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4.1 Fundamental Assumptions in OMA

The expression Operational Modal Analysis means the class of modal identification

methods based on response measurements only. This discipline has been

systematized in the last two decades but early applications can be traced back to

the beginning of modal testing in the 1960s. At that time output-only modal

identification was referred to as ambient vibration testing. The first applications

of OMA were mainly based on the analysis of PSDs and the identification of

Operational Deflection Shapes (ODSs). An ODS represents the deflection of a

structure at a particular frequency under a generic input and it is usually the result

of the contribution of different modes. However, under certain assumptions, which

are going to be illustrated in Sect. 4.4.1, ODSs are a close estimate of the actual

mode shapes. In the 1990s a number of methods working in time domain were

developed and applied in combination with correlation functions, leading to the

so-called Natural Excitation Techniques (NExT) for output-only modal testing.

In the same period the use of ARMA models for modal parameter estimation,

first suggested in the late 1970s, started spreading. An increasing number of

applications appeared in the literature but output-only modal identification was

not fully developed and widely accepted as a reliable source of information,

yet. However, at the end of the 1990s new effective output-only modal identifi-

cation techniques, such as the Frequency Domain Decomposition (FDD) and the

Stochastic Subspace Identification (SSI), became available, overcoming the

limitations of the previous techniques in dealing with closely spaced modes and

noise. Nowadays, OMA is a widely accepted tool for modal identification, with

several successful applications in civil engineering (bridges, buildings, pedestrian

bridges, historical structures, offshore platforms, wind turbines, dams, stadia),
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mechanical and industrial engineering (ships, trucks, car bodies, engines, rotating

machineries), aerospace engineering (in-flight modal identification of aircrafts and

shuttles, studies about flutter).

OMA is based on the following assumptions:

• Linearity (the response of the system to a given combination of inputs is equal

to the same combination of the corresponding outputs),

• Stationarity (the dynamic characteristics of the structure do not change over

time, so that the coefficients of the differential equations governing the dynamic

response of the structure are independent of time),

• Observability (the sensor layout has been properly designed to observe the

modes of interest, avoiding, for instance, nodal points).

Moreover, unlike traditional modal testing where the input is controlled, OMA is

based on the dynamic response of the structure under test to noncontrollable and

immeasurable loadings such as environmental and operational loads (traffic, wind,

microtremors, and so on). As a consequence, some assumptions about the input are

needed. If the structure is excited by white noise, that is to say, the input spectrum

is constant, all modes are equally excited and the output spectrum contains full

information about the structure. However, this is rarely the case, since the excitation

has a spectral distribution of its own. Modes are, therefore, weighted by the spectral

distribution of the input and both the properties of the input and the modal parameters

of the structure are observed in the response. Additionally, noise and eventual

spurious harmonics due to rotating equipment are observed in the response. Thus,

in the general case, the structure is assumed to be excited by unknown forces that are

the output of the so-called excitation system loaded by white noise (Fig. 4.1). Under

this assumption, the measured response can be interpreted as the output of the

combined system, made by the excitation system and the structure under test in

series, to a stationary, zero mean, Gaussian white noise.

Since the excitation system and the structure under test are in series, the FRF of

the combined system is the product their respective FRFs:

Hc ωð Þ ¼ Hf ωð ÞHs ωð Þ ð4:1Þ

where Hc(ω), Hf(ω), and Hs(ω) are the FRFs of the combined system, the excitation

system, and the structure under test, respectively. In fact, for each subsystem,

output and input are related by the following equations:

Fig. 4.1 The combined system

104 4 Output-only Modal Identification



F ωð Þ ¼ Hf ωð ÞN ωð Þ ð4:2Þ
Y ωð Þ ¼ Hs ωð ÞF ωð Þ ð4:3Þ

where N(ω), F(ω), and Y(ω) denote the Fourier transforms of the white noise input

to the excitation system, the excitation system output, and the structure output,

respectively. In this context, the measured response includes information about the

excitation system and the structure under test but themodal parameters of the structure

are preserved and identifiable, and the characteristics of the excitation system have no

influence on the accuracy of modal parameter estimates (Ibrahim et al. 1996).

The discrimination between structural modes and properties of the excitation system

is possible since the structural system has a narrowband response and time invariant

properties, while the excitation system has a broadband response and it may have

either time varying or time invariant properties. The estimation of the modal model

(Sect. 4.2.1) of the structure gives the opportunity to estimate also the unknown forces,

according to (4.3).

The assumption of broadband excitation ensures that all the structural modes in

the frequency range of interest are excited. Assuming that the combined system is

excited by a random input, the second order statistics of the response carry all the

physical information about the system (Chap. 2) and play a fundamental role in

output-only modal identification. The focus on second order statistics is justified by

the central limit theorem. In fact, the structural response is approximately Gaussian in

most cases, no matter of the distributions of the (independent) input loads, which are

often not Gaussian. The spatial distribution of the input also affects the performance

of OMA methods, in particular in the presence of closely spaced modes (Herlufsen

et al. 2005). A distribution of random in time and space inputs provides better modal

identification results (Herlufsen et al. 2005). In fact, the identification of closely

spaced modes requires that the rank of the excitation PSD matrix is larger than 1 and,

therefore, multiple uncorrelated inputs are applied (Chap. 1). The presence of

measurement noise and spurious harmonics in response measurements requires

appropriate data processing to eventually mitigate their effects and discriminate

them from actual structural modes.

4.2 Structural Dynamics Models

4.2.1 Frequency Response and Impulse Response

The dynamic behavior of a structure can be represented either by a set of differen-

tial equations in time domain, or by a set of algebraic equations in frequency

domain. Equations of motion are traditionally expressed in time domain, thus

obtaining, for a general MDOF system, the following set of linear, second order

differential equations expressed in matrix form:

M½ � €y tð Þf g þ C½ � _y tð Þf g þ K½ � y tð Þf g ¼ f tð Þf g ð4:4Þ
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where €y tð Þf g, _y tð Þf g and {y(t)} are the vectors of acceleration, velocity, and

displacement, respectively; [M], [C], and [K] denote the mass, damping, and

stiffness matrices; {f(t)} is the forcing vector. This matrix equation is written for

a linear, time invariant ([M], [C] and [K] are constant), observable system with

viscous damping. It describes the dynamics of the NDOF discrete DOFs of the

structure and it is usually referred to as the spatial model. The definition of the

spatial model (of mass, stiffness, and damping properties) is the first step in

theoretical analyses and it usually requires a large number of DOFs (some order

of magnitude larger than the number of DOFs required for an accurate experimental

model) in order to adequately describe the dynamic behavior of the structure.

Equations of motion, which are coupled in this formulation, can be decoupled

under the assumption of proportional damping by solving an eigenproblem. As a

result, the complete solution is obtained by superposition of eigensolutions. This is

a standard formulation of the dynamic problem reported in several structural

dynamics and modal analysis books (Chopra 2000, Ewins 2000, Heylen

et al. 1998).

The matrix differential equation of (4.4) becomes a set of linear algebraic

equations by applying the Fourier transform and its properties (Chap. 2):

�ω2 M½ � þ iω C½ � þ K½ �� �
Y ωð Þf g ¼ F ωð Þf g ð4:5Þ

where {Y(ω)} and {F(ω)} are the Fourier transforms of {y(t)} and {f(t)}, respec-
tively; i is the imaginary unit (Chap. 2). A linear time-invariant system can be,

therefore, represented through its FRF, which is given by the ratio between the

Fourier transforms of the output and the input. Equation (4.5) can be rewritten as:

Z ωð Þ½ � Y ωð Þf g ¼ F ωð Þf g ð4:6Þ
by adopting the following position:

�ω2 M½ � þ iω C½ � þ K½ � ¼ Z ωð Þ½ �: ð4:7Þ
According to its definition, the FRF is therefore given by:

H ωð Þ½ � ¼ Z ωð Þ½ ��1 ¼ adj Z ωð Þ½ �ð Þ
Z ωð Þj j ð4:8Þ

with adj([Z(ω)]) and jZ(ω)j the adjoint matrix and the determinant of the dynamic

stiffness matrix [Z(ω)], respectively; the FRF matrix carries all the information about

the inertial, elastic, and energy dissipating properties of the structure ((4.7) and (4.8)).

The FRF can be also expressed in terms of modal parameters through a partial

fraction expansion as (refer to Ewins 2000, and Heylen et al. 1998 for more details):

H ωð Þ½ � ¼
XNm

r¼1

Rr½ �
iω� λr

þ Rr½ ��
iω� λ�r

¼
XNm

r¼1

Qr ϕrf g ϕrf gT
iω� λr

þ Q�
r ϕrf g� ϕrf g�T
iω� λ�r

ð4:9Þ
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where Nm denotes the number of modes, {ϕr} is the mode shape, Qr holds the

information about the modal scaling factor, and λr¼ σr+ iωd,r is the pole of the r-th

mode holding the information about damped frequency fd,r¼ωd,r/(2π) and damping

ratio ξr ¼ �σr=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2r þ ω2

d, r

q� �
of the r-th mode. The structure of the FRF matrix

expressed by (4.9) highlights some useful results for modal analysis. First of all,

(4.9) shows that each mode gives a contribution to the response of the system at any

frequency. Thus, it is impossible to excite only one mode of a structure by means of

a single frequency sine wave (Richardson and Schwarz 2003). However, near a

resonance this summation can be approximated by the term related to the

corresponding mode. SDOF identification methods (Sect. 4.3) are based on this

assumption. Moreover, (4.9) shows that every element of the FRF matrix has the

same denominator. Thus, the eigenvalues (poles) of the system are given by the

common denominator and they can be estimated either from any individual FRF or

from multiple FRFs measured on the same structure. The selected approach leads to

the classification of modal analysis techniques as local or global, respectively. The

residue matrix [Rr], which is a complex-valued matrix basically given by an outer

product of the mode shape vector with itself (Heylen et al. 1998):

Rr½ � ¼ Qr ϕrf g ϕrf gT ð4:10Þ
holds the information about mode shapes.

The relation between input and output through the FRF matrix:

Y ωð Þf g ¼ H ωð Þ½ � F ωð Þf g ð4:11Þ
can be manipulated to obtain a fundamental equation of OMA. In fact, taking into

account the definition of PSD and the properties of transpose (Chap. 2), the product

{Y(ω)}*{Y(ω)}T can be computed and the following relation between PSD matrix

of the output and FRF matrix can be obtained:

SYY ωð Þ½ � ¼ H ωð Þ½ �� SFF ωð Þ½ � H ωð Þ½ �T : ð4:12Þ
Assuming that the PSDmatrix of the input is constant (as reported in Sect. 4.1, in

OMA the input to the combined system is a stationary, zero mean Gaussian white

noise), the output PSD matrix carries the same information and can be expressed in

pole-residue form as the FRF matrix:

SYY ωð Þ½ � ¼
XNm

r¼1

ϕrf g γrf gT
iω� λr

þ ϕrf g� γrf gH
iω� λ�r

þ γrf g ϕrf gT
�iω� λr

þ γrf g� ϕrf gH
�iω� λ�r

ð4:13Þ

where {γr} is the operational reference vector associated to the r-th mode: it

corresponds to the modal participation vectorQr{ϕr}
T appearing in the pole-residue

form of the FRF matrix but, unlike this, it depends on all the modal parameters of

the system, the input locations, and the input correlation matrix (Peeters 2000).
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In (4.13) the poles hold the information about natural frequencies and damping

ratios, while the residues hold the information about the mode shapes. However,

since the input is not measured, only un-scaled mode shapes can be obtained.

Equation (4.13) clearly shows that, for each mode, the output PSD provides four

poles in complex conjugate pairs (λr, λr
*, � λr, � λr

*).

Taking into account that FRF and IRF on one hand, and spectral density

functions and correlation functions on the other hand are Fourier transform pairs,

similar analogies are possible between IRFs and correlation functions in the

framework of OMA. In fact, in time domain the dynamic response of a structure

to a generic input is determined by the IRF, whose mathematical expression:

h tð Þ½ � ¼
XNm

r¼1

Rr½ �eλr t þ Rr½ ��eλ�r t� � ð4:14Þ

shows evident analogies with the mathematical structure of the FRF reported in

(4.9). The poles hold the information about natural frequencies and damping ratios,

while the information about the mode shapes is in the [Rr] matrices.

In the output-only case and under the same assumptions about the input as

above, it is possible to show (James et al. 1992, James et al. 1995) that also the

correlation function can be expressed as a sum of complex exponentials:

Ryy τð Þ� � ¼
XNm

r¼1

ϕrf g γrf gTeλrτ þ ϕrf g� γrf gHeλ�r τ� �
τ � 0

XNm

r¼1

γrf g ϕrf gTe�λr τj j þ γrf g� ϕrf gHe�λ�r τj j� �
τ < 0

8>>>><>>>>: : ð4:15Þ

The poles λr provide the natural frequencies and damping ratios, while the

information about the mode shapes is in the residue matrices. As with the PSD

matrix, only un-scaled mode shapes can be obtained from output-only modal

identification based on correlation functions. It is interesting to note that the causal

part (positive lags) of the correlation functions contains the stable poles (σ< 0)

while the noncausal part (negative lags) contains the unstable poles (σ> 0).

Time domain modal identification methods usually identify the modal

parameters from the causal part only, thus reducing the total number of poles by

a factor 2. Moreover, since the modal decomposition of the causal part of the

correlation functions and that of IRFs are very similar, modal parameter estimators

traditionally used in the context of input–output modal analysis can be applied also

in the context of OMA.

A similar reduction of the number of poles is sometimes carried out also in

frequency domain. In fact, the so-called positive power spectra are sometimes

preferentially adopted in practical applications—for instance, to enhance numerical

conditioning in the poly-reference Least Squares Complex Frequency (p-LSCF)

method-.
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The order n¼ 2Nm of the positive power spectra is the same as that of the FRF

and contains all the necessary information about the structure. The positive

power spectra are defined as the DFT of the correlation functions at positive time

lags only:

SþYY ωð Þ� � ¼ DFT Ryy τð Þ� �		
τ�0

� �
: ð4:16Þ

It is worth noting that the positive power spectra are different from the one-sided

spectra (Chap. 2). More details about positive power spectra and their role in

output-only modal identification are reported in Sects. 4.2.4, 4.4.3.2 and 4.9.

4.2.2 State-Space Models

State space-models are used to convert the second order problem, governed by the

differential equation of motion expressed in matrix form in (4.4) into two first order

problems, defined by the so-called state equation and observation equation.

The state equation can be obtained from (4.4) by some mathematical manipu-

lations. When the forcing vector {f(t)} is factorized into the matrix ½B �, which
defines the location of inputs, and the vector {u(t)} describing the time variation,

(4.4) can be rewritten as follows:

M½ � €y tð Þf g þ C½ � _y tð Þf g þ K½ � y tð Þf g ¼ B
� �

u tð Þf g ð4:17Þ
or, equivalently:

€y tð Þf g þ M½ ��1 C½ � _y tð Þf g þ M½ ��1 K½ � y tð Þf g ¼ M½ ��1 B
� �

u tð Þf g: ð4:18Þ
The definition of the state vector:

s tð Þf g ¼ _y tð Þf g
y tð Þf g

( )
ð4:19Þ

and its substitution in the set of equations consisting of (4.18) and the following

identity:

M½ � _y tð Þf g ¼ M½ � _y tð Þf g ð4:20Þ
yield:

_s tð Þf g ¼ � M½ ��1 C½ � � M½ ��1 K½ �
I½ � 0½ �

" #
s tð Þf g þ M½ ��1 B

� �
0½ �

" #
u tð Þf g: ð4:21Þ
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From (4.21) the state matrix [Ac] and the input influence matrix [Bc] can be

defined as follows:

Ac½ � ¼ � M½ ��1
�
C
� � M½ ��1

�
K
�

I½ � 0½ �

" #
, ð4:22Þ

Bc½ � ¼ M½ ��1 B
� �

0½ �

" #
, ð4:23Þ

and the state equation can be written as:

_s tð Þf g ¼ Ac½ � s tð Þf g þ Bc½ � u tð Þf g ð4:24Þ
where the subscript c denotes continuous time.

In the most general case, the observation equation can be written as:

yl tð Þf g ¼ Ca½ � €y tð Þf g þ Cv½ � _y tð Þf g þ Cd½ � y tð Þf g ð4:25Þ
under the assumption that measurements of the structural response are taken at

l locations and the sensors are accelerometers, velocimeters, and displacement

transducers; {yl(t)} is the vector of the measured outputs, [Ca], [Cv] and [Cd]

are the output location matrices for acceleration, velocity, and displacement,

respectively. In the following, the index l in {yl(t)} will be dropped wherever

{yl(t)} cannot be confused with the vector of displacements {y(t)}. It is worth

emphasizing that, while a real structure is characterized by an infinite number of

DOFs (which becomes a finite but large number in the lumped mass models usually

set for numerical analyses), in a practical vibration test this number decreases down

to a few dozens or even less. Substitution of the expression for €y tð Þf g obtained from
(4.18) into (4.25) yields the following equation:

yl tð Þf g ¼ Cv½ � � Ca½ � M½ ��1 C½ �
� �

_y tð Þf g
þ Cd½ � � Ca½ � M½ ��1 K½ �
� �

y tð Þf g
þ Ca½ � M½ ��1 B

� �� �
u tð Þf g

: ð4:26Þ

The observation equation:

y tð Þf g ¼ Cc½ � s tð Þf g þ Dc½ � u tð Þf g ð4:27Þ
provides the vector of the measured outputs as a function of the state and the input;

it is obtained from (4.26), taking into account the definition of state vector (4.19),

with the following positions:

Cc½ � ¼ Cv½ � � Ca½ � M½ ��1 C½ � Cd½ � � Ca½ � M½ ��1 K½ �
h i

, ð4:28Þ
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Dc½ � ¼ Ca½ � M½ ��1 B
� �

: ð4:29Þ
[Cc] is the output influence matrix, [Dc] is the direct transmission matrix. The direct
transmission matrix disappears if no accelerometers are used for output

measurements. The physical sense of this matrix is related to the circumstance

that a step change in the input {u(t)} causes a step change in the acceleration

response.

The state equation (4.24) and the observation equation (4.27) define the contin-
uous-time state-space model. An important characteristic of this model is the

existence of an infinite number of equivalent state-space representations for a

given system: each one is referred to as a realization. As a consequence, the

experimental test allows establishing only one of these infinite realizations.

Application of a similarity transformation proves the multiplicity of realizations.

In fact, said [T] an arbitrary nonsingular square matrix, substitution of:

s tð Þf g ¼ T½ � z tð Þf g ð4:30Þ
into the equations of the continuous-time state-space model yields:

_z tð Þf g ¼ T½ ��1 Ac½ � T½ � z tð Þf g þ T½ ��1 Bc½ � u tð Þf g ð4:31Þ

y tð Þf g ¼ Cc½ � T½ � z tð Þf g þ Dc½ � u tð Þf g ð4:32Þ

Comparisons of (4.31) with (4.24) and of (4.32) with (4.27) show that the

matrices [T]� 1[Ac][T], [T]
� 1[Bc], [Cc][T] and [Dc] describe the same relationships

as the matrices [Ac], [Bc], [Cc] and [Dc]. Moreover, since the state matrices of any

couple of realizations are related by a similarity transformation, the eigenvalues

(carrying the information about the modal parameters of the system) are preserved.

Taking into account that experimental tests yield measurements taken at discrete

time instants while (4.24) and (4.27) are expressed in continuous time, the

continuous-time state-space model has to be converted to discrete time. For a given

sampling period Δt, the continuous-time equations can be discretized and solved at

all discrete time instants tk¼ kΔt, k ∈ N. An assumption about the behavior of

the time-dependent variables between two samples has to be made to this aim.

For instance, the Zero Order Hold (ZOH) assumption states that the input is piecewise

constant over the sampling period. Under this assumption the continuous-time state-

space model can be converted to the discrete-time state-space model:

skþ1f g ¼ A½ � skf g þ B½ � ukf g ð4:33Þ

ykf g ¼ C½ � skf g þ D½ � ukf g ð4:34Þ

where {sk}¼ {s(kΔt)} is the discrete-time state vector yielding the sampled

displacements and velocities; {uk} and {yk} are the sampled input and sampled
output, respectively; [A] is the discrete state matrix, [B] is the discrete input
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matrix, [C] is the discrete output matrix and [D] is the direct transmission matrix.

The relations between continuous-time matrices and the corresponding discrete

time matrices are:

A½ � ¼ e Ac½ �Δt ð4:35Þ

B½ � ¼ A½ � � I½ �ð Þ Ac½ ��1 Bc½ � ð4:36Þ

C½ � ¼ Cc½ � ð4:37Þ

D½ � ¼ Dc½ � ð4:38Þ

Thus, the ZOH sampling does not influence these last two matrices. As an

alternative, assuming a piecewise linear behavior between two subsequent

samples—First Order Hold (FOH) assumption—different, more complex relations

between continuous-time and discrete-time state-space matrices can be derived

(see, for instance, Franklin et al. 2006). Mathematical derivation of (4.33) and

(4.34) and of the relations between continuous-time and discrete-time matrices is

beyond the scope of the present book. The interested reader can refer to the

literature (Juang 1994) for more details.

The model expressed by (4.33) and (4.34) is a deterministic model since the

system is driven by a deterministic input only. Stochastic components must be

necessarily included in order to describe actual measurement data. When stochastic

components are included in the model, the following discrete-time combined
deterministic-stochastic state-space model is obtained:

skþ1f g ¼ A½ � skf g þ B½ � ukf g þ wkf g ð4:39Þ

ykf g ¼ C½ � skf g þ D½ � ukf g þ vkf g ð4:40Þ

where {wk} is the process noise due to disturbances and model inaccuracies, while

{vk} is the measurement noise due to sensor inaccuracies. The state equation

models the dynamic behavior of the system; the observation equation defines that

part of the dynamic response of the system that can be observed in the output of the

model.

In the context of OMA, structures are excited by immeasurable inputs. Since the

information about the input {uk} is not available, the measured system response

{yk} is generated only by the two stochastic processes {wk} and {vk}, and

the following discrete-time stochastic state-space model is obtained:

skþ1f g ¼ A½ � skf g þ wkf g ð4:41Þ

ykf g ¼ C½ � skf g þ vkf g: ð4:42Þ

In the absence of {uk}, its role is implicitly modeled by process noise and

measurement noise. In particular, the process noise becomes the input that drives
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the dynamics of the system, while the measurement noise accounts for the direct

disturbance of the response of the system. Thus, when a stochastic state-space

model is adopted, the objective is the determination of the order n of the unknown

system and of a realization of the matrices [A] and [C] (up to within a similarity

transformation) from a large number of measurements of the output {yk} generated
by the system itself. The state matrix [A] transforms the current state of the system

{sk} in the next state {sk+ 1}, while the product of the observation matrix [C]

with the state vector provides the observable part of the dynamics of the system.

More precisely, the response vector {yk} is given by the observable part of the state
plus the measurement noise. The process noise and the measurement noise are both

immeasurable. They are assumed to be zero mean, stationary white noise processes

with covariance matrices given by:

E
wp


 �
vp

 �( )

wq


 �T
vq

 �TD E" #

¼
Qww½ � Swv½ �
Swv½ �T Rvv½ �

" #
p ¼ q

0½ � p 6¼ q

8><>: ð4:43Þ

where p and q are two arbitrary time instants. The estimation of the matrices [Qww],

[Rvv] and [Swv] is also part of the identification process. The assumption of white

noise for {wk} and {vk} is fundamental in the proof of SSI methods (see Van

Overschee and De Moor 1996 for more details). Thus, if the unmeasured input

includes some dominant frequency components, they appear as poles of the state

matrix [A] together with the eigenvalues of the system. This is equivalent to the

identification of the dynamic properties of both the structure under investigation

and the excitation system forming the combined system (driven by stationary, zero

mean Gaussian white noise as input) that is the generally assumed objective of

identification in OMA.

In agreement with the stochastic framework of OMA, the system response in the

state-space model is represented by a zero mean Gaussian process. The output

covariance matrices are given by:

Ri½ � ¼ E ykþi


 �
ykf gT� � ð4:44Þ

and they carry all the information to describe the process. A covariance equivalent
model can be then defined as the estimated state-space model characterized by

correct covariance and, therefore, able to describe the statistical properties of the

system response. The estimator producing this model is referred to as an optimal

estimator.

The state {sk} is also a zero mean Gaussian process described by its covariance

(which is independent of the time instant k):

Σ½ � ¼ E skf g skf gT� � ð4:45Þ
and it is uncorrelated with the process noise and the measurement noise:

E skf g wkf gT� � ¼ 0½ � ð4:46Þ
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E skf g vkf gT� � ¼ 0½ �: ð4:47Þ
Taking into account the previous assumptions about the noise terms, the system

response and the state, mathematical manipulations of the state-space equations

((4.41) and (4.42)) lead to the following fundamental relations:

Σ½ � ¼ A½ � Σ½ � A½ �T þ Qww½ � ð4:48Þ

R0½ � ¼ C½ � Σ½ � C½ �T þ Rvv½ � ð4:49Þ

G½ � ¼ A½ � Σ½ � C½ �T þ Swv½ � ð4:50Þ

Ri½ � ¼ C½ � A½ �i�1 G½ � ð4:51Þ
where:

G½ � ¼ E skþ1f g ykf gT� � ð4:52Þ
is the next state-output covariance matrix (covariance between the response of the

system {yk} and the updated state vector {sk+ 1}). The last property expressed by

(4.51) is very important. In fact, since the output covariance sequence [Ri] can be

directly estimated from the measured data (4.44), its decomposition according to

(4.51) permits the estimation of the state-space matrices and the solution of the

system identification problem.

The stochastic state-space model in (4.41) and (4.42) can be expressed in an

alternative form through the introduction of the so-called Kalman filter. Without

going into the details (the interested reader can refer to Juang 1994 for a more

detailed discussion about the Kalman filter and the related mathematical

derivations), the so-called forward innovation model is briefly illustrated below.

For a given time instant tk, suppose that the system matrices [A], [C], [Qww],

[Rvv], [Swv] and all previous measurements [Yk� 1] are known:

Yk�1
� � ¼ y0f g; y1f g; . . . ; yk�1f g½ �T : ð4:53Þ

A classical estimation problem concerns the ability to optimally predict the

response measurements. Thus, an optimal predictor can be defined as the one

minimizing the error between the predicted and measured response. The system

response can be optimally predicted if an optimal predictor of the states is available.

The quality of the predictor of the states is quantified by the state prediction error:

εkf g ¼ skf g � ŝ kf g, ð4:54Þ
which represents the part of {sk} that cannot be predicted by the one-step-ahead

predictor of the state vector ŝ kf g. This is defined as the conditional mean of {sk}
given all previous measurements:
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ŝ kf g ¼ E skf gj Yk�1
� �� �

: ð4:55Þ
In a similar way it is possible to define the innovation:

ekf g ¼ ykf g � ŷ kf g ð4:56Þ
as the part of the measured response {yk} that cannot be predicted by the one-

step-ahead predictor ŷ kf g. This is defined as the conditional mean of {yk} given all
previous measurements:

ŷ kf g ¼ E ykf gj Yk�1
� �� � ¼ E C½ � skf g þ vkf gð Þj Yk�1

� �� � ¼ C½ � ŝ kf g ð4:57Þ

The last part of (4.57) is obtained by taking into account (4.42) and assuming no

correlation between the measurement noise {vk} at instant tk and the previous

measurements [Yk� 1]. Since {yk} is assumed zero mean and Gaussian distributed,

{ek} is a zero mean Gaussian white noise process.

