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Physical Acou6. Physical Acoustics

Mack A. Breazeale, Michael McPherson

An overview of the fundamental concepts needed
for an understanding of physical acoustics is
provided. Basic derivations of the acoustic wave
equation are presented for both fluids and solids.
Fundamental wave concepts are discussed with
an emphasis on the acoustic case. Discussions
of different experiments and apparatus provide
examples of how physical acoustics can be applied
and of its diversity. Nonlinear acoustics is also
described.
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Physical acoustics involves the use of acoustic tech-
niques in the study of physical phenomena as well as
the use of other experimental techniques (optical, elec-
tronic, etc.) to study acoustic phenomena (including the
study of mechanical vibration and wave propagation in
solids, liquids, and gasses). The subject is so broad that
a single chapter cannot cover the entire subject. For ex-
ample, recently the 25th volume of a series of books
entitled Physical Acoustics was published [6.1]. Ma-
son [6.2] began the series in 1964. The intermediate
volumes are not repetitious, but deal with different as-
pects of physical acoustics. Even though all of physical
acoustics cannot be covered in this chapter, some exam-
ples will illustrate the role played by physical acoustics
in the development of physics.

Since much of physics involves the use and study
of waves, it is useful to begin by mentioning some dif-
ferent types of waves and their properties. The most

basic definition of a wave is a disturbance that prop-
agates through a medium. A simple analogy can be
made with a stack of dominoes that are lined up and
knocked over. As the first domino falls into the second,
it is knocked over into the third, which is knocked over
into the next one, and so on. In this way, the disturbance
travels down the entire chain of dominoes (which we
may think of as particles in a medium) even though no
particular domino has moved very far. Thus, we may
consider the motion of an individual domino, or the
motion of the disturbance which is traveling down the
entire chain of dominoes. This suggests that we de-
fine two concepts, the average particle velocity of the
individual dominoes and the wave velocity (of the dis-
turbance) down the chain of dominoes. Acoustic waves
behave in a similar manner. In physical acoustics it is
necessary to distinguish between particle velocity and
wave (or phase) velocity.
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216 Part B Physical and Nonlinear Acoustics

There are two basic types of waves: longitudinal
waves, and transverse waves. These waves are defined
according to the direction of the particle motion in the
medium relative to the direction in which the wave trav-
els. Longitudinal waves are waves in which the particle
motion in the medium is in the same direction as the
wave is traveling. Transverse waves are those in which
the particle motion in the medium is at a right angle to
the direction of wave propagation. Figure 6.1 is a de-
piction of longitudinal and transverse waves. Another
less common type of wave, known as a torsional wave,
can also propagate in a medium. Torsional waves are
waves in which particles move in a circle in a plane
perpendicular to the direction of the wave propagation.
Figure 6.2 shows a commonly used apparatus for the
demonstration of torsional waves.

There also are more-complicated types of waves
that exist in acoustics. For example, surface waves
(Rayleigh waves, Scholte–Stonley waves, etc.) can
propagate along the boundary between two media. An-
other example of a more complicated type of wave
propagation is that of Lamb waves, which can propagate
along thin plates. A familiar example of Lamb waves are
the waves that propagate along a flag blowing in a wind.

In acoustics, waves are generally described by the
pressure variations that occur in the medium (solid or
fluid) due to the wave. As an acoustic wave passes
through the medium, it causes the pressure to vary as
the acoustic energy causes the distance between the
molecules or atoms of the fluid or solid to change pe-
riodically. The total pressure is given by

pT(x, t) = p0(x, t)+ p1(x, t) . (6.1)

Here p0 represents the ambient pressure of the fluid
and p1 represents the pressure fluctuation caused by
the acoustic field. Since pressure is defined as the force

t
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Fig. 6.1 Longitudinal and transverse waves

per unit area, it has units of newtons per square meter
(N/m2). The official SI designation for pressure is the
pascal (1 Pa = 1 N/m2). Atmospheric pressure at sea
level is 1 atmosphere (atm) = 1.013 × 105 Pa. The types
of sounds we encounter cause pressure fluctuations in
the range from 10−3 –10 Pa.

One can also describe the strength of the sound wave
in terms of the energy that it carries. Experimentally,
one can measure the power in the acoustic wave, or the
amount of energy carried by the wave per unit time.
Rather than trying to measure the power at every point
in space, it is usual to measure the power only at the
location of the detector. So, a more convenient mea-
surement is the power density, also referred to as the
acoustic intensity I . In order to make a definition which
does not depend on the geometry of the detector, one
considers the power density only over an infinitesimal
area of size dA

I = dP

dA
, (6.2)

where dP is the portion of the acoustic power that
interacts with the area dA of the detector oriented
perpendicular to the direction of the oncoming acous-
tic wave. The units of acoustic intensity are watts per
square meter (W/m2).

The human ear can generally perceive sound pres-
sures over the range from about 20 μPa up to about
200 Pa (a very large dynamic range). Because the range
of typical acoustic pressures is so large, it is convenient
to work with a relative measurement scale rather than an
absolute measurement scale. These scales are expressed
using logarithms to compress the dynamic range. In
acoustics, the scale is defined so that every factor of ten
increase in the amount of energy carried by the wave is
represented as a change of 1 bel (named after Alexander
Graham Bell). However, the bel is often too large to be
useful. For this reason, one uses the decibel scale (1/10
of a bel). Therefore, one can write the sound intensity

Fig. 6.2 Apparatus for the demonstration of torsional
waves
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Physical Acoustics 6.1 Theoretical Overview 217

level (SIL) as the logarithm of two intensities:

SIL(dB) = 10 log

(
I

Iref

)
, (6.3)

where I is the intensity of the sound wave and Iref is
a reference intensity. (One should note that the bel, or
decibel, is not a unit in the typical sense; rather, it is
simply an indication of the relative sound level).

In order for scientists and engineers to commu-
nicate meaningfully, certain standard reference values
have been defined. For the intensity of a sound
wave in air, the reference intensity is defined to be
Iref = 10−12 W/m2.

In addition to measuring sound intensity levels, it is
also common to measure sound pressure levels (SPL).
The sound pressure level is defined as

SPL(dB) = 20 log

(
p

pref

)
, (6.4)

where p is the acoustic pressure and pref is a reference
pressure. (The factor of 20 comes from the fact that I
is proportional to p2.) For sound in air, the reference
pressure is defined as 20 μPa (2 × 10−5 Pa).

For sound in water, the reference is 1 μPa (histori-
cally other reference pressures, for example, 20 μPa and

0.1 Pa, have been defined). It is important to note that
sound pressure levels are meaningful only if the refer-
ence value is defined. It should also be noted that this
logarithmic method of defining the sound pressure level
makes it easy to compare two sound levels. It can be
shown that SPL2 −SPL1 = 20 log

( p2
p1

)
; hence, an SPL

difference depends only on the two pressures and not on
the choice of reference pressure used.

Since both optical and acoustic phenomena involve
wave propagation, it is illustrative to contrast them. Op-
tical waves propagate as transverse waves. Acoustic
waves in a fluid are longitudinal; those in a solid can
be transverse or longitudinal. Under some conditions,
waves may propagate along interfaces between media;
such waves are generally referred to as surface waves.
Sometimes acoustic surface waves correspond with an
optical analogue. However, since the acoustic wave-
length is much larger than the optical wavelength, the
phenomenon may be much more noticeable in physical
acoustics experiments. Many physical processes pro-
duce acoustic disturbances directly. For this reason, the
study of the acoustic disturbance often gives informa-
tion about a physical process. The type of acoustic wave
should be examined to determine whether an optical
model is appropriate.

6.1 Theoretical Overview

6.1.1 Basic Wave Concepts

Although the domino analogy is useful for convey-
ing the idea of how a disturbance can travel through
a medium, real waves in physical systems are generally
more complicated. Consider a spring or slinky that is
stretched along its length. By rapidly compressing the
end of the spring, one can send a pulse of energy down
the length of the spring. This pulse would essentially be
a longitudinal wave pulse traveling down the length of
the spring. As the pulse traveled down the length, the
material of the spring would compress or bunch up in
the region of the pulse and stretch out on either side of
it. The compressed regions are known as condensations
and the stretched regions are known as rarefactions.

It is this compression that one could actually wit-
ness traveling down the length of the spring. No part of
the spring itself would move very far (just as no domino
moved very far), but the disturbance would travel down
the entire length of the spring. One could also repeat-
edly drive the end of the spring back and forth (along
its length). This would cause several pulses (each creat-

ing compressions with stretched regions around them)
to propagate along the length of the spring, with the mo-
tion of the spring material being along the direction of
the propagating disturbance. This would be a multipulse
longitudinal wave.

Now, let us consider an example of a transverse
wave, with particle motion perpendicular to the direc-
tion of propagation. Probably the simplest example is
a string with one end fastened to a wall and the op-
posite end driven at right angles to the direction along
which the string lies. This drive sends pulses down the
length of the string. The motion of the particles in the
string is at right angles to the motion of the disturbance,
but the disturbance itself (whether one pulse or sev-
eral) travels down the length of the string. Thus, one
sees a transverse wave traveling down the length of the
string.

Any such periodic pulsing of disturbances (whether
longitudinal or transverse) can be represented mathe-
matically as a combination of sine and/or cosine waves
through a process known as Fourier decomposition.
Thus, without loss of generality, one can illustrate ad-
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Fig. 6.3 One cycle of a sinusoidal wave traveling to the
right

ditional wave concepts by considering a wave whose
shape is described mathematically by a sine wave.

Figure 6.3 shows one full cycle of a sinusoidal wave
which is moving to the right (as a sine-shaped wave
would propagate down a string, for example). The initial
wave at t = 0 and beginning at x = 0 can be described
mathematically. Let the wave be traveling along the
x-axis direction and let the particle displacement be oc-
curring along the y-axis direction. In general, the profile
or shape of the wave is described mathematically as

y(x) = A sin(kx +ϕ) , (6.5)

where A represents the maximum displacement of the
string (i. e., the particle displacement) in the y-direction
and k represents a scaling factor, the wave number.
The argument of the sine function in (6.5) is known as
the phase. For each value of x, the function y(x) has
a unique value, which leads to a specific y value (some-
times called a point of constant phase). The term ϕ is
known as the phase shift because it causes a shifting
of the wave profile along the x-axis (forward for a posi-
tive phase shift and backward for a negative phase shift).
Such a sine function varies between +A and −A, and
one full cycle of the wave has a length of λ = 2π

k . The
length λ is known as the wavelength, and the maximum
displacement A is known as the wave amplitude.

As this disturbance shape moves toward the right,
its position moves some distance Δx = x f − xo during
some time interval Δt, which means the disturbance is
traveling with some velocity c = Δx

Δt . Thus, the distance
the wave has traveled shows this profile both before
and after it has traveled the distance Δx (Fig. 6.3). The
traveling wave can be expressed as a function of both
position (which determines its profile) and time (which
determines the distance it has traveled). The equation

for a traveling wave, then, is given by

y(x, t) = A sin[k(x − ct)+ϕ] , (6.6)

where t = 0 gives the shape of the wave at t = 0 (which
here is assumed constant), and y(x, t) gives the shape
and position of the wave disturbance as it travels. Again,
A represents the amplitude, k represents the wave num-
ber, and ϕ represents the phase shift. Equation (6.6) is
applicable for all types of waves (longitudinal, trans-
verse, etc.) traveling in any type of medium (a spring,
a string, a fluid, a solid, etc.).

