu; vg is not globally linked in G.

Proof. Let e1 D uv and letC be anM -circuit ofGCe1 containing e1. By Lemma 10
we can find an edge e2 D wx such that fu; vg is not contained in any rigid component
of G � e2. Then e2 2 E.C /. Let G0 be a minimally rigid spanning subgraph of G
which contains C � e1. By Conjecture 6, there exists a generic realisation .G; p/ of
G such that .G0�e2; p/ is free forC �e1�e2 By applying Lemma 11 to C , we may
deduce that there exists q 2 F .G0�e2; p/ such that kp.u/�p.v/k ¤ kq.u/�q.v/k
and kp.w/ � p.x/k D kq.w/ � q.x/k. Since the distances between all pairs of
vertices in the same rigid component ofG0�e2 remain constant for all .G0�e2; q/ 2
F .G0�e2; p/, .G; q/ is equivalent to .G; p/. Since kp.u/�p.v/k ¤ kq.u/�q.v/k,
fu; vg is not globally linked in .G; p/.

5.1 Closing Remark

It is not difficult to show that ifH is a minimally rigid subgraph of a minimally rigid
graph G, then G can be obtained from H by a sequence of Henneberg extensions,
see for example [15]. This fact encouraged us to try to prove Conjecture 6
recursively. LetH D H0;H1; : : : ;Hs D G be a sequence of minimally rigid graphs
with the property that Hi is a Henneberg extension of Hi�1 for all 1 � i � s

and let e be an edge of H . We could assume inductively that there exists a generic
realisation .Hs�1�e; ps�1/which is free forH�e and try to extend it to a realisation
.Hs�e; ps/which is free forH�e. A similar idea was outlined previously by Owen
and Power [20, Problem 2]. It can be shown that .Hs�1�e; ps�1/ can be extended to
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a realisation .Hs �e; ps/ which is free forH �e whenHs is a 0-extension ofHs�1.
We conjectured that the same should hold for 1-extensions at a workshop on rigidity
held at BIRS (Banff, Canada) in 2012. Herman and Brigitte Servatius subsequently
constructed an infinite family of counterexamples.

Lemma 13 ([24]). There exist minimally rigid graphs H;K;L with H 	 K and
H 	 L such that L is a 1-extension ofK , e is an edge of H , .K � e; p0/ is free for
H � e for some generic p0, and .L � e; p/ is not free for H � e for all generic p
with pjK D p0.
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1 Introduction

The objects now known as Beauville surfaces1 were introduced by the algebraic
geometer Arnaud Beauville in [5, p. 159]. A Beauville surface S is a complex
surface of general type [5, 28], constructed from a pair of orientably regular
hypermaps (regular dessins, in Grothendieck’s terminology [29]) of genus at least 2,
with the same automorphism group G. The basic idea is that S can be designed
to have certain properties by appropriate choices of G and its actions on the
hypermaps. Since 2000, the geometric properties of Beauville surfaces, such as their
rigidity (discussed in Sect. 9) have been intensively studied by Bauer, Catanese,
Grunewald and others (see [3, 4, 9] for instance). More recently, group-theorists
such as Guralnick, Lubotzky, Magaard, Malle and others have been interested in
determining which groups G (known as Beauville groups) can be used in this
construction. The rigidity properties of Beauville surfaces have been used by the
author [34] to determine the structure of the automorphism group of a Beauville
surface, and by González-Diez, Torres-Teigell and the author [25, 26] to extend an
example of Serre [50], constructing arbitrarily large orbits of the absolute Galois
group GalQ=Q consisting of mutually non-homeomorphic algebraic varieties. This
survey will describe some of these discoveries, and in addition, will suggest
that there are interesting combinatorial questions to be investigated, including
connections between Beauville surfaces and polytopes.

The paper is organised as follows. Section 2 explains how Belyı̆’s Theorem
gives a link between curves and hypermaps, used in Sect. 3 to give two equivalent
definitions of a Beauville surface. These are translated into purely group-theoretic
terms in Sect. 5, after a brief discussion of possible links with polytopes in Sect. 4.
Various classes of Beauville groups are described in Sects. 6–8. The fundamental
groups and automorphism groups of Beauville surfaces are described in Sects. 9 and
10, and the absolute Galois group and its action on Beauville surfaces are discussed
in Sects. 10 and 11.

2 Curves and Hypermaps

Since Beauville surfaces are constructed from pairs of hypermaps on algebraic
curves, this section will briefly summarise the connection between curves and
hypermaps.

Compact Riemann surfaces are the same as algebraic curves (smooth, projective,
defined over C). This fact, first discovered by Riemann, is now expressed as an

1Here, as is customary in algebraic geometry, a ‘surface’ is an algebraic variety which is
2-dimensional over the field of coefficients; in this case, that field is C so these surfaces have
dimension 4 as real manifolds. Rather confusingly, a complex algebraic curve, 1-dimensional over
C, can be regarded as a Riemann surface, where ‘surface’ now indicates 2-dimensionality over R!
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equivalence of categories: see [21, 48] for details. It is particularly interesting to
know which compact Riemann surfaces are defined (as algebraic varieties) over
various subfields of C. Belyı̆’s Theorem answers this question for the field Q of
algebraic numbers, by showing that the following conditions on a compact Riemann
surface (or algebraic curve) C are equivalent:

(a) C is defined over Q;
(b) There is a meromorphic function ˇ W C ! P

1.C/ branched over at most three
points;

(c) C is uniformised by a subgroupK of finite index in a triangle group�;
(d) The complex structure on C is obtained, in a canonical way, from a hypermap

H on C .

A curve with these properties is called a Belyı̆ curve. In fact, Belyı̆ [6] gave an
ingenious proof that (a) implies (b), and a two-line argument, referring to Weil’s
Rigidity Theorem [59], for the converse; full details (which are rather intricate)
were later provided by Wolfart [61] and Köck [42]. Conditions (c) and (d) are
straightforward reinterpretations of (b), due to Grothendieck, Wolfart and others
(see [21, 37, 62], for instance). Belyı̆’s Theorem has been extended to complex
surfaces by González-Diez [22]. He and Girondo have written a very readable
account of Belyı̆’s Theorem and related matters in [21].

In (b), P1.C/ is the complex projective line (or Riemann sphere) OC D C [ f1g;
the three ramification points can be assumed, by applying a Möbius transformation,
to be 0; 1 and 1; a function ˇ with these properties is called a Belyı̆ function.

In (c), uniformisation means that C Š U =K where U is one of the three simply
connected Riemann surfaces, namely P

1.C/, C or the hyperbolic plane H, and K
is a subgroup of a triangle group � acting as a group of automorphisms of U . The
inclusionK ! � induces a covering � W U =K ! U =� corresponding to ˇ:

U =K Š C

� # # ˇ

U =� Š P
1.C/

The degree (number of sheets) of this covering is equal to the index of K in �. We
will be mainly interested in the case where C has genus at least 2, so that U D H.

In (d), a hypermap H on a curve C can be represented in several ways.
Perhaps the most natural way is as a tripartite triangular map T . This consists of
a tripartite graph embedded in C with triangular faces; the three colour classes of
vertices represent the hypervertices, hyperedges and hyperfaces ofH , and the edges
correspond to incidences between them. This map can be constructed as the inverse
image under ˇ of the trivial triangulation of P1.C/; this has vertices at 0; 1 and 1,
joined by three edges along R, and two triangular faces (the upper and lower half
planes), so that its edges and faces lift to C without branching, which occurs only at
the vertices. Thus T has triangular faces, and its vertices can be 3-coloured as they
lie over 0; 1 or 1.
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A more economical and frequently-used representation of H is as a bipartite
map B on C , called the Walsh map of H [58]. This can be formed from T by
deleting the vertices over 1 and their incident edges; topologically, no information
is lost since one can retrieve T (up to homeomorphisms fixing the graph) by
stellating B, placing a vertex in each face of B, joined by mutually disjoint edges
to the incident vertices. Equivalently, B is the inverse image under ˇ of the trivial
bipartite map on P

1.C/; this consists of two vertices at 0 and 1, joined by an edge
along the unit interval, and one face. Both T and B can also be formed as the
quotients by K of �-invariant maps of the same type on the universal covering
space U of C (see [38]).

The most symmetric Belyı̆ curves C (and the only ones we will consider here)
are the quasiplatonic curves, those which have a Belyı̆ function ˇ which is a
regular covering, that is, there is a group G of automorphisms of C inducing the
covering ˇ W C ! C =G Š P

1.C/. This is equivalent to C being uniformised
by a torsion-free normal subgroup K of finite index in a triangle group �, with
�=K Š G; then K is a surface group, isomorphic to the fundamental group �1C
of C . This is also equivalent to the hypermap H in (d) being (orientably) regular,
with orientation-preserving automorphism group AutCH Š G; this means that
G is a group of orientation- and colour-preserving automorphisms of T , with two
orbits (necessarily regular) on the faces of T , or equivalently one regular orbit on
the edges of B.

Example 1. Let C be the Fermat curve

Fn D fŒx; y; z� 2 P
2.C/ j xn C yn C zn D 0g

of degree n. This is a compact Riemann surface, visibly defined over Q, and hence
over Q. The meromorphic function

ˇ W Œx; y; z� 7! �
�
x

z

�n

is an n2-sheeted covering C ! P
1.C/, branched where xyz D 0, that is, over 0; 1

and 1, each of which lifts to n points on C . The triangulation T therefore has 3n
vertices, 3n2 edges and 2n2 faces, so C has Euler characteristic n.3� n/ and hence
genus .n�1/.n�2/=2; the underlying graph of T is, in fact, the complete tripartite
graph Kn;n;n, and this is a minimum genus embedding of that graph. Similarly, B
is an embedding of the complete bipartite graphKn;n: see Fig. 1 for the case n D 3,
with opposite sides of the outer hexagon identified to form a torus.

As a Riemann surface, C is uniformised by the commutator subgroup K D �0
of the triangle group � D �.n; n; n/, acting on P

1.C/, C or H as n < 3, n D 3 or
n > 3. This is a normal subgroup of �, with �=K Š G WD Zn ˚ Zn acting as a
group of automorphisms

.j; k/ W Œx; y; z� 7! Œ
jn x; 

k
ny; z� .j; k 2 Zn/
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Fig. 1 K3;3 embedded in the
Fermat curve F3

of C , where 
n D exp.2�i=n/, and inducing the regular covering ˇ. Thus C is a
quasiplatonic curve, and H is an orientably regular hypermap with AutCH Š G.
(In fact, if n > 3 then the full automorphism group of C is a semidirect product of
G by S3, permuting the coordinates x; y and z; this corresponds to K being normal
in the maximal triangle group �.2; 3; 2n/, which contains �.n; n; n/ as a normal
subgroup with quotient group S3.)

3 Definition of a Beauville Surface

We say that S is a Beauville surface (of unmixed type) if

1. S D .C1 � C2/=G where each Ci is a complex projective algebraic curve
of genus gi > 1, and G is a finite group acting faithfully as a group of
automorphisms of each Ci , so that it acts freely (i.e. without fixed points) on
C1 � C2;

2. For each i , Ci =G is isomorphic to P
1.C/, with the induced projection ˇi W Ci !

P
1.C/ branched over three points.

Here we will ignore the technically more difficult case of Beauville surfaces of
mixed type [4, §7], where half the elements of G transpose two isomorphic factors
Ci . The product C1 � C2 is a complex manifold (in fact, an algebraic variety) of
dimension 2, and hence so is the quotient S since G acts freely on C1 � C2.
In combinatorial terms, the above conditions can be restated as follows:

1. S D .C1 � C2/=G where each Ci is a quasiplatonic curve of genus gi > 1,
carrying an orientably regular hypermap Hi with AutCHi Š G;

2. The induced action of G on H1 �H2 is fixed-point-free.

Thus a Beauville surface is formed from a pair of orientably regular hypermaps of
hyperbolic type, with the same automorphism group acting freely on their product.
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4 Combinatorial Structures

If S is a Beauville surface .C1 � C2/=G, then each curve Ci carries an orientably
regular hypermap (or regular dessin) Hi with AutCHi Š G. As explained in
Sect. 2, these hypermaps can be represented combinatorially in several ways, as
triangulations Ti or bipartite maps Bi , for instance. These combinatorial structures
on the curves Ci induce further combinatorial structures on C1 � C2, and hence, by
means of the smooth covering C1 � C2 ! S D .C1 � C2/=G, on the Beauville
surface S .

For example T1 �T2 can be regarded as a 4-dimensional CW-complex structure
on C1 �C2: each 2-cell is either a triangle (the product of a vertex on one curve and
a face on the other) or a square (the product of two edges), each 3-cell is a triangular
prism (the product of a triangular face and an edge), and each 4-cell is the product
of two triangles (a 3,3-duoprism). In addition, the 3-colourings of the vertices of the
triangulations Ti induce a 9-colouring of the vertices of T1 � T2. This structure,
including its vertex-colouring, is invariant under the natural action of G � G on
C1 � C2. The free action of the diagonal subgroup means that the quotient surface
S inherits the structure of a 4-dimensional CW-complex .T1 � T2/=G, with the
number of k-cells divided by jGj for each dimension k D 0; : : : ; 4. This structure
on S is preserved by the automorphisms of S , which are described in Sect. 10.
Similarly, the bipartite maps Bi induce a CW-complex .B1 �B2/=G on S , with
each k-cell a union of k-cells of .T1 � T2/=G.

Although Beauville surfaces have been studied quite extensively from the points
of view of algebraic geometry and group theory, this aspect of the theory seems not
to have been investigated so far. It should be noted that although the curves Ci carry
regular dessins, these maps need not be regular when viewed as 3-polytopes: they
could be chiral, with automorphism groups having two orbits on flags: this happens
for the Beauville surfaces in Example 3 when f < e (see Sect. 7 and [36]), and also
for those based on Ree groups and Suzuki groups in [17] (see Sect. 8). Moreover,
although C1 �C2 will have many automorphisms, as a surface or a polytope, taking
a quotient by G may destroy most, and possibly all, of this symmetry: see Sect. 10,
where automorphisms are discussed.

5 Beauville Groups

We call a finite group G a Beauville group if there is a Beauville surface S D
.C1 � C2/=G. Here we translate that definition into purely group-theoretic terms.

A group G is a quotient of a triangle group

�i D �.li ;mi ; ni / D hAi; Bi ; Ci j Alii D B
mi
i D C

ni
i D AiBiCi D 1i

if and only if it has a presentation

G D hai ; bi ; ci j alii D b
mi
i D c

ni
i D ai bici D 1; : : : i; (1)
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with each ai ; bi ; ci the image of Ai ; Bi or Ci . The torsion elements of �i are the
conjugates of the powers of the generators Ai ; Bi and Ci , so the kernel Ki of the
natural epimorphism�i ! G is torsion-free if and only if the generators ai ; bi and
ci have orders

jai j D li ; jbi j D mi; jci j D ni : (2)

The triangle group�i acts on H if and only if

1

li
C 1

mi

C 1

ni
< 1; (3)

in which case there is an induced action of G on the Riemann surface H=Ki , which
is compact (and thus an algebraic curve Ci ) if and only if G is finite. The elements
ofG with fixed points in Ci are the conjugates of the powers of the generators ai ; bi
and ci , forming a subset

˙i D ˙i.G/ D
[

g2G
.hai i [ hbi i [ hci i/g

of G. ThenG acts freely on the product C1 �C2 of two such curves Ci .i D 1; 2/ if
and only if no non-identity element of G has fixed points on both curves, that is,

˙1 \˙2 D f1g: (4)

Thus conditions (1)–(4) are necessary and sufficient for a finite group G to be a
Beauville group. When these conditions are satisfied, we call the pair of generating
triples .ai ; bi ; ci / a Beauville structure of type .l1;m1; n1I l2;m2; n2/ on G. Such
a structure on G uniquely determines the curves Ci , and hence the Beauville
surface S . This equivalence between surfaces and structures means that one can
study many aspects of Beauville surfaces entirely within the theories of finite groups
or of regular hypermaps.

6 Beauville’s Example

The original examples of Beauville surfaces are constructed as follows:

Example 2. Let C1 D C2 be the Fermat curve Fn of degree n, described in
Example 1. There is a faithful action �1 W G ! AutFn of the group G D Zn ˚ Zn

on Fn, given by

.j; k/ W Œx; y; z� 7! Œ
jn x; 

k
ny; z�



212 G.A. Jones

for all j; k 2 Zn. In this action ofG, the elements with fixed points are the multiples
of the generating triple a1 D .1; 0/ fixing points Œ0; y; z� 2 Fn, b1 D .0; 1/ fixing
points Œx; 0; z� 2 Fn, and c1 D .�1;�1/ fixing points Œx; y; 0� 2 Fn. Thus

˙1 D f.j; k/ 2 G j j D 0; k D 0 or j D kg:

We need a second action of G on this curve. If ˛ is an automorphism of G then
(composing from right to left) �2 WD �1 ı ˛�1 W G ! AutFn is a faithful action of
G on Fn with˙2 D ˛.˙1/. If we define ˛ W .j; k/ 7! .4jC2k; j Ck/, then simple
number theory shows that this is an automorphism of G with ˙1 \˙2 D f.0; 0/g if
and only if n is coprime to 6.

In fact, Beauville set the case n D 5 as an exercise in [5], and then invited the
reader to generalise this construction. In 2000 Catanese [9] showed that these are
the only abelian examples:

Theorem 1 (Catanese). The only abelian Beauville groups are the groups G D
Zn ˚ Zn where n > 1 and n is coprime to 6.

The proof depends on simple applications of the structure theorems for finite
abelian groups. This result raises the question of how many Beauville surfaces
are associated with the group G D Zn ˚ Zn. Bauer, Catanese and Grunewald
gave asymptotic estimates in [3], and Garion and Penegini gave upper and lower
bounds in [19]. The following argument, due to González-Diez, Torres-Teigell and
the author [24], gives an exact formula.

Without loss of generality, one can assume that the first generating triple
.a1; b1; c1/ is as above. The second triple differs from it by an automorphism of
G, i.e. a matrix A 2 GL2.Zn/. It is shown in both [19] and [24] that the set Fn
of matrices A inducing automorphisms of G satisfying ˙1 \ ˙2 D f.0; 0/g has
cardinality

jFnj D n4
Y

pjn

�

1 � 1

p

��

1 � 2

p

��

1 � 3

p

��

1 � 4

p

�

; (5)

where p ranges over the distinct primes dividing n. (Notice that this expression is
0 unless n is coprime to 6.) One can prove this by using basic linear algebra in the
case where n is prime, then lifting to powers of that prime by Hensel’s Lemma, and
finally using the Chinese Remainder Theorem for general integers n.

Now two matrices A;A0 2 GL2.Zn/ give isomorphic Beauville surfaces if and
only if A0 D PA˙1Q where P and Q are elements of a certain subgroup of
GL2.Zn/ isomorphic to S3, permuting the standard triple fa1; b1; c1g. We thus have
an action on Fn by the wreath productW D S3 oS2, a semidirect product of S3�S3
by S2: here the two direct factors S3 correspond to the matricesP andQ, permuting
the three vertex colours on each curve Ci , and the complement S2 corresponds to
inverting A and transposing the curves. The number of non-isomorphic Beauville
surfaces obtained is equal to the number of orbits of W on Fn, and this can be
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found by applying the Cauchy-Frobenius Counting Lemma (otherwise known as
Burnside’s Lemma). This states that the number of orbits of a finite group on a finite
set is equal to the average number of points fixed by the elements of the group. In our
case, inspection shows that most of the elements of W act without fixed points on
Fn, giving the following result (see [24] for details):

Theorem 2. Let n D p
e1
1 � : : : � pess be a natural number coprime to 6, where

p1; : : : ; pk are distinct primes. Then the number of isomorphism classes of Beauville
surfaces with Beauville group Zn ˚ Zn is

�.n/ D 1

72

 

�1.n/C 4

sY

iD1
�2.p

ei
i /C 6

sY

iD1
�3.p

ei
i /C 12

sY

iD1
�4.p

ei
i /

!

; (6)

where �1.n/ D jFnj,

�2.p
e/ WD

8

<

:

p2e
�

1 � 1
p

� �

1 � 4
p

�

if p � 1 mod .3/,

p2e
�

1 � 1
p

� �

1 � 2
p

�

if p � 2 mod .3/,

�3.p
e/ WD p2e.1 � 3=p/.1� 5=p/;

and

�4.p
e/ WD




2 if p � 1 mod .3/,
0 if p � 2 mod .3/.

Here 72 is the order of W , while �1.n/ is the number jFnj of fixed points of its
identity element, given by (5), and the terms in (6) involving�2, �3 and �4 are the
contributions to the average from conjugacy classes in W containing 4, 6, and 12
elements of orders 3, 2 and 6.

For large n the sum in (6) is dominated by �1.n/, so we have

�.n/ � 1

72
�1.n/ D n4

72

Y

pjn

�

1� 1

p

��

1 � 2

p

��

1 � 3

p

��

1 � 4

p

�

as n ! 1 with n coprime to 6. (Note that, despite appearances, �.n/=n4 is not
bounded away from 0: if we take n to be the product of the first k primes p > 3,
then

Y

pjn

�

1 � 1

p

�

! 0

as k ! 1 (see [35, Exercise 9.3]), and hence �.n/=n4 ! 0 for such integers n.)
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7 Beauville p-Groups

It is natural to try to extend the classification of Beauville groups from abelian
groups to wider classes, such as nilpotent groups. A finite group is nilpotent if
and only if it is a direct product of its Sylow subgroups, and a direct product of
Beauville groups of mutually coprime orders is clearly a Beauville group, so the
main objective in such an extension is to study Beauville structures on p-groups for
the various primes p. Barker, Boston, Peyerimhoff and Vdovina [2] have obtained
Beauville 2-groups as quotients of the fundamental group of a certain simplicial
complex, while Barker, Boston and Fairbairn [1] have constructed many examples
for all p. For instance, they show that in addition to the abelian p-groupsCpe �Cpe
with p 
 5, given by Example 2, there is at least one nonabelian Beauville group
of every prime-power order pk provided p 
 7 and k 
 3. (For primes p < 7, the
smallest nonabelian Beauville p-groups have orders 27, 35 and 54.)

Example 3. For each prime p 
 5, let

G D G.e; f / D hx; y j xpe D yp
e D 1; yx D y1Cpf i

where 1 � f � e. Thus G is a semidirect product of two cyclic groups hxi and
hyi of order pe , so G has order p2e ; it is abelian if and only if f D e. The Frattini
subgroup of G is the normal subgroup ˚ D hxp; ypi, with G=˚ Š Cp � Cp . The
Beauville structures of type .p; p; pIp; p; p/ on Cp �Cp constructed in Example 2
lift back to Beauville structures of type .pe; pe; peIpe; pe; pe/ on G. These groups
appeared in connection with the classification of orientably regular embeddings of
complete bipartite graphs in [33,36], and their connections with dessins were studied
in [40].

This example deals with even powers of primes p 
 5. Barker, Boston and
Fairbairn [1] give a similar construction for odd powers.

Example 4. Let G be a 2-generator finite group of prime exponent p 
 5. As in
Example 3, any Beauville structure on the quotient group G=˚ Š Cp � Cp lifts
to a Beauville structure on G, this time of type .p; p; pIp; p; p/. By Kostrikin’s
solution [43] of the restricted Burnside problem for prime exponents, for each p
there is a largest such 2-generator finite group G, denoted by R.2; p/, and all
others are quotients of it. These groups R.2; p/ are in fact very large: for instance,
Havas, Wall and Wamsley [31] have shown that jR.2; 5/j D 534, while O’Brien and
Vaughan-Lee [47] have shown that jR.2; 7/j D 720416. For a detailed survey of the
restricted Burnside problem, see [56].

Barker, Boston and Fairbairn show in [1] that the proportion of 2-generator
groups of order p5 which are Beauville groups tends to 1 as p ! 1, but that this
is not the case for groups of order p6. The question raised by Fuertes, González-
Diez and Jaikin-Zapirain in [16], namely whether, in any sense, most 2-generator
p-groups are Beauville groups, remains open.
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8 Simple Beauville Groups

It is easy to see that the alternating group A5 is not a Beauville group. For instance,
its non-identity elements have orders 2; 3 or 5. If l; m; n 2 f2; 3g then the triangle
group�.l;m; n/ is solvable, whereasA5 is not, so any generating triple forA5 must
contain an element of order 5. Since the Sylow 5-subgroups of A5 are cyclic, any
two elements of order 5 are conjugate to powers of each other, so no two generating
triples can satisfy the Beauville condition (4).

In 2005, Bauer, Catanese and Grunewald [3] made the following conjecture:

Every non-abelian finite simple group except A5 is a Beauville group.

As evidence for this, they showed that An is a Beauville group for all sufficiently
large n, as are the groupsPSL2.p/ for all primes p > 5 (note that PSL2.5/ Š A5)
and the Suzuki groups Sz.2e/ for all odd primes e. Fuertes and González-Diez [14]
showed that An is a Beauville group for all n 
 6. In [17], Fuertes and the author
showed that various other simple groups are Beauville groups, namely PSL2.q/ for
all prime powers q > 5, and the Suzuki groups Sz.2e/ and the Ree groups R.3e/
for all odd e 
 3. They also showed that certain quasisimple groups (perfect central
extensions of simple groups) are Beauville groups, namely the groups SL2.q/ for
q > 5, again extending a result for prime q in [3].

Around the same time, Garion and Penegini [19] obtained the above result for
PSL2.q/, using results of Macbeath [45] on generating triples for this group. They
also used probabilistic methods to show that Sz.2e/ andR.3e/ are Beauville groups
for all sufficiently large odd e, with similar results for several other families of
simple groups, including PSL3.q/ and the unitary groups U3.q/.

Soon, specialists in the study of finite simple groups became interested in this
problem: the classification of such groups, announced around 30 years ago but
not completely proved until 2004, allows conjectures such as this to be obtained
by inspection. Several major advances were announced in 2010. Firstly, Garion,
Larsen, and Lubotzky [18] used probabilistic methods to show that the conjecture
is true with at most finitely many exceptions. Soon afterwards, Guralnick and
Malle [30] gave a complete proof of the conjecture, while Fairbairn, Magaard and
Parker [13] extended it further to all finite quasisimple groups except A5 and its
central cover SL2.5/. In all three cases, the proofs require deep knowledge of the
structure of finite simple groups, especially those of Lie type; see [8,60] for detailed
accounts of these groups, and [11] for a concise (but hardly pocket-sized) summary.

9 Fundamental Groups and Rigidity

Just as each Beauville surface S D .C1 � C2/=G is constructed from a groupG, it
gives rise to two more groups: as a connected topological space it has a fundamental
group �1S , and as an algebraic variety it has an automorphism group AutS .



216 G.A. Jones

The fundamental group of S is easily described. We have a pair of triangle
groups �i , each with a normal subgroup Ki Š �1Ci such that Ci Š H=Ki and
�i=Ki Š G. Each �i acts on H, so there is an induced action of �1 � �2 on the
simply connected space H � H. Let ˘ denote the inverse image of the diagonal
subgroup in the natural epimorphism �1 � �2 ! G � G, that is, the subgroup of
�1��2 consisting of those pairs which map onto the same element ofG. Beauville
condition (4) implies that ˘ acts freely on H � H, with .H � H/=˘ Š S , so
�1S can be identified with ˘ . Thus �1S has a normal subgroup K1 � K2 Š
�1C1 � �1C2 Š �1.C1 � C2/, with quotient group G, corresponding to the regular
covering C1 � C2 ! S with covering group G. It also has a normal subgroupK1,
with quotient group �2, corresponding to the regular covering C1 � H ! S with
covering group�2, and similarly for the normal subgroupK2.

This leads to a property of Beauville surfaces called rigidity [9], meaning
essentially that the topology determines the geometric structure. In a hyperbolic
triangle group, the centraliser of each non-identity element is cyclic. Thus the
centraliser in ˘ D �1S of any element of Ki contains a surface group (namely
K3�i ), and is therefore nonabelian, whereas any other element of ˘ has an
abelian centraliser. It follows that if S 0 D .C 01 � C 02/=G0 is another Beauville
surface, then any isomorphism �1S ! �1S 0 induces isomorphisms �i ! �0i
between the corresponding triangle groups (possibly after transposing factors),
and an isomorphism G ! G0 of their Beauville groups. Now any isomorphism
of cocompact hyperbolic triangle groups is induced by an isometry of H, since
the corresponding triangles are isometric. It follows that homeomorphic Beauville
surfaces are in fact isometric, and that S is uniquely determined, up to complex
conjugation of either or both of the curves Ci , by its fundamental group. Such
rigidity properties help to explain why Beauville surfaces are so interesting to
algebraic geometers. (The above argument, taken from a more detailed proof given
by González-Diez and Torres-Teigell in [26], is a group-theoretic analogue of the
arguments based on algebraic geometry given by Catanese in [9] and by Bauer,
Catanese and Grunewald in [4].)

10 Automorphism Groups of Beauville Surfaces

This section summarises results of the author on automorphism groups of Beauville
surfaces in [34]; some of these results have been obtained independently by Fuertes
and González-Diez in [15], and have been extended to mixed Beauville surfaces by
González-Diez and Torres-Teigell in [27].

The rigidity results outlined in the preceding section show that any automorphism
of a Beauville surface S D .C1 � C2/=G lifts to an automorphism of C1 � C2, and
this either preserves or transposes the curves Ci ; such automorphisms of S are
called direct or indirect respectively. First we consider the group Aut0S of direct
automorphisms of S , a subgroup of index at most 2 in AutS .



Beauville Surfaces and Groups: A Survey 217

Let Ai WD AutCi . There is a natural action of A1 � A2 on C1 � C2, and we can
regard S as the quotient of C1 � C2 by the diagonal subgroup D of the subgroup
G �G of A1 �A2. A simple calculation shows that an element .˛1; ˛2/ 2 A1 �A2,
acting on C1 � C2, permutes the orbits of D, and hence induces an automorphism
of S , if and only if

1. Each ˛i is in the normaliser Ni WD NAi .G/ of G in Ai , and
2. ˛1 and ˛2, acting by conjugation, induce the same automorphism of G.

Such elements .˛1; ˛2/ form a subgroup N of N1 � N2, the inverse image of the
diagonal subgroup of AutG � AutG under the natural homomorphismN1 �N2 !
AutG � AutG. The kernel of this action of N is D, so the group A0 D Aut0S of
direct automorphisms of S is isomorphic to N=D.

In particular, if each ˛i 2 G then condition (1) is satisfied, and (2) is satisfied
if and only if ˛1˛�12 is in the centre Z WD Z.G/ of G. Thus N contains a normal
subgroup

M D N \ .G �G/ D f.˛1; ˛2/ 2 G �G j ˛1˛�12 2 Zg Š D �Z;

inducing on S a normal subgroup I WD InnS Š M=D Š Z of A0; the elements
of I are called the inner automorphisms of S , induced by compatible pairs of
elements of G acting on the curves Ci . Since I is isomorphic to the centre of G,
it is finite and abelian. The quotient group A0=I Š N=M is called the direct outer
automorphism group Out0S of S .

In many cases G D Ni for each i (for instance if G D Ai ), so that M D N and
henceA0 D I Š Z. IfG < Ni for some i , then�i is a proper normal subgroup of a
Fuchsian group Q�i , with Q�i=Ki Š Ni . Singerman [52] has shown that any Fuchsian
group containing a triangle group must also be a triangle group, and that any proper
normal inclusion between them must be (up to permutations of the periods) of one
of the forms

.a/ �.s; s; t/G�.2; s; 2t/; .b/ �.t; t; t/G�.3; 3; t/; .c/ �.t; t; t/G�.2; 3; 2t/;

with the quotient group isomorphic to C2, C3 or S3 respectively. In all three cases,
at least two of the three periods of �i are equal, so we have:

Proposition 1. If a Beauville structure on a groupG has type .l1;m1; n1I l2;m2; n2/,
and for each i the periods li ; mi and ni are mutually distinct, then the direct
automorphism group Aut0S of the corresponding Beauville surface S is
isomorphic to the centre of G. �

If there are repetitions among either or both of the triples li ; mi ; ni , then S may
have direct outer automorphisms, arising from proper normal inclusions �i G Q�i .
In this case Singerman’s results, stated above, allow us to deduce the following:
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Proposition 2. The direct automorphism group Aut0S of a Beauville surface S
has a normal subgroup InnS Š Z.G/ with Aut0S =InnS isomorphic to a
subgroup of S3 � S3. In particular, Aut0S is a finite solvable group, of derived
length at most 3. �

The direct factors S3 can be regarded as permuting the fibres of ˇi over 0, 1
and 1.

Example 5. Let S D .Fn � Fn/=G as in Example 3, with the Beauville group
G D Zn ˚ Zn. Since G is abelian we have InnS Š G. Then Out0S Š C3 or C1
as the automorphism of G induced by the 3-cycle .a1; b1; c1/ is or is not the same
as that induced by .a2; b2; c2/. Thus Aut0S is isomorphic to an extension of G by
C3, or to G, depending on the choice of the matrix A 2 GL2.Zn/ D AutG linking
the two representations �i of G on Fn.

Any indirect automorphism of S is induced by an automorphism of C1 � C2 of
the form

.p1; p2/ 7! .p2�2; p1�1/;

where �1 W C1 ! C2 and �2 W C2 ! C1 are isomorphisms of curves. It is not hard
to prove:

Proposition 3. A Beauville surface S D .C1 � C2/=G has an indirect automor-
phism if and only if C1 Š C2 and G has an automorphism 
 transposing the
equivalence classes of its representations on C1 and C2. �

Here two representations are defined to be equivalent if each is obtained from the
other by composition with an isomorphism of curves.

Corollary 1. If a Beauville surface S D .C1 � C2/=G has an indirect automor-
phism, then the corresponding Beauville structure on G must consist of two triples
of equivalent types. �

Here two types are defined to be equivalent if each is a permutation of the other.
The analogue of Proposition 10.3 is the following:

Proposition 4. The automorphism group AutS of a Beauville surface S D .C1�
C2/=G has a normal subgroup InnS Š Z.G/ with AutS =InnS isomorphic to a
subgroup of S3 oS2. In particular, AutS is a finite solvable group, of derived length
at most 4. �

By the above results, many Beauville surfaces (for instance, most of those with
simple Beauville groups) have only the identity automorphism.

There are no restrictions on the centre of a Beauville group, and hence on InnS ,
other than the obvious ones that it should be finite and abelian:

Theorem 3. Given any finite abelian group H , there is a Beauville group G with
centre Z.G/ Š H . �
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It immediately follows that there is a Beauville surface S with InnS Š H ;
this remains true, even if one requires OutS to be as large (isomorphic to S3 o S2)
or as small (the trivial group) as possible. A key ingredient of the proof adapts a
method used by Conder [10] for constructing Hurwitz groups with large centres:
we represent H as a direct product of cyclic groups Cmi , each isomorphic to
the centre of some group SLni .qi /, where mi D gcd.ni ; qi � 1/, so that the
direct product G of these groups SLni .qi / has centre Z.G/ Š H . Results of
Lucchini [44] on generators of special linear groups allow one to choose the groups
SLni .qi /, and hence also their productG, to be quotients of�.2; 3; p/ and hence of
�.p; p; p/, for two different primes p D p1; p2, thus giving a Beauville structure of
type .p1; p1; p1Ip2; p2; p2/ on G. Modifications of this construction provide some
control over the outer automorphism group of the resulting Beauville surface S .
For details, see [34].

11 The Absolute Galois Group

Belyı̆’s Theorem [6] implies that the curves Ci used in constructing a Beauville
surface S are defined over the field Q of algebraic numbers, and it follows that S
is also defined over this field. The absolute Galois group is the automorphism group

� D GalQ=Q

of this field. Since Q is the direct limit (i.e. union) of the Galois (finite normal)
extensionsK of Q, it follows that � is the inverse limit

� D lim GalK=Q

of the Galois groups of these fields; the homomorphisms in this inverse system are
the restriction mappings

GalL=Q ! GalK=Q

induced by inclusionsK � L between such fields. Since these are all epimorphisms
between finite groups,� is in fact a profinite group, that is, a projective limit of finite
groups: it can be identified with the subgroup of the cartesian product˘ of all such
groups GalK=Q consisting of the elements whose coordinates are compatible with
the restriction mappings.

Giving the finite groups GalK=Q the discrete topology makes ˘ a topological
group, compact by Tychonoff’s Theorem, so � , as a closed subgroup of ˘ , is
also a compact topological group (in fact, homeomorphic to a Cantor set). The
Galois correspondence is then between the subfields of Q and the closed subgroups
of � . Understanding � is therefore critical to an understanding of algebraic
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number theory. There are many important open problems associated with this group.
For instance the Inverse Galois Problem, Hilbert’s question whether every finite
group is isomorphic to a Galois group over Q, is equivalent to asking whether every
finite group is the quotient of � by some closed normal subgroup. Books by Malle
and Matzat [46], Serre [51] and Völklein [57] describe progress on this.

In the mid-1980s, Grothendieck [29] proposed that one should study � through
its actions on various geometric and combinatorial objects, the simplest of which are
oriented hypermaps, or dessins d’enfants (children’s drawings) as he called them,
viewed as unbranched finite coverings of P1.C/ n f0; 1;1g. By Belyı̆’s Theorem
these are defined over Q, and there is a natural action of � on them, through its
action on the coefficients of the polynomials and rational functions defining them.
This action preserves the obvious numerical parameters of a dessin, such as the
numbers and valencies of its vertices and faces, and hence its genus [39]. However,
using elementary properties of the modular j -function it is easy to show that �
acts faithfully on dessins of genus 1 (those on elliptic curves). Less obviously,
Schneps [49] has shown that it acts faithfully on plane trees, while Girondo and
González-Diez [20] have shown that it is faithful on dessins of each genus g 
 2.
González-Diez and Jaikin-Zapirain [23] have recently shown that � acts faithfully
on regular dessins, i.e. orientably regular hypermaps.

Example 6. Hurwitz [32] showed that if C is a compact Riemann surface (or
algebraic curve) of genus g 
 2 then AutC has order at most 84.g � 1/. The
finite groups G attaining this bound, namely the nontrivial finite quotients of the
triangle group� D �.2; 3; 7/, are called Hurwitz groups. Macbeath [45] classified
those groups PSL2.q/ which are Hurwitz groups, and these include the groups
G D PSL2.p/ for all primes p � ˙1 mod .7/. For such groups G there are, in
fact, three normal subgroups N of � with �=N Š G, corresponding to choosing
elements from the three conjugacy classes of elements of order 7 as members of
generating triples for G. We thus obtain three non-isomorphic Riemann surfaces
C D H=N , of genus

g D 1C p.p2 � 1/
168

and with automorphism group PSL2.p/, attaining Hurwitz’s bound. Streit [53]
showed that, as algebraic curves, these are defined over the cubic field K D
Q.
7/ \ R, and are conjugate under the Galois group GalK=Q Š C3 of that
field. The normal inclusions of the subgroups N in � equip each C with a regular
dessin, specifically an orientably regular 7-valent triangular map, inherited from the
corresponding �-invariant tessellation of H. These three algebraically conjugate
maps are mutually non-isomorphic, and in fact so are their embedded graphs [41].

Example 7. In [53], Streit generalised the above example, replacing the integer 7
with an arbitrary integer n 
 7. For any prime p � ˙1 mod .2n/ there are �.n/=2
conjugacy classes of elements of order n in the groupG D PSL2.p/, giving rise to
�.n/=2 normal subgroupsN of the triangle group� D �.2; 3; n/ with�=N Š G.
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These in turn correspond to the same number of non-isomorphic curves C D H=N ,
all with automorphism group G and carrying orientably regular n-valent triangular
maps. These curves are defined over the field Q.
n/ \ R, and are equivalent under
the Galois group of that field, isomorphic to Z

�
n=f˙1g. As before, these maps are

mutually non-isomorphic.

12 Conjugate but Non-homeomorphic Varieties

The examples in the preceding section show how the action of� can change analytic
and combinatorial structures defined over Q, but what about topology? The genus
of an algebraic curve can be defined purely algebraically (using the Riemann-Roch
Theorem, for example), so it is invariant under � ; thus Galois conjugate curves
are homeomorphic to each other. However, in 1964 Serre [50] showed that in each
dimension greater than 1 there are pairs of algebraic varieties, defined overQ, which
are conjugate under � but not homeomorphic to each other. Subsequently, further
examples of such pairs have been constructed. In fact, there exist arbitrarily large
Galois orbits consisting of mutually non-homeomorphic Beauville surfaces.

Example 8. The first such examples were given by Gonzaléz-Diez and Torres-
Teigell [26], using Beauville structures of type .2; 3; nIp; p; p/ on the group
G D PSL2.p/, for integers n 
 7 and primes p � ˙1 mod .2n/. As in
Example 7, generating triples of type .2; 3; n/ in G give rise to a Galois orbit of
�.n/=2 non-isomorphic curves C1. By using triples of type .p; p; p/ for C2 they
obtained an orbit of at least �.n/=2 mutually non-isomorphic Beauville surfaces.
By rigidity, these have non-isomorphic fundamental groups, so they are mutually
non-homeomorphic. For fixed n, Dirichlet’s Theorem gives infinitely many suitable
primes p, and elementary properties of Euler’s function show that the size of these
orbits of � tends to infinity as n increases.

Example 9. The authors of [26] were unable to determine the exact size of the
orbits in Example 8 because of the technical difficulty of finding how the outer
automorphism of PSL2.p/, induced by conjugation in PGL2.p/, acts on the
associated Beauville surfaces. In [25], they and the present author avoided this
problem by using a similar construction based on the Beauville group G D
PGL2.p/, which has only inner automorphisms.

If p is an odd prime then the non-identity elements of PGL2.p/ are of three
types: elliptic elements, of order dividing p C 1, with no fixed points on the
projective line P

1.p/; parabolic elements, of order p, with one fixed point; and
hyperbolic elements, of order dividing p � 1, with two fixed points. An element
of one type cannot be conjugate to a power of an element of another type. For any
prime p � 19 mod .24/ one can find generating triples for G of types .2; 3; p � 1/,
consisting of hyperbolic elements, and .2; 4; pC 1/, consisting of elliptic elements;
any such pair of triples forms a Beauville structure on G.
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There are �.p˙ 1/=2 conjugacy classes of elements of order p˙ 1 in G. This is
therefore the number of normal subgroups of the triangle group�1 D �.2; 3; p�1/
or �2 D �.2; 4; p C 1/ with quotient group G, and hence also the number of
non-isomorphic algebraic curves C1 or C2 uniformised by such subgroups. These
curves all have automorphism groupG since Singerman’s results [52] show that�1

and �2 are maximal Fuchsian groups. These two families of curves Ci are defined
over the field Ki D Q.
p˙1/ \ R, and the members of each family are conjugate
under the Galois group of that field. We thus obtain �.p � 1/�.pC 1/=4 Beauville
surfaces S D .C1 � C2/=G, defined over the field K D K1K2; they are conjugate
under GalK=Q and hence under � . By rigidity, these surfaces have mutually
non-isomorphic fundamental groups, so they are mutually non-homeomorphic.
As before, the size of this orbit of � tends to infinity as p increases.

In both of these examples, although the topological fundamental groups �1S
of the surfaces S in a given orbit are mutually non-isomorphic, the algebraic
fundamental groups �alg

1 S , the profinite completions 1�1S of the topological
fundamental groups, are mutually isomorphic. This is because the finite quotients
of the groups �1S correspond to the finite regular unbranched coverings of S , and
these, being algebraically defined, are invariant under � (see [50]). By contrast with
the groups�1S , Conder [7] has recently shown that triangle groups are determined,
up to isomorphism, by their finite quotient groups.

In Examples 6–9, together with other similar examples in [12, 40, 41, 54, 55], for
instance, the curves and surfaces in an orbit of � are all defined over some subfield
of a cyclotomic field. The group of transformations induced by � on such an orbit
is therefore abelian, so the commutator subgroup � 0 is contained in the kernel of
the action. It would be interesting to have some nonabelian examples, which reveal
more of the structure of � . In theory this should be possible, since it follows from
a recent result of González-Diez and Jaikin-Zapirain [23] (see Sect. 11) that � acts
faithfully on Beauville surfaces.
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Generic Rigidity with Forced Symmetry
and Sparse Colored Graphs

Justin Malestein and Louis Theran

Abstract We review some recent results in the generic rigidity theory of planar
frameworks with forced symmetry, giving a uniform treatment to the topic. We also
give new combinatorial characterizations of minimally rigid periodic frameworks
with fixed-area fundamental domain and fixed-angle fundamental domain.

Keywords Rigidity • Matroid • Colored graph • Periodic framework • Forced
symmetry • Sparse graphs

Subject Classifications: 52C25, 52B40

1 Introduction

The Maxwell-Laman Theorem is the prototypical result of combinatorial rigidity
theory.

Theorem 1 ([19, 29]). A generic bar-joint framework in the plane is minimally
rigid if and only if the graph defined by the frameworks edges has n vertices
m D 2n�3 edges, and, for all subgraphs on n0 vertices andm0 edges,m0 � 2n0�3.
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The key feature of this, and all such “Maxwell-Laman-type results” is that, for
almost all geometric data, rigidity is determined by the combinatorial type and can
be decided by efficient combinatorial algorithms.