The Kalman filter for linear and time-invariant systems relates the predictors

given by (4.55) and (4.57) as follows:

ŝ kþ1f g ¼ A½ � ŝkf g þ Kk½ � ekf g ð4:58Þ

ekf g ¼ ykf g � C½ � ŝkf g: ð4:59Þ

Thematrix [Kk] is referred to as nonsteady state Kalman gain. Given the initial state

estimate ŝ0f g¼ 0f g, the initial covariance of the state estimate P0½ � ¼E ŝ0f g ŝ0f gT� �¼
0½ � and the output measurements [Yk�1], the nonsteady-state Kalman state estimate at

time tk can be obtained from the following recursive formulas providing the Kalman

state estimate, the Kalman gain, and the Kalman state covariance, respectively:

ŝ kf g ¼ A½ � ŝ k�1f g þ Kk�1½ � yk�1f g � C½ � ŝ k�1f gð Þ ð4:60Þ

Kk�1½ � ¼ G½ � � A½ � Pk�1½ � C½ �T
� �

R0½ � � C½ � Pk�1½ � C½ �T
� ��1

ð4:61Þ

Pk½ � ¼ A½ � Pk�1½ � A½ �Tþ
G½ � � A½ � Pk�1½ � C½ �T

� �
R0½ � � C½ � Pk�1½ � C½ �T

� ��1

G½ � � A½ � Pk�1½ � C½ �T
� �T

ð4:62Þ
Equation (4.62) is also known as the Ricatti equation. The Kalman filter

provides the state estimate ŝ kf g at instant tk given the previous state estimate

ŝ k�1f g and the measurements {yk� 1}. Obtained the Kalman state covariance

matrix [Pk] as a solution of the Ricatti equation:
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Pk½ � ¼ E ŝ kf g ŝ kf gT� � ð4:63Þ
the covariance of the innovation can be computed, taking into account (4.59), as:

E ekf g ekf gT� � ¼ R0½ � � C½ � Pk½ � C½ �T : ð4:64Þ
When the measurements are Gaussian distributed, the Kalman filter provides an

optimal prediction of the states. It is worth pointing out that the Kalman state

covariance is not steady at startup, since the Kalman filter experiences a transient

phase. However, under certain assumptions about the state matrix ([A] is stable,

that is to say the real parts of all its eigenvalues are negative), the steady state is

quickly reached and the state covariance matrix and the Kalman gain become

constant (independent of time: [Pk]¼ [P] and [Kk]¼ [K]). In steady-state:

ŝ kþ1f g ¼ A½ � ŝ kf g þ K½ � ekf g ð4:65Þ

ekf g ¼ ykf g � C½ � ŝ kf g: ð4:66Þ

The steady-state Kalman gain [K] is obtained by finding the solution [P] of the

algebraic Ricatti equation:

P½ � ¼ A½ � P½ � A½ �T þ G½ � � A½ � P½ � C½ �T
� �

R0½ � � C½ � P½ � C½ �T
� ��1

G½ � � A½ � P½ � C½ �T
� �T ð4:67Þ

and substituting it into the following equation:

K½ � ¼ G½ � � A½ � P½ � C½ �T
� �

R0½ � � C½ � P½ � C½ �T
� ��1

: ð4:68Þ

Then, the covariance matrix of the innovation can be computed:

E ekf g ekf gT� � ¼ R0½ � � C½ � P½ � C½ �T : ð4:69Þ
Rearranging (4.66), the forward innovation model is obtained:

ŝ kþ1f g ¼ A½ � ŝ kf g þ K½ � ekf g ð4:70Þ
ykf g ¼ C½ � ŝ kf g þ ekf g: ð4:71Þ

Comparison of the forward innovation model with the state-space model given

by (4.41) and (4.42) shows that in the forward innovation model the prediction of

the state replaces the state vector and the two processes {wk} and {vk} are converted
into a single process, the innovation.

The closed form solution for the Kalman gain given by the Ricatti equation

makes the Kalman filter very attractive. However, in the context of dynamic

identification the system matrices [A], [C], [Qww], [Rvv], [Swv] are not known.
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Thus, the state sequence has to be determined directly from the output data through

geometric manipulations without solving the Ricatti equation. The Data-Driven

Stochastic Subspace Identification (DD-SSI) method allows the estimation of the

states directly from the experimental data by applying robust numerical techniques,

such as SVD and QR decomposition (see Sect. 4.5.3.2 for more details).

4.2.3 ARMA Models

The equation of motion of a randomly excited linear time-invariant system can be

also written as follows:

M½ � €y tð Þf g þ C½ � _y tð Þf g þ K½ � y tð Þf g ¼ w tð Þf g ð4:72Þ
where {w(t)} is a continuous-time, zero mean Gaussian white noise. It is possible to

show (Andersen et al. 1996, Andersen 1997) that this system can be also described

by a discrete-time Auto-Regressive Moving Average Vector (ARMAV) model (the

ARMA model is referred to as an ARMA vector model to point out its multivariate

character) by approximating the differential operator with finite differences over a

finite time step Δt.
Historically, ARMAV models have been used for the estimation of the modal

parameters of civil structures. Due to a number of shortcomings (in particular for

systems with many outputs and many modes, where the large set of parameters to

be estimated leads to large computational burden and convergence problems),

stochastic state-space models have progressively replaced them in the context of

modal identification. However, the basics of ARMA models and their relation with

state-space models are herein briefly illustrated for the sake of completeness.

In order to explain how modal parameters can be extracted from an ARMA

model, assume that a continuous-time system is observed at discrete time instants k

with a sampling interval Δt. The discretization is based on the covariance equiva-

lence technique (Bartlett 1946, Pandit and Wu 1983). Since the input on the

structure is not available (it is immeasurable), the equivalent discrete-time system

can be obtained only by requiring that the covariance function of its response to a

Gaussian white noise input is coincident at all discrete time lags with that of the

continuous-time system. This implies that the first and second order moments of the

response of the discretized model are equal to the first and second order moments of

the response of the continuous-time system at all the considered discrete time

instants. Under the assumption that the response of the system is Gaussian distri-

buted, the covariance equivalent model is the most accurate approximated model,

since it is exact at all discrete time lags. The generalization of this approach to

multivariate second order systems is illustrated elsewhere (Andersen et al. 1996).

When the dynamic response of the system is driven by the Gaussian white

noise {w(t)} but there are also some disturbances (process and measurement

noise), the latter have also to be taken into account by the equivalent
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discrete-time model. In the presence of such disturbances, an ARMAV(nα, nγ)

model has the form:

ykf g þ α1½ � yk�1f g þ . . .þ αnα½ � yk�nα


 �
¼ ekf g þ γ1½ � ek�1f g þ . . .þ γnγ

h i
ek�nγ


 � ð4:73Þ

where, as in the case of the state-space model, {yk} is the vector of the output at the
time instant tk, and {ek} is the innovation and it is a zero mean Gaussian white

noise. The left-hand side of (4.73) is the Auto-Regressive (AR) part, while the right-

hand side is the Moving Average (MA) part. The matrices [αi] contain the AR

parameters, while the matrices [γi] contain the MA parameters; nα and nγ represent

the AR and MA order of the model, respectively.

It is possible to show (see, for instance, Andersen 1997, Andersen and Brincker

1999) that a covariance equivalent ARMAV model can be converted into a forward

innovation state space model, and vice versa. Let us consider a minimal realization

of the state-space model of (4.70) and (4.71). A minimal realization corresponds to
the minimal state space dimension ensuring that all modes are appropriately excited

and observed in the output. In fact, if the order of the state-space model is too large,

the model will contain redundant information; on the contrary, if the state-space

dimension is too small, a certain amount of information about the modeled system

will be lost. More details about the mathematical conditions to obtain a minimal

realization can be found elsewhere (see, for instance, Kailath 1980). Said n the

order of the minimal realization of the considered forward innovation model and

l the number of outputs, if the ratio n/l¼ p is an integer value it is possible to show

that, independently of the specific realization, an ARMAV(p, p) model is equivalent

to the considered forward innovation model (Andersen 1997).

The conversion of an ARMAV model into a state-space representation requires

the selection of a specific realization. A realization, which can be easily constructed

from the AR and MA matrices and is well conditioned (so that it is numerically

efficient when implemented into a system identification software), must be adopted.

The so-called observability canonical state-space realization is usually adopted in

this case (Andersen 1997). It is given by:

A½ � ¼

0½ � I½ � 0½ � . . . 0½ �
0½ � 0½ � I½ � . .

.
0½ �

⋮ . .
. . .

. . .
.

⋮

0½ � 0½ � 0½ � . .
.

I½ �
� αp
� � � αp�1

� � � αp�2

� �
. . . � α1½ �

266666664

377777775
ð4:74Þ
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K½ � ¼

I½ � 0½ � 0½ � . . . 0½ �
α1½ � I½ � 0½ � . .

.
0½ �

⋮ . .
. . .

. . .
.

⋮

αp�2

� �
αp�3

� �
αp�4

� � . .
.

0½ �
αp�1

� �
αp�2

� �
αp�3

� �
. . . I½ �

266666664

377777775

γ1½ � � α1½ �
γ2½ � � α2½ �

⋮
γp�1½ � � αp�1½ �
γp½ � � αp½ �

266666664

377777775
ð4:75Þ

C½ � ¼ I½ � 0½ � 0½ � � � � 0½ �
h i

: ð4:76Þ

When the state matrix [A] is expressed in the form of (4.74), it is also known as

the companion matrix for the auto-regressive matrix polynomial. The EVD of the

companion matrix provides the modal parameters of the system:

A½ � ¼ Ψ½ � M½ � Ψ½ ��1 ð4:77Þ
where the columns {ψm} of [Ψ] are the pl eigenvectors of [A], while the

corresponding pl eigenvalues μm are collected in the diagonal matrix [M]. The

eigenvectors are a combination of mode shapes {ϕm} and eigenvalues μm:

Ψ½ � ¼

ϕ1f g . . . ϕpl


 �
μ1 ϕ1f g . . . μpl ϕpl


 �
⋮ . . . ⋮

μp�1
1 ϕ1f g . . . μp�1

pl ϕpl


 �

2666664

3777775: ð4:78Þ

Thus, taking into account (4.76), the mode shapes of the system can be obtained as:

ϕmf g ¼ C½ � ψmf g ð4:79Þ
while natural frequencies and damping ratios of the continuous-time system are

obtained from the eigenvalues, after their conversion from discrete-time to

continuous-time taking into account (4.35):

λm ¼ ln μmð Þ
Δt

, λm ¼ �ξmωm � iωm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2m

q
ð4:80Þ

where m¼ 1, . . ., pl is the index denoting the generic pole. If the modes are under-

damped (this is the case of the structural systems considered in this book), the poles

appear in complex conjugate pairs (4.80) and the number of modes Nm is half the

order pl of the system. The modal properties of the structure are obtained by

the EVD of the companion matrix, holding only the AR coefficient matrices.

Thus, the MA coefficient matrices do not influence them, and the possibility to

use AR models for modal parameter estimation has been investigated (Pandit

1991). However, an AR model of order p is not an equivalent representation of

the previously mentioned minimal realization of the forward innovation model.
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The use of AR instead of ARMAmodels can be justified if the AR model order goes

to infinity. In fact, it can be shown that an AR model with infinite order is

theoretically equivalent to an ARMA model of finite order. However, for very

large values of the order of the AR model many spurious poles are introduced and

they have to be separated from the true system poles.

4.2.4 Fraction Polynomial Models

The FRF matrix can be expressed not only in pole-residue form (4.9) but also using

a Matrix Fraction Description (MFD), that is to say, a ratio of two matrix

polynomials. In particular, both a Left MFD (LMFD):

H ωð Þ½ � ¼ AL ωð Þ½ ��1 BL ωð Þ½ � ð4:81Þ
and a Right MFD (RMFD):

H ωð Þ½ � ¼ BR ωð Þ½ � AR ωð Þ½ ��1 ð4:82Þ
can be adopted. The common-denominator model (also known as scalar matrix

fraction model) of the FRF represents a special case of MFD where the numerator is

a matrix polynomial while the denominator is a polynomial characterized by scalar

coefficients:

H ωð Þ½ � ¼ B ωð Þ½ �
A ωð Þ ¼

Xn
j¼0

βj ωð Þ� �
Ω j ωð Þ

Xn
j¼0

αjΩ j ωð Þ
ð4:83Þ

where Ω(ω) is the polynomial basis function. Comparison of (4.83) and (4.9) leads

to recognize that the denominator holds the information about the poles of

the structure, while the numerator holds the information about the mode shapes.

When a common-denominator model is considered, the poles are obtained as roots

of the denominator polynomial; in the case of MFD, the poles are obtained as

solutions of a generalized eigenvalue problem (Sect. 4.4.3).

When an MFD is adopted, the size (Nc�Nc) of the matrix coefficients [Aj]

(with Nc depending on the number of inputs or outputs according to the selected

description) and the order n of the matrix polynomial determine the number of

modes that can be identified in accordance with the following relation:

Nc � n ¼ 2Nm: ð4:84Þ
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Based on this relation, a low order model with large matrix coefficients can be

expanded to a high order matrix polynomial with smaller matrix coefficients in

order to identify Nm modes in the presence of a reduced number of inputs or outputs

(low Nc). A polynomial of order 2Nm with scalar coefficients represents the limit of

this expansion.

In the OMA framework, MFD is applied to power spectra instead of FRFs.

As mentioned in Sect. 4.2.1, positive power spectra are also sometimes adopted to

improve numerical conditioning (see also Sects. 4.4.3.2 and 4.9). In fact, power

spectra show a 4-quadrant symmetry and, therefore, they provide four poles in

complex conjugate pairs for each mode. Poles characterized by negative real part

are denoted as stable poles, while unstable poles are characterized by positive real

part. The 4-quadrant symmetry (Fig. 4.2) requires doubling the order with respect to

FRFs to identify a certain number of modes Nm, and this may result in worse

numerical conditioning. Thus, the estimation of positive power spectra, resulting in

a prior separation of stable and unstable poles, improves the numerical conditioning

and this simplifies the identification of the structural modes by the p-LSCF estimator

(Sect. 4.9). Processing positive power spectra could have a detrimental effect on the

accuracy and reliability of mode shape estimates. However, the procedure for their

computation is illustrated below for the sake of completeness.

The computation of positive power spectra (see also Cauberghe 2004) is based

on the procedure for the estimation of unbiased correlation functions via FFT

Fig. 4.2 4-quadrant symmetry of cross-power spectra
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(Bendat and Piersol 2000). The Wiener-Khinchin relations between correlation and

spectral density functions have been introduced in Chap. 2. Those relations make

possible the computation of correlation functions as inverse Fourier transforms of

spectral density functions, and the computation of spectral density functions as

Fourier transforms of correlation functions. However, as a consequence of the

periodic assumption of the finite Fourier transform, the correlation functions

obtained by this procedure appear as if they were computed from periodic

functions. As a result, the value of the correlation function at the generic time lag

τ is a combination of two terms, R̂yy(τ) and R̂yy(T� τ). In particular, it is possible

to show that the following equation holds (Bendat and Piersol 2000):

Ŝ YY fð Þ ¼ 1

T

ð T
0

τR̂ yy T � τð Þe�i2πf τdτ þ 1

T

ð T
0

T � τð ÞR̂ yy τð Þe�i2πf τdτ

¼
ð T
0

R̂ c τð Þe�i2πf τdτ ð4:85Þ

where:

R̂ c τð Þ ¼ T � τð Þ
T

R̂ yy τð Þ þ τ

T
R̂ yy T � τð Þ ð4:86Þ

is the circular correlation function, whose expression in discrete time becomes:

R̂ c rΔtð Þ ¼ N � rð Þ
N

R̂ yy rΔtð Þ þ r

N
R̂ yy N � rð ÞΔt½ �: ð4:87Þ

A procedure to separate the two contributions consists in adding N zeroes to the

original N data values so that the first half of the correlation function estimate shows

the correlation function values for the positive lags (the causal part of the corre-

lation function which contains the stable poles) and the second half of the estimate

shows the correlation function values for the negative lags (the noncausal part of the

correlation function which contains the unstable poles). Equation (4.88) gives the

two portions of the correlation function obtained by adding N zeroes:

R̂ s rΔtð Þ ¼

N � rð Þ
N

R̂ yy rΔtð Þ r ¼ 0, . . . ,N � 1

r � Nð Þ
N

R̂ yy 2N � rð ÞΔt½ � r ¼ N, . . . , 2N � 1

8>>><>>>: ð4:88Þ

where the subscript s is referred to the separation of the two contributions. Thus, the
causal part of the unbiased correlation function estimate is:

R̂ yy rΔtð Þ ¼ N

N � r
R̂ s rΔtð Þ r ¼ 0, . . . ,N � 1: ð4:89Þ
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The above discussion leads to the following procedure for the computation of

positive power spectra:

• Divide the record of the structural response into nb independent (no overlap)

blocks of N samples, where the number of samples N in each block has to be

larger than the maximum lag number of interest m: N�m;

• Extend each block with additional N zeroes;

• Use the extended blocks to compute the power spectra according to the Welch

procedure;

• Compute the inverse Fourier transform and consider only the first m samples for

m<N, or discard the second half of the obtained correlation function if m¼N;

rescale the values of the obtained correlation function by N/(N� r). For m¼N,

since the tail of the correlation function is affected by high noise levels, an

exponential window can be applied to reduce the effect of leakage and the

influence of the higher lags characterized by larger variance; however, this

requires a correction of the damping values obtained from modal identification:

said β the factor determining the ratio between the amplitude at the last time lag

and the initial amplitude of the exponential window, the damping associated to

the r-th pole λr can be corrected taking into account that λrcorrected¼ λr
estimated + β

(Verboven 2002, Heylen et al. 1998); a suggested value for β is such that the

amplitude at the last time lag of the window is 0.1 % of its initial amplitude

(Verboven 2002);

• The positive power spectra are finally obtained by Fourier transform of the

retained portion of the causal part of the correlation function.

The positive power spectra show a 2-quadrant symmetry and, therefore, the

same order n¼ 2Nm of FRFs. As a consequence, only one pair of complex conju-

gate poles is present in the data for each mode. The relation between power spectra

and positive power spectra is (Peeters and Van der Auweraer 2005):

SYY ωð Þ½ � ¼ SþYY ωð Þ� �þ SþYY ωð Þ� �H
: ð4:90Þ

4.2.5 The Unified Matrix Polynomial Approach to Modal Analysis

A number of input–output modal identification techniques have been developed

over the years according to the theoretical expressions of FRF or IRF. Different

physically based models and different mathematical manipulations produced a

number of different methods. However, it has been shown (Allemang and Brown

1998) that those apparently unrelated procedures could be treated according to a

unified approach. Such an approach is herein summarized because it can be easily

extended to OMA. It is useful to highlight the similarities and differences among

the various modal identification methods, whose correlation is stronger than it

appears at a first insight.
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The original approach starts from the polynomial model historically used for the

FRF; assuming that the response to the input applied at location q is measured at

location p, the related FRF can be expressed as follows:

Hpq ωð Þ ¼ Yp ωð Þ
Fq ωð Þ ¼

βn iωð Þn þ βn�1 iωð Þn�1 þ . . .þ β1 iωð Þ1 þ β0 iωð Þ0
αm iωð Þm þ αm�1 iωð Þm�1 þ . . .þ α1 iωð Þ1 þ α0 iωð Þ0 ð4:91Þ

or:

Hpq ωð Þ ¼ Yp ωð Þ
Fq ωð Þ ¼

Xn
k¼0

βk iωð Þk

Xm
h¼0

αh iωð Þh
: ð4:92Þ

Equation (4.92) can be rewritten in order to obtain the following linear equation

in the unknown αh and βk terms:

Xm
h¼0

αh iωð ÞhYp ωð Þ ¼
Xn
k¼0

βk iωð ÞkFq ωð Þ: ð4:93Þ

For a general MIMO case, (4.93) is expressed in matrix form as follows:

Xm
h¼0

αh½ � iωð Þh
� �

Y ωð Þf g ¼
Xn
k¼0

βk½ � iωð Þk
� �

F ωð Þf g ð4:94Þ

or:

Xm
h¼0

αh½ � iωð Þh
� �

H ωð Þ½ � ¼
Xn
k¼0

βk½ � iωð Þk
� �

: ð4:95Þ

A similar expression can be derived in the time domain where, in terms of

sampled data, the time domain matrix polynomial results from a set of finite

difference equations (Allemang and Brown 1998):

Xm
h¼0

αh½ � yi�hf g ¼
Xn
k¼0

βk½ � f i�kf g ð4:96Þ

This model corresponds to an ARMA(m, n) model (compare (4.96) with (4.73)).

If only free decay or IRF data are considered, (4.96) can be further simplified since

the forcing function can be set equal to zero and the [βk] coefficients can be

eliminated (Allemang and Brown 1998):

Xm
h¼0

αh½ � yi�hf g ¼ 0f g: ð4:97Þ
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The number of roots is given by the product of the order of the polynomial by the

number of measurement locations, as for the classical ARMA models.

Comparison of (4.94) and (4.96) leads to recognize that the time and frequency

domain models can be expressed in terms of functionally similar matrix polynomial

models. Since the ARMA terminology is traditionally related to the time domain,

the Unified Matrix Polynomial Approach (UMPA) terminology has been proposed

(Allemang and Brown 1998) in order to describe the common polynomial structure

characterizing the various modal identification methods in either time or frequency

domain. Following the original discussion, the same nomenclature for the coeffi-

cient matrices has been used in both time and frequency domain in order to point

out the similarities. However, the coefficient matrices in the frequency domain are

different from those in the time domain. Moreover, while the characteristic matrix

polynomial equation in frequency domain can be expressed in the same domain,

for time domain methods it is expressed in the z-domain and the roots zr in this

domain have to be converted in the continuous-time domain (4.80). Once the

matrices [αh] have been found, the modal parameters can be estimated according

to the previously described approach (Sect. 4.2.3) based on the construction of the

companion matrix.

The extension of UMPA to the output-only case is immediate if FRFs and IRFs

are replaced by spectral density functions and correlation functions into (4.95) and

(4.97), respectively. Thus, the development of UMPA allowed gathering a number

of time domain and frequency domain algorithms in a unified framework, pointing

out the relations among different modal identification algorithms beyond their

mathematical model (time domain, frequency domain, state-space, AR, ARMA).

Nonparametric methods can be seen as zero order models where only the spatial

information related to the sensor position is used and data are processed at a single

frequency line at a time.

Even if the unifying characteristic of different OMAmethods, represented by the

matrix polynomial structure, has been remarked, for historical reasons OMA

methods are illustrated in the next sections according to the usual classification

based on the adopted model and domain of implementation. For instance, the

methods based on the analysis of correlation functions, such as Least Squares

Complex Exponential (LSCE), Ibrahim Time Domain (ITD), Eigensystem Reali-

zation Algorithm (ERA), and Instrumental Variable (IV), will be discussed in

different contexts in spite of the previously described common formulation. Simi-

larly, time domain methods based on the analysis of raw data, such as DD-SSI and

Prediction Error Method (PEM), will be separately analyzed according to the state-

space and ARMA formulation, respectively. The separate discussion follows the

historical development of the methods and it is helpful to point out the main

differences among them that are mainly related to the role played by noise.

Moreover, the separate discussion allows pointing out a specific difference between

state-space and ARMAmodels. In fact, in the state-space representation the internal

structure of the system is described, while ARMA models simply map the input–

output behavior of the system. For this reason, a state-space model is also referred

to as an internal representation of a system, while the ARMA model as an external

representation.
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4.3 Classification of OMA Techniques

Most OMA techniques are derived from traditional input–output modal identification

procedures, but refer to a different mathematical framework. In fact, OMA is

developed in a stochastic framework and it is based on the analysis of random signals

(Chap. 2). OMA techniques are always of the multiple input type. Thus, classification

of OMA methods according to the number of inputs (single input, multiple input), as

in the case of input–output modal analysis, is not applicable.

Different criteria may apply for the classification of OMA methods. Each

criterion points out a specific aspect common to different analysis methods and it

is helpful to guide the user towards the choice of the favorite or most appropriate

analysis method, depending on the advantages and limitations related to specific

assumptions and data processing procedures.

A first distinction is between parametric and nonparametric methods. If a model

is fitted to data, the technique is referred to as parametric. These procedures are

more complex and computational demanding with respect to the nonparametric

ones. However, they usually show better performance with respect to the faster and

easy-to-use nonparametric techniques. Nonparametric techniques, on the other

hand, are particularly useful during field tests to get a quick insight about effective-

ness of measurements and results of dynamic identification. In the class of

parametric models, a further distinction is made between low order and high

order models. A low order model is used for those cases where the number of

physical coordinates is greater than the number of measurable eigenvalues. On the

contrary, a high order model is usually adopted when the system is under-sampled

in the spatial domain.

Another distinction is between SDOF and MDOF methods, depending on the

assumption about the number of modes determining the structural response in a

given bandwidth. If only one mode is dominant, it is possible to assume that the

structural response in that frequency range depends only on that mode and its

parameters can be separately determined. SDOF methods are based on this assump-

tion. They are very fast and characterized by low computational burden, but the

SDOF assumption is a reasonable approximation only if the modes of the structure

are well separated. In the presence of closely spaced or even coincident modes,

MDOF methods have to be adopted in order to properly identify the different modes

contributing to the overall structural response.

Modal frequencies and damping ratios are independent of the output location

and they can be estimated on a local basis, that is to say, from the separate analysis

of the individual response time histories. In this case, each analyzed time history

can provide a slightly different estimate of the same modal parameter: as a result, a

set of local estimates is obtained. On the contrary, if data processing affects all

response measurements at the same time, global estimates for the modal parameters

are obtained. A further distinction is between one-stage and two-stage methods.
In the first case, natural frequencies, damping ratios, and mode shapes are estimated

at the same time; in the second case, instead, selected parameters (for instance,

natural frequencies and damping ratios) are estimated first, while the remaining
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parameters (for instance, the mode shapes) are estimated in a second data

processing step based on the modal estimates obtained in the first stage of analysis.

A classical distinction is based on the domain of implementation. OMAmethods

based on the analysis of response time histories or correlation functions are referred

to as time domain methods. Methods based on spectral density functions are,

instead, referred to as frequency domain methods. This distinction may look like

artificial, since they simply consider different representations of the same signal

(in fact, it is always possible to transform the signal from one domain to the other).

However, when parametric methods are considered, the selection between time and

frequency domain can be relevant in practical applications since different

mechanisms of noise rejection and quality of numerical conditioning characterize

the two classes of methods.

Time domain methods are usually better conditioned than the frequency domain

counterparts. This is mainly related to the effect of the powers of frequencies in

frequency domain equations; numerical conditioning has been recently improved

through the adoption of polynomial basis functions formulated in the z-domain

(see also Sect. 4.4.3 for more details).

The adopted strategy to deal with noisy measurements represents another

discriminating aspect between time domain and frequency domain methods. Time

domain methods are usually more suitable to handle noisy data, and they can avoid

some signal processing errors, such as leakage. Time domain methods take advan-

tage of the SVD to reject noise or, as in the case of ARMAmodels, they try to model

also the noise. However, in this latter case a higher model order is required to fit

noise effects and, as a consequence, a lot of additional spurious poles appear.

Averaging is, instead, the strategy adopted by frequency domain methods to deal

with noisy measurements (see also Chap. 2).

Among the parametric time domain methods a further distinction is between

covariance-driven and data-driven methods. The former require a preprocessing

step to estimate the correlation functions from response measurements; the latter,

instead, directly process the raw data.

4.4 Frequency Domain Methods

4.4.1 The Basic Frequency Domain (Peak-Picking) Method

The most undemanding method for output-only modal parameter identification is

the Basic Frequency Domain (BFD) method, also known as the Peak-Picking

method. It is based on the computation of auto- and cross-spectra and it has been

widely used in the past for modal identification purposes (see, for instance, Felber

1993 for its application in civil engineering). The name of the method comes from

the fact that the modes are identified by picking the peaks in the PSD plots.

The BFD technique can be classified as a SDOF method for OMA. In fact, it is

based on the assumption that, around a resonance, only one mode is dominant.