Thus far, we have introduced several important ba-
sic wave concepts including wave profile, phase, phase
shift, amplitude, wavelength, wave number, and wave
velocity. There is one additional basic concept of great
importance, the wave frequency. The frequency is de-
fined as the rate at which (the number of times per
second) a point of constant phase passes a point in
space. The most obvious points of constant phase to
consider are the maximum value (crest) or the mini-
mum value (trough) of the wave. One can think of the
concept of frequency less rigorously as the number of
pulses generated per second by the source causing the
wave. The velocity of the wave is the product of the
wavelength and the frequency.

One can note that, rather than consisting of just one
or a few pulses, (6.6) represents a continually varying
wave propagating down some medium. Such waves are
known as continuous waves. There is also a type of
wave that is a bit between a single pulse and an in-
finitely continuous wave. A wave that consists of a finite
number of cycles is known as a wave packet or a tone
burst. When dealing with a tone burst, the concepts of
phase velocity and group velocity are much more ev-
ident. Generally speaking, the center of the tone burst
travels at the phase velocity – the ends travel close to
the group velocity.

6.1.2 Properties of Waves

All waves can exhibit the following phenomena: re-
flection, refraction, interference and diffraction. (Trans-
verse waves can also exhibit a phenomenon known
as polarization, which allows oscillation in only one
plane.)

Reflection
The easiest way to understand reflection is to consider
the simple model of a transverse wave pulse traveling
down a taut string that is affixed at the opposite end (as
seen in Fig. 6.4. (A pulse is described here for purposes
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Wave velocity

The wave is inverted

Wave velocity

The wall exerts a downward force
in reaction to the wave

F

Fig. 6.4 Reflection of a wave from a fixed boundary

of clarity, but the results described apply to continu-
ous waves as well.) As the pulse reaches the end of the
string, the particles start to move upward, but they can-
not because the string is fastened to the pole. (This is
known as a fixed or rigid boundary.) The pole exerts
a force on the particles in the string, which causes the
pulse to rebound and travel in the opposite direction.
Since the force of the pole on the string in the y-
direction must be downward (to counteract the upward
motion of the particles), there is a 180◦ phase shift in the
wave. This is seen in the figure where the reflected pulse
has flipped upside down relative to the incident pulse.

Figure 6.5 shows a different type of boundary from
which a wave (or pulse) can reflect; in this case the
end of the string is on a massless ring that can slide
freely up and down the pole. (This situation is known as
a free boundary.) As the wave reaches the ring, it drives

Wave velocity

Wave velocity

The wave reflects
from a free boundary

Fig. 6.5 Reflection of a wave from a free boundary

the ring upwards. As the ring moves back down, a re-
flected wave, which travels in a direction opposite to
that of the incoming wave, is also generated. However,
there is no 180◦ phase shift upon reflection from a free
boundary.

Acoustic Impedance
Another important wave concept is that of wave
impedance, which is usually denoted by the variable Z.
When the reflection of the wave is not total, part of the
energy in the wave can be reflected and part transmit-
ted. For this reason, it is necessary to consider acoustic
waves at an interface between two media and to be able
to calculate how much of the energy is reflected and how
much is transmitted. The definition of media impedance
facilitates this. For acoustic waves, the impedance Z is
defined as the ratio of sound pressure to particle veloc-
ity. The units for impedance are the Rayl, so named in
honor of Lord Rayleigh. 1 Rayl = 1 Pa s/m.

Often one speaks of the characteristic impedance of
a medium (a fluid or solid); in this case one is referring
to the medium in the open space condition where there
are no obstructions to the wave which would cause the
wave to reflect or scatter. The characteristic impedance
of a material is usually denoted by Z0, and it can be
determined by the product of the mean density of the
medium ρ with the speed of sound in the medium. In
air, the characteristic impedance near room temperature
is about, 410 Rayl.

The acoustic impedance concept is particularly use-
ful. Consider a sound wave that passes from an initial
medium with one impedance into a second medium
with a different impedance. The efficiency of the en-
ergy transfer from one medium into the next is given by
the ratio of the two impedances. If the impedances (ρc)
are identical, their ratio will be 1; and all of the acoustic
energy will pass from the first medium into the second
across the interface between them. If the impedances of
the two media are different, some of the energy will be
reflected back into the initial medium when the sound
field interacts with the interface between the two me-
dia. Thus the impedance enables one to characterize
the acoustic transmission and reflection at the bound-
ary of the two materials. The difference in Z, which
leads to some of the energy being reflected back into
the initial medium, is often referred to as the impedance
mismatch. When the (usual) acoustic boundary condi-
tions apply and require that the particle velocity and
pressure be continuous across the interface between the
two media, one can calculate the percentage of the en-
ergy that is reflected back into the medium. This is given
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in fractional form by the reflection coefficient given by

R =
(

Z2 − Z1

Z2 + Z1

)2

, (6.7)

where Z1 and Z2 are the impedances of the two media.
Since both values of Z must be positive, R must be less
than one. The fraction of the energy transmitted into the
second medium is given by T = 1− R because 100% of
the energy must be divided between T and R.

Refraction
Refraction is a change of the direction of wave propaga-
tion as the wave passes from one medium into another
across an interface. Bending occurs when the wave
speed is different in the two media. If there is an angle
between the normal to the plane of the boundary and the
incident wave, there is a brief time interval when part of
the wave is in the original medium (traveling at one ve-
locity) and part of the wave is in the second medium
(traveling at a different velocity). This causes the bend-
ing of the waves as they pass from the first medium to
the second. (There is no bending at normal incidence.)

Reflection and refraction can occur simultaneously
when a wave impinges on a boundary between two
media with different wave propagation speeds. Some
of the energy of the wave is reflected back into the
original medium, and some of the energy is trans-
mitted and refracted into the second medium. This
means that a wave incident on a boundary can gen-
erate two waves: a reflected wave and a transmitted
wave whose direction of propagation is determined by
Snell’s law.

a) b)Wave velocity

Waves are here but
transverse particle motion
is suppressed

Waves pass through each other
and continue propagating

Wave velocity

Wave velocity

Wave velocity

Destructive
interference

Wave velocity Wave velocity

Wave velocity

Wave velocity

Addition of
wave amplitudes

Constructive
interference

Waves pass through each other
and continue propagating

Fig. 6.6a,b Two waves passing through each other exhibiting (a) destructive and (b) constructive interference

All waves obey Snell’s law. For optical waves the
proper form of Snell’s law is:

n1 sin θ1 = n2 sin θ2 , (6.8)

where n1 and n2 are the refractive indices and θ1 and
θ2 are propagation directions. For acoustic waves the
proper form of Snell’s law is

sin θ1

v1
= sin θ2

v2
, (6.9)

where v1 is the wave velocity in medium 1 and v2 is the
wave velocity in medium 2. These two forms are very
similar since the refractive index is n = c/Cm, where
c is the velocity of light in a vacuum and Cm is the
velocity of light in the medium under consideration.

Interference
Spatial Interference. Interference is a phenomenon
that occurs when two (or more) waves add together.
Consider two identical transverse waves traveling to
the right (one after the other) down a string towards
a boundary at the end. When the first wave encoun-
ters the boundary, it reflects and travels in the leftward
direction. When it encounters the second, rightward
moving wave the two waves add together linearly (in
accordance with the principle of superposition). The
displacement amplitude at the point in space where two
waves combine is either greater than or less than the
displacement amplitude of each wave. If the resultant
wave has an amplitude that is smaller than that of ei-
ther of the original two waves, the two waves are said
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to have destructively interfered with one another. If the
combined wave has an amplitude that is greater than ei-
ther of its two constituent waves, then the two waves are
said to have constructively interfered with each other.
The maximum possible displacement of the combina-
tion is the sum of the maximum possible displacements
of the two waves (complete constructive interference);
the minimum possible displacement is zero (complete
destructive interference for waves of equal amplitude).
It is important to note that the waves interfere only as
they pass through one another. Figure 6.6 shows the two
special cases of complete destructive and complete con-
structive interference (for clarity only a portion of the
wave is drawn).

If a periodic wave is sent down the string and meets
a returning periodic wave traveling in the opposite di-
rection, the two waves interfere. This results in wave
superposition, i. e., the resulting amplitude at any point
and time is the sum of the amplitudes of the two waves.
If the returning wave is inverted (due to a fixed bound-
ary reflection) and if the length of the string is an
integral multiple of the half-wavelength corresponding
to the drive frequency, conditions for resonance are sat-

a)
A

N

b)

A
N

Wavelength

A
N

c)

A
N

N

N

N

Wavelength

A
N

A
N

Fig. 6.7a–c Standing waves in a string with nodes and
antinodes indicated. (a) The fundamental; (b) the second
harmonic; (c) the third harmonic

isfied. This resonance produces a standing wave. An
example of a standing wave is shown in Fig. 6.7. The
points of maximum displacement are known as the
standing-wave antinodes. The points of zero displace-
ment are known as the standing-wave nodes.

Resonance Behavior. Every vibrating system has some
characteristic frequency that allows the vibration ampli-
tude to reach a maximum. This characteristic frequency
is determined by the physical parameters (such as the
geometry) of the system. The frequency that causes
maximum amplitude of vibration is known as the res-
onant frequency, and a system driven at its resonant
frequency is said to be in resonance. Standing waves
are simply one type of resonance behavior.

Longitudinal acoustic waves can also exhibit res-
onance behavior. When the distance between a sound
emitter and a reflector is an integer number of half
wavelengths, the waves interfere and produce stand-
ing waves. This interference can be observed optically,
acousticly or electronically. By observing a large num-
ber of standing waves one can obtain an accurate value
of the wavelength, and hence an accurate value of the
wave velocity.

One of the simplest techniques for observing acous-
tic resonances in water, or any other transparent liquid,
is to illuminate the resonance chamber, then to focus
a microscope on it. The microscope field of view im-
ages the nodal lines that are spaced half an acoustic
wavelength apart. A screw that moves the microscope
perpendicular to the lines allows one to make very ac-
curate wavelength measurements, and hence accurate
sound velocity measurements.

Temporal Interference. So far we have considered the
interference of two waves that are combining in space
(this is referred to as spatial interference). It is also
possible for two waves to interfere because of a dif-
ference in frequency (which is referred to as temporal
interference). One interesting example of this is the phe-
nomenon of wave beating.

Consider two sinusoidal acoustic waves with
slightly different frequencies that arrive at the same
point in space. Without loss of generality, we can as-
sume that these two waves have the same amplitude.
The superposition principle informs us that the resultant
pressure caused by the two waves is the sum of the pres-
sure caused by each wave individually. Thus, we have
for the total pressure

pT(t) = A [cos (ω1t)+ cos (ω2t)] . (6.10)
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By making use of a standard trigonometric identity, this
can be rewritten as

pT(t) = 2A cos

(
(ω1 −ω2)

2
t

)
cos

(
(ω1 +ω2)

2
t

)
.