1.1 Some Generalizations

Finding generalizations of the Maxwell-Laman Theorem has been the motivation
for a lot of progress in the field. The body-bar [49], body-bar-hinge [49, 51], and
panel-hinge [17] frameworks have a rich generic theory in all dimensions. Here
the “sparsity counts” are of the form m0 � Dn0 � D, where D is the dimension
of the d -dimensional Euclidean group. On the other hand, various elaborations of
the planar bar-joint model via pinning [6, 22, 35], slider-pinning [18, 46], direction-
length frameworks [44], and other geometric restrictions like incident vertices [8] or,
of more relevance here symmetry [41,42], have all shed more light on the Maxwell-
Laman Theorem itself.

In another direction, various families of graphs and hypergraphs defined by
heriditary sparsity counts of the form m0 � kn0 � `0 have been studied in terms
of combinatorial structure [20], inductive constructions [7, 20], sparsity-certifying
decompositions [45, 51] and linear representability [47], [52, Appendix A] proper-
ties. Running through much of this work is a matroidal perspective first introduced
by Lovász-Yemini [23].

While much is known about .k; `/-sparse graphs and hypergraphs, the parameter
settings that yield interesting rigidity theorems seem to be somewhat isolated,
despite the uniform combinatorial theory and many operations connecting different
sparsity families.

1.2 Forced Symmetry

For the past several years, the rigidity and flexibility of frameworks with additional
symmetry has received much attention,1 although it also goes back further. Broadly
speaking, there are two approaches to this: incidental symmetry, in which one
studies a framework that may move in unrestricted ways but starts in a symmetric
position [10, 15, 16, 32, 41, 42]; and forced symmetry [4, 24–26, 37, 39] where a
framework must maintain symmetry with respect to a specific group throughout
its motion. Forced symmetry is particularly useful as a way to study infinite
frameworks2 arising in applications to crystallography [36, 50].

1See, e.g., the recent conferences [9, 21, 40].
2Infinite frameworks with no other assumptions can exhibit quite complicated behavior [33].
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In a sequence of papers [24–26], we pioneered much of the generic and
combinatorial rigidity theory for the forced-symmetric frameworks in the plane. The
basic setup we consider is as follows: we are given a group � that acts discretely
on the plane by Euclidean isometries, a graph QG D . QV ; QE/, and a � -action ' on QG
with finite quotient that is free on the vertices and edges. A (realized) � -framework
QG.p; ˚/ is given by a point set p D .pi /i2 QV and a representation ˚ of � by

Euclidean isometries, with the compatibility condition

p� �i D ˚.�/ � pi (1)

holding for all � 2 � and i 2 QV .
Intuitively, the allowed continuous motions through QG.p; ˚/ are those that

preserve the lengths and connectivity of the bars, and symmetry with respect to
� , but the particular representation ˚ is allowed to flex. When the only allowed
motions are induced by Euclidean isometries, a framework is rigid, and otherwise it
is flexible.

The combinatorial model for � -frameworks is colored graphs, which we
describe in Sect. 2. These efficiently capture some canonical � -framework
invariants relating to how much flexibility from the group representation ˚ a
sub-framework constrains. Our combined theorems can be described uniformly as
follows:

Theorem 2 ([24–26]). Let � be one of:

• Z
2, acting on the plane by translation

• Z=kZ, for k 2 N, k 
 2 acting on the plane by an order k rotation around the
origin

• Z=2Z, acting on the plane by a reflection
• A crystallographic group generated by translations and a rotation.

A generic � -framework QG.p; ˚/ is minimally rigid if and only if the associated
colored quotient graph .G;�/ has n vertices, m edges and:

• m D 2nC teich�.� /� cent.� /
• For all subgraphs G0 on n0 vertices, m0 edges, with connected components Gi

that have �-image �i ,

m0 � 2n0 C teich�.�.G0// �
X

i

cent.� 0i / (2)

where �.G0/ is the translation subgroup associated with � 0i .

(See Sect. 2 for definitions of teich� and cent.) Theorem 2 gives a generic rigidity
theory that is: (1) Combinatorial; (2) Computationally tractable; (3) Applica-
ble to almost all frameworks; (4) Applicable to a small geometric perturbation
of all frameworks. In other words, it carries all of the key properties of the
Maxwell-Laman-Theorem to the forced symmetry setting.
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1.3 Results and Roadmap

The classes of colored graphs appearing in Theorem 2 are a new, non-trivial,
extension of the .k; `/-sparse families that had not appeared before. The proof
of Theorem 2 relies on a direction network method (cf. [46, 51]), and the papers
[24–26] develop the required combinatorial theory for direction networks. In this
paper, we focus more on frameworks, describing the colored graph invariants that
correspond to “Maxwell-type heuristics” and showing how to explicitly compute
them. Additionally, we study periodic frameworks in a bit more detail, and derive
several new consequences of Theorem 2: conditions for a periodic framework to fix
the representation of Z2 (Propositions 5 and 9), and, as a consequence, the Maxwell-
Laman-type Theorem 4 for periodic frameworks with fixed area fundamental
domain.

1.4 Some Related Works

We remark that Theorem 2 has subsequently been shown to hold in the case where
� is any dihedral group of order 2k where k is odd [14]. From examples in the same
preprint, it appears that the above heriditary sparsity condition, while necessary, fails
to be sufficient when k is even. Another subsequent preprint of note by Tanigawa
provides somewhat different characterizations of generic rigidity for the above
frameworks in Theorem 2 when � is orientation-preserving [48]. Note that all these
results are restricted to the plane, and in fact the problem of characterizing generic
rigidity of symmetric bar-joint frameworks in higher dimensions is no easier than
that in the nonsymmetric setting, a difficult and unsolved problem. However, some
partial results in the periodic case in higher dimensions have been obtained [5].

1.5 Notation and Terminology

We use some standard terminology for .k; `/-sparse graphs: a finite graph
G D .V;E/ is .k; `/-sparse if for all subgraphs on n0 vertices and m0 edges,
m0 � kn0 � `. If equality holds for all of G, then G is a .k; `/-graph; a subgraph
for which equality holds is a .k; `/-block and maximal .k; `/-blocks are .k; `/-
components. Edge-wise minimal violations of .k; `/-sparsity are .k; `/-circuits. If
G contains a .k; `/-graph as a spanning subgraph it is .k; `/-spanning. A .k; `/-
basis of G is a maximal subgraph that is .k; `/-sparse. We refer to .2; 3/-sparse
graphs by their more conventional name: Laman-sparse graphs.

In the sequel, we will define a variety of hereditarily sparse colored graph
families. We generalize the concepts of “sparse”, “block”, “component”, “basis”
and “circuit” in the natural way for any family of colored graphs defined by a
sparsity condition.
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2 The Model and Maxwell Heuristic

We now briefly review the degree of freedom heuristic that leads to the sparsity
condition (2). As is standard, we begin with the desired form:

#.constraints/ � #.total d.o.f./� #.trivial motions/ (3)

What distinguishes the forced symmetric setting is that the r.h.s. depends, in an
essential way, on the representation ˚ of the symmetry group. Thus, we modify
(3) to

#.constraints/ � #.total non-trivial d.o.f./ � #.rigid motions preserving ˚/ (4)

2.1 Flexibility of Symmetry Groups and Subgroups

Let � be a group as in Theorem 2. We define the representation space Rep.� /
to be the set of all faithful representations ˚ of � by Euclidean isometries. The
Teichmüller space3 Teich.� / is the quotient Rep.� /=Euc.2/ of the representation
space by Euclidean isometries. We define teich.� / to be the dimension of Teich.� /.
For frameworks, the Teichmüller space plays a central role, since teich.� / gives the
total number of non-trivial degrees of freedom associated with representations of � .

Now let � 0 < � be a subgroup of � . The restricted Teichmüller space
Teich�.� 0/ is the image of the restriction map from � ! � 0 modulo Euclidean
isometries. Equivalently it is the space of representations of � 0 that extend to
representations of � . Its dimension is defined to be teich�.� 0/.

The invariant teich�.� 0/ measures how much of the flexibility of � can be
“seen” by � 0. In general, the restricted Teichmüller space of � 0 is not the same as
its (unrestricted) Teichmüller space. For instance, the Teichmüller space Teich.Z2/
has dimension 3, but the restricted Teichmüller space Teich�.Z2/ has dimension 1
if � contains a rotation of order 3.

2.2 Isometries of the Quotient

Now let ˚ be a representation of � . The centralizer of ˚ is the subgroup of
Euclidean isometries commuting with˚.� /. We define cent.� / to be the dimension
of the centralizer, which is independent of ˚ (see e.g. [24, Lemma 6.1]). An
alternative interpretation of the centralizer is that it is the isometry group of the
quotient orbifold R

2=� .

3We are extending the terminology “Teichmüller space” from its more typical usage for the group
Z
2 and lattices in PSL.2;R/. Our definition of Teich.Z2/ is non-standard since the usual one allows

only unit-area fundamental domains.
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2.3 Colored Graphs

The combinatorial model for a � -framework is a colored graph .G;�/,4 which is
a finite, directed graph G D .V;E/ and an assignment � D .�ij /ij2E of a group
element in � to each edge ofG. The correspondence between colored graphs .G;�/
and graphs with a � -action . QG; '/ is a straightforward specialization of covering
space theory, and we have described the dictionary in detail in [24, Section 9]. The
important facts are:

• The data . QG; '/ and a selection of a representative from each vertex and edge
orbit determine a colored graph .G;�/.

• Each colored graph .G;�/ lifts to a graph QG with a free � -action by a natural
construction.

Together these mean that the colored graph .G;�/ captures all the information
in . QG; '/.

2.4 The Homomorphism �

Let .G;�/ be a connected colored graph, and select a base vertex b of G. The
coloring on the edges then induces a natural homomorphism � W �1.G; b/ ! � .
For a closed path P defined by the sequence of edges bi2; i2i3; : : : ; i`�1b, we have

�.P / D �bi2�i2i3 : : : �i`�1b;

where �j i is taken to be ��1ij . The key properties of � are [24, Lemmas 12.1
and 12.2]:

• The quantities teich�.�.�1.G; b/// and cent.�.�1.G; b/// depend only on the lift
. QG; '/, so, in particular, they are independent of the choice of b.

• IfG1;G2; : : : ; Gc , are the connected components of a disconnected colored graph
.G;�/, there is a well-defined translation subgroup�.G/ of G.

2.5 Derivation of the Maxwell Heuristic

We are now ready to derive the degree of freedom heuristic for � -frameworks.
Let .G;�/ be a � -colored graph with n vertices, m edges, connected components
G1;G2; : : : ; Gi , with �-images � 0i . We fill in the template (4) for the associated
� -framework QG.p; ˚/:

4Colored graphs are also known as “gain graphs” or “voltage graphs” [53]. The terminology of
colored graphs originates from [36].
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Non-trivial degrees of freedom. There are two sources of flexibility:

(A) The group representation ˚ has, by definition, teich�.�.G// degrees of
freedom, up to Euclidean isometries. These are the non trivial degrees of ˚
“seen” by G.

(B) The coordinates of the vertices are determined by the location of one represen-
tative of each � -orbit and ˚ . There are n such orbits, for a total of 2n degrees
of freedom

Here is the guiding intuition for (A). We want to understand how the edge lengths
can constrain the representation ˚ . It is intuitively clear that if there is no pair of
points Qpi and Qp� �i in the same � -orbit that are also connected in the lift . QG; '/,
the framework cannot constrain ˚ at all. Thus, we are interested in accounting
for constraints arising from paths in . QG; '/ between pairs of points Qpi and Qp� �i ;
in .G;�/, this corresponds to a closed path P with �.P / D � .

This reasoning leads us to consider teich�.�/ of a subgroup generated by the
�-images of some closed paths in .G;�/. After some technical analysis, the correct
subgroup is discovered to be �.G/.

Rigid motions independent of ˚ . For each connected component of QG.p; ˚/
induced by Gi : there is a cent.� 0i /-dimensional space of these for each Gi , since
any element of the centralizer of � 0i preserves all the edge lengths and compatibility
with ˚ . Because the components are disconnected, these motions are independent
of each other.

3 Periodic Frameworks

A � -framework with symmetry group Z
2 is called a periodic framework [4]. In this

section, we specialize (2) to this case, and relate it to an alternate counting heuristic
from [26, Section 3].

3.1 Invariants for Z2

Representations of Z2 by translations have very simple coordinates: they are given
by mapping each of the generators .1; 0/ and .0; 1/ to a vector in R

2. Thus, the space
of (possibly degenerate) representations is isomorphic to the space of 2�2matrices
with real entries. Given such a matrix L and � 2 Z

2, the translation representing
� is simply L � � . Because of this identification, we denote realizations of periodic
frameworks by QG.p;L/, and call L the lattice representation.

Subgroups of Z
2 are always generated by k D 0; 1; 2 linearly independent

vectors; given a subgroup, we define its rank to be the minimum size of a generating
set. To specify a representation of a subgroup � 0 < Z

2, we assign a vector in R
2 to
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each of the k generators of � 0. Such a representation always extends to a faithful
representation of Z2. Thus, we see that the dimension of the space of representations
of Z2 restricted to � 0 is 2k.

The quotient of the representation space of Z2 by Euc.2/ is also straightforward
to describe. Each point has a representative L such that L � .1; 0/ D .�; 0/ for some
real scalar �. From this, we get:

Proposition 1. Let � 0 < Z
2 be a subgroup of Z2 with rank k. Then teichZ2 .�

0/ D
maxf2k � 1; 0g.

Finally, we compute the dimension of the centralizer of a subgroup � 0. If � 0 is
trivial, then the centralizer is the entire 3-dimensional Euclidean group. If � 0 is rank
1, then it is represented by a translation t1.p/ D pC t1, which commutes with other
translations and reflections or glides fixing a line in the direction t1. For the rank 2
case, the centralizer is just the translation subgroup of Euc.2/. We now have:

Proposition 2. Let � 0 < Z
2 be a subgroup of Z2 with rank k. Then

cent.� 0/ D
(

3 if k = 0

2 if k 
 1

3.2 The Homomorphism � for Z2

Now we turn to associating a colored graph .G;�/ with a subgroup of Z2. This is
simpler than the general case because Z

2 is abelian, so we may define it as a map
� W H1.G;Z/! Z

2, as was done in [26]. Here are the relevant facts:

Proposition 3. Let .G;�/ be a colored graph. Then the rank of the �-image is
determined by the values of � on any homology (alternatively, cycle) basis of G,
and thus � is well-defined when G has more than one connected component.

3.3 Colored-Laman Graphs

With Propositions 1–3, the colored graph sparsity counts (2) from Theorem 2
specializes, for a Z2-colored graph to:

m0 � 2n0 C maxf2k � 1; 0g � 3c00 � 2c0�1 (5)

where k is the rank of the Z
2-image of .G;�/, c00 is the number of connected

components with trivial Z2-image and c0�1 is the number of connected components
with non-trivial Z

2-image (i.e., k 
 1). This gives a matroidal family [26,
Lemma 7.1], and we define the bases to be colored-Laman graphs.
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3.4 An Alternative Sparsity Function

A slightly different counting heuristic for a periodic framework with colored
quotient graph .G;�/ having n vertices, m edges, c connected components and
�-image with rank k is as follows:

• There are 2n variables specifying the points, and 2k variables giving a represen-
tation of the �-image.

• To remove Euclidean isometries that move the points and the lattice representa-
tion together, we pin down a connected component.

• Each of the remaining connected components may translate independently of
each other.

Adding up the degrees of freedom and subtracting three degrees of freedom for
pinning down one connected components and two each for translations of each other
connected component yields the sparsity condition from [26, Section 3, p. 14]

m0 � 2.n0 C k/ � 3 � 2.c0 � 1/ (6)

which is equivalent to the colored-Laman counts (5) by the following.

Proposition 4. Let .G;�/ be a Z
2-colored graph. Then .G;�/ satisfies (5) if and

only if it satisfies (6).

Proof. For convenience, we define the two functions:

f .G/ D 2nC maxf2k � 1; 0g � 3c0 � 2c�1 (7)

g.G/ D 2.nC k � c/ � 1 (8)

where g is easily seen to be equal to the r.h.s. of (6). The definitions imply readily
that f .G/ � g.G/, with equality when there is either one connected component in
G or all connected components have �-images with rank at least one. Thus, it will
be sufficient to show that, if .G;�/ has n vertices,m edges, and �-image of rank k,
and it is minimal with the property that f .G/ D m � 1, then g.G/ D m � 1.

Let .G;�/ have these properties, and letG have connected componentsGi with,
ni vertices, mi edges, and �-images of rank ki . The minimality hypothesis implies
that for any Gi , the number of edges in G nGi is

m �mi � f .G nGi/ (9)

but, if ki is zero, the rank of the �-image of G n Gi is k, and mi � 2ni � 3.
Computing, we find that

m �mi 
 2nC maxf2k � 1; 0g � 3c0 � 2c�1 C 1 � 2ni C 3

D 2.n� ni /C maxf2k � 1; 0g � 3.c0 � 1/� 2c�1 C 1

D f .G nGi/C 1
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which is a contradiction to (9). We conclude that either there is one connected
component in G or that none of the ki were zero. In either of these cases f .G/ D
g.G/, which completes the proof. �

3.5 Example: Disconnected Circuits

The proof of Proposition 4 generalizes the folklore fact that, for Laman rigidity, we
get the same class of graphs from “m0 � 2n0 � 3” and the more precise “m0 �
2n0 � 3c0”. In the periodic setting the additional precision is required:

• There are periodic frameworks with dependent edges in different connected
components of the colored quotient graph [26, Figure 20].

• There are connected Z
2-colored graphs that are not colored-Laman sparse but

satisfy (5) for all induced or connected subgraphs [26, Figure 8].

The intuition leading to the discovery of (6) is that connected components of a
periodic framework’s colored graph interact via the representation L when they have
the same �-image.

3.6 Example: Disconnected Minimally Rigid Periodic
Frameworks

Another phenomenon associated with periodic rigidity that is not seen in finite
frameworks is that although the colored quotient graph .G;�/ must be connected
[26, Lemmas 4.2 and 7.3], the periodic framework QG.p; ˚/ does not need to be
as in [26, Figure 9]. To see this, we simply note that (5) depends only on the
rank of the �-image, which is unchanged by multiplying the entries of the colors
�ij on the edges .G;�/ by an integer q. On the other hand, this increases the
number of connected components by a factor of q2. There is no paradox because
periodic symmetry is being forced: once we know the realization of one connected
component of QG.p; ˚/, we can reconstruct the rest of them from the representation
˚ of Z2.

3.7 Conditions for Fixing the Lattice

The definition of rigidity for periodic frameworks implies that a rigid framework
fixes the representation L of Z

2 up to a Euclidean isometry. It then follows that
any periodic framework with a non-trivial rigid component must do the same.
However, this is not the only possibility. Figure 1 shows a framework without a rigid
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(1,0) (0,1)

(1,1)
a b

Fig. 1 A flexible periodic framework that determines the lattice representation: (a) the associated
colored graph; (b) the periodic framework

component that fixes the lattice representation and its associated colored graph. The
framework’s non-trivial motion is a rotation of each of the triangles. This example
is an instance of a more general phenomenon.

Proposition 5. Suppose that .G;�/ is a colored graph such that an associated
generic periodic framework QG.p; ˚/ fixes the lattice representation. Then .G;�/
contains a subgraph G0 with m edges and rank 2 �-image such that m D f .G0/,
where f is the sparsity function defined in (7).

Proof. We may assume without loss of generality that .G;�/ is colored-Laman
sparse. Let � 2 Z

2 be a vector that is linearly independent of any �-image of
any rank 1 subgraph of .G;�/. Such an � exists since there are only finitely many
subgraphs of .G;�/. Because QG.p; ˚/ is generic and fixes the lattice, Theorem 2
implies that adding a self-loop ` with color � leads to a colored graph that is not
colored-Laman-sparse. This implies that there is a minimal subgraph .G0 C `;�/

of .G C `;�/ that is not colored-Laman sparse. The �-image of G0 must be rank 2
because, if it were not, the rank of the �-image of G0 C ` would be strictly larger
than that of G0, thus .G0 C `;�/ would again be colored-Laman sparse. It follows
that G0 satisfies the conclusion of the Proposition. �

4 Specializations of Periodic Frameworks

Because Theorem 2 is quite general, we can deduce Laman-type theorems for many
restricted versions of periodic frameworks from Theorem 2. In this section, we
describe three of these in detail and discuss connections with some others.

4.1 The Periodic Rigidity Matrix

The proof of Theorem 2 relies on giving a combinatorial characterization of
infinitesimal rigidity with forced symmetry constraints. The rigidity matrix, which is
the formal differential of the length equations plays an important role. For periodic
frameworks, this has the following form, which was first computed in [4]:
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0

@

i j L1 L2

: : : : : : : : : : : : : : : : : : : : :

ij : : : ��ij : : : �ij : : : �1ij �ij �2ij �ij
: : : : : : : : : : : : : : : : : : : : :

1

A (10)

Here, �ij D pj C L � �ij � pi is the vector describing a representative of an edge
orbit in QG.p;L/, which we identify with a colored edge of the quotient .G;�/.
There is one row for each edge in the quotient graphG. The column groups L1 and
L2 correspond to the derivatives with respect to the variables in the rows of L D
�
a b

c d

�

. A framework is infinitesimally rigid if the rigidity matrix has corank 3, and

infinitesimally flexible with d degrees of freedom if the rigidity matrix has corank
3C d . A framework is generic if the rank of the rigidity matrix is maximal over all
frameworks with the same colored quotient graph. We will require some standard
facts about infinitesimal rigidity that transfer from the finite to the periodic setting.

Proposition 6. Let QG.p;L/ be a periodic framework with quotient graph .G;�/.
Then:

• For generic frameworks, infinitesimal rigidity and flexibility coincide with rigid-
ity and flexibility [4, 26].

• Infinitesimal rigidity and flexibility are affinely invariant [4], with non-trivial
infinitesimal motions mapped to non-trivial infinitesimal motions.

4.2 One Flexible Period

A very simple restriction of the periodic model is to consider frameworks with one
flexible period. The symmetry group is then Z, acting on the plane by translations;
we call such a framework a cylinder framework. We model the situation with
Z-colored graphs, and a single vector l 2 R

2 representing the period lattice. In this
case, the �-image of a colored graph always has rank 0 or 1.

We define a cylinder-Laman graph to be a Z-colored graph .G;�/ such that:
G has n vertices, 2n � 1 edges, and satisfies, for all subgraphs, on n0 vertices, m0
edges, �-image of rank k, c00 connected components with trivial �-image, and c01
connected components with non-trivial �-image:

m0 � 2n0 C k � 3c00 � 2c01 (11)

Comparing (11) with (5), we see readily:

Proposition 7. The family of cylinder-Laman graphs corresponds bijectively with
the maximal colored-Laman sparse graphs that have colors of the form �ij D .�; 0/.
Theorem 3. A generic cylinder framework is minimally rigid if and only if its
associated colored graph is cylinder-Laman.
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Proof. The rigidity matrix for a cylinder framework has the same form as (10),
except with the column group labeled L2 discarded. Proposition 7 and then
Theorem 2 yield the desired statement. �

4.3 Unit Area Fundamental Domain

Next, we consider the class of unit-area frameworks, for which the allowed motions
preserve the area of the fundamental domain of the Z

2-action on the plane induced
by the Z2-representation L.

We define a unit-area-Laman graph to be a Z
2-colored graph .G;�/ with n

vertices, m D 2n edges, and satisfying, for all subgraphs on n0 vertices, m0 edges,
and c0k connected components with �-image of rank k

m0 � 2n0 � 3c00 if c02 D c01 D 0 (12)

m0 � 2n0 � 1� 3c00 � 2.c01 � 1/ if c02 D 0 and c01 > 0 (13)

m0 � 2n0 � 3c00 � 2.c01 C c02 � 1/ if c02 > 0 (14)

Theorem 4. A generic unit-area framework is minimally rigid if and only if its
associated colored graph .G;�/ is unit-area-Laman.

Proof of Theorem 4. The proof is comprised of three key propositions. The first is a
combinatorial equivalence.

Proposition 8. A Z
2-colored graph .G;�/ is unit-area-Laman if and only if it is

colored-Laman-sparse and has n vertices, 2n edges, and no subgraph with rank 2
�-image and (5) holding with equality.

Proof of Proposition 8. Comparing (5) with (12,13) and (14), we see that unit-area-
Laman graphs are exactly those which, after following the construction used to
prove Proposition 5, become colored-Laman. �

The Maxwell direction. For the geometric part of the proof, we first derive the

rigidity matrix. If L D
�
a b

c d

�

, and we coordinatize infinitesimal motions as

.v;M/ with M D
�
p q

r s

�

, then this has the form of (10) plus one additional row

corresponding to the equation

h.d;�c;�b; a/; .p; q; r; s/i D 0 (15)

Violations of unit-area-Laman-sparsity come in two types, according to the rank k
of the �-image. For k D 0; 1, these are all violations of colored-Laman sparsity,
implying, by Theorem 2, a generic dependency in the unit-area rigidity matrix
that does not involve the row (15). For k D 2, Proposition 8 implies a new type
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of violation: a subgraph .G0;�/ with n0 vertices, �-image of rank 2, and f .G0/
edges. If such a subgraph forces a generic periodic framework to fix the lattice
representation L, then Eq. (15) is dependent on the equations corresponding to edge
lengths. The Maxwell direction then follows from the converse of Proposition 5.

Proposition 9. Let .G;�/ be a colored-Laman sparse graph with �-image of rank
2 and (5) met with equality. Then an associated generic framework has only motions
that act trivially on the Z

2-representation L.

Proof of Proposition 9. Let .G;�/ have n vertices, and c connected components.
It is sufficient to consider .G;�/ that is minimal with respect to the hypotheses
of the proposition, which forces every connected component to have �-image with
rank at least one. In this case, there are m D 2n C 3 � 2c edges. By Theorem 2,
the kernel of the rigidity matrix has dimension 2n C 4 � m D 2c C 1. Since the
connected components can translate independently, and the whole framework can
rotate, there are at least 2c C 1 dimensions of infinitesimal motions acting trivially
on the lattice. �

The Laman direction. Now let .G;�/ be a unit-area-Laman graph. Theorem 2
implies that any generic periodic framework on .G;�/ has a 4-dimensional space
of infinitesimal motions, and that any non-trivial infinitesimal motion is a linear
combination of 3 trivial ones and some other infinitesimal motion .v;M/. Since the
trivial infinitesimal motions act trivially on the lattice representation L, if .v;M/
does as well, then a generic framework on .G;�/ fixes the lattice representation.
By Propositions 8 and 5 this is impossible, implying that .v;M/ does not act trivially
on the lattice representation. However, it might preserve the area of the fundamental
domain, which would make (15) part of a dependency in the unit-area rigidity
matrix. The Laman direction will then follow once we can exhibit a generic periodic
framework on .G;�/ for which .v;M/ does not preserve the area of the fundamental
domain.

To do this, we recall, from Proposition 6, that a generic linear transformation

A D
�

a b

c d

�

(16)

preserves infinitesimal rigidity and sends the non-trivial infinitesimal motion .v;M/
to another non-trivial infinitesimal motion .v0;M0/, which is given by

v0i D A� � vi for all i 2 V.G/
M0 D A� � M

where

A� D det.A/�1
�
d �c
�b a

�

(17)

is the transpose of A�1. The main step is this next proposition which says that
satisfying (15) is not affinely invariant.
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Proposition 10. Let .G;�/ be a unit-area-Laman graph, and let QG.p;L/ be a
generic realization with L being the identity matrix, let A be a generic linear
transformation, and let the infinitesimal motions .v;M/ and .v0;M0/ be defined as
above. If .v;M/ preserves the area of the fundamental domain, then .v0;M0/ does
not.

Proof of Proposition 10. Because L is the identity, M has the form

M D
�
� �

� ��
�

(18)

either by direction computation, or by observing that it is an element of the Lie
algebra sl.2/, as discussed above, we know that �� ¤ �, since .v;M/ does not act
trivially on L. In particular, � and � are not both zero. Plugging in to (17) we get

M0 D det.A/�1
�

d� � c� c�C d�

a� � b� �a� � b�
�

(19)

Plugging entries of M0 in to the l.h.s. of (15) to obtain:

det.A/�1
�

�.d2 C b2 � a2 � c2/� .�C �/.ab C cd/
�

(20)

which is generically non-zero in the entries of A: the conditions for (20) to vanish
are that its columns are the same length and orthogonal to each other. �

We now observe that, by Proposition 6, there is a generic realization QG.p;L/
of a framework with unit-area-Laman colored quotient .G;�/ in which L is the
identity. If the non-trivial infinitesimal motion .v;M/ does not satisfy (15), we are
done. Otherwise, the hypothesis of Proposition 10 are met, and, thus, after applying
a generic linear transformation, the proof is complete. ut

4.4 Fixed-Lattice Frameworks

Another restricted class of periodic frameworks are fixed-lattice frameworks. These
are periodic frameworks, with the restriction that the allowed motions act trivially
on the lattice representation. This model was introduced by Whiteley [51] in the
first investigation of generic rigidity with forced symmetry. More recently, Ross
discovered the following5 complete characterization of minimal rigidity for fixed-
lattice frameworks.

5The sparsity counts we describe here are slightly different from what is stated in
[38, Theorem 4.2.1], but they are equivalent by an argument similar to that in the proof of
Proposition 4. This presentation highlights the connection to colored-Laman graphs.
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Theorem 5 ([37] and [38, Theorem 4.2.1]). Let QG.p/ be a generic fixed-lattice
framework. Then QG.p/ is minimally rigid if and only if the associated colored
graph .G;�/ has n vertices, m D 2n � 2 edges and, for all subgraphs G0 of G
with n0 vertices, m0 edges, c00 connected components with trivial �-image, and c0�1
connected components with non-trivial �-image:

m0 � 2n0 � 3c00 � 2c0�1 (21)

We define the family of graphs appearing in Theorem 5 to be Ross graphs. In [26],
we gave an alternate proof based on Theorem 2. The two steps are similar to the
ones used to prove Theorem 4, except we can take a “shortcut” in the argument by
simulating fixing the lattice by adding self-loops to the colored graph. The geometric
step is:

Theorem 6 ([26, Section 19.1]). Let QG.p/ be a generic fixed-lattice framework.
Then QG.p/ is minimally rigid if and only if the associated colored graph .G;�/ plus
three self-loops colored .1; 0/, .0; 1/, .1; 1/ added to any vertex is colored-Laman.

Theorem 5 then follows from the following combinatorial statement that generalizes
an idea of Lovász-Yemini [23] and Recski [34] (cf. [12, 13]).

Proposition 11 ([26, Lemma 19.1]). A colored graph .G;�/ is a Ross graph if and
only if adding three self-loops colored .1; 0/, .0; 1/, .1; 1/ to any vertex results in a
colored-Laman graph.

4.5 Further Connections

Theorems 3 and 4 suggest a more general methodology for obtaining Maxwell-
Laman-type theorems for restrictions of periodic frameworks:

• Add an equation that restricts the allowed lattice representations L.
• Identify which generic periodic frameworks are the maximal ones that do not

imply the new restriction.

Our proof of Theorem 5 works this way as well: adding self-loops adds three
equations constraining the lattice representation. Another perspective is that we
are enlarging the class of trivial infinitesimal motions by forcing one or more
vectors into the kernel of the periodic rigidity matrix. The most general form of this
operation is known as the “Elementary Quotient” or “Dilworth Truncation”, and
it preserves representability of .k; `/-sparsity matroids [47], but obtaining rigidity
results (e.g., [23]) requires geometric analysis specific to each case. This section
gives a family of examples where we find new rigidity matroids from each other
using a specialized version of Dilworth Truncation.



Generic Rigidity with Forced Symmetry and Sparse Colored Graphs 243

Ross [38, Section 5] has studied some restrictions of periodic frameworks as
generalizations of the fixed-lattice model. In this section we close the circle of ideas,
showing how to study them as specializations of the flexible-lattice model.

4.6 One More Variant

We end this section with one more variation of the periodic model. A fixed-
angle framework is defined to be a periodic framework where the allowed motions
preserve the angle between the sides of the fundamental domain.

Theorem 7. A generic fixed angle framework is minimally rigid if and only if its
associated colored graph is unit-area-Laman.

Proof Sketch. The steps are similar to the proof of Theorem 4. The new row in the
rigidity matrix corresponds to (in the same notation) the partial derivatives of the
equation:

�
.a; c/

jj.a; c/jj ;
.b; d /

jj.b; d/jj
�

D const (22)

so the new row in the rigidity matrix corresponds to:

˝

det.L/
�

cjj.b; d/jj2;�d jj.a; c/jj2; ajj.b; d/jj2;�bjj.a; c/jj2�; .p; q; r; s/˛ D 0

(23)

The Maxwell direction’s proof is exactly the same as for Theorem 4. For the Laman
direction, we again start with a generic framework where L is the identity. If the
non-trivial infinitesimal motion .v;M/ does not preserve (23), then we are done.
Otherwise, M has the form

M D
�
� �

�� �
�

(24)

with � and � not both zero, because M does not act trivially on L. We then construct
a new generic framework by applying a linear map

A D
�
1 b

0 d

�

(25)

A computation, similar to that for (20) yields

� b
�

b2�C d2�C �
�

jj.b; d/jj3 (26)

which is, generically, not zero. �
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5 Cone and Reflection Frameworks

The next cases of Theorem 2 are those of Z=2Z acting on the plane by a single
reflection and Z=kZ acting on the plane by rotation through angle 2�=k. The
sparsity invariants are particularly easy to characterize in these two cases:

• The Teichmüller space is empty, since any rotation center or reflection axis can
be moved on to another by an isometry.

• The centralizer is all of Euc.2/ for the trivial subgroup and otherwise consists of
rotation around a fixed center or translation parallel to the reflection axis.

Since the rank k of the �-image of a Z=kZ-colored graph is always zero or one, we
specialize (2) to obtain the sparsity condition for subgraphs on n0 vertices,m0 edges,
c00 connected components with trivial �-image and c01 connected components with
non-trivial �-image.

m0 � 2n0 � 3c00 � c01 (27)

We define the family of Z-colored graphs .G;�/ corresponding to minimally
rigid frameworks to be cone-Laman graphs. The name cone-Laman comes from
considering the quotient of the plane by a rotation through angle 2�=k, which is a
flat cone, as shown in Fig. 2. Cone-Laman graphs are closely related to .2; 1/-sparse
graphs [20], and in this section we use some sparse graph machinery to obtain
combinatorial results on them.

5.1 Some Background in .k; `/-Sparse Graphs

In this section, we relate cone-Laman graphs to Laman graphs, and we will
repeatedly appeal to some standard results about .k; `/-sparse graphs from [20].
In addition, we will require:

1

1

a

b

Fig. 2 Figures from [1]. (a) A cone-Laman graph. (b) A realization of (a) as a framework in a
cone with opening angle 2�=3
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Proposition 12. Let G be a .2; 1/-graph. If there is exactly one .2; 2/-circuit in
G, then G is .2; 2/-spanning. Otherwise, G is not .2; 2/-spanning and the .2; 2/-
circuits in G are vertex-disjoint.

Proof. Let G have n vertices. First assume that G has exactly one .2; 2/-circuit.
Then G is a .2; 2/-sparse graph G0 plus one edge; since G has 2n � 1 edges, G0
is a .2; 2/-graph. Otherwise there is more than one .2; 2/-circuit. Pick a .2; 2/-
basis G0 of G. In this case G0 does not have enough edges to be a .2; 2/-graph,
so it decomposes, by [20, Theorem 5], into vertex-disjoint .2; 2/-components that
span all of the edges in G n G0. Because G is .2; 1/-sparse, it follows that each
.2; 2/-component spans at most one edge of G n G0, and thus at most one .2; 2/-
circuit. We have now shown that the vertex sets of the .2; 2/-circuits in G are each
contained in a different .2; 2/-component of G0. �

5.2 Cone-Laman vs. Cylinder-Laman

By comparing the cylinder-Laman counts (11) with the cone-Laman counts (27), we
can see that every cylinder-Laman graph, interpreted as having Z=kZ colors, is also
cone-Laman for k large enough. However, the two classes are not equivalent. One
can see this geometrically by considering a colored graph with two disconnected
vertices and a self-loop with the color 1 on each vertex: this is evidently dependent
in the cylinder, and independent in the cone. The conclusion is that the interplay
between teich�.�/ and cent.�/, can yield two different, geometrically interesting
sparse colored families on .2; 1/-graphs. The combinatorial relation is:

Theorem 8. A Z-colored graph .G;�/ is cylinder-Laman if and only if it is cone-
Laman when interpreted as having Z=kZ-colors for a sufficiently large k and G is
.2; 2/-spanning.

Proof. The only difficult thing to check is that a cylinder-Laman graph .G;�/ is
.2; 2/-spanning. Assuming that G is not .2; 2/-spanning, Proposition 12 supplies
two vertex-disjoint .2; 1/-blocks. If the union spans n0 vertices, there are 2n0 � 2

edges, which violates (11). �

5.3 Connections to Symmetric Finite Frameworks

The following theorem of Schulze is superficially similar to Theorem 2 for k D 3:

Theorem 9 ([42, Theorem 5.1]). LetG be a Laman-graph with a free Z=3Z action
'. Then a generic framework embedded such that ' is realized by a rotation through
angle 2�=3 is minimally rigid.
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We highlight this result to draw a distinction between forced and incidental
symmetry: while Theorem 9 is related to Theorem 2, it is not implied by it. The
issue is that while infinitesimal motions of the cone-framework lift to infinitesimal
motions, only symmetric infinitesimal motions of the lift project to infinitesimal
motions of the associated cone-framework. Thus, from Theorem 2, we learn that
the lift of a generic minimally rigid cone framework for k D 3 has no symmetric
infinitesimal motion as a finite framework, but there may be a non-symmetric motion
induced by the added symmetry. An interesting question is whether the natural
generalization of Schulze’s Theorem holds:

Question 1. Let k > 3, and let .G; '/ be a graph with a free Z=kZ-action. Are
generic frameworks withZ=kZ-symmetry rigid if and only ifG is Laman-spanning
and its colored quotient is cone-Laman-spanning?

That G must be Laman-spanning is clear. On the other hand, the discussion
above and Theorem 2 imply that to avoid a symmetric non-trivial infinitesimal
motion, a generic Z=kZ-symmetric finite framework must have cone-Laman-
spanning quotient. Ross, Schulze and Whiteley [39] and Schulze and Whiteley
[43] use this same idea in a number of interesting 3-dimensional applications. The
graphs described in the question are a family of simple .2; 0/-graphs; simple .2; 1/-
graphs have recently played a role in the theory of frameworks restricted to lie in
surfaces embedded in R

3 [30, 31].

5.4 The Lift of a Cone-Laman Graph

The lift . QG; '/, defined in Sect. 2.3, of a Z=kZ-colored graph is itself a finite graph
.G; '/ with a free action by Z=kZ. For k 
 3 prime, cone-Laman graphs have a
close connection to Laman graphs.

Proposition 13 ([1, Lemma 6]). Let k 
 3 be prime. A Z=kZ-colored graph is
cone-Laman if and only if its lift .G; '/ has as its underlying graph a Laman-sparse
graph G with Qn vertices and 2 Qn� k edges.

As noted in [1], this statement is false for k D 2, so while we can relax the
hypothesis somewhat at the expense of a more complicated statement, they cannot
all be removed.

Although it is simple, Proposition 13 is surprisingly powerful, since it shows
that one can study cone-Laman graphs using all the combinatorial tools related to
Laman graphs. Proposition 13 depends in a fundamental way on the fact that cone-
Laman graphs have 2n � 1 edges, and it does not have a naive generalization to
colored-Laman or unit-area-Laman graphs.

Question 2. What are the Z
2-colored graphs .G;�/ with the property that every

finite subgraph of the periodic lift . QG; '/ is Laman-sparse?
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We expect that this should be a more general family than unit-area-Laman graphs.
On the other hand, it has been observed by Guest and Hutchinson [11] that (in our
language) the lift of a colored-Laman graph is not Laman-sparse.

6 Groups with Rotations and Translations

The final case of Theorem 2 is that of crystallographic groups acting discretely and
cocompactly by translations and rotations. It is a classical fact [2, 3] that all such
groups other than Z

2 are semi-direct products of the form

�k WD Z
2 Ì Z=kZ

where k D 2; 3; 4; 6. The action on Z
2 by the generator of Z=kZ is given by the

following table.

k 2 3 4 6

Matrix

��1 0

0 �1
� �

0 �1
1 �1

� �
0 �1
1 0

� �
0 �1
1 1

�

6.1 The Quantities teich.�/ and cent.�/ for Subgroups

For any discrete faithful representation ˚ W �k ! Euc.2/, it is a (non-obvious)
fact that for any element t 2 Z

2 in �k , the image ˚.t/ is necessarily a translation,
and for any r 2 �k n Z

2, the image ˚.r/ is necessarily a rotation. Consequently,
we respectively call such elements of �k translations and rotations, and we call
�.�k/ D Z

2 the translation subgroup of �k . For any subgroup � 0 < �k , its
translation subgroup is �.� 0/ D � 0 \�.�k/.

Let ˚ be a representation of �k . In the cases k ¤ 2, we must have ˚.�.�k//
preserved by an order k rotation, and so the image of �.�k/ is determined by the
image of a single nontrivial t 2 �.�k/. Furthermore, by acting on˚ by a rotation in
Euc.2/, we can always obtain a new representation˚ 0 such that˚.t/ has translation
vector .�; 0/ for some � 2 R. Consequently, we have shown the following.

Proposition 14. Let � 0 be a subgroup of �k for kD3; 4; 6. Then, teich�k .�.�
0//D

1 if �.� 0/ is nontrivial and is 0 otherwise.

In the case of k D 2, it turns out that since order 2 rotations preserve all lattices,
this puts no constraint on how˚ embeds�.�2/. Consequently, we have teich values
similar to the periodic case.
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Proposition 15. Let � 0 be a subgroup of �2. Then, teich�k .�.�
0// D max.2` �

1; 0/ where ` D rk.�.� 0//.

The dimension of the centralizer, similarly, is concrete and computable. If a
subgroup contains a translation t , then ˚.t/ commutes precisely with translations
of Euc.2/. If a subgroup � 0 of �k is a cyclic subgroup of rotations, then ˚.� 0/ is
a group of rotations with the same rotation center, and it is easy to see that such a
group commutes precisely with the (1-dimensional) subgroup in Euc.2/ of rotations
with that center. Consequently, we obtain the following characterization of cent.

Proposition 16. Suppose that � 0 is a subgroup of �k . Then,

cent.� 0/ D

8

ˆ̂
<

ˆ̂
:

3 if � 0 is trivial
2 if � 0 contains only translations
1 if � 0 contains only rotations
0 if � 0 contains both rotations and translations

6.2 The Quantities teich.�/ and cent.�/ for Colored Graphs

For any �k-colored graph .G0;�/, we associate subgroups of �k . Suppose G
has components G01; : : : ; G0c and choose base vertices b1; : : : ; bc . We set � 0i D
�.�1.G

0
i ; bi //, and

�.G1/ D h�.� 01 /;�.� 02 /; : : : ; �.� 0c /i

The � -Laman sparsity counts are defined in terms of teich.�.G// and cent.� 0i /.
Since we chose base vertices bi , one might worry that these quantities are not
well-defined. However, changing the base vertex in Gi has the effect of conjugating
� 0i . In �k , conjugates of translations are translations and conjugates of rotations are
rotations, so cent.�/ is then well-defined by Proposition 16, and teich.�.G// for
k D 3; 4; 6 by Proposition 14. Indeed, for k D 3; 4; 6, teich.�.G// D 1 if any
�.� 0i / is nontrivial and is 0 otherwise. In �2, all translation subgroups are normal,
so �.� 0i / itself does not depend on the choice of base vertex.

6.3 Computing teich and cent for �2-Colored Graphs

A quick and simple algorithm exists to compute teich.�.G// and cent.� 0i / which
relies on finding a suitable generating set for � 0i . A generating set for �1.G0i ; bi / can
be constructed as follows. Find a spanning tree Ti of componentGi . Then for each
edge jk 2 Gi � Ti , let Pjk be the path traversing the (unique) path bi to j in Ti ,
then jk, and then the (unique) path k to bi in Ti . ThePjk ranging over jk 2 Gi�Ti
generate �1.G0i ; bi /, and so �jk WD �.Pjk/ ranging over the same set generates � 0i .
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Next, relabel the generators of � 0i as rj;i ; tj;i where the rj;i are rotations and the
tj;i are translations. If there are only translations, no modifications are required and
�.� 0i / D � 0i . Otherwise, set t 0j;i D r1;i rj;i for j 
 2. Since all rotations are order
2, the t 0j;i are all translations and � 0i is generated by r1;i , the t 0j;i and the tj;i . At this
point, checking cent� 0i is straightforward. Furthermore, one can show that �.� 0i /
is generated by the t 0j;i and tj;i , and so �.G/ is generated by the t 0j;i and the tj;i over
all i and j . Then, computing rk.�.G// is basic linear algebra, and teich.�.G// is
given by Proposition 15.

