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Acoustic Holo26. Acoustic Holography

Yang-Hann Kim

One of the subtle problems that make noise con-
trol difficult for engineers is the invisibility of noise
or sound. A visual image of noise often helps to
determine an appropriate means for noise con-
trol. There have been many attempts to fulfill this
rather challenging objective. Theoretical (or nu-
merical) means for visualizing the sound field have
been attempted, and as a result, a great deal of
progress has been made. However, most of these
numerical methods are not quite ready for practi-
cal applications to noise control problems. In the
meantime, rapid progress with instrumentation
has made it possible to use multiple microphones
and fast signal-processing systems. Although these
systems are not perfect, they are useful. A state-of-
the-art system has recently become available, but
it still has many problematic issues; for example,
how can one implement the visualized noise field.
The constructed noise or sound picture always con-
sists of bias and random errors, and consequently,
it is often difficult to determine the origin of the
noise and the spatial distribution of the noise field.
Section 26.2 of this chapter introduces a brief his-
tory, which is associated with sound visualization,
acoustic source identification methods and what
has been accomplished with a line or surface ar-
ray. Section 26.2.3 introduces difficulties and recent
studies, including de-Dopplerization and de-re-
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verberation methods, both essential for visualizing
a moving noise source, such as occurs for cars or
trains. This section also addresses what produces
ambiguity in realizing real sound sources in a room
or closed space. Another major issue associated
with sound/noise visualization is whether or not
we can distinguish between mutual dependencies
of noise in space (Sect. 26.2.4); for example, we are
asked to answer the question, Can we see two birds
singing or one bird with two beaks?

26.1 The Methodology of Acoustic Source Identification

The famous article written by Kac [26.1], Can one hear
the shape of the drum? clearly addresses the essence
of the inverse problem. It can be regarded as an at-
tempt to obtain what is not available, using what is
available, using the example of the relationship between
sound generation by membrane vibration and its recep-
tion in space. One can find many other examples of
inverse problems [26.2–8]. Often, in the inverse prob-

lem, it is hard to predict or describe data that are not
measured because the available data are insufficient.
This circumstance is commonly referred to as an ill-
posed problem in the literature [26.1–19]. Figure 26.1
demonstrates what might happen in practice; the pre-
diction depends on how well the basis function (the
elephants or dogs in Fig. 26.1) mimics what happens in
reality. When we try to see the shape of noise/sound
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: measured data

: measured data : measured data

Fig. 26.1 The inverse problem and basis function. Are the
measured data the parts of elephants or dogs?

sources, how well we see the shape of a noise source
completely depends on this basis function, because we
predict what is not available by using this selected basis
function.

One of the common methods of classifying meth-
ods used in noise/sound source identification, is by the
type of basis function. According to this classification,
one approach is the nonparametric method, which uses
basis functions that do not model the signal. In other
words, the basis functions do not map the unmeasured
sound field; all orthogonal functions fall into this cat-
egory. One of the typical methods of this kind uses
Fourier transforms. Acoustic holography uses this type
of basis function, mapping the sound field of interest

Prediction plane
(close to source plane)

Backward prediction
Measurement

plane Forward prediction

Prediction plane
(away from source plane)

Fig. 26.2 Illustration of acoustic holography. Near-field acoustic holography measures evanescent waves on the measure-
ment plane. The measurement plane is always finite, i. e. there is always a finite aperture. Therefore, we only get limited
data

with regard to every measured frequency; it therefore
sees the sound field in the frequency domain. In fact,
the ideas of acoustic holography originated from optics
[26.20–30]. Acoustic holography was simply extended
or modified from the basic idea of optical holography.
Near-field acoustic holography [26.31,32] has been rec-
ognized as a very useful means of predicting the true
appearance of the source Fig. 26.2. (The near-field ef-
fect on resolution was first introduced in the field of
microwaves [26.33].) The basis of this method is to in-
clude or measure exponentially decaying waves as they
propagate from the sound source so that the sources can
be completely reconstructed.

Another class of approaches are based on the para-
metric method, which derives its name from the fact that
the signal is modeled using certain parameters. In other
words, the basis function is chosen depending upon the
prediction of the sound source. A typical method of this
kind is the so-called beam-forming method. Different
types of basis functions can be chosen for this method,
entirely depending on the sound field that the basis func-
tion is trying to map [26.34, 35]. In Fig. 26.1, we can
select either the elephants or dogs (or another choice),
depending on what we want to predict. This type of
mapping gives information about the source location.
As illustrated in Fig. 26.1, the basis function maps the
signal by changing its parameter; in the case of forming
a plane-wave beam, the incident angle of the plane wave
can be regarded as a parameter. The main issues that
have been discussed for this kind of mapping method
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Fig. 26.3 The beam-forming method