(6.11)

Since the difference in frequencies is small, the two
waves can be in phase, causing constructive interference
and reinforcing one another. Over some period of time,
the frequency difference causes the two waves to go
out of phase, causing destructive interference (when ω1t
eventually leads ω2t by 180◦). Eventually, the waves are
again in phase and, they constructively interfere again.
The amplitude of the combination will rise and fall in
a periodic fashion. This phenomenon is known as the
beating of the two waves. This beating phenomenon can
be described as a separate wave with an amplitude that
is slowly varying according to

p(t) = A0(t) cos(ωavgt) (6.12)

where

A0(t) = 2A cos

(
ω1 −ω2

2
t

)
(6.13)

and

ωavg = (ω1 +ω2)

2
. (6.14)

The cosine in the expression for A0(t) varies between
positive and negative 1, giving the largest amplitude in
each case. The period of oscillation of this amplitude
variation is given by

Tb = 2π

ω1 −ω2
= 2π

ωb
= 1

fb
. (6.15)

The frequency fb of the amplitude variation is known as
the beat frequency. Figure 6.8 shows the superposition
of two waves that have two frequencies that are differ-
ent but close together. The beat frequency corresponds
to the difference between the two frequencies that are
beating.

The phenomenon of beating is often exploited by
musicians in tuning their instruments. By using a refer-
ence (such as a 440 Hz tuning fork that corresponds to
the A above middle C) one can check the tuning of the
instrument. If the A above middle C on the instrument
is out of tune by 2 Hz, the sounds from the tuning fork
and the note generate a 2 Hz beating sound when they
are played together. The instrument is then tuned until
the beating sound vanishes. Then the frequency of the
instrument is the same as that of the tuning fork. Once
the A is in tune, the other notes can be tuned relative to

f1 = 100 Hz

Beat frequency:  f2 –  f1 = 10 Hz

f2 = 110 Hz

f2 –  f1

Beat period

Fig. 6.8 The beating of two waves with slightly different
frequencies

the A by counting the beats per unit time when different
notes are played in various combinations.

Multi-frequency Sound
When sound consists of many frequencies (not ne-
cessarily all close together), one needs a means of
characterizing the sound level. One may use a weighted
average of the sound over all the frequencies present,
or one may use information about how much energy is
distributed over a particular range of frequencies. A se-
lected range of frequencies is known as a frequency
band. By means of filters (either acoustic or electri-
cal, depending on the application) one can isolate the
various frequency bands across the entire frequency
spectrum. One can then talk of the acoustic pressure due
to a particular frequency band. The band pressure level
(PL) is given by

PLband = 20 log10

(
pband

pref

)
(6.16)

where pband is the room-mean-square (rms) average
pressure of the sound in the frequency band range and
pref is the standard reference for sound in air, 20 μPa.
The average of the pressures of the frequency bands
over the complete spectrum is the average acoustic
signal. However, the presence of multiple frequencies
complicates the situation: one does not simply add the
frequency band pressures or the band pressure levels.
Instead, it is the p2 values which must be summed

p2
rms =

∑
p2

band (6.17)
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or

SPL = 10 log10

(
p2

rms

p2
ref

)
= 10 log10

∑ (
pband

pref

)2

(6.18)

or, simplifying further

SPL = 10 log10

∑
(10)(PLband/10) . (6.19)

The octave is a common choice for the width of a fre-
quency band. With a one-octave filter, only frequencies
up to twice the lowest frequency of the filter are allowed
to pass. One should also note that, when an octave band
filter is labeled with its center frequency, this is deter-
mined by the geometric mean (not the arithmetic mean),
i. e.,

fcenter = √
flow fhigh =

√
2 f 2

low = √
2 flow . (6.20)

Coherent Signals
Two signals are coherent if there is a fixed relative
phase relation between them. Two loudspeakers driven
by the same source would be coherent. However, two
loudspeakers being driven by two compact-disc (CD)
players (even if each player was playing a copy of the
same CD) would not be coherent because there is no
connection causing a constant phase relationship. For
two incoherent sources, the total pressure is

p2
tot = (

p1(rms) + p2(rms)
)2 = p2

1(rms) + p2
2(rms)

(6.21)

(where the 2p1(rms) p2(rms) term has averaged out to
zero). For coherent sources, however, the fixed phase
relationship allows for the possibility of destructive or
constructive interference. Therefore, the signal can vary
in amplitude between (p1(rms) + p2(rms))2 and (p1(rms) −
p2(rms))2.

Diffraction
In optics it is usual to begin a discussion of diffraction
by pointing out grating effects. In acoustics one sel-
dom encounters grating effects. Instead, one encounters
changes in wave direction of propagation resulting from
diffraction. Thus, in acoustics it is necessary to begin on
a more fundamental level.

The phenomenon of diffraction is the bending of
a wave around an edge. The amount of bending that
occurs depends on the relative size of the wavelength
compared to the size of the edge (or aperture) with

which it interacts. When considering refraction or re-
flection it is often convenient to model the waves by
drawing a single ray in the direction of the wave’s prop-
agation. However, the ray approach does not provide
a means to model the bending caused by diffraction.
The bending of a wave by diffraction is the result of
wave interference. The more accurate approach, then, is
to determine the magnitude of each wave that is con-
tributing to the diffraction and to determine how it is
interfering with other waves to cause the diffraction
effect observed.

It is useful to note that diffraction effects can de-
pend on the shape of the wavefronts that encounter the
edge around which the diffraction is occurring. Near the
source the waves can have a very strong curvature rela-
tive to the wavelength. Far enough from the source the
curvature diminishes significantly (creating essentially
plane waves). Fresnel diffraction occurs when curved
wavefronts interact. Fraunhofer diffraction occurs when
planar wavefronts interact. In acoustics these two re-
gions are known as the near field (the Fresnel zone)
and the far field (the Fraunhofer zone), respectively. In
optics these two zones are distinguished by regions in
which two different integral approximations are valid.

6.1.3 Wave Propagation in Fluids

The propagation of an acoustic wave is described mathe-
matically by the acoustic wave equation. One can use the
approach of continuum mechanics to derive equations
appropriate to physical acoustics [6.3]. In the continuum
approach one postulates fields of density, stress, veloc-
ity, etc., all of which must satisfy basic conservation
laws. In addition, there are constitutive relations which
characterize the medium. For illustration, acoustic prop-
agation through a compressible fluid medium is consid-
ered first. As the acoustic disturbance passes through
a small area of the medium, the density of the medium
at that location fluctuates. As the crest of the acoustic
pressure wave passes through the region, the density in
that region increases; this compression is known as the
acoustic condensation. Conversely, when the trough of
the acoustic wave passes through the region, the density
of the medium at that location decreases; this expansion
is known as the acoustic rarefaction.

In a gas, the constitutive relationship needed to
characterize the pressure fluctuations is the ideal gas
equation of state, PV = n RT , where P is the pressure
of the gas, V is the volume of the gas, n is the number
of moles of the gas, R is the universal gas constant (R =
8.3145 J/mol K), and T is the temperature of the gas. In
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a given, small volume of the gas, there is a variation of
the density ρ from its equilibrium value ρ0 caused by
the change in pressure ΔP = P − P0 as the disturbance
passes through that volume. (Here P is the pressure at
any instant in time and P0 is the equilibrium pressure.)

In many situations, there are further constraints on
the system which simplify the constitutive relationship.
A gas may act as a heat reservoir. If the processes oc-
cur on a time scale that allows heat to be exchanged,
the gas is maintained at a constant temperature. In this
case, the constitutive relationship can be simplified and
expressed as P0V0 = PV = a constant. Since the num-
ber of gas molecules (and hence the mass) is constant,
we can express this as the isothermal condition

P

P0
= ρ

ρ0
, (6.22)

which relates the instantaneous pressure to the equilib-
rium pressure.

Most acoustic processes occur with no exchange
of heat energy between adjacent volumes of the gas.
Such processes are known as adiabatic or isentropic pro-
cesses. Under such conditions, the constitutive relation
is modified according to the adiabatic condition. For the
adiabatic compression of an ideal gas, it has been found
that the relationship

PV γ = P0V γ

0 (6.23)

holds, where γ is the ratio of the specific heat of the
gas at constant pressure to the specific heat at constant
volume. This leads to an adiabatic constraint for the
acoustic process given by

P

P0
=

(
ρ

ρ0

)γ

. (6.24)

When dealing with a real gas, one can make use of
a Taylor expansion of the pressure variations caused by
the fluctuations in density

P = P0 +
[

∂P

∂ρ

]
ρ0

(Δρ)

+ 1

2

[
∂2 P

∂ρ2

]
ρ0

(Δρ)2 + . . . , (6.25)

where

Δρ = (ρ −ρ0) . (6.26)

When the fluctuations in density are small, only the
first-order terms in Δρ are nonnegligible. In this case,
one can rearrange the above equation as

ΔP = P − P0 =
[

∂p

∂ρ

]
ρ0

Δρ = B
Δρ

ρ0
, (6.27)

where B = ρ0
[ ∂p

∂ρ

]
ρ0

is the adiabatic bulk modulus of
the gas. This equation describes the relationship be-
tween the pressure of the gas and its density during
an expansion or contraction. (When the fluctuations are
not small one has finite-amplitude (or nonlinear) effects
which are considered later.)

Let us now consider the physical motion of a fluid
as the acoustic wave passes through it. We begin with an
infinitesimal volume element dV that is fixed in space,
and we consider the motion of the particles as they pass
through this region. Since mass is conserved, the net
flux of mass entering or leaving this fixed volume must
correspond to a change in the density of the fluid con-
tained within that volume. This is expressed through the
continuity equation,

∂ρ

∂t
= −∇ · (ρu) . (6.28)

The rate of mass change in the region is

∂ρ

∂t
dV , (6.29)

and the net influx of mass into this region is given by

−∇ · (ρu) dV . (6.30)

Consider a volume element of fluid as it moves with
the fluid. This dV of fluid contains some infinitesimal
amount of mass, dm. The net force acting on this small
mass of fluid is given by Newton’s second law, dF =
a dm. It can be shown that Newton’s second law leads
to a relationship between the particle velocity and the
acoustic pressure. This relationship, given by

ρ0
∂u
∂t

= −∇ p , (6.31)

is known as the linear Euler equation.
By combining our adiabatic pressure condition with

the continuity equation and the linear Euler equation,
one can derive the acoustic wave equation. This equa-
tion takes the form

∇2 p = 1

c2

∂2 p

∂t2
, (6.32)

where c is the speed of the sound wave which is given
by

c = √
B/ρ0 . (6.33)
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6.1.4 Wave Propagation in Solids

Similarly, one can consider the transmission of an
acoustic wave through a solid medium. As an example,
consider the one-dimensional case for propagation of an
acoustic wave through a long bar of length L and cross-
sectional area S. In place of the pressure, we consider
the stress applied to the medium, which is given by the
relationship

σ = F/S (6.34)

where σ is the stress, F is the force applied along the
length (L) of the bar, and S is the cross sectional area of
the bar.

A stress applied to a material causes a resultant com-
pression or expansion of the material. This response is
the strain ζ . Strain is defined by the relationship,

ζ = ΔL/Lo , (6.35)

where ΔL is the change in length of the bar, and Lo is
the original length of the bar.