As a consequence, the pole-residue form of the output PSD matrix (4.13) can be
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approximated by the contribution of the dominant mode only. For instance, if only

the r-th mode is dominant, the structural response is approximately equal to the

modal response:

y tð Þf g 	 ϕrf gpr tð Þ ð4:98Þ
where pr(t) is the modal coordinate related to the r-th mode. As a consequence, the

correlation functions are approximately given by:

Ryy τð Þ� � ¼ E y tþ τð Þf g y tð Þf gT
h i

¼ Rprpr τð Þ ϕrf g ϕrf gT ð4:99Þ

where:

Rprpr τð Þ ¼ E pr tþ τð Þpr tð Þ½ � ð4:100Þ
is the modal auto-correlation function, and the spectral density matrix is given by:

GYY ωð Þ½ � ¼ GPrPr
ωð Þ ϕrf g ϕrf gH ð4:101Þ

where GPrPr
ωð Þ is the auto-spectral density function of the modal coordinate. It is

clear from (4.101) that in this case the PSDmatrix is of rank one. Thus, at resonance

any column of the PSD matrix can be considered as an estimate of the corre-

sponding mode shape, up to a scaling factor (the input being unmeasured).

From a practical point of view, the trace of the PSD matrix (the sum of the auto-

spectra) at each discrete frequency value is computed first to identify the peaks

corresponding to structural resonances. Then, the mode shapes associated to the

identified frequencies are obtained from one of the columns of the PSD matrix.

A reference sensor for the computation of the cross-spectral densities with all other

measurement channels has to be selected. The reference sensor has to be selected so

that most of the modes can be observed. As a consequence, sensors close to nodes of

the mode shapes cannot be adopted as reference sensors. The ideal choice for the

reference sensor makes possible the identification of all the modes through the

computation a single column of the PSD matrix (the column made by the cross-

spectral densities between the selected reference sensor and all other sensors).

However, depending on the geometry of the structure and the adopted sensor layout,

a single reference sensor could be insufficient to identify all the modes and at least a

couple of reference sensors with different orientation have to be adopted. For instance,

in the case of a building-like structure characterized by two bending modes in two

orthogonal directions—x and y—and sensors parallel to these directions, the selection

of a sensor measuring along x as reference permits the identification of the bending

modes in the x direction and eventually torsionalmodes, but it is inadequate to identify

the bendingmodes in the y direction. These can be observed only through the selection

of an additional reference sensor measuring along y.

The inspection of the coherence functions (Chap. 2) between couples of channels

also supports the identification of the actual modes of the structure (Fig. 4.3).
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In fact, in correspondence of a resonant frequency, the coherence function is close to

1 because of the high signal-to-noise ratio at that frequency. This characteristic is

helpful in the discrimination between real eigenfrequencies and peaks due to

disturbances. Moreover, the coherence function can support the identification of the

nature of a mode. For instance, assume that the structure under investigation shows

two bending modes in two orthogonal directions—x and y—and a torsional mode in a

certain frequency range. When the torsional mode is considered, the coherence

function shows a value close to 1 if either the two channels are in the same direction

or in two orthogonal directions. On the contrary, bending modes are associated to

low values of the coherence when it is computed for two orthogonal sensors.

The combination of information from spectra and coherence functions, therefore,

makes possible the identification of structural modes. This procedure sometimes

makes possible the identification even of closely spacedmodes. However, the success

of the identification process heavily depends on the geometry of the structure and the

skill of the analyst. The results of modal identification suffer a certain degree of

subjectivity also in the case of noisy measurements, when the peaks in the spectra

are not clear.
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Fig. 4.3 Auto-power spectra of two reference channels in orthogonal directions (a, b) and

coherence functions with channels in the same directions of the references (c, d); note that the

torsional mode (marked in the plots) yields high coherence with both the reference channels
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The BFD method provides local estimates of the modal properties. Moreover,

the accuracy of the estimated eigenfrequencies depends on the frequency resolution

of the spectra. A fine frequency resolution is fundamental to obtain good natural

frequency estimates.

In principle, the BFD should be applied to evaluate natural frequencies and mode

shapes only. The half-power bandwidth method is sometimes applied to get

damping estimates from the spectra. However, a number of studies have shown

that they are not accurate (see, for instance, Peeters 2000, Rainieri et al. 2010).

In summary, the BFD technique is effective when damping is low and modes

are well separated. If these conditions are violated it may lead to erroneous results.

In fact, the method identifies ODSs instead of the actual mode shapes, and they are

generally a combination of all mode shapes; they are good approximations of the

actual mode shapes if only one mode is dominant at the considered frequencies. In

the case of closely spaced modes, the respective contributions are significant and

the ODS is the superposition of multiple modes. Despite of these drawbacks, the

method is very simple and undemanding from a computational point of view. Thus,

it is a basic but useful analysis tool for the analyst, in particular during field tests, to

get a quick insight about effectiveness of measurements and results of dynamic

identification.

4.4.2 The Frequency Domain Decomposition Method

The introduction of the FDD technique (Brincker et al. 2001) has overcome the

previously discussed drawbacks of the BFDmethod concerning the identification of

closely spaced modes. This method was originally applied to FRFs and known as

Complex Mode Indicator Function (CMIF) to point out its ability to detect multiple

roots and, therefore, the possibility to count the number of dominant modes at a

certain frequency (Shih et al. 1988). The method has been then systematized for the

use with response spectrum data.

A theoretical proof of the method is based on the modal expansion of the

structural response:

y tð Þf g ¼ Φ½ � p tð Þf g ð4:102Þ
where [Φ] is the modal matrix and {p(t)} the vector of modal coordinates. From

(4.102) the correlation matrix of the responses can be computed:

Ryy τð Þ� � ¼ E y tþ τð Þf g y tð Þf gT
h i

¼ Φ½ � Rpp τð Þ� �
Φ½ �T ð4:103Þ

The PSD matrix can be obtained from (4.103) by taking the Fourier transform:

GYY ωð Þ½ � ¼ Φ½ � GPP ωð Þ½ � Φ½ �H ð4:104Þ
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The PSD matrix of the modal coordinates is diagonal if they are uncorrelated.

A similar decomposition is obtained in the case of uncorrelated excitation forces

characterized by a flat spectral density function (Brincker and Zhang 2009).

Taking into account that the SVD of the PSD matrix at a certain frequency ω
leads to the following factorization:

GYY ωð Þ½ � ¼ U½ � Σ½ � V½ �H ð4:105Þ
where [U] and [V] are the unitary matrices holding the left and right singular

vectors and [Σ] is the matrix of singular values (arranged in descending order),

for a Hermitian and positive definite matrix, such as the PSD matrix, it follows that

[U]¼ [V] and the decomposition of (4.105) can be rewritten as:

GYY ωð Þ½ � ¼ U½ � Σ½ � U½ �H: ð4:106Þ
The comparison between (4.104) and (4.106) suggests that it is possible to

identify a one-to-one relationship between singular vectors and mode shapes;

moreover, the singular values are related to the modal responses and they can be

used to define the spectra of equivalent SDOF systems characterized by the same

modal parameters as the modes contributing to the response of the MDOF system

under investigation. Since the SVD provides the singular values arranged in

descending order, near a resonance the first singular value contains the information

about the dominant mode at that frequency. Moreover, since the number of nonzero

elements in [Σ] equals the rank of the PSD matrix at the considered frequency, this

property can be used to identify closely spaced or even coincident modes. In fact,

the number of dominant singular values (defining the rank of the output PSD

matrix) at a certain frequency equals the number of modes that give a significant

contribution to the structural response at that particular frequency. Assuming that

only one mode is dominant at the frequency ω, and that the selected frequency is

associated to the peak of resonance of the k-th mode, the PSD matrix approximates

to a rank one matrix with only one term on the right side of (4.106):

GYY ωð Þ½ � ¼ σ1 u1f g u1f gH, ω ! ωk: ð4:107Þ
In such a case, the first singular vector {u1} represents an estimate of the mode

shape of the k-th mode:

ϕ̂ k


 � ¼ u1 ωkð Þf g ð4:108Þ
and the corresponding singular value σ1 belongs to the auto PSD function of the

equivalent SDOF system corresponding to the mode of interest. The equivalent

SDOF PSD function is identified as the set of singular values around a peak of the

singular value plots (Fig. 4.4) that are characterized by similar singular vectors.

In the enhanced version of the method, the so-called Enhanced Frequency Domain

Decomposition (EFDD) (Brincker et al. 2001, Gade et al. 2005), this SDOF PSD

function is used to estimate also the modal damping ratio. The comparison of the
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mode shape estimate ϕ̂ k


 �
at the peak with the singular vectors associated to the

frequency lines around the peak leads to the identification of the singular values

whose singular vectors show a correlation with ϕ̂ k


 �
higher than a user-defined

threshold, the so-called MAC Rejection Level. Such singular values define the

equivalent SDOF PSD function. The Modal Assurance Criterion (MAC) is used

as a measure of the correlation between two modal vectors (see also Sect. 4.8.2.2 for

more details about the MAC index); it is given by (Allemang and Brown 1982):

MAC uj

 �

; ϕ̂k


 �� � ¼ uj

 �H

ϕ̂ k


 �			 			2
uj

 �H

uj

 �� �

ϕ̂ k


 �H
ϕ̂ k


 �� � ð4:109Þ

where {uj} is the generic singular vector in the vicinity of the peak in the singular

value plots corresponding to the k-th mode.

By definition, the MAC is a number in the range [0, 1]; it is equal to zero when the

vectors under comparison are orthogonal, and equal to 1 when the vectors differ by a

scale factor only. A typically adopted value of the MAC Rejection Level is about 0.8.

The identified equivalent SDOF PSD function is used to evaluate the modal damping

ratio, and to get estimates of the natural frequency independent of the frequency

resolution of the spectra. The inverse Fourier transform of the equivalent SDOF PSD

function yields an approximated correlation function of the equivalent SDOF system.

Thus, an estimate of the modal damping ratio is obtained in the time domain through

a linear regression on the logarithmic decrement. In a similar way, an estimate of the

natural frequency independent of the frequency resolution can be obtained through

a linear regression on the zero crossing times of the equivalent SDOF system

correlation function, eventually taking into account that damped fd,k and undamped
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natural frequency fk (which are very similar at low values of the modal damping

ratio ξk) are related as follows:

f d,k ¼ f k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2k

q
: ð4:110Þ

The FDD method permits the identification of closely spaced modes. However,

it is worth pointing out that in this case the mode shape estimates could be biased.

In fact, since the SVD forces the singular vectors to be orthogonal, if the experi-

mental mode shapes are also orthogonal the obtained estimates are unbiased. On the

contrary, if the mode shapes are not orthogonal, the mode shape estimates for

the closely spaced modes are biased and the bias mainly affects the weak mode,

while the mode shape estimate for the dominant mode is still good. The bias

depends on the difference between the first and second singular value: the larger

this difference, the smaller the error. Thus, the mode shape estimates should be

obtained from singular vectors at frequencies characterized by the largest difference

between the first and second singular value. In the presence of closely spaced

modes, this frequency might be different from the frequency of the peak.

In the literature it is possible to find variants to the above-described classical

implementation of the FDD/EFDD method (Jacobsen et al. 2008, Rodrigues

et al. 2004). In particular, an alternative implementation of FDD based on EVD

instead of SVD is also available (Brincker and Zhang 2009). Among the FDD

variants, it is worth mentioning the so-called Frequency-Spatial Domain Decom-

position (FSDD), where spatial filtering is adopted to enhance the estimation of

modal frequencies and damping ratios. The spatial filtering, also known as coherent
averaging, is a method for data condensation based on a dot product of the data with

a weighting vector. Information in the data that is not coherent with the weighting

vectors is averaged out of the data. Typical spatial filtering procedures are based on

the use of data coming from sensors located in a local area of the system in order to

enhance local modes, or on the use of mode shape estimates as weighting functions

to enhance particular modes. The spatial filtering belongs to the class of the

so-called condensation algorithms together with least squares and transformations

(such as SVD). The FSDD makes use of mode shape estimates computed via SVD

of the output PSD matrix to enhance PSDs. The use of a mode shape estimate

(provided by FDD) as weighting vector leads to an enhanced PSD, which

approximates the PSD of a SDOF system. As a consequence, a SDOF curve fitter

may be profitably used to estimate the natural frequency and the damping ratio of

the considered mode. More details about FSDD can be found elsewhere (Zhang

et al. 2005a).

4.4.3 Frequency Domain Parametric Methods for OMA

Frequency domain parametric modal identification methods are based on either

fraction polynomial models or the modal (pole-residue) model. Modal identifi-

cation methods based on the modal model, such as the Least Squares Frequency
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Domain (LSFD) estimator, have an historical relevance but they are not in wide use.

In fact, when an estimate of the pole is not available, the LSFD method leads to a

nonlinear least squares problem that needs for an optimization algorithm to be

solved and good starting values to reduce the iterations. As a consequence, the

LSFD estimator is used only to obtain global estimates of the mode shapes in

combination with other methods providing the poles.

The methods based on MFD are basically curve-fitting techniques based on

the minimization of an equation error between the measured and the predicted

PSD matrix. For instance, the equation error for a common-denominator model is

given by:

εYY ωf

� � ¼ Ĝ YY ωf

� �� BYY ωf ; θf g� �
A ωf ; θf g� � ð4:111Þ

where Ĝ YY ωf

� �
is the measured value of the spectrum at the frequency line f for a

generic couple of measurement channels; BYY and A are the numerator and denomi-

nator polynomials, respectively; the polynomial coefficients {θ} are the parameters to

be estimated. In order to identify the parameters {θ}, a cost function is defined as the
sum of squares of the Frobenius norms of the errors at all frequency lines:

‘ θf gð Þ ¼
XNf

f¼1

ε ωf

� �� ��� ��2
F

ð4:112Þ

where εYY(ωf) is the generic element of [ε(ωf)].

The cost function has a nonlinear expression in the unknown parameters. Thus,

iterative algorithms, such as the Gauss-Newton approach, have to be applied.

However, they typically suffer problems of convergence, local minima, and compu-

tational burden. Moreover, since the solution is sensitive to the initial value, good

starting values are required. Maximum Likelihood Estimators (MLEs) are based on

this approach. In order to find good initial values for the application of the MLE,

some approaches to linearize the cost function have been introduced. As a conse-

quence, sub-optimal initial values of the parameters are obtained as a solution of a

linear least squares problem.

The Least Squares Complex Frequency (LSCF) method is a parametric

frequency domain modal identification method originally developed to provide

good initial values of the parameters to the MLE with low computational efforts.

However, it has been found that it is also able to provide fairly accurate modal

parameter estimates and, as a consequence, it can be confidently applied as modal

identification technique (Verboven 2002, Zhang et al. 2005b).

For this reason and the previously mentioned drawbacks related to the solution

of an optimization problem by iterative algorithms, the MLE is not widely used in

practical applications. The interested reader can refer to the literature on this topic

for more details (Schoukens and Pintelon 1991, Pintelon et al. 1994). In the

following, attention is focused on the LSCF estimator. The main advantage with
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its use is in the possibility to get very clear stabilization diagrams (see Sect. 4.9 for

more details). This simplifies the identification of the structural modes and provides

interesting opportunities for the automation of the modal identification process.

However, the LSCF method shows some limitations in the identification of closely

spaced modes. Thus, a poly-reference version of the method, the Poly-reference

LSCF estimator (also known under the commercial name of PolyMAX), has been

introduced to deal with the identification of closely spaced poles. Both the LSCF

method and its poly-reference version can be classified as two stage modal identifi-

cation methods. In fact, the identification of the mode shapes is based on previous

estimates of natural frequencies and damping ratios. In particular, as explained

next, the identification of the mode shapes is usually carried out according to the

LSFD approach once the poles associated to structural modes have been identified

in the first stage of analysis.

4.4.3.1 The Least Squares Complex Frequency Method
The LSCF estimator takes advantage of the global character of the structural poles

and the common-denominator model to identify the modal parameters. It can

be classified as a parametric, frequency domain modal identification procedure.

The analysis parameter is represented by the order of the polynomial in the model.

Assume that the numerator polynomial and the common-denominator polyno-

mial are characterized by the same order n. For a generic couple k of output channels

(k¼ 1, . . ., l·l), the cross-power spectrum at frequency line f (f¼ 1, . . ., Nf)

is modeled as:

Gk ωf

� � ¼ Nk Ωf ; θf g� �
d Ωf ; θf g� � ð4:113Þ

where:

Nk Ωf ; θf g� � ¼Xn
j¼0

Nk, jΩ j
f ð4:114Þ

d Ωf ; θf g� � ¼Xn
j¼0

djΩ j
f ð4:115Þ

are the numerator polynomial and the common-denominator polynomial, respec-

tively. The coefficients dj and Nk,j are the unknown, complex-valued parameters

{θ} to be estimated. Ωf is the generalized transform variable, evaluated at the

frequency line f. Different choices for Ωf are possible.

In its classical implementation, the LSCF estimator was based on a continuous-

time domain model with real-valued coefficients. In that case the generalized

transform variable was Ωf¼ iωf.

Nevertheless, the problem was numerically ill-conditioned, in particular for high

order systems, and even the normalization of the frequency axis led to moderate
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improvements of the numerical conditioning. A significant improvement of nume-

rical conditioning of continuous-time domain models was obtained through the

introduction of orthogonal polynomials—Forsythe and Chebyshev polynomials—

(Verboven et al. 2005) as generalized transform variable. Nevertheless, numerical

conditioning problems were still present to a certain extent and the coefficients

estimated according to the polynomial basis had to be transformed back to the

original power polynomial basis in order to extract the modal parameters. In order

to overcome these drawbacks, the LSCF estimator is currently based on a common-

denominator model in the discrete-time domain, and the generalized transform

variable has the following formulation in the z-domain:

Ωf ¼ eiωfΔt ¼ zf : ð4:116Þ
This complex polynomial basis function ensures good numerical conditioning.

As a consequence, only the z-domain formulation is considered in the following.

From (4.116) it follows that:

Ω j
f ¼ e iωfΔtð Þj ¼ z jf ð4:117Þ

The estimation of the coefficients {θ} requires the application of a constraint in

the solution of the least squares problem. In fact, multiplication of numerator and

denominator by a scalar a 6¼ 0 yields an equivalent scalar matrix fraction

description:

Gk ωf

� � ¼ Nk Ωf ; θf g� �
d Ωf ; θf g� � ¼ a � Nk Ωf ; θf g� �

a � d Ωf ; θf g� � : ð4:118Þ

Possible strategies to remove the parameter redundancy consist in setting one of

the denominator coefficients equals to 1 (the effect of different choices for the

restrained coefficient is discussed in Sect. 4.9) or in imposing that the vector of the

parameters {θ} (or eventually the vector holding only the denominator coefficients)

has norm 1.

In the following derivations the highest order coefficient of the denominator is

constrained to be equal to 1:

dn ¼ 1 ð4:119Þ
since this choice simplifies the identification of the structural poles (Sect. 4.9).

The polynomial coefficients are obtained as a solution of a linear least squares

problem. In order to obtain equations that are linear in the parameters, the following

approximation is considered:

εk ωf ; θf g� � ¼ Nk Ωf ; θf g� �� Ĝ k ωf

� �
d Ωf ; θf g� � 	 0 ð4:120Þ
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where Ĝ k ωf

� �
is the measured spectrum for the k-th couple of output channels,

evaluated at the frequency line f. The unknown polynomial coefficients are

obtained through the minimization of the following equation error:

‘ θf gð ÞLS ¼
Xl�l
k¼1

XNf

f¼1

Nk Ωf ; θf g� �� Ĝ k ωf

� �
d Ωf ; θf g� �		 		2: ð4:121Þ

Since (4.120) is linear in the unknown parameters {θ}, it can be rewritten

as follows, taking into account that a common-denominator model has been

adopted:

εf g ¼ J½ � θf g ¼

Γ1½ � 0½ � . . . 0½ � Υ1½ �

0½ � Γ2½ � . .
.

0½ � Υ2½ �

⋮ ⋮ . .
.

⋮ ⋮
0½ � 0½ � . . . Γl�l½ � Υl�l½ �

2666664

3777775

θN1
f g
θN2

f g
⋮

θNl�lf g
θdf g

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
	 0f g ð4:122Þ

where:

εf g ¼

ε1f g
⋮
εkf g
⋮
εl�lf g

8>>>><>>>>:

9>>>>=>>>>;, εkf g ¼
εk ω1ð Þ
εk ω2ð Þ

⋮
εk ωNf

� �
8>>><>>>:

9>>>=>>>; ð4:123Þ

θNk
f g ¼

Nk, 0

Nk, 1

. . .
Nk,n

8>><>>:
9>>=>>; ð4:124Þ

θdf g ¼
d0
d1
. . .
dn

8>><>>:
9>>=>>; ð4:125Þ

Γk½ � ¼

Γk ω1ð Þf gT

Γk ω2ð Þf gT

. . .

Γk ωNf

� �
 �T

8>>>>><>>>>>:

9>>>>>=>>>>>;
¼

z0 ω1ð Þ z1 ω1ð Þ . . . zn ω1ð Þ
z0 ω2ð Þ z1 ω2ð Þ . . . zn ω2ð Þ
. . . . . . . . . . . .

z0 ωNf

� �
z1 ωNf

� �
. . . zn ωNf

� �

266664
377775 ð4:126Þ
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Υk½ � ¼
Υk ω1ð Þf gT
Υk ω2ð Þf gT

⋮
Υk ωNf

� �
 �T
8>><>>:

9>>=>>; ¼
�Ĝ k ω1ð Þz0 ω1ð Þ . . . �Ĝ k ω1ð Þzn ω1ð Þ

⋮ . . . ⋮
�Ĝ k ωNf

� �
z0 ωNf

� �
. . . �Ĝ k ωNf

� �
zn ωNf

� �
264

375
ð4:127Þ

The unknown parameters can be estimated directly from the Jacobian matrix

[J]. However, a significant reduction in computational time and memory

requirements can be achieved through the formulation of normal equations. The

normal matrix:

J½ �H J½ � ¼

Γ1½ �H Γ1½ � 0½ � . . . Γ1½ �H Υ1½ �
0½ � Γ2½ �H Γ2½ � . . . Γ2½ �H Υ2½ �

⋮ ⋮ . .
.

⋮

Υ1½ �H Γ1½ � Υ2½ �H Γ2½ � . . .
Xl�l
k¼1

Υk½ �H Υk½ �

2666666664

3777777775
ð4:128Þ

consists of submatrices that are structured (Toeplitz) matrices (a Toeplitz matrix is a
matrix in which each diagonal is characterized by the repetition of the same

element). If the following submatrices are defined:

Rk½ � ¼ Γk½ �H Γk½ � ð4:129Þ

Sk½ � ¼ Γk½ �H Υk½ � ð4:130Þ

Tk½ � ¼ Υk½ �H Υk½ � ð4:131Þ
the normal equations can be written in this form:

J½ �H J½ � θf g ¼

R1½ � 0½ � . . . S1½ �
0½ � R2½ � . . . S2½ �

⋮ ⋮ . .
.

⋮

S1½ �H S2½ �H . . .
Xl�l
k¼1

Tk½ �

2666666664

3777777775

θN1
f g
θN2f g
⋮

θNl�lf g
θdf g

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
	 0f g: ð4:132Þ

Since the parameter constraint has been applied to the denominator coefficients

{θd} only, the numerator coefficients can be eliminated from the normal equations

by substitution of:

θNk
f g ¼ � Rk½ ��1 Sk½ � θdf g ð4:133Þ
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into (4.132); this results in the so-called reduced normal equations:

Xl�l
k¼1

Tk½ � � Sk½ �H Rk½ ��1 Sk½ �
� �" #

θdf g ¼ M½ � θdf g 	 0f g: ð4:134Þ

A significant reduction in the dimension of the problem has been obtained,

since the square (n + 1)� (n + 1) matrix [M] is much smaller than the normal

matrix [J]H[J]. Under the constraint given by (4.119), the least squares solution is

obtained as:

θdf g ¼ � M 1:n, 1:nð Þ
� ��1

M 1:n,nþ1ð Þ
� �

1


 �
ð4:135Þ

where [M(1 : n,1 : n)] is the submatrix made by the first n rows and n columns of [M],

while [M(1 : n,n+ 1)] is the submatrix made by the first n rows and the last column of

[M]. Once the coefficients {θd} have been computed, the poles in the z-domain are

obtained as the roots of the denominator polynomial. Taking into account the

relation between the poles in the z-domain and those in the Laplace domain:

zr ¼ eλrΔt ) λr ¼ ln zrð Þ
Δt

ð4:136Þ

the natural frequency, the damped modal frequency, and the damping ratio of the

r-th mode can be computed as follows:

f r ¼
λrj j
2π

ð4:137Þ

f d, r ¼
Im λrð Þ
2π

ð4:138Þ

ξr ¼ �Re λrð Þ
λrj j : ð4:139Þ

Once the denominator coefficients {θd} are known, the numerator coefficients

can be obtained from (4.133); the mode shapes can be theoretically estimated from

those polynomial coefficients. However, the numerator coefficients are actually

computed only if the LSCF estimator is used to determine the starting value for the

MLE. In practical applications mode shapes are, instead, obtained from the modal

model as a solution of a second least squares problem. The reason under this

two-stage approach is that the common-denominator model does not force rank-

one residue matrices on the measurements, while it is known from modal analysis

theory that the residue matrix is of rank one.
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Once the structural modes are identified, the corresponding poles are passed

to the LSFD estimator for the identification of the residue matrices and, as a

consequence, the mode shapes associated to the selected physical poles. Since

the poles are known from the previous stage, the modal model is linear in the

parameters (the residues), which can be obtained as a solution of a linear least

squares problem.

The residue matrices can be computed by minimizing the following functions:

gk Rk, j

� � ¼XNf

f¼1

Ĝ k ωf

� ��XNm

j¼1

Rk, j

iωf � λj
þ R�

k, j

iωf � λ�j

 ! !2
ð4:140Þ

with respect to Rk,j (k¼ 1, . . ., l·l) in a least squares sense. In general, two additional
terms, the upper (UR) and lower (LR) residual terms, can be considered (Peeters

and Van der Auweraer 2005). They are introduced to approximate the effects of

out-of-band modes (below the lower bound and above the upper bound of the

analyzed frequency range). However, their use is restricted to continuous-time

fraction polynomial models (Verboven 2002).

The minimization of gk implies that its partial derivatives with respect to the

unknown residual coefficients Rk,j are zero:

∂gk
∂Rk, j

¼ 2
XNf

f¼1

Ĝ k ωf

� ��XNm

j¼1

Rk, j

iωf � λj
þ R�

k, j

iωf � λ�j

 ! !
� 1

iωf � λj

� �
¼ 0

ð4:141Þ
with k¼ 1, . . ., l·l and j¼ 1, . . ., 2Nm, where Nm denotes the number of identified

physical modes. The obtained equations can be expressed in matrix form as

follows:

ΛΛ½ � Rkf g ¼ GΛf g ð4:142Þ
where:

ΛΛ½ � ¼
XNf

f¼1

Λ ωf

� �
 �
Λ ωf

� �
 �T ð4:143Þ

GΛf g ¼
XNf

f¼1

Ĝ k ωf

� �
Λ ωf

� �
 � ð4:144Þ
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Λ ωf

� �
 � ¼

1

iωf � λ1

⋮
1

iωf � λj

⋮
1

iωf � λNm

1

iωf � λ�1
⋮
1

iωf � λ�j
⋮
1

iωf � λ�Nm

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð4:145Þ

Rkf g ¼

Rk, 1

⋮
Rk, j

⋮
Rk,Nm

R�
k, 1

⋮
R�
k, j

⋮
R�
k,Nm

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

: ð4:146Þ

As a consequence, since the physical poles are known, the residues can be

determined as follows:

Rkf g ¼ ΛΛ½ ��1 GΛf g, k ¼ 1, . . . , l � l: ð4:147Þ
The l� l residue matrix [Rj] corresponding to the j-th mode is easily constructed

by taking the elements of the {Rk} vectors corresponding to λj for k¼ 1,. . ., l·l.
Once the [Rj] matrices ( j¼ 1, . . .,Nm) have been determined, the mode shapes {ϕj}

are obtained by SVD of the residue matrices:

Rj

� � ¼ U½ � Σ½ � V½ �T ð4:148Þ
In fact, assuming that rank([Rj])¼ 1, the first column of [U] is an estimate of the

mode shape {ϕj} of the j-th mode.
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4.4.3.2 The Poly-Reference Least Squares Complex Frequency Method
The poly-reference version of the LSCF estimator is based on an RMFD. The

development of the p-LSCF method was motivated by some inherent limitations of

the LSCF estimator based on the common-denominator model. In particular, they

concern the identification of closely spaced modes and the reduction of the quality

of fit when the polynomial model is converted to a modal model (Peeters and Van

der Auweraer 2005). In fact, closely spaced poles might erroneously show up as a

single pole in LSCF, in particular at low values of the model order. The reduction of

the quality of fit is instead related to the fact that the common-denominator model

does not force the residue matrices to be rank-one. This extra freedom leads to an

“artificial” enhancement of the quality of fit, since the model does not fulfill the

modal analysis theory in terms of rank of the residue matrices.