are directly related to the structure of the correlation
matrix that comes from the measured acoustic pressure
vector and its complex conjugate (see Fig. 26.3 for the
details). In this method, each scan vector has a multi-
plicative parameter; for the plane wave in Fig. 26.3 it is
the angle of arrival. The correlation matrix is given as il-
lustrated in Fig. 26.3. The scan vector is a basis function
in this case. As one can see immediately, this problem is
directly related to the structure of the correlation matrix
and the basis function used. The signal-to-noise (S/N)
ratio of the measured correlation matrix determines the
effectiveness of the estimation. There have been many
attempts to improve the estimator’s performance with

regard to the signal-to-noise ratio [26.35, 36]. These
methods have mainly been developed for applications
in the radar and underwater communities [26.37]. This
technique has also been applied to a noise source lo-
cation finding problem; high-speed-train noise source
estimation [26.38–40] is one such example. Various
shapes of arrays have been tried to improve the spa-
tial resolution [26.41–43]. However, it is obvious that
these methods cannot sense the shape of the sound or
noise source; they only provide its location. Therefore,
we will not discuss the beam-forming method in this
chapter. In the next section, the problems that we have
discussed will be defined.

26.2 Acoustic Holography: Measurement, Prediction and Analysis

26.2.1 Introduction
and Problem Definitions

Acoustic holography consists of three components:
measurement, which consists of measuring the sound
pressure on the hologram plane, prediction of the acous-
tic variables, including the velocity distribution, on the
plane of interest, and analysis of the holographic recon-
struction. This last component was not recognized as
important as the others in the past. However, it yields
the real meaning of the sound picture: visualization.

The issues associated with measurement are all re-
lated to the hologram measurement configuration; we
measure the sound pressure at discrete measurement
points over a finite measurement area (finite aper-
ture), as illustrated in Fig. 26.2. References [26.44–
52] explain the necessary steps to avoid spatial alias-
ing, wrap-around errors, and the effect of including
evanescent waves on the resolution (near-field acoustic
holography). If sensors are incorrectly located on the
hologram surface, errors result in the prediction results.
Similar errors can be produced when there is a mag-

Part
H

2
6
.2



1118 Part H Engineering Acoustics

nitude and phase mismatch between sensors. This is
well summarized in [26.53]. There have been many at-
tempts to reduce the aperture effect. One method is
to extrapolate the pressure data based on the measure-
ments taken [26.50, 52]. Another method allows the
measurement of sound pressure in a sequence and in-
terprets the measured sound pressures with respect to
reference signals, assuming that the measured sound
pressure field is stationary during the measurement and
the number of independent sources is smaller than the
number of reference microphones [26.54–61]. Another
method allows scanning or moving of the microphone
array, thereby extending the aperture size as much as
possible [26.62–65]. This also allows one to measure
the sound pressure generated by moving sound sources,
such as a vehicle’s exterior noise.

The prediction problem is rather well defined and
relatively straightforward. Basically, the solution of the
acoustic wave equation usually results in the sound
pressure distribution on the measurement plane. Pre-
diction can be attempted using a Green’s function, an
example of which may be found in the Kirchhoff–
Helmholtz integral equation. It is noteworthy, however,
that the prediction depends on the shape of the measure-
ment and prediction surfaces, and also on the presence
of sound reflections [26.54, 66–87].

The acoustic holography analysis problem was in-
troduced rather recently. As mentioned earlier in this
section, this is one of the essential issues connected
to the general inverse problem. One basic question is
whether what we see and imagine is related to what
happens in reality. There are two different sound/noise
sources, one of which is really radiating the sound, and
the another that is reflecting the sound. The former is of-

Boundary

x

Sh

Sh

G (x |xh ; f ) Source-free region

nxh

n

Fig. 26.4 The geometry and nomenclature for the Kirch-
hoff–Helmholtz integral (26.1)

ten called active sound/noise, while the latter is called
passive sound/noise. This is an important practical con-
cept for establishing noise control strategies; we want
to eliminate the active noise source. Another concern is
whether the sources are independently or dependently
correlated (Fig. 26.23). The concept of an independent
and dependent source has to be addressed properly to
understand the issues.

26.2.2 Prediction Process

The prediction process is related to how we predict the
unmeasured sound pressure or other acoustic variables
based on the measured sound pressure information. The
following equation relates the unmeasured and meas-
ured pressure

P(x; f ) =
∫

Sh

[
G(x|xh; f )

∂P

∂n

∣∣∣∣
(x=xh; f )

− P(xh; f )
∂G(x|xh; f )

∂n

]
dSh . (26.1)

Equation (26.1) is the well-known Kirchhoff–Helmholtz
integral equation, where G(x|xh; f ) is the free-space
Green’s function. This equation essentially says that we
can predict the sound pressure anywhere if we know
the sound pressures and velocities on the boundary
Fig. 26.4. However, it is noteworthy that measuring the
velocity on the boundary is more difficult than measur-
ing the sound pressure. This rather practical difficulty
can be solved by introducing a Green’s function that

Contribution from the outside of the hologram is assumed to
be zero, or extra-
polation is
used.