Let us consider the actual motion of particles as an
acoustic wave passes through some small length of the
bar dx. This acoustic wave causes both a stress and
a strain. The Hooke’s law approximation, which can be
used for most materials and vibration amplitudes, pro-
vides the constitutive relationship that relates the stress
applied to the material with the resulting strain. Hooke’s
law states that stress is proportional to strain, or

σ = −Yζ . (6.36)

If we consider the strain over our small length dx, we
can write this as

F

S
= −Y

(
dL

dx

)
(6.37)

or

F = −YS

(
dL

dx

)
. (6.38)

The net force acting on our segment dx is given by

dF = −
(

∂F

∂x

)
dx = YS

(
∂2 L

∂x2

)
dx . (6.39)

Again, we can make use of Newton’s second law,
F = ma, and express this force in terms of the mass and
acceleration of our segment. The mass of the segment
of length dx is simply the density times the volume, or
dm = ρdV = ρS dx. Thus,

dF =
(

∂2L

dt2

)
dm = ρS

(
∂2 L

dt2

)
dx , (6.40)

where ∂2 L
dt2 is the acceleration of the particles along the

length dx as the acoustic wave stresses it. Equating our
two expressions for the net force acting on our segment,
dF,

∂2L

∂x2
= 1

c2

(
∂2 L

∂t2

)
, (6.41)

where

c = √
Y/ρ (6.42)

is the speed at which the acoustic wave is traveling
through the bar. The form of the equation for the prop-
agation of an acoustic wave through a solid medium is
very similar to that for the propagation of an acoustic
wave through a fluid.

Both of the wave equations developed so far have
implicitly considered longitudinal compressions; for
example, the derivation of the wave equation for an
acoustic wave traveling down a thin bar assumed no
transverse components to the motion. However, if we
consider transverse motion, the resulting wave equation
is of the same form as that for longitudinal waves. For
longitudinal waves, the solution to the wave equation is
given by

L(x, t) = A cos(ωt ± kx +φ) (longitudinal) , (6.43)

where L(x, t) represents the amount of compression or
rarefaction at some position x and time t. For transverse
waves, the solution to the wave equation is given by

y(x, t) = A cos(ωt ± kx +φ) (transverse) , (6.44)

where y(x, t) represents the vibration orthogonal to the
direction of wave motion as a function of x and t. In
both cases, A is the vibration amplitude, k = 2π/λ is the
wave number, and φ is the phase shift (which depends
on the initial conditions of the system).

One can also consider an acoustic disturbance trav-
eling in two dimensions; let us first consider a thin,

dx
x

dy

y

Fig. 6.9 Definitions necessary for the representation of
a two-dimensional wave
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stretched membrane as seen in Fig. 6.9. Let σs be the
areal surface density (with units of kg/m2), and let Γ be
the tension per unit length. The transverse displacement
of an infinitesimally small area of the membrane dS will
now be a function of the spatial coordinates x and y
along the two dimensions and the time t. Let us define
the infinitesimal area dS = dx dy and the displacement
of dS as the acoustic disturbance passes through it to be
u(x, y, t). Newton’s second law can now be applied to
our areal element dS

[
(Γ ∂u/∂x)x+dx,y − (Γ ∂u/∂y)x,y

]
dy

+ [
(Γ ∂u/∂y)x,y+dy − (Γ ∂u/∂x)x,y

]
dx

= Γ

(
∂2u

∂x2
+ ∂2u

∂y2

)
dx dy (6.45)

and

Γ

(
∂2u

∂x2
+ ∂2u

∂y2

)
dx dy = σs

∂2u

∂t2
dx dy (6.46)

or

∇2u =
(

∂2u

∂x2
+ ∂2u

∂y2

)
= 1

c2

∂2u

∂t2
, (6.47)

where c = √
Γ /σs is the speed of the acoustic wave in

the membrane. Equation (6.47) now describes a two-
dimensional wave propagating along a membrane.

The extension of this idea to three dimensions
is fairly straightforward. As an acoustic wave passes
through a three-dimensional medium, it can cause pres-
sure fluctuations (leading to a volume change) in all
three dimensions. The displacement u is now a func-
tion four variables u = u(x, y, z, t). The volume change
of a cube is given by

ΔV = ΔxΔyΔz

(
1+ ∂u

∂x

)(
1+ ∂u

∂y

) (
1+ ∂u

∂z

)
,

(6.48)

ΔV ≈ ΔxΔyΔz

(
1+ ∂u

∂x
+ ∂u

∂y
+ ∂u

∂z

)
, (6.49)

where the higher-order cross terms are negligibly small
and have been dropped. This can be rewritten as

ΔV = ΔxΔyΔz (1+∇ ·u) . (6.50)

If the mass is held constant, and only the volume
changes, the density change is given by

ρ0 +ρ1 = ρ0

1+∇ ·u
. (6.51)

But since the denominator is very close to unity, we
may rewrite this using the binomial expansion. Solving
for ρ1 we have

ρ1 ≈ −ρ0∇ ·u . (6.52)

Again we can consider Newton’s second law; without
loss of generality, consider the force exerted along the
x-direction from the pressure due to the acoustic wave,
which is given by

Fx = [
p(x, t)− p(x +Δx, t)

]
ΔyΔz , (6.53)

where ΔyΔz is the infinitesimal area upon which the
pressure exerts a force. We can rewrite this as

Fx = −ΔyΔz

[(
∂p

∂x

)
Δx

]
, (6.54)

where the results for Fy and Fz are similar. Combining
these, we can express the total force vector as

F = −∇ pΔxΔyΔz . (6.55)

Using the fact that the mass can be expressed in terms
of the density, we can rewrite this as

−∇ p = ρ0
∂2u
∂t2

. (6.56)

As in the case with fluids, we need a constitutive re-
lationship to finalize the expression. For most situations
in solids, the adiabatic conditions apply and the pressure
fluctuation is a function of the density only. Making use
of a Taylor expansion, we have

p ≈ p(ρ0)+ (ρ −ρ0)
dp

dρ
(6.57)

but since p = p0 + p1, we can note that

p1 = ρ1
∂p

∂ρ
. (6.58)

Using (6.52), we can eliminate ρ1 from (6.58) to yield

p1 = −ρ0

(
dp

dρ

)
∇ ·u . (6.59)

We can eliminate the divergence of the displace-
ment vector from this equation by taking the diver-
gence of (6.56) and the second time derivative of
(6.59). This gives two expressions that both equal
−ρ0∂

2 (∇ ·u) /dt2 and thus are equal to each other.
From this we can determine the full form of our wave
equation

∂2 p1

∂t2
= c2∇2 p1 , (6.60)
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where c is again the wave speed and is given by

c2 = dp

dρ
. (6.61)

It should be noted that the above considerations were for
an isotropic solid. In a crystalline medium, other com-
plications can arise. These will be noted in a subsequent
section.

6.1.5 Attenuation

In a real physical system, there are mechanisms by
which energy is dissipated. In a gas, the dissipation
comes from thermal and viscous effects. In a solid, dis-
sipation comes from interactions with dislocations in
the solid (holes, displaced atoms, interstitial atoms of
other materials, etc.) and grain boundaries between ad-
jacent parts of the solid, In practice, loss of energy over
one acoustic cycle is negligible. However, as sound trav-
els over a longer path, one expects these energy losses
to cause a significant decrease in amplitude. In some sit-
uations, these dissipation effects must be accounted for
in the solution of the wave equation.

The solution of the wave equation can be written in
exponential form,

A = A0 ei(k′x−ωt) . (6.62)

If one wishes to account for dissipation effects, one
can assume that the wave number k′ has an imaginary
component, i. e.

k′ = k + iα , (6.63)

where k and α are both real and i = √−1. Using this
value of k′ for the new wave number we have

A = A0 ei(k′x−ωt) = A0 ei [(k+iα)x−ωt] . (6.64)

Simplifying, one has

A = A0 ei(kx−ωt)+i2αx = A0 ei(kx−ωt)−αx

= A0 e−αx ei(kx−ωt) , (6.65)

where α is known as the absorption coefficient. The
resulting equation is modulated by a decreasing expo-
nential function; i. e., an undriven acoustic wave passing
through a lossy medium is damped to zero amplitude
as x → ∞.

6.2 Applications of Physical Acoustics

There are several interesting phenomena associated
with the application of physical acoustics. The first is
the wave velocity itself. Table 6.1 shows the wave veloc-
ity of sound in various fluids (both gases and liquids).
Table 6.2 shows the wave velocity of sound in vari-
ous solids (both metals and nonmetals). The velocity
increases as one goes from gases to liquids to solids.
The velocity variation from gases to liquids comes from
the fact that gas molecules must travel farther before
striking another gas molecule. In a liquid, molecules are
closer together, which means that sound travels faster.

Table 6.1 Typical values of the sound velocity in fluids (25 ◦C)

Gas Velocity (m/s) Liquid Velocity (m/s)

Air 331 Carbon tetrachloride (CCl4) 929

Carbon dioxide (CO2) 259 Ethanol (C2H6O) 1207

Hydrogen (H2) 1284 Ethylene glycol (C2H6O2) 1658

Methane (CH4) 430 Glycerol (C3H8O3) 1904

Oxygen (O2) 316 Mercury (Hg) 1450

Sulfur dioxide (SO2) 213 Water (distilled) 1498

Helium (H2) 1016 Water (sea) 1531

The change from liquids to solids is associated with
increase of binding strength as one goes from liquid
to solid. The rigidity of a solid leads to higher sound
velocity than is found in liquids.

6.2.1 Crystalline Elastic Constants

Another application of physical acoustics involves the
measurement of the crystalline elastic constants in a lat-
tice. In Sect. 6.1.2, we considered the propagation of an
acoustic field along a one-dimensional solid (in which
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Table 6.2 Typical values of the sound velocity in solids (25 ◦C)

Metals Longitudinal velocity (m/s) Shear (transverse) velocity (m/s)

Aluminum (rolled) 6420 3040

Beryllium 12 890 8880

Brass (0.70 Cu, 0.30 Zn) 4700 2110

Copper (rolled) 5010 2270

Iron 5960 3240

Tin (rolled) 3320 1670

Zinc (rolled) 4210 2440

Lead (rolled) 1960 610

Nonmetals Longitudinal velocity (m/s) Shear (transverse) velocity (m/s)

Fused silica 5968 3764

Glass (Pyrex) 5640 3280

Lucite 2680 1100

Rubber (gum) 1550 –

Nylon 2620 1070

the internal structure of the solid played no role in the
propagation of the wave). Real solids exist in three di-
mensions, and the acoustic field propagation depends
on the internal structure of the material. The nature
of the forces between the atoms (or molecules) that
make up the lattice cause the speed of sound to be dif-
ferent along different directions of propagation (since
the elastic force constants are different along the dif-
ferent directions). The measurement of crystal elastic
constants depends on the ability to make an accurate de-
termination of the wave velocity in different directions
in a crystalline lattice. This can be done by cutting (or
lapping) crystals in such a manner that parallel faces are
in the directions to be measured.

For an isotropic solid one can determine the com-
pressional modulus and the shear modulus from a single
sample since both compressional and shear waves can
be excited. For cubic crystals at least two orientations
are required since there are three elastic constants (and
still only two waves to be excited). For other crys-
talline symmetries a greater number of measurements
is required.

6.2.2 Resonant Ultrasound Spectroscopy
(RUS)

Recently a new technique for measuring crystalline
elastic constants, known as resonant ultrasound spec-
troscopy (RUS), has been developed [6.4]. Typically,
one uses a very small sample with a shape that has
known acoustic resonant modes (usually a small par-
allelepiped, though sometimes other geometries such as

cylinders are used). The sample is placed so that the
driving transducer makes a minimal contact with the
surface of the sample (the boundaries of the sample
must be pressure-free and (shearing) traction-free for
the technique to work). Figure 6.10 shows a photograph
of a small parallelepiped sample mounted in an RUS
apparatus.