The p-LSCF method is herein illustrated with reference to one-sided spectra,

but positive power spectra are analyzed in the same way by replacing [GYY(ωf)]

with ½SþYYðωf Þ� (or their respective estimates), and Ĝ o ωf

� �� �
with Ŝ þ

o ωf

� �� �
.

A comparison between the results obtained from the application of the method to

positive power spectra and one-sided spectra is reported in Sect. 4.9. In p-LSCF the

PSD matrix at each frequency line f (f¼ 1, . . ., Nf) is modeled by the RMFD

(Cauberghe 2004):

GYY ωf

� �� � ¼ B Ωf ; θ½ �� �� �
A Ωf ; θ½ �� �� ��1 ð4:149Þ

where [θ] is the matrix of the unknown parameters. For every output channel

o (o¼ 1, . . ., l), hBo(Ωf, [θ])i is the numerator matrix polynomial:

Bo Ωf ; θ½ �� �� � ¼Xn
j¼1

Bo, j

� �
Ω j

f ð4:150Þ

and [A(Ωf, [θ])] is the denominator matrix polynomial:

A Ωf ; θ½ �� �� � ¼Xn
j¼0

Aj

� �
Ω j

f : ð4:151Þ

The 1� l matrices hBo,ji and the l� l matrices [Aj] are the unknown parameters

to be estimated. The polynomial coefficients can be collected in a single complex-

valued matrix as follows:

θ½ � ¼
β1½ �
⋮
βl½ �
α½ �

2664
3775 ð4:152Þ
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where:

βo½ � ¼
Bo, 0h i
⋮

Bo,nh i

24 35 ð4:153Þ

α½ � ¼
A0½ �
. . .
An½ �

24 35 ð4:154Þ

and n is the model order. As in the case of the common-denominator model, the

polynomial basis function can be expressed in the continuous Laplace domain

(Ωf¼ iωf) or in the discrete z-domain. As already mentioned in the illustration of

the LSCF method, the z-domain formulation (4.116) is recommended to improve

numerical conditioning.

The following error formulation:

Eo ωf ; θ½ �� �� � ¼ Bo Ωf ; θ½ �� �� �� Ĝ o ωf

� �� �
A Ωf ; θ½ �� �� � ð4:155Þ

is introduced to obtain a linear least squares problem. This is defined by minimizing

the following cost function:

‘ θ½ �ð Þ ¼
Xl
o¼1

XNf

f¼1

tr Eo ωf ; θ½ �� �� �H
Eo ωf ; θ½ �� �� �� �

: ð4:156Þ

The minimization of the cost function given by (4.156) corresponds to the

solution of the following matrix equation:

J½ � θ½ � ¼ 0½ � ð4:157Þ
where the Jacobian matrix [J] is given by:

J½ � ¼

Γ1½ � 0½ � . . . 0½ � Υ1½ �
0½ � Γ2½ � . . . 0½ � Υ2½ �

⋮ ⋮ . .
.

⋮ ⋮
0½ � 0½ � . . . Γl½ � Υl½ �

266664
377775 ð4:158Þ

with:

Γo½ � ¼

1 z1 . . . zn1h i
1 z2 . . . zn2h i

. . .

1 zNf
. . . znNf

� �

266664
377775 ð4:159Þ
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Υo½ � ¼

� 1 z1 . . . zn1h iN Ĝ o ω1ð Þ� �
� 1 z2 . . . zn2h iN Ĝ o ω2ð Þ� �

� 1 zNf
. . . znNf

� �N
Ĝ o ωNf

� �� �

266664
377775: ð4:160Þ

N
denotes the Kronecker product. The matrices [Γo] and [Υo] have dimensions

Nf� (n + 1) and Nf� (n + 1)·l, respectively.
It is possible to show that (Cauberghe 2004):

‘ θ½ �ð Þ ¼
Xl
o¼1

XNf

f¼1

tr Eo ωf ; θ½ �� �� �H
Eo ωf ; θ½ �� �� �� �

¼ tr θ½ �H J½ �H J½ � θ½ �
� �

ð4:161Þ

and, on the analogy with the LSCF estimator, it is possible to reduce the dimensions

of the matrix equation through the definition of the normal equations:

J½ �H J½ � θ½ � ¼

R1½ � . . . 0½ � S1½ �

⋮ . .
.

⋮ ⋮
0½ � . . . Rl½ � Sl½ �

S1½ �H . . . Sl½ �H
Xl
o¼1

To½ �

2666666664

3777777775
β1½ �
⋮
βl½ �
α½ �

266664
377775 ¼ 0½ � ð4:162Þ

with:

Ro½ � ¼ Γo½ �H Γo½ � ð4:163Þ

So½ � ¼ Γo½ �H Υo½ � ð4:164Þ

To½ � ¼ Υo½ �H Υo½ �: ð4:165Þ
[Ro], [So] and [To] have dimensions (n + 1)� (n + 1), (n + 1)� (n + 1)·l and

(n + 1)·l� (n + 1)·l, respectively. The [βo] coefficients can be eliminated from

(4.162) taking into account that:

βo½ � ¼ � Ro½ ��1 So½ � α½ �: ð4:166Þ
As a final result, the reduced normal equations are obtained:

Xl
o¼1

To½ � � So½ �H Ro½ ��1 So½ �
� �

α½ � ¼ M½ � α½ � ¼ 0½ � ð4:167Þ

where [M] is a square (n + 1)·l� (n + 1)·l matrix.

On the analogy with the LSCF method, the parameter redundancy is removed by

setting one of the denominator coefficients equal to the identity matrix. If the
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highest order coefficient is constrained to be equal to the identity matrix of

dimensions l� l:

An½ � ¼ Il½ � ð4:168Þ
the least squares solution is given by:

α½ � ¼ � M 1:nl, 1:nlð Þ
� ��1

M 1:nl, nlþ1ð Þ: nþ1ð Þlð Þ
� �
Il½ �

" #
: ð4:169Þ

The matrix [M(1 : nl,1 : nl)] is the submatrix of [M] made by its first n·l rows and
columns; the matrix [M(1 : nl,(nl+ 1) : (n+ 1)l )] is the submatrix of [M] made by its first

n·l rows and its last n·l columns. Once the [α] coefficients have been determined, the

[βo] coefficients can be computed by substitution of [α] into (4.166).

The roots of the denominator polynomial [A(Ωf, [θ])] are the eigenvalues of the
following companion matrix:

A½ � ¼

� A0½ ��1 An½ � � A0½ ��1 An�1½ � . . . � A0½ ��1 A2½ � � A0½ ��1 A1½ �
I½ � 0½ � . . . 0½ � 0½ �

⋮ ⋮ . .
.

⋮ ⋮

0½ � 0½ � . . . I½ � 0½ �

2666664

3777775
ð4:170Þ

The companion matrix is a square n·l� n·l matrix and it models a dynamic

system with (n·l)/2 modes. Its eigenvalues zr have to be converted into the poles

expressed in the Laplace domain as per (4.136). Equations (4.137)–(4.139) provide

the natural frequency, the damped modal frequency, and the damping ratio of the

r-th mode, respectively.

Once the poles associated to physical modes have been selected, the LSFD

estimator is used to get the corresponding mode shapes. The residue matrices can

be computed by minimizing the scatter between the experimentally estimated PSD

matrix and the modeled one (De Troyer et al. 2009a):

g Rj

� �� �� � ¼XNf

f¼1

Ĝ YY ωf

� �� ��XNm

j¼1

Rj

� �
iωf � λj

þ Rj

� ��
iωf � λ�j

 ! !2

: ð4:171Þ

The minimization of [g([Rj])] implies that its partial derivatives with respect to

the unknown residues are zero. The obtained equations can be expressed in matrix

form as follows:

ΛΛ½ � R½ � ¼ GΛ½ � ð4:172Þ
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where:

ΛΛ½ � ¼
XNf

f¼1

Il½ �
iωf � λ1
� �

iωf � λ1
� � Il½ �

iωf � λ�1
� �

iωf � λ1
� � . . .

Il½ �
iωf � λNm

� �
iωf � λ1
� � Il½ �

iωf � λ�Nm

� �
iωf � λ1
� �

⋮ ⋮ . .
. ⋮ ⋮

Il½ �
iωf � λ1
� �

iωf � λ�Nm

� � Il½ �
iωf � λ�1
� �

iωf � λ�Nm

� � . . .
Il½ �

iωf � λNm

� �
iωf � λ�Nm

� � Il½ �
iωf � λ�Nm

� �
iωf � λ�Nm

� �

266666666664

377777777775

0BBBBBBBBBB@

1CCCCCCCCCCA
ð4:173Þ

R½ � ¼

R1½ �
R1½ ��
⋮

RNm
½ �
RNm
½ ��

266664
377775 ð4:174Þ

GΛ½ � ¼
XNf

f¼1

Ĝ YY ωf

� �� �
iωf � λ1
� �
Ĝ YY ωf

� �� �
iωf � λ�1
� �

⋮
Ĝ YY ωf

� �� �
iωf � λNm

� �
Ĝ YY ωf

� �� �
iωf � λ�Nm

� �

266666666666666666664

377777777777777777775

0BBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCA

: ð4:175Þ

The mode shape of the j-th mode can be finally estimated once the corresponding

l� l residue matrix [Rj] has been computed from (4.172) (Sect. 4.4.3.1).

4.5 Time Domain Methods

4.5.1 NExT-Type Procedures

A number of modal identification techniques, initially developed in the determi-

nistic framework of traditional input–output modal analysis, have been extended to

output-only modal analysis recognizing that the correlation functions of random

responses can be expressed as a sum of decaying sinusoids (4.15) holding the

information about the modal parameters. As a consequence, correlation functions

of the random responses of the structure under natural excitation have replaced the

experimental estimates of IRFs in the application of such modal analysis techniques

in the output-only case. For this reason, this class of OMA methods is traditionally

referred to as NExT.

146 4 Output-only Modal Identification



The three main methods in this class are:

• The LSCE method,

• The ITD method,

• The ERA method (Juang and Pappa 1985, Juang 1994).

In this section, only the LSCE and the ITD methods are presented. In fact,

ERA relies on the system realization theory and it is not herein illustrated because

of its similarities with subspace methods. The reader can refer to Sect. 4.5.3.1 for

output-only modal identification based on correlation functions and state-space

model.

NExT-type methods were very popular at the beginning of OMA. LSCE and

ITD have also experienced some enhancements over the years, for instance in order

to deal with closely spaced modes (Olsen and Brincker 2013) and spurious

harmonics (Mohanty 2005). Due to their historical relevance, they are herein

illustrated in their most relevant aspects. However, these methods have been

progressively abandoned in favor of the more robust subspace methods. The

interested reader can refer to the literature for more details (Allemang and Brown

1998, Vold et al. 1982, Ibrahim and Mikulcik 1977, Mohanty 2005, Olsen and

Brincker 2013).

The LSCE method is the time-domain counterpart of the LSCF estimator. Thus,

it is basically a curve-fitting algorithm aimed at the extraction of the modal

parameters from correlation functions. From (4.15) the generic correlation function

can be rewritten as follows in discrete-time and for k� 0:

Rij kΔtð Þ ¼
XNm

r¼1

Cij, re
λrkΔt þ C∗

ij, re
λ∗r kΔt

� �
ð4:176Þ

where Cij,r is the element ij of the residue matrix associated to the r-th mode (the

notation for the residues has been slightly modified in this section with respect to

the rest of the chapter for the sake of clarity). Taking into account that the poles

appear in complex conjugate pairs and considering all the poles in sequence,

(4.176) can be rewritten as:

Rij kΔtð Þ ¼
Xn
r¼1

Cij, re
λrkΔt ð4:177Þ

where Cij, r is the constant associated to the r-th pole λr and the sum is extended to

n¼ 2Nm terms. Moreover, since the poles are in complex conjugate pairs, there

exists a polynomial of order n of which zr ¼ eλrΔt (r¼ 1, . . ., n) are roots:

β0z
0
r þ β1z

1
r þ . . .þ βn�1z

n�1
r þ znr ¼ 0 ð4:178Þ

Equation (4.178) is also known as Prony’s equation. The highest order coeffi-

cient βn is set equal to 1.
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In order to determine the polynomial coefficients βk, assuming that a number of

samples q larger than 2n are available, (4.177) can be written for the full dataset as

follows:

Rij kΔtð Þjk¼0 ¼ Cij, 1 þ Cij, 2 þ . . .þ Cij,n

Rij kΔtð Þjk¼1 ¼ Cij, 1z
1
1 þ Cij, 2z

1
2 þ . . .þ Cij,nz

1
n

⋮

Rij kΔtð Þjk¼q ¼ Cij, 1z
q
1 þ Cij, 2z

q
2 þ . . .þ Cij,nz

q
n

: ð4:179Þ

Multiplying the correlation at time instant k by the coefficient βk:

β0Rij kΔtð Þjk¼0 ¼ β0Cij, 1 þ β0Cij, 2 þ . . .þ β0Cij,n

β1Rij kΔtð Þjk¼1 ¼ β1Cij, 1z
1
1 þ β1Cij, 2z

1
2 þ . . .þ β1Cij,nz

1
n

⋮

βqRij kΔtð Þjk¼q ¼ βqCij, 1z
q
1 þ βqCij, 2z

q
2 þ . . .þ βqCij,nz

q
n

: ð4:180Þ

and summing up these values, the following equation is obtained:

Xq
k¼0

βkRij kΔtð Þ ¼
Xn
r¼1

Cij, r

Xq
k¼0

βkz
k
r

 !
: ð4:181Þ

It is convenient to set q¼ n¼ 2Nm. Taking into account (4.178) and that βn¼ 1,

the following equation is obtained:

Xn�1

k¼0

βkRij kΔtð Þ ¼ �Rij nΔtð Þ: ð4:182Þ

Repeating this process for different sets of samples (for instance, the next set can

be made by the samples k¼ 1, . . ., n + 1), a set of n equations in the n unknown βk
coefficients is obtained:

Rij

� �
βf g ¼ � eRij

n o
ð4:183Þ

where:

Rij

� � ¼
Rij kΔtð Þjk¼0 Rij kΔtð Þjk¼1 . . . Rij kΔtð Þjk¼n�1

Rij kΔtð Þjk¼1 N N Rij kΔtð Þjk¼n

⋮ N N ⋮

Rij kΔtð Þjk¼n�1 Rij kΔtð Þjk¼n . . . Rij kΔtð Þjk¼2n�2

266664
377775 ð4:184Þ
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is the Hankel matrix (a Hankel matrix is a matrix that is constant along its

anti-diagonals) holding the values of the correlation function,

βf g ¼
β0
β1
⋮

βn�1

8>><>>:
9>>=>>; ð4:185Þ

is the vector of the unknown βk coefficients, and:

eRij

n o
¼

Rij nΔtð Þ
Rij nþ 1ð ÞΔtð Þ

⋮
Rij 2n� 1ð ÞΔtð Þ

8>>><>>>:
9>>>=>>>;: ð4:186Þ

[Rij], {β} and eRij

n o
have dimensions n� n, n� 1 and n� 1, respectively.

The unknown coefficients are given by:

βf g ¼ � Rij

� ��1 eRij

n o
: ð4:187Þ

They are also the coefficients of the Prony’s equation (4.178), whose roots

zr ¼ eλrΔt provide the natural frequency, the damped modal frequency, and the

damping ratio ((4.137)–(4.139)) after the conversion into the continuous Laplace

domain (4.136).

The above procedure uses a single correlation function. However, since the {β}
coefficients are global quantities related to the modal parameters, the correlation

between any couple of response time series has to provide the same polynomial

coefficients (Mohanty 2005). As a consequence, repeating the above procedure for

any couple of response time histories leads to the following overdetermined set of

equations:

R11½ �
R12½ �
⋮
Rll½ �

2664
3775 βf g ¼ �

eR11

n o
eR12

n o
⋮eRll

n o
8>>>><>>>>:

9>>>>=>>>>; ð4:188Þ

which can be solved in a least squares sense by pseudo-inverse techniques (Chap. 2).

Once the physical poles have been identified, they can be inserted into (4.177) to

determine the constants Cij, r from the following set of equations:

z01 z02 . . . z0n

z11 z12 . . . z1n

⋮ ⋮ . . . ⋮

zn�1
1 zn�1

2 . . . zn�1
n

266664
377775

Cij, 1

Cij, 2

⋮

Cij,n

8>>>><>>>>:

9>>>>=>>>>; ¼

Rij kΔtð Þ		
k¼0

Rij kΔtð Þ		
k¼1

⋮

Rij kΔtð Þ		
k¼n�1

8>>>>><>>>>>:

9>>>>>=>>>>>;
: ð4:189Þ
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Thus, the LSCE method is a two-stage method for OMA, where mode shapes

are estimated only in a second stage of analysis following the identification of

the physical poles. On the analogy with the LSCF estimator, there exists also a

poly-reference version of the algorithm, which considers all the measurement

channels as references, computes thematrix coefficients [β1], . . ., [βn] by least squares,
and extracts the poles as a solution of a generalized eigenvalue problem. The interested

reader can refer to the literature (Heylen et al. 1998, Vold et al. 1982) for more details.

The ITD method is a global modal identification procedure based on processing

of all the measured correlation functions at once. Taking into account that the

generic correlation function can be decomposed as a sum of complex exponentials

and arranging the measured correlation functions in a block Hankel matrix:

H0jn�1

� � ¼
R̂yy 0ð Þ� �

R̂yy 1ð Þ� �
. . . R̂yy n� 1ð Þ� �

R̂yy 1ð Þ� �
N N R̂yy nð Þ� �

⋮ N N ⋮
R̂yy n� 1ð Þ� �

R̂yy nð Þ� �
. . . R̂yy 2n� 2ð Þ� �

266664
377775 ð4:190Þ

the following decomposition can be considered:

H0jn�1

� � ¼ Ψ½ � Λ½ � ð4:191Þ
where [Ψ] contains the information about the mode shapes, and [Λ] holds the

information about the poles.

A second set of equations is obtained by a time-shift Δt of all the entries in the

[H0jn� 1] matrix. The second block Hankel matrix is related to [Λ] as follows:

H1jn
� � ¼ Ψ

� �
Λ½ �: ð4:192Þ

The relation between the matrices [Ψ] and Ψ
� �

is expressed by the system

matrix [A] as:

A½ � Ψ½ � ¼ Ψ
� �

: ð4:193Þ
Substitution of (4.193) into (4.192) yields:

H1jn
� � ¼ A½ � Ψ½ � Λ½ � ð4:194Þ

and, taking into account (4.191), the following equation is obtained:

A½ � H0jn�1

� � ¼ H1jn
� � ð4:195Þ

which provides the system matrix [A] from the measured data contained in the

matrices [H0|n� 1] and [H1|n]:

A½ � ¼ H1jn
� �

H0jn�1

� �þ
: ð4:196Þ
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The modal parameters are finally estimated by the eigenvalue decomposition of

the system matrix. Its eigenvalues are the system poles in the z-domain. The natural

frequency, the damped modal frequency, and the damping ratio are obtained from

(4.137), (4.138), and (4.139), respectively, once the eigenvalues have been

converted into the continuous Laplace domain (4.136). The eigenvector of the

system matrix corresponding to a certain eigenvalue is finally used to obtain an

estimate of the mode shape for that mode. It is worth pointing out that the ITD

method is a low order method. As a consequence, the number of measurement

channels l limits the number of identifiable poles (and therefore modes).

4.5.2 AR- and ARMA-Type Methods

The use of ARMA models for output-only modal identification has been attempted

in the past, but they never became popular in this field due to a number of

drawbacks (convergence problems, excessive computational time). Nevertheless,

for their historical relevance, the main concepts under the application of AR and

ARMA models to OMA are herein briefly summarized.

In Sect. 4.2.3 it has been mentioned that an ARMAV(p, p) model:

ykf g þ α1½ � yk�1f g þ . . .þ αp
� �

yk�p


 � ¼ ekf g þ γ1½ � ek�1f g þ . . .þ γp
� �

ek�p


 �
:

ð4:197Þ
is an equivalent representation of a dynamic system with n¼ p·l poles in the

presence of noise (namely, low signal-to-noise ratio; in the absence of noise, a

covariance equivalent model is an ARMAV(p, p� 1) model; Andersen 1997,

Andersen et al. 1996). It can be used to describe a linear, time-invariant structure

vibrating under unknown input forces, which can be modeled as a zero-mean

Gaussian white noise process. Since the order p of the ARMA model is related to

the order n of the system, the poles of the structure are included in the model only if

pl� n. Thus, a preliminary estimate of the model order and, therefore, of the number

of modes in the investigated frequency range is needed. In the case pl> n, additional
nonphysical poles appear next to the physical poles and have to be distinguished

(Peeters 2000). The poles are extracted from the AR matrix coefficients, while the

MA parameters ensure that the statistical description of the data is optimal.

PEM is a data-driven method for the estimation of an ARMA model. A detailed

description of the method and an extensive discussion about its application for the

identification of the modal parameters of civil engineering structures can be found

elsewhere (Ljung 1999, Andersen 1997). The ARMAV model is fitted to the

measured time signals by minimizing the output prediction error:

e tk; αi½ �; γi½ �ð Þf g ¼ y tkð Þf g � ŷ tkj Yk�1
� �

, αi½ �, γi½ �� �
 � ð4:198Þ
given by the difference between the measured time signals and the predicted output

of the ARMAV model, which depends on the model parameters [αi] and [γi] and on
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the past data [Yk� 1] up to tk�1. Unfortunately, the minimization of the prediction

error requires a nonlinear optimization procedure. Since in practical applications a

large number of parameters have to be estimated, this may lead to problems with

computational time and convergence. An optimization scheme able to reduce the

set of parameters to be estimated has been therefore proposed (Brincker and

Andersen 1999a). It basically carries out a translation of the ARMA model in

state-space form, defines a reduced set of parameters in the modal domain and

then goes back to the ARMA domain to perform the optimization according to

PEM. However, in the presence of good quality data this optimization scheme does

not significantly improve the modal parameter estimates with respect to the sto-

chastic state-space model (Brincker and Andersen 1999b). Thus, even if ARMA

models can be potentially applied in the field of OMA, limited applications of PEM

can be found in the literature as a result of the highly nonlinear parameter estima-

tion problem. Since the nonlinearity is associated to the MA terms and the infor-

mation about the poles is in the AR coefficients, alternative strategies have been

developed where the MA coefficients are not estimated.

A first strategy completely omits the MA part, and the application of PEM to

the following AR model:

ykf g þ α1½ � yk�1f g þ . . .þ αp
� �

yk�p


 � ¼ ekf g ð4:199Þ

leads to a linear least squares problem, which can be easily solved. However, as

mentioned in Sect. 4.2.3, an ARmodel of order p is not an equivalent representation

of a vibrating structure with pl poles, and the use of the AR model is justified only if

its order goes to infinity. Unfortunately, this causes the introduction of a lot of

spurious poles that have to be distinguished from the physical ones.

The IV method represents an attempt to overcome the limitations associated to

the estimation of the AR terms only. This result is obtained through the formulation

of a linear problem for the identification of the AR parameters, but an ARMA

model is retained as underlying structure. The method starts recognizing that the

ARMAV(p, p) model of (4.197) is adequate for modal parameter estimation if,

when fitting the measured data {yk}, it extracts the maximum of information from

them and returns residuals {ek} uncorrelated with the past data:

E ekf g yk�if gT� � ¼ 0½ � 8i > 0: ð4:200Þ
Since {ek� p} is the oldest term in the MA part of (4.197), post-multiplying both

sides of (4.197) by {yk� p� i}
T (i> 0) and taking the expectation yield the following

equation:

E ykf g yk�p�i


 �Th i
þ α1½ �E yk�1f g yk�p�i


 �Th i
þ . . .þ αp

� �
E yk�p


 �
yk�p�i


 �Th i
¼ 0½ � 8i > 0 ð4:201Þ
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where the equality follows from (4.200). The assumption of stationarity implies:

E ykf g yk�if gT� � ¼ E ykþi


 �
ykf gT� � ¼ Ri½ � 8i > 0 ð4:202Þ

so that the fundamental equation of the IV method can be expressed in terms of the

output correlations [Ri] as:

Rpþi

� �þ α1½ � Rpþi�1

� �þ . . .þ αp
� �

Ri½ � ¼ 0½ � 8i > 0: ð4:203Þ
Equation (4.203) can be rewritten as:

α1½ � Rpþi�1

� �þ . . .þ αp
� �

Ri½ � ¼ � Rpþi

� � 8i > 0 ð4:204Þ
pointing out the similarity with the (poly-reference) LSCE method. This is a further

example of how different algorithms can be traced back to a common mathematical

background, as discussed in Sect. 4.2.5.

If the output correlations are replaced by their estimates R̂ i

� �
and (4.204) is

written for all the available time lags i, the AR parameters [α1], . . ., [αp] can be

obtained as a least squares solution of an overdetermined set of equations. Natural

frequencies, damping ratios, and mode shapes are finally computed from the results

of the eigenvalue decomposition of the companion matrix of the AR coefficients, as

described in Sect. 4.2.3.

4.5.3 Stochastic Subspace Identification

4.5.3.1 Covariance-Driven Stochastic Subspace Identification
The Covariance-driven Stochastic Subspace Identification (Cov-SSI) method

addresses the stochastic realization problem, that is to say the problem of identi-

fying a stochastic state-space model from output-only data. The origin of the

method can be traced back to the system realization theory for deterministic

(input–output) cases and the concept of minimal realization developed by Ho and

Kalman (Ho and Kalman 1966).

An extensive discussion about the system realization theory can be found else-

where (Juang 1994). Here just some basic concepts are reported. As mentioned in

Sect. 4.2.3, a minimal realization is the state-space model with the smallest state-

space dimension among all the realizable systems characterized by the same input–

output relation. To construct such a model, it is important to check whether or not all

the system states of interest can be excited (controlled) and/or observed (Juang 1994).

By definition, a state of a system is controllable if it can be reached from any

initial state of the system in a finite time interval by some control actions; in a

similar way, a state of the system is observable if the knowledge of input and output

over a finite time interval completely determines the state.

It is possible to show (Juang 1994) that, if a certain condition about the rank

of two specific matrices is fulfilled, the system is observable and controllable.
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Such matrices are the so-called observability and controllability matrices and they

will be introduced next in this section.

A system of order n is observable/controllable if and only if the observability/

controllability matrix is of rank n. The solution of the realization problem consists

in determining a minimal realization of order n of the state-space matrices from the

measured data. As clarified next in this chapter, in practical applications the actual

order of the system is unknown and its determination is always affected by a certain

degree of uncertainty due to noise effects. As a consequence, even if a minimal

realization of a system of order n can be theoretically identified from the measured

data and used to extract the modal parameters, the determination of the correct

order of the system is usually a very complex task. A conservative approach to

identify all the structural modes in the data consists in the overestimation of the

order of the system. This causes the appearance of additional nonphysical poles

next to the physical poles, and specific criteria and tools to sort the structural poles

are needed (refer to Sect. 4.9 for more details).