6.4 Computing teich and cent for �k-Colored Graphs
for k ¤ 2

In this case, all that needs to be determined is whether each � 0i contains rotations,
translations, or both. Compute generators rj;i ; tj;i for � 0i as above. Then,� 0i contains
a rotation if and only if there is at least one rj;i . The only real difficulty is
determining if � 0i contains translations when the generators are all rotations. Any
group consisting entirely of rotations is cyclic (see, e.g., [24, Lemma 4.2]), and so it
suffices to compute the commutators r1;i rj;i r�11;i r�1j;i for j 
 2. The group contains
no translations if and only if these commutators are all trivial.
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Rigidity of Regular Polytopes

Peter McMullen

Abstract A (geometric) regular polygon fpg in a euclidean space can be specified
by a fine Schläfli symbol fpg, where

p D r

s1; : : : ; sk

is a generalized fraction; here, 0 6 s1 < � � � < sk 6 1
2
r . This means that fpg

projects onto planar polygons f r
sj
g (reduced to lowest terms) in orthogonal planes,

with 1 D 1
0

giving the linear apeirogon and 2 the digon (line segment). More
generally, it may be possible to specify the shape or similarity class of a geometric
regular polytope by means of a fine Schläfli symbol, whose data contain information
about certain regular polygons occurring among its vertices in terms of generalized
fractions. If so, then the fine Schläfli symbol is called rigid. This paper gives various
criteria for rigidity; for instance, the classical regular polytopes are rigid. The theory
is also illustrated by several examples. It is noteworthy, though, that a combinatorial
description of a regular polytope – a presentation of its symmetry group – can differ
considerably from its fine Schläfli symbol.
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1 Introduction

There are two strands to the theory of regular polytopes, the abstract and the
geometric. Obviously, while the geometric regular polytopes came first, more
recently they have inspired a vigorous and independent abstract theory; a summary
of that theory up to around the beginning of this century is the monograph [16].
Nevertheless, geometric pictures remain an important aspect of the theory, if only
because of their intrinsic appeal; realizations form the tool which leads from the
abstract back to the geometric. In this arena, beginning with [15] with Schulte
(which also revisited earlier work by Grünbaum [6] and Dress [4, 5] with a
considerably more efficient treatment), the present author in [9–13] has classified
the regular polytopes of full and nearly full rank in all dimensions (the terms used
here will be explained later).

In some sense, though, the abstract and geometric theories can diverge quite
drastically. To motivate what we do here, we begin with a well-known example. The
great dodecahedron f5; 5

2
g is never denoted in any other way in Coxeter’s classical

book [2]. As an abstract polyhedron, however, it is f5; 5 j 3g (see, for example, [3]),
with the last mark “3” indicating a certain triangular circuit of its edges – we shall
explain this notation in Sect. 2. The dual small stellated dodecahedron f 5

2
; 5g is also

isomorphic to f5; 5 j 3g, as the symmetric form of the latter expression suggests.
From the present viewpoint, the significant fact is that the notation f5; 5

2
g clearly

distinguishes the great dodecahedron from its dual f 5
2
; 5g and, indeed, actually

determines its geometry (up to similarity), if we make clear what we mean by the
marks “5” and “ 5

2
”.

A prime motivation of the paper – at least originally – was to treat the 12 pure
regular apeirohedra in E

3 geometrically rather than abstractly, thus following the
spirit of [2]. In [10] we introduced what we shall call a fine Schläfli symbol for
regular polytopes, using generalized fractions (we refer here to Sect. 4), which
was further developed in [11]. This specifies the geometry of a regular polytope
(or apeirotope – we do not make the distinction at this stage) by means of certain of
its induced regular polygons (with vertices among those of the polytope), albeit at
first sight in a rather crude fashion. However, even though it may appear to carry too
little information, we shall see that a somewhat abbreviated fine Schläfli symbol –
dropping entries that are needed to determine its abstract group – will often suffice to
determine the geometry of a regular polytope. On the other hand, we shall encounter
cases where no fine Schläfli symbols (at least, in terms of the canonical generators
of the symmetry groups) serve to specify their geometry.

Let us outline the rest of the paper. In Sect. 2 we give the necessary background to
abstract regular polytopes, in Sect. 3 we outline the theory of their realizations, and
in Sect. 4 we describe the notion of a fine Schläfli symbol. In Sect. 5 we introduce
the new concept of rigidity of regular polytopes, and in Sect. 6 describe several
criteria which ensure it. In the other two sections, we consider various examples to
illustrate rigidity or its lack. In Sect. 7 we treat the twelve pure regular 3-dimensional
apeirohedra in threes, classed according to their mirror vectors as 3-dimensional
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apeirohedra, and show that three of the four classes are rigid, explain why the fourth
is not, and how to make it rigid by imposing an extra condition. In a similar way,
in Sect. 8 we see that the free abelian apeirotopes (over the suitable classical regular
polytopes of [2]) are not rigid as they stand, but that a natural extra specification will
make them so.

We should emphasize that this paper is intended rather to introduce the concept
of rigidity than to give a comprehensive account of it. Thus, while we do intend
(in [14], for example) to revisit the regular polytopes and apeirotopes of full or
nearly full rank to determine whether simple fine Schläfli symbols can specify their
geometry, this is not a primary aim here.

It should be noted that we have slightly changed the notation of [16] and previous
papers in the discussion of the abstract theory. It is hoped that these changes are not
too disconcerting.

2 Regular Polytopes

An initial motivation for what we do here was a wish to characterize the regular
apeirohedra of [15] in some geometric rather than combinatorial way; we shall
assume that the reader is moderately familiar with that paper, or the appropriate
sections of [16, Chapter 7]. The geometric notation which we employ lies at the
centre of our approach. In order to introduce it, we need to say a few brief words
about abstract regular polytopes and their realization theory; all that we require is
taken from [7, 8] (see also [16, Chapter 5]).

An abstract regular n-polytopeP (which may be infinite – we do not distinguish
apeirotopes at this stage) is to be identified with its automorphism group G . This is
generated by n canonical involutions r0; : : : ; rn�1 (its distinguished generators),
which are such that rj and rk commute if jj � kj > 2; they also satisfy the
intersection property

hr i j i 2 Ji \ hr i j i 2 Ki D hr i j i 2 J \ Ki (1)

for all J;K � N WD f0; : : : ; n � 1g. The j -faces of P are identified with the right
cosets of the distinguished subgroupG j WD hr i j i ¤ j i for each j D 0; : : : ; n�1,
with incidence given by non-empty intersection. The cases j D 0; 1 and n � 1 give
the vertices, edges and facets of P , respectively. We take two copies G�1 and G n

of the whole group as the unique .�1/- and n-faces of P; we then have a partial
orderingG ja 6 G kb if G ja\G kb ¤ ; and j 6 k. Regarded as subgroups,G n�1
and G 0 are abstract regular .n � 1/-polytopes; as such, they are the (initial) facet
and vertex-figure of P , respectively.

If we drop the intersection property (1), then we obtain what we call a pre-
polytope; we also refer to P as non-polytopal.

If we list the canonical generators rj in the reverse order (that is, in effect, reverse
the partial ordering), then we obtain the dual Pı of P .
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As usual, Œp1; : : : ; pn�1�, with the pj > 3 integers (at least in our context)
denotes a Coxeter group, which is determined solely by the additional relations
.rj�1rj /pj D " for j D 1; : : : ; n � 1; there is a corresponding universal regular
polytope, denoted by fffp1; : : : ; pn�1ggg.
Remark 1. We use thick braces fff � � � ggg to denote the Schläfli type of an abstract
regular polytope; the entries in a Schläfli type are always integers (or 1), because
they stand for periods of group elements. The notation admits modifications as
described immediately below. This distinguishes the abstract from the geometric,
and enables us to use ordinary braces f� � � g for a fine Schläfli symbol, as we shall
define it in Sect. 4.

With the regular polytope P are associated two important regular polygons.
First, the Petrie polygon has group generators .r0r2 � � � ; r1r3 � � � /; second, the deep
hole has group generators .r0; r1r2 � � � rn�1rn�2 � � � r1/. If the Petrie polygon is an
s-gon and the deep hole is a t-gon, then we can employ the notation fffp1; : : : ; pn�1 W
s j tggg for P , with s or t (and corresponding delimiter) omitted if unneeded. Of
course, in general we shall need more relations than these to specify P .

In the case of regular polyhedra (3-polytopes), we can often give a more
exact description by specifying the types of its k-zigzags with group generators
.r0r2; .r1r2/

k�1r1/, and k-holes with group generators .r0; .r1r2/k�1r1/. Thus
the 1-zigzag is the Petrie polygon, and the 2-hole (that is, deep hole in the general
context) is usually just called the hole. If the k-zigzag is an sk-gon and the k-hole is
a tk-gon, then a more general notation is

fffp; q W s1; : : : j t2; : : : gggI (2)

we replace an unspecified sj or tj by �, and terminate a string with the last specified
sk or tk (with no indicator W or j if the corresponding string is empty). The reader
may also observe that, if q D 2k is even, then the k-zigzag and k-hole appear to
coincide; however, this is not true algebraically unless sk D tk is even (one step
along a zigzag reverses local orientation). Finally, we denote a corresponding entry
for the dual Pı (with, we recall, group generators .r2; r1; r0/ in the reverse order)
by preceding it with . As a particular case of this last, we shall meet fff1; 4 W �;3ggg
in Sect. 7.3; hence the extra relation corresponds to ..r0r1/2r2/3 D e.

In former times, a notation for zigzags has been employed using subscripts; thus,
fff3; 5ggg5 rather than fff3; 5 W 5ggg. However, when we come to realized regular polyhedra,
integer marks corresponding to those in (2) are often replaced by generalized
fractions (as defined in the next Sect. 3), in which case subscripts may be hard to
read.

Related to Petrie polygons is the Petrie operator �. For the moment, we only
need it for polyhedra; we generalize it in Sect. 8 to polytopes of higher rank. This
operator is

�W .r0; r1; r2/ 7! .r0r2; r1; r2/ DW .s0; s1; s2/:
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Observe that � is involutory. A polyhedron Q obtained from another P by � is
denoted Q WD P� , and is called its Petrial. Only in very exceptional cases is P�

not actually polytopal; we shall not meet such cases here. If P� Š P (with Š
denoting isomorphism), then we call P self-Petrie.

It is useful to have notation which indicates extra relations of the above kind
without needing to specify notation for the generators. Such notation was introduced
in [16]. An element of the group G D hr0; : : : ; rn�1i is a word in the rj . It can
be represented adequately by the string of the corresponding indices j ; thus, for
example,

..r0r1/
2r2/

3 7! ..01/22/3 D 010120101201012

(to take that just mentioned), which now only retains the places of the generators.
A number-string corresponding to a relation is called a relator; if we wish to impose
certain additional relations on G , given by the relators J1; : : : ; Jr , then we write the
quotient as G=hhJ1; : : : ; Jr ii. We employ the same convention for the corresponding
regular polytope, so that the example just encountered is

fff1; 4 W �;3ggg D fff1; 4ggg=hh ..01/22/3 ii D fff�; 4ggg=hh .01012/3 ii:

The amalgamation problem asks whether, given two regular n-polytopes P and
Q such that the vertex-figure of P and the facet of Q are isomorphic, there exists a
regular .nC 1/-polytope whose facet is P and vertex-figure is Q. If one such does
exist, then there is a universal one, denoted fffP;Qggg, which covers (as quotients)
any other. In terms of the corresponding automorphism groups G and H , we must
think of G D hr0; : : : ; rn�1i and H D hr1; : : : ; rni, so that the group of fffP;Qggg
is hr0; : : : ; rni, with no relators apart from .0n/2 (which we need to make a string
group) other than those arising from G and H . A further important question is
whether the universal amalgam is finite if P and Q are.

3 Realizations

A realization of P is induced by a representation ˆWG ! M as a subgroup G WD
Gˆ of the group M D M.E/ of isometries of some euclidean space E. In particular,
each rj corresponds to a reflexion or involutory isometry Rj WD rjˆ, or possibly
the identity I . For most purposes, we can identify a reflexion R with its mirror of
fixed points fx 2 E j xR D xg. The mirror or dimension vector of the realization is
then .dimR0; : : : ; dimRn�1/ (we have adopted the new term from [17]).

We identify faces of the realization with their vertex-sets, together with the partial
ordering induced from that of P . Wythoff’s construction picks an initial vertex
v 2 W WD R1 \ � � � \ Rn�1, the Wythoff space; the family of these realizations
is denoted P.G ; ˆ/. Thus the vertex-set vertP of the whole realization P is vG.
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In a similar way, the vertex-set vertFj of the initial j -face Fj is vGj , with
Gj WD G jˆ. A general j -face FjG (with G 2 G) then has vertex-set .vertFj /G.
In practical terms, we think of 2-faces, in particular, as geometric polygons (or
apeirogons, if infinite).

The realizationˆ induces one of the vertex-figure of P as well. Let w WD vR0 be
the other vertex of the initial edge of P . If we take the initial vertex to be 1

2
.v C w/

(which is fixed by R0), then we obtain the narrow vertex-figure. However, it is
usually more convenient to take the initial vertex to be w itself, so that the vertices
of the vertex-figure sit among those of the whole realizationP ; this yields the broad
vertex-figure. We shall make our usage clear in each context.

A realization ˆ is faithful if the abstract and geometric incidence structures are
isomorphic. Note that a non-faithful realization need not actually be polytopal.

Now suppose that L;M are orthogonal subspaces of E, and that we have
realizations P in L with mirrors S0; : : : ; Sk�1 and initial vertex v and Q in M
with mirrors T0; : : : ; Tm�1 and initial vertex w; in fact, we need not require that the
realizations be of the same polytope (see Remark 3 below). Then the blend P #Q
has mirrorsRj WD Sj C Tj for j D 0; : : : ; n� 1 with n D maxfk;mg and Sj D L

if j > k or Tj D M if j > m, and initial vertex .v;w/ 2 R1 \ � � � \ Rn�1. We
can also scale a realization by (for example)Rj 7! �Rj with (usually) � ¤ 0. Note
that there are trivial expressions as blends, since

�P # �P D �P;

where �2 D �2C�2. A realization which cannot be expressed as a non-trivial blend
is called pure.

Remark 2. It was shown in [7] that the realization space of a fixed regular polytope
P has the structure of a convex cone (denoted by the same symbol in the convention
introduced in [7] and followed hitherto), which is closed if P is finite. Moreover, it
need not be the case that P has a faithful realization. Henceforth, we shall depart
from the previous convention, and use P to denote some specified subcone of the
realization cone, rather than the whole cone.

Remark 3. The notion of blend extends in a natural way to different (abstract)
regular polytopes P and Q, although the blend of P 2 P and Q 2 Q will not
necessarily be polytopal. In this abstract context, we talk about the mix of P and
Q.

Remark 4. To avoid constant repetition, we take for granted from now on that all
polytopes under discussion are regular. We often refer to apeirotopes, rather than
infinite polytopes; in such cases, we shall further insist that the vertex-sets vG � E

be discrete. While non-discrete realizations play an important rôle in the general
theory, we shall not treat them here.
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4 Fine Schläfli Symbols

A fine Schläfli symbol specifies a realization subcone P by describing in general
terms the geometry of certain regular polygons (that is, 2-polytopes) that occur
among the vertices of P . Thus P will now be a subcone of the whole realization
cone of some abstract regular polytope, but the abstract type of P will generally be
determined by geometric conditions which are not indicated in its notation.

In this sense, the realization space of a geometric regular polygon P is
denoted by

fpg WD
n s

t1; : : : ; tk

o

;

with s a positive integer and t1; : : : ; tk non-negative integers such that 0 6 t1 < � � � <
tk 6 1

2
s (with strict inequalities to avoid trivial blends); moreover, their greatest

common divisor is .s; t1; : : : ; tk/ D 1. This means that

fpg D fp1g # � � � # fpkg; (3)

with pj WD s=tj in lowest terms; these fpj g are the components of fpg. There
are two special cases: f 1

0
g is the linear apeirogon (equally spaced points along the

real line R, and often denoted f1g when there can be no ambiguity), while f2g is
the digon or (line) segment, with two vertices (previously – for example, in [16] –
usually denoted f g). Then each fpj g for pj ¤ 1; 2 is a planar regular polygon,
which will be a star-polygon if pj is not an integer. We call the mark p here a
generalized fraction.

Remark 5. Observe that the family P of polygons with the fine Schläfli symbol
fpg of (3) forms a k-dimensional cone, because there are k degrees of freedom for
the relative sizes of the k components.

We shall write jpj WD s when t1 > 0, so that fpg is then a finite jpj-gon, and jpj
is the period of the product of its generating reflexions.

We should say a few more words here about certain special regular polygons
or apeirogons. First, we have skew or zigzag polygons, of the form f 2k

t;k
g; the most

frequently occurring cases in this paper are k D 2 or 3 and t D 1. Note that the
polygon f 6

1;3
g is centrally symmetric. Second, we have the r-helix Hr D f r

0;1
g with

r an integer; its fundamental property is that, if the vertices of some H 2 Hr are
: : : ; a�1; a0; a1; a2; : : :, then t D t.H/ WD arCj � aj (for any j ) is a vector which
yields a translational symmetry ofH , though not necessarily of a regular apeirotope
whose specification involves helices in Hr . (More general helices will also occur,
and we shall draw attention to them in the appropriate place.)

In general, a fine Schläfli symbol specifies a realization subcone by introducing
generalized fractions into the abstract notation of Sect. 2 instead of integer entries
or 1. So, at the very least, a fine Schläfli symbol will look like fp1; : : : ; pn�1g,
where the pj are generalized fractions; in general, further geometric data are
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given. In particular, while in discrete realizations we may have infinite 2-faces,
nevertheless in a fine Schläfli symbol the geometric type of these apeirogons will be
specified.

Suppose that J and K are relators corresponding to involutory elements (reflex-
ions) S and T in the realization P . Then hS; T i is the symmetry group of a polygon
fqg with initial vertex a vertex of P lying in T . It is important to bear in mind that
the order .S; T / is crucial here; while the periods of the productsST and TS are the
same, reversing the order may yield a different regular polygon frg. An example to
illustrate this is the Petrie-Coxeter apeirohedron f4; 6

1;3
j 4g, whose (geometric)

dual f6; 4
1;2

j 4g is obtained by reversing the order of the canonical generating

reflexions .R0;R1;R2/; thus .R1;R2/ gives a skew hexagon f 6
1;3

g, while .R2;R1/
gives a planar hexagon f6g. The resulting fine Schläfli symbol is then of the form

fp1; : : : ; pn�1g=hh : : : ; .J � K/q; : : : ii;

where p1; : : : ; pn�1; q are now generalized fractions, and � is used as an indicatory
separator. Abstractly, of course, we have a corresponding relator .JK/jqj when
appropriate.

Remark 6. We continue to use notation such as fp1; : : : ; pn�1 W sg or
fp1; : : : ; pn�1 j tg to specify Petrie polygons or deep holes. The main saving
avoids having to employ such clumsy concatenations as we have had in the past.
Thus, for f4; 3; 4g� (which turns up in Sect. 8), we could write

f4; 6
1;3
; 4g=hh .0 � 121/4; .13 � 2/3 ii D ff4; 6

1;3
j 4g; f 6

1;3
; 4 W 3gg;

although this is perhaps not a particularly good example.

We end the section with some useful notation. For rational q > 2 or q D 1,
define q00 by

1

q
C 1

q00
D 1

2
;

with the obvious conventions 200 D 1 and 100 D 2. More generally, if fpg is as in
(3), set

fp00g D fp00k g # � � � # fp001 g; (4)

which we call the supplement of fpg; the reversal of order of the components is to
accord with the generalized fraction notation. Supplementary polygons frequently
arise from our constructions.
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5 Rigidity

As we have said, a fine Schläfli symbol determines a subcone of the realization cone
of a regular polytope by demanding that certain of its induced regular polygons
be given by specific generalized fractions. We shall refer to the similarity class of
a geometric regular polytope as its shape. We should emphasize from the outset
that a given regular polytope may have different fine Schläfli symbols, each of
which nevertheless determines its shape. We address this topic here (and give more
examples in Sect. 7).

A fine Schläfli symbol therefore determines a subcone P of the realization cone
of some abstract regular polytope, assuming (of course) that the corresponding
group relations yield a string C-groupG . If this cone is a ray (that is, 1-dimensional),
so that P consists of a single similarity class, then we say that P is rigid. Thus the
polytopes in P must be pure (and faithful) realizations, but the converse need not
hold; rigidity is a geometric rather than an algebraic property. For convenience, we
shall usually talk about subcones P rather than their individual polytopes.

More generally, we can ask what subcone P is specified by a fine Schläfli sym-
bol and, in particular (in the case of apeirotopes) whether P is finite-dimensional.
In this context, it is worth reminding ourselves that the realization cones of (abstract)
regular apeirotopes will generally have uncountably infinite algebraic dimension, as
was shown in [8].

There is a complementary problem. Given a geometric regular polytope, we may
ask whether there is a fine Schläfli symbol which prescribes its shape.

With the understanding that they are fine Schläfli symbols, we shall write P 4
Q to mean that the cone specified by P is a subcone of that specified by Q, and
P � Q to mean that the two fine Schläfli symbols specify the same cone.

Before we go on to establish some general criteria, we give a couple of
simple examples. The realization cone of the regular icosahedron is 3-dimensional;
a general realization will have three pure components: the usual 3-dimensional
icosahedron f3; 5g and great icosahedron f3; 5

2
g, and the 5-dimensional hemi-

icosahedron f3; 5
1;2

W 5
1;2

g. The first two are isomorphic, while the third is (abstractly)
fff3; 5 W 5ggg (D fff3; 5ggg5 in the natural adaptation of the old notation). The usual
Schläfli symbols – their fine Schläfli symbols in our terms – distinguish the first
two; the abstract type of the third is actually enough to determine the geometry of
its realizations, because each pair of its six vertices forms an edge.

However, the case of the regular dodecahedron is a little different. Here, the
realization cone is 5-dimensional; again, there are five pure components. Two
of these are the familiar 3-dimensional dodecahedron f5; 3g and great stellated
dodecahedron f 5

2
; 3g. There is also a 4-dimensional faithful realization, whose fine

Schläfli symbol is f 5
1;2
; 3 W 10

1;3
g; this again determines its shape completely.

There are also two realizations – one 4-dimensional and the other 5-dimensional
– of the hemi-dodecahedron fff5; 3 W 5ggg (D fff5; 3ggg5). However, these both have fine
Schläfli symbol f 5

1;2
; 3 W 5

1;2
g, with no apparent way of separating them by regular

edge-circuits and the like. In fact, they can only be distinguished by a more detailed
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description of their faces. The angle at a vertex of the general regular pentagon
varies between �=5 D arccos.�=2/ for the pentagram and 3�=5 D arccos.���1=2/
for the (convex) pentagon (as usual, � D 1

2
.1Cp

5/ is the golden section); that for
the face of the general f 5

1;2
; 3 W 5

1;2
g varies from arccos.3=4/ for the 4-dimensional

pure realization to �=2 for the 5-dimensional one (in between, the realization
is 9-dimensional and blended). The crucial point is that f 5

1;2
; 3 W 5

1;2
g does not

determine a ray in the realization cone of the dodecahedron.

Remark 7. The polyhedron P D f 5
1;2
; 3 W 5

1;2
g is self-Petrie, as its notation

indicates. While P has certain regular hexagonal edge-circuits, these do not have
their full symmetries in the group of P . However, we obtain all their symmetries,
if we adjoin an outer automorphism T of the symmetry group of P which
interchanges its faces and Petrie polygons. In the 4-dimensional realization these
hexagons are f 6

2;3
g, while in the 5-dimensional one they are f 6

1;3
g.

It should be noted as well that more than geometry is involved here. For instance,
the edges and diagonals of the vertex figure of the hemi-icosahedron f3; 5

1;2
W 5
1;2

g
are equal. But this is also true of the realization of the icosahedron whose vertices
are those of the regular 6-cross-polytope; this will have fine Schläfli symbol f3; 5

1;2
g,

illustrating the fact that f3; 5
1;2

W 5
1;2

g 4 f3; 5
1;2

g (the latter, of course, not being rigid).

6 General Criteria

We now describe a number of general conditions which will ensure rigidity of a
regular polytope. Bear in mind here that rigidity depends on a given fine Schläfli
symbol, so that one that ensures rigidity may be rather different from one that
describes its abstract type.

By definition, a rigid regular polytope P determines a single similarity class.
The same is then true of all sections of P , even though some of these may not be
rigid themselves. Thus many of our arguments really depend less on rigidity itself
than on working within fixed similarity classes. In this context, it is natural to raise

Question 1. Suppose that P is a geometric regular n-polytope such that, for some
2 6 k 6 n � 2, the k-face and .k � 1/-coface of P are constrained to lie in fixed
similarity classes. Does P then consist of a single similarity class?

What we shall do in this section is establish rigidity in a variety of different
general cases. The first covers the classical regular polytopes.

Theorem 1. If rankP > 2 and the fine Schläfli type P has planar 2-faces and
rigid vertex-figure Q, then P is rigid.
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Proof. This is clear, because the ratio 1 W 2 cos.�=p/ between the edge-length and
next diagonal of the planar regular polygon fpg fixes the relative distance of the
initial vertex from the adjacent vertices. Since Q is itself rigid, this fixes the whole
geometry of P .

Remark 8. It is worth pointing out that even more is determined in this case. If the
distance forces the initial vertex v to be at the centre of the vertex-figure Q, then P
is necessarily infinite. If the distance is greater, then P must be finite, and its centre
and circumradius can immediately be found.

Corollary 1. The classical regular polytopes and honeycombs are rigid.

We recall that the regular polytopes of [2] have symmetry groups generated by
hyperplane reflexions; all the entries in their Schläfli symbols are simple fractions
(and thus correspond to planar polygons).

Observe, in fact, that all 18 of the finite regular polyhedra in E
3 are rigid, if we

specify them appropriately. For instance, as we have seen, the great dodecahedron is
f 5
2
; 3g. Its Petrial is f 10

3;5
; 3 W 5

2
g, which distinguishes it from the Petrial f 10

1;5
; 3 W 5g of

the Platonic dodecahedron f5; 3g. (Indeed, we could denote these Petrials by f�; 3 W
5
2
g and f�; 3 W 5g, respectively, since the faces are determined by the Petrie polygons.)

Thus we have another family of regular polytopes which are automatically rigid.

Theorem 2. Suppose that rankP > 3 and that the fine Schläfli type of P is such
that the type of the vertex-figure is a blend Q # f2g with Q rigid, and the 2-face and
the hole of the 3-face of P are planar. Then P is rigid.

Proof. Again, the geometry of the 2-face and hole fix the shape of the skew 2-faces
of the vertex figure; in turn (as in the proof of the previous Theorem 1), this fixes
the geometry of P .

Theorem 2 enables us to deal with another wide range of examples in a
categorical fashion, and so no individual treatment of such cases will be needed.

We end the section with a useful observation.

Remark 9. The faces and Petrie polygons of a geometric regular polyhedron have
the same angle.

7 Apeirohedra in 3-Dimensions

In this section, we consider the 3-dimensional pure regular apeirohedra, with a view
to determining which of them are rigid; for more details about these apeirohedra,
see [15] or [16, Section 7E]. We treat them according to their mirror vectors. As we
shall see, three of the four classes consist of rigid apeirohedra, while those of the
fourth need an extra condition to ensure rigidity.
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7.1 Mirror Vector .2 ; 1; 2/

The apeirohedra under discussion here are those discovered by Petrie and Coxeter;
see [1]. The appropriate fine Schläfli symbols for these are

f6; 6
1;3

j 3g Š fff6; 6 j 3ggg;
f4; 6

1;3
j 4g Š fff4; 6 j 4ggg;

f6; 4
1;2

j 4g Š fff6; 4 j 4ggg:

The only difference between the fine Schläfli symbols and the abstract ones is
that the geometry of the faces, vertex-figures and holes is specified; it is worth
emphasizing that (for example) an entry ‘6’ refers to a planar hexagon, whereas
an entry ‘ 6

1;3
’ means a skew hexagon.

The classification here is a special case of Theorem 2.

Theorem 3. The regular polyhedra f6; 6
1;3

j 3g, f4; 6
1;3

j 4g and f6; 4
1;2

j 4g are
rigid, and hence are the corresponding 3-dimensional Petrie-Coxeter apeirohedra.

Thus this class consists of rigid apeirohedra. We shall see further applications of
Theorem 2 in the following Sect. 8.

7.2 Mirror Vector .1; 1; 2/

Theorem 3 was, perhaps, exactly what should have been expected. In this section,
though, we show that the situation for the Petrials of the Petrie-Coxeter apeirohedra
is a little different. In [15], we specified these Petrials by their 1- and 2-zigzags,
the 1-zigzag being the Petrie polygon. However, the notation there gave abstract
descriptions of the apeirohedra; in particular, the faces were merely indicated by
f1g. If we restore the geometric information about the faces, then things change.
In fine, we shall show that describing the faces by generalized fractions enables us
to drop mention of the 2-zigzags.

So, assuming the result of Theorem 4, we shall have

f 4
0;1
; 6
1;3

W 6g Š fff1; 6 W 6; 3ggg;
f 3
0;1
; 6
1;3

W 4g Š fff1; 6 W 4; 4ggg;
f 3
0;1
; 4
1;2

W 6g Š fff1; 4 W 6; 4gggI

we remark here that the notation for these apeirohedra in [12] is incorrect.
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The fine Schläfli symbols here provide a good illustration of the way that the
notation differs from that of the abstract apeirohedra. So, in the first, the apeirogonal
face is now specified geometrically as f 4

0;1
g D f1g # f4g, a 4-helix. Similarly,

the vertex-figure f 6
1;3

g D f6g # f2g is a skew hexagon. However, it is important to
observe that the relative sizes of the components of the blends are not determined
by the notation; compare Remark 5.

The key observation in this case is that the (planar) Petrie polygons determine the
geometry of the helical faces completely. For example, the face f 3

0;1
g of f 3

0;1
; 6
1;3

W 4g
has the same angle �=2 at a vertex as that of the Petrie polygon f4g (see Remark 9),
and this shows that it is congruent to the Petrie polygon of the tiling of E3 by cubes
(with the same edge-length) or – more importantly – that of f4; 6

1;3
j 4g. In general,

let : : : ; a�1; a0; a1; a2; : : : be the successive vertices of the initial face F , say, of the
given apeirohedronP (we know from its faces that P must be infinite). For each j ,
let Gj be the Petrie polygon of P of which aj�1; aj ; ajC1 are successive vertices;
notice that eachGj lies in the 3-dimensional space E spanned by F . If fa0; cj g is the
other edge of Gj through a0 for j D �1; 1, then c�1; a�1; a1; c1 are four successive
vertices of the vertex-figure Q of P at a0. We deduce that the whole of Q lies in
the same 3-space E, and that a0 must be the centre of Q. Then every face of P
through a0 (and similarly though each aj ) also lies in E; thus P lies in E, and so is
3-dimensional. Since it is clear that P will coincide locally with the corresponding
Petrial of the (geometric) Petrie-Coxeter apeirohedron, it will therefore coincide
globally, which is what we want.

We conclude that we have established

Theorem 4. The regular apeirohedra f 4
0;1
; 6
1;3

W 6g, f 3
0;1
; 6
1;3

W 4g and f 3
0;1
; 4
1;2

W 6g
are rigid; they are the Petrials of the corresponding 3-dimensional Petrie-Coxeter
apeirohedra.

There is an interesting consequence of this characterization.

Corollary 2. The three regular apeirohedra f6; 6
1;3

W 4
0;1

g, f4; 6
1;3

W 3
0;1

g and

f6; 4
1;2

W 3
0;1

g are rigid; they are the corresponding 3-dimensional Petrie-Coxeter
apeirohedra.

Proof. This is clear from Theorem 4; we are just representing these apeirohedra as
the Petrials of those characterized by that theorem.

In other words, we have alternative expressions for the (geometric) Petrie-
Coxeter apeirohedra:

f6; 6
1;3

W 4
0;1

g Š fff6; 6 j 3ggg;
f4; 6

1;3
W 3
0;1

g Š fff4; 6 j 4ggg;
f6; 4

1;2
W 3
0;1

g Š fff6; 4 j 4ggg:
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Observe that the geometric and abstract descriptions are now significantly different.
Note also that we can write f6; 6

1;3
W 4
0;1

g � f6; 6
1;3

j 3g, in the notation introduced in
Sect. 5, and so on.

7.3 Mirror Vector .1; 1; 1/

The three regular apeirohedra in this class are

f 3
0;1
; 3 W 4

0;1
g Š fff1; 3ggg.a/;

f 4
0;1
; 3 W 3

0;1
g Š fff1; 3ggg.b/;

f 3
0;1
; 4 W 3

0;1
g Š fff1; 4 W �;3ggg:

The notation for the first two, which we shall explain shortly (at least, in general
terms), is as in [15] (see also [16, Section 7B]); these are two of the regular
apeirohedra found by Grünbaum [6], and form a Petrie pair. The third (the only
one of the twelve under discussion which was missed by Grünbaum) was due to
Dress [4, 5]; its notation was explained in Sect. 2.

We showed in [15, Theorem 7.2] that the two apeirohedra of type fff1; 3ggg are
determined by the fact that the translations induced by the appropriate number of
steps along a certain helical face and a certain Petrie apeirogon commute. In one
sense, this is an obvious condition arising from the geometry. However, there are
hidden assumptions here, which need to be brought out into the open and properly
addressed. The basic one is that the translational symmetries of a helix (whether
face or Petrie apeirogon) extend to ones of the whole apeirotope; this will be true
if the apeirotope can be shown to be 3-dimensional, but will not necessarily hold
otherwise. In fact, while the helical symmetries will be appealed to, the core of the
proofs of the first two theorems of the section will depend on purely local properties.

We begin with

Theorem 5. The regular apeirohedra f 3
0;1
; 3 W 4

0;1
g and f 4

0;1
; 3 W 3

0;1
g are rigid, and

are isomorphic to f1; 3g.a/ and f1; 3g.b/, respectively.
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(5)

We picture part of these apeirohedra in (5) above; we have included some
‘scaffolding’ for 4-helices.

Proof. We begin the proof by observing that, while the notation demands that the
faces and Petrie apeirogons be 3-dimensional, there is no initial requirement that
this be true of the apeirohedron itself. As in [15], we shall work with the latter
apeirohedron; to deal with the former, we merely swap the rôles of face and Petrie
apeirogon. The key fact employed is that, as already mentioned in Sect. 4, k steps
along a k-helix (here, k D 3 or 4) is a translational symmetry of the helix, though
not necessarily of the whole apeirohedron.

Let : : : ; a�2; a�1; a0; a1; a2; a3; : : : be the successive vertices of an initial
4-helical face F1 of P 2 f 4

0;1
; 3 W 3

0;1
g (as a realization cone, of course);

the proof is illustrated in (6). For each such j , there is a third edge faj ; bj g
(that is, other than faj�1; aj g and faj ; ajC1g) containing aj . For each j

again, there is a Petrie apeirogon Gj D f 3
0;1

g of P , with successive vertices
: : : ; bj�1; aj�1; aj ; ajC1; bjC1; : : :; thus aj�1 � bj�1 D bjC1 � ajC1. Repeating
this shows that

bjC4 � ajC4 D bj � aj
for each j 2 Z. Observe that we already have a strong suggestion here of a global
translational symmetry of P .

Let F 0 be the face of P which contains b0, but not the edge E WD fa0; b0g;
suppose that it has successive vertices : : : ; c�1; c0; c1; c2; : : :, with c0 D b0. Consider
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the two Petrie apeirogonsG�1 andG1 of P which share the edgeE . Up to changing
signs of the indices in F 0, we will have successive vertices

G�1W : : : ; b�2; a�2; a�1; a0; b0 D c0; c1; c2; : : :

G1W : : : ; b2; a2; a1; a0; b0 D c0; c�1; c�2; : : :

a−2

a−1

a0

a1

a2

a3

a4

a5

a6

b−2

b−1

b0 = c0

b1

b2

b3

b4 = c4

b5

b6

c−2

c−1

c1

c2

c3

c5

c6

(6)

Again using the local translational symmetries of G�1, G1 and F1, we have

c�1 � c�2 D a1 � a0;
c0 � c�1 D a2 � a1
c1 � c0 D a�1 � a0 D a3 � a2
c2 � c1 D a0 � a�1 D a4 � a3:

We deduce three things at once. First, F 0 D F1 C s�1 D F1 � s1, where

sj WD ajC1 � bj�1 D bjC1 � aj�1
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is the basic translational symmetry of Gj for j 2 Z. Second, the basic translational
symmetry t1 of F1 (with ajC4 D aj C t1) is

t1 D sjC1 � sj�1
for each j . Third, it follows that c4j D b4j for each j ; that is, the sets of parallel
edges fa4j ; b4j g all lead from F1 to F 0.

The same then holds for the other sets of parallel edges from F1, and we easily
conclude that the vertices of P fall into the vertex-sets of disjoint faces of P parallel
to F1. The same will then be true of the other two faces F2 and F3 of P which
contain a0. Finally, it follows that we have (commuting) translations Sj by sj of P
(with SjC4 D Sj ) and Tk by tk which satisfy

S�1j�1SjC1 D T1

and similar relations, showing that the translation group has rank 3; moreover, all
this shows that P is just 3-dimensional. We now really need no more description
than this to recognize f 4

0;1
; 3 W 3

0;1
g as the apeirohedron fff1; 3ggg.b/ of [15] or [16,

Section 7B]).

Remark 10. Since a k-helix induces a k-fold rotation in the point or special group,
we deduce that the special group ofP D f 4

0;1
; 3 W 3

0;1
g is the rotation group Œ4; 3�C Š

S4 of the cube. Moreover, the edges of P are translates of the six edges of the
regular tetrahedron f3; 3g, perhaps better regarded in the present context as those of
its Petrial f 4

1;2
; 3 W 3g.

The remaining case is the apeirohedron denoted fff1; 4 W �;3ggg in [15]. This
apeirohedron is self-Petrie; its faces and Petrie polygons are 3-helices. We shall
prove

Theorem 6. The regular apeirohedron f 3
0;1
; 4 W 3

0;1
g is 3-dimensional, and is

isomorphic to the abstract apeirohedron fff1; 4 W �;3ggg.
Proof. We proceed in a somewhat different way from that in Theorem 5, but again
– apart from appealing to the intrinsic translational symmetries of the faces or Petrie
apeirogons, which we do not need to distinguish – we use purely local properties.
Let P 2 f 3

0;1
; 4 W 3

0;1
g, and let a 2 vertP have adjacent vertices b0; b1; b2; b3 in

this order around the square vertex-figure. For j D 0; 1; 2; 3, let the remaining
vertices adjacent to bj be cj ; hj ; dj , so that a; cj ; hj ; dj are again the vertices (in
this order) of its vertex-figure (see (9), where we have suppressed h1 and h3 for
clarity). For each j D 0; : : : ; 3 (with indices j modulo 4) there is a (unique) face
Fj of P containing bj ; a; bjC1; let this have vertices : : : ; cj ; bj ; a; bjC1; djC1; : : :.
Then the Petrie apeirogon Gj of P which also contains bj ; a; bjC1 has vertices
: : : ; dj ; bj ; a; bjC1; cjC1; : : :.
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Bearing in mind that the faces are 3-helices, for each j we obtain

djC1 � bj D bjC1 � cj ; cjC1 � bj D bjC1 � dj : (7)

Subtracting one equation from the other yields

cjC1 � djC1 D cj � dj DW t3; (8)

say.

a

b0

h0

b1

b2

2b3

d0

c0
c1

d1

d2

c2

d3

c3

e

f

g

(9)

The vertices w0; : : : ;w3 of P (in this order) adjacent to v 2 vertP are coplanar
by assumption, and so the displacement vector d.v/ of v from the centre of its broad
vertex-figure is

d.v/ D v � 1
2
.w0 C ws/ D v � 1

2
.w1 C w3/:

Adding the two equations of (7) shows that

d.bjC1/ D �d.bj /; d.bjC2/ D d.bj /

for each j . The latter of these two equations shows that the hole : : : ; h0; b0; a; b2;
h2; : : : must actually be a zigzag f 2

0;1
g, and thus

d.a/ D �d.b0/:
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But from the hole : : : ; h1; b1; a; b3; h3; : : : we similarly conclude that d.a/ D
�d.b1/ D d.b0/, so that d.a/ D �d.a/, and hence d.a/ D o.

It follows that each vertex lies at the centre of its vertex-figure. Hence the holes
are linear apeirogons f1g D f 1

0
g, the edges fall into three mutually orthogonal

families, and thus P itself is 3-dimensional. As a consequence, the holes and
hexagons link up, as in the picture, and we have P Š fff1; 4 W �;3ggg, as claimed.
As in the previous case, the special group is Œ3; 4�C. Once more, of course, the
translational symmetries of the 3-helices extend to ones of P itself.

Remark 11. It is worth noting that the abstract notation for f 3
0;1
; 4 W 3

0;1
g results

either from following through the operations in [15] which derive it from one
of the Petrie-Coxeter apeirohedra, or from an application of the circuit criterion
[16, Theorem 2F4] (which was actually introduced in [15]). The extra relation
corresponds to the skew hexagon with vertices a; b0; c0; e; c1; b1, which we shall
meet again in the proof of Theorem 8.

Remark 12. As we noted above, the sole regular apeirohedron in E
3 which was

missed by Grünbaum in [6] is f 3
0;1
; 4 W 3

0;1
g. In a way, this is surprising, since

f 3
0;1
; 4 W 3

0;1
g has the same edge-graph as the apeirohedron f 6

1;3
; 4 W 6

1;3
g which

we discuss below. On the other hand, f 3
0;1
; 4 W 3

0;1
g cannot be derived from any

of the other regular apeirohedra in E
3 by immediately obvious operations such as

duality, Petriality, and the like.

We used the planarity of the vertex-figures in an essential way in the proof of
Theorem 6. It may be of interest to see what happens if we relax this condition.

Theorem 7. The general regular apeirohedron in f 3
0;1
; 4
1;2

W 3
0;1

g is 6-dimensional,
and is a blend

f 3
0;1
; 4
1;2

W 3
0;1

g D f 3
0;1
; 4 W 3

0;1
g # f 1

0
g # f3g:

Proof. We begin by observing that

f 3
0;1
; 4 W 3

0;1
g; f 1

0
g; f3g 4 f 3

0;1
; 4
1;2

W 3
0;1

g

as realization cones, and that the blend of the geometric polytopes is 6-dimensional
(note that we specify f 1

0
g rather than just f1g here). Thus we only have to show that

each P 2 f 3
0;1
; 4
1;2

W 3
0;1

g is at most 6-dimensional. At this stage, we may also notice
that

f 3
0;1
; 4 W 3

0;1
g # f3g Š fff1; 4 W �;3ggg;

but that this isomorphism fails if we further blend with f1g (in any realization);
indeed, the typical hexagon which provided the defining relation for fff1; 4 W �;3ggg
opens up here into an apeirogon f 6

0;1;3
g.
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Our proof carries on from the analysis in that of Theorem 6, when we obtained
the vector t3 in (8). We now proceed along the holes of P though a, and then along
those though the hj , and so on; that is, we move to any new hole which diverges
after an even number of edges from a – we can think of these as ‘horizontal’ holes.
We make no assumption about how these different holes might subsequently meet.
However, what we do see is that the vertices of P adjacent to those at odd edge
distance from a in the horizontal holes are paired up by the translation vector t3.

It follows from this that t3 actually induces a translational symmetry T3 of P ,
and that the ‘vertical’ holes (like those through dj ; bj ; cj ) are actually zigzags. In a
similar way, we see that the ‘horizontal’ holes give rise to translational symmetries
T1 and T2 (say). Crucially, it follows that there are at most six translation classes of
edges, so that P is, as claimed, at most 6-dimensional.

Remark 13. The translation subgroup here has rank 4, as one would expect. Notice
that, even in this case, we have appealed to very little of the abstract structure of the
apeirohedron.

7.4 Mirror Vector .1; 2 ; 1/

We have left this class until last, because there is a contrast between it and the others.
The apeirohedra in the class have (finite) skew polygonal faces, planar vertex-

figures and (finite) skew polygonal Petrie polygons. They are

f 6
1;3
; 6 W 4

1;2
g Š fff6; 6 W 4ggg;

f 4
1;2
; 6 W 6

1;3
g Š fff6; 6 W 6ggg;

f 6
1;3
; 4 W 6

1;3
g Š fff6; 4 W 6ggg:

The fine Schläfli symbols imply the corresponding isomorphisms. However, it is
immediately apparent that they cannot ensure that the apeirohedra be 3-dimensional.
The reason is simple: the faces and Petrie polygons of each are blends f6g # f2g or
f4g # f2g, and so blending the apeirohedra with digons f2g will not change their
types. Observe that the edge-graphs of these apeirohedra are bipartite. Thus the best
that we can achieve is

Theorem 8. In general, the apeirohedra with fine Schläfli symbols f 6
1;3
; 6 W 4

1;2
g,

f 4
1;2
; 6 W 6

1;3
g and f 6

1;3
; 4 W 6

1;3
g are 4-dimensional, being blends of a 3-dimensional

pure component and a segment.

Proof. We deal with P 2 f 6
1;3
; 4 W 6

1;3
g first, while the treatment of f 3

0;1
; 4 W 3

0;1
g is

still (perhaps) fresh in the mind. The two apeirohedra have isomorphic edge-graphs,
and so we shall adopt the same initial notation; again refer to (9). Now, however, a
typical skew hexagonal face (or Petrie polygon – we shall not bother to distinguish
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them) F of type f 6
1;3

g has vertices a; b0; c0; e; c1; b1; since F is centrally symmetric,
we see that cj � bj D w0 and dj � bj D w1 for each j . Then t1 WD cj � dj (for
each j ) is a translation vector of P as in the proof of Theorem 7; we clearly have
analogous translations t2; t3 as well, but now there is no translation s1.

The same calculations of centres of vertex-figures yields

v0 C v2 D v1 C v3 D �.w0 C w1/;

but no contradictions of signs. Indeed, we see that the displacements of vertices
from the centres of their vertex-figures are equal but alternating in sign at adjacent
vertices. It follows immediately that, if this displacement is non-zero, then P is a
blend.