After the sample is mounted, the transducer is swept
through a range of frequencies (usually from a few hertz
to a few kilohertz) and the response of the material is

Fig. 6.10 Sample mounted for an RUS measurement. Sam-
ple dimensions are 2.0 mm × 2.5 mm × 3.0 mm
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measured. Some resonances are caused by the geome-
try of the sample (just as a string of fixed length has
certain resonant frequencies determined by the length
of the string). In the RUS technique, some fairly sophis-
ticated software eliminates the geometrical resonances;
the remaining resonances are resonances of the inter-
nal lattice structure of the material. These resonances
are determined by the elastic constants. The RUS tech-
nique, then, is used to evaluate all elastic constants from
a single sample from the spectrum of resonant frequen-
cies produced by the various internal resonances.

Measurement of Attenuation
with the RUS Technique

The RUS technique is also useful for measuring the at-
tenuation coefficients of solid materials. The resonance
curves generated by the RUS experiment are plots of
the response amplitude of the solid as a function of in-
put frequency (for a constant input amplitude). Every
resonance curve has a parameter known as the Q of the
system. The Q value can be related to the maximum
amplitude 1/e value, which in turn can be related to the
attenuation coefficient. Thus, the resonance curves gen-
erated by the RUS experiment can be used to determine
the attenuation in the material at various frequencies.

6.2.3 Measurement Of Attenuation
(Classical Approach)

Measurement of attenuation at audible frequencies and
below is very difficult. Attenuation is usually meas-
ured at ultrasonic frequencies since the plane-wave
approximation can be satisfied. The traditional means
of measuring the acoustic attenuation requires the mea-
surement of the echo train of an acoustic tone burst as
it travels through the medium. Sound travels down the
length of the sample, reflects from the opposite bound-
ary and returns to its origin. During each round trip, it
travels a distance twice the length of the sample. The
transducer used to emit the sound now acts as a receiver
and measures the amplitude as it strikes the initial sur-
face. The sound then continues to reflect back and forth
through the sample. On each subsequent round trip, the
sound amplitude is diminished.

Measured amplitude values are then fit to an expo-
nential curve, and the value of the absorption coefficient
is determined from this fit. Actually, this experimental
arrangement measures the insertion loss of the system,
the losses associated with the transducer and the adhe-
sive used to bond the transducer to the sample as well
as the attenuation of sound in the sample. However,

the values of the insertion loss of the system and the
attenuation inside the sample are usually very close to
each other. If one needs the true attenuation in the sam-

a)

b)

c)

Fig. 6.11 (a) Fine rice on a plate; (b) as the plate is excited
acoustically the rice begins to migrate to the nodes; (c) the
Chladni pattern has formed
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ple, one can use various combinations of transducers to
account for the other losses in the system [6.5].

Losses in a sample can come from a number
of sources: viscosity, thermal conductivity, and mo-
lecular relaxation. Viscosity and thermal conductivity
are usually referred to as classical losses. They can
be calculated readily. Both are linearly dependent on
frequency. Relaxation is a frequency-dependent phe-
nomenon. The maximum value occurs when the sound
frequency is the same as the relaxation frequency, which
is determined by the characteristics of the medium.
Because of this complication, determination of the at-
tenuation to be expected can be difficult.

6.2.4 Acoustic Levitation

Acoustic levitation involves the use of acoustic vibra-
tions to move objects from one place to the other, or
to keep them fixed in space. Chladni produced an early
form of acoustic levitation to locate the nodal planes
in a vibrating plate. Chladni discovered that small par-
ticles on a plate were moved to the nodal planes by plate
vibrations. An example of Chladni figures is shown in
Fig. 6.11. Plate vibrations have caused powder to mi-
grate toward nodal planes, making them much more
obvious.

The use of radiation pressure to counterbalance
gravity (or buoyancy) has recently led to a number of
situations in which levitation is in evidence.

1. The force exerted on a small object by radiation
pressure can be used to counterbalance the pull of
gravity [6.6].

2. The radiation force exerted on a bubble in water
by a stationary ultrasonic wave has been used to
counteract the hydrostatic or buoyancy force on the
bubble. This balance of forces makes it possible
for the bubble to remain at the same point indefi-
nitely. Single-bubble sonoluminescence studies are
now possible [6.7].

3. Latex particles having a diameter of 270 μm or clus-
ters of frog eggs can be trapped in a potential well
generated by oppositely directed focused ultrasonic
beams. This makes it possible to move the trapped
objects at will. Such a system has been called acous-
tic tweezers by Wu [6.8].

6.2.5 Sonoluminescence

Sonoluminescence is the conversion of high-intensity
acoustic energy into light. Sonoluminescence was first

discovered in water in the early 1930s [6.9, 10]. How-
ever, interest in the phenomenon languished for several
decades.

In the late seventies, a new type of sonolumines-
cence was found to occur in solids [6.11, 12]. This
can occur when high-intensity Lamb waves are gener-
ated along a thin plate of ferroelectric material which
is driven at the frequency of mechanical resonance
in a partial vacuum (the phenomenon occurs at about
0.1 atm). The acoustic fields interact with dislocations
and defects in the solid which leads to the generation
of visible light in ferroelectric materials. Figure 6.12
shows a diagram of the experimental setup and a pho-
tograph of the light emitted during the excitation of
solid-state sonoluminescence.

In the early 1990s, sonoluminescence emissions
from the oscillations of a single bubble in water were
discovered [6.7]. With single-bubble sonoluminescence,
a single bubble is placed in a container of degassed water
(often injected by a syringe). Sound is used to push the
bubble to the center of the container and to set the bub-
ble into high-amplitude oscillation. The dynamic range

Lamb waves generated by the mechanical response
of the plate to the driving voltage at the electrodes

Amplifier

Electrode

Piezoelectric thin plate

Electrode

a)

b)

Fig. 6.12 (a) Block diagram of apparatus for solid-state
sonoluminescence and (b) photograph of light emitted
from a small, thin plate of LiNbO3
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for the bubble radius through an oscillation can be as
great as 50 μm to 5 μm through one oscillation [6.13–
15]. The light is emitted as the bubble goes through its
minimum radius. Typically, one requires high-amplitude
sound corresponding to a sound pressure level in excess
of 110 dB. The frequency of sound needed to drive the
bubble into sonoluminescence is in excess of 30 kHz,
which is just beyond the range of human hearing.

Another peculiar feature of the sonoluminescence
phenomenon is the regularity of the light emissions.
Rather than shining continuously, the light is emitted
as a series of extremely regular periodic flashes. This
was not realized in the initial sonoluminescence exper-
iments, because the rate at which the flashes appear
requires a frequency resolution available only in the best
detectors. The duration of the pulses is less than 50 ps.
The interval between pulses is roughly 35 μs. The time
between flashes varies by less than 40 ps.

The discovery of single-bubble sonoluminescence
has caused a resurgence of interest in the phenomenon.
The light emitted appears to be centered in the near-
ultraviolet and is apparently black body in nature
(unfortunately water absorbs much of the higher-
frequency light, so a complete characterization of the
spectrum is difficult to achieve). Adiabatic compression
of the bubble through its oscillation would suggest tem-
peratures of about 10 000 K (with pressures of about
10 000 atm). The temperatures corresponding to the ob-
served spectra are in excess of 70 000 K [6.13]. In fact,
they may even be much higher.

Since the measured spectrum suggests that the ac-
tual temperatures and pressures within the bubble may
be quite high, simple compression does not seem to
be an adequate model for the phenomenon. It is pos-
sible that the collapsing bubble induces a spherically
symmetric shockwave that is driven inward towards the
center of the bubble. These shocks could possibly drive
the temperatures and pressures in the interior of the bub-
ble high enough to generate the light. (Indeed, some
physicists have suggested that sonoluminescence might
enable the ignition of fusion reactions, though as of this
writing that remains speculation).

6.2.6 Thermoacoustic Engines
(Refrigerators and Prime Movers)

Another interesting application of physical acoustics
is that of thermoacoustics. Thermoacoustics involves
the conversion of acoustic energy into thermal energy
or the reverse process of converting thermal energy
into sound [6.16]. Figure 6.13 shows a photograph of

Fig. 6.13 A thermoacoustic engine

a thermoacoustic engine. To understand the processes
involved in thermoacoustics, let us consider a small
packet of gas in a tube which has a sound wave trav-
eling through it (thermoacoustic effects can occur with
either standing or progressive waves). As the compres-
sion of the wave passes through the region containing
the packet of gas, three effects occur:

1. The gas compresses adiabatically, its temperature
increases in accordance with Boyle’s law (due to
the compression), and the packet is displaced some
distance down the tube.

2. As the rarefaction phase of the wave passes through
the gas, this process reverses.

3. The wall of the tube acts as a heat reservoir. As
the packet of gas goes through the acoustic process,
it deposits heat at the wall during the compression
phase (the wall literally conducts the heat away from
the compressed packet of gas).

This process is happening down the entire length of the
tube; thus a temperature gradient is established down
the tube.

To create a useful thermoacoustic device, one must
increase the surface area of wall that the gas is in
contact with so that more heat is deposited down the
tube. This is accomplished by inserting a stack into the
tube. In the inside of the tube there are several equally
spaced plates which are also in contact with the exte-
rior walls of the tube. Each plate provides additional
surface area for the deposition of thermal energy and
increases the overall thermoacoustic effect. (The stack
must not impede the wave traveling down the tube, or
the thermoacoustic effect is minimized.) Modern stacks
use much more complicated geometries to improve the
efficiency of the thermoacoustic device (indeed the term
stack now is a misnomer, but the principle remains the
same). Figure 6.14 shows a photograph of a stack used
in a modern thermoacoustic engine. The stack shown in
Fig. 6.14 is made of a ceramic material.
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Fig. 6.14 A stack used in a thermoacoustic engine. Pores
allow the gas in the tube to move under the influence of the
acoustic wave while increasing the surface area for the gas
to deposit heat

A thermoacoustic device used in this way is a ther-
moacoustic refrigerator. The sound generated down the
tube (by a speaker or some other device) is literally
pumping heat energy from one end of the tube to the
other. Thus, one end of the tube gets hot and the other
cools down (the cool end is used for refrigeration).

The reverse of this thermoacoustic refrigeration pro-
cess can also occur. In this case, the tube ends are fitted
with heat exchangers (one exchanger is hot, one is cold).
The heat delivered to the tube by the heat exchang-
ers does work on the system and generates sound in
the tube. The frequency and amplitudes of the gener-
ated waves depend on the geometry of the tube and the
stacks. When a thermoacoustic engine is driven in this
way (converting heat into sound), it is known as a prime
mover.

Though much research to improve the efficiency of
thermoacoustic engines is ongoing, the currently ob-
tainable efficiencies are quite low compared to standard
refrigeration systems. Thermoacoustic engines, how-
ever, offer several advantages: they have no moving
parts to wear out, they are inexpensive to manufacture,
and they are highly reliable, which is useful if refriger-
ation is needed in inaccessible places.

One practical application for thermoacoustic en-
gines is often cited: the liquefaction of natural gas for
transport. This is accomplished by having two thermoa-
coustic engines, one working as a prime mover and the

other working as a refrigerator. A small portion of the
gas is ignited and burned to produce heat. The heat
is applied to the prime mover to generate sound. The
sound is directed into a second thermoacoustic engine
that acts as a refrigerator. The sound from the prime
mover pumps enough heat down the refrigerator to cool
the gas enough to liquefy it for storage. The topic of
thermoacoustics is discussed in greater detail in Chap. 7.

