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Musical Acous15. Musical Acoustics

Colin Gough

This chapter provides an introduction to the phys-
ical and psycho-acoustic principles underlying the
production and perception of the sounds of musi-
cal instruments. The first section introduces generic
aspects of musical acoustics and the perception of
musical sounds, followed by separate sections on
string, wind and percussion instruments.

In all sections, we start by considering the
vibrations of simple systems – like stretched
strings, simple air columns, stretched membranes,
thin plates and shells. We show that, for almost
all musical instruments, the usual text-book
description of such systems is strongly perturbed
by material properties, geometrical factors and
acoustical coupling between the drive mechanism,
vibrating system and radiated sound.

For stringed, woodwind and brass instruments,
we discuss excitation by the bow, reed and vi-
brating lips, which all involve strongly non-linear
processes, even though the vibrations of the ex-
cited system usually remains well within the linear
regime. However, the amplitudes of vibration of
very strongly excited strings, air columns, thin
plates and membranes can sometimes exceed the
linear approximation limit, resulting in a num-
ber of interesting non-linear phenomena, often of
significant musical importance.

Musical acoustics therefore provides an ex-
cellent introduction to the physics of both linear
and non-linear acoustical systems, in a context
of rather general interest to professional acousti-
cians, teachers and students, at both school and
college levels.

The subject continues its long tradition in
advancing the frontiers of experimental, compu-
tational and theoretical acoustics, in an area of
wide general appeal and contemporary relevance.

By discussing the theoretical models and
experimental methods used to investigate the
acoustics of many musical instruments, we have

aimed to provide a useful background for profes-
sional acousticians, students and their teachers,
for whom musical acoustics provides an exceed-
ingly rich area for original research projects at all
educational levels.

Because the subject is ultimately about the
sounds produced by musical instruments, a large
number of audio illustrations have been provided,
which can be accessed on the Springer EXTRAS
server. The extensive list of references is intended
as a useful starting point for entry to the current
research literature, but makes no attempt to
provide a comprehensive list of all important
research.

This chapter highlights the acoustics of musi-
cal instruments. Other related topics, such as the
human voice, the perception and psychology of
sound, architectural acoustics, sound recording
and reproduction, and many experimental, com-
putational and analytic techniques are described
in more detail elsewhere in this volume.
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Musical acoustics is one the oldest of all the experi-
mental Sciences (see Levenson [15.1] for an informative
account of the interactions between Music and Science
over the ages). The observation of the relationship be-
tween the notes produced by the exact fraction divisions
of a stretched string and consonant musical intervals
like the octave (2 : 1), perfect fifth (3 : 2) and fourth
(4 : 3), resulted in the first physical law to be expressed
in mathematical terms. It also led to the idea of a di-
vinely created cosmos based on exact fractions, filled
with the music of the spheres (see, for example, Ke-
pler’s account of the ellipticity of the planetary orbits
described as notes on a musical scale, in Harmonies of
the World (1618) [15.2]). Ultimately, such observations
led to Newton’s discovery of celestial dynamics and
the laws of gravity leading to the modern view of the
universe subject to physical laws rather than numerical
relationships.

In the nineteenth century, musical acoustics contin-
ued to occupy a central scientific role. This culminated
in Lord Rayleigh’s monumental two volumes on the
Theory of Sound [15.3], which still provide the founda-
tions for almost every branch of modern acoustics. The
19th century advances in understanding waves in acous-
tics also laid the mathematical framework for quantum
wave mechanics in the early part of the 20th cen-
tury. More recently, the physics of vibrating strings can
be said to have come full circle, with the suggestion
that string-like vibrations of the quantum field equa-
tions account for the mass to the elementary particles
(Hawkins [15.4]).

Musical acoustics still remains a challenging and
exciting field of research and continues to advance
mainstream acoustics in many ways. Examples include
nonlinear physics and the use of laser holography and
both modal and finite-element analysis to investigate
complicated vibrating systems. Such developments are
described in this chapter and in more detail in other
chapters of this Handbook and in the Physics of Musi-
cal Instruments by Fletcher and Rossing [15.5], which
will often be cited, as an authoritative text and source
of additional references for most topics discussed. The
Science of Sound by Rossing et al. [15.6] covers an even
wider range of topics at a somewhat less mathematical

level. An informative overview of the history, technol-
ogy and performance of western musical instruments
has recently been published by Campbell, Greated and
Myers [15.7].