The Cov-SSI method can be classified as a time-domain, parametric, covariance-

driven procedure for OMA. It starts from the computation of output correlations:

R̂ i

� � ¼ 1

N � i
Y 1:N�ið Þ
� �

Y i:Nð Þ
� �T ð4:205Þ

where [Y(1 :N� i)] is obtained from the l�N data matrix [Y] by removal of the last i

samples, while [Y(i :N )] is obtained from [Y] by removal of the first i samples; R̂ i

� �
denotes the unbiased estimate of the correlation matrix at time lag i based on a finite

number of data. The estimated correlations at different time lags are gathered into

the following block Toeplitz matrix:

T1 ij
� � ¼

R̂ i

� �
R̂ i�1

� �
. . . R̂ 1

� �
R̂ iþ1

� �
R̂ i

� � . .
.

R̂ 2

� �
⋮ ⋮ . .

.
⋮

R̂ 2i�1

� �
R̂ 2i�2

� �
. . . R̂ i

� �

2666664

3777775 ð4:206Þ

Each correlation matrix has dimensions l� l; thus, the block Toeplitz matrix has

dimensions li� li. For the identification of a system of order n, the number of block

rows i has to fulfill the following condition:

li � n ð4:207Þ
In practical applications the actual order of the system is obviously unknown.

However, an estimate of the number of modes in the frequency range of interest can

be obtained in a number of ways, for instance as the number of peaks in the trace of

the PSD matrix or in the singular value plots given by the SVD of the PSD matrix

(see Sects. 4.4.1 and 4.4.2).
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Assuming that the order of the system has been estimated and taking into

account that the number of outputs l is a constant of the identification problem, a

value for i larger than or equal to n/l can be set. The adopted value for i is basically a
user’s choice and it is definitely based on a physically insight of the problem.

Applying the factorization property given by (4.51) to the block Toeplitz matrix:

T1 ij
� � ¼ C½ �

C½ � A½ �
⋮

C½ � A½ �i�1

2664
3775 A½ �i�1 G½ � � � � A½ � G½ � G½ �
h i

¼ Oi½ � Γi½ � ð4:208Þ

the observability matrix:

Oi½ � ¼
C½ �

C½ � A½ �
⋮

C½ � A½ �i�1

2664
3775 ð4:209Þ

and the reversed controllability matrix:

Γi½ � ¼ A½ �i�1 G½ � � � � A½ � G½ � G½ �
h i

ð4:210Þ

are obtained. [Oi] and [Γi] have dimensions li� n and n� li, respectively. If the
condition of (4.207) is fulfilled and the system is observable and controllable, the

rank of the block Toeplitz matrix equals n. In fact, it is a product of a matrix with n

columns—[Oi]—and a matrix with n rows—[Γi]—.

The SVD of the block Toeplitz matrix:

T1ji
� � ¼ U½ � Σ½ � V½ �T ¼ U1½ � U2½ �½ � Σ1½ � 0½ �

0½ � 0½ �

 �

V1½ �T
V2½ �T


 �
ð4:211Þ

provides its rank, which equals the number of nonzero singular values (Sect. 2.3.1).

If the zero singular values and the corresponding singular vectors are omitted,

(4.208) and (4.211) yield:

T1ji
� � ¼ Oi½ � Γi½ � ¼ U1½ � Σ1½ � V1½ �T ð4:212Þ

where the matrices [U1] and [V1]
T have dimensions li� n and n� li, respectively,

and the n� n diagonal matrix [Σ1] holds the positive singular values arranged in

descending order. The matrices [Oi] and [Γi] can be computed by splitting the SVD

in two parts as follows:

Oi½ � ¼ U1½ � Σ1½ �1=2 T½ � ð4:213Þ

Γi½ � ¼ T½ ��1 Σ1½ �1=2 V1½ �T ð4:214Þ
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where [T] is a nonsingular matrix which plays the role of a similarity transformation

applied to the state-space model (Sect. 4.2.2); since the choice of [T] simply

determines one of the infinite equivalent realizations of the state-space model, it

can be set equal to the identity matrix:

T½ � ¼ I½ � ð4:215Þ
Taking into account the definitions of observability matrix (4.209) and control-

lability matrix (4.210), the output influence matrix [C] and the next state-output

covariance matrix [G] can be easily obtained as the first l rows of [Oi] and the last l
columns of [Γi], respectively.

The state matrix [A] can be computed according to different approaches. The

first is based on the decomposition property of the one-lag shifted Toeplitz matrix:

T2 iþ1j
� � ¼

R̂iþ1

� �
R̂i

� �
. . . R̂ 2

� �
R̂iþ2

� �
R̂iþ1

� � . .
.

R̂ 3

� �
⋮ ⋮ . .

.
⋮

R̂2i

� �
R̂2i�1

� �
. . . R̂iþ1

� �

2666664

3777775 ¼ Oi½ � A½ � Γi½ � ð4:216Þ

Introducing (4.213) and (4.214) into (4.216), taking into account (4.215) and

solving for [A], the following expression for the state matrix is obtained:

A½ � ¼ Oi½ �þ T2 iþ1j
� �

Γi½ �þ ¼ Σ1½ ��1=2 U1½ �T T2 iþ1j
� �

V1½ � Σ1½ ��1=2: ð4:217Þ
This variant of the Cov-SSI algorithm is basically equivalent to the NExT-ERA

method.

As an alternative, the state matrix [A] can be estimated by exploiting the shift

structure of the observability matrix. Pre- and post-multiplying the matrix [T1ji] by
the invertible weighting matrices [W1] and [W2], computing the SVD of the

weighted Toeplitz matrix and omitting the zero singular values yield the following

expression for the observability matrix (Yi and Yun 2004):

Oi½ � ¼ W1½ ��1 U1½ � Σ1½ �1=2 ð4:218Þ
and the state matrix is given by:

A½ � ¼ O"
i

h iþ
O#

i

h i
ð4:219Þ

where [Oi
"] and [Oi

#] are obtained from the matrix [Oi] by removal of the last and the

first l rows, respectively.
Depending on the adopted weighting matrices, the following two variants of

Cov-SSI can be considered: Balanced Realization (BR) and Canonical Variate

Analysis (CVA).
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The BR Cov-SSI uses identity matrices as weights:

W1½ � ¼ W2½ � ¼ I½ � ð4:220Þ
In a balanced realization the controllability grammian—[Γi] [Γi]T—and the

observability grammian—[Oi]
T[Oi]—are equal and diagonal (taking into account

that [U1] and [V1] are orthonormal matrices):

Oi½ �T Oi½ � ¼ Σ1½ �1=2 U1½ �T U1½ � Σ1½ �1=2 ¼ Σ1½ � ¼ Σ1½ �1=2 V1½ �T V1½ � Σ1½ �1=2

¼ Γi½ � Γi½ �T ð4:221Þ
and this implies that the realized system is controllable as well as observable (Juang

1994). A balanced realization means that the signal transfers from the input to the

state and from the state to the output are similar and balanced (Juang 1994).

In the CVA variant of Cov-SSI the Cholesky factorization (Chap. 2) of the

following matrices:

Tþ
0 i�1j

h i
¼

R̂ 0

� �
R̂ 1

� �T
. . . R̂ i�1

� �T
R̂ 1

� �
R̂ 0

� � . .
.

R̂ i�2

� �T
⋮ . .

. . .
.

⋮
R̂ i�1

� �
R̂ i�2

� �
. . . R̂ 0

� �

666666664

777777775 ¼ Lþ½ � Lþ½ �T ð4:222Þ

T�
0 i�1j

h i
¼

R̂ 0

� �
R̂ 1

� �
. . . R̂ i�1

� �
R̂ 1

� �T
R̂ 0

� � . .
.

R̂ i�2

� �
⋮ . .

. . .
.

⋮
R̂ i�1

� �T
R̂ i�2

� �T
. . . R̂ 0

� �

666666664

777777775 ¼ L�½ � L�½ �T ð4:223Þ

provides the weights (Hermans and Van Der Auweraer 1999):

W1½ � ¼ Lþ½ ��1
, W2½ � ¼ L�½ ��1 ð4:224Þ

In CVACov-SSI the singular values of the weighted Toeplitz matrix [W1][T1ji][W2]

can be interpreted as the cosines of the angles, the so-called canonical angles, between

two subspaces (Hermans and Van Der Auweraer 1999). The CVA weighting can be

physically interpreted as a weighting that leads to balanced modes in terms of energy.

As a consequence, it enhances the possibility to identify those modes that are less

excited in operational conditions.

Once the matrices [A] and [C] have been estimated, the modal parameters can be

extracted. The (complex conjugate pairs of) poles in discrete-time are in the diagonal

matrix [M] obtained from the eigenvalue decomposition of the state matrix (4.77).

After the conversion of the poles corresponding to physical modes from discrete-time

to continuous-time (4.136), the natural frequencies, the damped modal frequencies,
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and the damping ratios can be estimated according to (4.137), (4.138), and (4.139),

respectively. The mode shape of the r-th mode is estimated from the eigenvector {ψ r}

of [A] corresponding to the selected pole zr according to (4.79).

About the transformation from continuous-time to discrete-time and vice versa,

it is worth noting that the restriction of the Laplace variable to purely imaginary

values corresponds to a restriction to values on the unit circle in discrete-time

(Verboven 2002). Moreover, the transformation from discrete-time to continuous-

time is not unique (Juang 1994). Any couple of frequencies differing by a multiple

of 2π/Δt is indistinguishable when observed at the sampled times. As a conse-

quence, Δtmust be sufficiently short or a filter has to be adopted in order to prevent

that the frequencies beyond the Nyquist frequency are mirrored at a lower

frequency in the realization (aliasing).

The output correlations and the identified state-space matrices are estimates of

the corresponding true quantities based on a finite number of samples (for this

reason, they should be denoted with ^: Â
� �

, Ĉ
� �

, Ĝ
� �

. . .). The presence of noise can

determine some errors in the estimates. Typical noise sources are:

• modeling inaccuracies (for example, the system that generated the data cannot

be exactly modeled as a stochastic state-space model),

• measurement noise (due to sensors and measurement hardware),

• computational noise (due to the finite precision),

• the finite number of data points (leading to estimates of the output correlations).

As a consequence of noise and the finite number of samples, also the factoriza-

tion property of the Toeplitz matrix (4.208) does not hold exactly. If, in principle,

the order n of the system can be obtained as the number of nonzero singular values

of the block Toeplitz matrix [T1ji], the presence of noise makes all singular values

different from zero. Thus, the rank of [T1ji] is “approximately” n, and the truncation

of the smallest singular values leads to a certain error in the estimation of the state-

space matrices. A rule of thumbs for the evaluation of the order n of the system

suggests to look at the gap between two subsequent singular values. The model

order is identified in correspondence of the maximum value of this gap. However,

this criterion cannot be slavishly applied, since clear gaps are often absent in the

case of real records of the structural response. As a consequence, as previously

mentioned, a usual practice consists in overestimating the model order to a certain

extent and in sorting out the physical poles by appropriate tools and criteria. They

are illustrated in Sect. 4.9.

An assessment of the quality of the identified state-space model is possible

through the comparison of the synthesized spectra with those directly estimated

from the measurements. A closed-form expression for the spectrum of a discrete-

time stochastic state-space model is as follows (Peeters 2000):

SYY zð Þ½ � ¼ C½ � z I½ � � A½ �ð Þ�1 G½ � þ R0½ � þ G½ �T z�1 I½ � � A½ �T
� ��1

C½ �T
				
z¼eiωΔt

:

ð4:225Þ
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4.5.3.2 Data-Driven Stochastic Subspace Identification
DD-SSI algorithms have become very popular in the system identification

community in recent years. Such techniques are very attractive for a number of

reasons. They rely on an elegant mathematical framework and robust linear algebra

tools to identify the state-space matrices from the raw data. As a result, in com-

parison with other data driven algorithms such as PEM, nonlinear optimization

problems are avoided. In fact, the identification problem is linearized, that is to say

it is reduced to a simple least squares problem. Moreover, the use of well-known

tools from numerical linear algebra, such as SVD and LQ decomposition, leads to a

numerically very efficient implementation.

An innovative aspect of DD-SSI consists in the identification of the state

sequence before the estimation of the state-space matrices. A number of theorems

show that the states can directly be calculated from measurements through some

geometric operations (Van Overschee and De Moor 1996). These are the so-called

orthogonal and oblique projections. In the context of OMA, only orthogonal

projections are used. The concept of projection can be easily understood if the

rows of a matrix are interpreted as a basis for a vector space. Therefore, it is possible

to define the operator [ΠE], which projects the row space of a matrix on the row

space of a reference matrix [E]:

ΠE½ � ¼ E½ �T E½ � E½ �T
� �þ

E½ �: ð4:226Þ

The orthogonal projection of the row space of a generic matrix [F] on the row

space of [E] is:

F½ �= E½ � ¼ F½ � ΠE½ � ¼ F½ � E½ �T E½ � E½ �T
� �þ

E½ �: ð4:227Þ

More details about projections and their role in DD-SSI can be found elsewhere

(Van Overschee and De Moor 1996). The key idea, which has to be remarked here,

is that the Kalman filter state estimates can be obtained as a linear combination of

the rows of certain block Hankel matrices holding the raw data. As discussed in

Sect. 4.2.2, the role of the Kalman filter is to produce an optimal prediction of the

state vector {sk} from observations of the outputs up to the time instant k� 1.

The Kalman filter state sequence Ŝi
� �

, therefore, collects all the state estimates

obtained from the output data at the previous i time instants. Each column of Ŝi
� �

represents one of these state estimates. For instance, assuming that the filter is

started at j different time instants, so that the Kalman filter state sequence is:

Ŝi
� � ¼ ŝif g ŝiþ1f g . . . ŝiþj�1


 �� � ð4:228Þ

the (q + 1)-th column ŝ iþq


 �
of Ŝi
� �

represents the state estimate based on the

following i output values: {yq}, . . ., {yi+ q� 1} (Van Overschee and De Moor 1996).
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The DD-SSI algorithm starts from a block Hankel matrix constructed directly

from the measurement data. It has 2i block rows and j columns (for the statistical

proof of the method, the following assumption is made: j!1; thus, j must be

rather large). The value of i is determined in agreement with (4.207). The block

Hankel matrix has dimension 2li� j and it can be partitioned into the two

sub-matrices of the past—[Yp]—and future—[Yf]—outputs as follows:

H
0

		2i�1


 �
¼ 1ffiffi

j
p

y0f g y1f g . . . yj�1

n o
y1f g N N yj

n o
⋮ N N ⋮

yi�1f g yif g . . . yiþj�2

n o
yif g yiþ1


 �
. . . yiþj�1

n o
yiþ1


 �
N N yiþj

n o
⋮ N N ⋮

y2i�1f g y2if g . . . y2iþj�2

n o

266666666666666666664

377777777777777777775

¼ Y0ji�1

� �
Yij2i�1

� �" #
¼ Yp

� �
Yf

� �" #
: ð4:229Þ

The sub-matrices [Yp] and [Yf] have dimensions li� j. The output data are scaled

by the factor 1=
ffiffi
j

p
to be consistent with the definition of correlation (Chap. 2).

In fact, it is possible to show that, under the assumptions of ergodicity and j!1,

the block Toeplitz matrix of correlations can be computed from the block Hankel

matrices of output data as follows:

Tlji
� � 	 1

j
Yf

� �
Yp

� �T
: ð4:230Þ

In practical applications the number of columns j is taken equal to N� 2i + 1, so

all given data samples are used. Adding one block row to the past outputs and

omitting the first block row of the future outputs yield another division of the

Hankel matrix:

H0j2i�1

� � ¼ Y0ji�1

� �
Yiji
� �

Yiþ1j2i�1

� �
264

375 ¼ Y0ji
� �

Yiþ1j2i�1

� �" #
¼ Yþ

p

� �
Y�
f

� �" #
: ð4:231Þ

where [Yp
+] is the block Hankel matrix of the past outputs with one block row added,

and [Yf
�] is the block Hankel matrix of the future outputs with the first block row

removed. The identification of the Kalman filter state sequences and, as a conse-

quence, of the state-space matrices is based on the orthogonal projection of the row

space of the future outputs on the row space of the past outputs. The definition of this

projection:

Pi½ � ¼ Yf

� �.
Yp

� � ¼ Yf

� �
Yp

� �T
Yp

� �
Yp

� �T� �þ
Yp

� �
: ð4:232Þ
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points out that correlations and projections are closely related. In fact, [Yf][Yp]
T

and [Yp][Yp]
T are basically block Toeplitz matrices holding output correlations.

The orthogonal projection of (4.232) can be efficiently computed by the LQ

factorization of the block Hankel matrix of the outputs [H0j2i� 1]:

H0j2i�1

� � ¼ L½ � Q½ � ð4:233Þ
so that the Hankel matrix is expressed as the product of a lower triangular

matrix [L]:

li
$

l
$

l i� 1ð Þ
$

li l
L½ � ¼ l l

l i� 1ð Þ l

L11½ � 0½ � 0½ �
L21½ � L22½ � 0½ �
L31½ � L32½ � L33½ �

24 35 ð4:234Þ

and an orthonormal matrix [Q]:

j
$

Q½ � ¼
Q1½ �T
Q2½ �T
Q3½ �T

24 35
:

ð4:235Þ

The projections [Pi] and [Pi� 1] of the row space of the future outputs on the

row space of the past outputs can be obtained from the LQ decomposition as

follows:

Pi½ � ¼ Yf

� �.
Yp

� � ¼ L21½ �
L31½ �


 �
Q1½ �T ð4:236Þ

Pi�1½ � ¼ Y�
f

h i�
Yþ
p

h i
¼ L31½ � L32½ �� � Q1½ �T

Q2½ �T

 �

: ð4:237Þ

Moreover, the output sequence [Yiji] (4.231) can be expressed as:

Yiji
� � ¼ L21½ � L22½ �� � Q1½ �T

Q2½ �T

 �

: ð4:238Þ

Assuming that the system is controllable and observable (so that all its modes are

excited by the process noise and can be identified) and the condition expressed by

(4.207) is satisfied, the main theorem of DD-SSI states that the projection matrix

[Pi] can be factorized into the product of the observability matrix [Oi] and the

Kalman filter state sequence Ŝ i

� �
(Van Overschee and De Moor 1996):
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Pi½ � ¼ Oi½ � Ŝ i

� � ¼ C½ �
C½ � A½ �
⋮

C½ � A½ �i�1

2664
3775 ŝ if g ŝ iþ1f g � � � ŝ iþj�1


 �� �
: ð4:239Þ

The factorization of the projection matrix into the product of a matrix with n

columns—[Oi]—and a matrix with n rows— Ŝ i

� �
—implies that rank([Pi])¼ n.

Estimating the rank of [Pi] by SVD and retaining only the nonzero singular values:

Pi½ � ¼ U1½ � U2½ �½ � Σ1½ � 0½ �
0½ � 0½ �


 �
V1½ �T
V2½ �T


 �
¼ U1½ � Σ1½ � V1½ �T ð4:240Þ

the observability matrix and the Kalman filter state sequence can be computed as:

Oi½ � ¼ U1½ � Σ1½ �1=2 T½ � ð4:241Þ

Ŝ i

� � ¼ Oi½ �þ Pi½ � ð4:242Þ
where the similarity transformation [T] can be set equal to the identity matrix.

A factorization similar to (4.239) can be applied to [Pi� 1], obtaining:

Pi�1½ � ¼ O"
i

h i
Ŝ iþ1

� �
: ð4:243Þ

Since O"
i

h i
can be directly obtained from [Oi] by deleting the last l rows, while

[Pi� 1] has been obtained from the LQ decomposition of the Hankel matrix of the

output data, the Kalman state sequence Ŝ iþ1

� �
can be computed from (4.243) as

follows:

Ŝ iþ1

� � ¼ O"
i

h iþ
Pi�1½ �: ð4:244Þ

The state-space matrices can be now derived according to three different

approaches. They differ for the capability to ensure the positive realness of covari-

ance sequences. In simple words, the first two algorithms that are going to be

illustrated provide asymptotically unbiased estimates (if i!1) of the noise

covariances [Qww], [Rvv] and [Swv] (4.43) and of the matrices [G] and [R0] but

they do not ensure the positive realness. This can lead to a synthesized spectrum

matrix which is not positive definite at all frequencies. Since for a positive definite

matrix all its diagonal entries are positive (Golub and Van Loan 1996), the

synthesized spectrum might become negative at certain frequencies and this is

obviously meaningless. Moreover, when the covariance sequence is not positive

real, an innovation model cannot be computed. When the positive realness of

covariance sequences is of interest, the third algorithm has to be adopted which,

however, is not asymptotically unbiased. More details about positive realness and

its implications can be found elsewhere (Van Overschee and De Moor 1996). It is
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worth pointing out that also the Cov-SSI algorithm does not ensure the positive

realness of the identified covariance sequence and, as a consequence, a forward

innovation model cannot be obtained.

The first algorithm uses the state sequences to estimate the state-space matrices.

In fact, once the Kalman filter state sequences Ŝ i

� �
and Ŝ iþ1

� �
have been estimated

according to (4.242) and (4.244), the matrices [A] and [C] can be computed

from the following overdetermined set of linear equations, obtained by stacking

the state-space models for the time instants from i up to i + j� 1:

Ŝ iþ1

� �
Yiji
� �
 �

¼ A½ �
C½ �


 �
Ŝ i

� �þ ρw½ �
ρv½ �


 �
: ð4:245Þ

Since the Kalman filter residuals [ρw] and [ρv] are uncorrelated with the states

Ŝ i

� �
(see also (4.46) and (4.47)), this set of equations can be solved in a least squares

sense. In fact, taking into account that the least squares residuals are orthogonal and,

therefore, uncorrelated with the regressors Ŝ i

� �
, asymptotically unbiased least

squares estimate of [A] and [C] are obtained as follows (Van Overschee and

De Moor 1993):

A½ �
C½ �


 �
¼ Ŝ iþ1

� �
Yiji
� �
 �

Ŝ i

� �þ
: ð4:246Þ

It is worth noting that all quantities on the right side of (4.246) can be expressed

in terms of the LQ factors. As a result of their orthonormality, the Q factors cancel

out in (4.246). A significant data reduction can be therefore obtained by expressing

the right-side quantities in (4.246) in terms of the L factors only.

The matrix [G] corresponds to the last l columns of the reversed controllability

matrix, which can be computed as follows:

Γi½ � ¼ Oi½ �þ T1ji
� � ð4:247Þ

while [R0] is obtained as the autocorrelation of [Yiji]:

R0½ � ¼ 1

j
Yiji
� �

Yiji
� �T

: ð4:248Þ

The second algorithm takes advantage of the shift structure of the observability

matrix, which implies that:

O"
i

h i
A½ � ¼ O#

i

h i
: ð4:249Þ
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As a consequence, the discrete state matrix can be computed in agreement with

(4.219). Alternatively, it can be computed by SVD of the concatenated matrix

O#
i

h i
� O"

i

h i
 �
:

O#
i

h i
� O"

i

h i
 �
¼ U½ � Σ½ � V½ �T ð4:250Þ

where the matrix [V] can be then partitioned as follows:

n n
$ $

V½ � ¼ n l
n l

V11½ � V12½ �
V21½ � V22½ �


 � : ð4:251Þ

The matrix [A] is finally given by (Van Overschee and De Moor 1996):

A½ � ¼ V22½ � V12½ ��1 ð4:252Þ
while the matrix [C] is directly obtained from the first l rows of [Oi]. The matrices

[G] and [R0] are obtained as for the previous algorithm.

The third algorithm computes [A] and [C] by least squares in agreement with

(4.245) and (4.246), as in the case of the first algorithm, but the matrices [G] and
[R0] are obtained by a different procedure. The covariances of the process and

measurement noise are obtained from the residuals as follows:

1

j

ρw½ �
ρv½ �


 �
ρw½ �T ρv½ �T

h i
¼ Qww

i

� �
Swv
i

� �
Swv
i

� �T
Rvv
i

� �" #
ð4:253Þ

where the subscript i indicates that they are nonsteady state covariance matrices of

the nonsteady state Kalman filter equation (see also Sect. 4.2.2):

Σiþ1½ � ¼ A½ � Σi½ � A½ �T þ Qww
i

� � ð4:254Þ

G½ � ¼ A½ � Σi½ � C½ �T þ Swv
i

� � ð4:255Þ

R0½ � ¼ C½ � Σi½ � C½ �T þ Rvv
i

� �
: ð4:256Þ

Since the Kalman filter converges when i!1, the following approximations:

Qww½ � ¼ Qww
i

� �
, Swv½ � ¼ Swv

i

� �
, Rvv½ � ¼ Rvv

i

� �
: ð4:257Þ
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introduce a bias when i is finite but they ensure the positive realness of the

covariance sequences, since the matrix
Qww½ � Swv½ �
Swv½ �T Rvv½ �


 �
is positive definite by

construction and this condition leads to positive real covariance sequences

(Van Overschee and De Moor 1996). Once the matrices [A], [C], [Qww], [Rvv] and

[Swv] are known, the matrices [G] and [R0] can be obtained from (4.48)–(4.50).

Solution of the Ricatti equation (4.67), together with (4.68), provides the Kalman

gain and, as a consequence, the forward innovation model is finally obtained

(Van Overschee and De Moor 1996).

Once the matrices [A] and [C] have been determined according to one of the

previous algorithms, the modal parameters can be obtained from the eigenvalue

decomposition of the discrete state matrix as discussed in the previous sections

((4.77), (4.79), (4.137), (4.138), (4.139)), after the conversion of the eigen-

values from discrete-time to continuous time (4.136). Since the modal parameter

estimates depend on [A] and [C] only, they are not affected by eventual bias on the

matrices [G] and [R0]. When also these last two matrices are estimated, the

spectrum matrix of the model can be computed from (4.225).

It is worth emphasizing that, due to the finite data length, the identified state-

space model (and therefore the matrices [A], [C], [G] and [R0]) is just an estimate of

the model that actually generated the data. On the analogy with the Cov-SSI

method, the order of the system can be obtained as the rank of the projection matrix

[Pi], if the number of block rows has been set in agreement with (4.207). Since none

of the singular values will exactly be zero as a result of the presence of noise, the

rank of the matrix can only approximately be determined in correspondence with

the maximum gap between two subsequent singular values (which are arranged in

descending order). In practical applications, since a clear drop in the sequence of

singular values is often not detectable, the order of the system is overestimated to a

certain extent and specific tools and criteria are used to identify the physical poles

(Sect. 4.9).

On the analogy with Cov-SSI, some variants of DD-SSI can be obtained through

the application of some weights to the projection matrix [Pi] before SVD.

The weighting matrices [W1] and [W2] have dimensions li� li and j� j, respec-

tively, and they obey some conditions. In particular, [W1] is of full rank, while [W2]

is such that:

rank Yp

� �� � ¼ rank Yp

� �
W2½ �� �

: ð4:258Þ
The variants of DD-SSI and the corresponding weighting matrices are:

• the Unweighted Principal Component (UPC) algorithm: [W1]¼ [Ili], [W2]¼ [Ij]
(where the subscripts li and j denote the dimensions of the identity matrix);

• the principal component (PC) algorithm: [W1]¼ [Ili],

W2½ � ¼ Yp

� �T 1
j Yp

� �
Yp

� �T� ��1=2

Yp

� �
;

• the CVA: W1½ � ¼ 1
j Yf

� �
Yf

� �T� ��1=2

, [W2]¼ [Ij].
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In the case of CVADD-SSI the singular values of the weighted projection matrix

[W1][Pi][W2] can be interpreted as the cosines of the principal angles between two

subspaces, the row space of the past outputs [Yp] and the row space of the future

outputs [Yf] (see Van Overschee and De Moor 1996 for more details).