6.2.7 Acoustic Detection of Land Mines

Often, during wars and other armed conflicts, mine
fields are set up and later abandoned. Even today it
is not uncommon for mines originally planted during
World War II to be discovered still buried and active.
According to the humanitarian organization CARE, 70
people are killed each day by land mines, with the
vast majority being civilians. Since most antiperson-
nel mines manufactured today contain no metal parts,
electromagnetic-field-based metal detectors cannot lo-
cate them for removal. Acoustic detection of land mines
offers a potential solution for this problem.

The approach used in acoustic land-mine detec-
tion is conceptually simple but technically challenging.
Among the first efforts made at acoustic land-mine de-
tection were those of House and Pape [6.17]. They
sent sounds into the ground and examined the reflec-
tions from buried objects. Don and Rogers [6.18] and
Caulfield [6.19] improved the technique by including
a reference beam that provided information for com-
parison with the reflected signals. Unfortunately, this
technique yielded too many false positives to be prac-
tical because one could not distinguish between a mine
and some other buried object such as a rock or the root
of a tree.

Newer techniques involving the coupling of an
acoustic signal with a seismic vibration have been de-
veloped with much more success [6.20–24]. They make
use of remote sensing and analysis by computer. Re-
mote measurement of the acoustic field is done with
a laser Doppler vibrometer (LDV), which is a an opti-
cal device used to measure velocities and displacements
of vibrating bodies without physical contact. With this
technique, the ground is excited acousticly with lower
frequencies (usually on the order of a few hundred Hz).
The LDV is used to measure the vibration of the soil as
it responds to this driving force. If an object is buried
under the soil in the region of excitation, it alters the
resonance characteristics of the soil and introduces non-
linear effects. With appropriate digital signal processing
and analysis, one can develop a system capable of rec-
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ognizing different types of structures buried beneath the
soil. This reduces the number of false positives and
makes the system more efficient.

6.2.8 Medical Ultrasonography

For the general public, one of the most familiar ap-
plications of physical acoustics is that of medical
ultrasonography. Medical ultrasonography is a medical
diagnostic technique which can use sound information
to construct images for the visualization of the size,
structure and lesions of internal organs and other bod-
ily tissues. These images can be used for both diagnostic
and treatment purposes (for example enabling a surgeon
to visualize an area with a tumor during a biopsy). The
most familiar application of this technique is obstet-
ric ultrasonography, which uses the technique to image
and monitor the fetus during a pregnancy. An ultrasono-
graph of a fetus is shown in Fig. 6.15.

This technique relies on the fact that in different ma-
terials the speed of sound and acoustic impedance are
different. A collimated beam of high-frequency sound
is projected into the body of the person being examined.
The frequencies chosen will depend on the application.
For example, if the tissue is deeper within the body, the
sound must travel over a longer path and attenuation af-
fects can present difficulties. Using a lower ultrasonic
frequency reduces attenuation. Alternatively, if a higher
resolution is needed, a higher frequency is used. In
each position where the density of the tissue changes,
there is an acoustic impedance mismatch. Therefore, at
each interface between various types of tissues some of
the sound is reflected. By measuring the time between
echoes, one can determine the spatial position of the
various tissues.

If a single, stationary transducer is used; one gets
spatial information that lies along a straight line. Typi-
cally, the probe contains a phased array of transducers
that are used to generate image information from differ-
ent directions around the area of interest. The different
transducers in the probe send out acoustic pulses that
are reflected from the various tissues. As the acoustic
signals return, the transducers receive them and convert
the information into a digital, pictorial representation.
One must also match the impedances between the sur-
face of the probe and the body. The head of the probe
is usually soft rubber, and the contact between the
probe and the body is impedance-matched by a water-
based gel.

Fig. 6.15 Ultrasonograph of a fetus

To construct the image, each transducer (which
themselves are separated spatially somewhat) measures
the strength of the echo. This measurement indicates
how much sound has been lost due to attenuation
(different tissues have different attenuation values). Ad-
ditionally, each transducer measures the delay time
between echoes, which indicates the distance the sound
has traveled before encountering the interface causing
the echo (actually since the sound has made a round
trip during the echo the actual displacement between
the tissues is 1

2 of the total distance traveled). With this
information a two-dimensional image can be created.
In some versions of the technique, computers can be
used to generate a three-dimensional image from the
information as well.

A more esoteric form of ultrasonograpy, Doppler
ultrasonography, is also used. This technique requires
separate arrays of transducers, one for broadcasting
a continuous-wave acoustic signal and another for re-
ceiving it. By measuring a frequency shift caused by
the Doppler effect, the probe can detect structures mov-
ing towards or away from the probe. For example, as
a given volume of blood passes through the heart or
some other organ, its velocity and direction can be de-
termined and visualized. More-recent versions of this
technique make use of pulses rather than continuous
waves and can therefore use a single probe for both
broadcast and reception of the signal. This version of
the technique requires more-advanced analysis to de-
termine the frequency shift. This technique presents
advantages because the timing of the pulses and their
echoes can be measured to provide distance information
as well.
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6.3 Apparatus

Given the diverse nature of physical acoustics, any two
laboratories conducting physical acoustics experiments
might have considerably different types of equipment
and apparatus (for example, experiments dealing with
acoustic phenomena in water usually require tanks to
hold the water). As is the case in any physics labora-
tory, it is highly useful to have access to a functioning
machine shop and electronics shop for the design,
construction, and repair of equipment needed for the
physical acoustics experiment that is being conducted.
Additionally, a wide range of commercial equipment is
available for purchase and use in the lab setting.

6.3.1 Examples of Apparatus

Some typical equipment in an acoustic physics lab
might include some of the following:

• Loudspeakers;• Transducers (microphones/hydrophones);• Acoustic absorbers;• Function generators, for generating a variety of
acoustic signals including single-frequency sinus-
oids, swept-frequency sinusoids, pulses, tone bursts,
white or pink noise, etc.;• Electronics equipment such as multimeters, im-
pedance-matching networks, signal-gating equip-
ment, etc.;• Amplifiers (acoustic, broadband, Intermediate Fre-
quency (IF), lock-in);• Oscilloscopes. Today’s digital oscilloscopes (in-
cluding virtual oscilloscopes implemented on per-
sonal computers) can perform many functions
that previously required several different pieces
of equipment; for example, fast Fourier trans-
form (FFT) analysis previously required a separate
spectrum analyzer; waveform averaging previously
required a separate boxcar integrator, etc.);• Computers (both for control of apparatus and anal-
ysis of data).

For audible acoustic waves in air the frequency
range is typically 20–20 000 Hz. This corresponds to
a wavelength range of 16.5 m–16.5 mm. Since these
wavelengths often present difficulties in the laboratory,
and since the physical principles apply at all frequencies,
the laboratory apparatus is often adapted to a higher fre-
quency range. The propagating medium is often water
since a convenient ultrasonic range of 1–100 MHz gives

a convenient wavelength range of 0.014–1.4 mm. The
experimental arrangements to be described below are for
some specialized applications and cover this wavelength
range, or somewhat lower. The results, however, are use-
ful in the audio range as well.

6.3.2 Piezoelectricity and Transduction

In physical acoustics transducers play an important role.
A transducer is a device that can convert a mechani-
cal vibration into a current or vice versa. Transducers
can be used to generate sound or to detect sound.
Audible frequencies can be produced by loudspeakers
and received by microphones, which often are driven
electromagnetically. (For example, a magnet interact-
ing with a current-carrying coil experiences a magnetic
force that can accelerate it, or if the magnet is moved
it can induce a corresponding current in the coil.) The
magnet could be used to drive the cone of a loudspeaker
to convert a current into an audible tone (or speech, or
music, etc.). Similarly, one can use the fact that the ca-
pacitance between two parallel-plate capacitors varies
as a function of the separation distance between two
plates. A capacitor with one plate fixed and the other
allowed to vibrate in response to some form of mechan-
ical forcing (say the force caused by the pressure of an
acoustic wave) is a transducer. With a voltage across
the two plates, an electrical current is generated as the
plates move with respect to one another under the force
of the vibration of an acoustic wave impinging upon it.
These types of transducers are described in Chap. 24.

The most common type of transducers used in the
laboratory for higher-frequency work are piezoelectric-
element-based transducers. In order to understand how
these transducers work (and are used) we must first
examine the phenomenon of piezoelectricity.

Piezoelectricity is characterized by the both direct
piezoelectric effect, in which a mechanical stress ap-
plied to the material causes a potential difference across
the surface of the faces to which the stress is applied,
and the secondary piezoelectric effect, in which a poten-
tial difference applied across the faces of the material
causes a deformation (expansion or contraction). The
deformation caused by the direct piezoelectric effect is
on the order of nanometers, but leads to many uses in
acoustics such as the production and detection of sound,
microbalance applications (where very small masses are
measured by determining the change in the resonance
frequency of a piezoelectric crystal when it is loaded
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with the small mass), and frequency generation/control
for oscillators.

Piezoelectricity arises in a crystal when the crystal’s
unit cell lacks a center of symmetry. In a piezoelectric
crystal, the positive and negative charges are sepa-
rated by distance. This causes the formation of electric
dipoles, even though the crystal is electrically neutral
overall. The dipoles near one another tend to orient
themselves along the same direction. These small re-
gions of aligned dipoles are known as domains because
of the similarity to the magnetic analog. Usually, these
domains are oriented randomly, but can be aligned by
the application of a strong electric field in a process
known as poling (typically the sample is poled at a high
temperature and cooled while the electric field is main-
tained). Of the 32 different crystal classifications, 20
exhibit piezoelectric properties and 10 of those are po-
lar (i. e. spontaneously polarized). If the dipole can be
reversed by an applied external electric field, the mater-
ial is additionally known as a ferroelectric (in analogy
to ferromagnetism).

When a piezoelectric material undergoes a defor-
mation induced by an external mechanical stress, the
symmetry of the charge distribution in the domains is
disturbed. This gives rise to a potential difference across
the surfaces of the crystal. A 2 kN force (≈ 500 lbs) ap-
plied across a 1 cm cube of quartz can generate up to
12 500 V of potential difference.

Several crystals are known to exhibit piezoelectric
properties, including tourmaline, topaz, rochelle salt,
and quartz (which is most commonly used in acoustic
applications). In addition, some ceramic materials with
perovskite or tungsten bronze structures, including bar-
ium titanate (BaTiO3), lithium niobate (LiNbO3), PZT
[Pb(ZrTi)O3], Ba2NaNb5O5, and Pb2KNb5O15, also
exhibit piezoelectric properties. Historically, quartz was
the first piezoelectric material widely used for acous-
tics applications. Quartz has a very sharp frequency
response, and some unfavorable electrical properties
such as a very high electrical impedance which re-
quires impedance matching for the acoustic experiment.
Many of the ceramic materials such as PZT or lithium
niobate have a much broader frequency response and
a relatively low impedance which usually does not re-
quire impedance matching. For these reasons, the use
of quartz has largely been supplanted in the acoustics
lab by transducers fashioned from these other materials.
Although in some situations (if a very sharp frequency
response is desired), quartz is still the best choice.

In addition to these materials, some polymer
materials behave as electrets (materials possessing

a quasi-permanent electric dipole polarization). In most
piezoelectric crystals, the orientation of the polariza-
tion is limited by the symmetry of the crystal. However,
in an electret this is not the case. The electret material
polyvinylidene fluoride (PVDF) exhibits piezoelectric-
ity several times that of quartz. It can also be fashioned
more easily into larger shapes.