The first section of this chapter deals with the
generic properties of the vibrations and sounds of mu-
sical instruments. A brief description is first given of
the properties of both simple and coupled resonators,
typifying the vibrational modes of stringed, wind and
percussion instruments, where the sound is generated
by vibrating strings, air columns, plates, membranes
and shells. The radiation of sound by such structures
is then described in terms of multipole sources. This is
followed by a brief description of the envelopes, wave-
forms and spectra of the sounds that characterize the
sound of individual instruments. The section ends with
a consideration of the way the listener perceives such
sounds.

The section on stringed instruments first consid-
ers the general properties of string vibrations and their
excitation by plucking, bowing and striking. Large am-
plitude vibrations are shown to provide a particular
interesting illustration of nonlinearity of much wider ap-
plicability than to musical acoustics alone. The coupling
of the vibrating string via the bridge to the acoustically
radiating surfaces of the instrument is then discussed in
some detail, followed by a more detailed discussion of
excitation of a string via the bowed slip-stick mecha-
nism. The vibrational modes of the main shell of the
instrument and the importance of the bridge and sound-
post in determining the efficiency of energy transfer to
the radiating surfaces of the instrument are then dis-
cussed. The section ends with a description of some
of the experiment and computational techniques used
to describe the vibrational modes, followed by a brief
description of the radiated sound and the subjective as-
sessment of the quality of stringed instruments.

The section on woodwind and brass instruments
starts with a consideration of oscillating air columns and
sound radiation from cylindrical and conical tubes and
the more complicated shapes used for woodwind and
brass instruments. This is followed by sections on the
highly nonlinear processes involved in the excitation of
such vibrations by reed and lip vibrations and air-jets.
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The section concludes with a brief description of the
acoustical properties of various wind instruments.

The final section on percussion instruments de-
scribes the acoustical properties of a range of instru-
ments based on the vibrations of stretched membranes,
bars, plates and shells. Typical waveform envelopes

and time-dependent spectra are used to illustrate the
relationship between the vibrational modes of such in-
struments and the radiated sound. Non-linearity at large
amplitude excitation is again shown to be important and
accounts for the characteristic sounds of certain instru-
ments like gongs and cymbals.

15.1 Vibrational Modes of Instruments

15.1.1 Normal Modes

All musical instruments produce sound via the exci-
tation of a vibrating structure. Woodwind, brass and
percussion instruments radiate sound directly. How-
ever, stringed instruments radiate sound indirectly,
because the vibrating string itself radiates an insignifi-
cant amount of energy. Energy from the vibrating string
therefore has to be transferred to the much larger area,
acoustically efficient, radiating surfaces of the body of
the instrument. The resultant modes of vibration are
complex and involve the interactions and vibrations of
all the component parts, such as the strings, bridge, front
and back plates, soundpost, neck, and even the air inside
the volume of the violin body.

Any vibrating structure, however complicated, will
have a number of what are called normal modes of vi-
bration (Chap. 22). The important influence of damping
on the nature of the normal modes will be described in
the section on stringed instruments. The normal modes
satisfy exactly the same equations of motion as a simple
damped mass–spring resonator. The displacement ξn of
a given excited mode measured at any chosen point p
on the structure is given by

mn

(
∂2ξn

∂t2
+ ωn

Qn

∂ξn

∂t
+ω2

nξn

)
= F(t) , (15.1)

where the effective mass mn at the point p is defined
in terms of the kinetic energy of the excited mode,
1
2 mn(∂ξn/∂t)2

p, ωn = 2π fn is the eigenfrequency (the
angular frequency) of free vibration of the excited mode
in the absence of damping and Qn is the quality fac-
tor describing its damping. Initially, we consider a local
driving force F(t) at the point p, though it could be ap-
plied at any chosen point on the structure or distributed
over the whole surface.

The effective mass of a one-dimensional string, solid
bar or air column, at the point of maximum displace-
ment, is half the mass of the vibrating system, the factor
half resulting from averaging the kinetic energy over the

sinusoidal spatial displacement. Likewise, the effective
mass of a two-dimensional vibrating object at maximum
displacement, like a violin plate or drum skin, is of or-
der 1/4 its mass. The effective mass is very large close
to nodal positions, where the displacement is small, and
is small at antinodes, where the displacement is large.