As a practical rule, UPC DD-SSI should be used in the presence of modes of

equal strength and data with a good signal-to-noise ratio; on the contrary, CVA

DD-SSI should be used in the presence of noisy data and modes characterized by

widely different strength. The PC variant can be considered as a compromise

between UPC and CVA. Even if these three variants have different physical

explanations, a number of computer simulations and practical applications have

demonstrated that there are no significant accuracy differences among them in the

field of OMA (Zhang et al. 2005b).

The above discussion about Cov-SSI and DD-SSI is certainly not compre-

hensive, but, in agreement with the objectives of this book, it provides the main

concepts for the implementation of those algorithms for OMA applications. The

interested reader can refer to the literature for an extensive discussion about SSI

methods and their variants (Van Overschee and De Moor 1996, Aoki 1987,

Katayama 2005).

4.5.4 Second Order Blind Identification

A recent proposal in the field of OMA concerns the possibility to apply Blind

Source Separation (BSS) techniques to identify the modal parameters. BSS tech-

niques allow extracting a set of signals, the so-called sources, from observations of

their mixtures (Ans et al. 1985), based on fairly general assumptions about the

sources and the mixing process.

Applicability of BSS techniques to OMA has been investigated in detail in a

number of fairly recent publications (Kerschen et al. 2007, Poncelet et al. 2007,

Zhou and Chelidze 2007, McNeill and Zimmerman 2008). In the context of OMA,

such techniques can be referred to as time domain methods. Moreover, since no

model is fitted to the data, they can be classified as nonparametric methods. Even if

BSS techniques, which are based only on a statistical treatment of data, show

promising performance in the field of output-only modal identification of civil

structures, some limitations can be identified. They are related to the basic

assumptions under different BSS techniques and their compatibility with the

dynamic systems of interest. These aspects are discussed in this section right after

a short introduction about BSS.

BSS techniques can be classified as linear or nonlinear, depending on the type of

combination of the sources. Moreover, linear simultaneous (static) mixing and

convolutive mixing can be considered. Even if the convolution product of the

IRF of a structure with the external forcing vector gives the dynamic response of

the structure itself, the problem of extraction of the sources from convolutive

mixtures is not completely solved yet. For this reason, the possibility to interpret
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the dynamic response of a structure as a static mixture of sources has been

investigated for modal identification purposes (Kerschen et al. 2007).

Assuming that the dynamic response of a structure can be modeled as a linear

and static mixture of sources, it can be expressed in matrix form as follows

(Poncelet et al. 2007):

y tð Þf g ¼ A½ � s tð Þf g ð4:259Þ
where {s(t)} are the source signals and [A] is now referred to as the mixing matrix.
BSS techniques aim at recovering the mixing matrix [A] and the sources {s(t)} from
their observed mixtures {y(t)}, based on general assumptions about the sources

themselves.

The applicability of BSS to vibration data is obvious if the modal expansion of the

dynamic response of the structure (4.102) is compared to (4.259). Such a comparison

shows that there is a one-to-one relationship between mixing matrix and sources on

one hand and modal matrix and modal coordinates on the other hand. Thus, under

given assumptions, the modal coordinates may act as virtual sources regardless of the

number and type of the physical excitation forces (Kerschen et al. 2007, Poncelet

et al. 2007). Nomathematical model is assumed to describe the process that produced

the measured data. The mixing model is the only assumption, confirming that BSS

techniques can be referred to as nonparametric procedures for modal identification.

The above-mentioned concepts and the moderate complexity of BSS justify the

increasing application of these statistical signal-processing techniques in the field of

OMA. In the case of static mixing, two approaches can be identified: the first is based

on higher-order statistics, if the sources are statistically independent and nomore than

one source is Gaussian (Comon 1994); the second relies on second-order statistics, if

the sources are uncorrelated (Belouchrani et al. 1997). In both cases separation is

affected by some indeterminacies related to the order of the sources (any permutation

of the sources is also a solution of the blind identification problem) and their

amplitude.

Early use of BSS for modal identification can be found in a number of publications

(Feeny and Kappagantu 1998, Kerschen and Golinval 2002) focused on the relation

between proper orthogonal modes provided by a Principal Component Analysis

(PCA) and normal modes. Applicability of PCA to real case studies has been limited

by the need for information about the mass matrix (Kerschen et al. 2007). Chelidze

and Zhou (Chelidze and Zhou 2006) investigated this issue, developing a new

multivariate data analysis method (the so-called smooth orthogonal decomposition).

Additional details about applicability of PCA in structural dynamics can be found in

the literature (Kerschen et al. 2005).

Independent Component Analysis (ICA) appears much more suitable than PCA

to vibration data processing for modal identification purposes (Kerschen

et al. 2007). The main assumptions of ICA for the solution of the blind identification

problem are the mutual independence (so that the joint probability density of the

sources can be factorized into the product of their marginal densities) and

non-Gaussianity of the sources (only one source with Gaussian distribution can
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be tolerated; Even and Moisan 2005). Under these assumptions, the solution of

an optimization problem based on a given cost function provides the sources.

In particular, ICA is based on the maximization of non-Gaussianity of the

sources. Moreover, as many other BSS algorithms, it includes some preprocessing

steps. In particular, centering (removal of mean values from measurements) and

whitening (basically, a PCA) are carried out in order to reduce the noise level and

improve convergence.

The main drawbacks of ICA are related to the use of high-order statistics, whose

estimation is computational demanding and difficult in the presence of a scarcity of

data, and to some limitations strictly related to modal identification. In fact, ICA

works well only in the case of weakly damped systems, characterized by damping

ratios lower than 1 % (Kerschen et al. 2007). These reasons make ICA unattractive

for modal identification purposes.

Methods based on second-order statistics of the observed signals assume that the

sources are uncorrelated for all delays and have different spectra. Among these, the

Algorithm for Multiple Unknown Signal Extraction (AMUSE) (Tong et al. 1991)

and the Second Order Blind Identification (SOBI) algorithm are based on a similar

theoretical background. In fact, they exploit the information contained in cova-

riance matrices. However, while SOBI jointly diagonalizes several time-shifted

covariance matrices, AMUSE relies on the EVD of the covariance matrix eventu-

ally at one time lag only. Thus, SOBI overcomes the shortcoming of AMUSE

related to an eventually inappropriate choice of the time lag. This can result in two

similar eigenvalues and makes unfeasible the identification of the corresponding

sources. It has been shown that SOBI is also much more robust to noise than

AMUSE (Zhou and Chelidze 2007).

When SOBI is applied to vibration data, the real-valued mixing matrix implies

real-valued mode shape estimates. This can be a drawback of the method in the

presence of complex modes. An evolution of SOBI able to deal with complex

modes is the Blind Modal Identification (BMID) algorithm (McNeill and

Zimmerman 2008).

In this section attention is focused on SOBI, with an illustration of the main

steps of the algorithm and its theoretical assumptions in agreement with relevant

publications available in the literature (Belouchrani et al. 1997, Poncelet et al. 2007,

Zhou and Chelidze 2007). In fact, normal modes are typically identified from modal

identification tests of civil structures, so SOBI can be profitably applied in most

cases.

On the analogy with other BSS techniques, the measured response is assumed to

be a linear mixture of the sources (the modal coordinates), as expressed by (4.259).

If some (additive) noise {n(t)} is present in the measured response, (4.259) can be

rewritten as follows:

y tð Þf g ¼ A½ � s tð Þf g þ n tð Þf g: ð4:260Þ
The l recorded time histories are, therefore, modeled as a linear combination of

Nm sources plus noise. As a consequence, if there are Nm modes in the frequency
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range under investigation, they can be identified only if rank([A])¼Nm. Since the

mixing matrix has dimensions l�Nm, this implies that the number of measurement

channels has to be equal or larger than the number of active modes: l�Nm.

Moreover, since the columns of the mixing matrix represent estimates of the

mode shapes of the structure under test, a careful selection of sensor locations is

needed so that the observed mode shape vectors are linearly independent and the

rank of [A] is preserved. Taking into account the previously mentioned limitations,

SOBI can be classified as a low order method for OMA. The issues related to the

identifiability of a limited number of modes can be mitigated through the repeated

application of band-pass filtering until the entire frequency range of interest is

investigated. However, this procedure leads to a major increase in the time of

analysis.

Assuming that the sources are stationary, uncorrelated, and scaled to have unit

variance, their covariance matrix is the identity matrix:

Rss 0ð Þ½ � ¼ E s tð Þf g s tð Þf gT
n o

¼ I½ �: ð4:261Þ

The additive noise is assumed to be a temporally and spatially white stationary

random process, with:

E n tð Þf g½ � ¼ 0f g ð4:262Þ

E n tð Þf g n tð Þf gT
h i

¼ σ2 I½ � ð4:263Þ

If the added noise is also independent of the source signals, this implies:

E n tð Þf g s tð Þf gT
h i

¼ 0½ �: ð4:264Þ

Thefirst step of the algorithmconsists ofwhitening the signal part {x(t)}¼[A]{s(t)}
of the observeddata. This is achievedbyapplying a linear transformation to {x(t)} such
that the whitened data {z(t)} are uncorrelated and have unit variance:

z tð Þf g ¼ W½ � x tð Þf g ) Rzz 0ð Þ½ � ¼ E z tð Þf g z tð ÞT

 �� � ¼ I½ �: ð4:265Þ

The matrix [W] defining this transformation is referred to as the whitening
matrix. From (4.265) and (4.261) it is easy to recognize that:

Rzz 0ð Þ½ � ¼ W½ � A½ �E s tð Þf g s tð ÞT

 �� �

A½ �T W½ �T ¼ W½ � A½ � A½ �T W½ �T ¼ I½ �: ð4:266Þ
Thus, if [W] is a whitening matrix, [A 0]¼ [W][A] is an Nm�Nm unitary matrix.

As a consequence, the mixing matrix can be factored as the product of the inverse of

the whitening matrix and a unitary matrix (to be determined).
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Whitening of the measured response {y(t)} also obeys a linear model:

W½ � y tð Þf g ¼ W½ � A½ � s tð Þf g þ n tð Þf gð Þ ¼ A0½ � s tð Þf g þ W½ � n tð Þf g: ð4:267Þ
From the covariance matrix of the observed mixture:

Ryy 0ð Þ� � ¼ E y tð Þf g y tð Þf gT
h i

¼ A½ � A½ �T þ σ2 I½ � ð4:268Þ

the following equation is obtained:

A½ � A½ �T ¼ Ryy 0ð Þ� �� σ2 I½ �: ð4:269Þ
Combining (4.267) with (4.269) and taking into account (4.261), (4.263), and

(4.264), it is possible to show that the whitening matrix [W] can be derived from

the covariance matrix [Ryy(0)], provided that the noise covariance is known or can

be estimated:

W½ � Ryy 0ð Þ� �
W½ �T ¼ W½ � A½ � A½ �T W½ �T þ W½ �σ2 W½ �T : ð4:270Þ

From a practical point of view, once the measured data have been centralized by

removal of the mean value from each component of {y(t)}, whitening is obtained

via PCA as follows.

First of all, the eigenvalue decomposition of [Ryy(0)] is computed:

Ryy 0ð Þ� � ¼ E y tð Þf g y tð Þf gT
h i

¼ E½ � D½ � E½ �T ð4:271Þ

where [E] is the orthogonal matrix of eigenvectors and [D] is the diagonal matrix of

eigenvalues. If only the Nm largest eigenvalues d1, . . . , dNm
and the corresponding

eigenvectors e1f g, . . . , eNm
f g of [Ryy(0)] are retained, the average of the remaining

l�Nm eigenvalues provide an estimate σ̂ 2 of the noise variance, under the

assumption of white noise (Belouchrani et al. 1997). The whitened signals are

then computed from the largest eigenvalues and the corresponding eigenvectors as:

z tð Þf g ¼ DNm
½ � � σ̂ 2 INm

½ �� ��1=2
ENm
½ �T y tð Þf g ¼ W½ � y tð Þf g ð4:272Þ

where DNm
½ � is the submatrix of [D] holding only the Nm largest eigenvalues, ENm

½ � is
the submatrix of [E] collecting the eigenvectors corresponding to the Nm largest

eigenvalues of [Ryy(0)] and the whitening matrix is given by:

W½ � ¼ DNm
½ � � σ̂ 2 INm

½ �� ��1=2
ENm
½ �T : ð4:273Þ

Taking into account (4.272), p time-shifted covariance matrices have to be

computed:
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Rzz τkð Þ½ � k ¼ 1, . . . , p: ð4:274Þ
In order to estimate the sources and the mixing matrix, an approximate

joint diagonalization of those p time-shifted covariance matrices is carried out

according to the Joint Approximate Diagonalization (JAD) technique (Belouchrani

et al. 1997). The objective of JAD is to find the unitary matrix eA0
h i

that approximately

diagonalizes the time-shifted covariancematrices.An optimization problem is defined

with respect to the matrix eA0
h i

which minimizes the sum of the off-diagonal terms of

eA0
h iT

Rzz τkð Þ½ � eA0
h i

(k¼ 1, . . ., p) for the p time-shifted covariance matrices:

mineA 0
� �Xp

k¼1

off eA0
h iT

Rzz τkð Þ
� � eA0

h i� �
ð4:275Þ

The solution to the minimization problem is pursued by means of a numerical

algorithm based on the Jacobi rotation technique (Cardoso and Souloumiac 1996).

Two parameters have to be set: the number p of time-shifted covariance matrices to

be jointly diagonalized, and the threshold t used to stop JAD. About the threshold t,

the problem of its setting has been analyzed by Cardoso and Souloumiac (Cardoso

and Souloumiac 1996), showing that very small values for t have no sense because

the diagonality criterion is approximate itself. Thus, it is usually unnecessary to

push the accuracy of the rotation matrix to the machine precision. A value equal to

its square root can be recommended. About the number p of time-shifted covariance

matrices, the diagonalization performance improves when p increases and it seems

to rapidly converge (Belouchrani et al. 1997). Once the matrix eA0
h i

has been

obtained, the de-mixing matrix [U] and the mixing matrix [A] can be computed:

U½ � ¼ eA0
h iT

W½ � ð4:276Þ

A½ � ¼ W½ �þ eA0
h i

ð4:277Þ

The resulting sources are shift-uncorrelated because the matrices [Rss(τk)] are
nearly diagonal. They are obtained as follows:

s tð Þf g ¼ U½ � y tð Þf g: ð4:278Þ
The mode shapes of the structure are obtained from the columns of the mixing

matrix. The technique for the estimation of natural frequencies and damping ratios

depends on the type of data used for modal identification. In the literature SOBI

has been applied to free responses, impulse responses, and responses to random

excitation (Zhou and Chelidze 2007, McNeill and Zimmerman 2008, Poncelet

et al. 2007). In the first two cases, the estimation of natural frequencies and damping

4.5 Time Domain Methods 171



ratios from the obtained sources is straightforward. In fact, taking into account that

the free vibration response can be expressed as a sum of exponentially decaying

sinusoids, fitting this expression to the data permits the estimation of the modal

parameters (refer to McNeill and Zimmerman 2008 for more details). In the case of

response to random excitation, if the estimation of natural frequencies from the

identified sources is again straightforward, this is not the case of damping ratios,

whose estimation requires the knowledge of the applied random excitation

(Poncelet et al. 2007). However, the extension of SOBI to the analysis of random

responses for the estimation of modal parameters including damping is immediate

by taking into account that also the correlations of random responses can be

expressed as a sum of decaying sinusoids. This is the same basic assumption of

the NExT-type procedures. Thus, for random responses there is no need to recover

the sources, since natural frequencies and damping ratios can be directly estimated

from their correlations Rss(τk) (Fig. 4.5) as obtained from JAD. A simplified

approach to the estimation of the modal properties by SOBI in the case of random

response can be outlined as follows:

• Compute the whitening matrix [W] from the centralized dataset according to

(4.271) and (4.273); since the number of modes is not known a-priori and the

criterion for proper selection of the number Nm of eigenvalues to be retained is

still debated, it is possible to set Nm¼ l; since l sources are extracted from the

data but the number of modes is likely lower than l, the sources associated to the
actual structural modes have to be selected based, for instance, on the error in

fitting the correlations Rss(τk) by exponentially damped harmonic functions; this

approach has been originally proposed by Poncelet et al. (Poncelet et al. 2007)

for the analysis of impulse responses;

• Compute {z(t)}¼ [W]{y(t)};
• Compute the time-shifted covariance matrices [Rzz(τk)] and select p of them to

apply JAD;
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• The JADof thep time-shifted covariancematrices [Rzz(τk)]with k¼ 1,. . .,p provides

the unitary matrix eA0
h i

, which permits the computation of the mixing matrix [A]

according to (4.277), and the autocorrelations of the sources Rss(τk);
• Natural frequencies and damping ratios are estimated from the correlations of

the sources Rss(τk); regression on zero-crossing times and logarithmic decrement

(as with EFDD) or other SDOF estimators can be used; the use of SDOF curve

fitting estimators permits the computation of the fitting error and, as a result, a

quantitative selection of the correlations associated to actual structural modes in

the case noise rejection has not been previously carried out in the computation of

the whitening matrix; the selection of the number of time lags p now plays a

primary role in the process, since it is not responsible only for the matrix eA0
h i

but

it also defines the length of the correlation functions Rss(τk); thus, taking into

account the physics of the problem, p has to be set as a function of the period of

the fundamental mode so that a sufficient number of cycles are present in the

auto-correlation of the source associated to the fundamental mode;

• The mode shapes are obtained from the columns of the mixing matrix corres-

ponding to the source correlations selected in the previous step of analysis.

It is interesting to note that, unlike other two-stage modal identification methods,

SOBI provides the mixing matrix and, therefore, the mode shapes first, while

natural frequencies and damping ratios are estimated in a second stage through

post-processing of the obtained sources. Finally, it is worth pointing out that only

source signals having different spectral shape can be recovered by JAD

(Belouchrani et al. 1997). This means that SOBI can identify distinct modes but

it shows serious limitations in the presence of repeated modes.

4.6 Other Methods for OMA

Several different methods for OMA have appeared in the literature over the years.

Most of them are just variants of the previously described algorithms, aiming at

improving specific aspects or overcoming some drawbacks inherent in those

procedures. However, additional original tools and methods for OMA have also

been proposed. For instance, examples of wavelet analysis for output-only modal

identification of natural frequencies and damping ratios only (Ruzzene et al. 1997,

Gouttebroze and Lardies 2001) or also of mode shapes (Lardies and Gouttebroze

2002, Han et al. 2005) are available. Other researchers have instead proposed the

use of cepstral analysis for OMA (Hanson et al. 2007). Even if wavelet and cepstral

analysis show some advantages, they are not widely used. The interested reader can

refer to the literature for more details. Other techniques for OMA that have been

systematized over the years and are currently in use are based on transmissibility

functions and the RD signature.
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4.6.1 Transmissibility Functions

The use of transmissibility functions for OMA was first proposed in 2007

(Devriendt and Guillaume 2007). The method has been progressively refined and

improved over the years: the basic concepts are herein reported.

The transmissibility function is defined as a sort of FRF and, as such, it can

be estimated in a nonparametric preprocessing step. However, transmissibility

functions are computed from variables of the same type instead of conjugate

variables (i.e.: motion response and force input) as in classical FRFs. The transmis-

sibility function between the output i and a reference output j is given by the ratio of

their Fourier transforms:

Tij ωð Þ ¼ Yi ωð Þ
Yj ωð Þ : ð4:279Þ

In the practice it is estimated from the spectra as:

Tij ωð Þ ¼ SYiYj
ωð Þ

SYjYj
ωð Þ : ð4:280Þ

Since the reference output is present in all transmissibility functions, it has to be

carefully selected so that it carries the maximum amount of information about the

structural modes.

Starting from the definition of transmissibility function and taking into account

the modal model or, equivalently, the common denominator model, it is possible

to show that the transmissibility does not depend on the coloring of the unknown

forces, which can be arbitrary, but it only depends on the location and amplitude of

the unknown forces. Moreover, the poles of the transmissibility functions are not

the system poles, which are canceled out by taking the ratio between the response

spectra. Thus, the peaks in the magnitude of transmissibility functions do not

coincide with the structural resonances. However, an opportune combination of

transmissibility functions obtained under different loading conditions makes possi-

ble the identification of the system poles. In fact, the transmissibility functions

approach a constant value when converging to a pole of the system (Devriendt and

Guillaume 2007):

lim
ω!ωn

Tij ωð Þ ¼ ϕi,n

ϕj,n

: ð4:281Þ

As shown by (4.281), such a value is directly related to the mode shape

components at the measurement locations i and j. Moreover, since the limit is

independent of the input, transmissibility functions pertaining to the same responses

but computed from two tests characterized by different loading conditions a and b
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exactly cross each other in correspondence with the structural resonances. As a

consequence, their difference is zero at a structural resonance:

lim
ω!ωn

T a
ij ωð Þ � T b

ij ωð Þ
� �

¼ ϕi,n

ϕj,n

� ϕi,n

ϕj,n

¼ 0: ð4:282Þ

This implies that the poles of the system are also poles of the following rational

function, given by the inverse of the difference between transmissibility functions

associated to the same responses but computed for different loading conditions:

1

ΔT ab
ij ωð Þ ¼

1

T a
ij ωð Þ � T b

ij ωð Þ : ð4:283Þ

The application of parametric frequency domain estimators based on the com-

mon denominator model to (4.283) provides the structural poles. The mode shapes

are estimated in a second stage from the residues (Devriendt et al. 2010).

The functions given by (4.283) might contain additional poles not related to the

structure. However, the poles of the system can be easily distinguished from the

additional mathematical poles by using a SVD (Devriendt and Guillaume 2008).

Even if the method is still under development, the main advantage consists in its

robustness even in the presence of spurious harmonics. In fact, the method seems to

be able to provide unbiased estimates of the modal parameters even in the case of

spurious harmonics close to the structural resonances (Devriendt et al. 2009), thus

overcoming a relevant limitation of standard OMA methods (see also Chap. 5).

Nor prior knowledge about the frequency of the spurious harmonic neither filtering/

interpolation are required. The only requirement affects the loading conditions,

which must differ for location, number, or amplitude of the applied forces.

4.6.2 The Random Decrement Technique

The Random Decrement (RD) technique is a simple method for the estimation of

functions that can be interpreted as free decays and, therefore, processed by

covariance-driven identification methods. Thus, it represents a preliminary signal

processing step for OMA rather than an autonomous OMA method. However, it is

discussed here because it represents an alternative method for the estimation of

correlation functions that is often applied in combination with some of the previ-

ously discussed OMA methods.

The RD technique was developed in the late 1960s at NASA (Cole 1968, Cole

1973) as a method to characterize stochastic time series. It was soon extended to

modal identification of structures (Ibrahim 1977). The theoretical basis of the

method has been later systematized and extended by other researchers (Vandiver

et al. 1982, Asmussen et al. 1999).

The RD technique provides an estimate of the so-called RD signature. Under the

assumption of ergodic stochastic processes, the cross-RD signature is estimated
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from two time series y1(t) and y2(t) by averaging Nb segments of the time series y1(t)
associated to the Nb triggering points where the time series y2(t) satisfies at the

time instants tn the triggering condition Cy2 tnð Þ:

D̂ y1y2 τð Þ ¼ 1

Nb

XNb

n¼1

y1 tn þ τð ÞjCy2 tnð Þ: ð4:284Þ

Up to M data points before and M points after the trig points (τ¼mΔt,
�M 
m
M ) are used in the computation of the signature, where M is user-

defined. The number Nb of averages depends on the length of the time series and

the adopted triggering condition. Different triggering conditions Cy2 tnð Þ can be

applied:

• Level crossing: y2 tnð Þ ¼ y2,

• Slope crossing: _y2 tnð Þ ¼ _y2,
• Positive value: y2(tn)> 0,

• Positive slope: _y2 tnð Þ > 0,

and any combination of the previous conditions (for instance, zero crossing condi-

tion with positive slope: y2 tnð Þ ¼ 0 ^ _y2 tnð Þ > 0). When the triggering condition

is applied to the same time series, whose data segments are averaged in (4.284), the

auto-RD signature is estimated:

D̂ y1y1 τð Þ ¼ 1

Nb

XNb

n¼1

y1 tn þ τð ÞjCy1 tnð Þ: ð4:285Þ

When the condition affects both level and slope, it has been shown (Brincker

et al. 1992) that the RD signature estimate is a linear combination of the correlation

function and its derivative:

Dy1y2 τð Þ ¼ Ry1y2 τð Þ
σ2y2

y2 þ
_Ry1y2 τð Þ
σ2_y2

_y2 ð4:286Þ

where σ2y2 is the variance of the triggering process y2(t) and σ
2
_y2
is the variance of the

derivative _y2 tð Þof the triggering process. The triggering condition can be selected in
order to obtain an RD-signature, which is proportional only to the correlation

function or its derivative. In particular, conditions applied only to the triggering

process (i.e. level crossing, positive value) lead to an RD-signature proportional to

the correlation function only, while the application of triggering conditions only

to the derivative of the triggering process (i.e. slope crossing, positive slope) yields

an RD signature proportional to the derivative of the correlation function.

A relevant application of the RD signature concerns the investigations about the

amplitude dependence of modal damping ratios by appropriately varying the

triggering condition. The interested reader can refer to the literature (Tamura and

Suganuma 1996) for more details.
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4.7 Some Remarks About OMA Methods

The theoretical background of a number of output-only modal identification

procedures has been analyzed in the previous sections, discussing in detail those

aspects related to the software implementation of selected algorithms. Far from being

a comprehensive discussion about OMA techniques, the analysis of the individual

methods in their most relevant aspects provides an overview of the advantages and

drawbacks, from a practical point of view, related to the use of different analysis

procedures. Relevant results of a comparative analysis of the previously illustrated

OMA methods are summarized in this section, also to explain the larger attention

devoted to some methods with respect to the others. The following considerations

have also guided the selection of the procedures implemented into the software

accompanying this book and used for the applications proposed at the end of this

chapter. Even if the test engineer typically has a favorite OMA method of his own,

selected according to criteria related to the simplicity or accuracy of the method

itself, the concurrent use of different OMA techniques is always recommended for

successful modal parameter identification. In fact, the comparison of the estimates

provided by different OMA methods ensures the reliability of the modal identifi-

cation results.

Even if developed since a long time and widely applied to civil engineering

structures, NExT-type procedures have been progressively abandoned in favor

of the more robust subspace methods. When NExT-type procedures appeared,

they represented a significant enhancement in the field of output-only modal

analysis with respect to the classical Peak Picking technique. In fact, they

improved the accuracy of data analysis, especially in the presence of closely

spaced modes, and allowed the extraction of actual mode shapes instead of

ODSs. Notwithstanding their historical relevance, they show some limitations

with respect to the subspace methods. The ITD method, for instance, suffers the

lack of noise truncating mechanisms, thus leading to several spurious poles.

Moreover, high order modes require filtering procedures to be extracted and this

leads to the repeated application of the procedure to the same dataset, resulting in

a time consuming process.

ARMA models aim at modeling the dynamics of both the structural system and

the noise. Since also noise is modeled, lots of additional spurious poles, not

related to the dynamics of the system under test, appear. This makes the selection

of the system poles difficult, and the presence of noise can affect the modal

parameter estimates as well. For instance, the lack of a noise truncating mecha-

nism in the IV method is reflected in less accurate mode shape estimates with

respect to subspace methods; moreover, higher order models are required to

obtain good modal parameter estimates (Peeters 2000). When PEM is considered,

the advantage of an optimal statistical description of data due to the presence of

the MA matrix polynomial is paid by the need to solve a highly nonlinear

optimization problem. Since the application of PEM does not improve too
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much the modal parameter estimates (Brincker and Andersen 1999b), subspace

methods, characterized by lower computational time and no convergence pro-

blems, are preferred.

Subspace methods have noise truncating mechanisms based on SVD. Since the

identification problem is solved by means of linear algebra tools, nonlinear optimi-

zation problems are avoided. This results also in a lower computational burden.