Since these materials can be used to convert a sinu-
soidal electrical current into a corresponding sinusoidal
mechanical vibration as well as convert a mechani-
cal vibration into a corresponding electrical current,
they provide a connection between the electrical sys-
tem and the acoustic system. In physical acoustics
their ability to produce a single frequency is especially
important. The transducers to be described here are
those which are usually used to study sound propaga-
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Fig. 6.16 Transducer housing
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tion in liquids or in solids. The frequencies used are
ultrasonic.

The first transducers were made from single crys-
tals. Single crystals of x-cut quartz were preferred for
longitudinal waves, and y-cut for transverse waves, their
thickness determined by the frequency desired. Single
crystals are still used for certain applications; however,
the high-impedance problems were solved by introduc-
tion of polarized ceramics containing barium titanate or
strontium titanate. These transducers have an electrical
impedance which matches the 50 Ω impedance found
on most electrical apparatus. Low-impedance transduc-
ers are currently commercially available.

Such transducers can be used to generate or receive
sound. When used as a receiver in liquids such trans-
ducers are called hydrophones. For the generation of
ultrasonic waves in liquids, one surface of the trans-
ducer material should be in contact with the liquid and
the other surface in contact with air (or other gas). With
this arrangement, most of the acoustic energy enters the
liquid. In the laboratory it is preferable to have one sur-
face at the ground potential and electrically drive the
other surface, which is insulated. Commercial trans-
ducers which accomplish these objectives are available.
They are designed for operation at a specific frequency.
A transducer housing is shown in Fig. 6.16. The trans-
ducer crystal and the (insulated) support ring can be
changed to accommodate the frequency desired. In the
figure a strip back electrode is shown. For generating
acoustic vibration over the entire surface, the back of the
transducer can be coated with an electrode. The width
which produces a Gaussian output in one dimension is

Fig. 6.17 Coaxial transducer

described in [6.25]. The use of a circular electrode that
can produce a Gaussian amplitude distribution in two
dimensions is described in [6.26].

For experiments with solids the transducer is of-
ten bonded directly to the solid without the need for
an external housing. For single-transducer pulse-echo
operation the opposite end of the sample must be flat
because it must reflect the sound. For two-transducer
operation one transducer is the acoustic transmitter, the
other the receiver.

With solids it is convenient to use coaxial trans-
ducers because both transducer surfaces must be
electrically accessible. The grounded surface in a coax-
ial transducer can be made to wrap around the edges so
it can be accessed from the top as well. An example is
shown in Fig. 6.17. The center conductor is the high-
voltage terminal. The outer conductor is grounded; it is
in electrical contact with the conductor that covers the
other side of the transducer.

6.3.3 Schlieren Imaging

Often it is useful to be able to see the existence of
an acoustic field. The Schlieren arrangement shown in
Fig. 6.18 facilitates the visualization of sound fields in
water. Light from a laser is brought to focus on a circu-
lar aperture by lens 1. The circular aperture is located
at a focus of lens 2, so that the light emerges parallel.
The water tank is located in this parallel light. Lens 3
forms a real image of the contents of the water tank on
the screen, which is a photographic negative for pho-
tographs. By using a wire or an ink spot on an optical
flat at the focus of lens 3, one produces conditions for
dark-field illumination. The image on the screen, then,
is an image of the ultrasonic wave propagating through
the water. The fact that the ultrasonic wave is propagat-
ing through the water means that the individual wave-
fronts are not seen. To see the individual wavefronts,
one must add a stroboscopic light source synchronized
with the ultrasonic wave. In this way the light can be on
at the frequency of the sound and produce a photograph
which shows the individual wavefronts.

On some occasions it may be useful to obtain color
images of the sound field; for example, one can show
an incident beam in one color and its reflection from
an interface in a second color for clarity. The resultant
photographs can be beautiful; however, to a certain ex-
tent their beauty is controlled by the operator. The merit
of color Schlieren photography may be more from its
aesthetic or pedagogical value, rather than its practical
application. This is the reason that color Schlieren pho-
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Fig. 6.18 Diagram of a Schlieren system

tographs are seldom encountered in a physical acoustic
laboratory. For completeness, however, it may be worth-
while to describe the process.

The apparatus used is analogous to that given in
Fig. 6.18. The difference is that a white-light source

Fig. 6.19 Spectra formed by the diffraction of light
through a sound field

a)

b)

c)

Fig. 6.20a–c Schlieren photographs showing reflection and diffrac-
tion of ultrasonic waves by a solid immersed in water
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Fig. 6.22 Block Diagram of apparatus for absolute amplitude measurements

Fig. 6.21 (a) Photograph of a goniometer system; (b) dia-
gram of a goniometer system �

is used in the place of the monochromatic light from
the laser. As the light diffracts, the diffraction pattern
formed at the focus of lens 3 is made up of com-
plete spectra (with each color of the spectra containing
a complete image of the acoustic field). A photograph
showing the spectra produced is shown in Fig. 6.19. If
the spectra are allowed to diverge beyond this point of
focus, they will combine into a white-light image of the
acoustic field. However, one can use a slit (rather than
using a wire or an ink spot at this focus to produce dark-
field illumination) to pass only the desired colors. The
position of the slit selects the color of the light pro-
ducing the image of the sound field. If one selects the
blue-colored incident beam from one of the spectra, and
the red-colored reflected beam from another spectrum
(blocking out all the other colors), a dual-colored image
results. Since each diffraction order contains enough
information to produce a complete sound field image,
the operator has control over its color. Spatial filtering,
then, becomes a means of controlling the color of the
various parts of the image. Three image examples are
given in Fig. 6.20. Figure 6.20a is reflection of a sound
beam from a surface. Figure 6.20b shows diffraction of
sound around a cylinder. Figure 6.20c shows backward
displacement at a periodic interface. The incident beam
is shown in a different color from that of the reflected
beam and the diffraction order.
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Fig. 6.23 Mounting system for room-temperature mea-
surement of absolute amplitudes of ultrasonic waves in
solids

6.3.4 Goniometer System

For studies of the propagation of an ultrasonic pulse
in water one can mount the ultrasonic transducers on
a goniometer such as that shown in Fig. 6.21. This is
a modification of the pulse-echo system. The advantage
of this system is that the arms of the goniometer allow
for the adjustments indicated in Fig. 6.21b. By use of
this goniometer it is possible to make detailed studies
of the reflection of ultrasonic waves from a variety of

water–solid interfaces. By immersing the goniometer in
other liquids, the type of liquid can also be changed.

6.3.5 Capacitive Receiver

In many experiments, one measures acoustic ampli-
tude relative to some reference amplitude, which is
usually determined by the parameters of the experi-
ment. However, in some studies it is necessary to make
a measurement of the absolute amplitude of acoustic
vibration. This is especially true of the measurement
of the nonlinearity of solids. For the measurement of
the absolute acoustic amplitude in a solid, a capac-
itive system can be used. If the end of the sample
is coated with a conductive material, it can act as
one face of a parallel-plate capacitor. A bias volt-
age is put across that capacitance, which enables it
to work as a capacitive microphone. As the acoustic
wave causes the end of the sample to vibrate, the ca-
pacitor produces an electrical signal. One can relate
the measured electrical amplitude to the acoustic am-
plitude because all quantities relating to them can be
determined.

The parallel-plate approximation, which is very well
satisfied for plate diameters much larger than the plate
separation, is the only approximation necessary. The
electrical apparatus necessary for absolute amplitude
measurements in solids is shown in the block dia-
gram of Fig. 6.22. A calibration signal is used in such
a manner that the same oscilloscope can be used for
the calibration and the measurements. The mounting
system for room-temperature measurements of a sam-
ple is shown in Fig. 6.23. Since stray capacitance
affects the impedance of the resistor, this impedance
must be measured at the frequencies used. The volt-
age drop in the resistor can be measured with either
the calibration signal or the signal from the capacitive
receiver. A comparison of the two completes the cali-
bration. With this system acoustic amplitudes as small
as 10−14 m (which is approximately the limit set by
thermal noise) have been measured in copper single
crystals [6.27].

6.4 Surface Acoustic Waves

It has been discovered that surface acoustic waves are
useful in industrial situations because they are relatively
slow compared with bulk waves or electromagnetic
waves. Many surface acoustic wave devices are made

by coating a solid with an interdigitated conducting
layer. In this case, the surface acoustic wave produces
the desired delay time and depends for its generation
on a fringing field (or the substrate may be piezoelec-
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Fig. 6.24a,b Sound waves at a liquid–solid interface

tric). The inverse process can be used to receive surface
acoustic waves and convert them into an electrical sig-
nal, which can then be amplified.

Another type of surface wave is possibly more
illustrative of the connection between surface acous-
tic waves and physical acoustics. This is the surface
acoustic wave generated when the trace velocity of an
incident wave is equal to the velocity of the surface
acoustic wave. This occurs when a longitudinal wave
is incident on a solid from a liquid. This is analogous
to the optical case of total internal reflection [6.28], but
new information comes from the acoustic investigation.

The interface between a liquid and a solid is shown
in Fig. 6.24, in which the various waves and their angles
are indicated. The directions in which the various waves
propagate at a liquid–solid interface can be calculated
from Snell’s law, which for this situation can be written

sin θi

v
= sin θr

v
= sin θL

vL
= sin θS

vS
, (6.66)

where the velocity of the longitudinal wave in the li-
quid, that in the solid, and the velocity of the shear wave
in the solid are, respectively, v, vL, and vS. The propa-
gation directions of the various waves are indicated in
Fig. 6.24.

Since much of the theory has been developed in
connection with geology, the theoretical development

of Ergin [6.29] can be used directly. Ergin has shown
that the energy reflected at an interface is proportional to
the square of the amplitude reflection coefficient, which
can be calculated directly [6.29]. The energy reflection
coefficient is given by

RE =
(

cos β − A cos α (1−B)

cos β + A cos α (1−B)

)2

, (6.67)

where

A = ρ1VL

ρV
and

B = 2 sin γ sin 2γ

(
cos γ − vS

vL
cos β

)
. (6.68)

The relationship among the angles α, β and γ can be
determined from Snell’s law as given in (6.66). The
book by Brekhovskikh [6.30] is also a good source of
information on this subject.

νL > νS > ν

Incident angle (deg)
0 90

0.1

a)
Energy ratio

0.5

αCL αCS

νL > ν > νS

Incident angle (deg)
0 90

0.1

b)
Energy ratio

0.5

α CL

Fig. 6.25a,b Behavior of energy reflected at a liquid–solid
interface
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Energy ratio

Incident angle (deg)
0 40

1.0

0.8

0.6

0.4

0.2

0
4 8 12 16 20 24 28 32 36

Water – Aluminium

Calculated
Experimental

Fig. 6.26 A 2 MHz ultrasonic wave reflected at a liquid–
solid interface

Typical plots of the energy reflection coefficient
as a function of incident angle are given in Fig. 6.25
in which the critical angles are indicated. Usually,
vL > vS > v, so the curve in Fig. 6.25a is observed. It
will be noticed immediately that there is a critical an-
gle for both the longitudinal and transverse waves in the
solid. In optics there is no longitudinal wave; therefore
the curve has only one critical angle.