Typical driving forces are those acting on the bridge
of a bowed or plucked string instrument and the pres-
sure fluctuations at the input end of the air column of
a blown woodwind or brass instrument. Such forces are
generated by highly nonlinear excitation mechanisms.
In contrast, the vibrations of the vibrating structure are
generally linear with displacements proportional to the
driving force. However, there are important exceptions
for almost all types of instruments, when nonlinearity
becomes significant at sufficiently strong excitation, as
discussed later.

In any continuously bowed or blown musical instru-
ments, feedback from the vibrating system results in
a periodic driving force, which will not in general be
sinusoidal. Nevertheless, by the Fourier theorem, any
periodic force can always be represented as a superpo-
sition of sinusoidally varying, harmonic, partials with
frequencies that are integer multiple of the periodic rep-
etition frequency. We can therefore consider the induced
vibrations of any musical instruments in terms of the in-
duced response of its vibrational modes to a harmonic
series of sinusoidal driving forces.

Resonance and Admittance
In the harmonic approach, the applied forces and in-
duced motions are assumed to vary sinusoidally as eiωt .
We will generally use this complex notation for nota-
tional and algebraic simplicity, where Re(eiωt) = cosωt
and Im(eiωt) = sin ωt. The resonant response, with dis-
placement ξn eiωt and velocity iωξn eiωt at the driving
point p, for an applied sinusoidal force F eiωt , is then
given by

∂ξn

∂t
= iωξn = F

mn

iω(
ω2

n −ω2 + iωωn/Qn
) . (15.2)
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Fig. 15.1 Normalised real (Re) and imaginary (Im) compo-
nents and the modulus (Mod) of the induced velocity of
a simple harmonic resonator driven by a constant ampli-
tude sinusoidal force for a Q-factor of 10

The ratio of induced velocity to driving force is known
as the local admittance at the driving point p, and is
plotted in normalised form in Fig. 15.1 for a Q-value of
10. The admittance has both real and imaginary com-
ponents. The real part describes the component of the
induced velocity in phase with the driving force, while
the imaginary part describes the component in phase
quadrature (with phase leading that of the force by 90◦
degrees).

Well below resonance the induced displacement is
in phase with the driving force, while at resonance the
phase lags behind the driving force by 90◦, and well
above resonance lags by 180◦. The velocity v(t) leads
the displacement by 90◦ degree and is thus in phase with
the driving force at resonance, which corresponds to the
maximum rate of energy transfer iωFξn to the excited
mode. The 180◦ change in the phase of the response, as
the excitation frequency passes from well below to well
above resonance, is especially important in interpreting
the multiple resonances of any musical instrument.

Provided the damping of an excited mode is not
too strong (i. e. Qn is significantly larger than unity),
the peak in the modulus or real part of the admit-
tance occurs at ωn

(
1−1/8Q2

)
, which is very close

to the natural resonant frequency ωn . The width of
the resonance is Δ f = fn/Q, where Δ f is defined as
the difference in frequency between the points on the
resonance curve when the modulus of the induced dis-
placement has fallen to 1/

√
2 of its maximum value

(i. e. the stored energy is half that at resonance). The dis-
placement at resonance is Q × the static displacement.

Multi-Mode Systems
For any musical instrument having a number of vibra-
tional modes, the admittance at the driving point p can
be written as

App =
∑

n

1

mn

iω

ω2
n −ω2 + iωωn/Qn

, (15.3)

with admittances App of individual modes adding in
series, equivalent to impedances in parallel. The vi-
brational response of a multi-resonant mode musical
instrument can therefore be characterised by fitting the
measured admittance to such a function giving the
effective mass at the point of excitation, resonant fre-
quency and Q-value for each of the excited modes.
Using such a procedure, Bissinger [15.8] typically iden-
tifies up to around 40 vibrational modes for the violin
below 4 kHz. However, at high frequencies, the width
of individual resonances exceeds the spacing between
them, making it increasingly difficult to identify indi-
vidual modes.