In the presence of noise or poorly excited modes, weighting matrices can be applied

to improve the performance of the estimators. Both Cov-SSI and DD-SSI perform

equally well in terms of quality of the modal parameter estimates; however,

DD-SSI can be implemented in a way that positive realness of the covariance

sequences is ensured. All the above-mentioned characteristics have made SSI

methods very popular in the modal analysis community.

The availability of nonparametric frequency domain OMA procedures in the

equipment of the modal analyst is also recommended. They can be profitably used

for a quick check and analysis of data in the field. In fact, they are less computa-

tional demanding with respect to subspace methods and give reasonable estimates

of the modal parameters. The use of FDD is recommended because of its less

restrictive assumptions with respect to BFD. Moreover, due to the simplicity of

nonparametric frequency domain methods, they can be used to get a first insight

into the identification problem and, as a result, to guide the setting of the analysis

parameters in subspace algorithms.

Other methods such as LSCF (and its poly-reference version) and SOBI

are becoming more and more popular because they simplify the identification of

the structural modes and provide interesting opportunities for the automation of the

modal identification process (Chap. 6).

Whatever is the adopted OMA method, modal identification tests often require

processing of a large amount of data. However, a certain degree of redundancy or

overdetermination is always present in the data. As a consequence, techniques for

the reduction of the amount of data to processed can profitably be applied in order to

keep the computational time within reasonable values. Filtering and decimation are

usually used to reject unnecessary information and to limit the frequency band

under investigation. Selected reference channels (Peeters 2000) are also sometimes

adopted in order to reduce data redundancy. They have to be carefully chosen to

avoid that some modes are lost together with the redundant information. The use of

reference channels can lead to problems of missing modes mainly in the presence of

repeated roots and a too small number of reference channels, or in the case of local

modes, which do not appear in the selected reference channels. An approach to the

selection of the best reference channels is based on the computation of the correla-

tion coefficients of the measured data:

ρ2yiyj ¼
R2
yiyj

0ð Þ
Ryiyi 0ð ÞRyjyj 0ð Þ ð4:287Þ
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and on the construction of the following matrix:

ρyiyj

h i
¼

1 ρy1y2 ρy1y3 . . . ρy1yl
ρy2y1 1 ρy2y3 . . . ⋮

ρy3y1 ρy3y2
. .
.

. . . ⋮

⋮ . . . . . . . .
.

⋮

ρyly1 . . . . . . . . . 1

266666666664

377777777775
: ð4:288Þ

For each channel, the following index can be computed:

Mi ¼
Xl
j¼1

ρyiyj

			 			 j 6¼ i, i ¼ 1, . . . , l ð4:289Þ

and the reference channels are finally selected as those characterized by the largest

values of the Mi index.

The use of reference channels leads to an appreciable reduction of computational

efforts and response time. In the previous sections about OMA methods all

measurement channels have been taken as references. When only some channels

are selected as references, slight changes to the previously described algorithms are

required in order to take into account that the number r of reference channels is

lower than the total number of measurement channels. The interested reader can

refer to the literature for reference-based versions of some of the OMA procedures

discussed in this chapter (see, for instance, Peeters and De Roeck 1999 for the

reference-based version of SSI algorithms).

Another interesting aspect, which is beyond the scope of the present book, concerns

the possibility to estimate the uncertainty bounds of the modal parameter estimates

from a single output-only modal identification test. This information plays a primary

role in a variety of applications, ranging from the analysis of the influence of selected

parameters on the vibration response to SHM. Moreover, the information about the

uncertainty bounds can support the discrimination between physical and spurious

poles, since the latter are usually characterized by larger variance. The interested

reader can refer to the literature for more details (Reynders et al. 2008, Pintelon

et al. 2007, De Troyer et al. 2009a, De Troyer et al. 2009b).

4.8 Post-Processing of Modal Parameter Estimates

4.8.1 Analysis of Mode Shape Estimates

Most of the OMA methods provide their results in the form of complex eigenvalues

and complex eigenvectors. Since the mode shape estimates are in the form of

complex vectors, a distinction between normal modes, characterized by real-valued

mode shape vectors, and complex modes is needed.
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In particular, it is worth realizing if complex mode shape estimates actually

represent the dynamics of the structure under investigation or they are the result of

other factors.

In the case of normal (real) modes, the displacements at the various DOFs reach

their maximum at the same time and pass through the equilibrium position at the

same time. This is not the case of complex modes, where both the maximum values

and the null values of modal displacements are attained at different time instants for

the various DOFs (Chopra 2000). As a result, while the phase angles are all 0� or
180� for normal modes, both amplitude and phase characterize the motion of the

different DOFs in the case of complex modes.

Complex modes may originate for a number of reasons, such as gyroscopic

effects, aerodynamic effects, nonlinearities, and nonproportional damping (Ewins

2000, Chopra 2000).

Close modes sometimes show significant complexity, too (Ewins 2000). In this

regard it is worth noting that two modes characterized by some frequency separa-

tion (that is to say, the difference between the respective natural frequencies) may

be close or not depending on the value of damping: the larger the damping, the

closer the modes. As a measure of separation of two modes, the modal overlap
factor (MOF) (Srikantha Phani and Woodhouse 2007) can be computed:

MOFn ¼ f nξn
f n � f n�1

ð4:290Þ

where fn and fn� 1 represent the natural frequencies of the two modes under

consideration, while ξn is the damping ratio associated to the n-th mode.

Even if in the majority of cases the identified modes are normal, it is important to

recognize those situations where complex modes have to be expected and properly

estimated.

Complex modes are often obtained from modal tests as a result of measurement

noise (poor signal-to-noise ratio). However, the degree of complexity is usually

moderate. Even if slight complexities can be encountered in practical applications

and a complex-to-real conversion of mode shapes can be carried out with negligible

errors, the evaluation of specific indicators can provide a quantitative measure of

the degree of complexity of the estimated mode shapes.

The simplest method to assess modal complexity consists in plotting the com-

ponents of the i-th eigenvector in the complex plane, thus obtaining the so-called

complexity plot (Fig. 4.6). It permits the evaluation of the degree of complexity by a

simple visual inspection. A method based on complexity plots for the quantitative

assessment of the degree of complexity of the estimated mode shapes is described

elsewhere (Ewins 2000). Other indexes measuring the mode shape complexity are the

Modal Phase Collinearity (MPC) and theMean Phase Deviation (MPD).

If a structure is proportionally damped, the mode shape components for a certain

mode lie on a straight line in the complex plane (Fig. 4.6a).
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Deviations from this behavior can be quantified by the MPC for nearly real

normal modes (Pappa et al. 1992). It can be computed by subtracting the mean

value of the r-th mode shape vector components to each of them:

eϕi, r ¼ ϕi, r �

Xl
k¼1

ϕk, r

l
i ¼ 1, . . . , l: ð4:291Þ

The MPC of the r-th mode shape is then given by:

MPCr ¼
Re eϕr

n o� ���� ���2 þ Re eϕr

n oT
� �

Im eϕr

n o� �� �
2 ε2MPC þ 1
� �

sin 2 θMPCð Þ � 1
� �.

εMPC

Re eϕr

n o� ���� ���2 þ Im eϕr

n o� ���� ���2
ð4:292Þ

where:

εMPC ¼
Im eϕr

n o� ���� ���2 � Re eϕr

n o� ���� ���2
2 Re eϕr

n oT
� �

Im eϕr

n o� �� � ð4:293Þ

θMPC ¼ arctan εMPCj j þ sgn εMPCð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2MPC

q� �
ð4:294Þ

k � k and sgn(�) denote the L2 norm and the signum function, respectively.

MPC values are dimensionless and bounded between 0 and 1. For real modes, the

index approaches unity, while its value is low in the case of a complex mode.
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Fig. 4.6 Complexity plots for normal (a) and complex (b) modes
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If normal modes are expected, a low value of MPC may indicate nonstructural

modes.

As an alternative, the degree of complexity can be quantified by computing

the MPD. A simple expression for MPD (Heylen et al. 1998) starts from the

computation of the following index for the r-th mode shape vector:

MPr ¼

Xl
k¼1

φk, r

l
ð4:295Þ

with:

φk, r ¼ arctan
Re ϕk, r

� �
Im ϕk, r

� �
0@ 1A if arctan

Re ϕk, r

� �
Im ϕk, r

� �
0@ 1A � 0

φk, r ¼ arctan
Re ϕk, r

� �
Im ϕk, r

� �
0@ 1Aþ π if arctan

Re ϕk, r

� �
Im ϕk, r

� �
0@ 1A < 0:

ð4:296Þ

Then, the MPD index is computed as follows:

MPDr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl
k¼1

φk, r �MPr

� �2
l

:

vuuuut ð4:297Þ

In the case of normal mode shapes, the value of MPD is zero. An improvement

of the MPD index for those cases where there are mode shape components with a

large imaginary part but a small real part can be found in the literature (Reynders

et al. 2012).

Taking into account the previous discussion and that OMA provides only

un-scaled mode shapes, there is the need for simple approaches to scaling and

complex-to-real conversion of the estimated mode shape vectors.

The need for complex-to-real conversion of the estimated mode shapes stems

from one of the typical applications of modal data, the comparison between the

experimental values of the modal properties and those obtained from numerical

models. In fact, the latter are usually obtained from undamped models and, as a

consequence, the mode shapes are real-valued. Whenever normal modes are

expected from the modal test, the simplest approach to carry out the complex-

to-real conversion consists in analyzing the phase of each mode shape component

and setting it equal to 0� or 180� depending on its initial value. If the phase angle

lies in the first or in the fourth quadrant it is set equal to 0�; it is set equal to 180� if
it lies in the second or in the third quadrant. To be rigorous, this approach should be

applied only in the case of nearly normal modes, when the phase angles differ
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no more than �10� from 0� to 180�. However, it is frequently extended to all phase
angles (Ewins 2000).

The mode shape vectors obtained from the different OMA methods are often

rescaled so that the magnitude of the largest modal displacement is equal to 1.

A simple procedure to obtain normalized, real mode shapes starting from the

experimental results is the following:

• starting from the complex-valued components of the r-th experimental mode

shape, find the component ϕr,max characterized by the largest modulus;

• divide every component of the experimental vector by ϕr,max;

• carry out the complex-to-real conversion as previously illustrated;

• return the normalized mode shape vector in terms of amplitude and phase;

alternatively, return the modal displacement with sign (+ if the phase is 0�, � if

it is 180�).
The experimentally identified mode shapes have to be graphically displayed,

because the visual inspection of the estimated mode shapes represents the simplest

method for a preliminary check of the modal identification results. Two approaches

exist for the graphical display of mode shape estimates. The static display provides

a picture of the mode shape, eventually superimposed to the undeformed configu-

ration of the structure (Fig. 4.7). This is the display format used in reports.

Taking into account the measurement directions of the sensors installed on the

structure and their positions, the deformed shape is obtained by assigning to each

measured point in each measured direction a displacement proportional to the

corresponding component of the mode shape vector. The scaling constant is set in

a way that the various modal displacements are appreciable but not too large,

otherwise the basic geometry of the structure might appear heavily altered. The

sign of the mode shape component determines if the measured point is moving

in-phase (+) or out-of-phase (�) with respect to the reference direction of the

sensor.

The static display is able to represent only real modes. As a consequence, a

preliminary complex-to-real conversion of the estimated mode shapes is necessary.

The visual inspection of complex mode shapes by static plots can be, therefore,

misleading. Fortunately, normal or nearly normal modes are typically encountered

in practical applications. Plotting animated mode shapes overcomes the limitations

of static display. Animated plots simulate the swing of the structure according to the

selected mode shape, so they can effectively represent also the complex modes.

One of the main drawbacks inherent in the visual inspection of the identified

mode shapes is related to the fact that the identified model is incomplete, since

measurements are carried out in a few points. The number of measurement points is

typically much lower (by some order of magnitudes) than the number of DOFs

adopted, for instance, in numerical models. Since there are several unmeasured

DOFs during tests, in the grid of points adopted to represent the geometry of the

structure some of them will always be characterized by null modal displacements.

This effect, caused by the finite number of measurement channels, has to be

taken into account in the visual inspection of mode shapes. In fact, those points

probably exhibit some displacements, which are not represented in the plots.
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Neglecting the effect of incomplete measurements can lead to misleading results in

the interpretation of the experimental mode shapes. In some cases interpolation

of modal displacements or consideration of some constraints (for instance, the

presence of rigid diaphragms) can compensate the lack of information about

some modal displacements in the experimental estimates.

However, erroneous plots are obtained if, for instance, the assumption of

constrained DOFs is not verified or interpolation of modal displacements is applied

in the case of a structure characterized by the presence of joints or abrupt changes in

its section. In summary, an effective display of the identified mode shapes is always

the result of a good choice of the sensor layout and the installation of a sufficient

number of sensors to ensure the observability of the modes of interest (see also

Chap. 3).

In the extreme case, when the adopted sensor layout is too coarse with respect to

the geometric complexity of the structure under test, there are problems not only in

Fig. 4.7 Steel structure for road sign (a) and static display of some of its experimentally estimated

mode shapes (b–d)
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displaying the deformation patterns but also in the analysis of the deformed shapes.

In fact, an insufficient number of sensors leads to the well-known problem of spatial

aliasing (Ewins 2000) with the related problems of distinction of the various modes,

which appear very similar each other. An effective tool to assess (ex post) the

quality of the adopted sensor layout is introduced in Sect. 4.8.2.2.

4.8.2 Quality Checks and Comparisons

4.8.2.1 Natural Frequencies
Validation of modal identification results mainly relies on consistency checks

obtained by comparing the experimental estimates provided by different OMA

methods. If the experimental estimates provided by the different methods are in

good agreement each other, they can eventually be compared with the results of

numerical models of the structure under investigation. Comparisons and correlations

between experimental and numerical estimates of the modal properties represent the

primary tools to verify numerical models. A verified model is a model that includes all

the necessary features to provide an acceptable representation of the actual dynamic

behavior of the structure. A verified model can eventually undergo some adjustments

to make its dynamic properties closer to the experimental values. The calibration of a

numerical model based on experimental estimates of the modal properties is referred

to as model updating. This is one of the main applications of modal testing. Even if

most of the necessary tools to compare numerical and experimental results are

discussed in this section, the interested reader can refer to the literature (Friswell

and Mottershead 1995, Mottershead et al. 2011, Ewins 2000) for an extensive

discussion about model updating techniques, which are beyond the scope of the

present book.

Natural frequencies can be compared by a simple tabulation, quantifying the

relative scatter, expressed in percent, as follows:

Δf n ¼
f 2,n � f 1,n

f 1,n
� 100 ð4:298Þ

where f1,n and f2,n are the two values of the natural frequency for the n-th mode

under comparison; f1,n and f2,n can be either experimental estimates, obtained from

two different OMA methods, or represent the numerical and the experimental

estimate of the experimental frequency of the n-th mode, respectively.

An alternative approach to compare two sets of natural frequency estimates

consists of plotting the natural frequencies in the second set against the natural

frequencies of the first set in a Cartesian plane (Fig. 4.8). The first set holds the

reference natural frequency estimates (for instance, those provided by a certain

OMA method, or average values of the estimates obtained from different methods)

while the second set holds the values of the natural frequencies that have to be

compared with the corresponding estimates in the first dataset. The natural

frequencies in the second set can be experimental estimates obtained from a
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different OMA method or the values predicted by a numerical model. In the ideal

case of very good correlation between the two sets of natural frequencies, the points

lie very close to the line passing through the origin of the axes with 45� slope.

However, mainly in the case of the comparison between numerically predicted and

experimentally estimated natural frequencies, it may happen that the points lie

along a different line or they are fairly scattered with respect to the 45� line.

Depending on how the points are distributed, it is possible to determine the reasons

for the deviations. For instance, about the comparison between numerically

predicted natural frequencies and the corresponding experimental estimates, if the

numerical model is representative of the actual behavior of the structure, only small

and randomly distributed deviations of the points from the 45� line are expected.

When the points lie close to a line with slope different from 45�, the deviation can

be addressed to erroneous setting of the material properties in the numerical model.

If the points are widely scattered with respect to the 45� line, the model is unfit to

represent the experimental data and a new model has to be set. Finally, if the

deviations are small but all or nearly all the points lie on one side of the 45� line,
they suggest the presence of a systematic error (Ewins 2000). Similar consi-

derations can be done in the analysis of the experimental results provided by

different methods.

In both cases of tabulation and graphical representation, a correct mode pairing

plays a critical role in determining the results and effectiveness of the comparisons.

It is not sufficient to compare two sets of ordered frequencies since there is no

guarantee of one-to-one correspondence between the modes in the first set and those

in the second set. For a correct mode pairing the information about the mode shapes

has also to be taken into account, in order to ensure that the two natural frequency

estimates under comparison are representative of the same mode. An incorrect

mode pairing can lead to misleading results. The evaluation of the correlation

between couples of mode shapes is based on the tools discussed in the next section.

Fig. 4.8 Comparison of

natural frequencies
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4.8.2.2 Mode Shapes
Classical books about experimental modal analysis suggest the comparison of mode

shapes through their graphical representation according to one of the methods

discussed in Sect. 4.8.1; plots in the Cartesian plane similar to that discussed in

Sect. 4.8.2.1 to compare natural frequencies can also be used. Even if those methods

can provide a certain amount of information, for instance about poor numerical

modeling (Ewins 2000), they suffer problems in the presence of some scaling errors

in the data and they are inadequate to compare complex-valued mode shapes. This

can lead to major errors in the analysis of results and mode pairing. A more

effective comparison of mode shapes, able to deal also with complex modes, is

based on some numerical indexes. The MAC (Allemang and Brown 1982)

represents the most popular index to quantify the correlation between mode shapes,

but it also shows some limitations. For this reason, a number of other indexes have

been developed over the years. The use of MAC and other indexes to evaluate the

correlation between couples of mode shapes is discussed in this section, pointing

out the respective advantages and limitations. In particular, the role of those indexes

in proper mode pairing, in the assessment of the quality of the adopted sensor layout

and in the verification of numerical models is illustrated.

Given the two mode shape vectors under comparison, for instance the experi-

mentally estimated mode shape {ϕn
e} and the numerically predicted mode shape

{ϕn
a} of the n-th mode of the investigated structure, in the most general case of

complex-valued vectors the MAC is computed as follows:

MAC ϕa
n


 �
; ϕ e

n


 �� � ¼ ϕa
n


 �H
ϕ e
n


 �			 			2
ϕa
n


 �H
ϕa
n


 �� �
ϕ e
n


 �H
ϕ e
n


 �� � : ð4:299Þ

If both vectors are real-valued, as usually happens in the presence of numerically

predicted mode shapes, the transpose operator replaces the Hermitian and (4.299)

can be rewritten as follows:

MAC ϕa
n


 �
; ϕ e

n


 �� � ¼ ϕa
n


 �T
ϕ e
n


 �			 			2
ϕa
n


 �T
ϕa
n


 �� �
ϕ e
n


 �T
ϕ e
n


 �� � : ð4:300Þ

The MAC index is basically a squared, linear regression correlation coefficient

and it provides a measure of the consistency (degree of linearity) between the two

vectors under comparison. The MAC values are bounded between 0 and 1,

representing inconsistent and perfectly consistent correspondence between the

two vectors, respectively. Even if the MAC between analytical and experimental

mode shapes is generally used for verification and updating of finite element

models, it is worth taking into account that it provides only a measure of consis-

tency between the vectors but it does not ensure validity.
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For instance, when the experimental mode shapes are measured at few locations,

the incomplete information can lead to a MAC value near unity with the corre-

sponding analytical mode shape, but the consistency between the two vectors does

not ensure that the analytical mode shape is correct. If more points are measured,

the consistency between analytical and experimental mode shapes can decrease to

values much lower than 1.

It is also worth pointing out that the MAC is sensitive to large differences

between the corresponding components of the vectors under comparison, but it is

basically insensitive to small changes and small magnitudes of the modal displa-

cements. Moreover, the MAC is not able to distinguish between random errors and

systematic deviations from the reference mode shape components. Notwithstanding

the previous limitations, the MAC is by far the most used index for mode shape

comparisons.

Taking into account the relative scatter between the natural frequencies (4.298)

and the consistency of the mode shape vectors (4.299), an effective mode pairing is

possible. The information about the mode shapes plays a primary role for a correct

mode pairing above all in the case of closely spaced modes, when proper matching

between analytical and experimental mode shapes can be difficult if only the

information about the natural frequencies is available.

When the mode shapes under comparison exhibit a consistent, linear relation-

ship, it is possible to compute the modal scale factor (MSF) as follows:

MSF ϕ e
n


 �
; ϕa

n


 �� � ¼ ϕa
n


 �H
ϕ e
n


 �� �
ϕa
n


 �H
ϕa
n


 �� � ð4:301Þ

if the analytical mode shape is considered as reference, or as:

MSF ϕa
n


 �
; ϕ e

n


 �� � ¼ ϕ e
n


 �H
ϕa
n


 �� �
ϕ e
n


 �H
ϕ e
n


 �� � ð4:302Þ

if the experimental mode shape is considered as reference. The MSF does not

provide information about the quality of the fit, but it only gives the scale factor

between consistent vectors.

An alternative index to assess the mode shape correlation is represented by the

Normalized Modal Difference (NMD) (Waters 1995, Maia et al. 1997):

NMD ϕa
n


 �
; ϕ e

n


 �� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�MAC ϕa

n


 �
; ϕ e

n


 �� �
MAC ϕa

n


 �
; ϕ e

n


 �� �s
ð4:303Þ

The NMD basically represents a close estimate of the average difference between

the components of the two vectors {ϕn
a} and {ϕn

e}. It appears much more sensitive to

mode shape differences than the MAC and, therefore, it is sometimes used to better

remark the differences between highly correlated mode shapes.
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In practical applications, given Nm
e experimentally identified modes and Nm

a

numerically predicted modes, the Nm
e�Nm

a MAC matrix (Fig. 4.9) is computed.

Assuming without loss of generality that Nm
e¼Nm

a, if the numerical and experimen-

tal mode shape vectors are consistent the MAC matrix will show values close to

1 along its main diagonal, where the MAC is computed for mode shapes

corresponding to the same mode, and close to 0 elsewhere, where the MAC is

related to two different modes.

When the MAC matrix is different from this ideal case, for instance because of

the presence of low MAC values along the main diagonal or of off-diagonal terms

characterized by large values of the MAC, a supplement of investigation is needed

since these anomalies can be the result of poor modeling, poor analysis of the

experimental data, inappropriate choice of the DOFs included in the correlation or

incorrect mode pairing.

MAC values between mode shapes corresponding to the same mode are always

expected to be slightly lower than 1 in practical applications, due to the unavoidable

uncertainties associated to the experimental estimates and the approximations

inherent in numerical models. However, when the objective of the comparison is

simply a verification of the numerical model, values of MAC in excess of 0.8–0.9

can be accepted as indicators of good consistency, while values less than 0.1–0.2

can be accepted as indicators of poor consistency. These limit values for the MAC

must not be regarded in absolute terms, since there are some applications that

demand high levels of consistency and some others that can accept lower MAC

values, depending on the final use of the verified or updated model.

The MAC index is a measure of the overall consistency between two vectors, but

it gives no information about the scatter between corresponding DOFs. When the

information about the spatial distribution of the degree of correlation is of interest,

extensions of the MAC have to be considered.

The Coordinate Modal Assurance Criterion (COMAC) (Ewins 2000) has been

developed to identify the DOFs that yield low MAC values. In the case of
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real-valued mode shapes and a set of Nm couples of paired experimental-numerical

mode shapes, the COMAC associated to the r-th DOF can be computed as follows:

COMACr ¼

XNm

j¼1

ϕa
r, j � ϕ e

r, j

			 			2
XNm

j¼1

ϕa
r, j

� �2
�
XNm

j¼1

ϕ e
r, j

� �2 ð4:304Þ

where ϕr,j
a and ϕr,j

e denote the r-th component of the j-th analytical and experimental

mode shape, respectively. Thus, the COMAC preserves the information about the

individual DOFs. Low values of COMAC indicate poor correlation.

An Enhanced Coordinate Modal Assurance Criterion (ECOMAC) has also been

proposed (Hunt 1992) to overcome the potential problems caused by erroneous

calibration scaling or definition of the orientation of the sensors. In particular, the

erroneous definition of sensor orientations causes the inversion of the sign of the

associated components of the experimental mode shapes. Given a set of Nm couples

of paired experimental-numerical mode shapes, the ECOMAC associated to the r-th

DOF can be computed as follows:

ECOMACr ¼

XNm

j¼1

ϕa
r, j � ϕ e

r, j

			 			
2Nm

: ð4:305Þ

Thus, the ECOMAC basically represents a measure of the average difference

between the vector components corresponding to a certain DOF.

The role of the MAC index in the verification of numerical models has been

already introduced. However, it can be used also to check the effectiveness of the

adopted sensor layout and to assess the consistency between mode shape estimates

provided by different OMA methods.

For instance, the effectiveness of sensor layout can be assessed through the

computation of the AutoMAC matrix of the experimental mode shape estimates

provided by a given OMA method. The entries of this matrix are represented by the

values of the MAC obtained when a set of experimental mode shapes are correlated

with themselves. Thus, the AutoMAC matrix is a symmetric matrix characterized

by values all equal to 1 along the main diagonal. When the off-diagonal terms are

all close to 0, the adopted sensor layout is effective in distinguishing the different

modes; on the contrary, the presence of large off-diagonal terms means that similar

mode shape vectors have been obtained for distinct modes. This requires a supple-

ment of investigation to define the reasons of the correlation. It could be due to the

fact that the orthogonality condition of the modes with respect to the mass matrix

cannot be translated into a perfectly diagonal AutoMAC matrix. However, it is

frequently an indicator of problems, such as spatial aliasing or spurious modes

erroneously included into the set of identified physical modes. Including additional

190 4 Output-only Modal Identification



sensors and eventually changing the measurement positions to enhance the observ-

ability of the different modes can solve the problems related to spatial aliasing and

poor discrimination of the modes.

The consistency between mode shape estimates provided by different OMA

methods can be assessed by the construction of the CrossMAC matrix. It is

basically a MAC matrix but both the sets of vectors under comparison are made

by experimental mode shape estimates. The two sets of experimental mode shapes

have been obtained from the application of different OMA techniques. If the two set

of mode shape estimates are consistent, a CrossMAC matrix characterized by

values very close to 1 along the main diagonal and close to 0 elsewhere is obtained,

provided that the AutoMAC matrices of the two sets of experimental mode shapes

are approximately diagonal (absence of large off-diagonal terms).

4.9 Stabilization Diagrams for Parametric OMA Methods

An appropriate parameter setting in parametric OMA methods requires some prior

knowledge about the order of the model to identify all modes in the analyzed

frequency range. As a consequence, the number of modes has to be estimated in

advance based on a physical insight or from the peaks in the output power spectra or

in the singular value plots obtained by SVD of the output PSD matrix at all discrete

frequency values.

More formal procedures are based on the comparison of models characterized by

different orders according to some predefined criteria, which can eventually include

penalties to avoid overfit (Ljung 1999). In the case of SSI methods it has also been

shown that the order of the model can theoretically be determined from the experi-

mental data as the rank of the Toeplitz matrix of correlations (Sect. 4.5.3.1) or of the

projection matrix (Sect. 4.5.3.2) provided that the condition expressed by (4.207) is

fulfilled. Unfortunately, due to noise and modeling inaccuracies, it often happens

that no clear gap is visible in the sequence of the singular values of those matrices,

thus resulting in serious problems for the determination of the correct model order.

This is due to the fact that the factorization properties given by (4.208) and (4.239)

do not exactly hold in the case of a finite number of data points. However, in the

case of experimental/operational modal analysis the final objective is the identifi-

cation of accurate and reliable modal parameter estimates rather than a good

model as such. As a consequence, in practical applications a conservative approach

is adopted based on the overspecification of the order of the model, which is set

large enough to ensure the identification of all physical modes.