Source-free region

y

z

x
Prediction
plane (z)

Hologram
plane (z h)

Source
plane (z s)

�

Fig. 26.5 Illustration of the planar acoustic holography
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Fig. 26.6 Propagating and exponentially waves in acoustic holography
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Fig. 26.7 The data-processing procedure for acoustic
holography

satisfies the Dirichlet boundary condition: GD(x|xh; f ).
Then, (26.1) becomes

P(x; f ) =
∫

Sh

[
−P(xh; f )

∂GD(x|xh; f )

∂n

]
dSh . (26.2)

This equation allows us to predict the sound pressure
on any surface of interest. It is noteworthy that we can
choose a Green’s function as long as it satisfies the
linear inhomogeneous wave equation, or the inhomo-
geneous Helmholtz equation in the frequency domain.
That is,

∇2G(x|xh; f )+ k2G(x|xh; f ) = −δ(x− xh) .

(26.3)

Therefore, we can select a Green’s function in such
a way that we can eliminate one of the terms on the
right-hand side of (26.1); (26.2) is one such case.

To see what essentially happens in the prediction
process, let us consider (26.2) when the measurement
and prediction plane are both planar. Planar acoustic
holography assumes that the sound field is free from
reflection (Fig. 26.5); then we can write (26.2) as

P(x, y, z; f ) =
∫

Sh

P(xh, yh, zh; f )

× KPP(x − xh,y − yh,z − zh; f )dSh ,

(26.4)

KPP(x, y, z; f ) = 1

2π

z

r3
(1− ikr) exp(ikr) , (26.5)

where r =
√

x2 + y2 + z2 ,

k = 2π f

c
,

x = (x, y, z) ,

xh = (xh, yh, zh) .

KPP can be readily obtained by using two free-field
Green’s functions that are located at zh and −zh, so that
it satisfies the Dirichlet boundary condition.

This is a convolution integral, and therefore we can
write this in the wave-number domain as

ˆ̂P(kx , ky, z; f )

= ˆ̂P(kx , ky, zh; f ) exp[ikz(z − zh)] , (26.6)
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Fig. 26.8 The error due to discrete measurement: the spa-
tial aliasing problem. The microphone spacing determines
the Nyquist wave number. This wave number has to be
smaller than the maximum wave number of the acoustic
pressure distribution on the hologram plane. The micro-
phone spacing, therefore, has to get smaller as the distance
between the hologram (the measurement plane) and source
decrease. The rule of thumb is δ < d �

where
ˆ̂P(kx , ky, z; f )

=
∞∫

−∞

∞∫

−∞
P(x, y, z; f )e−i(kx x+ky y) dx dy , (26.7)

kz =
√

k2 − k2
x − k2

y .

This equation essentially predicts the sound pressure
with respect to the wave number (kx , ky). If k2 � k2

x +
k2

y, the wave in z-direction (kz) is propagating in space.
Otherwise, the z-direction wave decays exponentially,
i. e. it is an evanescent wave (Fig. 26.6).

We have derived the formulas that can predict what
we did not measure based on what we measured, by
using a Green’s function. It is noteworthy that we can
get the same results if we use the characteristic solu-
tions of the Helmholtz equation; the Appendix describes
the details. The Appendix also includes discrete expres-
sions for the formula, which are normally used in the
computation.

Equation (26.6) also allows us to predict the sound
pressure on the source plane, when z = zs. This is an
inverse problem because it predicts the pressure dis-
tribution on the source plane based on the hologram
pressure (Figs. 26.3 and 26.6).

Figure 26.7 essentially illustrates how we can pro-
cess the data for predicting what we did not measure
based on what we measure. There are four major ar-
eas that cause errors in acoustic holography prediction.
One is related to the integration of (26.4). Equa-
tion (26.4) has to be implemented on the discretized
surface Fig. 26.8. This surface, therefore, has to be spa-
tially sampled according to the selected surface. This
spatial sampling can produce spatial aliasing, depend-
ing on the spatial distribution of the sound source: the
sampling wave number must be larger than twice the
maximum wave number of interest. It is noteworthy
that, as illustrated in Fig. 26.8, the distance between the

Fig. 26.9 The effect of a finite aperture: the rapid change
at the aperture edges produces high-wave-number noise �
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hologram and source planes is usually related to the
sampling distance d. The closer one is to the source,
the smaller the sampling distance needs to be. We
must also note that the size of the aperture determines
the wave-number resolution of acoustic holography.
The finite aperture inevitably produces very sharp data
truncation, as illustrated in Fig. 26.9. This produces un-
realistic high-wave-number noise (see without window
in Fig. 26.9). Therefore, it is often required that we use
a window, which can result in a smoother data transi-
tion from what is on the measurement plane to what is
not measured (Fig. 26.9).