Similar considerations apply to the other two cases, which we can treat together;
we take P 2 f 6

1;3
; 6 W 4

1;2
g. Let a be the initial vertex, whose vertex-figure has

vertices b0; : : : ; b5 (in cyclic order). Let a; b0; c; b1 be a skew tetragonal Petrie
polygon G of type f 4

0;1
g of P , and let b5; a; b0; c; d5; e5 and b2; a; b1; c; d1; d2 be

the two skew hexagonal faces F5; F2 D f 6
1;3

g of P which share two edges of G.
Then vj D bj � a D dj � c for j D 2; 5 (again, parallel sides of centrally
symmetric skew hexagons); consequently, the vectors from a and c to the centres
of their vertex-figures are the same. Tracing edge-paths shows that the same holds
for alternate vertices; once again, then, P will generally be a blend. Note that the
displacement from the remaining vertices must be equal and opposite in sign.

Remark 14. In view of the following Theorem 9, this actually suffices for a proof.
However, the interested reader might like to show directly that alternate vertices
genuinely form 3-dimensional configurations. For example, from f 4

1;2
; 6 W 6

1;3
g

we obtain f6; 6
1;3

j 3g, as comparison with the abstract case demonstrates (see
[15]). Actually, here it is even easier to show that the mid-points of the edges of
f 6
1;3
; 6 W 4

1;2
g yield f6; 4

1;2
j 4g, with the faces and vertex-figures providing the

planar hexagons, and the Petrie polygons providing the planar holes. There is no
associated regular figure in the third case, but there is enough symmetry to establish
the 3-dimensionality of the alternate vertex configuration.

It is natural to ask if there is any way of imposing rigidity on these apeirohedra.
In fact, there is.

Theorem 9. Three of the Grünbaum apeirohedra are determined by the fine Schläfli
symbols f 6

1;3
; 6 W 4

1;2
; �; 1

0
g, f 4

1;2
; 6 W 6

1;3
; �; 1

0
g and f 6

1;3
; 4 W 6

1;3
; 1
0
g as rigid regular

apeirohedra.

Proof. We deliberately write f 1
0
g rather than f1g here, to emphasize that we

are talking about the linear apeirogon. The reason is straightforward. Specifying
these apeirogons as linear ensures that a vertex is the centre of its vertex-figure
(compare the previous proof), and hence that the corresponding apeirohedron is
3-dimensional.
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Remark 15. We observed in Sect. 2 that, if the vertex-figure of a regular polyhedron
P is a 2k-gon, then k-holes and k-zigzags of P coincide if they have even length
(or are infinite). Hence we can represent these rigid apeirohedra alternatively as

f 6
1;3
; 6 W 4

1;2
j �; 1

0
g; f 4

1;2
; 6 W 6

1;3
j �; 1

0
g; f 6

1;3
; 4 W 6

1;3
j 1
0
g:

8 Further Applications

In this final section, we present a miscellany of examples which illustrate rigidity or
its lack.

8.1 Free Abelian Apeirotopes

The construction of the free abelian apeirotope P WD apeirQ on a finite regular
polytope Q is purely geometric; we introduce a new notation here, which fits in
more uniformly with the notation for other operations on polytopes. For discrete-
ness, we must have Q a rational regular polytope, by which we mean that the
vertices of Q have rational coordinates with respect to some (affine) basis of its
affine hull affQ. We think of Q (which will be the narrow vertex-figure – thus, in
the strict sense) as sitting in a linear hyperplaneH of our ambient space E with its
centre at o, and we take an initial vertex v to lie on the lineL through o orthogonal to
H (this is essentially the only freedom we have). Then the mid-points of the edges
of P through v are the vertices of Q, and – in the general situation – the vertices of
P fall into two hyperplanes in E parallel toH . The canonical generatorsR1; : : : ; Rn
of the group of P are those of Q, with indices increased by 1 (that is, as mirrors
extended by the line L); R0 is the point-reflexion in the initial vertex of Q.

As the construction shows, in general apeirQwill be a blend with one component
f2g; we therefore use this notation to denote the class of such apeirotopes, rather than
an individual member. To distinguish it from the general situation, we introduce the
notation Q˛ for the special case v D o, so that apeirQ D Q˛ # f2g is the general
case.

We start with an ancillary result.

Lemma 1. If Q is a crystallographic classical regular polytope, then f 2
0;1
;Qg D

apeirQ.

Proof. Let P 2 f 2
0;1
;Qg. If we takeQ to have centre o and letH WD linQ, then (in

general) the initial vertex v lies in the orthogonal complement of H in the ambient
space E. Since the 2-faces containing v are zigzag apeirogons f 2

0;1
g, we see that their

vertices all lie alternately in two affine subspacesH˙, say, parallel to H .
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Now consider any vertex w of P adjacent to v. Let us write Qw for the narrow
vertex-figure of P at w. Then x WD 1

2
.vCw/ 2 vertQ. IfE D fx; yg is any edge of

Q through x, then 2x � y 2 vertQw. So, if G is the broad vertex-figure of Q at x,
then similarly 2x � G is the broad vertex-figure of Qw at x. But x and G fix Q, so
that x and 2x�G fixQw, and henceQw D 2x�Q � H also. Indeed, it is clear from
this fact that, if fv;wg is the initial edge of P , then the symmetryR0 2 G.P / which
interchanges v and w is the point-reflexion in the mid-point x D 1

2
.v C w/ of that

edge. We hardly need to deduce as well (from the connectedness of the edge-graph
of P ) that all vertex-figures at vertices of P lie in H , and therefore vertP � H˙.
In conclusion, P 2 apeirQ, as required.

Remark 16. Observe that we have actually only appealed to the fact that x and G
determineQ, and so the same argument will apply in many more cases.

Since the examples in this section are only intended to be illustrative, we shall
just consider the case of Theorem 1. As we have seen, in general P will be a blend
with one component f2g. Thus, to make P rigid, we must force v to be the centre
of Q. So far, P belongs to the fine Schläfli symbol f 2

0;1
; q2; : : : ; qng, where Q D

fq2; : : : ; qng (observe that we could use the notation f 2
0;1
;Qg for any rational regular

polytopeQ). The entry 2
0;1

for the 2-face will remain, and so some other (geometric)
relation needs to be imposed.

Theorem 10. If Q D fq2; : : : ; qng is a crystallographic classical regular polytope,
whose Petrie polygon is fsg (with s a generalized fraction), then the fine Schläfli
symbol P D f 2

0;1
; q2; : : : ; qn W s00g is rigid, and determines the apeirotope apeirQ.

We have explained the notation s00 in (4).

Proof. The reason is fairly simple. First, we observe that, if v D o (the centre ofQ),
then fs00g is indeed the Petrie polygon of apeirQ. If P is to be a blend, of which one
component must be f2g, then the Petrie polygon will similarly have to have f2g as a
component. However, fs00g cannot have a component f2g, because fsg (being finite)
does not have a component f1g.

In the present context, there are two cases whereQ˛ and the general apeirQ are
not isomorphic. For these, Q has a diametral hexagon; apart from the hexagon f6g
itself, the other case is the 24-cell f3; 4; 3g. When Q D f6g, we have s D 6 (of
course) and thus s00 D 3, giving P as the Petrial of the tessellation f3; 6g of the
plane by triangles.

The interesting case is therefore f3; 4; 3g, where s D 12
1;5

, so that s00 D 12
1;5

also. The half-turn about the initial edge of the rigid P D f 2
0;1
; 3; 4; 3 W 12

1;5
g is

.R2R3R4/
3 (the central symmetry of the edge-figure f4; 3g), so that the reflexion

in the hyperplane perpendicular to the initial edge through its centre is S0 WD
R0.R2R3R4/

3. With Sj WD Rj for j D 1; : : : ; 4, we have the symmetry group
hS0; : : : ; S4i of the (rigid) regular honeycomb f3; 3; 4; 3g. Thus the rigidity can
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also be expressed by the relation .R0R1.R2R3R4/3/3 D I for the triangular 2-face
f3g of the honeycomb; however, this relation does not impose a natural geometric
condition on P .

Remark 17. It sheds no more light on the situation to describe the group of the
triangular face in terms of the generating reflexions R0.R2R3R4/3 and R1 of its
symmetry group.

8.2 Polytopes of Full Rank

We briefly survey the remaining (that is, non-classical) regular polytopes and
honeycombs of full rank, though not in an exhaustive way. We begin with the
polytopes.

The general Petrie operation is

�W .R0; : : : ; Rn�1/ 7! .R0; : : : ; Rn�4; Rn�3Rn�1; Rn�2; Rn�1/ DW .S0; : : : ; Sn�1/:

This is always applicable to a classical regular polytope (or honeycomb)
fp1; : : : ; pn�1g when n D 3, but only if pn�3 D 4 when n > 4 (we have given
a more detailed criterion in [12]). Thus the only applicable cases (apart from the
polyhedra) are P D f4; 3; 4g, f4; 3; 3g, f3; 4; 3; 3g and apeirf4; 3; 3g. However,
except in the last case, the way that the Petrial P � is specified notationally leads at
once to the original P , and so rigidity is ensured. For example,

f4; 3; 4g� D ff4; 6
1;3

j 4g; f 6
1;3
; 4 W 3gg;

and – ignoring the entries 6
1;3

and 4 for the hole – we see that the original entries in
the Schläfli symbol f4; 3; 4g are still present implying (and this is the crucial point)
appropriate planar polygons.

The remaining operation which yields new regular polytopes from finite regular
polytopes of full rank is �, which replaces the initial hyperplane reflexion R0 in the
symmetry group by �R0 (assuming, as usual, that we take the centre to be o). Since
the new 2-face is a skew polygon, we should not expect rigidity to hold. Indeed, in
general it does not, without the imposition of additional specifications.

There are n C 1 pure realizations of the n-cube fff4; 3n�2ggg, including the trivial
realization f1g and the segment f2g. Of the others, when n > 4 only the classical
convex cube f4; 3n�2g is rigid: the general fine Schläfli symbol f 4

1;2
; 3n�2g does not

distinguish among the rest. It might be thought that the situation could be different
for the central quotient fff4; 3n�2ggg=2. However, even for n D 4, when there is just
one pure faithful realization, the fine Schläfli symbol f 4

1;2
; 3; 3 W 4

1;2
g cannot exclude

blends with the digon f2g.
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8.3 Four-Dimensional Polyhedra

We recall from [10] that an important tool for the classification of the 4-dimensional
regular polyhedra was the mirror vector, as defined in Sect. 3. As before, we shall
merely consider representative examples. It may be helpful to bear in mind that such
polyhedra with mirror vector .r0; r1; r2/ are finite analogues of (pure) 3-dimensional
apeirohedra with mirror vector .r0 � 1; r1 � 1; r2 � 1/.

The polyhedra with mirror vector .3; 2; 3/ have planar faces and holes and skew
vertex-figures; they are therefore covered by Theorem 2. Nevertheless, a couple
of cases deserve further mention. First, we have (as a fine Schlf̈li symbol) P WD
f4; 6

1;3
j 3g Š fff4; 6 j 3ggg, the universal polyhedron. However, there is also Q WD

f4; 6
2;3

W 5
1;2

j 3g Š fff4; 6 W 5 j 3ggg, which is doubly covered by P . Theorem 2 tells

us that Q is rigid, and is actually specifiable as Q D f4; 6
2;3

j 3g, with no mention
of the Petrie polygon. Notice that the sole difference between P and Q (as fine
Schläfli symbols) now lies in the vertex-figures alone.

Associated with the mirror class .3; 2; 3/ are the classes .2; 2; 3/ and .1; 2; 3/,
which are the results of applying �, � or both. Thus we should not expect
straightforward ways of ensuring rigidity; we shall not discuss these classes here.

The mirror class .2; 3; 2/ consists of polyhedra with planar vertex-figures, but
skew faces and Petrie polygons. This skewness enables us to blend them with f2g,
while not affecting fine Schläfli symbols which only indicate the three features
mentioned. With Sect. 7.4 in mind, we see that additional conditions will be needed
to impose rigidity.

The final mirror class is .2; 2; 2/. In view of Sect. 7.3, we might hope that mere
specification of planar vertex-figures and faces and Petrie polygons as helices (that
is, blends of two polygons) would suffice to ensure rigidity. Unfortunately, we saw
in Sect. 5 that the case of the hemi-dodecahedron f 5

1;2
; 3 W 5

1;2
g refutes this (while the

4-dimensional realization f 5
1;2
; 3 W 10

1;3
g of the dodecahedron is rigid, we showed this

indirectly, rather than by extending the ideas of Sect. 7). Since things can go wrong
with the simplest example, we should not expect anything better for the rest.
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1 Introduction

In the classical theory of convex polyhedra, the Platonic and Archimedean solids
form a natural class of highly symmetric objects. The symmetry group of each of
these polyhedra acts transitively on its vertices. If we restrict to those solids whose
symmetry groups also act transitively on their edges, only the regular polyhedra,
the cuboctahedron, and the icosidodecahedron remain. These polytopes all have the
distinguishing property that every symmetry of their polygonal faces extends to a
symmetry of the solid. In fact, if we look for convex “hereditary” polyhedra (those
having this property of inheriting all the symmetries of their faces) with regular
faces, we find that vertex and edge transitivity is implied (as we shall see in a more
general setting in Sect. 3).

It is natural to generalize this idea of hereditary polyhedra to the setting of
abstract polytopes of any rank. In this paper we study those polytopes that have
the property of inheriting all symmetries of their facets. The formal definition of a
hereditary polytope can be found in Sect. 2, along with other basic notions required
for the understanding of this paper.

An abstract polytope of rank 3 can be seen as a map, that is a 2-cell embedding of
a connected graph into a closed surface. Regular and chiral maps have been studied
extensively in the past (see for example [2, 6]), and form a natural class of highly
symmetric maps. In some older literature, chiral maps are labeled as regular, as
locally they are regular in the following sense. The symmetry group of a chiral map
acts transitively on the vertices, edges, and faces, and the maps have the maximal
possible rotational symmetry. However, none of the reflectional symmetry of any
of the faces of a chiral map extends to a global symmetry. Therefore chiral maps,
although highly symmetric, are not hereditary in our sense.

The non-regular hereditary maps are the 2-orbit maps which are vertex and edge
transitive. This type of map has been extensively studied (see for example [9, 12,
24]). It will be shown that certain 2-orbit polytopes will always be hereditary (see
Theorem 2). However, the characterization of hereditary polytopes of rank greater
than three is complex.

In Sect. 3, we consider how various transitivity properties of the facets affect the
transitivity properties of a hereditary polytope. Section 4 deals with polytopes with
regular facets, with an emphasis on hereditary polyhedra. In Sect. 5, we consider
polytopes with chiral facets, and prove the existence of certain hereditary polytopes
of this type. In Sect. 6, some questions regarding the extensions of hereditary
polytopes are considered. We conclude with a brief section which suggests some
interesting problems for related work.

2 Basic Notions

Following [16], a polytope P of rank n, or an n-polytope, is a partially ordered
set of faces, with a strictly monotone rank function having range f�1; : : : ; ng. The
elements of P with rank i are called i -faces; typically Fi indicates an i -face.
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A chain of type fi1; : : : ; ikg is a totally ordered set faces of ranks fi1; : : : ; ikg. The
maximal chains of P are called flags. We require that P have a smallest .�1/-face
F�1, a greatest n-face Fn and that each flag contains exactly n C 2 faces. Also,
P should be strongly flag-connected, that is, any two flags ˚ and  of P can be
joined by a sequence of flags ˚ WD ˚0;˚1; : : : ; ˚k DW  such that each ˚j and
˚jC1 are adjacent (in the sense that they differ by just one face), and ˚ \  � ˚j
for each j . Furthermore, we require the following homogeneity property: whenever
F < G, with rank.F / D i � 1 and rank.G/ D i C 1, then there are exactly two
i -facesH with F < H < G. Essentially, these conditions say that P shares many
combinatorial properties with the face lattice of a convex polytope.

If ˚ is a flag, then we denote the i-adjacent flag by ˚i , that is the unique flag
adjacent to ˚ and differing from it in the face of rank i . More generally, we define
inductively ˚i1;:::;ik WD .˚i1;:::;ik�1 /ik for k 
 2. Note that if ji � j j 
 2, then
˚i;j D ˚j;i ; otherwise in general, ˚i;j ¤ ˚j;i .

The faces of rank 0, 1, and n � 1 are called vertices, edges, and facets,
respectively. We will sometimes identify a face F with the section F=F�1 when
there is no chance for confusion. If F is a vertex, the section Fn=F WD fGjF �
G � Fng is called the vertex-figure of P at F . A polytope is said to be equivelar of
(Schläfli) type fp1; : : : ; pn�1g if each sectionG=F , withG an .iC1/-face and F an
.i � 2/-face with F < G, is combinatorially equivalent to a pi -gon. Additionally, if
the facets of P are all isomorphic to an .n � 1/-polytope K and its vertex-figures
are all isomorphic to an .n � 1/-polytope L , then we say P is of type fK ;L g.
(This is a small change of terminology from [16].)

The set of all automorphisms of P is a group denoted by � .P/ and called the
automorphism group of P . For 0 � i � n � 1, an n-polytope P is called i -face
transitive if � .P/ acts transitively on the set of i -faces of P . In addition, P is said
to be f0; 1; : : : ; ig-chain transitive if � .P/ acts transitively on the set of chains of
P of type f0; 1; : : : ; ig.

A polytope P is said to be regular if � .P/ acts transitively on the flags, that
is if P is f0; 1; : : : ; n � 1g-chain transitive. The automorphism group of a regular
n-polytope is known to be a string C-group (a smooth quotient of a Coxeter group
with a linear diagram, which satisfies a specified intersection condition), and is
generated by involutions �0; : : : ; �n�1, which are called the distinguished generators
associated with a flag ˚ , and defined as follows. Each �i maps ˚ to ˚i . These
generators for a polytope of Schläfli type fp1; : : : ; pn�1g satisfy relations of the
form

.�i �j /
pij D " for i; j D 0; : : : ; n � 1; (1)

where pii D 1, pij D pji WD pj if j D i C 1, and pij D 2 otherwise. When the
sections F=F�1 of a polytope P determined by facets F are themselves regular, we
say that P is regular-facetted.

A regular polytope P is called directly regular if the even (or rotation) subgroup
� C.P/ of � .P/ has index 2 in � .P/. Recall that � C.P/ consists of the
elements of � .P/ that can be expressed as a product of an even number of
distinguished generators �i .
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A polytope P is said to be chiral if there are two orbits of flags under the action
of � .P/ and adjacent flags are in different orbits. In this case, given a flag ˚ D
fF�1; : : : ; Fng of P there exist automorphisms, which are also called distinguished
generators, �1; : : : ; �n�1 of P such that each �i fixes all faces in ˚ nfFi�1; Fi g and
cyclically permutes consecutive i -faces of P in the rank 2 section of FiC1=Fi�2.
Each chiral polytope comes in two enantiomorphic forms; one associated with a
base flag˚ and the other with any of its adjacent flags. When the sectionsFn�1=F�1
of a polytope P determined by facets F are themselves chiral, we say that P is
chiral-facetted.

A polytopeP is said to be k-orbit if there are k orbits of flags under the action of
� .P/. In the case of 2-orbit polytopes, if I � f0; : : : ; n�1g is such that i -adjacent
flags are in the same orbit for i 2 I and in different orbits for i 62 I , then we say
that P is in the class 2I .

Finally, a polytope P is called hereditary if for each facet F of P the group
� .F=F�1/ of the corresponding section F=F�1 is a subgroup of� .P/; in fact, then
� .F=F�1/ is a subgroup of �F .P/, the stabilizer of F in � .P/. More informally,
P is hereditary if every automorphism of every facetF extends to an automorphism
of P which fixes F .

3 Transitivity on Faces

We begin with a number of basic properties of hereditary polytopes which have
highly symmetric facets.

Proposition 1. If an n-polytope P is hereditary and each facet is f0; 1; : : : ; ig-
chain transitive for some i with i � n � 2, then P is f0; 1; : : : ; ig-chain transitive,
and hence the i -faces of P are mutually isomorphic regular i -polytopes.

Proof. Let ˚ and  be two chains of P of type f0; 1; : : : ; ig. Since P is strongly
flag-connected and i � n � 2, there exists a sequence ˚ WD ˚0;˚1; : : : ; ˚k WD 

of chains of type f0; 1; : : : ; ig such that, for j D 1; : : : ; k, all faces of ˚j�1 and ˚j
are incident to a common facetHj . As each facet is transitive on chains of this type,
there is an automorphism of Hj mapping ˚j�1 to ˚j . These automorphisms of the
facetsHj are also automorphisms of P , and their composition maps ˚ to  . ut

In much the same way we can also prove the following proposition, again
appealing to the strong flag-connectedness.

Proposition 2. If an n-polytope P is hereditary and each facet is i -face transitive
for some i with i � n � 2, then P is i -face transitive. In particular, if each facet is
vertex transitive, then P is vertex transitive.

Proof. Join any two i -faces of P by a sequence of i -faces in which any two
consecutive i -faces lie in a common facet. Then proceed as in the previous proof.

ut
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Proposition 1 also has the following immediate consequence.

Proposition 3. If an n-polytope P is hereditary and each facet is regular, then the
.n � 2/-faces of P are all regular .n � 2/-polytopes mutually isomorphic under
isomorphisms induced by automorphisms of P .

Our main interest is in hereditary polytopes all of whose facets are either regular
or chiral. The following theorem says that any such polytope must have its facets
either all regular or all chiral. In other words, the “mixed-case” does not occur.

Theorem 1. If P is a hereditary polytope with each facet either regular or chiral,
then either each facet of P is regular or each facet of P is chiral.

Proof. Suppose P has at least one regular facet. We prove that then each facet of
P must be regular. By the connectedness properties of P it suffices to show that
each facet adjacent to a regular facet must itself be regular.

LetH be a regular facet, and letH 0 be an adjacent facet meetingH in an .n�2/-
face G. Let ˝ be a flag of H=F�1 containing G. Since H is regular, its group
� .H=F�1/ contains a “reflection” �H0 which maps ˝ to ˝0, the 0-adjacent flag of
˝ in H=F�1. Since P is hereditary, �H0 extends to an automorphism of P , again
denoted �H0 , which takes the flag  WD ˝ [ fFng of P to 0. But �H0 fixes H and
G, so must necessarily fix H 0 as well and hence belong to � .H 0=F�1/. Moreover,
�H0 maps the flag ˝ 0 WD .˝ n fH g/[ fH 0g ofH 0=F�1 to its 0-adjacent flag .˝ 0/0.
Thus � .H 0=F�1/ contains an element which takes a flag of H 0=F�1 to an adjacent
flag. On the other hand, each facet of P is regular or chiral, soH 0 must necessarily
be regular. Bear in mind here that a chiral polytope does not admit an automorphism
mapping a flag to an adjacent flag. ut

A hereditary polytope with some of its facets regular, need not have all of its
facets regular. This is illustrated by the example of the semiregular tessellation T
of Euclidean 3-space by regular tetrahedra and (vertex) truncated regular tetrahedra.
This tessellation is related to the Petrie-Coxeter polyhedron f6; 6 j 3g. The facets
(tiles) of T are of two kinds, namely (regular) Platonic solids and (semiregular)
Archimedean solids, or more precisely, truncated Platonic solids. This tessellation
is a hereditary 4-orbit polytope of rank 4.

More examples arise in a similar way from the semiregular tessellations of
the 3-sphere S

3 or hyperbolic 3-space H
3 related to the regular skew polyhedra

f2l; 2m j rg in these spaces. Their tiles are Platonic solids fr;mg and (vertex)
truncated Platonic solids fl; rg. These tessellations can be derived by Wythoff’s
construction applied to the spherical or hyperbolic 4-generator Coxeter group with
square diagram.
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ml

r

r

(2)

More details, including a list of the various possible choices for l; m; r , can be found
in [4, 14, 21]. The semiregular tessellation T in E

3 mentioned earlier is obtained in
a similar fashion from the Euclidean Coxeter group given by the diagram in (2) with
l D m D r D 3.

4 Hereditary Polytopes with Regular Facets

In this section we investigate hereditary polytopes which are regular-facetted.
We show that each such polytope is either itself regular or a 2-orbit polytope.

4.1 Flag-Orbits

We begin with the following observation.

Proposition 4. Let P be a regular-facetted hereditary n-polytope. If there exists
an .n � 3/-face F such that its co-face Fn=F is a q-gon with q odd, then P is a
regular n-polytope of Schläfli type fp1; : : : ; pn�2; qg, where fp1; : : : ; pn�2g is the
Schläfli type of any facet of P .

Proof. The proof exploits the fact that for odd q the dihedral groupDq has just one
conjugacy class of reflections. Geometrically speaking this means that the reflection
mirror bisecting an edge of a convex regular q-gon also bisects the angle at the
opposite vertex. This conjugacy class then generatesDq .

First observe that, by Proposition 2, the group � .P/ is transitive on the .n� 3/-
faces of P since P has regular facets. (This already implies that each co-face of an
.n�3/-face is a q-gon.) Now, if we can show that the stabilizer of an .n�3/-face in
� .P/ acts transitively on the flags of P containing that .n � 3/-face, then clearly
� .P/ acts flag-transitively on P and hence P must be regular.

Now suppose F is an .n � 3/-face such that Fn=F is a q-gon. Clearly, since the
facets of P are regular, F is also regular and its group � .F=F�1/ can be viewed as
a subgroup of the automorphism group of any facet H of P with F < H that acts
trivially on H=F . Moreover, since P is hereditary, � .F=F�1/ is also a subgroup
of � .P/ acting flag-transitively on F=F�1 and trivially on Fn=F .
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On the other hand, ifH is any facet of P containingF , then there exists a unique
involution �Hn�2 (say) in � .H=F�1/ which fixes a flag of F=F�1 and interchanges
the two .n � 2/-faces of H containing F . Now, since q is odd, the reflections
�Hn�2, with H a facet containing F , generate a subgroup isomorphic to the dihedral
group Dq . Hence, since this subgroup acts flag-transitively on Fn=F and trivially
on F=F�1, it can be identified with � .Fn=F /.

Then �F .P/ D � .F=F�1/ � � .Fn=F /, and �F .P/ acts transitively on the
flags of P that contain F . ut

The following theorem says that the hereditary polytopes with regular facets fall
into two families.

Theorem 2. A regular-facetted n-polytope is hereditary if and only if it is regular
or a 2-orbit polytope in the class 2f0;1;:::;n�2g.

Proof. Let P be a regular-facetted hereditary n-polytope. As before, P is .n� 3/-
face transitive. Let F be any .n � 3/-face of P . We must show that the stabilizer
�F .P/ has at most two orbits on the set of flags of P containing F . Since F is
regular and P is hereditary, � .F=F�1/ can again be viewed a subgroup of �F .P/

acting flag-transitively on F=F�1 and trivially on Fn=F .
As in the previous proof, for each facet H of P containing F , there exists

a unique involution �Hn�2 (say) in � .H=F�1/ which fixes a flag of F=F�1 and
interchanges the two .n � 2/-faces of H containing F . Suppose the co-face Fn=F
is a q-gon, allowing q D 1. By Proposition 4, if q is odd, then P is regular and
we are done.

Now suppose P is not regular. Then q is even or q D 1. In this case the
subgroup� of �F .P/ generated by the involutions �Hn�2, withH a facet containing
F , is isomorphic to a dihedral group Dq=2; when restricted to the q-gonal co-face
Fn=F , these involutions �Hn�2 generate a subgroup of index 2 in the full dihedral
automorphism groupDq of Fn=F . Hence�, restricted to Fn=F , has two flag-orbits
on Fn=F . It follows that �F .P/ D � .F=F�1/��, and that �F .P/ has two orbits
on the flags of P that contain F . Thus P is a 2-orbit polytope. Moreover, since
P is hereditary and the facets of P are regular, � .P/ contains the distinguished
generators for the group of any facet of P , so P is necessarily of type 2I with
f0; : : : ; n � 2g � I . On the other hand, since P itself is not regular, no flag can be
mapped onto its .n�1/-adjacent flag by an automorphism of P . Hence P must be
a 2-orbit polytope in the class 2f0;1;:::;n�2g.

Conversely, if P is in the class 2f0;1;:::;n�2g, then it has regular facets, and since
all flags that contain a mutual facet are in the same orbit, it is hereditary. ut

Note that every 2-orbit polytopeP in the class 2f0;1;:::;n�2g necessarily has regular
facets, generally of two different kinds. In particular, P has a generalized Schläfli
symbol of the form

n

p1; : : : ; pn�3;
pn�2
qn�2

o

;
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where fp1; : : : ; pn�3; pn�2g and fp1; : : : ; pn�3; qn�2g are the ordinary Schläfli
symbols for the two kinds of facets (see [13]). This is a generalization of the classical
Schläfli symbol used in Coxeter [5] for semiregular convex polytopes.

We now describe some examples of regular-facetted hereditary polytopes of low
rank, concentrating mainly on rank 3. All regular polytopes are hereditary and
(trivially) regular-facetted, so we consider only non-regular polytopes, which, as
we just proved, must necessarily be 2-orbit polytopes in the class 2f0;1;:::;n�2g.

4.2 Hereditary Polyhedra

Since all abstract 2-polytopes (polygons) are regular, by Theorem 2, each hereditary
polyhedron is (trivially) regular-facetted and hence is either regular or a 2-orbit
polyhedron in the class 2f0;1g. Both the cuboctahedron and the icosidodecahedron
can easily be seen to be hereditary polyhedra. In fact, these are the only hereditary
polyhedra amongst the Archimedean solids. Similarly, the uniform Euclidean plane
tessellation of type .3:6/2 is an infinite hereditary polyhedron (see [10]).

Recall that the medial of a polyhedron (map) P on a closed surface is the
polyhedron Me.P/ on the same surface whose vertices are the “midpoints” of the
edges of P , and whose edges join two vertices if and only if the corresponding
edges of P are adjacent edges of a face of P . All three examples of hereditary
polyhedra just mentioned can be constructed as medials of regular maps, namely of
the cube f4; 3g, the dodecahedron f5; 3g, and the euclidean plane tessellation f6; 3g,
respectively.

More generally, given a regular polyhedronP of type fp; qg, the medial Me.P/

is a hereditary polyhedron, and Me.P/ is regular if and only if P is self-dual
(see [18, Theorem 4.1]). This can be quickly seen algebraically. If the automorphism
group of the original polyhedron is � .P/ D h�0; �1; �2i (say), then � .Me.P// is
isomorphic to � .P/ if P is not self-dual, or � .P/ Ë C2 if P is self-dual (this
latter group is just the extended group of P , consisting of all automorphisms and
dualities of P). When P is not self-dual, there are generally two kinds of facets of
Me.P/, namelyp-gons corresponding to conjugate subgroups of h�0; �1i in � .P/,
and q-gons corresponding to conjugate subgroups of h�1; �2i in � .P/; in particular,
when q D p all facets of Me.P/ are p-gons, so Me.P/ has facets of just one type
(we describe an example below). This is also true when P is self-dual; however,
in this case the two subgroups are conjugate in the extended group of P (under
a polarity fixing the base flag). In either case, Me.P/ is hereditary since the two
kinds of conjugate subgroups in � .P/ are also subgroups of � .Me.P//.

Using the medial construction, we can find a finite hereditary polyhedron with
only one isomorphism type of facet, which, although it has a Schläfli symbol, is
not regular. Consider a non self-dual polyhedron of type fp; pg, for example the
polyhedron P of type f5; 5g12 denoted as “N98.6” by Conder [2] (or as f5; 5g 
1920b by Hartley [11]). The medial of P is a polyhedron of type f5; 4g with the
same automorphism group, of order 1920, but with twice as many flags. Thus this
polyhedron is not regular, but it is still hereditary and of type 2f0;1g.
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The previous example is also of independent interest with regards to the
following problem about the lengths of certain distinguished paths in its edge graph.

Remark 1. In Problem 7 of [23], it is asked to what extent a regular or chiral
polyhedron of type fp; qg is determined by the lengths of its j -holes and the lengths
of its j -zigzags. The polyhedron P with 1920 flags, mentioned above, has Petrie
polygons (1-zigzags) of length 12, 2-zigzags of length 5, and 2-holes of length 12.
Thus, we say it is of type f5; 5 j 12g12;5 (see [16, p. 196]). However, calculation in
MAGMA [1] shows that the universal polyhedron of this type has 30720 flags. This
gives an example of a regular polyhedron which is not determined by the lengths of
all of its j-holes and the lengths of all of its j-zigzags.

Every non-regular hereditary polyhedron P , by Proposition 4, has vertex-
figures which are q-gons with q even. In particular, by Theorem 2, P is a 2-orbit
polyhedron in class 2f0;1g. Additionally, Theorem 4.2 of [18] shows that any 2-orbit
polyhedron in class 2f0;1g is the medial of a regular map if and only if q D 4.

However, there are non-regular hereditary polyhedra which are not medials of
regular maps. We now define a class of such examples via a map operation which we
call “generalized halving.” The halving operation itself is described in Sect. 5.3.1. If
K is a regular map of type f2p; qg whose edge graph is bipartite, then we define a
hereditary polyhedron K a (on the same surface as K ) as follows; here “a” stands
for “alternating vertices” (see also Sect. 5.3.1). Suppose that the vertices of K are
colored red and yellow such that adjacent vertices have different colors. The vertex-
figures at the red vertices of K (obtained by joining the yellow vertices adjacent to
a given red vertex in cyclic order) form one class of facets of K a. The other class
of facets of K a is defined by joining the yellow vertices of a facet of K whenever
they are adjacent to the same red vertex in that facet. The resulting polyhedron has
facets of type fpg and fqg, and vertex-figures of type f2qg. The polyhedron K a is
in the class 2f0;1g, and thus is hereditary.

Non-regular hereditary polyhedra with 2r-valent vertices can be seen as quotients
of the uniform tessellations .p:q/r WD .p:q:p:q: : : : p:q:p:q/, with r entries p
and q, of the sphere, Euclidean plane, or hyperbolic plane, which can be derived
by Wythoff’s construction from the .p; q; r/ extended triangle group as indicated
below (see [5]).

p

q

r

(3)
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In particular, the hereditary polyhedra arising as medials of regular maps of type
fp; qg are quotients of the above infinite tessellations constructed from the .p; q; 2/
extended triangle groups. Similarly, the polyhedra arising from our generalized
halving construction of a regular map of type f2p; qg are quotients of the infinite
tessellations constructed from the .p; q; q/ extended triangle groups.

Moving on to rank 4, we observe that the semi-regular tessellation of Euclidean
3-space by regular tetrahedra and octahedra gives a simple example of a regular-
facetted hereditary polytope which is not regular. Its geometric symmetry group is
a subgroup of index 2 in the symmetry group of the cubical tessellations of 3-space.
Note that the combinatorial automorphism group of either tessellation is isomorphic
to its symmetry group.

5 Hereditary Polytopes with Chiral Facets

When a hereditary polytope has chiral facets, its rank is at least 4. In this section we
show that any such polytope has either two or four flag-orbits.

5.1 Flag-Orbits

Call an abstract polytope P equifacetted if its facets are mutually isomorphic. All
regular or chiral polytopes are equifacetted. A 2-orbit n-polytope in a class 2I with
n � 1 2 I is also equifacetted.

Theorem 3. A chiral-facetted hereditary n-polytope is a 2-orbit polytope which is
either chiral or in class 2fn�1g (and hence is equifacetted), or a 4-orbit polytope.

Proof. Let P be a chiral-facetted hereditary n-polytope. First note that we must
have n 
 4, since the facets of polytopes of rank at most 3 are always regular, not
chiral. By Proposition 2, the polytope P is .n � 3/-face transitive since its facets
are .n� 3/-face transitive. In particular, any flag of P is equivalent under � .P/ to
a flag containing a fixed .n � 3/-face F of P . Again we employ the action of the
stabilizer �F .P/ on the set of flags of P containing F .

Let F be an .n � 3/-face of P , and let ˝ be a flag of the section F=F�1. For
each facet H of P containing F there exists a unique involution �H0;n�2 (say) in
� .H=F�1/which interchanges the two .n�2/-faces ofH containingF while fixing
all faces of ˝ except the 0-face. Let � denote the subgroup of �F .P/ generated
by the involutions �H0;n�2, with H a facet containing F . Now suppose again that the
2-polytopeFn=F is a q-gon, allowing q D 1. When restricted to the co-faceFn=F ,
the involutions �H0;n�2 act like reflections in perpendicular bisectors of edges of a
convex regular q-gon, and so the restricted � is isomorphic to a dihedral groupDq

orDq=2 according as q is odd or even. Hence�, restricted to Fn=F , has one or two
flag-orbits on the 2-polytopeFn=F , respectively; in the latter case the two flag-orbits
can be represented by a pair of 1-adjacent flags of Fn=F . Note, however, that unlike
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in the case of hereditary polytopes with regular facets, � does not act trivially on
the .n � 3/-face F=F�1. (In fact, each �H0;n�2 maps ˝ to ˝0, the 0-adjacent flag, so
the restriction of � to F=F�1 is a group C2.)

Now let G be an .n � 2/-face of P incident with F , and let H and H 0 denote
the two facets of P meeting at G. Then ˚ WD ˝ [ fG;H;Fng is a flag of P
containing F . Note that fF;G;H;Fng and fF;G;H 0; Fng are 1-adjacent flags of
the q-gon Fn=F which are contained in ˚ or ˚n�1, respectively. Now let  be any
flag of P containing F . Then two possible scenarios can occur.

First suppose q is odd. Then since � acts flag-transitively on Fn=F , the flag 
can be mapped by an element of � to a flag  0 containing fF;G;H;Fng. Then
 0 n fFng is a flag of the facetH=F�1, and sinceH=F�1 is chiral, it can be taken by
an automorphism ofH=F�1 to either the flag ˚ n fFng ofH=F�1 or the j -adjacent
flag .˚ n fFng/j , for any j D 0; : : : ; n� 2. But P is hereditary, so the extension of
this automorphism to P then necessarily maps  0 to either ˚ or ˚j . On the other
hand, the two flags ˚ and ˚j are not equivalent under � .P/, since otherwise the
facets would be regular, not chiral. Thus � .P/ has two flag-orbits represented by
any pair of j -adjacent flags, with j D 0; : : : ; n� 2. Hence P is a 2-orbit polytope,
either of type 2; and then P is chiral, or of type 2fn�1g. (Note that our arguments do
not require the above automorphisms to belong to �F .P/; in fact, when j D n�3,
and possibly when j D n � 2 with n 
 5, they will not lie �F .P/.)

Next suppose q is even. Now � acts with two flag-orbits on Fn=F , so  can be
mapped under� to a flag  0 which either contains fF;G;H;Fng or fF;G;H 0; Fng.
In the former case,  0 is as above equivalent to ˚ or ˚j , for any j D 0; : : : ; n� 2,
again under the extension of a suitable automorphism of the chiral facet H=F�1 to
P . In the latter case,  0 is equivalent to ˚n�1 or ˚n�1;j , for any j D 0; : : : ; n� 2,
now under the extended automorphism of the .n � 1/-adjacent facet H 0=F�1 of
H=F�1 in P . As before, ˚ and ˚j cannot be equivalent under � .P/, and neither
can ˚n�1 and ˚n�1;j . Moreover,˚ is equivalent to ˚n�1 or ˚n�1;j respectively, if
and only if˚j is equivalent˚n�1;j or˚n�1. Hence P has two or four flag-orbits. If
there are four flag-orbits, then these can be represented by˚;˚j ; ˚n�1; ˚n�1;j , and
we are done. Otherwise P is a 2-orbit polytope with its two flag-orbits represented
by ˚ and ˚j . In this case P is either of type 2; and then P is chiral, or of type
2fn�1g; accordingly, ˚ and ˚n�1 represent different, or the same, flag-orbits under
� .P/. In either case we are done as well, and the proof is complete. ut

Note that the proof of Theorem 3 shows that the four flag-orbits of a chiral-
facetted hereditary 4-orbit n-polytope P can be represented by the four flags
;0; n�1; n�1;0, where  is any flag of P .

In rank 4, many examples of chiral polytopes with chiral facets are known (see [3,
8, 22]). These are chiral-facetted hereditary polytopes of the first kind mentioned in
Theorem 3. By contrast, it is not at all clear that chiral-facetted hereditary polytopes
of the two other kinds actually exist (for any rank n 
 4). In the remainder of
this section we establish the existence of such examples. We show that there is a
wealth of chiral-facetted hereditary 2-orbit polytopes in the class 2fn�1g, at least for
n D 4; 5 but most likely for any n 
 4; and that chiral-facetted hereditary 4-orbit
polytopes exist at least in rank 4.
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5.2 Chiral-Facetted Hereditary n-Polytopes in Class 2fn�1g

We begin by briefly reviewing the cube-like polytopes 2K originally due to Danzer
(see [7, 20] and [16, Section 8D]).

Let K be a finite abstract .n�1/-polytope with vertex-set V WD f1; : : : ; vg (say).
Suppose K is vertex-describable, meaning that its faces are uniquely determined
by their vertex-sets. Thus we may identify the faces of K with their vertex-sets,
which are subsets of V . Then 2K is a (vertex-describable) abstract n-polytope with
2v vertices, each with a vertex-figure isomorphic to K . The vertex-set of 2K is

2V WD
vO

iD1
f0; 1g; (4)

the cartesian product of v copies of f0; 1g. When j 
 1 we take as j -faces of 2K ,
for any .j � 1/-face F of K and any " WD ."1; : : : ; "v/ in 2V , the subsets F."/ of
2V defined by

F."/ WD f.�1; : : : ; �v/ 2 2V j �i D "i if i 62 F g; (5)

or, abusing notation, by the cartesian product

F."/ WD
 
O

i2F
f0; 1g

!

�
0

@
O

i 62F
f"ig

1

A :

Then, if F , F 0 are faces of K and " D ."1; : : : ; "v/, "0 D ."01; : : : ; "0v/ are elements
in 2V , we have F."/ � F 0."0/ in 2K if and only if F � F 0 in K and "i D "0i for
each i not in F 0. The least face of 2K (of rank �1) is the empty set. Note that the
vertices " of 2K arise here as singletons in the form F."/ D f"g when F D ;, the
least face of K . Notice that if K is the .n � 1/-simplex, then 2K is the n-cube.

Each j -face of 2K is isomorphic to a j -polytope 2F , where F is a .j � 1/-face
of K . More precisely, if F is a .j � 1/-face of K and F WD F=F�1, then each
j -face F."/ with " in 2V is isomorphic to 2F .

The automorphism group of 2K is given by

� .2K / Š C2 o � .K / Š C v
2 Ì � .K /; (6)

the wreath product of C2 and � .K / defined by the natural action of � .K / on
the vertex-set of K . In particular, � .2K / acts vertex-transitively on 2K and the
vertex stabilizers are isomorphic to � .K /. Moreover, each automorphism of every
vertex-figure of 2K extends to an automorphism of the entire polytope 2K .

The following theorem summarizes properties of 2K that are relevant for our
discussion of hereditary polytopes.
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Theorem 4. Let K be a finite abstract .n�1/-polytope with v vertices, and let K
be vertex-describable. Then 2K is a finite abstract n-polytope with the following
properties.

(a) If K is a k-orbit polytope for k 
 1, then 2K is also a k-orbit polytope.
(b) If K is regular, then 2K is regular.
(c) If K is a 2-orbit polytope in class 2I for I � f0; : : : ; n � 2g, then 2K is a

2-orbit polytope in class 2J for J WD f0g [ fi C 1 j i 2 I g.
(d) If K is chiral, then 2K is a 2-orbit polytope in class 2f0g.

Proof. For part (a), since � .2K / acts vertex-transitively on 2K , every flag-orbit
under � .2K / can be represented by a flag containing the vertex o WD .0; : : : ; 0/ of
2K . Moreover, since the vertex stabilizer of o is isomorphic to � .K /, two flags
containing o are equivalent in � .2K / if and only if they are equivalent in � .K /.
Thus the number of flag-orbits of K and 2K is the same. This proves part (a). For
part (b), simply apply part (a) with k D 1.

For part (c), suppose K is a 2-orbit polytope in class 2I . Then part (a) shows
that 2K is also a 2-orbit polytope. Choose a flag  WD fF0; F1; : : : ; Fn�2g of K
and consider the corresponding flag ˚ WD fo; F0.o/; F1.o/; : : : ; Fn�2.o/g of 2K

which contains o (we are suppressing the least face and the largest face). In K , the
i -adjacent flags ; i of K lie in the same orbit under � .K / if and only if i 2 I .
Relative to 2K , the adjacency levels of K are shifted by 1. Hence, if j 
 1, then a
pair of j -adjacent flags ˚;˚j of 2K lie in the same orbit under � .2K / if and only
if j 2 fi C 1 j i 2 I g. In addition, the 0-adjacent flags ˚;˚0 of 2K always are
equivalent under � .2K /; in fact, the mapping on 2V defined by

."1; "2; : : : ; "v/ �! ."1 C 1; "2; : : : ; "v/;

with addition mod 2 in the first component, induces an automorphism of 2K taking
˚ to ˚0. Thus, ˚ and ˚j are in the same flag-orbit of 2K if and only if j 2 J .
This proves part (c). For part (d), apply part (c) with I D ;. ut

Appealing to duality, the previous theorem now allows us to settle the existence
of chiral-facetted hereditary n-polytopes in class 2fn�1g. Call an abstract polytopeQ
facet-describable if each face of Q is uniquely determined by the facets of Q that
are incident with it. Thus, Q is facet-describable if and only if its dual Q� is vertex-
describable. Just like vertex-describability, facet-describability is a relatively mild
assumption on a polytope. Any polytope that is a lattice, is both vertex-describable
and facet-describable.