If one uses a pulse-echo system to verify the be-
havior of an ultrasonic pulse at an interface between
a liquid and a solid, one gets results that can be graphed
as shown in Fig. 6.26. At an angle somewhat greater
than the critical angle for a transverse wave in the solid,
one finds a dip in the data. This dip is associated with
the generation of a surface wave. The surface wave is
excited when the projection of the wavelength of the in-
cident wave onto the interface matches the wavelength
of the surface wave. The effect of the surface wave can
be seen in the Schlieren photographs in Fig. 6.27.

Figure 6.27 shows the reflection at a water–
aluminum interface at an angle less than that for
excitation of a surface wave (a Rayleigh surface wave),
at the angle at which a surface wave is excited, and
an angle greater. When a surface wave is excited the
reflected beam contains two (or more) components:
the specular beam (reflected in a normal manner) and
a beam displaced down the interface. Since most of
the energy is contained in the displaced beam, the
minimum in the data shown in Fig. 6.24 is caused by
the excitation of the displaced beam by the surface
wave. This has been shown to be the case by dis-
placing the receiver to follow the displaced beam with
a goniometer system, as shown in Fig. 6.21. This mini-
mizes the dip in data shown in Fig. 6.24. Neubauer has

αi = 20

αi = α R

αi = 35

Interface

Interface

Interface

a)

b)

c)

Fig. 6.27a–c Schlieren photographs showing the behavior
of a 4 MHz ultrasonic beam reflected at a water–aluminium
interface

shown that the ultrasonic beam excited by the surface
wave is 180◦ out of phase with the specularly reflected
beam [6.31]. Destructive interference resulting from
phase cancelation causes these beams to be separated
by a null strip. Although a water–aluminum interface
has been used in these examples, the phenomenon oc-
curs at all liquid–solid interfaces. It is less noticeable
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Fig. 6.28 Schlieren photograph showing backward dis-
placement of a 6 MHz ultrasonic beam at a corrugated
water–brass interface

at higher ultrasonic frequencies since the wavelength is
smaller.

At a corrugated interface it is possible that the in-
cident beam couples to a negatively directed surface
wave so that the reflected beam is displaced in the
negative direction. This phenomenon was predicted for
optical waves by Tamir and Bertoni [6.32]. They deter-

Liquid
x

t

dSolid

2 w ei

Fig. 6.29 Diagram of incident beam coupling to a back-
ward-directed leaky wave to produce backward displace-
ment of the reflected beam

mined that the optimum angle for this to occur is given
by

sin θi = Vliq

(
1

fd
− 1

VR

)
(6.69)

where d is the period, f is the frequency, Vliq is the
wave propagation velocity in the liquid, and VR is the
propagation velocity of the leaky surface wave. Fig-
ure 6.28 is a Schlieren photograph which shows what
happens in this case [6.33]. Figure 6.29 is a diagram of
the phenomenon [6.33]. The incident beam couples to
a backward-directed surface wave to produce backward
displacement of the reflected beam.

6.5 Nonlinear Acoustics

There are several sources of nonlinearity whether the
propagating medium be a gas, liquid, or solid. They
are described in more detail in Chap. 8. Even in an
ideal medium in which one considers only interatomic
forces, there is still a source of nonlinear behavior since
compression requires a slightly different force from di-
latation. With Hooke’s law (strain is proportional to
stress) one assumes that they are equal. This is seldom
true. The subject of nonlinear acoustics has been devel-
oped to the point that it is now possible to go beyond
the linear approximation with many substances.

6.5.1 Nonlinearity of Fluids

If one assumes an ideal gas and keeps the first set of
nonlinear terms, Beyer has shown that the equation of
motion in one dimension becomes [6.34]

∂2ξ

∂t2
= c2

0(
1+ ∂ξ

∂a

)γ+1

∂2ξ

∂a2
. (6.70)

This form of the nondissipative wave equation in one
dimension in Lagrangian coordinates includes nonlin-
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ear terms. In this equation γ is the ratio of specific heats
and

c2
0 = γ p0

ρ0

1(
1+ ∂ξ

∂a

)γ−1
. (6.71)

One can also generalize this equation in a form which
applies to all fluids. By expanding the equation of state

p = p0

(
ρ
ρ0

)γ

in powers of the condensation s = ρ−ρ0
ρ0

,
one obtains

p = p0 + As + B

2! s2 + . . . and

c2 = c2
0

[
1+

(
B

A

)
s + . . .

]
. (6.72)

This makes it possible to obtain the nonlinear wave
equation in the form [6.24]

∂2ξ

∂t2
= c2

0(
1+ ∂ξ

∂a

)2+ B
A

∂2ξ

∂a2
. (6.73)

In this form one can recognize that the quantity 2+ B/A
for fluids plays the same role as γ +1 for ideal gases.
Values of B/A for fluids given in Table 6.3 indicate that
nonlinearity of fluids, even in the absence of bubbles of
air, cannot always be ignored. The nonlinearity of fluids
is discussed in greater detail in Chap. 8.

6.5.2 Nonlinearity of Solids

The propagation of a wave in a nonlinear solid is de-
scribed by first introducing third-order elastic constants.
When extending the stress–strain relationship (which
essentially is a force-based approach) it becomes dif-
ficult to keep a consistent approximation among the
various nonlinear terms. However, If one instead uses
an energy approach, a consistent approximation is auto-
matically maintained for all the terms of higher order.

Beginning with the elastic potential energy, one can
define both the second-order constants (those determin-
ing the wave velocity in the linear approximation) and
the third-order elastic constants simultaneously. The

Table 6.4 K2 and K3 for the principal directions in a cubic crystal

Direction K2 K3

[100] C11 C111

[110] C11+C12+2C44
2

C111+3C112+12C166
4

[111] C11+2C12+4C44
3

1
9 (C111 +6C112 +12C144 +24C166 +2C123 +16C456)

Table 6.3 Values of B/A

Substance T (◦C) B/A

Distilled water 0 4.2

20 5.0

40 5.4

60 5.7

80 6.1

100 6.1

Sea water (3.5%) 20 5.25

Methanol 20 9.6

Ethanol 0 10.4

20 10.5

40 10.6

N-propanol 20 10.7

N-butanol 20 10.7

Acetone 20 9.2

Beneze 20 9/0

Chlorobenzene 30 9.3

Liquid nitrogen b.p. 6.6

Benzyl alcohol 30 10.2

Diethylamine 30 10.3

Ethylene glycol 30 9.7

Ethyl formate 30 9.8

Heptane 30 10.0

Hexane 30 9.9

Methyl acetate 30 9.7

Mercury 30 7.8

Sodium 110 2.7

Potassium 100 2.9

Tin 240 4.4

Monatomic gas 20 0.67

Diatomic gas 20 0.40

elastic potential energy is

φ (η) = 1

2!
∑
ijkl

Cijklηijηkl

+ 1

3!
∑

ijklmn

Cijklmnηijηklηmn + . . . , (6.74)
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Table 6.5 Comparison of room-temperature values of the
ultrasonic nonlinearity parameters of solids. BCC = body-
centered cubic; FCC = face-centered cubic

Material or Bonding βavg

structure

Zincblende Covalent 2.2

Flourite Ionic 3.8

FCC Metallic 5.6

FCC (inert gas) van der Waals 6.4

BCC Metallic 8.2

NaCl Ionic 14.6

Fused silica Isotropic −3.4

YBa2Cu3O7−δ Isotropic 14.3

(ceramic)

where the η are the strains, Cijkl are the second-order
elastic constants, and Cijklmn are the third-order elas-
tic constants. For cubic crystals there are only three
second-order elastic constants: C11, C12 and C44, and
only six third-order elastic constants: C111, C112, C144,
C166, C123 and C456. This makes the investigation of cu-
bic crystals relatively straightforward [6.35]. By using
the appropriate form of Lagrange’s equations, special-
izing to a specific orientation of the coordinates with
respect to the ultrasonic wave propagation direction,
and neglecting attenuation and higher-order terms, one
can write the nonlinear wave equation for propagation
in the directions that allow the propagation of purely
longitudinal waves (with no excitation of transverse
waves). In a cubic crystalline lattice there are three of
these pure mode directions for longitudinal waves and
the nonlinear wave equation has the form [6.35]

ρ0
∂2u

∂t2
= K2

∂2u

∂a2
+ (3K2 + K3)

∂u

∂a

∂2u

∂a2
+ . . . ,

(6.75)

where both K2 and K3 depend on the orientation con-
sidered. The quantity K2 determines the wave velocity:
K2 = c2

0ρo. The quantity K3 contains only third-order
elastic constants. The quantities K2 and K3 are given
for the three pure-mode directions in a cubic lattice in
Table 6.4. The ratio of the coefficient of the nonlinear
term to that of the linear term has a special significance.
It is often called the nonlinearity parameter β and its
magnitude is β = 3+ K3

K2
. Since K3 is an inherently neg-

ative quantity and is usually greater in magnitude than
3K2, a minus sign is often included in the definition

β = −
(

3+ K3

K2

)
. (6.76)

Table 6.6 Parameters entering into the description of
finite-amplitude waves in gases, liquids and solids

Parameter Ideal gas Liquid Solid

c2
0

γ P0
ρ0

A
ρ0

K2
ρ0

Nonlinearity

parameter β γ +1 B
A +2 −

(
K3
K2

+3
)

The nonlinearity parameters of many cubic solids have
been measured. As might be expected, there is a dif-
ference between the quantities measured in the three
pure-mode directions (usually labeled as the [100],
[110] and [111] directions). These differences, however,
are not great. If one averages them, one gets the results
shown in Table 6.5. The nonlinearity parameters cover
the range 2–15. This means that for cubic crystals the
coefficient of the nonlinear term in the nonlinear wave
equation is 2–15 times as large as the coefficient of the
linear term. This gives an impression of the approxima-
tion involved when one ignores nonlinear acoustics.

There is also a source of nonlinearity of solids that
appears to come from the presence of domains in lithium
niobate; this has been called acoustic memory [6.36].

It is possible to measure all six third-order elas-
tic constants of cubic crystals. To do so, however,
it is necessary to make additional measurements.
The procedure that minimizes errors in the evalua-
tion of third-order elastic constants from combina-
tion of nonlinearity parameters with the results of
hydrostatic-pressure measurements has been considered
by Breazeale et al. [6.37] and applied to the evaluation
of the third-order elastic constants of two perovskite
crystals.

6.5.3 Comparison of Fluids and Solids

To facilitate comparison between fluids and solids, it is
necessary to use a binomial expansion of the denomina-
tor of (6.73)

(
1+ ∂ξ

∂a

)−
(

B
A +2

)
= 1+

(
B

A
+2

)
∂ξ

∂a
+ . . . (6.77)

Using this expression, (6.73) becomes

∂2ξ

∂t2
= c2

0
∂2ξ

∂a2
+ c2

0

(
B

A
+2

)
∂ξ

∂a

∂2ξ

∂a2
+ . . . (6.78)

This form of the equation can be compared directly with
(6.74) for solids. The ratio of the coefficient of the non-
linear term to that of the linear term can be evaluated
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directly. The nonlinearity parameters of the various sub-
stances are listed in Table 6.6. Use of Table 6.6 allows
one to make a comparison between the nonlinearity of
fluids as listed in Table 6.3 and the nonlinearity pa-
rameters of solids listed in Table 6.5. Nominally, they
are of the same order of magnitude. This means that

solids exhibit intrinsic nonlinearity that is comparable to
that exhibited by fluids. Thus, the approximation made
by assuming that Hooke’s law (strain is proportional
to stress) is valid for solids is comparable to the ap-
proximation made in the derivation of the linear wave
equation for fluids.
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