The spatial Fourier transform that has to be done
in the prediction process (26.6) has to be carried out
in the domain for which data is available, i. e. a finite
Fourier transform. It therefore produces a ghost holo-
gram, as illustrated in Fig. 26.10 [26.46,50]. This effect
can be effectively removed by adding zeros to the holo-
gram data (Fig. 26.11). The last thing to note is what can
happen when we do backward propagation. As we can
see in (26.6), when we predict the sound pressure dis-
tribution on a plane close to the sound source (z < zh
(Fig. 26.5)) and kz has an imaginary value (evanescent
wave), then the sound pressure distribution of the expo-
nentially decaying part will be unrealistically magnified
(Fig. 26.11) [26.47]. Figure 26.12 graphically summa-
rizes the entire processing steps of acoustic holography.

The issues related with the evanescent wave and its
measurement are well addressed in the literature [26.88].
The measurement of evanescent waves essentially al-
lows us to achieve higher resolution than conventional
acoustic holography [26.89–94]. However, it is notewor-
thy that the evanescent-wave component is substantially
smaller than the other propagating components. There-
fore, it is easy to produce errors that are associated with
sensor or position mismatch [26.53]; in other words, it
is very sensitive to the signal-to-noise ratio. Errors due
to position and sensor mismatch are bias errors and ran-
dom errors, respectively. It has been shown [26.53] that
the bias error due to the mismatches is negligible, but
the random error is significant in backward prediction.
This is related to the measurement spacing on the holo-
gram plane (Δh), prediction plane (Δz), and the distance
between the hologram plane and the prediction plane
(d). It is approximately proportional to 24.9(d/Δz) +
20 log10(Δh/Δz) in a dB scale. The signal-to-noise ratio
can be amplified when we try to reconstruct the source
field: a typical ill-posed phenomena. There have been
many attempts to reduce this effect by using a spatial
filter [26.47, 95–99], which is often called the regular-
ization of acoustic holography [26.100–115].

Ghost
holograms

Hologram
aperture Zeros

Extended aperture
by zero padding

Fig. 26.10 The effect of the finite spatial Fourier transform
on acoustic holography: the ghost image is due to the finite
Fourier transform; circular convolution can be eliminated
by adding zeros

Depending on the separable coordinates that we use
for acoustic holography, we can construct cylindrical or
spherical coordinates [26.54, 67, 69] (Figs. 26.13 and

|P (k x, 0, z h; f ) |

«

kx–k k

|P (k x, 0, z s; f ) |

«

kx–k k

|PF (k x, 0, z s; f ) |

«

kx–k k

kx

Backward
prediction Filtering

×

Wavenumber filter

Before
filtering

After
filtering

measured true

Fig. 26.11 Wave-number filtering in backward prediction. Evanes-
cent wave components are magnified without filtering (after
[26.47])
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Wavenumber
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«

Zero padding
(wrap around
error)

Inverse
Fourier
transform

Fourier transform

P (x, y, z ; f )

P(x, y, zh; f )

Wave number domainSpace domain

P(kx, ky, z; f )

«

�e ikz (z – zh )Propagation

Fig. 26.12 Summary of the acoustic holography prediction process

Configuration of
microphone array

– Microphone 31 EA
(B&K 4935)

– Aperture length: 1.50 m
– Vertical spacing: 0.05 m
– Measuring radius: 0.32 m

Fig. 26.13 Cylindrical holography

Configuration of
microphone array

– Microphone 17 EA
(B&K 4935)

– Aperture radius: 0.51 m
– Microphone spacing: 10

Fig. 26.14 Spherical holography
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26.14). These methods predict the sound field in ex-
actly the same manner as in planar holography but with
respect to different coordinates. As expected, however,
these methods have some advantages. For example,
the wrap-around error is negligible – in fact, there is
no such error in spherical acoustic holography – and
there is no aperture-related error [26.54]. Recently, the
advantage of using spherical functions has also been
noted [26.79, 81, 86, 87, 113].

26.2.3 Measurement

To construct a hologram, we commonly measure the
sound pressure at discrete positions, as illustrated in
Fig. 26.2. However, if the sound generated by the
source, and therefore the sound field, can be assumed

Last step

First step

Q ( f )

Reference R ( f )

P (xh; f )

a)

um

Q ( f )

Reference R ( f )

P (xh; f )

b)

Fig. 26.15a,b Two measurement methods for the pressure
on the hologram plane: (a) step-by-step scanning (b) con-
tinuous scanning

to be stationary, then we do not have to measure them at
the same time.

Figure 26.15 illustrates one way to accomplish
this measurement. This method normally measures
the sound pressure field using a stepped line array
(Fig. 26.15a). To understand the issues associated with
this measurement system for the sake of its simplicity,
let us see how we process a signal of frequency f when
there is a single source. The relationship between the
sound source and sound pressure in the field, or meas-
urement position (xh), can be written as

P(xh; f ) = H(xh; f )Q( f ) , (26.8)

where Q( f ) is the source input signal and H(xh; f )
is the transfer function between the source input and
the measured pressure. This means that, if we know
the transfer function and the input, we can find the
magnitude and phase between the measured positions.
Because it is usually not practical to measure the in-
put, we normally use reference signals (Fig. 26.15a). By
using a reference signal, the pressure can be written as

P(xh; f ) = H ′(xh; f )R( f ) , (26.9)

where R( f ) is the reference signal. We can obtain
H ′(xh; f ) by

H ′(xh; f ) = P(xh; f )

R( f )
. (26.10)

The input and reference are related through

R( f ) = HR( f )Q( f ) , (26.11)

where HR( f ) is the transfer function between the input
and the reference. As a result, we can see that (26.9) has
the same form as (26.8).