Corollary 1. Let Q be a finite chiral .n � 1/-polytope, and let Q be facet-
describable. Then .2Q

�

/� is a chiral-facetted hereditary 2-orbit n-polytope in class
2fn�1g with facets isomorphic to Q. Moreover,

� ..2Q
�

/�/ Š C2 o � .Q/ Š C
f
2 Ì � .Q/;

where f is the number of facets of Q.
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Proof. The dual Q� of Q is chiral and vertex-describable. By Theorem 4, the
polytope 2Q

�

has 2 orbits and belongs to class 2f0g. Hence its dual, .2Q
�

/�, is
a 2-orbit polytope in class 2fn�1g. Its facets are the duals of the vertex-figures
of 2Q

�

. Thus the facets of .2Q
�

/� are isomorphic to Q and hence are chiral.
Moreover, .2Q

�

/� is hereditary, since every automorphism of every vertex-figure
of 2Q

�

extends to an automorphism of the entire polytope 2Q
�

. The second part of
the corollary follows from (6), bearing in mind that f is just the number of vertices
of Q� and that dual polytopes have the same group. ut

Chiral polytopes are known to exist for every rank greater than or equal to 3
(see Pellicer [19]). We strongly suspect that most polytopes constructed in [19] are
also facet-describable. Corollary 1 provides an n-polytope of the desired kind for
every n 
 4 for which there exists a finite chiral .n � 1/-polytope which is facet-
describable. For n D 4 or 5 there are many such examples.

5.3 Chiral-Facetted Hereditary Polytopes with Four Orbits

In this section we describe a construction of “alternating” polytopes which is
inspired by the methods in Monson and Schulte [17] and provides examples of
chiral-facetted hereditary 4-polytopes with four flag-orbits.

5.3.1 Halving of Polyhedra

We begin by reviewing a construction of polyhedra which arises from the halving
operation � of [16, Section 7B] described below; it can be considered as a special
case of the construction given in 4.2.

Let K be an equivelar map of type f4; qg whose edge graph is bipartite. Then
every edge circuit in K has even length. Suppose that the vertices of K are colored
red and yellow such that adjacent vertices have different colors. The vertex-figures
at the red vertices of K (obtained by joining the vertices adjacent to a given red
vertex in cyclic order) form the faces of a map of type fq; qg (which is usually a
polyhedron) on the same surface as the original map. Its vertices and “face centers”
are the yellow and red vertices of K , respectively; its edges are the “diagonals” in
(square) faces of K that join yellow vertices. Notice that the original map K can
be recovered from the new map.

When the two colors are interchanged, we similarly obtain another map of type
fq; qg, the dual of the first map, which a priori need not be isomorphic to the first
map. However, if K admits an automorphism swapping the two color-classes of
vertices, then these maps are isomorphic; this holds, for example, if the original
polyhedron K is vertex-transitive. In our applications this will always be the case,
and in such instances we denote the map by K a (with the “a” standing for “alternate
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vertices”). Note that K a has half as many flags as K ; in fact, the number of vertices
is halved and the vertex degrees are maintained.

We now impose symmetry conditions on K . First let K be regular, and let
� .K / D h˛0; ˛1; ˛2i, where ˛0; ˛1; ˛2 are the distinguished generators. From the
halving operation

� W .˛0; ˛1; ˛2/! .˛0˛1˛0; ˛2; ˛1/ DW .ˇ0; ˇ1; ˇ2/; (7)

we then obtain the generators ˇ0; ˇ1; ˇ2 for the automorphism group of a self-dual
regular polyhedron K � of type fq; qg, which is a subgroup of index 2 in � .K /

(see [16, Section 7B]); bear in mind here that the edge graph of K is bipartite and
that .˛0˛1/4 D ". This polyhedron can be drawn as a map on the same surface as
K by employing Wythoff’s construction with generators ˇ0; ˇ1; ˇ2 and base vertex
z (say) of K . Then it is easily seen that K � is just the polyhedron K a described
earlier, realized here with z as a yellow vertex of K .

Notice that replacing � by

�0 W .˛0; ˛1; ˛2/! .˛1; ˛2; ˛0˛1˛0/ DW .�0; �1; �2/ (8)

results in another set of generators �0; �1; �2, which are conjugate under ˛0 to
ˇ0; ˇ1; ˇ2. When Wythoff’s construction is applied with these new generators and
base vertex ˛0.z/ adjacent to z, we similarly arrive at a regular polyhedron K �0

on the same surface which is dually positioned to K �, has its vertices at the red
vertices of K , and is isomorphic to K a. Note that the new generators �0; �1; �2 in
(8) can be found from ˛0; ˛1; ˛2 in one of two equivalent ways: either as in �0 by
first applying � and then conjugating the ˇj ’s by ˛0, or by first conjugating the ˛j ’s
by ˛0 and then applying � to these new generators.

If K is chiral, we can work with corresponding operations at the rotation group
level, again denoted by � and �0. Suppose � .K / D h�1; �2i, where �1; �2 are the
distinguished generators. Then the two operations

� W .�1; �2/! .�21 �2; �
�1
2 / DW .'1; '2/

�0 W .�1; �2/! .�2; �
�1
2 �21 / DW . 1;  2/

(9)

give a pair of self-dual maps of type fq; qg each isomorphic to K a. Now these
maps are chiral, as can be seen as follows. First note that h'1; '2i and h 1; 2i are
subgroups of � .K / preserving the vertex partition of K , and hence their index in
� .K /must be 2. Moreover,K a has half as many flags as K , so these groups must
act on the new map K a with two flag-orbits. Now supposeK a was directly regular,
rather than chiral. Then it is immediately clear from the geometry of K a that any
automorphism � of K a which fixes a 2-face of K a and interchanges the two edges
at a vertex of this 2-face, must act on the original map K like a combinatorial
reflection in the edge of K at that vertex invariant under �. More informally, an
automorphism � of K a which acts like a generator �1 of � .K a/, becomes an
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automorphism of K which acts like a generator �2 of � .K /. Alternatively this can
be verified algebraically at the group level: any involutory group automorphism of
h'1; '2i (or h 1; 2i, respectively) that behaves just like conjugation by a generator
�1, gives rise to an involutory group automorphism of � .K / that behaves just like
conjugation by a generator �2.

As in the case of regular maps, K � and K �0 can be drawn on the same
underlying surface by employing a variant of Wythoff’s construction, now applied
with the new generators of (9) and with either z or �1.z/ as base vertex. The two
maps are again dually positioned relative to each other. The vertex z of K is a
vertex of K �, but not of K �0 . Hence, if z is a yellow vertex of K , then K � uses
only yellow vertices of K while K �0 uses only red vertices of K . In analogy to
what we said about the operations in (7) and (8), the new generators  1; 2 in �0 of
(9) can be found from �1; �2 in one of two equivalent ways: either as in �0 by first
applying � and then passing to the generators for the other enantiomorphic form of
K �, or by first passing to the generators for the other enantiomorphic form of K
and then applying � to these new generators.

5.3.2 Alternating Chiral-Facetted 4-Polytopes

Following [17], an n-polytope is said to be alternating if it has facets of possibly two
distinct combinatorial isomorphism types appearing in alternating fashion around
faces of rank n�3. We allow the possibility that the two isomorphism types coincide,
although we are less interested in this case. The cuboctahedron is an example of an
alternating polyhedron in which triangles and squares alternate around a vertex.

A more interesting example is the familiar semiregular tiling T of Euclidean
3-space E

3 by regular octahedra and tetrahedra illustrated in Fig. 1, which is an
alternating 4-polytope in which octahedra and tetrahedra alternate around an edge
(see [5, 17]). Its vertex-figures are (alternating) cuboctahedra. More generally it is
true that the vertex-figures of an alternating n-polytopes are alternating .n � 1/-
polytopes. From now on, we restrict ourselves to polytopes of rank 3 or 4.

The relationship of the semiregular tiling T with the (regular) cubical tiling
C WD f4; 3; 4g in E

3 will serve as the blueprint for our construction. As the edge
graph of C is bipartite, we can color the vertices red or yellow such that adjacent
vertices receive different colors. Then the octahedral tiles of T can be viewed as the
vertex-figures of C at the red vertices, each spanned by the yellow vertices adjacent
to the corresponding red vertex. The complement in E

3 of the union of all these
octahedral tiles gives rise to the family of tetrahedral tiles of T , each inscribed
in a cube of C ; each cube contributes exactly one tetrahedral tile, such that the
tetrahedral tiles in adjacent cubes share a common edge.

Now let P be any finite 4-polytope, let K be a vertex-transitive polyhedron of
type f4; qg, and let L be a polyhedron of type fq; rg. Suppose that all facets of P
are isomorphic to K , and that all vertex-figures are isomorphic to L . Thus P is
equivelar of type f4; q; rg.
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Fig. 1 A patch of the semiregular tiling T derived from the cubical tiling C . Shown are a
tetrahedal tile with vertices A;B; C;D, and one eighths of an octahedral tile (vertices A;B; C )
centered at the base vertex F0 D z. The axes of the three generating rotations �1; �2; �3 for the
rotation subgroup of C are indicated, as is the fundamental tetrahedron for this subgroup with
vertices F0; F 0

0 ; F2; F3. The plane through A;B; C dissects this fundamental tetrahedron into two
smaller tetrahedra, each becoming a fundamental tetrahedron for the full symmetry group of a tile,
namely the tetrahedron with vertices F0; F 0

0 ; F2; E for the octahedral tile and the tetrahedron with
vertices F 0

0 ; F2; E; F3 for the tetrahedral tile

Further, suppose the edge graph of P is bipartite, with vertices colored red or
yellow such that adjacent vertices have different colors. Let R and Y , respectively,
denote the sets of red or yellow vertices of P . Then every edge circuit in P has
even length, and the edge graph of K is also bipartite. It is convenient to require two
additional “lattice-like” conditions to hold. First, both P and L should be vertex-
describable, so that we may identify faces with their vertex-sets; then, as a facet of
a vertex-describable polytope, K must also be vertex-describable. Second, any two
opposite vertices of a 2-face of P should not be opposite vertices of another 2-face
of P . Later we impose strong symmetry conditions on K , L and P , but for now
we work in the present generality.

We now derive from P a new 4-polytopePa, where “a” indicates “alternating”.
The vertex-set of Pa is the set Y of yellow vertices of P . Our description of the
faces of Pa is in terms of their vertex-sets, that is, subsets of Y . In particular, the
edges of Pa are the diagonals of the (square) 2-faces of P that connect yellow
vertices; more precisely, fv;wg is a 1-face of Pa if and only if v;w 2 Y and v;w
are opposite vertices in a 2-face of P . Then, by our assumption on the 2-faces of
P , any two vertices of Pa are joined by at most one edge.

The 2-faces of Pa are the vertex-figures, within the facets of P , at the red
vertices of these facets; more precisely, fv1; : : : ; vq0g is a 2-face of Pa if and only
if there exists a facet F of P with a red vertex v such that fv1; : : : ; vq0g is the set of
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(yellow) vertices, labeled in cyclic order, of the vertex-figure at v in F . Clearly, the
2-faces of Pa must be q-gons, that is, q0 D q in each case. Alternatively, we can
describe the 2-faces of Pa as the 2-faces of the vertex-figures at red vertices in P .

The facets of Pa are of two kinds and correspond to either a halved facet or the
vertex figure at a red vertex of P . Each facet F of P gives rise to a facet F a of Pa,
of the first kind, obtained (as in Sect. 5.3.1) as the polyhedron whose 2-faces are the
vertex-figures of F at the red vertices; when F is viewed as a map of type f4; qg on
a surface, F a is a map of type fq; qg that can be drawn on the same surface. Note
here that, by the vertex-transitivity of K , the combinatorial structure of F a does not
depend on which class of vertices in the bipartition of the vertex-set of F is used as
the vertex-set for F a (the two maps arising from the two possible choices of vertex-
sets are related by duality, but they are isomorphic since K is vertex-transitive).
Thus the facets F a of the first kind are mutually isomorphic, each to the map K a

of Sect. 5.3.1. The facets of Pa of the second kind are the vertex-figures, P=v, of
P at the red vertices, v.

For example, if P is the cubical tessellation C described earlier, then the facets
of the first kind are tetrahedra F a D f3; 3g inscribed in cubes F of C , and the
facets of the second kind are the octahedral vertex-figures C=v D f3; 4g of C at
the red vertices. Thus, combinatorially, Pa D T , the semiregular tiling of E3 by
tetrahedra and octahedra.

Incidence of faces in Pa is defined by inclusion of vertex-sets; that is, two faces
of Pa are incident if and only if their vertex-sets (as subsets of the vertex-set of P)
are related by inclusion. Note that two facets of Pa can only be adjacent (share a
2-face) if they are of different kinds, and that a facet F a of the first kind is adjacent
to a facet P=v of the second kind if and only if v is a vertex of F . Each edge of Pa is
surrounded by four facets of Pa, occurring in alternating fashion; more explicitly,
if fv;wg is an edge of Pa given by the diagonal of a 2-face G of P , then these
four facets are F a, P=u, .F 0/a and P=u0, in this order, where F and F 0 are the two
facets of P meeting at G, and u; u0 are the two vertices of G distinct from v and w.
Thus Pa is alternating.

The vertex-set of the vertex-figure Pa=v of Pa at a vertex v (a yellow vertex
of P) consists of the vertices w of Pa such that fv;wg is an edge of Pa.
Combinatorially, Pa=v is the medial Me.L / of the vertex-figure L of P . To see
this, in the above, replace the vertex w of the edge fv;wg by the “midpoint” of
that edge (this is the “center” of the respective 2-face of P that determines that
edge), and impose on this new vertex-set the same combinatorial structure as on
the original vertex-set of Pa=v. In the example of the semiregular tiling T of E3

the vertex-figures are cuboctahedra, occurring as medials of the octahedral vertex-
figures of the cubical tiling C at yellow vertices.

Notice that the new polytope Pa has the same number of flags as the original
polytope P . In fact, the number of vertices of Pa is half that of P , while the
number of flags of the vertex-figures Me.L / of Pa is twice that of the vertex-
figures L or P . Bear in mind our assumption that P is finite.

We now investigate the combinatorial symmetries of Pa. First observe that Pa

inherits all automorphisms of P that preserve colors of vertices. Observe here that,
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since the edge graph of P is bipartite and connected, an automorphism � of P
maps the full set of yellow vertices Y to itself if and only if � maps any yellow vertex
to a yellow vertex. Let � c.P/ denote the subgroup of � .P/ mapping Y (and thus
R) to itself. Clearly, � c.P/ has index 1 or 2 in � .P/. Then it is immediately clear
that � c.P/ is a subgroup of � .Pa/. In fact, the combinatorics of Pa is entirely
derived from Y and has been described in a Y -invariant fashion.

With an eye on the hereditary property, we remark further that the vertex stabi-
lizer �v.P/ of a red vertex v in � .P/ becomes a subgroup of the automorphism
group of the corresponding facet P=v of Pa. Similarly, for any facet F of P , the
stabilizer of F in � c.P/, which is given by � c.P/\�F .P/, becomes a subgroup
of the automorphism group of the corresponding facet F a of Pa.

Our remarks about � c.P/ have immediate implications for the number of flag-
orbits of Pa.

In particular, if P is regular, then � c.P/ must have index 2 as a subgroup of
� .P/, and thus index 1 or 2 as a subgroup of � .Pa/. To see this, note that the
order of � c.P/ is exactly half the number of flags of P , and thus of Pa. Hence
Pa is regular or a 2-orbit polytope in class 2f0;1;2g. In either case, Pa is hereditary
(and regular-facetted).

Similarly, if P is chiral, then � c.P/must have index 2 as a subgroup of � .P/,
and thus index 1, 2 or 4 as a subgroup of � .Pa/. Now the order of � c.P/ is
exactly a quarter of the number of flags of P , and thus of Pa. Now suppose Pa is
hereditary. We show that then the facets and vertex-figures of P must be all regular
or all chiral.

In fact, if the facets of the original polytope P are regular, each facet F a of
Pa of the first kind must also be regular and its full automorphism group must
be a subgroup of � .Pa/ (see Sect. 5.3.1); now since the combinatorial reflection
symmetry in F a that takes a flag of F a to its 0-adjacent flag also gives a similar such
reflection symmetry in the adjacent facet P=v (say) of Pa meeting F a in the 2-face
of the flag, it follows that the vertex-figures of P must actually also be regular
since they already have (at least) maximal symmetry by rotation. Similarly, if the
vertex-figures of the original polytope P are regular, then the hereditary property
of Pa implies that the full automorphism group � .P=v/ of a facet P=v of Pa is
a subgroup of � .Pa/ containing a combinatorial reflection symmetry of P=v that
takes a flag of P=v to its 0-adjacent flag; as above, this reflection symmetry must
induce a similar reflection symmetry in an adjacent facet F a (say) of Pa and hence
force this facet to be regular, since it already has (at least) maximal symmetry by
rotation. Thus, if the original polytope P is chiral, then Pa can be hereditary only
if the facets and vertex-figures of Pa are all regular or all chiral.

Conversely, if the facets and vertex-figures of a chiral polytope P are all regular
or all chiral, then the new polytopePa is hereditary, since each facet ofPa of either
kind has all its automorphisms extended to the entire polytope Pa. In particular, if
the facets and vertex-figures of P are all regular, then Pa is regular-facetted and
is either itself regular or a 2-orbit polytope of type 2f0;1;2g. Otherwise, Pa is chiral-
facetted and has 1, 2 or 4 flag-orbits.

Now suppose P and all its facets and vertex-figures are chiral. Then recall from
Sect. 5.1 that the flag-orbits of the corresponding hereditary polytope Pa can be
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represented by one, two, or four flags from among  , 0, 3, 3;0, where  is
any flag of Pa. First note that a pair of 0-adjacent flags of Pa cannot possibly be
equivalent under � .Pa/, since otherwise the facet of Pa common to both flags
would have to be regular, not chiral. Thus ;0 (resp. 3; 3;0) are not equivalent
under � .Pa/, and Pa has 2 or 4 flag-orbits. Similarly, if the two kinds of facets
of Pa are distinct (that is, non-isomorphic), then a pair of 3-adjacent flags of Pa

cannot possibly be equivalent either, since any automorphism of Pa taking a flag to
its 3-adjacent flag would provide an isomorphism between the two facets contained
in these flags. Thus ;3 (resp. 0; 3;0) are non-equivalent and Pa must have 4
flag-orbits. Note that the non-isomorphism condition on the two kinds of facets of
Pa holds, for example, if their numbers of flags are distinct, that is, if the number
of flags of K is not exactly twice that of L .

Our main findings are summarized in the following theorem.

Theorem 5. Let P be a finite regular or chiral 4-polytope of type fK ;L g, where
K and L are polyhedra of type f4; qg and fq; rg, respectively. Suppose that the
edge graph of P is bipartite, that P and L are vertex-describable, and that any
two opposite vertices of a 2-face of P are not opposite vertices of another 2-face
of P . Then Pa is a finite alternating hereditary 4-polytope with facets isomorphic
to L or K a, and with vertex-figures isomorphic to the medial Me.L / of L .
Every edge of Pa is surrounded by four facets, two of each kind occurring in an
alternating fashion. Moreover, Pa has the following hereditary properties.

(a) If K and L are regular, then Pa is a regular-facetted hereditary polytope and
is either itself regular or a 2-orbit polytope of type 2f0;1;2g.

(b) If K and L are chiral, then Pa is a chiral-facetted hereditary polytope with 2
or 4 flag-orbits. If L and K a are not isomorphic (for example, this holds when
j� .L /j ¤ j� .K /j=2), then Pa has 4 flag-orbits.

In either case (a) or (b), the group of all color preserving automorphisms � c.P/

of P is a subgroup of � .Pa/ of index 1 or 2, with the same or twice the number of
flag-orbits as � .Pa/.

The construction summarized in the previous theorem is a rich source for
interesting examples of chiral-facetted hereditary 4-polytopes with 4 flag-orbits.
To begin with, suppose P is a finite chiral 4-polytope of type fK ;L g such that
K ;L are chiral and K a;L are non-isomorphic. There is a wealth of polytopes
of this kind. Now, if the edge graph of P is bipartite, P and L are vertex-
describable, and any two opposite vertices of a 2-face of P are not opposite
vertices of another 2-face of P , then Theorem 5 applies and yields a chiral-facetted
alternating 4-polytope Pa which is hereditary and has 4 flag-orbits. Thus we need
to assure that these three conditions hold; the requirement of a bipartite edge graph
seems to be the most severe condition among the three. In our examples described
below we verified these conditions with MAGMA.

For example, starting with the universal 4-polytope P D ff4; 4g1;3; f4; 4g1;3g,
which has 50 vertices, 50 facets, and an automorphism group of size 2000, our
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construction yields a hereditary 4-orbit polytope Pa which has two kinds of chiral
facets, namely f4; 4g1;3 and f4; 4g1;2. It can be seen, for example using MAGMA,
that the universal 4-polytope with the same facets but the enantiomorphic vertex-
figures fails the conditions of Theorem 5, in that there exist two opposite vertices of
a 2-face which are opposite vertices of another 2-face of that polytope.

6 Extensions of Hereditary Polytopes

In this section we briefly discuss extension problems for hereditary polytopes. We
begin with a generalization of the notion of a hereditary polytope.

Let 1 � j � n � 1. An n-polytope P is said to be j -face hereditary if for each
j -face F of P , the automorphism group � .F=F�1/ of the section F=F�1 can be
viewed as a subgroup of � .P/ (and hence of �F .P/). Thus P is j -face hereditary
if every automorphism of a j -face F extends to an automorphism of P . Note that
a hereditary polytope is .n � 1/-face hereditary, or facet hereditary.

A j -face hereditary polytope is strongly j -face hereditary if for each j -face F
of P , the automorphism group � .F=F�1/ is a subgroup of � .P/ acting trivially
on the co-face Fn=F ; then � .F=F�1/ is the stabilizer of a flag of Fn=F in �F .P/.
Thus, for a strongly j -face hereditary polytope, every automorphism of a j -face F
extends to a particularly well-behaved automorphism of P , namely one which fixes
every face of P in the co-face of F in P .

The (vertex) truncated tetrahedron is a 1-face (or edge-) hereditary polyhedron
which is not 2-face hereditary. The perpendicular bisectors of its edges are mirrors
of reflection, but no geometric symmetry or combinatorial automorphism can rotate
the vertices of a single face by one step. This example is a 3-orbit polyhedron.

Note that every 2-orbit n-polytope in a class 2I with f0; 1; : : : ; j � 1g � I is a
strongly j -face hereditary polytope with regular j -faces. This follows directly from
the definition of the class 2I . For example, a 2-orbit polytope of rank 4 and type
2f0;1g is 2-face hereditary; it may also be 3-face hereditary, but not a priori so.

Now the basic question arises whether or not each hereditary n-polytope occurs
as a facet of an .n�1/-face hereditary .nC1/-polytope; or more generally, whether
or not each j -face hereditary n-polytope occurs as a j -face of a k-face hereditary
.nC 1/-polytope, for any j � k � n.

In this context the following result is of interest.

Theorem 6. Let K be a finite j -face hereditary n-polytope for some j D
1; : : : ; n � 1, and let K be vertex-describable. Then K is the vertex-figure of a
vertex-transitive finite .j C 1/-face hereditary .nC 1/-polytope.

Proof. We employ the 2K construction described in Sect. 5.2. Since K is a vertex-
describable finite n-polytope, 2K is a vertex-transitive finite .nC 1/-polytope all of
whose vertex-figures are isomorphic to K . Every .j C1/-face of 2K is isomorphic
to a .j C 1/-polytope 2F , where F WD F=F�1 is the j -polytope given by a j -face
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F as K . Moreover, � .2K / Š C v
2 Ì � .K /, where v is the number of vertices of

K ; similarly, � .2F / Š C
v.F /
2 Ì� .F /, where v.F / is the number of vertices of F

(that is, the number of vertices of F in K ). In particular, the automorphism group
of any .j C 1/-face 2F of 2K is a subgroup of � .2K / if K is j -face hereditary,
since then � .F / is a subgroup of � .K /. Thus 2K is a .j C 1/-face hereditary
.nC 1/-polytope if K is a j -face hereditary n-polytope. ut

When j D n � 1 we have the following immediate consequence.

Corollary 2. Each finite vertex-describable hereditary n-polytope is the vertex-
figure of a vertex-transitive finite hereditary .nC 1/-polytope.

Theorem 6 and its proof are good sources for interesting examples of hereditary
polytopes. For instance, if K is the truncated tetrahedron, which is 1-face hereditary
but not 2-face hereditary, then 2K is a 2-face hereditary 4-polytope which is not
3-face hereditary. In fact, the facets of 2K are of two kinds, 3-cubes f4; 3g D 2f3g
and orientable regular maps f4; 6 j 4; 4g D 2f6g of genus 9 (see [16, p. 261]);
however, not all automorphisms of facets of the latter kind extend to automorphisms
of 2K (otherwise K would have to be 2-hereditary). Similar examples of arbitrary
higher ranks can be constructed by iterating the 2K construction. For example,
when K is the truncated tetrahedron, 22

K
is a 3-face, but not 4-face, hereditary

5-polytope.
Note that a further generalization of hereditary polytopes employs sections rather

than faces. For 0 � i < j � n � 1, an n-polytope P is said to be .i; j /-section
hereditary (resp. strongly .i; j /-section hereditary) if for each section G=F , with
F an i -face and G a j -face with F < G, the group � .G=F / of G=F is a subgroup
of � .P/ (resp. fixing, in addition, each face in both F=F�1 and Fn=G).

7 Conclusion

This paper established the basic theory of hereditary polytopes. One should pursue
these ideas further by considering some of the following problems, which have been
brought to light by our work.

As a first example, one could examine if there exist hereditary polytopes whose
i -faces are all themselves non-regular hereditary polytopes (i 
 3). A closely
related question asks if, given any hereditary polytope P , one can build another
hereditary polytope which has P as its facets? This questions is open even when
P is of rank 3.

In this paper we considered polytopes where the automorphism group of each
facet is a subgroup of the full automorphism group of the polytope. It would also be
of interest to study “chirally hereditary” polytopes, that is, those polytopes which
are not hereditary, but have the property that each rotational symmetry of a facet
extends to a global symmetry. For example, an interesting class of such objects is
the chiral polytopes with regular facets – which includes all chiral maps.
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Additionally, it would be of interest to investigate the idea of geometrically
hereditary polytopes. For example in E

3, can one classify the i -face transitive
geometrically hereditary polyhedra, that is, those with symmetry group inheriting
all isometries of their polygonal faces? The rhombic dodecahedron is an example
of a 2-face transitive geometrically hereditary polyhedron. (For a survey on related
questions for convex polyhedra see also [15].)
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Abstract We present a survey of results concerning the use of inductive
constructions to study the rigidity of frameworks. By inductive constructions
we mean simple graph moves which can be shown to preserve the rigidity of the
corresponding framework. We describe a number of cases in which characterisations
of rigidity were proved by inductive constructions. That is, by identifying recursive
operations that preserved rigidity and proving that these operations were sufficient
to generate all such frameworks. We also outline the use of inductive constructions
in some recent areas of particularly active interest, namely symmetric and periodic
frameworks, frameworks on surfaces, and body-bar frameworks. As the survey
progresses we describe the key open problems related to inductions.
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1 Introduction

Rigidity theory probes the question, given a geometric embedding of a graph,
when is there a continuous motion or deformation of the vertices into a non-
congruent embedding without breaking the connectivity of the graph or altering
the edge lengths? The geometric embeddings in question are typically bar-joint
frameworks: collections of flexible joints and stiff bars that are permitted to pass
through each other. The question of rigidity or flexibility is inherently dependent
on the ambient space: in 1 and 2-dimensional Euclidean space there are complete
combinatorial descriptions of the generic behaviour of a framework. In higher
dimensions, however, there is no such characterisation; indeed there remains a
number of challenging open problems.

In this survey we will concentrate on the most celebrated way of proving such a
combinatorial description: an inductive construction. By an inductive construction
we mean a constructive characterisation of a class of graphs or frameworks using
simple operations. It is perhaps the simplicity of inductive constructions that make
them so appealing, and helps to explain their widespread use. After all, the study
of rigidity theory centres around highly intuitive concepts: building large rigid
structures from smaller rigid components (e.g. building buildings from bricks).
Inductive constructions provide an abstract analogue of this building-up process.

There are two key ways in which inductive constructions have been used in
rigidity theory. First, to show that a certain list of operations is sufficient to generate
all graphs in a particular class (e.g. generic rigidity in the plane). Second, to show
that certain inductive moves preserve rigidity (e.g. vertex splitting). As a result,
inductive constructions have been used as proof techniques without necessarily
hoping for complete combinatorial characterisations (e.g. the proof of the Molecular
Conjecture). When a complete combinatorial description is obtained, inductive
characterisations typically do not make for fast algorithms. On the other hand, once
we have an inductive sequence for a rigid framework, we have an instant certificate
of its rigidity.

We begin the survey with a gentle introduction into rigidity and global rigidity
theory in 2-dimensions from an inductive perspective. From there we outline the key
open problems in extending inductive constructions to 3-dimensional frameworks
before describing some purely graph theoretical inductive constructions in Sect. 5.
The central topic of discussion in Sects. 6 and 7 is the rigidity of periodic and
symmetric frameworks, two types of frameworks with special geometric features.
Following that we discuss frameworks on surfaces and body-bar frameworks
(Sects. 8 and 9) before finishing the survey by briefly outlining, in Sect. 10, a number
of other avenues of rigidity theory which have benefitted from inductive techniques.
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2 Basics of Rigidity

A (bar-joint) framework is an ordered pair .G; p/ where G is a graph and
p W V ! R

d is a realisation of the vertices into R
d. We are interested in the typical

behaviour of frameworks. Thus we say that a framework is generic if the coordinates
of the framework points form an algebraically independent set (over Q). Two
frameworks on the same graph .G; p/ and .G; q/ are equivalent if the (Euclidean)
edge lengths in .G; p/ are the same as those in .G; q/ and are congruent if the
distance between pairs of points in .G; p/ are the same as those in .G; q/.

Definition 1. A framework .G; p/ is flexible in R
d if there is a continuous motion

x.t/ of the framework points such that .G; x.t// is equivalent to .G; p/ for all t but
is not congruent to .G; p/ for some t (where x.t/ ¤ p). .G; p/ is (continuously)
rigid if it is not flexible.

Understanding rigidity becomes more tractable after linearising the problem.
The rigidity matrix Rd.G; p/ is a sparse matrix where each row corresponds to
an edge, and with the appropriate ordering each d -tuple of columns corresponds
to the coordinates of a framework vertex. The entries in row ij are zero except in
the columns corresponding to i and j where the entries are pi � pj and pj � pi
respectively. This matrix is (up to scaling) the Jacobean derivative matrix of the
system of quadratic edge length equations. The (infinitesimal) rigidity matroid
Rd (for a generic framework .G; p/) is the linear matroid induced by linear
independence in the rows of the rigidity matrix Rd.G; p/.

Definition 2. Let p D .p1; : : : ; pjV j/. An infinitesimal flex u D .u1; : : : ; ujV j/ 2
R
d jV j is a vector satisfying .pi � pj /:.ui � uj / D 0 for all edges ij . A framework

is infinitesimally rigid if there are no non-trivial infinitesimal flexes.

There are examples of frameworks that are infinitesimally flexible but continu-
ously rigid, however all such examples occur for geometric reasons.

Theorem 1 (Asimow and Roth [1]). Let .G; p/ be a generic framework. Then
.G; p/ is (continuously) rigid if and only if it is infinitesimally rigid.

2.1 Constructing Frameworks in the Plane

Let us, for now, restrict attention to frameworks in the plane and consider the
following construction moves [16], see Fig. 1:

1. Add a 2-valent vertex with distinct neighbours,
2. Remove an edge xy and add a 3-valent vertex v adjacent to x; y and some z 2 V .

In the literature, operation 1 may be referred to as a Henneberg 1 move, a
0-extension or a vertex addition and operation 2 may be referred to as a Henneberg
2 move [14,36,50], a 1-extension [13,17,23] or edge splitting [41,45,55]. All have
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y yz z

Fig. 1 Vertex addition and
Edge splitting

Fig. 2 A Henneberg-Laman sequence for the triangular prism

their advantages: Henneberg move gives credit to the original source; i -extension
indicates the number of edges removed in the operation; vertex addition and edge
splitting are the most accessible to newcomers to the subject. Since this is a survey
we choose to use the last option from here on Fig. 2 shows 3 vertex additions
followed by a single edge split on K2 to produce the triangular prism.

Definition 3. A graph G D .V;E/ is .2; 3/-sparse if for every subgraph G0 D
.V 0; E 0/ with at least one edge, jE 0j � 2jV 0j � 3. G is .2; 3/-tight if G is
.2; 3/-sparse and jEj D 2jV j � 3.

Theorem 2 (Henneberg [16] and Laman [25]). A graph G is .2; 3/-tight if and
only if it can be derived recursively from K2 (the single edge) by vertex additions
and edge splitting.

An infinitesimally rigid graph G is called isostatic or minimally rigid if deleting
any edge will destroy its rigidity.

Theorem 3 (Laman’s theorem [25]). A graph G is generically minimally rigid in
the plane if and only if G is .2; 3/-tight.

Maxwell [30] proved that any generically minimally rigid graph must be
.2; 3/-tight. The harder sufficiency direction relies on Theorem 2. Given the
inductive construction, and since K2 clearly has a generically rigid realisation, it
remains only to show that the result of applying vertex addition and edge splitting
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to a generically minimally rigid graph is a generically minimally rigid graph. Vertex
addition is trivial; we have a rigidity matrix with rank equal to the number of rows
and genericness ensures the two rows and two columns, that we add, increases the
rank by two. Edge splitting is slightly more involved. Let G0 be formed from G by
edge splitting. Then a typical proof uses the fact that for a graph H D .V;E/ and
two maps q1; q2 W V ! R

2 with .H; q1/ generic, rankR2.H; q1/ 
 rankR2.H; q2/
see, for example, [54]. Using this, choose the new vertex in G0 to be on the
line through the (not yet) removed edge in .G0; p0/. The collinear triangle created
corresponds to a minimal set of linearly dependent rows in the rigidity matrix (i.e. a
circuit in the rigidity matroid). We can remove any edge from this triangle without
reducing the rank of R2.G C v; p0/. Since it is clear that rankR2.G; p/ C 2 D
rankR2.G C v; p0/, it follows that rankR2.G0; p0/ D rankR2.G; p/C 2.

3 Global Rigidity

There are a number of applications in which rigidity is not strong enough due to
the possibility of multiple distinct realisations with the same edge lengths. Global
rigidity corresponds exactly to there being a unique realisation, up to congruence,
with the given edge lengths. For a full survey on global rigidity see [18], we give
only a brief description of the use of inductive constructions for global rigidity.

Definition 4. A framework .G; p/ is globally rigid if for all equivalent choices of
q the frameworks .G; p/ and .G; q/ are congruent.

In characterising global rigidity we will also use the following strong form of
rigidity.

Definition 5. Let G D .V;E/. A framework .G; p/ is redundantly rigid if .G; p/
is rigid and for all e 2 E the framework .G � e; p/ is rigid.

Theorem 4 (Hendrickson [15]). Let .G; p/ be a generic globally rigid framework
in R

d . Then G is a complete graph on at most d C 1 vertices or G is .d C 1/-
connected and .G; p/ is redundantly rigid in R

d .

3.1 Circuits

By Laman’s theorem the minimal number of edges needed for a graph to be
generically globally rigid in the plane is 2jV j � 2. By Theorem 4 the graph must
also be redundantly rigid. This implies that if G is generically globally rigid with
2jV j�2 edges thenG is a .2; 3/-circuit; that is a graph with 2jV j�2 edges in which
every proper subgraph (with at least one edge) is .2; 3/-sparse.

The beauty of Theorem 2 is that for every .2; 3/-tight graph containing a vertex
of degree 3, there is always an inverse edge splitting operation resulting in a smaller
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Fig. 3 Two examples of .2; 3/-circuits. On the left the red vertex cannot be reduced as the result
will be a copy ofK4 with a degree 2 vertex adjoined. On the right there is no inverse edge splitting
move that results in a .2; 3/-circuit

.2; 3/-tight graph. This is not the case for .2; 3/-circuits; hence it is significantly
more challenging to prove an inductive construction. For example it is possible for
a degree 3 vertex v in a .2; 3/-circuit to have all neighbours x; y; z of degree 3. Here
any inverse edge splitting operation results in a graph with 2jV j � 2 edges which is
not a circuit since at least one of x; y; z has degree 2, see Fig. 3.

Theorem 5 (Berg and Jordán [2]). Let G be a 3-connected .2; 3/-circuit. Then
there is an inverse edge splitting move on some vertex of G that results in a smaller
.2; 3/-circuit.

Combining this with the well known 2-sum operation from matroid theory
allowed them to inductively characterise .2; 3/-circuits. The 2-sum operation glues
two .2; 3/-circuits together along an edge and deletes the common edge. The
inverse operation separates along a 2-vertex cutset. This operation has further been
examined from the rigidity perspective in [46].

Theorem 6 (Berg and Jordán [2]). A graph G is a .2; 3/-circuit if and only if
G can be generated from copies of K4 by applying edge splitting moves within
connected components and taking 2-sums of connected components.

While it was easy to see that the edge splitting operation preserves rigidity,
showing that it preserves global rigidity is more intricate. This was originally proved
by Connelly [8] as a corollary to his sufficient condition for global rigidity in terms
of the rank of the stress matrix. An alternative proof was later given by Jackson,
Jordán and Szabadka [21] during their analysis of globally linked vertices.

3.2 Characterising Global Rigidity

The characterisation of .2; 3/-circuits was extended by Jackson and Jordán to
M -connected graphs; these are graphs in which there is a .2; 3/-circuit containing
any pair of edges, i.e. the rigidity matroid is connected. They showed using ear
decompositions that all 3-connected,M -connected graphs could be generated from
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K4 by edge splitting operations and edge additions. Part of the subtlety here is that
they had to be able to alternate between the operations, see [17, Figure 6].

Theorem 7 (Hendrickson [15], Connelly [8], and Jackson and Jordán [17]). A
framework .G; p/ is generically globally rigid in the plane if and only if G is a
complete graph on at most 3 vertices orG is 3-connected and .G; p/ is redundantly
rigid.

4 Rigidity in 3-Space

As in the plane the necessity of combinatorial counts for minimal rigidity was
shown by Maxwell [30]. The appropriate graphs are the .3; 6/-tight graphs, see
Definition 6. However it is no longer true that these graphs are sufficient for
minimal rigidity; there exist .3; 6/-tight graphs which are generically flexible in
3-dimensions, see Fig. 4 for an example. Thus the outstanding open problem in
rigidity theory is to find a good combinatorial description of generic minimal rigidity
in 3-dimensions.

From an inductive construction perspective it is known that the analogues of
vertex addition and edge splitting preserve rigidity. In fact Tay and Whiteley [52]
proved that, in dimension d , the addition of a vertex of degree d (vertex addition) or
the subdivision of an edge combined with adding d � 1 additional edges incident to
the new vertex (edge splitting) preserves rigidity. However the average degree in a
.3; 6/-tight graph approaches 6. Thus we require new operations to deal with degree
5 vertices, see Fig. 5.

Fig. 4 The double banana; a
flexible circuit in the
3-dimensional rigidity
matroid
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Fig. 5 The X- and V -replacement operations in three dimensions



310 A. Nixon and E. Ross

u
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w

Fig. 6 An example due to Tibor Jordán showing X-replacement does not necessarily preserve
global rigidity in 3-dimensions ([38])

4.1 Degree 5 Operations

Conjecture 1 (Whiteley [55]). Let G be generically rigid in R
3 and let G0 be the

result of an X -replacement applied to G. Then G0 is generically rigid in R
3.

The conjecture is intuitively appealing since for the variant in the plane, similarly
to the edge splitting argument, it is easy to establish the preservation of rigidity. Let
G0 be formed from G by an X -replacement. Then for some pair of edges in G, say
uv and xy, G0 is formed from G � fuv; xyg by adding a single vertex z and edges
uz; vz; xz; yz. We choose a realisationp� ofGCz such that z lies on the unique point
defining the intersection of the lines through uv and xy (since we may assume G
was generic these lines are not parallel). Now in the rigidity matroid for .GC z; p�/
there are two collinear circuits, defined by the edge sets fuv; uz; vzg and fxy; xz; yzg
respectively. Thus the deletion of uv and xy does not reduce the rank of the rigidity
matrix. The statement follows since it is not hard to argue that rankR2.G C z; p�/
is 2 more than rankR2.G; p/.

However this argument easily breaks down in higher dimensions; generically
two lines do not intersect. Going against the conjecture are the following two
facts; the analogue of X -replacement in 4-dimensions fails and X -replacement in
3-dimensions does not preserve global rigidity.

The first fact is based on a general argument [13], which in particular shows that
K6;6 is dependent in the 4-dimensional rigidity matroid.

The second fact is illustrated in Fig. 6. The first graph is generically globally rigid
in 3-dimensions. This is easily seen since it can be formed from K5 by a sequence
of (3-dimensional) edge splitting moves and edge additions, both of which preserve
global rigidity. The second graph, obtained by an X -replacement on the first graph,
contains a 3-vertex-cutset fu; v;wg. Thus Theorem 4 implies it is not globally rigid.

We also mention that [13] gives a nice discussion of the problem including
several special cases where X -replacement is known to preserve rigidity.

It is quickly apparent that the V -replacement operation presents a new diffi-
culty; the earlier inductive operations were easily seen to preserve the relevant
vertex/edge counts on the graph and all subgraphs. It is not true, however, that
V -replacement always preserves the subgraph counts, we may make a bad choice
of vertex w. Tay and Whiteley [52] have made a double-V conjecture but this has



One Brick at a Time: A Survey of Inductive Constructions in Rigidity Theory 311

. . . . . .

v

u1
u2 u3

um u1
u2 u3

um

v1 v2

Fig. 7 The 3-dimensional vertex splitting operation

an immediate problem from an algorithmic perspective. The conjecture implies an
inductive construction of minimally rigid graphs in 3-space. Using this inductive
construction to check the rigidity of a given framework would require recording
both graphs each time the V -replacement is applied. Thus for worst case graphs the
generating sequence of inductive operations requires remembering exponentially
many different graphs.

4.2 Vertex Splitting

Let v 2 V have N.v/ D fu1; : : : ; umg. A vertex splitting operation (in
3-dimensions) on v removes v and its incident edges, adds vertices v0; v1 and
edges u1v0; u2v0; u1v1; u2v1; v0v1 and re-arranges the edges u3v; : : : ; umv in some
way into edges uivj for i 2 f3; : : : ; mg and j 2 f0; 1g. See Fig. 7 and also [53]
where the operation was introduced for d -dimensional frameworks.

Theorem 8 (Whiteley [53]). Let G have a generically minimally rigid realisation
in R

d and let G0 be formed from G by a vertex splitting operation. Then G0 has a
generically minimally rigid realisation in R

d .

For a globally rigid graph in the plane it can be derived from Theorem 7, see
[22], that applying a vertex splitting operation, in which each new vertex is at least
3-valent, results in a globally rigid graph.

Conjecture 2 (Cheung and Whiteley [7]). Let G be globally rigid in R
d and let G0

be formed from G by a vertex splitting operation such that each new vertex is at
least d C 1-valent. Then G0 is globally rigid in R

d .

Vertex splitting has also been used to prove a variety of results for restricted
classes of three-dimensional frameworks. In particular, Finbow and Whiteley
recently used vertex splitting to prove that block and hole frameworks are iso-
static [11]. A block and hole framework is a triangulated sphere (known to be
isostatic by early results of Cauchy and Dehn) where some edges have been removed
to create holes, while others added to create isostatic subframeworks called blocks,
all the while maintaining the general jEj D 3jV j � 6 count. An example of such
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a framework is a geodesic dome. The base of the dome can be considered as a
block. It becomes possible to remove some edges from the rest of the dome, perhaps
to create windows and doors. The result of Finbow and Whiteley will identify
which edges may be removed. The proof of this result relies on vertex splitting
in a central way.

5 Inductive Constructions for .k; l/-Tight Graphs

Up until now it has been obvious that we concentrated on simple graphs i.e. graphs
with no loops or multiple edges. From here on graphs will allow loops or multiple
edges and we will specify that graphs which do not are simple.

Definition 6. Let k; l 2 N and l < 2k. A graph G D .V;E/ is .k; l/-sparse if for
every subgraph G0 D .V 0; E 0/, with jV 0j 
 k, jE 0j � kjV 0j � l . G is .k; l/-tight if
G is .k; l/-sparse and jEj D kjV j � l .

We choose to restrict to the range l < 2k since in this range .k; l/-tight graphs are
the bases of matroids [54] and [26]. Observe that .3; 6/-tight graphs are outside this
range; indeed they do not form the bases of a matroid. Since we now allow multiple
edges there are more possibilities for vertex additions and edge splitting operations.
Throughout the rest of the paper, when we consider graphs these operations will be
understood to allow the graph variants, see Figs. 9 and 10.

In [12], Frank and Szegő prove inductive characterisations of graphs which
are nearly k-tree connected, which naturally extend the combinatorial elements of
Henneberg’s original result.

Definition 7. A graph G is called k-tree connected if it contains k edge-disjoint
spanning trees. A graph is nearly k-tree connected if it is not k-tree connected, but
the addition of any edge to G results in a k-tree connected graph.