The amount of overspecification mainly depends on the characteristics of the

analyzed dataset. In any case overmodeling introduces spurious poles, which have

to be separated from the physical poles. This makes the modal parameter estimation

more complicated. Spurious modes can be:

• noise modes: they are represented, for instance, by poles of the excitation system

and, as such, they are due to physical reasons;
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• mathematical modes: they are created by the model in addition to the physical

poles to ensure the mathematical description of the measured data, which are

inevitably affected by slight imperfections (measurement noise, computational

noise, modeling inaccuracies); thus, they are the result of the overestimation of

the order of the model.

The separation of the physical poles from the spurious mathematical ones can

take advantage of the construction of the so-called stabilization diagram
(Fig. 4.10). It shows the poles obtained for different model orders as a function of

their frequency. By tracking the evolution of the poles for increasing model orders,

the physical modes can be identified from alignments of stable poles, since the

spurious mathematical poles tend to be more scattered and typically do not stabi-

lize. The alignments of stable poles can start at lower or higher values of the model

order, depending on the level of excitation of the modes.

The construction of the stabilization diagram is based on the comparison of the poles

associated to a given model order with those obtained from a one-order lower model.

Only the poles that fulfill assigned user-defined stabilization criteria are labeled as

stable. Typical stability requirements are expressed by the following inequalities:

j f nð Þ � f nþ 1ð Þj
f nð Þ

� �
< 0:01 ð4:306Þ

jξ nð Þ � ξ nþ 1ð Þj
ξ nð Þ

� �
< 0:05 ð4:307Þ
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1�MAC ϕ nð Þf g; ϕ nþ 1ð Þf gð Þ
h i

< 0:02: ð4:308Þ

In other words, (4.306) implies that the scatter between the estimates of the

natural frequency at two subsequent model orders has to be lower than 1 % for a

pole to be labeled as stable. Similar conditions on damping ratios and mode shapes

are expressed by (4.307) and (4.308), respectively.

If all the conditions expressed by the previous inequalities are satisfied, the

pole is labeled as stable. In the case of two stage methods, when the information

about mode shapes is not available, the stabilization criteria apply to natural

frequency and damping ratio estimates, only. It is worth pointing out that the

relative criteria to assess the stability of the poles have to be used with caution.

In fact, they can be particularly severe in the case of lightly damped modes, when

the damping ratios are small and their percentage variations can be larger than the

preset limit.

After the identification of the alignments of stable poles, eventual noise modes

can be discarded according to physical criteria based on the expected damping ratio

or the expected properties and aspect of the mode shapes.

It is worth pointing out that a bias of the modes can sometimes occur at low orders

of the model. The estimates are biased since the poles represent a combination of

different modes. This phenomenon is denoted by the splitting of a certain alignment

of stable poles in the stabilization diagram into two separate columns from a certain

model order. Thus, only if the maximummodel order in the stabilization diagram has

been set large enough, the bias of the modes can be identified. In this case, the modal

parameters have to be estimated from the two alignments of poles generated after the

splitting.

In the case of SSI methods, the stabilization diagram can be efficiently

constructed once the factorization property given by (4.208) for Cov-SSI or

(4.239) for DD-SSI has been computed for the maximum order of the model. In

fact, models of lower order can be directly obtained by excluding an increasing

number of singular values and vectors in the computation of [Oi] and [Γi] or Ŝ i

� �
(Peeters 2000). Moreover, the poles in complex conjugate pairs allow plotting the

stabilization diagram considering only those characterized by positive imaginary

component (and, therefore, positive damped frequency). As a result, the state-space

model provides modal parameters for a number of modes equal to half of its order

(Magalhaes and Cunha 2011).

In the case of OMA methods based on least squares estimators (LSCE, LSCF,

and their poly-reference versions), coefficient constraint and basis function have a

relevant influence on the discrimination between physical and mathematical modes.

In fact, an appropriate choice of the constraint applied to the coefficients with

respect to the adopted basis function can force the mathematical poles to be

unstable (positive real part, negative damping) while the physical modes are stable

(negative real part, positive damping). As a result, the distinction between
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mathematical and physical poles is simplified, because it is based on the sign of

damping. Mathematical poles are forced to be unstable by adopting the following

combinations of coefficient constraint and basis function (Cauberghe et al. 2005):

• the lowest-order coefficient is unitary and the basis function is z� 1;

• the highest-order coefficient is unitary and the basis function is z.
When the adopted basis function is z� 1, the denominator coefficients in the

LSCF method are computed as follows:

θdf g ¼ 1

� M 2:nþ1,2:nþ1ð Þ
� ��1

M 2:nþ1,1ð Þ
� �
 �

ð4:309Þ

where [M(2 : n+ 1,2 : n+ 1)] is the submatrix made by the last n rows and n columns of

[M] (4.134), while [M(2 : n+ 1,1)] is the submatrix made by the last n rows and the first

column of [M]. In the case of the p-LSCF method, instead, the denominator

coefficients are computed as follows:

α½ � ¼ Il½ �
� M lþ1: nþ1ð Þl, lþ1: nþ1ð Þlð Þ
� ��1

M lþ1: nþ1ð Þl, 1:lð Þ
� �
 �

ð4:310Þ

where [M(l+ 1 : (n+ 1)l,l + 1 : (n+ 1)l )] is the submatrix made by the last nl rows and nl
columns of [M] (4.167), while [M(l+ 1 : (n+ 1)l,1 : l )] is the submatrix made by the last

nl rows and the first l columns of [M]. In this last case, the roots of the denominator

polynomial are the eigenvalues of the following companion matrix:

A½ � ¼

� An½ ��1 An�1½ � � An½ ��1 An�2½ � � � � � An½ ��1 A1½ � � An½ ��1 A0½ �
I½ � 0½ � � � � 0½ � 0½ �

⋮ ⋮ . .
.

⋮ ⋮

0½ � 0½ � � � � I½ � 0½ �

26666664

37777775:
ð4:311Þ

In Sect. 4.4.3.2, the procedure for mode shape estimation in the context of the

p-LSCFmethodhasbeendiscussed.Another approachconsists in the conversionof the

RMFDmodel into a state-space model (Magalhaes and Cunha 2011). In this case, the

model coefficients have to be rearranged into the output influence matrix as follows:

C½ � ¼ Bn�1½ � � Bn½ � An½ ��1 An�1½ � � � � B0½ � � Bn½ � An½ ��1 A0½ �
h i

ð4:312Þ

194 4 Output-only Modal Identification



where:

Bj

� � ¼
B1, j

� �
⋮

Bo, j

� �
⋮

Bl, j

� �

266664
377775: ð4:313Þ

The theoretical derivations can be found elsewhere (Reynders 2009). Once the

matrices [A] and [C] are known from (4.311) and (4.313), the modal parameters are

obtained as described in Sect. 4.5.3.1.

The combination coefficient constraint-basis function has an influence on

damping ratio estimates only in the case of discrete-time models. The superior

quality of the stabilization diagram, that simplifies its interpretation, explains why

discrete-time models are preferred over continuous-time models.

Some authors (Peeters and Van der Auweraer 2005, Cauberghe 2004) suggest

the application of p-LSCF in combination with positive power spectra instead of

one-sided spectra, because this yields very clear stabilization diagrams. The

improvement in the quality of stabilization can be appreciated by comparing the

plots shown in Fig. 4.11. They represent the stabilization diagrams obtained from

the application of p-LSCF to one-sided spectra (Fig. 4.11a) and positive power

spectra (Fig. 4.11b) estimated from the same dataset. However, the accuracy of

mode shape estimates might be negatively affected when positive power spectra are

used. For this reason, the comparison of the mode shape estimates obtained from

the application of p-LSCF to positive power spectra with those obtained from

one-sided spectra is recommended.

4.10 Applications

4.10.1 Basic Frequency Domain

Task. Develop software for output-only modal identification based on the Basic

Frequency Domain (Peak Picking) method. Alternatively, install and use the

software in “Chapter 4/BFD”. Use the data in “Sample record 12 channels –

sampling frequency 10 Hz.txt” in the folder “Chapter 2/Correlation” of the disk

accompanying the book. Data in the file are organized in columns: time is in the first

column; data are in the next 12 columns. Assume that the data have been collected

on a framed structure made by three floors and that four sensors per floor have been

installed according to the layout shown in Fig. 4.12. Assume that the time series

in the file are ordered for increasing sensor number (excluding the column of time,

the first column holds the data from sensor #1, the second column holds the data

from sensor #2, and so on; the last column holds the data from sensor #12).
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Suggestions. Starting from the sample code for computation of power spectra devel-

oped in Chap. 2, develop software for output-only modal identification based on the

BFD (Peak Picking) method. It should be able to carry out the following operations

(adoption of state machine architecture or event structure is recommended):

• At start-up, load the data and set the main analysis parameters (window, number

of segments, decimation factor, overlap);

• Compute the PSD matrix and show its trace in a plot to identify the peaks that

can be recognized as possible structural modes (possible structural modes can be

eventually identified also as recurrent peaks in the auto-power spectra);
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Fig. 4.11 Stabilization diagram obtained from the application of p-LSCF to one-sided spectra

(a) and positive power spectra (b)
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• After having identified the peak frequencies, select a reference channel and

compute its auto-power spectrum and the cross-power spectra with all the

remaining channels;

• Show the spectra in terms of amplitude and phase and the coherence

functions;

• Collect the values of amplitude, phase, and coherence at the previously identified

peak frequencies; take advantage of the coherence plots to identify structural

modes and to define the nature (bending, torsion) of the mode; if certain peaks

are missing in the auto-power spectrum of the reference channel, repeat the

previous steps with a different choice of the reference channel in order to

identify also those modes;

• Normalize the mode shape vectors so that the component with maximum amplitude

is equal to 1;

• Create a report of modal identification results in terms of natural frequencies and

mode shapes.

It is worth pointing out that the accuracy of natural frequency estimates depends

on the frequency resolution; thus, long records of the structural response to ambient

vibrations are recommended to compute spectra characterized by a large number of

averages and a fine frequency resolution (in the order of 0.01 Hz).

Use the BFD method to identify at least the three fundamental modes of

the structure. Create a report with the identified natural frequencies and mode

shape estimates; plot the mode shapes considering the floors as rigid diaphragms.

Compute the AutoMAC matrix (Sect. 4.8.2.2).

Fig. 4.12 Sensor layout for

applications
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Results obtained by the Authors of this book by applying the BFD method are

reported in Tables 4.1, 4.2, and 4.3 as reference. The identified mode shapes are

also shown in Fig. 4.13, based on the assumption of rigid diaphragms. Real-

valued normalized mode shapes were constructed as discussed in Sect. 4.8.1.

Channel #2 was selected as reference for the identification of the first and the third

mode, while channel #1 was the reference for the identification of the second

mode.

Sample software. Sample software to carry out output-only modal identification

based on the BFD method can be found in “Chapter 4/BFD” of the disk

accompanying the book.

Table 4.1 Mode shape

estimate for the first mode

(0.92 Hz—channel #2 as

reference)

Amplitude Phase Normalized mode shape

6.31E�06 �0.02 �0.114

5.49E�05 0.00 �0.990

2.11E�05 �0.03 �0.380

5.54E�05 3.14 1.000

4.44E�06 �0.03 �0.080

4.19E�05 �3.14 0.756

1.10E�05 3.11 0.198

4.24E�05 3.14 0.764

3.36E�06 0.00 �0.061

1.82E�05 �3.13 0.329

5.27E�06 3.12 0.095

1.90E�05 �3.13 0.343

Table 4.2 Mode shape

estimate for the second

mode (0.98 Hz—channel

#1 as reference)

Amplitude Phase Normalized mode shape

7.42E�0.5 0.00 �0.828

6.54E�06 �0.27 �0.073

8.96E�05 �3.12 1.000

1.85E�05 3.05 0.207

4.60E�05 0.00 �0.513

6.01E�06 2.92 0.067

5.52E�05 0.01 �0.616

9.03E�06 2.99 0.101

1.86E�05 �0.02 �0.207

1.64E�06 2.80 0.018

2.12E�05 0.00 �0.236

4.21E�06 3.02 0.047
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4.10.2 Frequency Domain Decomposition

Task. Develop software for output-only modal identification based on the FDD

method. Alternatively, install and use the software in “Chapter 4/FDD”. Repeat the

identification of the fundamental modes of the structure of Sect. 4.10.1. Operational

response data are in “Sample record 12 channels – sampling frequency 10 Hz.txt” in

Table 4.3 Mode shape

estimate for the second

mode (1.30 Hz—channel

#2 as reference)

Amplitude Phase Normalized mode shape

4.62E�05 �3.13 1.000

8.58E�06 0.00 �0.186

4.17E�05 �3.12 0.903

6.43E�07 2.88 0.014

2.79E�05 �3.13 0.603

5.36E�06 3.14 0.116

2.49E�05 0.02 �0.539

1.32E�06 0.09 �0.029

1.01E�05 �3.13 0.218

2.16E�06 �3.14 0.047

8.91E�06 0.02 �0.193

7.27E�07 0.03 �0.016

Fig. 4.13 Plots of the identified mode shapes
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the folder “Chapter 2/Correlation” of the disk accompanying the book. Organiza-

tion of data in the file has been described in Sect. 4.10.1. Sensor layout is shown in

Fig. 4.12.

Suggestions. The previously developed software for Peak Picking can be easily

extended to carry out output-only modal identification according to the FDD

method. Here is the list of the main tasks in software development:

• At start-up, load the data and set the main analysis parameters (window, number

of segments, decimation factor, overlap);

• Compute the PSD matrix, organizing the data into an array of l� l square
matrices; each matrix holds the values of the power spectra at a certain frequency

line in the form of complex values;

• At each frequency line compute the SVD of the complex-valued PSD matrix;

concatenation of the vectors of the singular values obtained at the various

discrete frequencies yields the singular value plots;

• Plot all the singular values as a function of frequency in the same plot; create and

use cursors to identify the peaks corresponding to structural modes; the peak

frequency can be considered an estimate of the natural frequency (for lightly

damped systems) as in the case of the BFD method; the peaks are usually

selected in the first singular value plot, unless repeated modes are present;

• Collect the singular vectors associated to the selected singular values at the

various frequencies; normalize these vectors so that the component

characterized by the largest amplitude is set equal to 1; with a few exceptions

for closely spaced modes (Sect. 4.4.2), the singular vectors at the peak

frequencies are good mode shape estimates;

• Create a report of modal identification results in terms of natural frequencies and

mode shapes.

It is worth noting that also in the case of FDD the accuracy of natural frequency

estimates depends on the frequency resolution; thus, long records of the structural

response to ambient vibrations are recommended to obtain high quality singular

value plots as a result of spectra characterized by a large number of averages and a

fine frequency resolution (in the order of 0.01 Hz). Natural frequency estimates

independent of the frequency resolution and damping estimates can be obtained by

the EFDDmethod. In this case, the following additional steps have to be included in

the previous list before reporting:

• For each peak frequency, compare the singular vector associated to the selected

peak frequency with the singular vectors at the nearby frequencies; retain all the

singular values in the vicinity of the peak whose singular vectors yield a MAC

(4.109) with the singular vector associated to the peak frequency larger than a

user-defined MAC Rejection Level (usually, 0.8); the selected singular values

belong to the SDOF Bell function of the considered mode;

• Compute the IFT of the SDOF Bell functions to obtain the approximated SDOF

correlation functions (Sect. 4.4.2);

• For each correlation function, select the portion characterized by large amplitude

(removing the tails where the influence of noise is relevant, and eventually

neglecting also the first cycle) and estimate the damping ratio by the logarithmic
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decrement technique; get an estimate of the damped frequency independent of

the frequency resolution from the number of zero crossing points in the selected

interval; use the estimates of damped frequency and damping ratio to compute

the natural frequency (4.110).

Use the FDD method to identify the three fundamental modes of the structure.

Cursors can be added by right-clicking on the cursor legend (marked by the oval in

Fig. 4.14) and selecting “Create Cursor – Single-Plot”; cursors are attached to one

of the singular value plots by right-clicking on the cursor legend and selecting

“Snap To” and the number of the plot.

Since the fundamental modes are normal, real-valued mode shapes can be easily

recovered from the (normalized) complex-valued singular vectors (Sect. 4.8.1).

Compute the AutoMAC (Sect. 4.8.2.2). Compare the obtained results with the

corresponding natural frequency and mode shape estimates obtained from BFD

(Sect. 4.10.1). Report the results of the comparison in a table showing, for each

mode, the frequency scatter between the natural frequency estimates (4.298) and

the CrossMAC (Sect. 4.8.2.2) between corresponding mode shapes. Use COMAC

(4.304) or ECOMAC (4.305) to identify the DOFs causing the major differences in

the mode shape estimates provided by the two methods.

Sample software. Sample software to carry out output-only modal identification

based on the FDD method can be found in “Chapter 4/FDD” of the disk

accompanying the book.

4.10.3 Least Squares Complex Frequency

Task. Develop software for output-only modal identification based on the LSCF

method. Alternatively, install and use the software in “Chapter 4/LSCF”. Repeat

the identification of the fundamental modes of the structure of Sect. 4.10.1.

Fig. 4.14 Singular value plots and cursor legend (in the oval)
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Operational response data are in “Sample record 12 channels – sampling

frequency 10 Hz.txt” in the folder “Chapter 2/Correlation” of the disk

accompanying the book. Organization of data in the file has been described in

Sect. 4.10.1. Sensor layout is shown in Fig. 4.12.

Suggestions. The previously developed software for Peak Picking can be extended

to carry out output-only modal identification according to the LSCF method. Here

is the list of the main tasks in software development:

• At start-up, load the data and set the main analysis parameters (window, number

of segments, decimation factor, overlap, maximum polynomial order for the

construction of the stabilization diagram);

• Compute the PSD matrix;

• Select the z-domain basis function: zf (4.116) or zf
� 1;

• Assuming that zf has been adopted as basis function (in the case of zf
� 1 the

implementation steps are the same; the only difference is in the coefficient

constraint and, therefore, in the formulation for computation of the denominator

coefficients; refer to Sect. 4.9 for more details), compute zf
j (j¼ 0, . . ., n, where n

denotes the polynomial order) at all discrete frequency lines and build the

matrices [Γk] (4.126) and [Υk] (4.127) for k¼ 1, . . ., l� l;
• Compute the matrices [Rk] (4.129), [Sk] (4.130), and [Tk] (4.131) for k¼ 1, . . .,

l� l;
• Compute the (n + 1)� (n + 1) matrix [M] as follows:

M½ � ¼
Xl�l
k¼1

Tk½ � � Sk½ �H Rk½ ��1 Sk½ �
� �

ð4:314Þ

• Compute {θd} (4.135);

• Use “Polynomial Roots.vi” under “Mathematics – Polynomial” in the Functions

Palette to compute the roots zr;
• Convert the poles from discrete time to continuous time (4.136);

• Remove the unstable poles (Sect. 4.9);

• Compute natural frequencies (4.137) and damping ratios (4.139) from the

remaining poles;

• Repeat the last eight steps for different model orders and plot the stabilization

diagram reporting the poles as a function of frequency for different model orders

(Sect. 4.9);

• Identify the alignments of stable poles in the stabilization diagram, which

correspond to structural modes; select a pole for each identified structural mode;

• Use the selected poles (holding the information about natural frequencies and

damping ratios) to compute the residues according to the LSFD method (4.147);

rearrange the vector {Rk} into the l� l residue matrices [Rj];

• Compute the SVDs of the residue matrices [Rj] (4.148); for each SVD the first

singular vector yields a mode shape estimate;
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• Normalize the mode shape vectors so that the component with maximum

amplitude is equal to 1;

• Create a report of modal identification results in terms of natural frequencies and

mode shapes.

Appropriately replacing the equations (Sect. 4.4.3.2), the p-LSCF method can be

implemented in a similar way.

Use the LSCF method to identify the three fundamental modes of the structure.

Since they are normal modes, real-valued mode shapes can be easily recovered

from the (normalized) complex-valued singular vectors (Sect. 4.8.1). Compute the

AutoMAC matrix (Sect. 4.8.2.2). Compare the obtained results with those provided

by FDD or BFD. In particular, compute the scatters between corresponding natural

frequency estimates (4.298) and the CrossMAC matrix (Sect. 4.8.2.2).

Sample software. Sample software to carry out output-only modal identification

based on the LSCF method can be found in “Chapter 4/LSCF” of the disk

accompanying the book.

4.10.4 Stochastic Subspace Identification

Task. Develop software for output-only modal identification based on the Cov-SSI

method. Alternatively, install and use the software in “Chapter 4/Cov-SSI”. Repeat

the identification of the fundamental modes of the structure of Sect. 4.10.1. Opera-

tional response data are in “Sample record 12 channels – sampling frequency 10 Hz.

txt” in the folder “Chapter 2/Correlation” of the disk accompanying the book.

Organization of data in the file has been described in Sect. 4.10.1. Sensor layout

is shown in Fig. 4.12.

Suggestions. The software implementation of the Cov-SSI algorithm for output-

only modal identification is based on the following steps:

• At start-up, load the data and eventually set the filter parameters and the

decimation factor;

• Compute the PSD matrix and show its trace in a plot to estimate the number of

structural modes in the frequency range under investigation; set the number of

block rows accordingly; the condition expressed by (4.207) must be fulfilled; the

product l� i defines the limit value of the maximum model order that can be

adopted in the construction of the stabilization diagram; however, the maximum

model order in the stabilization plot is usually much lower than l� i, and it is

defined so that only a subset of the singular values and vectors of the block

Toeplitz matrix of correlations ((4.206), (4.211), and (4.212)) is retained;

• Compute the SVD of the block Toeplitz matrix of correlations ((4.206), (4.211),

and (4.212)) and define the maximum model order in the construction of the

stabilization diagram (Sect. 4.9);

• From the retained subset of singular values and vectors of the block Toeplitz

matrix of correlations compute the observability matrix [Oi] (4.213) and the

reversed controllability matrix [Γi] (4.214); the first l rows of [Oi] and the last
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l rows of [Γi] yield the output influence matrix [C] and the next state-output

covariance matrix [G], respectively;
• Compute the state matrix [A] from (4.216) and (4.217); alternatively, it can be

computed according to (4.218) and (4.219), with the weights given by (4.220) or

(4.224);

• The poles in discrete time are obtained by the eigenvalue decomposition of [A]
(4.77); they have to be converted from discrete time to continuous time (4.136)

in order to compute natural frequency (4.137) and damping ratio (4.139) from

each pole; the corresponding mode shapes are obtained from the eigenvectors of

[A] according to (4.79);

• Repeat the last three steps for different model orders and plot the stabilization

diagram reporting the poles as a function of frequency for different model orders

(Sect. 4.9); in this case, also the information about the mode shapes (4.308) is

used for the construction of the stabilization diagram;

• Identify the alignments of stable poles in the stabilization diagram, which

correspond to structural modes; select a pole for each identified structural mode;

• Normalize the mode shape vector associated to each pole so that the component

with maximum amplitude is equal to 1;

• Create a report of modal identification results in terms of natural frequencies and

mode shapes.

DD-SSI can be implemented in a similar way according to the following list

of steps:

• The first two steps are the same of Cov-SSI; the only difference is that the block

Toeplitz matrix of correlation is replaced by the block Hankel matrix of raw data

(4.229);

• Compute the LQ factorization of the block Hankel matrix of the outputs and the

projections [Pi] and [Pi� 1] ((4.234), (4.235), (4.236), and (4.237));

• Compute the SVD of [Pi] (4.240) and define the maximum model order in the

construction of the stabilization diagram;

• From the retained subset of singular values and vectors of [Pi] compute the

observability matrix [Oi] (4.241) and the Kalman filter state sequence Ŝ i

� �
(4.242);

• Compute Ŝ iþ1

� �
from (4.244);

• Compute the state matrix [A] and the output influence matrix [C] from (4.246);

alternatively, the state matrix can be computed directly from the observability

matrix according to (4.219) or (4.252), while the first l rows of [Oi] yield the

output influence matrix;

• The poles in discrete time are obtained by the eigenvalue decomposition of [A]
(4.77); they have to be converted from discrete time to continuous time (4.136)

in order to compute natural frequency (4.137) and damping ratio (4.139) from

each pole; the corresponding mode shapes are obtained from the eigenvectors of

[A] according to (4.79);

• Repeat the last four steps for different model orders and plot the stabilization

diagram reporting the poles as a function of frequency for different model orders

(Sect. 4.9); in this case, also the information about the mode shapes (4.308) is

used for the construction of the stabilization diagram;
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• Proceed as in the case of Cov-SSI (last three steps) to select the parameters of the

structural modes and create a report of modal identification results.

Use the Cov-SSI method to identify the three fundamental modes of the struc-

ture. Since they are normal modes, real-valued mode shapes can be easily recovered

from the (normalized) complex-valued singular vectors (Sect. 4.8.1). Compute the

AutoMAC matrix (Sect. 4.8.2.2). Compare the obtained results with those provided

by FDD and LSCF. In particular, compute the scatters between corresponding

natural frequency and damping ratio (LSCF/Cov-SSI only) estimates, and the

CrossMAC matrices (Sect. 4.8.2.2) with the mode shape estimates provided by

LSCF and FDD.

Sample software. Sample software to carry out output-only modal identification

based on the Cov-SSI method can be found in “Chapter 4/Cov-SSI” of the disk

accompanying the book.

4.10.5 Second Order Blind Identification

Task. Install and use the software in “Chapter 4/SOBI” for output-only modal

identification according to the SOBI method. Identify the modes of the structure

of Sect. 4.10.1 in the range 0–5 Hz. Compare the results provided by SOBI with

those obtained from Cov-SSI or any other method yielding complex-valued mode

shape estimates. Operational response data are in “Sample record 12 channels –

sampling frequency 10 Hz.txt” in the folder “Chapter 2/Correlation” of the disk

accompanying the book. Organization of data in the file has been described in

Sect. 4.10.1. Sensor layout is shown in Fig. 4.12.

Suggestions. When SOBI is used for output-only modal identification, mode shapes

are directly obtained from the mixing matrix (Sect. 4.5.4). Natural frequencies and

damping ratios can be estimated from the auto-correlations of the sources as

follows:

• for each correlation function, select the portion characterized by large amplitude

(removing the tails where the influence of noise is relevant, and eventually

neglecting also the first cycle);

• get an estimate of the damping ratio by the logarithmic decrement technique;

• get an estimate of the damped frequency independent of the frequency resolution

from the number of zero crossing points in the selected interval;

• use the estimates of damped frequency and damping ratio to compute the natural

frequency (4.110).

Use the Cov-SSI method to identify also the higher modes of the structure.

Among them, the mode at 2.59 Hz shows appreciable imaginary parts in the mode

shape components (Fig. 4.15). Comparison of the modal parameter estimates

provided by Cov-SSI with those obtained from SOBI results in a good agreement

for the fundamental modes. The mode at 2.07 Hz cannot be properly identified

by SOBI. About the mode at 2.59 Hz, SOBI yields a mode shape estimate

characterized by a CrossMAC with the corresponding estimate by Cov-SSI that is
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slightly lower than the CrossMAC values obtained for the fundamental modes.

The difference can be addressed to the fact that SOBI forces the mode shape

estimates to be real-valued.

Sample software. Sample software to carry out output-only modal identification

based on the SOBI method can be found in “Chapter 4/SOBI” of the disk

accompanying the book.

4.10.6 Influence of Sensor Layout

Task. Remove channels #3, #7, and #11 from the dataset in “Sample record

12 channels – sampling frequency 10 Hz.txt” in the folder “Chapter 2/Correlation”

of the disk accompanying the book and update the sensor layout shown in Fig. 4.12.

Repeat the identification of the modes of the structure of Sect. 4.10.1 by a method of

your choice among the previous ones. Compare the AutoMAC matrices before and

after the removal of the above-mentioned channels.

Suggestions. Even if both translations and torsions are still observable after sensor

removal, the presence of large off-diagonal elements in the AutoMAC matrix

highlights that the new layout is less effective than the previous one in

distinguishing some of the modes.
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