It is noteworthy that (26.8) holds for the case that
we have only one sound source and the sound field is
stationary and random. However, if there are two sound
sources, then (26.8) becomes

P(xh; f ) = H1(xh; f )Q1( f )+ H2(xh; f )Q2( f ) ,

(26.12)

where Qi ( f ) is the i-th input and Hi (xh; f ) is its trans-
fer function. There are now two independent sound
fields. This requires, of course, two independent refer-
ence signals. It has been well accepted that the number
of reference microphones has to be greater than the
number of independent sources [26.57]. However, if this
is strictly true, then it means that we have to somehow
know the number of sources, and this, in some degree,
contradicts the the acoustic holography approach.
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A recent study [26.61] demonstrated that the meas-
ured information, the location of the sources, and the
number of independent sources converge to their true
values as the number of reference microphones in-
creases. This study also showed that high-power sources
are likely to be identified even if the number of refer-
ence microphones is less than the number of sources.

Fig. 26.16 Application result of the step-by-step scanning
method to the wind noise of a car. This figure is the pres-
sure distribution at 710 ∼ 900 Hz in a source plane when
the flow velocity is 110 km/h. In this experiment, 17 ref-
erence microphones are randomly located in the car, to
see the coherence between interior noise and what are
measured by the array microphone system. The array mi-
crophone system was initially located at 3 m forward from
the middle point of a car, and moved 6 cm in step until it
reached at 3 m backward from the middle point �

Figure 26.16 shows an example of this method when
there are many independent sound fields. On the other
hand, one study showed that we can even continu-
ously scan the sound field by using a line array of
microphones (Fig. 26.15b) [26.62–65]. This method es-
sentially allows us to extend the aperture size without
any limit as long as the sound field is stationary. In
fact, [26.65] also showed that this method can be used
for a slowly varying (quasi-stationary) sound field.

This method has to deal with the Doppler shift.
For example, let us consider a plane wave in the
(kx0 , ky0 , kz0 ) direction and a pure tone of fre-
quency fh0 . Then the pressure on the hologram plane
can be written as

p(xh, yh, zh; t)

= P0 exp
[
i(kx0 xh + ky0 yh + kz0 zh)

]
exp(−i, fh0 t) ,

(26.13)

where P0 denotes the complex magnitude of the plane
wave. Spatial information about the plane wave with
respect to the x-direction can be represented by a wave-
number spectrum, and can be described as

P̂(kx , yh, zh; t) =
∞∫

−∞
p(xh, yh, zh; t)e−ikx xh dxh

= P0 exp
[
i(ky0 yh + kz0 zh)

]
× δ(kx − kx0 ) exp(−i2π fh0 t)

= P(kx0 , yh, zh)δ(kx − kx0 )

× exp(−i2π fh0 t) , (26.14)

where P(kx0 , yh, zh) = P0 exp[i(ky0 yh + kz0 zh)] is the
wave-number spectrum of the plane wave at kx = kx0 .

Fig. 26.17 The continuous scanning method for a plane
wave and a pure tone (one-dimensional illustration). fh0
is the source frequency, f is the measured frequency, um

is the microphone velocity, c is the wave speed, kx0 is the
x-direction wave number, and P0 is the complex amplitude
of a plane wave �
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Fig. 26.20 Experimental configuration and result of the continuous scanning method to vehicle pass-by noise. The tire
pattern noise distribution (pressure) on the source plane is shown when the car passed the microphone array with constant
speed of 50 km/h

What is measured?

Measured data

What it looks like? Who or what makes this?

Information of the
noise source

Predicted data

Fig. 26.21 Illustration of analysis problem in acoustic holography

If a microphone is moving at an x-velocity um, the
measured signal pm(xh, yh, zh; t) is

pm(xh, yh, zh; t) = p(umt, yh, zh; t) . (26.15)

The Fourier transform of (26.15) with respect to time
FT, using (26.13), can be expressed as

FT[pm(umt, yh, zh; t)]

=
∞∫

−∞
pm(umt, ym, zh; t)ei2π ft dt

= P0 exp[i(ky0 yh + kz0 zh)]
× δ

(um

2π
kx0 − fh0 + f

)

= P(kx0 , yh, zh)δ
(um

2π
kx0 − fh0 + f

)
. (26.16)

Equation (26.16) means that the complex am-
plitude of the plane wave is located at the shifted
frequency fh0 −umkx0/2π, as shown in Fig. 26.17. In
general, the relation between the shifted frequency
f and x-direction wave number kx is expressed as
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Fig. 26.18

kx = 2π( fh0 − f )

um
. (26.17)

We can measure the original frequency fh0 by a fixed
reference microphone. Using the Doppler shift, we can
therefore obtain the wave-number components from
the frequency components of the moving microphone
signal. Figure 26.19 illustrates how we obtain the wave-
number spectrum.