Note that Theorem 2 can be rephrased as follows: A graph G is nearly 2-tree
connected if and only if it can be constructed from a single edge by a sequence of
vertex additions and edge splitting operations.

Theorem 9 (Frank and Szegő [12]). A graph G is nearly k-tree-connected if and
only if G can be constructed from the graph consisting of two vertices and k � 1
parallel edges by applying the following operations:

1. Add a new vertex z and k new edges ending at z so that there are no k parallel
edges,

2. Choose a subset F of i existing edges (1 � i � k � 1), pinch the elements of F
with a new vertex z, and add k � i new edges connecting z with other vertices so
that there are no k parallel edges in the resulting graph.

We recall a result of Nash-Williams [31], which states that a graphG D .V;E/ is
the union of k edge-disjoint forests if and only if jE 0j � kjV 0j � k for all nonempty
subgraphs G0 D .V 0; E 0/ � G. Continuing the theme of extending Henneberg’s



One Brick at a Time: A Survey of Inductive Constructions in Rigidity Theory 313

theorem, by this result of Nash-Williams, Frank and Szegő show that a graph G is
.k; k C 1/-tight if and only if it is nearly k-tree connected. We point the interested
reader to a book of Recski [39] where a number of connections between minimally
rigid graphs and tree decompositions are proved.

Fekete and Szegő have established a Henneberg-type characterisation theorem
of .k; l/-sparse graphs for the range 0 � l � k. The following definition extends
vertex addition and edge splitting to arbitrary dimension.

Definition 8. Let G be a graph, and let 0 � j � m � k. Choose j edges of G
and pinch into a new vertex z. Put m � j loops on z, and link it with other existing
vertices of G by k � m new edges. This move is called an edge pinch, and will be
denotedK.k;m; j /.

The graph on a single vertex with l loops will be denoted Pl . The main result of
[10] is the following.

Theorem 10 (Fekete and Szegő [10]). Let G D .V;E/ be a graph and let 1 �
l � k. Then G is a .k; l/-tight graph if and only if G can be constructed from Pk�l
with operationsK.k;m; j / where j � m � k � 1 andm � j � k � l .
G is a .k; 0/-tight graph if and only if G can be constructed from Pk with

operationsK.k;m; j /, where j � m � k and m� j � k.

This result has subsequently been applied to periodic body-bar frameworks [42],
see Sect. 9.2. Inductive moves for .k; l/-tight graphs have also been considered
using an algorithmic perspective in [26].

6 Periodic Frameworks

Over the past decade, the topic of periodic frameworks has witnessed a surge of
interest in the rigidity theory community [4, 5, 29, 40, 41], in part due to questions
raised about the structural properties of zeolites, a type of crystalline material with
numerous practical applications. Inductive constructions have been used to provide
combinatorial characterisations of certain restricted classes of periodic frameworks,
which we describe below.

A periodic framework can be described by a locally finite infinite graph QG,
together with a periodic position of its vertices Qp in R

d such that the resulting
(infinite) framework is invariant under a symmetry group � , which contains as
a subgroup the d -dimensional integer lattice Z

d [5]. A periodic orbit framework
.hG;mi; p/ consists of a periodic orbit graph hG;mi together with a position of
its vertices onto the “flat torus” T d D R

d=Zd . The periodic orbit graph is a finite
graphG which is the quotient of QG under the action of � , together with a labeling of
the directed edges ofG,m W E.G/C ! Z

d . This periodic orbit framework provides
a “recipe” for the larger periodic framework, but does so with a finite graph G,
which we can then consider using inductive constructions (Fig. 8). In addition, it is
possible to define a generic position of the framework vertices on the torus T d .



314 A. Nixon and E. Ross

1

2

3

4 (1,0)

(0,1)

Fig. 8 A periodic orbit graph hG;mi on the left, where m W E ! Z
2, and the corresponding

periodic framework. Any labeled edge in hG;mi, on the right, corresponds to an edge in the
periodic framework which crosses the boundary of the “unit cell” (grey box)
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Fig. 9 Periodic vertex addition. The large circular region represents a generically rigid periodic
orbit graph

6.1 Fixed Torus

The torus T 2 in 2 dimensions can be seen as being generated by two lengths and
an angle between then. When we do not allow the lengths or angle to change, we
call the resulting structure the fixed torus, and denote it T 2

0 . In [41], a Laman-type
characterisation of graphs which are minimally rigid on the fixed torus is obtained.
The proof depended on the development of inductive constructions on periodic orbit
graphs hG;mi. These moves require an additional layer of complexity over the usual
vertex addition and edge splitting operations. The directed, labeled edges of hG;mi
are recorded by e D fv1; v2Imeg. We have the following moves:

Definition 9. Let hG;mi D .V hG;mi; EhG;mi/ be a periodic orbit graph hG;mi,
a periodic vertex addition is the addition of a single new vertex v0 to V hG;mi,
and the edges fv0; vi1 Im01g and fv0; vi2 Im02g to EhG;mi, such that m01 ¤ m02

whenever vi1 D vi2 (see Fig. 9).
Let e D fvi1 ; vi2 Imeg be an edge of hG;mi. A periodic edge split hG0; m0i of

hG;mi results in a graph with vertex set V [ fv0g and edge set consisting of all of
the edges of EhG;mi except e, together with the edges

fv0; vi1 I .0; 0/g; fv0; vi2 Imeg; fv0; vi3 Im03g

where vi1 ¤ vi3 , and m03 ¤ me if vi2 D vi3 (see Fig. 10).
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Fig. 10 Periodic edge split. The net gain on the edge connecting vertices 1 and 2 is preserved

Together the periodic vertex addition and edge split characterise generic rigidity
on the fixed two-dimensional torus T 2

0 . Note that the single vertex graph hG;mi is
generically rigid on T 2

0 .

Theorem 11 (Ross [41]). A periodic orbit framework .hG;mi; p/ on T 2
0 is gener-

ically minimally rigid if and only if it can be constructed from a single vertex on T 2
0

by a sequence of periodic vertex additions and edge splits.

6.2 Partially Variable Torus

In [41], a characterisation was established of the generic rigidity of periodic
frameworks on a partially variable torus (allowing one degree of flexibility).
Recently, the authors of the present paper have outlined an inductive proof of this
result [34].

Theorem 12 (Nixon and Ross [34]). A framework .hG;mi; p/ is generically
minimally rigid on the partially variable torus (with one degree of freedom) if and
only if it can be constructed from a single loop by a sequence of gain-preserving
Henneberg operations.

The operations referred to in Theorem 12 contain the periodic vertex addition
and edge split operations described above. However, we also require one additional
move, which is only used in a particular special case. It is an infinite but control-
lable class of graphs for which vertex addition and edge splitting is insufficient.
In addition, while all the generically rigid graphs on the partially variable torus are
.2; 1/-tight, in fact the class of generically rigid graphs is strictly smaller. It is the
set of graphs which can be decomposed into an edge-disjoint spanning tree and a
connected spanning map-graph (a connected graph contained exactly one cycle).
This hints at the subtlety involved when moving from graphs on the fixed torus to
graphs on a partially variable torus, and suggests some challenges which may exist
in trying to inductively characterise graphs on the fully flexible torus.
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6.3 Fully Flexible Torus

Generic minimal rigidity on the fully variable torus has been completely charac-
terised by Malestein and Theran [29]. Their proof is non-inductive, however, and
there remain significant challenges to providing such a constructive characterisation,
since the underlying orbit graph may have minimum degree 4. As we have seen the
X - and V -replacement moves, are known to be problematic in other settings [55].

It may be possible to define somewhat weaker versions of inductive constructions
in these settings, by relaxing our focus on “gain-preservation”. That is, we can
perform vertex addition and edge splitting on the orbit graph, but allow relabeling of
the edges. This is, in some ways, a less satisfying if easier approach, as the moves
no longer correspond to the “classical” inductive moves on the (infinite) periodic
framework.

7 Symmetric Frameworks

A second class of frameworks which have experienced increased attention over the
past decade is symmetric frameworks [27,40,44,45], and there are connections with
the study of protein structure. Like periodic frameworks, symmetric frameworks are
frameworks which are invariant under the action of certain symmetry groups, in this
case, finite point groups.

Inductive constructions played a key role in Schulze’s work on symmetric
frameworks [45]. A symmetric framework is a finite framework .G; p/ which
is invariant under some symmetric point group. In 2-dimensions, this could be
for example C2, half-turn symmetry or CS , mirror symmetry. Schulze used
symmetrized versions of vertex addition and edge splitting to prove Henneberg
and Laman-type results for several classes of symmetric frameworks in R

2, namely
C2;C3, and Cs . Furthermore, these results are stronger than the analogous results
in the periodic setting, in that they are concerned with frameworks which are either
forced to be symmetric, or frameworks which are simply incidentally symmetric.
That is, the symmetry-adapted moves preserve the rank of both the (symmetry) orbit
matrix, and of the original rigidity matrix of any given symmetric framework.

As an example, we consider incidental symmetry for frameworks with three-fold
rotational symmetry (the group C3).

Theorem 13 (Schulze [45]). A C3-symmetric framework .G; p/ is generically
(symmetric)-isostatic if and only if it can be generated through three inductive
moves, a three-fold vertex addition (one vertex is added symmetrically to each of
the three orbits), a three-fold edge split (one edge is “split” symmetrically in each
of the three orbits) and the �-move pictured in Fig. 11.
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Fig. 11 One of the three C3-symmetric edge splitting operations, where � represents rotation
through 2�=3. Henneberg proved that the natural generalization of this move preserves rigidity
for arbitrary n-gons [16]. It should be noted, however, that Schulze proved the C3 move for the
non-generic “special geometric” position shown above, where y D �.x/; z D �2.x/, and his
arguments could easily be extended to cover non-generic n-gons (under Cn symmetry) as well

Schulze proves analogous results for C2 and Cs [44]. In the case of Cs (mirror
symmetry), X -replacement is also required to handle certain special cases. Schulze
also proves tree-covering results for these groups.

We remark that it would be possible to rework these results of Schulze using the
language of gain graphs (graphs whose edges are labeled by group elements), as for
periodic frameworks. In that scenario, we would capture the symmetric graph using
an orbit graph whose edges were labeled with elements of the symmetry group (e.g.
C3 etc.). The symmetric inductive moves could then be defined on this symmetric
orbit graph. This is exactly the approach taken in a very recent work of Jordán,
Kaszanitsky and Tanigawa [23] on forced-symmetric rigidity for the groups Cs (the
reflection group), and the dihedral groups Dh, where h is odd. We mention here
their results for Dh.

The authors define a Dh sparsity type of the gain graphs .G; �/, where �
is a labeling of the edges by elements of the group Dh. They then prove that
all Dh-tight graphs can be constructed from the disjoint union of a few ‘basic’
graphs by a sequence of Henneberg-type moves on the underlying gain graph.
In particular, they use vertex addition, edge splitting andX -replacements; including
loop vertex addition (adding a ‘lolipop’), and edge splitting plus adding a loop on
the new vertex. This leads to the following combinatorial characterisation of rigid
frameworks with Dh symmetry (A similar result is established for Cs):

Theorem 14 (Jordán, Kaszanitsky and Tanigawa [23]). .G; �/, � W E.G/ !
Dh, where h is odd, is the gain graph of a rigid framework withDh symmetry if and
only if .G; �/ has a Dh-tight subgraph.

Note that the work of Schulze provides combinatorial characterisations for C2,
C3, and Cs only, but his results are for both incidental and forced symmetry. On
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the other hand, Jordán, Kaszanitsky and Tanigawa’s results are for forced symmetry
only but cover any cyclic group and odd order dihedral groups. Thus, there are
a number of outstanding questions about symmetric frameworks, including the
characterisation of the rigidity of frameworks with forced dihedral Dh (h even)
symmetry, and the characterisation of incidental rigidity for the dihedral groups.

We remark that for the cyclic groups Cn and Cs (rotations and reflections) the
characterisations of forced rigidity can also be obtained using direction networks
and linear representability [28].

8 Frameworks on Surfaces

Inductive constructions have also played a big role in recent work on frameworks
supported on surfaces. Here characterisations of minimal rigidity require us to
remain within the class of simple graphs at each step of the induction. Hence the
results of Fekete and Szegő, allowing multiple edges and loops, are not sufficient.
For example a .2; 2/-tight graph may contain an arbitrarily large number of copies
ofK4 and there is no inverse edge splitting operation on a degree 3 vertex in a copy
of K4 that preserves simplicity.

This motivates the vertex-to-K4 move, in which we remove a vertex v (of any
degree) and all incident edges vx1; : : : ; vxn and insert a copy ofK4 along with edges
x1y1; : : : ; xnyn where each yi 2 V.K4/, see Fig. 12.

Theorem 15 (Nixon and Owen [33]). A simple graph G is .2; 2/-tight if and only
if G can be generated from K4 by vertex addition, edge splitting, vertex-to-K4 and
(2-dimensional) vertex splitting operations.

Similarly when dealing with .2; 1/-tight graphs, all low degree vertices may be
contained in copies of K5 � e (the graph formed from K5 by deleting any single
edge). For these graphs, vertex-to-K4 and vertex splitting moves are not sufficient
so we introduce the edge joining move. This is the joining of two .2; 1/-tight graphs
by a single edge. In the following theoremK4tK4 is the unique graph formed from
two copies of K4 intersecting in a single edge.

Theorem 16 (Nixon and Owen [33]). A simple graph G is .2; 1/-tight if and only
if G can be generated from K5 � e or K4 t K4 by vertex addition, edge splitting,
vertex-to-K4, vertex splitting and edge joining operations.

Fig. 12 An example of the
vertex-to-K4 operation
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The first of these results has led to an analogue of Laman’s theorem for an
infinite circular cylinder and the second to analogues for surfaces admitting a single
rotational isometry (such as the cone and torus).

Theorem 17 (Nixon, Owen and Power [36]). LetG D .V;E/ with jV j 
 4. Then
the framework .G; p/ is generically minimally rigid on a cylinder if and only if G
is simple and .2; 2/-tight.

Theorem 18 (Nixon, Owen and Power [35]). LetG D .V;E/ with jV j 
 5. Then
the framework .G; p/ is generically minimally rigid on a surface of revolution if
and only if G is simple and .2; 1/-tight.

The next extension would be to frameworks on a surface admitting no ambient
isometries (such as an ellipsoid). However, this is known to be false, [36].

The insistence on simplicity also makes the characterisation of .k; l/-circuits
more challenging. Similarly to Berg and Jordán’s theorem the following inductive
result is a step towards characterising global rigidity on the cylinder. The 1-, 2- and
3-join operations, defined in [32], are similar in spirit to the 2-sum operation used
in Theorem 6.

Theorem 19 (Nixon [32]). A simple graphG is a .2; 2/-circuit if and only ifG can
be generated from copies of K5 � e and K4 tK4 by applying edge splitting within
connected components and taking 1-, 2- and 3-joins of connected components.

It is an open problem to extend this characterisation to give an inductive
construction for generically globally rigid frameworks on a cylinder.

9 Body-Bar Frameworks

Body-bar frameworks are a special class of frameworks where there is a more
complete understanding in arbitrary dimension. Roughly speaking, a body-bar
framework is a set of bodies (each spanning an affine space of dimension at least
d � 1), which are linked together by stiff bars.

Theorem 20 (Tay [49]). Let G be a graph. Then .G; p/ is generically minimally
rigid as a body-bar framework in R

d if and only if G is .D;D/-tight, where D D
�
dC1
2

�

is the dimension of the Euclidean group.

Tay subsequently proved an inductive characterisation of body-bar frameworks.

Theorem 21 (Tay [50]). A graphG is .D;D/-tight if and only if G can be formed
from K1 by Henneberg operations.

The Henneberg operations referred to in Theorem 21 are essentially the loopless
versions of the edge-pinches of Fekete and Szegő (see Sect. 5).
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Recently, Katoh and Tanigawa proved the Molecular Conjecture, a longstanding
open question due to Tay and Whiteley, which is concerned with body-bar frame-
works which are geometrically special:

Theorem 22 (Katoh and Tanigawa [24]). Let G D .V;E/ be a graph. Then, G
can be realised as an infinitesimally rigid body-and-hinge framework in R

d if and
only if G can be realised as an infinitesimally rigid panel-and-hinge framework
in R

d .

The settling of this conjecture is of particular significance to the materials science
community, who use rigidity analysis for the modeling of molecular compounds.
The proof of this result is quite involved, so we will not include many details here.
However, one of the ingredients in the proof is inductive constructions. In particular,
the authors use a type of splitting off operation, which removes a two-valent vertex
v, and then inserts a new edge between the pair of vertices formerly adjacent to v.
A second type of induction used is a contraction operation, which contracts a proper
rigid subgraph to a vertex.

Along the way Katoh and Tanigawa also obtain a Henneberg-type characterisa-
tion of minimally rigid body-and-hinge graphs. In particular, they show that for any
minimally rigid body-and-hinge framework, there is a sequence of graphs ending
with the two vertex, two edge graph, where each graph in the sequence is obtained
from the previous graph by a splitting off operation or a contraction operation (see
Theorem 5.9, [24]).

9.1 Global Rigidity

Inductive constructions have also played a role in the proof of the following result
concerning generic global rigidity of body-bar frameworks:

Theorem 23 (Connelly, Jordán and Whiteley [9]). A body-bar framework is
generically globally rigid in R

d if and only if it is generically redundantly rigid
in R

d .

In particular, the authors’ proof used Theorem 9 to produce an inductive construc-
tion of redundantly rigid body-bar graphs. One of the interesting elements of this
proof is that the construction sequence specified by Theorem 9 may involve loops.
However, no (globally) rigid finite framework will involve loops. The proof of
Theorem 23 involved allowing for the possibility of loops, which would later be
eliminated. In this way, the induction used here stepped outside of the class of
frameworks under study, but eventually achieved the desired result.
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9.2 Periodic Body-Bar Frameworks

It is possible to define periodic body-bar frameworks in much the same way as
periodic bar-joint frameworks (see Sect. 6). A recent result of Ross characterises
the generic rigidity of periodic body-bar frameworks on a three dimensional fixed
torus [42]. It is based on the following sparsity condition which depends on the
dimension of the gain space GC : the vector space generated by the net gains on all
of the cycles of a particular edge set Y .

Theorem 24 (Ross [42]). hH;mi is a periodic orbit graph corresponding to a
generically minimally rigid body-bar periodic framework in R

3 if and only if
jE.H/j D 6jV.H/j � 3 and for all non-empty subsets Y 	 E.H/ of edges

jY j � 6jV.Y /j � 6C
jGC .Y /jX

iD1
.3 � i/:

The proof relies on a careful modification of the edge-pinching results of Fekete
and Szegő [10] to include labels on the edges of the graphs. It is interesting to note
that the results of Fekete and Szegő cover the class of minimally rigid frameworks
on the fixed torus, but will not assist us with the flexible torus. That is, for minimal
rigidity on the fixed torus, we are considering

��
dC1
2

�

; d
�

-tight graphs, whereas for

minimal rigidity on the flexible torus, we are considering
��
dC1
2

�

;��d
2

��

-tight graphs,
which are not in the range covered by existing inductive results. Periodic body-bar
frameworks with a flexible lattice have recently been considered in [6] using non-
inductive methods.

10 Further Inductive Problems

Aside from the conjectures already discussed, a number of other problems, espe-
cially in 3-dimensions, remain open, see [13, 51, 54].

There are a number of connections between two-dimensional minimally rigid
frameworks and the topic of pseudo-triangulations. A pseudo-triangulation is a
tiling of a planar region into psuedo-triangles: simple polygons in the plane with
exactly three convex vertices [43]. It is called a pointed pseudo-triangulation if
every vertex is incident to an angle larger than � . Streinu proved that the underlying
graph of a pointed pseudo-triangulation of a point set is minimally rigid [48]. As a
converse, there is the following result:

Theorem 25 (Haas et al. [14]). Every planar infinitesimally rigid graph can be
embedded as a pseudo-triangulation.
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The proof uses vertex addition and edge splitting. Pseudo-triangulations are the
topic of an extensive survey article [43], and further details on the inductive elements
of the proof can be found there.

In [37] Pilaud and Santos consider an interesting application of rigidity in even
dimensions to multitriangulations. In particular they use Theorem 8 to show that
every 2-triangulation is generically minimally rigid in 4-dimensions and conjecture
the analogue for k-triangulations in 2k-dimensions.

If a framework is not globally rigid then the number of equivalent realisations
of the graph is not unique. For d 
 2 this is not a generic property, nevertheless
bounds on the number of realisations were established by Borcea and Streinu [3]
and recent work of Jackson and Owen [20], motivated by applications to Computer
Aided Design (CAD), considering the number of complex realisations made use of
vertex addition and edge splitting.

Servatius and Whiteley [47], again motivated by CAD, used the Henneberg
operations to understand the rigidity of direction-length frameworks. Jackson and
Jordán [19] established the analogue of Theorem 6 for direction-length frameworks
however a characterisation of globally rigid direction-length frameworks remains an
open problem.
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Abstract The paper surveys highlights of the ongoing program to classify discrete
polyhedral structures in Euclidean 3-space by distinguished transitivity properties of
their symmetry groups, focussing in particular on various aspects of the classifica-
tion of regular polygonal complexes, chiral polyhedra, and more generally, two-orbit
polyhedra.
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1 Introduction

The study of highly symmetric discrete structures in ordinary Euclidean 3-space E3

has a long and fascinating history tracing back to the early days of geometry. With
the passage of time, various notions of discrete structures with properties similar to
those of convex polyhedra have attracted attention and have brought to light new
exciting figures intimately related to finite or infinite groups of isometries.
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A radically new “skeletal” approach to polyhedra in E
3 was pioneered by

Grünbaum [16] in the 1970s, building on Coxeter’s work [5, 6]. A polyhedron is
viewed as a finite or infinite periodic geometric (edge) graph in space equipped
with additional structure imposed by the faces, and its symmetry is measured by
transitivity properties of its geometric symmetry group. For example, the geometric
graph of the cube carries four Petrie polygons, that is, polygons for which any two,
but no three, consecutive edges belong to the same square of the cube. The geometric
graph of the cube with its four hexagonal Petrie polygons constitutes one of the new
regular polyhedra introduced by Grünbaum. Throughout this paper we shall adopt
this notion of polyhedron.

Since the mid 1970s, there has been a lot of activity in this area, beginning
with the full enumeration of the “new” regular polyhedra by Grünbaum [16]
and Dress [13, 14] by around 1980 (see also McMullen-Schulte [24, Ch. 7E] or
[23] for a faster method for arriving at the complete list); moving on to the full
enumeration of the chiral polyhedra in [35, 36] by around 2005; and continuing
with the enumeration of certain classes of regular polyhedra and polytopes in higher-
dimensional spaces by McMullen [21, 22] (see also [1, 2]).

While all these structures have the essential characteristics of polyhedra and
polytopes, the more general class of discrete “polygonal complexes” in 3-space
is a hybrid of polyhedra and incidence geometries (see [3]). Every edge of a
polyhedron belongs to precisely two edges, whereas an edge of a polygonal complex
is surrounded by any number at least two. For example, the geometric edge graph of
the cube endowed with the six squares and four Petrie polygons as faces constitutes a
polygonal complex where every edge belongs to precisely four faces. In very recent
joint work, we obtained a complete enumeration of the regular polygonal complexes
in E

3 (see [29, 30]). These are periodic structures with crystallographic symmetry
groups exhibiting interesting geometric, combinatorial, and algebraic properties.

The purpose of this paper is to exhibit some of the highlights of the ongoing
program to classify discrete structures built from vertices, edges and faces in
Euclidean 3-space according to transitivity properties of their symmetry groups.
We center our attention on the recent classification of regular polygonal complexes,
chiral polyhedra, and more generally, two-orbit polyhedra.

In Sects. 2 and 3, we review basic terminology about polygonal complexes and
describe structure results for the symmetry group of regular polygonal complexes.
This is followed, in Sect. 4, by a brief description of the complete enumeration
of regular polyhedra, seen from the perspective of regular polygonal complexes.
Then Sects. 5 and 6 give an account of the regular polygonal complexes which
are not polyhedra. In the last two sections we study certain kinds of two-orbit
polyhedra in E

3, beginning with a review of the enumeration of chiral polyhedra.
Finally, Sect. 8 briefly summarizes the recent classification of regular polyhedra of
index 2, obtained in Cutler [8] and [9]; these form a distinguished class of two-orbit
polyhedra in E

3.
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2 Some Terminology

Informally, a polygonal complex is a discrete structure in E
3 consisting of vertices

(points), joined by edges (line segments) assembled in careful fashion into faces
(polygons, allowed to be finite or infinite), with at least two faces on each edge. Our
concepts of face (polygon) and polyhedron generalize those of convex polygon and
convex polyhedron.

For our purposes, a finite polygon .v1; v2; : : : ; vn/ in E
3 is a figure consisting

of n distinct points v1; : : : ; vn, together with the line segments .vi ; viC1/, for i D
1; : : : ; n� 1, and .vn; v1/. Similarly, an infinite polygon is a figure made up from an
infinite sequence of distinct points .: : : ; v�2; v�1; v0; v1; v2; : : : /, and line segments
.vi ; viC1/ for each i , such that each compact subset in E

3 meets only finitely many
line segments. In either case the points and line segments are referred to as the
vertices and edges of the polygon, respectively.

By a regular polygon we mean a finite or infinite polygon such that its geometric
symmetry group, restricted to the affine hull of the vertices, is a finite or infinite
dihedral group acting transitively on the set of incident vertex-edge pairs, called
flags. This definition covers not only the traditional (planar) convex regular polygons
but also permits star-polygons, skew polygons, zigzags, or helices as regular
polygons. A star polygon has the same vertices as a convex regular polygon; its
edges connect vertices of the convex regular polygon that are a fixed number of
steps apart on the boundary. A skew polygon lives properly in E

3 and can be
obtained from a planar finite (convex or star-) polygon by raising every other vertex
perpendicularly by the same amount (thus doubly covering the original polygon if
the number of vertices was odd); the vertex set then is contained in two parallel
planes and every edge goes from a vertex in one plane to a vertex in the other
plane. A linear apeirogon is an infinite polygon obtained by tessellating a line with
line segments (usually of the same size). Linear apeirogons will not occur as faces
of the geometric objects described in this paper, since no non-trivial connected
structure can be assembled only from linear building blocks. A zigzag is a planar
infinite polygon obtained from a linear apeirogon in a similar way as a skew polygon
is obtained from a planar finite polygon; its vertices lie on two parallel lines, and its
edges connect vertices on different lines. Finally, a helix is an infinite non-planar
polygon and it can be thought as a spring rising above a finite planar (convex or
star) polygon; more precisely, the orthogonal projection onto its axis gives a linear
apeirogon, and the orthogonal projection along its axis gives a finite planar (convex
or star-) polygon.

A polygonal complex, or simply complex, K in E
3 consists of a set V of points,

called vertices, a set E of line segments, called edges, and a set F of polygons,
called faces, such that the following properties are satisfied. The graph defined by
V and E , called the edge graph of K , is connected. Moreover, the vertex-figure of
K at each vertex of K is connected. Here the vertex-figure of K at a vertex v is
the graph, possibly with multiple edges, whose vertices are the neighbors of v in the
edge graph of K and whose edges are the line segments .u;w/, where .u; v/ and
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.v;w/ are edges of a common face of K . (Note that this is a small change over [29,
30], where a complex was required to have exactly r faces on each edge, for some
fixed number r > 2. However, for regular complexes with at least two faces meeting
at an edge the two definitions are equivalent.) All polygonal complexes studied in
this paper have at least two faces on each edge. Finally, K is discrete, in the sense
that each compact subset of E meets only finitely many faces of K . A complex
with exactly two faces on each edge (that is, r D 2) is also called a polyhedron.
Note that this definition extends the notion of convex polyhedron, where the faces
are convex (finite and planar) and the polyhedron itself is also finite. Polyhedra
(finite or infinite) with high symmetry properties have been extensively studied in
[24, Ch. 7E] and [1, 2, 5, 6, 16–18, 23, 26, 31, 35, 36]. The edge graphs of highly
symmetric polyhedra frequently occur as nets in crystal chemistry [12, 27, 28, 37].

A polygonal complex K is said to be regular if its geometric symmetry group
G WD G.K / is transitive on the incident vertex-edge-face triples, called flags. The
faces of a regular complex are necessarily regular polygons. The vertex-figures are
finite (flag-transitive) graphs with single or double edges. (A flag of a graph is just
an incident vertex-edge pair.) Double edges occur precisely when any two adjacent
edges of a face of K are adjacent edges of another (then uniquely determined)
face of K . If K is not a polyhedron, then G is infinite and affinely irreducible,
that is, G is a standard crystallographic group (see [29]). In particular, there are
no finite regular complexes other than polyhedra. The Platonic solids are the most
natural examples of regular polyhedra, and the 2-skeleton of the tessellation of E3

by cubes is the most natural example of a regular polygonal complex which is not a
polyhedron.

Regular polygonal complexes in E
3 can be viewed as 3-dimensional (discrete

faithful) Euclidean realizations of regular incidence complexes of rank 3 with
polygonal faces (see [11, 33]). Our description of the symmetry groups will exploit
this fact. In particular, the regular polyhedra in E

3 are precisely the 3-dimensional
discrete faithful Euclidean realizations of abstract regular polyhedra (abstract
regular 3-polytopes); for more details, see [24, Ch. 7E] and [25].

Every regular polyhedron has the property that all its faces have the same number
p of edges, and all its vertices have the same degree q. Polyhedra with this property
are called equivelar, and their Schläfli type (or Schläfli symbol) is defined to be
fp; qg. When the faces of an equivelar polyhedron are zigzags or helices, the first
entry p is 1; however, since we only consider discrete structures, q is always
finite. Similarly, in the Schläfli symbol fp; q; rg of a regular rank 4 polytope (a
combinatorial structure constructed from vertices, edges, polygons and polyhedra)
the first two entries give the Schläfli type fp; qg of any of its rank 3 faces, while
the last entry r is the number of rank 3 faces meeting around each edge (so that the
vertex-figures have Schläfli type fq; rg).

In later sections we also meet various kinds of less symmetric polygonal
complexes (in fact, polyhedra) in E

3. These have more than one flag orbit under
the symmetry group. A particularly interesting case arises when there are just two
flag orbits. We say that a polygonal complex K is a 2-orbit polygonal complex if
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K has precisely two flag-orbits underG; in this case, if K is also a polyhedron, we
call K a 2-orbit polyhedron. The cuboctahedron and icosidodecahedron are simple
examples of two-orbit polyhedra.

There are different kinds of 2-orbit polyhedra in E
3. Recall that two flags of

a polyhedron K are called i -adjacent, with i D 0, 1, or 2 respectively, if they
differ precisely in their vertices, edges, or faces (see [24, Ch. 2]). Thus, two flags
are 1-adjacent if they have the same vertices and same faces, but different edges.
Note that flags of polyhedra have unique i -adjacent flags for each i ; for polygonal
complexes which are not polyhedra, this still is true for i D 0; 1 but not for i D 2.
Now 2-orbit polyhedra naturally fall into different classes indexed by proper subsets
I of f0; 1; 2g (see Hubard [19] and [20]). In particular, a 2-orbit polyhedron K is
said to belong to the class 2I if I consists precisely of those indices i such that
any two i -adjacent flags lie in the same flag-orbit under G. The cuboctahedron and
the icosidodecahedron are examples of two orbit polyhedra in class 2f0;1g. When
I D ; this gives the class 2; of chiral polyhedra. Thus a polyhedron K is chiral
if and only if K has two flag orbits under G such that any two adjacent flags lie in
distinct orbits. (The case I D f0; 1; 2g is excluded here, as it describes the regular
polyhedra.)

3 The Symmetry Group

The symmetry group G D G.K / of a regular complex K in E
3 either acts

regularly on the set of flags or has flag-stabilizers of order 2. We call K simply flag-
transitive if its (full) symmetry group G acts regularly on the flags of K ; in other
words, G is simply transitive on the flags of K . Note that a regular complex that is
not simply flag-transitive can (in fact, always does) have a subgroup (of index 2) that
acts simply flag-transitively. Each regular polyhedron, finite or infinite, is a simply
flag-transitive regular polygonal complex.

The group G always has a well-behaved system of generators or generating
subgroups, regardless of whether K is simply flag-transitive or not. Suppose
˚ WD fF0; F1; F2g is a fixed, or base, flag of K , consisting of a vertex F0, an
edge F1, and a face F2. For each  � ˚ we let G denote the stabilizer of  in G.
Moreover, for i D 0; 1; 2 we setGi WD GfFj ;Fkg, where i; j; k are distinct, and write
GFi WD GfFi g for the stabilizer of Fi in G. Then G˚ is the stabilizer of ˚ and has
order 1 or 2; in particular,

G˚ D G0 \G1 D G0 \G2 D G1 \G2:
The stabilizers G0;G1;G2 form a generating set of subgroups for G, with the
property that G0 �G2 D G2 �G0 D GF1 and G D hGj jFj …  i for each  � ˚ .
Moreover,

hGj j j 2 I i \ hGj j j 2 J i D hGj j j 2 I \ J i .I; J � f0; 1; 2g/:
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These statements about generating subgroups ofG are particular instances of similar
such statements about flag-transitive subgroups of automorphism groups of regular
incidence complexes of rank 3 (or higher) obtained in [33, §2] (and also described
in [24, pp. 33,34] for polyhedra).

From the base vertex F0 and the symmetry group G of a regular complex K ,
with generating subgroups G0, G1, G2, we can reconstruct K by the following
procedure, often called Wythoff’s construction. First observe that the base edge F1
of K is determined by the pair of vertices fF0; F0G0g. Similarly, the vertex- and
edge-sets, respectively, of the base face F2 of K are just fF0S j S 2 hG0;G1ig and
fF1S j S 2 hG0;G1ig. This recovers the base flag of K . Finally, the set of i -faces
of K is just fFiS j S 2 Gg for each i D 0; 1; 2.

Most regular complexes K in E
3 are infinite and have an affinely irreducible

infinite discrete group of isometries as a symmetry group. In this case G is a
crystallographic group (that is, G admits a compact fundamental domain). Then the
Bieberbach theorems tell us that G contains a translation subgroup (of rank 3) such
that the quotient ofG by this subgroup is finite (see [32, §7.4]). If R W x 7! xR0C t
is a general element of G, with R0 in O.3/, the orthogonal group of E3, and t a
translation vector in E

3 (that we may also view as a translation), then the mappings
R0 clearly form a subgroupG� of O.3/, called the special group ofG. Now if T .G/
denotes the full translation subgroup of G (consisting of all translations in G), then

G� D G=T .G/;

so in particular,G� is a finite group. ThusG� is among the finite subgroups of O.3/,
which are known (see [15]). The special group of any irreducible infinite discrete
group of isometries in E

2 or E3 never contains rotations of periods other than 2; 3; 4,
or 6, and period 6 only occurs for E2 (see [24, p. 220] and [36, Lemma 3.1]).

The full translation subgroup of the symmetry group G of a regular complex
K (and often the vertex set of K itself) is given by a 3-dimensional lattice in
E
3. We frequently meet the lattices �a that are generated by a single vector a WD
.ak; 03�k/ and its images under permutations and changes of sign of coordinates;
here a > 0 and k D 1; 2; 3 (and a has k entries a and 3 � k entries 0). When
a D 1 and k D 1, 2 or 3, respectively, these are the standard cubic lattice Z

3, the
face-centered cubic lattice, and the body-centered cubic lattice.

4 Regular Polyhedra

The regular polyhedra in space are also known as the Grünbaum-Dress polyhedra
(see [34]). It is convenient to separate them from the simply flag-transitive regular
complexes that are not polyhedra, and discuss them first. We follow [24, Ch. 7E].

For a regular polyhedron K in E
3 with symmetry group G.K /, each subgroup

Gj of G.K / has order 2 and is generated by a reflection Rj in a point, line, or
plane (a reflection in a line is a half-turn about the line). Thus G.K / is generated
byR0;R1;R2. We let dim.Rj / denote the dimension of the mirror (fixed point set)



Polygonal Complexes and Graphs for Crystallographic Groups 331

of the reflection Rj for each j , and call the vector .d im.R0/; d im.R1/; d im.R2//
the complete mirror vector of K ; this is just the dimension vector of [24, Ch. 7E].
The use of the qualification “complete” will become clear in the next section. The
distinguished generators R0;R1;R2 of G.K / satisfy (at least) the Coxeter-type
relations

R20 D R21 D R22 D .R0R1/
p D .R1R2/

q D .R0R2/
2 D I; (1)

the identity mapping, where p and q determine the type fp; qg of K .
The complete enumeration of the regular polyhedra naturally splits into four steps

of varying degrees of difficulty: the finite polyhedra, the planar apeirohedra, the
blended apeirohedra, and the pure (non-blended) apeirohedra. An apeirohedron is
simply an infinite polyhedron.

There are just 18 finite regular polyhedra: the five (convex) Platonic solids

f3; 3g; f3; 4g; f4; 3g; f3; 5g; f5; 3gI

the four Kepler-Poinsot star-polyhedra

f3; 5
2
g; f 5

2
; 3g; f5; 5

2
g; f 5

2
; 5g;

where faces and vertex-figures are planar, but are allowed to be star polygons; and
the Petrie-duals of these nine polyhedra. (Recall that the Petrie dual of a regular
polyhedron P has the same vertices and edges as P; however, its faces are the
Petrie polygons of P , whose defining property is that two successive edges, but not
three, are edges of a face of P . Thus the new faces are “zig-zags”, leaving a face of
P after traversing two of its edges.)

The 6 planar regular apeirohedra comprise the three familiar regular plane
tessellations by squares, triangles, or hexagons,

f4; 4g; f3; 6g; f6; 3g;

and their Petrie-duals.
The remaining regular apeirohedra are genuinely 3-dimensional and fall into two

families.
There are exactly 12 regular apeirohedra that in some sense are reducible and

have components that are regular figures of dimensions 1 and 2. These apeirohedra
are blends of a planar regular apeirohedron, and a line segment f g or linear
apeirogon f1g. This explains why there are 12 D 6 � 2 blended (or non-pure)
aperiohedra. For example, the blend of the standard square tessellation f4; 4g and
the infinite apeirogon f1g, denoted f4; 4g#f1g, is an apeirohedron whose faces
are helical apeirogons (over squares), rising above the squares of f4; 4g, such
that 4 meet at each vertex; the orthogonal projections of f4; 4g#f1g onto their
component subspaces recover the original components, the square tessellation and
linear apeirogon.
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Table 1 The 12 pure apeirohedra in E
3

Mirror vector f3; 3g f3; 4g f4; 3g Faces Vertex-fig.

(2,1,2) f6; 6j3g f6; 4j4g f4; 6j4g Planar Skew
(1,1,2) f1; 6g4;4 f1; 4g6;4 f1; 6g6;3 Helical Skew
(1,2,1) f6; 6g4 f6; 4g6 f4; 6g6 Skew Planar
(1,1,1) f1; 3g.a/ f1; 4g

�;�3 f1; 3g.b/ Helical Planar

Note that each blended polyhedron really represents an entire family of polyhedra
of the same kind, where the polyhedra in a family are determined by a parameter
describing the relative scale of the two component figures. Thus there are infinitely
many polyhedra of each kind, up to similarity, and our original count really refers
to the 12 kinds rather than individual polyhedra.

Finally there are 12 regular apeirohedra that are irreducible, or pure (non-
blended). In a sense, they fall into a single family, derived from the standard regular
cubical tessellation. The 12 polyhedra in this family naturally are interrelated by
a net of geometric operations (on polyhedra) and algebraic operations (on sym-
metry groups), which include the following: the duality operation; the previously
mentioned Petrie-operation (of passing to the Petrie-dual); the facetting operation
(of replacing the faces of a regular polyhedron by its holes, which are edge paths
that successively take the second exit on the right at each vertex, while keeping all
the vertices and edges unchanged); two lesser known operations called halving and
skewing; and certain combinations of these operations.

We list these 12 pure apeirohedra in Table 1 taken from [24, p. 225], which also
highlights the fact that there are just 12 polyhedra of this kind.

In this table, the first column gives the complete mirror vector, and the last two
describe if the faces and vertex-figures are planar, skew or helical regular polygons;
the geometric nature of the faces and vertex-figures only depends on the mirror
vector. The second, third, and fourth column are indexed by the finite Platonic
polyhedra whose rotation or full symmetry group is intimately related to the special
group.

The three polyhedra along the top row are the famous Petrie-Coxeter polyhedra,
which along with those in the third row comprise the pure regular polyhedra with
finite faces. The pure polyhedra with infinite, helical faces are listed in the second
and last row; those in the last row occur in two enantiomorphic (mirror image)
forms, since their symmetry group is generated by half-turns and consists only
of proper isometries. The fine Schläfli symbols for the polyhedra in the table
signify defining relations for the symmetry groups; for example, extra relations
often specify the orders of the elements R0R1R2, R0R1R2R1 or R0.R1R2/2. These
orders correspond to the lengths of the Petrie paths, of the holes (paths traversing
edges where the new edge is chosen to be the second on the right according to some
local orientation), and of the 2-zigzags (paths traversing edges where the new edge
is chosen to be the second on the right, but reversing orientation on each step).

The regular polyhedron f1; 3g.b/ is illustrated in Fig. 1; three helical faces meet
at each vertex. Some faces have a vertical axis; they are helices over squares, like
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Fig. 1 The helix-faced regular polyhedron f1; 3g.b/, with symmetry group requiring the single
extra relation .R0R1/4.R0R1R2/3 D .R0R1R2/

3.R0R1/
4

the ones shown on the left, and are joined by horizontal edges. The remaining faces
have axes parallel to the remaining two coordinate axes; one copy of each is shown
on the right.

In summary we have

Theorem 1. There are precisely 48 regular polyhedra in E
3, up to similarity and

scaling of components (when applicable). The list comprises 18 finite polyhedra and
30 apeirohedra.

5 Non-simply Flag-Transitive Complexes

In order to complete the classification of regular polygonal complexes in E
3 it

remains to consider complexes with three or more faces around each edge. For
convenience we split the discussion into two cases according to the size of the flag
stabilizers. Throughout this and the next section we follow [29, 30].

Quite surprisingly, up to similarity, there are just four regular polygonal
complexes that are not simply flag-transitive. They can be characterized as the
regular complexes K that occur as 2-skeletons of regular 4-apeirotopes P in
E
3 (see [24, Ch. 7F]). The 2-skeleton of a 4-apeirotope is the incidence structure

determined by its vertices, edges and polygons. These 4-apeirotopes in E
3 are, by

definition, the discrete faithful realizations of abstract regular polytopes of rank 4
in E

3, so their combinatorial rank is 1 higher than the dimension of the ambient
space.

There are precisely eight regular 4-apeirotopes P in E
3, occurring in pairs of

Petrie-duals as shown in (2). The Petrie-dual of a regular 4-apeirotopeP is obtained
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by replacing the distinguished involutory generators T0; T1; T2; T3 of its symmetry
groupG.P/ by the new involutory generators

T0; T1T3; T2; T3

of G.P/, and then applying Wythoff’s construction with these new generators and
with the same initial vertex as forP itself. Every pair of Petrie-duals contributes just
one regular polygonal complex K , since Petrie-duals have isomorphic 2-skeletons.
Thus there are just four such complexes K . Two of the eight apeirotopes P have
(finite convex) square 2-faces, 4 occurring at each edge; and six have (infinite planar)
zigzag 2-faces, with either 3 or 4 at each edge. Our notation follows [24, Ch. 7F].

f4; 3; 4g ff4; 6 j 4g; f6; 4g3g
ff1; 3g6#f g; f3; 3gg ff1; 4g4#f1g; f4; 3g3g
ff1; 3g6#f g; f3; 4gg ff1; 6g3#f1g; f6; 4g3g
ff1; 4g4#f g; f4; 3gg ff1; 6g3#f1g; f6; 3g4g

(2)

The two apeirotopes in the top row are the standard cubical tessellation f4; 3; 4g
in E

3; and its Petrie-dual ff4; 6 j 4g; f6; 4g3g, whose rank 3 faces are Petrie-Coxeter
polyhedra f4; 6 j 4g and whose vertex-figures are Petrie-duals f6; 4g3 of octahedra
f3; 4g6. The 2-skeleton of the cubical tessellation is the simplest regular polygonal
complex that is not simply flag-transitive.

The other six apeirotopes have finite crystallographic regular polyhedra as
vertex-figures, namely either tetrahedra f3; 3g, octahedra f3; 4g, or cubes f4; 3g, or
Petrie-duals of one of those; their rank 3 faces are blends, namely of the Petrie-duals
f1; 3g6 or f1; 4g4 of the plane tessellations f6; 3g or f4; 4g, respectively, with the
line segment f g or linear apeirogon f1g (see [24, Ch.7E]).

The number of faces r around an edge of the 2-skeleton K is just the last entry
in the Schläfli symbol (the basic symbol fp; q; rg) of the underlying 4-apeirotope
P (or, equivalently, of the Petrie dual of P). Hence, r D 4, 3, 4 or 3, respectively.

Among the regular polygonal complexes K , the non-simply transitive com-
plexes can also be characterized as those that have face mirrors. A face mirror of
K is an affine plane in E

3 that contains a face of K and is the mirror of a plane
reflection in G.K /. Clearly, regular complexes K with face mirrors must have
planar faces, and every face must span a face mirror; moreover, the plane reflection
in a face mirror of K fixes every flag of K that lies in this face mirror, and hence
generates the corresponding flag stabilizer.