This method essentially uses the relative coordinate
between the hologram and microphone. Therefore, it
can be used for measuring a hologram of moving noise
sources (Fig. 26.20), which is one of the major contri-
butions of this method [26.62–65].

26.2.4 Analysis of Acoustic Holography

Once we have a picture of the sound (acoustic hologra-
phy), the questions about its meaning are the next topic
of interest. What we have is usually a contour plot of the
sound pressure distribution or a vector plot of the sound
intensity on a plane of interest. This plot may help us to
imagine where the sound source is and how it radiates
into space with respect to a frequency of interest. How-
ever, in the strict sense, the only thing we can do from
the two-dimensional expression of sound pressure or in-
tensity distribution is to guess what was really there.
We do not know, precisely, where the sound sources are
(Fig. 26.21).

As mentioned earlier, there are two types of sound
sources: active and passive sound source. The former
is the source that radiates sound itself, while the latter
only radiates reflected sound. These two different types
of sound sources can be distinguished by eliminating
reflected sound [26.116]. This is directly related to the
way boundary conditions are treated in the analysis.

The boundary condition for a locally reacting sur-
face can be written as [26.116–118]

V (xs; f ) = A(xs; f )P(xs; f )+ S(xs; f ) , (26.18)

where V (xs; f ) and P(xs; f ) are the velocity and pres-
sure on the wall. A(xs; f ) is the wall admittance and
S(xs; f ) is the source strength on the wall. The ac-
tive sound source is located at a position such that
the source strength is not zero. This equation says that
we can estimate the source strength if we measure the
wall admittance. To do this, it is necessary to first turn
off the source or sources, and then measure the wall
admittance by putting a known source in the desired
position (Fig. 26.22a). The next step is to turn on the

P (xs; f ) = surface pressure

V (xs; f ) = surface velocity

P (xs; f )
V (xs; f )xs

x

Sin

S

n

Orginal
sound sources

0

Arbitrary
sound source

a)

z

y
x

P (xs; f )
V (xs; f )xs

x

S

n

Orginal
sound sources

b)

z

y
x

Fig. 26.22a,b Two steps to separate the active and passive
source: (a) Admittance measurement, (b) source strength
measurement

Fig. 26.23 Spatially independent or dependent sources

sources and obtain the sound pressure and velocity dis-
tribution on the wall, using the admittance information
(Fig. 26.22b). This provides us with the location and
strength of the source (i. e. the source power; for ex-
ample, see Fig. 26.24).

Another very important problem is whether or not
we can distinguish between independent or dependent
sources, i. e. two birds singing versus one bird with two
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Fig. 26.24 Experiment results that separate the active and passive sources. The top surface is made by the sound
absorption material. The speaker on the bottom surface, which is reflecting sound, is eliminated by this separation
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Fig. 26.28 The procedure to separate the independent and dependent sources
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beaks (Fig. 26.23). This has a rather significant practi-
cal application. For example, to control noise sources
effectively, we only need to control independent noise
sources. This can be achieved by using the statistical
differences between signals that are induced by inde-
pendent and dependent sound sources.

For example, let us consider a two-input single-
output system (Fig. 26.25). If the two inputs are
independent, the spectrum SPP( f ) of the output P( f )
can be expressed as

SPP( f ) = |H1( f )|2SQ1Q1 ( f )+|H2( f )|2SQ2Q2 ( f ) ,

(26.19)

where SQi Qi ( f ) is the spectrum of the i-th input Qi ( f ),
and Hi ( f ) is its transfer function. The first and second
terms represent the contributions of the first and sec-
ond input to the output spectrum, respectively. If we can
obtain a signal as

W1( f ) = C( f )Q1( f ) , (26.20)

then we can estimate the contribution of the first source
as [26.119]

SP1P1 ( f ) = |H1( f )|2SQ1Q1 ( f ) = γ 2
W1P( f )SPP( f ) ,

(26.21)

where γ 2
W1P( f ) is the coherence function between

W1( f ) and Q1( f ) (Fig. 26.26).
We can simply extend (26.21) to the case of mul-

tiple outputs, as in the case of acoustic holography
(Fig. 26.27). The main problem is how to obtain a sig-
nal that satisfies (26.20). We can generally say that, by
putting sensors closer to the source or sources [26.57,
58, 120–123], we may have a better signal that can be
used to distinguish between independent or dependent
sources. However, this is neither well proven nor practi-
cal, as it is not always easy to put the sensors close to the
sources. Very recently, a method that does not require
this [26.124,125] was developed. Figure 26.28 explains
the method’s procedures. The first and second steps are
the same as in acoustic holography: measurement and
prediction. The third step is to search for the maximum
pressure on the source plane. This method assumes that
the maximum pressure satisfies (26.20). The fourth step
is to estimate the contribution of the first source by using
the coherence functions between the maximum pressure
and other points, as in (26.21). The fifth step is to cal-
culate the remaining spectrum by subtracting the first
contribution from the output spectrum. These steps are
repeated until the contributions of the other sources are
estimated (Fig. 26.29).