In summary we have

Theorem 2. Up to similarity, there are just four non-simply flag-transitive regular
polygonal complexes in E

3, each given by the common 2-skeleton of the two regular
4-apeirotopes from a pair of Petrie-duals. These infinite complexes are precisely the
regular polygonal complexes in E

3 that have face mirrors.
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6 Simply Flag-Transitive Complexes

The class of simply flag-transitive regular polygonal complexes in E
3 is much richer

and comprises all finite or infinite regular polyhedra. As we have already described
the regular polyhedra in Sect. 4, we can confine ourselves here to those complexes
that are not polyhedra.

Thus let K be an (infinite) simply flag-transitive complex such thatG D G.K /

is affinely irreducible, let r > 3, and let fF0; F1; F2g denote the base flag. Then
the two subgroups G0 and G1 of G are again of order 2, and are generated by
some point, line, or plane reflection R0, and some line or plane reflection R1,
respectively; however, G2 is a cyclic or dihedral group of order r . The mirror
vector .d im.R0/; d im.R1// of K now has only two components recording the
dimensions dim.R0/ and dim.R1/ of the mirrors of R0 and R1, respectively. (For
polyhedra, G2 is also generated by a reflection, and the complete mirror vector
records the dimensions of all three mirrors.)

The vertex-stabilizer subgroupGF0 inG of the base vertexF0 is called the vertex-
figure group of K at F0, and is a finite group since K is discrete. In particular,
GF0 D hR1;G2i, and GF0 acts simply flag-transitively on the graph that forms the
vertex-figure of K at F0. Similarly, the face-stabilizerGF2 in G of the base face F2
is given by GF2 D hR0;R1i and is isomorphic to a (finite or infinite) dihedral group
acting simply transitively on the flags of K containing F2.

The enumeration of the simply flag-transitive regular complexes for a given
mirror vector is typically rather involved. A good number of complexes must be
discovered by direct geometric or algebraic methods. Others then can be derived
by operations applied to these complexes; that is, the new complexes are obtained
by suitably modifying R0 and R1 while keeping the base vertex and preserving
the group hG0;G1;G2i as a (possibly proper) subgroup of symmetries. In this
vein, the explicit enumeration of the simply flag-transitive complexes begins in [29]
with the determination of the complexes with mirror vector .1; 2/, and then proceeds
in [30] with the description of those for the remaining mirror vectors, accomplished
by a mix of direct methods, applications of operations, and elimination of certain
cases. At the end, we arrive at the following theorem.

Theorem 3. Up to similarity, there are exactly 21 simply flag-transitive regular
polygonal complexes in E

3 that are not regular polyhedra.

Thus, counting also the regular polyhedra from Theorem 1, there is total of 69
simply flag-transitive regular complexes, up to similarity and scaling of components
for blended polyhedra.

Table 2 lists the 21 simply flag-transitive complexes by mirror vector, and records
their data concerning the pointwise edge stabilizer G2, the number r of faces
surrounding an edge, the structure of the faces and vertex-figures, the vertex-set,
and the structure of the special group G�. In the face column we have used the
symbols pc , ps , 12, or 1k with k D 3 or 4, respectively, to indicate that the faces
are convex p-gons, skew p-gons, planar zigzags, or helical polygons over k-gons.
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Table 2 The 21 simply flag-transitive regular complexes in E
3 which are not regular polyhedra

Mirror Special
vector Complex G2 r Face Vertex-figure Vertex-set group

.1; 2/ K1.1; 2/ D2 4 4s Cuboctahedron �.a;a;0/ Œ3; 4�

K2.1; 2/ C3 3 4s Cube �.a;a;a/ Œ3; 4�

K3.1; 2/ D3 6 4s Double cube �.a;a;a/ Œ3; 4�

K4.1; 2/ D2 4 6s Octahedron aZ3 Œ3; 4�

K5.1; 2/ D2 4 6s Double square Va Œ3; 4�

K6.1; 2/ D4 8 6s Double octahedron aZ3 Œ3; 4�

K7.1; 2/ D3 6 6s Double tetrahedron Wa Œ3; 4�

K8.1; 2/ D2 4 6s Cuboctahedron �.a;a;0/ Œ3; 4�

.1; 1/ K1.1; 1/ D3 6 13 Double cube �.a;a;a/ Œ3; 4�

K2.1; 1/ D2 4 13 Double square Va Œ3; 4�

K3.1; 1/ D4 8 13 Double octahedron aZ3 Œ3; 4�

K4.1; 1/ D3 6 14 Double tetrahedron Wa Œ3; 4�

K5.1; 1/ D2 4 14 ns-cuboctahedron �.a;a;0/ Œ3; 4�

K6.1; 1/ C3 3 14 Tetrahedron Wa Œ3; 4�C

K7.1; 1/ C4 4 13 Octahedron aZ3 Œ3; 4�C

K8.1; 1/ D2 4 13 ns-cuboctahedron �.a;a;0/ Œ3; 4�

K9.1; 1/ C3 3 13 Cube �.a;a;a/ Œ3; 4�C

.0; 1/ K .0; 1/ D2 4 12 ns-cuboctahedron �.a;a;0/ Œ3; 4�

.0; 2/ K .0; 2/ D2 4 12 Cuboctahedron �.a;a;0/ Œ3; 4�

.2; 1/ K .2; 1/ D2 4 6c ns-cuboctahedron �.a;a;0/ Œ3; 4�

.2; 2/ K .2; 2/ D2 4 3c Cuboctahedron �.a;a;0/ Œ3; 4�

(A planar zigzag is viewed as a helix over a 2-gon, hence our notation. Clearly, the
subscript in 3c is redundant.) We also set

Va WD aZ3n..0; 0; a/C�.a;a;a//; Wa WD 2�.a;a;0/ [ ..a;�a; a/C2�.a;a;0//;

to have a short symbol available for the vertex-sets of some complexes. The
vertex-figures of polygonal complexes are finite geometric graphs, so an entry
in the vertex-figure column describing a solid figure is meant to represent the
edge-graph of this figure, with “double” indicating the double edge-graph. The
abbreviation “ns-cuboctahedron” stands for the edge graph of a certain “non-
standard cuboctahedron”, a realization in E

3 of the (abstract) cuboctahedron with
non-planar square faces.

As an example, the faces of the complex K6.1; 2/ are the Petrie polygons of
all cubes of the cubical tessellation of E3; so in particular, the vertices and edges
of K6.1; 2/, respectively, comprise all vertices and edges of the cubical tessellation.
Recall that every edge of a cube belongs to precisely two Petrie polygons of the same
cube. Since every edge belongs to four cubes in the cubical tessellation, every edge
must belong to eight Petrie polygons of cubes in K6.1; 2/. The complex K4.1; 2/

is a proper subcomplex of K6.1; 2/ obtained by taking only the Petrie polygons of
alternate cubes. The complexK5.1; 2/ is another subcomplex of K6.1; 2/ consisting
only of the Petrie polygons with vertices in the set Va defined above.
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7 Chiral Polyhedra

Chiral polyhedra in E
3 are the most interesting kind of nearly regular polyhedra;

their geometric symmetry groups have two orbits on the flags, such that adjacent
flags are in distinct orbits.

The structure results for the symmetry groups of regular polygonal complexes
carry over to chiral polyhedra as follows (see [35,36]). LetK be a chiral polyhedron
in E

3 with symmetry groupG D G.K /, let˚ WD fF0; F1; F2g be a base flag of K ,
and let F 00; F 01; F 02 denote the faces of K with F 00 < F1, F0 < F 01 < F2, F1 < F 02
and F 0j ¤ Fj for j D 0; 1; 2. Then G is generated by symmetries S1; S2 of K ,
called the distinguished generators of G (relative to ˚), where S1 leaves the base
face F2 invariant and cyclically permutes the vertices of F2 such that F1S1 D F 01
(and thus F 00S1 D F0), and S2 leaves the base vertex F0 invariant and cyclically
permutes the vertices in the vertex-figure at F0 such that F2S2 D F 02 (and thus
F 01S2 D F1). Then, in analogy to (1),

S
p
1 D S

q
2 D .S1S2/

2 D I; (3)

where fp; qg is the Schläfli type of K . The involutory symmetry T WD S1S2
interchanges the two end vertices of F1 as well as the two faces meeting at F1;
that is, combinatorially, T acts like a half-turn about the midpoint of an edge. This
symmetry T plays a critical role, in that it allows to employ a variant of Wythoff’s
construction (see [6]) to reconstruct a chiral polyhedron from its symmetry group.

Note that the symmetry groups of regular polyhedra in E
3 have a subgroup

of index at most 2 with properties very similar to those of the group of a
chiral polyhedron. In fact, if P is a regular polyhedron and R0;R1;R2 are the
distinguished generators of its symmetry group G.P / (relative to ˚), then OS1 WD
R0R1 and OS2 WD R1R2 generate the combinatorial rotation subgroup, or even
subgroup,GC.P/ WD h OS1; OS2i of G.P /, of index 1 or 2. Now OT WD OS1 OS2 D R0R2
has properties similar to T . WheneverGC.P/ has index 2 in G.P/ we say that P
is directly regular or orientable.

Combinatorially speaking, chiral polyhedra have maximal “rotational” symmetry
but no “reflexive” symmetry. (This does not mean that S1 and S2 are actually
geometric rotations!) Thus our term “chiral” really means “maximal chiral”. By con-
trast, again combinatorially speaking, regular polytopes have maximal “reflexive”
symmetry. (Here R0;R1;R2 are actually reflections, in points, lines, or planes.)

Chirality, in this sense of “maximal chirality”, does not make any appearance
in the classical theory of highly-symmetric figures in Euclidean spaces. This may
explain why chiral polyhedra were only described and enumerated quite recently, in
[35, 36].

The complete classification starts off with the observation that chiral polyhedra
are necessarily pure apeirohedra; that is, infinite polyhedra that are not naturally
“blends” of two lower-dimensional structures, and hence have an affinely irreducible
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Table 3 The finite-faced chiral polyhedra, along with their related regular polyhedra

Type f6; 6g f4; 6g f6; 4g
Notation P.a; b/ Q.c; d/ Q.c; d/�

Parameters a; b 2 Z; .a; b/ D 1 c; d 2 Z; .c; d/D 1 c; d 2 Z; .c; d/ D 1

Chiral b ¤ ˙a c; d ¤ 0 c; d ¤ 0

Regular polyhedra P.a;�a/Df6;6g4 Q.a;0/Df4;6g6 Q.a;0/�Df6;4g6
P.a;a/Df6;6j3g Q.0;a/Df4;6j4g Q.0;a/�Df6;4j4g
Geom.self-dual,

P.a; b/� Š P.a; b/

Special group Œ3; 3�C � h�I i Œ3; 4� Œ3; 4�

Table 4 The helix-faced chiral polyhedra, along with their related regular polyhedra

Type f1; 3g f1; 3g f1; 4g
Notation P1.a; b/ P2.c; d/ P3.c; d/

Parameters a; b 2 R c; d 2 R c; d 2 R

Chiral b ¤˙a c; d ¤ 0 c; d ¤ 0

Regular polyhedra P1.1;�1/ D f1; 3g.a/ P2.1; 0/ D f1; 3g.b/ P3.0; 1/ D f1; 4g�;�3
P1.1; 1/ D f3; 3g P2.0; 1/ D f4; 3g P3.1; 0/ D f3; 4g

Helices over Triangles Squares Triangles
Special group Œ3; 3�C Œ3; 4�C Œ3; 4�C

symmetry group. In short, unlike regular polyhedra, chiral polyhedra can neither be
finite nor planar or blended.

The classification of chiral apeirohedra is quite elaborate and naturally breaks
down into analyzing the finite-faced and the helix-faced polyhedra (see [35, 36]).
The possible apeirohedra fall into six infinite 2-parameter families (up to congru-
ence). In each family, all but two polyhedra are chiral; the two exceptional polyhedra
are regular and are among those described in Sect. 4. Tables 3 and 4 list the families
of polyhedra by Schläfli type, along with the two regular polyhedra occurring in
each family; in the three families in Table 4, one exceptional polyhedron is finite.
Also included is data about the special group of a polyhedron, that is, the quotient of
the geometric symmetry group by its translation subgroup; here Œ3; 3�C and Œ3; 4�C
denote the tetrahedral or octahedral rotation group, respectively, and Œ3; 4� the full
octahedral group.

It is quite remarkable that a regular polyhedron cannot have both skew faces
and skew vertex-figures. However, finite-faced chiral polyhedra must necessarily
have both skew faces and skew vertex-figures. In fact, the generators S1; S2 of the
symmetry group must be rotatory reflections in this case, resulting in skew faces
and skew vertex-figures. Note, however, that the rotation subgroups for the regular
polyhedra occurring in the three families of finite-faced polyhedra of Table 3 also
have generators S1; S2 which are rotatory reflections, but here the position of the
base vertex forces planarity of faces or vertex-figures.
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Fig. 2 The vertex-neigborhoods of the finite-faced chiral apeirohedra P.1; 0/ and Q.1; 1/, of
types f6; 6g and f4; 6g, respectively. Depicted is the neighborhood of a single vertex, where 6
skew hexagonal faces or 6 skew square faces meet. Each apeirohedron expands in a consistent
manner throughout space such that all vertex neighborhoods are congruent to the one shown

Chiral apeirohedra with infinite faces must necessarily have helical faces spiral-
ing over triangles or squares, as well as planar vertex-figures. The symmetry group
is generated by a screw motion S1 and a rotation S2 in this case. Chiral helix-faced
polyhedra unravel, in a sense, a “crystallographic” Platonic polyhedron, namely the
finite regular polyhedron in their respective family.

The regular polyhedra listed in Tables 3 and 4 comprise 9 of the 12 pure
regular apeirohedra in E

3, namely those listed in Table 1 with complete mirror
vectors .1; 2; 1/, .1; 1; 1/ or .2; 1; 2/, as well as the three crystallographic Platonic
polyhedra. The three remaining pure regular apeirohedra f1; 6g4;4, f1; 4g6;4 and
f1; 6g6;3 all have complete mirror vector .1; 1; 2/ and do not occur in families
alongside chiral polyhedra.

These six families of chiral (or regular) polyhedra have some amazing prop-
erties. For example, any two distinct finite-faced polyhedra of the same type are
combinatorially non-isomorphic. In fact, P.a; b/ and P.a0; b0/ are isomorphic if
and only if .a0; b0/ D ˙.a; b/;˙.b; a/; and similarly, Q.c; d/ and Q.c0; d 0/ are
isomorphic if and only if .c0; d 0/ D ˙.c; d /;˙.�c; d/. Thus there are very many
combinatorially distinct finite-faced chiral polyhedra (Fig. 2). By contrast, as shown
in Pellicer-Weiss [31], every helix-faced chiral polyhedron P1.a; b/ or P2.c; d/ is
combinatorially isomorphic to the infinite regular polyhedron in its family. On the
other hand, since the polyhedron f1; 4g�;�3 is not orientable, it cannot have chiral
realizations. Every chiral polyhedron P3.c; d/ is then isomorphic to the (combi-
natorial) orientable double cover of f1; 4g�;�3. Thus, up to isomorphism, there are
just three helix-faced chiral polyhedra, each represented by a helix-faced regular
polyhedron. But even more is true: in a sense that can be made precise, the helix-
faced chiral polyhedra can be thought of as continuous “chiral deformations” of
helix-faced regular polyhedra (see [31]). This surprising phenomenon is illustrated
for the helix-faced polyhedraP2.c; d/ in Fig. 3; shown is the effect on the location of
the “vertical” helical faces, as a result of continuously changing the parameters c; d .
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Fig. 3 The helix-faced polyhedron P2.1; 0/ and its deformations P2.1; d/. The solid black or
green dotted lines show the projection of the entire polyhedron P2.1; 0/ or P2.1; d/, respectively,
onto a “horizontal” plane perpendicular to the axis of a “vertical” helical face. The vertical
helical faces of P2.1; 0/ or P2.1; d/, respectively, then project onto the small black squares or
small green squares; one black square, resulting from one vertical helical face of P2.1; 0/, is
emphasized. As the parameter d is changed continuously, the vertical and “horizontal” helical
faces move in such a way that the axes of corresponding faces remain parallel throughout the
process. Accordingly, the projections of P2.1; d/ move continuously as well. The figures on the
left and right, respectively, show projections of P2.1; d/ when d is small or when d gets larger

Finally, helix-faced chiral polyhedra are combinatorially regular, as they are
isomorphic to regular polyhedra. However, by contrast, finite-faced chiral polyhedra
are combinatorially chiral, meaning that the combinatorial automorphism group has
two flag-orbits such that adjacent flags are in distinct orbits (see [31]).

In summary, we have the following

Theorem 4. Up to congruence, the chiral polyhedra in E
3 fall into six infinite, 2-

parameter families of apeirohedra, each containing alongside chiral apeirohedra
also two regular polyhedra. Three families consist of finite-faced apeirohedra, and
three of helix-faced polyhedra. The finite-faced polyhedra are also combinatorially
chiral, but the helix-faced polyhedra are combinatorially regular.

8 Two-Orbit Polyhedra

The chiral polyhedra in E
3 are by definition the 2-orbit polyhedra in E

3 in the class
2I with I D ;. It is desirable to extend the classification of chiral polyhedra to
2-orbit polyhedra in arbitrary classes 2I , with I ¨ f0; 1; 2g. We saw that chirality
cannot occur among finite polyhedra; however, as the example of the cuboctahedron
(in class 2f0;1g) shows, finite 2-orbit polyhedra already occur among the familiar
convex polyhedra. Thus a good first step would be the complete enumeration of the
finite 2-orbit polyhedra in E

3.
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Significant progress towards this goal has already been made for regular
polyhedra of index 2. A polyhedron K is said to be a regular polyhedron of
index 2 if its combinatorial automorphism group � .K / acts flag-transitively on K
and contains the geometric symmetry group G.K / as a subgroup of index 2. In
other words, K is combinatorially regular but “fails geometric regularity by a factor
of 2”. For any such polyhedron, the symmetry group has two orbits on the flags,
and at most two orbits on the vertices, edges, and faces. Note that the helix-faced
chiral polyhedra discussed in the previous section are examples of infinite regular
polyhedra of index 2.

The finite regular polyhedra of index 2 were recently enumerated in Cutler-
Schulte [9] and Cutler [8] (see also Wills [38]). The following theorem summarizes
the results.

Theorem 5. Up to similarity, there are exactly 22 infinite families of regular
polyhedra of index 2 with vertices on two orbits under the symmetry group, where
two polyhedra belong to the same family if they differ only in the relative size of
the spheres containing their vertex orbits. In addition, up to similarity, there are
exactly 10 (individual) polyhedra with vertices on one orbit under the symmetry
group.

In describing the polyhedra, we slightly abuse terminology and say that a
polyhedron K is of type fp; qgr if the underlying regular map has (Schläfli) type
fp; qg and Petrie polygons of length r . Note here that we are not requiring the map to
be the universal regular map of type fp; qgwith Petrie polygons of length r (denoted
fp; qgr in [7]). However, in some case the map actually is universal (see [10]).

Table 5 records the 22 infinite families of polyhedra by combinatorial isomor-
phism type. For example, the last entry in row 5 indicates that there are 2 infinite
families with polyhedra isomorphic to Gordan’s (universal) map f4; 5g6. The third
column gives the name of the map in the notation of Conder [4] (when applicable),
with R or N , respectively, indicating an orientable or non-orientable regular map;
the number before the period is the genus, and an asterisk indicates the dual. The
polyhedra in these 22 families have their vertices located at those of a pair of similar,
aligned or opposed, Platonic solids with the same symmetry group. There are
respectively 4, 2 and 16 families with full tetrahedral, octahedral, and icosahedral
symmetry. The symmetry group is face-transitive in each case, and each polyhedron
is orientable. Among all polyhedra (in all families), there are just two polyhedra
with planar faces. Figure 4 shows one face of a regular polyhedron of index 2 and
type f10; 5g6 belonging to one of the four families in the last row of Table 5.

The 10 (individual) regular polyhedra of index 2 with vertices on one orbit
are listed in Table 6. Each has full icosahedral symmetry. There are orientable
and non-orientable examples. Figure 4 depicts one face of the planar-faced regular
polyhedron of index 2 and type f6; 6g6 listed in the first row of Table 6.
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Table 5 The 22 infinite
families of regular polyhedra
of index 2 with two vertex
orbits, listed by combinatorial
isomorphism type. The
polyhedra in the first two
rows have full tetrahedral
symmetry, and those in the
third row full octahedral
symmetry; all others have full
icosahedral symmetry

Type Face vector
fp; qgr .f0; f1; f2/ Map # Families

f4; 3g6 .8; 12; 6/ Sphere 2
f6; 3g4 .8; 12; 4/ Torus 2
f6; 4g6 .12; 24; 8/ R3:4� 2
f10; 3g10 .40; 60; 12/ R5:2� 4
f4; 5g6 .24; 60; 30/ R4:2 2
f6; 5g4 .24; 60; 20/ R9:16� 2
f6; 5g10 .24; 60; 20/ R9:15� 4
f10; 5g6 .24; 60; 12/ R13:8� 4

Fig. 4 Two regular polyhedra of index 2. The polyhedron on the left is a representative of one
of the four infinite families of type f10; 5g6 with two vertex-orbits; its vertices lie on a pair of
concentric icosahedra. The planar-faced polyhedron on the right has type f6; 6g6 and one vertex-
orbit; its vertices are those of a dodecahedron. Only one face is shown in each case; the other faces
are obtained by applying all icosahedral or dodecahedral symmetries

Table 6 The 10 (individual)
regular polyhedra of index 2
with one vertex orbits. Each
has full icosahedral symmetry

Type Face vector
fp; qgr .f0; f1; f2/ Map Notes

f6; 6g6 .20; 60; 20/ R11:5 Planar faces,
self-dual map

f6; 6g6 .20; 60; 20/ N22:3 Face transitive
f4; 6g5 .20; 60; 30/ N12:1

f5; 6g4 .20; 60; 24/ R9:16 Planar faces
f6; 4g5 .30; 60; 20/ N12:1�

f5; 4g6 .30; 60; 24/ R4:2� Planar faces
f4; 6g10 .20; 60; 30/ R6:2

f10; 6g4 .20; 60; 12/ N30:11�

f6; 4g10 .30; 60; 20/ R6:2�

f10; 4g6 .30; 60; 12/ N20:1�
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9 Conclusions

The recent history of symmetric structures in Euclidean 3-space E
3 suggests a

rich variety of objects yet to be discovered. All geometrically regular polygonal
complexes (including polyhedra), and all regular 4-polytopes, in Euclidean 3-space
have now been classified; by contrast, little is known about polygonal complexes
and 4-polytopes with slightly less symmetry. Two natural open questions concern
the enumeration of all 2-orbit polyhedra and all edge-transitive polyhedra in E

3. It
appears more challenging to widen the scope of these problems to general polygonal
complexes. A good starting point in this direction is a detailed classification of the
finite 2-orbit, or edge-transitive, polygonal complexes that are not polyhedra; or a
proof that such complexes cannot exist.

Significant progress has been made in the theory of realizations (in any dimen-
sion) for regular polytopes of any rank, mostly by McMullen; the state of the art
will be summarized in his forthcoming monograph on “Geometric Regular Poly-
topes” [22], but many results can also be found in [24, Chapter 5]. However, little
is known about realizations of other kinds of polytopes or polygonal complexes.
The complete enumeration of particularly interesting families of such objects will
greatly contribute to our basic understanding of geometric realizations of incidence
structures.
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Two Notes on Maps and Surface Symmetry

Thomas W. Tucker

Abstract The first note of this paper determines for which g the orientable
surface of genus g can be embedded in euclidean 3-space so as to have prismatic,
cubical/octahedral, tetrahedral, or icosahedral/dodecahedral symmetry. The second
note proves, through entirely elementary methods, that the clique number of the
graph underlying a regular map is m D 2; 3; 4; 6; for m D 6 the map must be non-
orientable and form D 4; 6 the graph has a Km factorization. Here a regular map is
one having maximal symmetry: reflections in all edges and full rotational symmetry
about every vertex, edge and face.

Keywords Riemann-Hurwitz equation • Regular map • Clique

Subject Classifications: 05C10, 57M15, 57M60

In this note, we prove two unrelated results about maps and surface symmetry.
The first concerns the possible finite symmetry, under euclidean isometry, of

a surface of genus g embedded in 3-space. The theorem was inspired by a
question from Bojan Mohar asking why the sculpture “The group of genus two” by
DeWitt Godfrey [5], which appears on the cover of the journal Ars Combinatorica
Mathematica, shows almost none of the rotational symmetry of the map.

Any finite group A of euclidean isometries of 3-space fixes the barycenter O
of an orbit of A and hence leaves invariant the unit sphere centered at O . Thus
the possibilities for A are just the symmetry groups of the n-prism, the Platonic
solids (cube/octahedron, tetrahedron, and icosahedron/dodecahedron), and their
subgroups. For each of these four types of symmetry, we show that for all but
finitely many g, the surface of genus g can be embedded so as to have the given
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symmetry type, and we give the finite list of excluded g. Given a finite set X
of natural numbers, let L.X/ be the set of all linear combinations of elements of
X with nonnegative integral coefficients. Note that if gcd.X/ D 1, then L.X/
contains all sufficiently large integers, by the “postage stamp” problem.

Theorem A (Surface Symmetry in 3-Space). Let S be a surface of genus g. Then
S can be embedded in 3-space so as to have the symmetry of:

• The n-prism if and only if g � 1 (mod n) or g 2 L.n; n � 1/;
• The cube or octahedron if and only if g 2 L.16; 18; 12/ C k, where k D
0; 5; 7; 11; 13;

• The tetrahedron if and only if g 2 L.8; 6/C k, where k D 0; 3; 5; 7;
• The isosahedron or dodecahedron if and only if g 2 L.40; 48; 30/ C k where
k D 0; 11; 19; 29; 31.

Moreover, S can be embedded with n-prism symmetry if and only if it can be
embedded with n-fold rotational symmetry. Similarly, S can be embedded with
full cubical (respectively, tetrahedral, icosahedral) symmetry if and only if it
can be embedded with orientation-preserving cubical (respectively, tetrahedral,
icosahedral) symmetry.

The second result concerns the clique number of a regular map. A map M is
an embedding of a finite graph G in a closed surface S such that the interior of
each face (component of S � G) is homeomorphic to an open disk; we call G the
underlying graph of the map and S the underlying surface. An automorphism of the
map is an automorphism of the graph that can be extended to a homeomorphism of
the surface (combinatorially, the automorphism must take any cycle inG bounding a
face to another such cycle). The collection of all such automorphisms forms a group,
denoted Aut.M/. A mapM is regular if Aut.M/ acts transitively on vertex-edge-
face incidence triples (usually call flags). Intuitively, a regular map generalizes the
Platonic solids in having full rotational symmetry about each vertex and face, as
well as reflective symmetry. In particular, the stabilizer of any vertex acts on its
d neighbors as the dihedral group Dd acting on the vertices of a regular d -sided
polygon; we call such an action of Dd naturally dihedral. The study of regular
maps goes back to the 1920s and Coxeter and Moser [4] has a whole chapter on
them. The survey article [11] covers most of the history of regular maps, including
recent advances like [3].

Note that our use of “regular” in the case of orientable maps, is sometimes
called reflexibly regular. By contrast, a map M on an orientable surface that has
full rotational symmetry about each vertex and face center, but not necessarily
any orientation-reversing symmetry, is called orientably regular, and if there is no
orientation-reversing symmetry, it is called chiral.

The clique number of a graphG is the largestm such that the complete graphKm

is a subgraph of G. We say that G has an H -factorization if there is a collection of
edge-induced subgraphsGi , all isomorphic to H , such that every edge is an exactly
one Gi .
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Theorem B (Cliques in Regular Maps). The clique number of the graph G

underlying a regular (reflexible) map M is m D 2; 3; 4 or 6. Moreover, if
m D 6, then M must be non-orientable and for m D 4; 6 the graph G has a
Km-factorization.

We also give the following purely graph-theoretic version:

Theorem C (Cliques in Graphs with Dihedral Vertex Stabilizers). Let G be
a graph with A 	 Aut.G/ such that for each vertex v, the action of the vertex
stabilizer Av on edges incident to v is naturally dihedral. Then the clique number of
G is m D 2; 3; 4; 6. If m 
 3, the action of A is vertex-transitive and if m D 4; 6,
then G has a Km-factorization.

The proofs for the clique results are astonishingly simple and depend on the
measure of an angle, which appears to be a new concept for maps. Corollaries
of Theorem B are classical theorems on the possible complete graphs underlying
regular orientable and non-orientable maps, obtained using entirely algebraic
methods, especially Frobenius groups.

1 Surface Symmetry in 3-Space

Our proof of Theorem A is by cases. We first recall some facts from [6] about a
finite group acting A on a closed orientable surface S by orientation-preserving
homeomorphisms. If x 2 S , let Ax be the stabilizer of x in A. Then x

has a neighborhood Nx that is equivariant under A, that is if a 2 Ax , then
a.Nx/ D Nx and otherwise Nx and a.Nx/ are disjoint. Moreover, Ax is cyclic
with a generator ax that on Nx looks like the map z ! zr in the complex plane,
where r D jAx j.

Associated with the action of A on S is the quotient map p W S ! S=A, where
S=A is the surface obtained by identifying each orbit underA to a single point. Note
that S=A is a surface since p.Nx/ is a disk aboutp.x/. LetX D fx 2 S W jAx j > 1g
and let Y D p.X/. Then p is a local homeomorphism except at x 2 X , making
p a (regular) branched covering with branch set Y D p.X/. For each y 2 Y , the
common number ry D jAx j for any x 2 p�1.y/ is called the order of the branch
point y. If S has genus g and S=A has genus h, then Euler’s formula 2g � 2 D
E � V � F gives us the Riemann-Hurwitz equation:

2g � 2 D jAj
�

.2h� 2/C˙y2Y
�

1 � 1

ry

��

;

For later use, we observe that if h D 0, then a generating set for A is obtained by
choosing, for each y 2 Y , one x 2 p�1.y/ and a generator for Ax .
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Prismatic symmetry. We first consider a surface S with n-fold rotational
symmetry about an axis in 3-space. Since the axis intersects S in an even number
of points, the number of branch points is even and each has order n � 1. Thus:

2g � 2 D n

�

.2h� 2/C 2b
n� 1
n

�

so g D 1C .h � 1/nC b.n � 1/:

If b D 0, then g � 1 (mod n). Otherwise,

g D 1C .h� 1/n� 1C .b � 1/.n� 1/C .n � 1/ D hnC .b � 1/.n� 1/

so in this case g 2 L.n; n � 1/.
To show these conditions on g are sufficient, we construct for each case a model

of surface S in 3-space having the required symmetry. For g � 1 (mod n), we take
the standard torus in 3-space and attach n surfaces of genus h along n disks invariant
under the rotation. For g D hnC .b � 1/n, where b > 0, we begin with a surface
Pn in 3-space obtained from the boundary of a thickening of a dipole consisting
of two vertices with n edges connecting the vertices, so that the dipole is invariant
under an n-fold rotation about the axis through the two vertices. The genus of Pn is
n � 1. We can then string together b � 1, copies of Pn to obtain a surface of genus
.b�1/.n�1/ having n-fold rotational symmetry about a central axis with 2b branch
points of order n (for b � 1 D 0, we have simply a sphere with branch points of
order n at the north and south poles). Then we can add n surfaces of genus h at n
disks symmetrically placed either on the midpoints of edges of the central dipole (if
b � 1 is odd) or around a neck dividing the surface in half (if b � 1 is even). The
result is a surface of genus g D hnC .b � 1/n with the required symmetry.

We observe that the models we have constructed also have antipodal and reflec-
tive symmetry on n planes passing through the axis of rotation. Thus these models
have full n-prism symmetry. Conversely, if any surface has n-prism symmetry, it
also must also have n-fold rotational symmetry, and hence must satisfy g � 1

(mod n) or g D hnC .b � 1/n for b > 0.

Cubical symmetry. We first assume that the surface S embedded in 3-space is
invariant under the orientation-preserving automorphism groupA of a cube centered
at the originO ; it is well known thatA is isomorphic to the full symmetric group S4.
The cube has four axes of 3-fold rotational symmetry, three of 4-fold rotational
symmetry, and six of 2-fold symmetry. Each axis passes through O and pierces the
surface S in the same number of points in each half. IfO is inside the solid bounded
by S , this number must be odd; if O is outside the solid, then this number is even.
Thus, if O is inside S , we have:

2g � 2 D 24

�

2h� 2C .2b C 1/
2

3
C .2c C 1/

3

4
C .2d C 1/

1

2

�
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Simplifying, we get g D 16b C 18c C 12.2hC d/ so g 2 L.16; 18; 12/.
If O is outside S , then

2g � 2 D 24

�

.2h� 2/C 2b
2

3
C 2c

3

4
C 2d

1

2

�

Simplifying, we get g D �23C 16b C 18c C 12.2hC d/: In this second case, if
at least two of the coefficients of b; c; .2hC d/ is nonzero, then it is easily checked
that g 2 L.16; 18; 12/C k, where k D 5; 7; 11. If h D 0, it is impossible for only
one of b; c; d to be nonzero, since otherwise A is generated by Ax with all x on the
same axis, making A cyclic. Thus we can assume that h > 0. The only cases for
g 62 L.16; 18; 12/C k, for k D 5; 7; 11 are g D 1 for .h; d/ D .1; 0/ and g D 13

for .h; d/ D .1; 1/. But the only groups acting without fixed points on the torus are
abelian [6] so g D 1 is impossible.

We conclude that for orientation-preserving cubical symmetry, we need g 2
L.16; 18; 12/C k, where k D 0; 5; 7; 11; 13. Now we build a model surface S for
all these cases, based on the branch point information in the coefficients b; c; d; h.
We begin with a cube centered at O and consider first the cases where O is inside
the surface S . We attach to each vertex a string of 2b thickened dipoles P3, to the
center of each face a string of 2c thickened dipoles P4, to the midpoint of each edge
a string of 2d thickened dipoles P2, and to each point in the orbit of a nonbranch
point a string of h thickened dipoles P2. The boundary of the resulting solid has
genus

2b.8/C 3c.6/C .2hC d/12 D 16b C 18c C 12.2hC d/:

If we take the resulting solid and drill a hole between antipodal vertices through the
centerO , we add 8�1 D 7 to the genus. Holes between antipodal face-centers adds
6 � 1 D 5 and holes between antipodal edge-midpoints, adds 12 � 1 D 11. If we
drill holes between both vertices and face-centers, we add 8 C 6 � 1 D 13 to the
genus. Thus we get all:

g 2 L.16; 18; 12/C k where k D 0; 5; 7; 11; 13:

Tetrahedral symmetry. Again, we start with a tetrahedron centered at O and
consider only orientation-preserving symmetries; the group in this case is the
alternating group A4. There are four axes of 3-fold symmetry between each vertex
and the center of the opposing face and three axes between midpoints of opposite
edges. If O is inside the surface, there are an odd number 2b0 C 1 and 2b00 C 1 of
intersection points on each half of a vertex-face axis and 2c C 1 on each edge-edge
axis. Thus if b D b0 C b00 C 1, we have:

2g � 2 D 12

�

2h� 2C 2b
2

3
C .2c C 1/

1

2

�

so g D 8b C 6.2hC c/ � 8:
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Since b 
 1, we have g 2 L.8; 6/. If instead C is outside the surface, we get:

2g � 2 D 12

�

2h� 2C 2b
2

3
C 2c

1

2

�

so g D 8b C 6.2hC c/ � 11:

Then g D 1 for h D 1; b D 0; c D 0 or b D 0; h D 0; c D 2. The first is again
impossible since any group acting without fixed points on the torus is abelian. The
second is impossible since then the group action would be generated by rotations
around only one axis. In all other cases, g 2 L.8; 6/C k for k D 3; 5; 7:

For the models, we start with the tetrahedron and attach a string of b dipoles P3
at each of the four vertices and a string of c dipoles P2 at the midpoint of each edge
to make a surface of genus g D 8b C 6c with orientation-preserving tetrahedral
symmetry. Drilling holes from each vertex to the center or each edge midpoint to
the center or both, gives, as desired, all;

g 2 L.8; 6/C k where k D 0; 3; 5; 7:

Icosahedral symmetry. We start again with an icosahedron centered at O and
consider only orientation-preserving symmetries; the group in this case is A5. From
the Riemann-Hurwitz equation, the situation is exactly the same as for the cube,
only with branch points of order 3; 5 and 2. If the center is inside the surface, we get
g D 40b C 48c C 30.2hC d/. If the center is outside the surface, we get

g D 40b C 48c C 30.2hC d/ � 59:
In this case, as long as at least two of b; c; 2h C d is nonzero, then g 2
L.40; 48; 30/Ck, where k D 11; 19; 29. As with the cube, if h D 0, it is impossible
for only one of b; c; d to be nonzero. Then the only remaining case is g D 1 for
.h; d/ D .1; 0/ and g D 31 for .h; d/ D .1; 1/. Again, g D 1 is impossible since
A5 is not abelian, so we have g 2 L.40; 48; 30/C k, where k D 11; 19; 29; 31.

For models, we attach b dipoles P3 at vertices, c dipoles P5 at face centers, and
c dipoles P2 at edge midpoints. We can also drill 6 tunnels between antipodal ver-
tices, 10 between antipodal face centers, and 15 between antipodal edge midpoints,
or any combination, giving all

g 2 L.40; 48; 30/C k; where k D 0; 11; 19; 29; 31:

For the cube, tetrahedron, and icosahedron, our models all can be constructed
to have reflective symmetry, so our conditions on g guarantee not only orientation-
preserving symmetry of the desired type, but also the full symmetry. Conversely, any
surface of genus g having full symmetry automatically has orientation-preserving
symmetry so g must satisfy our conditions. ut

For the cube and tetrahedron, the given formulas for g lead to a list of
excluded g. For the cube, it is g D 1; 2; 3; 4; 6; 8; 9; 10; 14; 15; 20; 22; 26; 38. For
the tetrahedron, the excluded list is g D 1; 4; 10. For the icosahedron, the list is
long, but finite.
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For prismatic symmetry, we have g � 1 .mod n/ or b > 0 and

g D hnC .b � 1/.n� 1/n D qn � r where q D hC b � 1 
 r D b � 1

Notice if r > n, we can write instead g D .q � 1/n� .r � n/ with q � 1 
 .n� r/
so we can assume r � n. If we fix n, the pattern for the genera g allowing n-fold
rotational symmetry is clear. For example, when n D 6, we first have all g � 0; 1

(mod 6). The we slowly fill in the remaining residues classes as g increases. In the
following sequence we have put the missing g in parenthesis:

g D 0; 1; .2� 4/5; 6; 7.8� 9/; 10; 11; 12; 13; .14/; 15; 16; � � �

Since we can always handle r D n � 1 using g � 1 (mod n), the largest r we have
to worry about is r D n � 2. Thus we have:

Corollary 1. Given n > 1, all surfaces of genus g > .n�3/n�.n�2/ D .n�2/2�2
can be embedded with n-fold rotational symmetry in 3-space.

In general, given a group A, we can ask for the genera g such that A acts,
preserving orientation, on the surface of genus g, where now we do not require
the action come from an embedding in 3-space. Kulkarni’s Theorem [8] shows that
there is a number n.A/ such that if A acts on the surface of genus g preserving
orientation, then g � 1 (mod n.A/) and that there is an action for all but finitely
many such g. The number n.A/ follows from the Riemann-Hurwitz equation and is
easily computed from the exponent of the Sylow p-subgroups of A, with an extra
technical condition for p D 2. In particular, a group A acts on almost all surfaces if
and only if it is almost Sylow cyclic and does not containZ2�Z4 [12]; the groupA
is almost Sylow cyclic if its Sylow p-subgroupAp is cyclic when p is odd and has a
cyclic group of index two, when p D 2. On the other hand, for any A, determining
the finite exceptions is almost impossible, even for the case of the cyclic group of
order n, when n is highly composite (see for example, [10]).

In addition to changing the group A, we can also consider immersed surfaces,
which would allow non-orientable surfaces in 3-space. That problem is consid-
ered in [9]. The situation for bordered surfaces is considered by Cavendish and
Conway [2].

2 The Clique Number of a Regular Map

Let M be a map. If u and w are vertices adjacent to v, we call uvw an angle at v.
A local orientation of the map at a vertex v of valence d defines a cyclic order
u1; u2; � � � ud to the vertices adjacent to v We define the measure of angle uivuj ,
denotedm.uivuj /, as the smaller of ji�j j and d�ji�j j; in particular,m.uivuj / �
d=2. Map automorphisms preserve angle measure, since they preserve or reverse
local orientations. If M is regular, because of the dihedral action of the stabilizer
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of v, given any angle uvw, there is an automorphism fixing v and interchanging u
and w. It follows that if uvw is a triangle (3-cycle) in G, then all its angles have the
same measure.

Theorem B. Let M be a regular map whose underlying graph G has no multiple
edges. Then the clique number of G is m D 2; 3; 4; 6. In the case m D 4, any
4-clique H is invariant under a 3-fold rotation about any vertex in H and under a
reflection in any edge of H ; in particular, the valence d of G is divisible by 3. For
m D 6, a 6-cliqueH is invariant under a 5-fold rotation about any vertex ofH and
under a reflection in any edge ofH ; in particular, d is divisible by 5. Moreover, for
m D 6, the map must be non-orientable. For both m D 4 and m D 6, the graph G
has a Km-factorization.

Proof. Suppose that G has a K4 subgraph H with vertices u; v;w; x with u; v;w
consecutive around x. Let m.uxv/ D a;m.vxw/ D b, and m.uxw/ D c. Without
loss of generality, we can assume that a � b � c. There are two possibilities: either
aC b > c, in which case aC b C c D d , or aC b D c.

Suppose first that a C b C c D d . There are four triangles in H . One has all
angles a, one b and one c. The fourth triangle has angles d � .aC b/; d � .b C c/

and d � .c C a/. Thus

d � .aC b/ D d � .b C c/ D d � .c C a/:

Since a C b C c D d , we have a D b D c D d=3. Note that in this case, H is
invariant under 3-fold rotation about x and reflection in the edge xv. Since x and v
are arbitrary vertices of H , the same is true for all vertices and edges.

Suppose instead that aC b D c. Then again, of the four triangles in H , one has
all angles a, one b, and one c. The fourth triangle has one angle a C b D c, so all
angles in the triangle have measure c. At the second angle, where angles a and c
meet, we have c D d � .a C c/, since c D a C c is impossible. Similarly, at the
third angle we have c D d � .b C c/. Thus

a D d � 2c and b D d � 2c;
so a D b D d � 2c. Since a C b D c, we have .d � 2c/ C .d � 2c/ D c, so
c D d=5. In particular, d is divisible by 5. Let u1 D u and let u2; � � � u5 be vertices in
cyclic order about x making consecutive angles of d=5, so that u1 � � � u5 are invariant
under a 5-fold rotation about x. We can assume that u2 D v and u3 D w. By the
5-fold symmetry about x, there are edges between all the vertices in u1; � � � u5, so
the subgraph induced by those vertices together with x is a 6-clique and is invariant
under 5-fold rotations about any vertex in H and under reflection in any edge.

We claim for the case m D 6, the map M is non-orientable. Suppose
not. Let H is a 6-clique and B the subgroup of Aut.M/ leaving H invariant.
As we have observed, B includes a reflection in each edge and 5-fold rotations
about every vertex, so B acts transitively on H with vertex stabilizers D5. Thus
jBj D 6 � 10 D 60. Let C 	 B be the subgroup generated by orientation-preserving



Two Notes on Maps and Surface Symmetry 353

automorphisms. Since B contains reflections, C has index two in B , so jC j D 30.
Since C contains the rotations about each of the 6 vertices, it has 24 elements of
order 5 and hence is generated by these vertex rotations, which as elements of
the symmetric group S6 are even permutations. Thus C 	 A6. Any involution
in A6 fixes two vertices u; v and hence the edge uv in H . Since jC j is even, it
has an involution, but no orientation-preserving automorphism can fix an edge. We
conclude that M is not orientable.

We have shown that any K4 subgraph H has either all angles measure d=3 or
all measure d=5; 2d=5. Since any clique of maximal size m has many different K4

subgraphs for m > 4, they cannot all have angles d=3 or d=5; 2d=5, so the only
possibility form is 4 or 6.

Form D 4; 6, we have described completely them-cliques containing any vertex
v and shown that each edge incident to m is in one and only one clique. Thus the
m-cliques give a Km-factorization of G. ut

Orientably regular maps with underlying graph Kn have been studied for many
years. By the work of Biggs [1] and James and Jones [7] (see also [11]), such maps
only occur for n D pe for prime p and are in one-to-one correspondence with
generators of the cyclic multiplicative group of the finite field GF.pe/. With this
information, it is not hard to show all such maps are chiral except for n D 22. The
methods used are entirely algebraic. Theorem B is entirely geometric and provides:

Corollary 2. Any orientably regular map with underlying graph Kn; n > 4, is
chiral.

Wilson [13] investigated non-orientable regular maps with underlying graphKn.
HIs main result again follows immediately from Theorem B:

Corollary 3. The only non-orientable regular maps with underlying graph Kn are
for n D 3; 4; 6.

We have assumed that our underlying graph G has no multiple edges. On the
other hand, multiple edges arise naturally in an algebraic treatment of maps, as
in [3]. Note that loops in G are not an issue when M is regular: by the rotational
symmetry at any vertex, if one edge is a loop, then all are, soM has only one vertex.
Our result for clique numbers also applies to maps with multiple edges:

Theorem 1. Let M be any regular map, possibly with multiple edges. Then the
clique number ofM is 2; 3; 4; 6.