26.3 Summary

As expected, it is not simple to answer the question
of whether we can see the sound field. However, it is
now understood that the analysis of what we obtained,
acoustic holography, needs to be properly addressed, al-
though little attention was given to this problem in the
past. We now understand better how to obtain informa-

tion from the sound picture. Making a picture is the job
of acoustic holography, but the interpretation of this pic-
ture is the responsibility of the observer. This paper has
reviewed some useful guidelines for better interpreta-
tion of the sound field to deduce the right impression or
information from the picture.

26.A Mathematical Derivations of Three Acoustic Holography Methods
and Their Discrete Forms

We often use the Kirchhoff–Helmholtz integral equa-
tion to explain how we predict what we do not measure
based on what we do measure. It is noteworthy, how-
ever, that the same result can be obtained by using
the characteristic solutions of the Helmholtz equa-
tion. The following sections address how these can
be obtained. Planar, cylindrical, and spherical acoustic
holography are derived using characteristic equations in
terms of a corresponding coordinate system. The equa-
tions for holography are also expressed in a discrete
form.

26.A.1 Planar Acoustic Holography

If we see solutions of the Helmholtz equation

∇2 P + k2 P = 0 , (26.A1)

in terms of Cartesian coordinate, then we can write them
as

P(x, y, z; f ) = X(x) Y (y) Z(z) , (26.A2)

where k = ω
c = 2π f

c . We assume then P is separable
with respect to X, Y and Z. Equations (26.A1) and
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(26.A2) yield the characteristic equation

ψ(x, y, z; kx, ky, kz)

=
(

eikx x

e−ikx x

)(
eiky y

e−iky y

)(
eikz z

e−ikz z

)
, (26.A3)

where

k2 = k2
x + k2

y + k2
z . (26.A4)

Now we can write

P(x, y, z; f ) =
∫

P̂(k)ψ(x, y, z; kx, ky, kz)dk ,

(26.A5)

where

k = (kx , ky, kz) . (26.A6)

Let us assume that the sound sources are all located at
z < zs and we measure at z = zh > zs. Then we can write
(26.A5) as

P(x, y, z; f )

=
∞∫

−∞

∞∫

−∞

ˆ̂P(kx , ky)ei(kx x+ky y+kz z) dkx dky . (26.A7)

It is noteworthy that we selected only +ikzz. This
is because of the assumptions we made (z < zs and
z = zh > zs). The kx and ky can be either positive or
negative. Therefore it is not necessary to include −ikx x
or −iky y in (26.A3).

In (26.7),

kz =
⎧⎨
⎩

√
k2 − k2

x − k2
y, when k2 > k2

x + k2
y

i
√

k2
x + k2

y − k2, when k2 < k2
x + k2

y .

(26.A8)

Figure 26.6 illustrates what these two different kz values
essentially mean. We measure P(x, y, z = zh; f ), there-
fore we have data of the sound pressure data on z = zh.
A Fourier transform of (26.A7) leads to

ˆ̂P(kx , ky)

=
∞∫

−∞

∞∫

−∞
P(x, y, z; f )e−i(kx x+ky y+kz z) dx dy .

(26.A9)

Using (26.A9) and (26.A7), we can always estimate the
sound pressure on z, which is away from the source.

z

x

y

Δy
Δx

Hologram plane
z = zh

Source plane
z = zs

a)

x = r cosø
y = r sinø
z = z

Source surface
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y

r = rh r= rs

z = z

ø
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x = r sinθ cosø
y = r sinθ sinø
z = r cosθ
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rs

ø

θ

Source surface
Hologram surface

y

z

x

c)

Fig. 26.30a–c Coordinates system for acoustic hologra-
phy: (a) planar acoustic holography (b) cylindrical acoustic
holography (c) spherical acoustic holography
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It is noteworthy that (26.A9) has to be preformed
in the discrete domain. In other words, we have to use
a finite rectangular aperture, which is spatially sampled
(26.8 and 26.30a). If the number of measurement points
along the x-and y-directions are M and N , respectively,
and the corresponding sampling distances are Δx and
Δy, then (26.A9) can be rewritten as

ˆ̂P(kx , ky) = 1

(2π)2
e−ikz zhΔxΔy

M−1∑
m=0

N−1∑
n=0

P(xm, yn, zh)e−ikx xm e−iky yn . (26.A10)

where

xm =
(

m + 1− M

2

)
Δx ,

yn =
(

n + 1− N

2

)
Δy . (26.A11)

M and N are the number of data points in the x- and
y-directions, respectively.