Proof. Suppose that M is a regular map with multiple edges and automorphism
group A. Let the cyclic order of edges incident to vertex v be e1; � � � ed and let the
other endpoint of edge ei be ui , for i D 1; � � �d ; if there are multiple edges, the
vertices u1; � � � ud are not all distinct. Let k be the smallest value such that u1 D
uk. Then by the rotational symmetry about v, we have uiCk D ui for all i , where
subscripts are treated as residues mod d ; moreover, ui ¤ uj if ji �j j < k. Let f be
the automorphism that rotates about v by the angle of measure k (so f is a rotation
about v of order d=k). Since ui D uiCk, then f fixes not only v but all vertices
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adjacent to v. In addition, since f take ei at vertex ui to eiCk also at vertex ui , we
must have that f also performs a rotation by angle k (of order d=k) at all vertices
adjacent to v. Thus f fixes all vertices and performs a rotation of order d=k about
all vertices.

In particular, the subgroup B generated by f in A is normal, since it fixes all
vertices and is normal in Av for each vertex v. Thus the quotient map M=B is
regular with Aut.M=B/ D A=B . The underlying graph G=B for M=B has the
same vertices as G, since f fixes all vertices, and each set of n=k multiple edges
between v and ui is identified to a single edge. In particular, the clique number of
G=B is the same as the clique number of G. Since M=B is regular, that clique
number is 2; 3; 4; 6. ut

Note that in the case of multiple edges, the edges incident to v in a particular
clique H may not be symmetrically located around v, since we may choose any
edge we want from each set of multiple edges.

There are infinitely many regular orientable maps with clique number 4, and their
Petrie duals [11] give non-orientable regular maps. For example, the family:

hX; Y W X3n D Y 3n D .XY /2 D 1;X12Y 12 D 1i;
from [3] gives regular maps where the underlying graph G is K4 with each edge
replaced by nmultiple edges. A natural question to ask is whether there are infinitely
many with simple underlying graphs. Computer evidence suggests the answer is yes
(Conder, personal communication).

There are also infinitely many regular (necessarily non-orientable) maps with
clique number 6. Again, from [3], the family:

hX; Y W X3n D Y 3n D .XY /2 D 1;X60Y 60 D 1i;
gives orientably regular, reflexible maps where the underlying graph is the icosa-
hedron with each edge replaced by n multiple edges. There is a natural antipodal
automorphism (orientation-reversing involution fixing no vertices) such that the
orbit map is regular, non-orientable, with underlying graph K6 with each edge
replaced by n multiple edges. Again, a natural question to ask is whether there are
infinitely many with simple underlying graphs and the computer evidence suggests
the answer is again yes (Conder, personal communication).

Theorem B also applies to graphs, rather than maps:

Theorem C. LetG be a graph andA 	 Aut.G/ such that the action of each vertex
stabilizer Av on edges incident to v is naturally dihedral. Then the clique number of
G is m D 2; 3; 4; 6. If m 
 3, then A is vertex-transitive. If m D 4; 6, then G has a
Km factorization.

Proof. Suppose that the clique number is at least 3. We claim that A is vertex-
transitive. Indeed, by the dihedral actions of vertex stabilizers, the action of A is
edge-transitive. Moreover, G has a triangle uvw, and the dihedral action of Av

reverses the edge uw. Thus for every edge there is an a 2 A reversing the edge,
making A vertex-transitive.
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We can then use A to define an angle measure at every vertex that is preserved by
A. First, fix a vertex v and choose a generator b of the index-two cyclic subgroupBv

ofAv. Since all other vertex stabilizers are conjugate to Av and B is characteristic in
Av, we can use conjugates of b to define a cyclic ordering around every vertex that
is preserved by A, which can then be used to define angle measure.

The proof then proceeds in exactly the same way as for regular maps. ut
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11. Širàň, J., Tucker, T.: Symmetric maps. In: Beineke, L., Wilson, R.J. (eds.) Topics in Topological
Graph Theory, pp. 225–244. Cambridge University Press, Cambridge (2009)

12. Tucker, T.: Symmetry of surfaces in 3-space (in preparation)
13. Wilson, S.E.: Cantankerous maps and rotary embeddings of Kn. J. Comb. Theory Ser. B 47,

262–279 (1989)



Buildings and s-Transitive Graphs

Richard M. Weiss

Abstract A graph is s-transitive if its automorphism group acts transitively
on the set of paths of length s. This is a notion due to William Tutte who
showed in 1947 that a finite trivalent graph can never be 6-transitive. We examine
connections between the theory of s-transitive graphs and the classification of
Moufang polygons, a class of graphs exhibiting “local” s-transitivity for large values
of s. Moufang polygons are examples of buildings. Both of these notions were
introduced by Jacques Tits in the study of algebraic groups. We give an overview
of Tits’ classification results in the theory of spherical buildings (which include the
classification of Moufang polygons as a special case) and describe, in particular, the
classification of finite buildings.

Keywords Building • s-transitive graph • Moufang polygon

Subject Classifications: 20E42, 51E24

1 Introduction

Jacques Tits’ classification of spherical buildings [8], published in 1974, is one of
the great accomplishments in group theory. Starting with only a Coxeter group
and a few combinatorial/geometrical axioms, he succeeded with this result in
characterizing a large class of simple groups which includes, as a special case, all
the finite simple groups of Lie type of rank at least 3.
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In subsequent work (mainly [10] and [12]), it emerged that Tits’ theory of
spherical buildings can be described purely in terms of graph theory and that there
are great advantages in taking this point of view. In these notes, we describe the
main steps in the classification of spherical buildings in the language of graph
theory and highlight a connection to the theory of s-transitive graphs which had
been introduced earlier by W. T. Tutte in [13].

2 s-Transitive Graphs

A graph � is called s-transitive if its automorphism group acts transitively on the
set of paths of length s in � but intransitively on the set of paths of length sC 1 (in
which case the valency of � must be greater than 2). The notion of an s-transitive
graph was introduced and developed by Tutte in [13] and [14]. If a graph � is s-
transitive and has girth � (i.e. � is the length of a shortest circuit in � ), then

� 
 2s � 2:

Tutte defined a � -cage to be a connected s-transitive graph of girth � such that either
� D 2s � 2 or � D 2s � 1. If � is a � -cage, then the diameter n of � is s � 1 and
if � is even, then

� is bipartite and � D 2n. (1)

A complete graph on a set X is a 3-cage if jX j > 3 and the complete bipartite
graph on a pair of sets X and Y is a 4-cage as long as jX j D jY j > 2. The Petersen
graph is a 5-cage.

Let V be a 3-dimensional right vector space over a field or skew-fieldK , letX be
the set of 1-dimensional subspaces of V , let Y be the set of 2-dimensional subspaces
of V and let E be the set of pairs fx; yg such that x 2 X , y 2 Y and x 	 y. The
graph with vertex set X [ Y and edge set E is a 6-cage. It is also the incidence
graph of the projective plane associated with V . If jKj D 2, this graph is called the
Heawood graph.

Let W D f1; 2; 3; 4; 5; 6g, let X be the set of all 2-element subsets of W , let Y
be the set of partitions u=v=w of W into three blocks u, v and w of size 2 and let E
be the set of pairs fx; u=v=wg such that x 2 X , u=v=w 2 Y and x 2 fu; v;wg. The
graph with vertex set X [ Y and edge set E is an 8-cage. This graph is often called
Tutte’s 8-cage.

Tutte showed in [13] that the only trivalent cages are the complete graph, the
complete bipartite graph, the Petersen graph, the Heawood graph and his 8-cage. In
fact, his proof showed much more (see [6]):

Theorem 1. Let � be an arbitrary connected trivalent graph—even a tree—and
let u be a vertex of � . Suppose that G is a group acting transitively on paths of
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length s in � for some s 
 1 but not on paths of length sC 1 and that the stabilizer
Gu is finite. Then s � 5 and for each value of s, the structure of Gu is uniquely
determined.

This was a result of great originality and, in some sense, far ahead of its time. It has
been generalized in a number of directions. One generalization (proved in [16] and
[18]) is the following:

Theorem 2. Let � be an arbitrary connected graph and let u be a vertex of � .
Suppose that G is a group acting transitively on paths of length s in � for some
s 
 4 but not on paths of length s C 1 and that the stabilizer Gu is finite. Then
s D 4, 5 or 7 and for each value of s, the structure of Gu is uniquely determined in
an appropriate sense.

An important ingredient in the proof of Theorem 2 is the Theorem of Thompson-
Wielandt. Here is the relevant version of this result; see [4] or [15] for a proof.

Theorem 3. Let � be an arbitrary connected graph and let fu; vg be an edge of
� . Suppose that G is a group acting transitively on the vertex set of � and that the
stabilizerGu is finite and acts primitively on �u, the set of neighbors of u in � . Then
jGŒ1�

u;vj is divisible by at most one prime, where GŒ1�
u;v denotes the pointwise stabilizer

in G of �u [ �v.

Here now is how the proof of Theorem 2 begins. Let fu; vg be an edge of � .
Replacing G by the free amalgamated product Gu Gu;v Gv, we can assume without
loss of generality that � is a tree. Let H denote the permutation group induced by
Gu on �u. The hypotheses of Theorem 2 imply that the group H acts 2-transitively
and hence primitively on �u. It can also be deduced from the hypotheses that the
subgroup GŒ1�

u;v is non-trivial. By Theorem 3, therefore, there is a unique prime p
dividing the order of this subgroup. It follows from this that the stabilizer Hv of
a vertex v 2 �u has a non-trivial normal subgroup of order a power of p. At this
point the classification of finite 2-transitive groups (which rests on the classification
of finite simple groups) is invoked. From this it can be deduced that H contains
a normal subgroup isomorphic to the group PSL2.q/ in its natural action on
j�uj D q C 1 points. This is the conclusion reached in [18].

With this conclusion as an hypothesis, it is shown in [16] (see also [2, 3.6]) that
there is a G-compatible local isomorphism ' from the tree � to a 2.s � 1/-cage
O� . By ‘local isomorphism’ we mean that ' is a map from the vertex set of � to

the vertex set of O� such that if '.x/ D Ox, then ' induces a bijection from �x to
O� Ox, and by ‘G-compatible’ we mean that if '.x/ D '.y/, then '.xg/ D '.yg/ for

all g 2 G. It follows that G induces a group of automorphisms OG of O� and that if
Ou D '.u/, then ' induces an isomorphism from the stabilizerGu to the stabilizer OGOu.
At this point, the proof is concluded by citing the classification of 2.s � 1/-cages.
This is a special case of the classification of Moufang polygons which we describe
in the next section.
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3 Moufang Polygons

The following notion was introduced by Tits in [7].

Definition 1. A generalized n-gon is a bipartite graph � with diameter n 
 2 and
girth � such that

� D 2n:

A generalized polygon is a generalized n-gon for some n 
 2. A generalized
triangle, quadrangle, etc., is a generalized n-gon for n D 3, n D 4, etc.

By (1), a � -cage for � even is automatically a generalized n-gon for n D �=2.
Note, however, that there is no group in the definition of a generalized polygon.

We say that a graph � is thick if j�uj 
 3 for all vertices u, respectively, � is
thin if j�uj D 2, for all vertices u (so many graphs are neither thick nor thin).

Let � be a generalized n-gon for some n 
 2. Since � is bipartite, it can be
regarded as the incidence graph of a geometry G consisting of points X and lines
Y . If � is thin, the geometry G is just the set of points and lines of an ordinary
n-gon, hence the name generalized n-gon.

Suppose that n D 2 and choose x 2 X and y 2 Y . Then the distance from x to
y in � is odd because � is bipartite. Since the diameter of � is 2, it follows that x
and y are adjacent in � . We conclude that � is a complete bipartite graph.

Suppose that n D 3 and choose distinct vertices x; y both inX . Then the distance
from x to y is even and bounded by the diameter 3 of � . Hence there is a vertex
z 2 Y adjacent to both x and y. Since the girth of � is 2n D 6, the vertex z is
unique. Thus any two points of the geometry G are incident with a unique line. By a
similar argument, any two lines of G are incident with a unique point. We conclude
that � is the incidence graph of a projective plane. Conversely, the incidence graph
of an arbitrary projective plane is a thick generalized triangle. Thus a generalized
triangle is essentially the same thing as a projective plane.

This means, in particular, that there is no hope of classifying generalized
polygons. In the appendix of [8], however, Tits introduced the notion of a Moufang
polygon and asked whether it might be possible to classify them.

Definition 2. A root of a generalized n-gon � is a path of length n. To each
root ˛ D .x0; x1; : : : ; xn/, there is a corresponding root group U˛, the pointwise
stabilizer of �x1 [ � � � [ �xn�1 in G WD Aut.� /. Thus

U˛ D GŒ1�
x1;:::;xn�1

:

A generalized n-gon � is said to satisfy the Moufang condition if it is thick, n 

3 and for each root ˛ D .x0; x1; : : : ; xn/ in � , the corresponding root group U˛
acts transitively on �xnnfxn�1g. A Moufang polygon is a generalized polygon that
satisfies the Moufang condition.



Buildings and s-Transitive Graphs 361

Moufang triangles, in the guise of Moufang projective planes, were first studied
by Ruth Moufang in the 1930s, hence the name Moufang.

The automorphism group of a Moufang n-gon � does not necessarily act
transitively on the vertex set of � . If it does, however, then � is automatically
.n C 1/-transitive. It follows that a Moufang n-gon is a 2n-cage if and only if its
automorphism group acts transitively on the vertex set of � . The 2.s � 1/-cage O�
at the end of the previous section is, in fact, a Moufang n-gon with n D s � 1, and
a more accurate statement of Theorem 2 (as proved in [16] and [18]) is as follows:

Theorem 4. Let � be a thick tree and let u be a vertex of � . Suppose that G is
a group acting transitively on paths of length s in � for some s 
 4 but not on
paths of length sC1 and that the stabilizerGu is finite. Then there exists a Moufang
.s�1/-gon O� , aG-compatible local isomorphism ' from � to O� and a subgroup OG
of Aut. O� / containing all the root groups of O� such that Gu Š OG'.u/ for all vertices
u of � .

Corollary 1. Let � be a 2n-cage for some n 
 2. Then either n D 2 and � is a
complete bipartite graph or n 
 3 and � is a Moufang n-gon.

The classification of Moufang polygons was carried out in [12]. We use the rest
of this section to sketch how this classification works. The first step is the following
result [9]:

Theorem 5. Moufang n-gons exist only for n D 3, 4, 6 and 8.

It was shown in [17] that, in fact, the following holds:

Theorem 6. Let n 
 3, let � be a thick graph and let G be a subgroup of Aut.� /
such that

1. GŒ1�
x1;:::;xn�1 acts transitively on �xnnfxn�1g and

2. GŒ1�
x0;x1 \Gx0;:::;xn D 1

for all paths .x0; x1; : : : ; xn/ of length n in � . Then n D 3, 4, 6 and 8.

It is easy to see that condition (2) in Theorem 6 holds automatically if � is a
generalized n-gon. Thus Theorem 5 is a corollary of Theorem 6. If � , G and s are
as in Theorem 1 and s 
 4, then the hypotheses of Theorem 6 hold with n D s�1. In
contrast to Theorem 2, the proof of Theorem 6 does not depend on the classification
of finite simple groups (or on anything else, for that matter). Note, too, that it is not
assumed in Theorems 5 and 6 that the stabilizers are finite.

The next step in the classification of Moufang polygons is to choose a circuit ˙
of length 2n in a Moufang n-gon � and label its vertices by integers modulo 2n.
We then let ˛i denote the root .i; i C 1; : : : ; i C n/ and let Ui denote the root group
U˛i as defined in Definition 2 for all i . We set

UŒi;j � D hUi; UiC1; : : : ; Uj i
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for all i; j such that i � j and UŒi;j � D 1 if j < i . LetW D UŒ1;n�. By [12, 4.11 and
5.3], the group W acts regularly on the set of circuits of length 2n containing the
edge fn; nC 1g. Since every two edges of � are contained in a circuit of length 2n,
it follows that every vertex of � is in theW -orbit of a unique vertex of˙ and every
edge of � is in the W -orbit of a unique edge of ˙ . By [12, 7.3], the stabilizers in
W of the vertices 1; : : : ; n of ˙ are

U1; UŒ1;2�; : : : ; UŒ1;n�

and the stabilizers in W of the vertices nC 1; : : : ; 2n are

UŒ1;n�; UŒ2;n�; : : : ; Un:

It follows from these observations that the graph � can be reconstructed from the
cosets of these subgroups in W and hence that � can be reconstructed from the
.nC 1/-tuple

˝ D .W;U1; : : : ; Un/:

See [12, 7.5] for the details. We call the .nC1/-tuple˝ a root group sequence of � .
It depends on the choice of˙ and its labeling, but it is independent of these choices
up to conjugation and opposites. The opposite of the root group sequence ˝ is the
root group sequence

.W;Un; : : : ; U1/:

Every element ofW can be written uniquely as a product a1a2 � � �an with ai 2 Ui
for all i 2 Œ1; n�. Another crucial observation is that

ŒUi ; Uj � 	 UŒiC1;j�1� (2)

for all i; j such that 1 � i < j � n, where ŒUi ; Uj � denotes the subgroup generated
by the commutators Œa; b� D a�1b�1ab for all a 2 Ui and all b 2 Uj . (Thus, in
particular,

ŒUi ; UiC1� D 1 (3)

for all i such that 1 � i < n.) The commutator relations (2) determine the structure
ofW uniquely. We conclude that to describe the root group sequence˝ and thus the
graph� , it suffices to give the structure of the individual root groupsU1; : : : ; Un and
the commutator relations (2). In each case, these things are given in terms of certain
algebraic data.

Suppose first that n D 3. In this case the classification of Moufang polygons tells
us that there is an invariantK of � that is either a field, a skew-field or an octonion
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division algebra and there exist isomorphisms xi from the additive group ofK to Ui
for i D 1, 2 and 3 such that

Œx1.s/; x3.t/� D x2.st/

for all s; t 2 K . By (3), the root group sequence ˝ and hence the generalized
triangle � are uniquely determined by K . (See [12, 9.3–9.4 and 9.11] for the
definitions of quaternion and octonion division algebras.)

There are six different families of Moufang quadrangles. In the first, there is a
triple .K;L; q/, whereK is a field,L is a vector space overK and q is an anisotropic
quadratic form on L, as well as isomorphisms xi from the additive group ofK to Ui
for i D 1 and 3 and isomorphisms xi from the additive group of L to Ui for i D 2

and 4 such that ŒU1; U3� D 1,

Œx1.s/; x4.v/
�1� D x2.sv/x3.sq.v// (4)

for all s 2 K and all v 2 L and

Œx2.u/; x4.v/
�1� D x3.f .u; v// (5)

for all u; v 2 L, where f is the bilinear form associated with q. By (3),˝ and hence
� are uniquely determined by .K;L; q/.

In the second family of Moufang quadrangles, there is a triple .K;K0; �/, where
K is a skew-field, � is an involution ofK (i.e. an anti-automorphism of order 2) and
K0 is an additive subgroup of K containing 1 such that K� 	 K0 	 K� , where

K� D faC a� j a 2 Kg

and

K� D fa j a� D ag;

and s�K0s 	 K0 for all s 2 K as well as isomorphisms xi fromK0 to Ui for i D 1

and 3 and isomorphisms xi from the additive group ofK to Ui for i D 2 and 4 such
that ŒU1; U3� D 1,

Œx1.s/; x4.t/
�1� D x2.st/x3.t

� st/

for all s 2 K0 and all t 2 K and

Œx2.r/; x4.t/
�1� D x3.r

� t C t� r/

for all r; t 2 K . By (3), ˝ and hence � are uniquely determined by .K;K0; �/.
If char.K/ ¤ 2, then a D .a C a�/=2 for all a 2 K� , so K� D K� , but if
char.K/ D 2, this is not true.
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The algebraic structures for the remaining Moufang quadrangles and the
Moufang hexagons and octagons (which, by Theorem 5, is all there is) are more
complicated. We refer the reader to Chapter 16 in [12] and all the references
there to earlier chapters of [12] for details. The general pattern is, however, the
same: In each case, there is a recipe that turns an algebraic structure of a suitable
type via commutator relations into a root group sequence ˝ from which, in turn, a
unique Moufang polygon can be constructed using cosets.

Let ˝ D .W;U1; : : : ; Un/ be a root group system of a Moufang polygon � .
ThenG D Aut.� / acts transitively on the vertex set of � and hence � is a 2n-cage
if and only if there is an automorphism ' of W such that U'

i D UnC1�i for each
i 2 Œ1; n�, i.e. if and only if ˝ is isomorphic to its opposite. If n D 3 and K is the
invariant of � described above, then � is a 6-cage if and only if K is isomorphic to
its opposite. In particular, � is always a 6-cage ifK is a field or an octonion division
algebra (which always has involutions). If � is the Moufang quadrangle determined
by an anisotropic quadratic space .K;L; q/, then � is an 8-cage non-zero, if the
characteristic of K is 2, L D K and q.t/ D t2 for each t 2 K , and if K is the
field with two elements, then � is, in fact, isomorphic to Tutte’s 8-cage as described
in Sect. 2 above. A complete list of Moufang polygons whose root group system is
isomorphic to its opposite is given in [12, 37.5]. In particular, we can observe that
there exist 6-, 8 and 12-cages but no 16-cages.

Tits discovered the notion of a generalized polygon and the Moufang condition
by studying the structure of “absolutely simple” algebraic groups. In particular,
every absolutely simple algebraic groups “of relative rank 2” has a Moufang
polygon associated to it. Not all Moufang polygons come from absolutely simple
algebraic groups, however. For example, a Moufang triangle defined by a skew-field
K comes from an absolutely simple algebraic group if and only if K is finite-
dimensional over its center.

An important notion in the theory of buildings is that of a .B;N /-pair. By the
results in Chapter 5 of [5], a group G has a spherical .B;N /-pair of rank 2 if and
only if

1. There is a generalized n-gon � for some n 
 2 on which G acts; and
2. G acts transitively on the set of pairs .˙; e/, where ˙ is circuit of length 2n in
� and e is an edge of ˙ .

Given (1), condition (2) holds if and only if for each vertex u of � , the groupG acts
transitively on the set of paths of length nC 1 in � beginning at u. In other words,
G has a .B;N /-pair of rank 2 if and only if it acts locally .n C 1/-transitively on
a generalized n-gon. If � is a Moufang polygon and G is a subgroup of Aut.� /
containing all the root groups of � , then condition (2) holds. It does not follow
from conditions (1) and (2), however, that � is Moufang.

In Sect. 5 we will describe the connection between Moufang polygons and
buildings.
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4 Coxeter Complexes

Before we can introduce buildings in the next section, we need to say a few things
about Coxeter groups.

A Coxeter diagram is a graph ˘ whose edges are labeled with elements of the
set f3; 4; : : : ;1g. Let ˘ be a Coxeter diagram with vertex set S and edge set E
and for each edge fi; j g of ˘ let mij be its label. Let mij D 2 for all 2-element
subsets fi; j g of V that are not in E , let mii D 1 for all i 2 S , let R be a collection
of symbols ri , one for each i 2 S , and let W denote the corresponding Coxeter
group

hR j .ri rj /mij D 1 for all i; j 2 Si:

By [19, Thm. 2.3], the elements ofR have order 2 and ri ¤ rj if i ¤ j . In particular,
we can identify R with its image in W .

Let ˙˘ denote the Cayley graph associated with this data. Thus˙˘ is the graph
whose vertices are the elements of W and whose edges are the 2-element subsets
fx; yg of W such that x�1y 2 R. We endow ˙˘ with the edge coloring obtained
by assigning to each edge fx; yg of W the color i 2 S if and only if x�1y D ri .
Thus S is simultaneously the set of vertices of ˘ and the set of colors on the edges
of ˙˘ . We call ˙˘ the Coxeter complex associated with ˘ . (˙˘ is not, in fact, a
complex, but it is easy to see that our definition of the Coxeter complex is equivalent
to the more traditional notion of the Coxeter complex.)

The edge-colored graphs˙˘ have many remarkable properties. We mention only
one, a proof of which can be found in [19, 3.11]:

Proposition 1. Let˙ D ˙˘ be a Coxeter complex and let fx; yg be an edge of˙ .
Let ˛ be the set of vertices nearer to x than to y in˙ and let ˇ be the set of vertices
nearer to y than to x. Then the vertex set W of ˙ is partitioned by ˛ and ˇ. A root
of ˙ is a subset of W of the form ˛ or ˇ for some edge fx; yg.

Suppose, for example, that jS j D 2 and jW j <1. In this case,W is generated by
two elements of order 2 and ˙ D ˙˘ is a circuit of length 2n for some n 
 2 with
two alternating colors on its edges. Let e and f be an opposite pair of edges of ˙ .
The roots associated with e are the vertex sets of the two connected components of
the graph obtained from˙ by deleting e and f (but without deleting any vertices).
Note that if ˙ is the edge-graph of a 2n-circuit in a generalized 2n-gon, then these
two roots are roots in the sense of Definition 2.

A Coxeter diagram ˘ is called spherical if the corresponding Coxeter complex
˙˘ is finite. Coxeter himself classified spherical Coxeter diagrams. Their connected
components are the Coxeter diagrams underlying Dynkin diagrams, all Coxeter
diagrams with at most 2 vertices but without the label 1, plus two more Coxeter
diagrams, H3 and H4. These last two are the Coxeter diagrams obtained from the
Coxeter diagrams B3 and B4 by replacing the unique label 4 by a 5.
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5 Spherical Buildings

We fix an arbitrary Coxeter diagram ˘ and let S and ˙˘ be as in the previous
section.

Suppose � is an arbitrary graph whose edges are colored by elements of the set
S , one color per edge. For each subset J of S , we let �J denote the graph � with
all edges deleted whose color is not in J (but with no vertices deleted). A J -residue
of� for some J 	 S is a connected component of�J . Thus for each subset J of S
and each vertex x of�, there is a unique J -residue of� containing x. In particular,
for a given J , any two J -residues of � are disjoint. A residue of � is a J -residue
for some J 	 S .

A path .u0; u1; : : : ; um/ of length m in a graph � is called minimal if there is no
path of length less than m in � from the vertex u0 to the vertex um. We say that
a subset X of the vertex set of a graph � is convex in � if for every two vertices
x; y in X and every minimal path .u0; u1; : : : ; um/ from u0 D x to um D y, all the
intermediate vertices u1; : : : ; um�1 also lie in X .

There are several ways to define a building. Given [19, 4.2 and 8.9], it is not
difficult to show that the following is equivalent to the definition given in [19, 7.1]:

Definition 3. A building of type˘ (for a given Coxeter diagram˘ with vertex set
S ) is a graph � whose edges are colored by elements of the set S satisfying the
following properties:

1. The fig-residues of� are complete graphs with at least 2 vertices for each i 2 S .
2. Every two vertices of � are contained in some subgraph that is isomorphic to
˙˘ (as an edge-colored graph).

3. The vertex set of every subgraph isomorphic to ˙˘ is convex in �.

The subgraphs of � that are isomorphic to ˙˘ are called apartments of �. The
fig-residues for some i 2 S are called panels or i -panels.

Let� be a building of type˘ . The vertices of� are, for historical reasons, called
chambers. By condition (1) of Definition 3, J is precisely the set of colors that
appear on the edges of an arbitrary J -residue. Thus J is an invariant of a J -residue.
The set J is called the type of a J -residue (or of a J -panel) and the cardinality jJ j
is called the rank of a J -residue. Thus panels are residues of rank 1. It follows from
condition (2) in Definition 3 that � is connected and hence � itself is the only S -
residue and its rank is jS j. If jS j D 1, then � consists of a single panel and thus �
is just a complete graph with all its edges painted the same color.

Suppose that jS j D 2 and let n be the label on the one edge of the Coxeter
diagram˘ if there is an edge; otherwise let n D 2. Suppose first that n <1. In this
case, an apartment of � is a circuit of length 2n whose edges display, alternatingly,
the two colors in S . Let � be the graph with vertex set the set of panels of�, where
two panels are adjacent in � if and only if they contain a chamber in common.
Distinct panels of the same type are disjoint. Therefore � is a bipartite graph.
Apartments of � correspond to circuits of length 2n in � . From condition (2) in
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Definition 3, it follows that the diameter of � is at most n and from condition (3),
that the girth of � is 2n. This is enough to deduce that � is a generalized n-gon.
This construction is also reversible. In other words, a building of rank 2 with finite
apartments is essentially the same thing as a generalized polygon. If the label n
equals 1, on the other hand, then � is a tree and the apartments are the connected
subgraphs of valency 2.

For an elementary example of a building of arbitrary rank r with finite apartments
arising from a vector space of dimension r C 1, see [19, 7.4].

A building � is called irreducible if its Coxeter diagram ˘ is connected. All
buildings are direct products of irreducible buildings in an appropriate sense, so it
is, for most purposes, sufficient to study irreducible buildings. A building� is called
thick if all its panels contain at least 3 chambers, thin if all its panels contain exactly
2 chambers. Thus˙˘ is an example of a thin building of type ˙˘ and, in fact, it is
the only thin building of type˙˘ . A building� is called spherical if its diagram˘

is spherical. In other words, a spherical building is a building whose apartments are
finite.

Every J -residue of a building of type ˘ (for a given subset J of S ) is itself
a building. The type of this building is ˘J , where ˘J denotes the subdiagram of
˘ spanned by J . Thus it makes sense to say whether a residue is irreducible or
spherical: A J -residue is irreducible if and only if the diagram ˘J is connected,
and a J -residue is spherical if and only if the diagram ˘J is spherical. Thus every
residue of a spherical building is spherical, but it is, of course, not true that every
residue of an irreducible building is irreducible.

If jJ j D 2, then a J -residue is irreducible if and only if the two elements of J are
joined by an edge in ˘ and a J -residue is spherical if and only if the two elements
of J are not joined by an edge labeled 1.

For each chamber x of �, there is a unique irreducible residue of rank 2
containing x corresponding to each edge of ˘ . We denote by

�2.x/ (6)

the subgraph of � spanned by the union of the chamber sets of all these irreducible
rank 2 residues.

Suppose that jJ j D 2 and that ˘J is spherical. Let n be the label on the unique
edge of ˘J if ˘J is connected; if ˘J is not connected, we set n D 2. Then every
J -residue is a building of rank 2 and of type ˘J . Hence every J -residue is the
building associated with a generalized n-gon, as explained above. In fact, we can
simply think of these residues as generalize n-gons.

A root of a building � of type ˘ is the image under an isomorphism from ˙˘

into � of a root of ˙˘ as defined in Proposition 1. Thus a root is always contained
in an apartment; in fact, roots are contained in many apartments as long as � is
thick. For each root ˛ of �, the root group U˛ is the pointwise stabilizer in Aut.�/
of the set of chambers contained in some panel containing two chambers of ˛. A
building is called Moufang if it is irreducible, thick, spherical and of rank at least 2
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and if for each root ˛, the root group U˛ acts transitively on the set of apartments of
� that contain ˛. If jS j D 2, the notion of a root group and the Moufang property
coincide with the notions introduced in Sect. 3.

The main result of [8] is a classification of thick, irreducible spherical buildings
of rank at least 3. (We have already observed that buildings of rank 2, namely
generalized polygons, include all projective planes and are not, therefore, in any
reasonable sense classifiable without additional hypotheses.) This classification
rests on the following deep result [8, 4.1.2] of Tits:

Theorem 7. Let � and O� be two thick irreducible spherical buildings of the same
type˘ and let x and Ox be chambers of � and O�. Suppose that ' is an isomorphism
from �2.x/ to O�2. Ox/—as defined in (6)—mapping x to Ox. Then ' extends to an
isomorphism from � to O�.

In other words, a building � with all the adjectives in Theorem 7 is uniquely
determined by the subgraph �2.x/. The following is an important consequence of
Theorem 7:

Theorem 8. Every thick irreducible spherical building of rank n 
 3 as well as all
the irreducible residues of rank at least 2 of such a building are Moufang.

For a self-contained proof of these remarkable results carried out entirely in the
language of graph theory, see [19, 10.2, 11.6 and 11.8].

Theorems 7 and 8 tell us that, given the classification of Moufang polygons,
to classify thick irreducible spherical buildings of rank n 
 3, it suffices for each
spherical Coxeter diagram˘ to examine how Moufang polygons, one for each edge
of˘ , can be assembled to form the subgraph�2.x/ of a building�. (Note that two
rank 2 residues contained in�2.x/ overlap in a panel if their types have a nonempty
intersection, so the various rank 2 residues really do have to be “assembled” to form
a viable �2.x/.)

Suppose first that ˘ is the Coxeter diagram An with n 
 3. Then all the
irreducible rank 2 residues are Moufang triangles. It turns out that they must all be
isomorphic to each other, that there is just one way to assemble them into a �2.x/

and that the division ring K defining these triangles must be a field or a skew-field
(i.e. not an octonion division algebra). In other words, for each field or skew-field
K , there is just one building of type An “defined over K .” The situation is even
simpler when ˘ is the one of the diagramsDn, E6, E7 or E8. In these cases, there
is exactly one building of a given type ˘ for each commutative field K .

Suppose next that˘ is the Coxeter diagramBn (which is the same as the Coxeter
diagram Cn) with n 
 3. In this case, there is exactly one irreducible residue R1
containing a given chamber x which is a generalized quadrangle and one irreducible
rank 2 residue R2 containing x and intersectingR1 in a panel P . Suppose that R1 is
isomorphic to the quadrangle defined by an anisotropic quadratic space .K;L; q/.
It turns out that there is exactly one way to assemble a �2.x/ starting with the root
group sequence

˝ D .W;U1; U2; U3; U4/ (7)
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determined by .K;L; q/ and Eqs. (4) and (5) in its “standard orientation,” in which
ŒU1; U3� D 1. In the corresponding building, which we denote by Bn.K;L; q/, the
root groups acting on the panel P are those parametrized by the additive group of
K and all the other irreducible rank 2 residues containing the chamber x, including
R2, are isomorphic to the Moufang triangle defined by K . If, on the other hand, we
use ˝op rather than ˝ to assemble a �2.x/, we obtain as second building of type
Bn, which we call Cn.K;L; q/, in which the root groups acting on the panel P are
those parametrized by the additive group of L, but this second building Cn.K;L; q/
exists only when .K;L; q/ is in one of the following cases:

1. L is a field of characteristic 2, K is a subfield containing L2 and q.x/ D x2 for
all x 2 L.

2. L D K and q.x/ D x2 for all x 2 L.
3. L=K is a separable quadratic extension and q is the norm of this extension.
4. L is a quaternion division algebra with centerK and q is the reduced norm of L.
5. L is an octonion division algebra with centerK and q is the reduced norm of L.

In each of these five cases, all the irreducible rank 2 residues of Cn.K;L; q/
containing x other than R1, including R2, are isomorphic to the Moufang triangle
defined by L. Furthermore, case (5) can only occur when n D 3, there is a unique
building F4.�/ of type F4 for each anisotropic quadratic space � D .K;L; q/ in
one of the cases (1)–(5), the building F4.�/ has residues isomorphic to B3.K;L; q/
and others isomorphic to C3.K;L; q/, and these are the only buildings of type F4.
For some anisotropic quadratic spaces � D .K;L; q/, the root group sequences˝
and ˝op are isomorphic. In these cases, � is in case (1) or (2), char.K/ D 2 and
Cn.�/ is isomorphic toBn.�/. In general, however,Bn.�/ andCn.�/ are different.

There is just one further family of buildings of type Bn for n 
 3. The buildings
in this family are defined by pseudo-quadratic spaces (possible of dimensionm D 0)
over a skew-field with involution. This is the family in [20, 30.14(iv)] for m D 0

and [20, 30.14(vii)] form > 0. See also Chapter 11 of [12].
This completes the list of thick irreducible spherical buildings of rank n 
 3. In

particular, there are no thick buildings of type H3 and H4. If there were, then by
Theorem 8, there would be residues which are Moufang 5-gons, but by Theorem 5,
no such Moufang polygons exist.

When he published [8], Tits still had no proof that thick buildings of type H3

or H4 do not exist. A short time later, he introduced the Moufang property and
showed that there are no Moufang pentagons precisely in order to eliminate these
two diagrams. Carrying this out, Tits noticed that he could extend his methods to
yield Theorem 5 and it was this success that led him to conjecture that Moufang
polygons could, in fact, be classified.

In every case, the relevant algebraic structure is defined in terms of a field or
a skew-field or an octonion division algebra K . The ring K is an invariant of the
corresponding building �. We call it the defining field of �, even though it is not
always a field. (This does not coincide entirely with the notion of defining field as
it is used in the theory of algebraic groups.) See [20, 30.29–30.31] for details. We
will refer to the defining field K in Sect. 7.
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6 Finite Buildings

Let � be a thick irreducible spherical building of rank n 
 2 and suppose that � is
Moufang if n D 2. (By Theorem 8, the Moufang property is automatic if n > 2.)
Let G� be the subgroup of Aut.�/ generated by all the root groups of�. With only
three exceptions, G� is a simple group. In the three exceptions, n D 2 and G� is
isomorphic to PSp4.2/,

2F4.2/ or G2.2/.
Now suppose that G is an arbitrary non-abelian simple group. Then the classifi-

cation of finite simple groups tells us that one of the following holds:

1. G Š PSL2.q/, U3.q/, Suz.q/ or Ree.q/ for some prime power q.
2. G is isomorphic to the group G� generated by all the root groups for some finite

thick irreducible building of rank n 
 2 satisfying the Moufang condition if
n D 2.

3. G is an alternating group or one of the 26 sporadic groups.

Each group in case (1) is a 2-transitive permutation group on a set X having a
conjugacy class of subgroups fUx j x 2 Xg such that for each x 2 X , Ux fixes
x and acts sharply transitively on Xnfxg. A permutation group satisfying these
properties is called a Moufang set. Moufang sets have not been classified without
the assumption of finiteness. Although considerable progress toward a classification
of arbitrary Moufang sets has been made in recent years (see, in particular, [3]), this
seems to be a very difficult problem.

The finite simple groups in cases (1) and (2) are the groups of Lie type. More
precisely, the groups in case (1) are the groups of Lie type of rank n D 1 and
those in case (2) are the groups of Lie type of rank n. The groups in case (1) also
have associated buildings, but these buildings are of rank 1. As we observed in the
previous section, buildings of rank 1 are simply complete graphs. The underlying
set of chambers of this building is precisely the set X on which the group forms a
Moufang set.

A finite building has, of course, finite apartments and is thus automatically
spherical. As we have seen in the previous section, thick irreducible buildings of
rank n 
 2 satisfying the Moufang condition if n D 2 can all be described in terms
of suitable algebraic data. The assumption that the building (and hence the algebraic
data) is finite imposes severe restrictions on the types of algebraic structures that can
occur, as we now explain.

Suppose, to start, that the Coxeter diagram ˘ of our building � is An, Dn or
En for n D 6, 7 or 8. There are no finite non-commutative skew-fields, no finite
octonion division algebras and just one field Fq for each prime power q. Thus � is
uniquely determined by ˘ and a prime power q. The corresponding simple groups
G� are

An.q/ D PSLnC1.q/;Dn.q/ D OC2n.q/ and En.q/:

Suppose that ˘ D F4. We saw in the last section that � is determined by
an anisotropic quadratic space .K;L;Q/ in one of five cases (1)–(5). (We use
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an uppercase Q here rather than q for the quadratic form, since in this section q
is always a prime power.) In fact, � depends only on the similarity class of this
quadratic space. By finiteness K D Fq for some prime power q. Furthermore, there
are only two anisotropic quadratic spaces over Fq up to similarity: either L D K

and Q.x/ D x2 for all x 2 L or L D Fq2 and Q is the norm of the extension
L=K . Each of them does, in fact, give rise to a unique building of type F4. The
corresponding simple groups are

F4.q/ and 2E6.q
2/:

(The superscript in the name 2E6.q2/ indicates that this group can be constructed as
the centralizer in the groupE6.q2/ of an outer automorphism of order 2 that involves
the element of order 2 in the Galois group of the extension L=K . In fact, we can
interpret the rank 1 groupsU3.q/, Suz.q/ and Ree.q/ analogously as 2A2.q2/, 2B2.q/
and 2G2.q/, where B2.q/ and G2.q/ are as described below.)

Suppose that˘ D G2. The relevant algebraic structure in this case is a “quadratic
Jordan division algebra of degree 3;” see Chapter 15 of [12] for details. Let J be the
underlying vector space over a field K of one of these algebras. In the finite case,
K D Fq for some prime power q, either J D K or J D Fq3 and in both cases the
Jordan algebra is uniquely determined by q. The corresponding simple groups are

G2.q/ and 3D4.q
3/:

Suppose that n D 2 and that the Moufang polygon associated with � is
an octagon. In this case, � is defined by a pair .K; �/, where K is a field of
characteristic 2 and � is an endomorphism of K whose square is the Frobenius
map x 7! x2. In the finite case, K is the field with q D 2m elements for some odd
m and for each odd m, the endomorphism � is unique. The corresponding simple
group is

2F4.q/:

Suppose next that � is one of the two buildings Bn.K;L;Q/ or Cn.K;L;Q/
for some anisotropic quadratic space .K;L;Q/ described in Sect. 5. Then K D Fq

for some prime power q and, as in the case F4, either L D K and Q.x/ D x2 or
L D Fq2 and Q is the norm of the extension L=K . If jLj D q, the simple groups
coming from Bn.K;L;Q/ and Cn.K;L;Q/ are

O2nC1.q/ and PSp2n.q/:

and when jLj D q2, they are

O�2nC2.q/ D 2DnC1.q2/ and U2n.q/ D 2A2n�1.q2/:

If L D K and char.K/ D 2, then the root group sequence ˝ in (7) is isomorphic
to its opposite and hence Bn.K;L;Q/ is isomorphic to Cn.K;L;Q/. Therefore
O2nC1.q/ Š PSp2n.q/ for q even. When n D 2, this is the group referred to as
B2.q/ above.
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There is just one more family of finite buildings with Coxeter diagram˘ D Bn,
one for each prime power q. These are the buildings described in [20, 30.14(vii)]
that are finite. They yield the simple groups

U2nC1.q/ D 2A2n.q
2/:

These are the only finite buildings of type Bn not all of whose root groups are
abelian. Let q be a prime power and let � be the corresponding building. The
non-abelian root groups of � can be described as follows. Let L=K be the unique
quadratic extension with jKj D q, let N be the norm of this extension, let � be
the unique non-trivial element in Gal.L=K/, let ˇ D ˛ � ˛� for some ˛ 2 L not
contained in K and let S be the set f.a; b/ 2 L � L j ˛N.a/ � b 2 Kg endowed
with the multiplication

.a; b/ � .c; d / D .aC c; b C d C ˇa�c/:

Then S is a group of order q3 whose center is .0;K/, where

.a; b/�1 D .�a;�b�/

for all .a; b/ 2 S . Every root group of� is isomorphic either to S or to the additive
group of K .

7 Affine Buildings

Another celebrated result of Tits is his classification of affine buildings in [11]. A
connected Coxeter diagram is called affine if it is the Coxeter diagram QXn underlying
the extended Dynkin diagram attached to the Dynkin diagramXn forX D A, B , C ,
D, E , F or G and for some n 
 1, and a building with Coxeter diagram˘ is affine
if each connected component of ˘ is affine. (See the figure on page 1 of [20].)

Suppose that # is a thick irreducible affine building. Thus its type ˘ is QXn for
some X and n. The apartments of # have a natural embedding into a Euclidean (or
affine) space of dimension n. For this reason, affine buildings are sometimes called
Euclidean buildings. The principle structural feature of the building # (apart from
its apartments and residues) is its building at infinity, � WD #1. The building �
is thick and of type Xn and thus spherical and irreducible. (If Xn D A1, then # is
a tree, �, a building of rank 1, is the set of ends of this tree and the apartments of
# , which are the connected subgraphs of valency 2, can be thought of as Euclidean
spaces of dimension 1.) We call # a Bruhat-Tits building if its building at infinity
� satisfies the Moufang condition (which requires that n 
 2). These are the
buildings studied systematically in [1]. By Theorem 8,# is automatically a Bruhat-
Tits building if n 
 3, but not if n D 2. What Tits showed is that # is uniquely
determined by � if n 
 2 and that a given thick, irreducible spherical building
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satisfying the Moufang condition is the building at infinity of a Bruhat-Tits buildings
if and only if the defining field K of � as defined at the end of Sect. 5 above is
complete with respect to a discrete valuation. (This statement is not quite accurate
if the algebraic data determining � is infinite dimensional or in certain other ways
“exotic”, but it is not so far from begin accurate. See Chapter 27 of [20] for exact
statements.) Thus the theory of Bruhat-Tits buildings brings out deep connections
not just between group theory and geometry but number theory as well.

Of particular interest both to number theorists and to differential geometers is the
case that # is locally finite (in the usual sense of graph theory). This corresponds
to the special case that the field K is a local field, by which we mean not only that
K is complete with respect to a discrete valuation, but also that the residue field of
K is finite. Every local field is a finite extension of a p-adic field for some prime p
or a field of Laurent series over a finite field. In the locally finite case, it is possible
to carry out a precise classification of all the possible algebraic structures that can
occur in the spirit of the previous section. For example, if .K;L; q/ is an anisotropic
quadratic space andK is a local field, then dimK L � 4 and if dimK L D 4, then q is
the reduced norm of a quaternion division algebra with center K and, furthermore,
there is only one such quaternion division algebra. See Chapter 28 of [20] for all the
details.
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