26.A.2 Cylindrical Acoustic Holography

A solution can also found in cylindrical coordinate, that
is

P(r, φ, z) = R(r)Φ(φ)Z(z) . (26.A12)

Figure 26.1 shows the coordinate systems. Then, its
characteristic solutions are

ψ(r, φ, z; kr , kz)

=
(

H (1)
m (krr)

H (2)
m (krr)

)[
eimφ

e−imφ

] [
eikz z

e−ikz z

]
, (26.A13)

where

k2 = k2
r + k2

z . (26.A14)

It is noteworthy that m is a nonnegative integer. H (1)
m and

H (2)
m are first and second cylindrical Hankel functions,

respectively. eimφ and e−imφ express the mode shapes
in the φ-direction.

Using the characteristic function (26.A6), we can
write a solution of the Helmholtz equation with respect
to cylindrical coordinate as

P(r, φ, z; f ) =
∫

P̂m(k)ψm (r, φ, z; kr , kz)dk ,

(26.A15)

where

k = (kr , kz) . (26.A16)

Assuming that the sound sources are all located at r < rs
and that the hologram surface is situated on the sur-
face r = rh, and that rh > rs, then no waves propagate
into the negative r-direction, in other words, toward the
sources. Then (26.A15) can be rewritten as

P(r, φ, z; f )

=
∞∑

m=−∞

∞∫

−∞
P̂m(kz)eimφ eikz z H (1)

m (krr)dkz ,

(26.A17)

and kr has to be

kr =
{ √

k2 − k2
z , when k2 > k2

z

i
√

k2
z − k2, when k2 < k2

z .
(26.A18)

We measure the acoustic pressure at r = rh, therefore
P(rh, φ, z) is available. P̂m(kz) can then be readily ob-
tained.

That is

P̂m(kz) = 1

(2π)2

2π∫

0

∞∫

−∞
P(rh, φ, z)e−mφ e−ikz z

×
{

H (1)
m (krrh)

}−1
dz dφ . (26.A19)

Inserting (26.A19) into (26.A17) provides us with the
acoustic pressure at the unmeasured surface at r.

Discretization of (26.A19) leads to a formula that
can be used in practical calculations

P̂m(kz) = 1

(2π)2 H (1)
m (krrh)

2π

L
Δz

×
L−1∑
l=0

N−1∑
n=0

P(rh, φl, zn)e−imφl e−ikz zn ,

(26.A20)

where

φl = (2l +1)π

L
,

zn =
(

n + 1− N

2

)
Δz . (26.A21)

L and N are the number of data points in the φ- and
z-directions, respectively.
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26.A.3 Spherical Acoustic Holography

The Helmholtz equation can also be expressed in spher-
ical coordinate (Fig. 26.30c). Assuming again that the
separation of variable also holds in this case, we can
write

P(r, θ, φ) = R(r)Θ(θ)Φ(φ) . (26.A22)

Substituting this into (26.A1) gives the characteristic
equation

ψmn(r, θ, φ; k) =(
h(1)

m (kr)

h(2)
m (kr)

)(
Pn

m cos θ

Qn
m cos θ

)(
einφ

e−inφ

)
. (26.A23)

m is a nonnegative integer and n can be any integer
between 0 and m. h(1)

m and h(2)
m are first and second

spherical Hankel functions. It is also noteworthy that
Pn

m and Qn
m are first and second Legendre polynomials.

Then we can write the solution of the Helmholtz
equation as

P(r, θ, φ) =
∞∑

m=0

m∑
n=−m

P̂mnψmn(r, θ, φ; k) .

(26.A24)

Suppose that we have sound sources at r < rs
and the hologram is on the surface r = rh > rs; then
(26.A24) can be simplified to

P(r, θ, φ) =
∞∑

m=0

m∑
n=−m

P̂mnYmn(θ, φ)h(1)
m (kr) ,

(26.A25)

where

Ymn(θ, φ) = P|n|
m (cos θ)einφ . (26.A26)

This is a spherical harmonic function. It is notewor-
thy that we only have first spherical harmonic functions
because all waves propagate away from the sources.
The second Legendre function was discarded because
it would have finite acoustic pressure at θ = 0 or π.

Similarly, as previously stated, the sound pressure
data on the hologram is available, therefore we can ob-
tain Pmn in (26.A25) by

P̂mn = 2m +1

4πh(1)
m (krh)

(m −|n|)!
(m +|n|)!

×

π∫

0

2π∫

0

P(rh, θ, φ)Y∗
mn(θ, φ) sin θ dφdθ ,

(26.A27)

where we have used the orthogonality property of
Ymn . The ∗ represents the complex conjugate. Using
(26.A27) and (26.A25), we can estimate the acoustic
pressure anywhere away from the sources.

The discrete form of (26.A27) can be written as

P̂mn = Amn
2π2

L Q

L−1∑
l=0

Q−1∑
q=0

P(rh, θl, φq)

× P|n|
m (cos θl)(sin θl)e−inφq , (26.A28)

where

θl = (2l +1)π

2L
,

φq = (2q +1)π

Q
. (26.A29)

where L is the number of data points in θ and Q is what
is in φ-direction.
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