It is important to recognise that damping is only im-
portant in a relatively narrow frequency range ≈ fn/Q
around the individual resonance peaks. Outside such
regions, the reactive component associated with each
vibrational mode continues to contribute significantly
to the overall response. For example, well below res-
onance, each mode acts as a spring with effective
spring constant mn(ω2

n −ω2), while well above reso-
nance it acts as a mass with effective mass mn(1 −
ω2

n/ω2). The static displacement (at ω = 0) is given
by ξ = F/Ko = ∑

n
1/(mnω2

n). Note that this involves

contributions from all the vibrational modes of the
structure, which is an important global property de-
scribing the low-frequency response of a multi-resonant
structure such as the violin or guitar. If displacements
are measured at a point p for an applied force at q,
a nonlocal admittance can be expressed as

Apq =
∑

n

1

mn,p

iω(
ω2

n −ω2 + iωωn/Qn
) ξn,pξn,q

ξ2
n,p

,

(15.4)

where ξn,p and ξn,q are the simultaneous displacements
of the nth mode at the points p and q, with identical
stored modal energy 1/2mn,pω

2ξ2
n,p = 1/2mn,qω2ξ2

n,q .
Equation (15.4) illustrates the principle of reci-

procity in acoustics, which states that the motion at
a point p induced by a force at q is identical to the mo-
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tion at q induced by the same force at p. Equation (15.4)
also shows that, by applying a force at a particular posi-
tion and measuring the induced motion (amplitude and
phase) at a large number of different points p(x, y, z)
on the structure, it is possible to map out the ampli-
tude of the modal vibrations ξn(x, y, z) over the whole
of any excited structure. Alternatively, the measurement
point can be fixed and the excitation point moved across
the structure. This is the basis of the powerful tech-
nique of modal analysis, which has been widely used
to investigate the vibrational modes of many stringed
and percussion instruments, as described by Rossing in
Chap. 28 of this Handbook.

It also follows from (15.4) that a particular mode
of vibration will never be excited if the driving force is
located at a node of its vibrational state. This has impor-
tant consequences for the spectrum of sound produced
by bowed, plucked and struck stringed instruments and
all percussion instruments.

Time-Domain Measurements
The vibrational characteristics of an instrument can also
be investigated in the time domain. For example, by
striking a stringed instrument with a light hammer or
exciting the vibrational modes of a woodwind or brass
instrument with a short puff of air, the frequencies of
free vibration of the vibrational modes and their damp-
ing can be determined from their time-dependent decay.
Provided the damping is not too strong (Q � 1), the
modes will decay with time as

ξn(t) = ξ0 e−t/τn eiωn t , (15.5)

where τn = 2Qn/ωn = Qn/π fn . The frequency fn of
a given mode can be determined from its inverse period
and Qn from π× the number of periods for the ampli-
tude to fall by the factor exponential e. The Q-value
of strongly excited modes of a musical instrument can
be estimated from τ60dB = 13.6τ , the Sabine decay time
(Chap. 10 Concert Hall Acoustics). This is the perceptu-
ally significant time taken for the sound pressure to fall
by a factor of 103 – from a very loud level to just be-
ing detectable. Hence, Qn = π fnτ60/13.6 ≈ 0.23 fnτ60.
For example, the sound of a strongly plucked cello open
A-string (220 Hz) can be heard for at least ≈ 2 s, corre-
sponding to a Q-value of ≈ 100 or more.

Damping results in a loss of stored energy given by

dEn

dt
= − ωn

Qn
En = −2

En

τn
. (15.6)

Hence, the power P required to maintain a constant
amplitude at resonance is ωn

Qn
En , where En is the

energy stored. This tends to be the way that Q is de-
fined and measured by physicists, whereas in acoustic
spectroscopy it is more usual to define and meas-
ure Q-values from either the width of resonances in
spectroscopic measurements or from decay times af-
ter transient excitation. As illustrated above, all such
definitions are equivalent.

15.1.2 Radiation from Instruments

Although a large number of vibrational modes of a mu-
sical instrument may be excited simultaneously, they
will not be equally important in radiating sound, which
has important consequences for the quality of the sound.
This section therefore provides a brief introduction to
the radiation of sound from the vibrational modes of
musical instruments.

Sound Waves in Air
In free space, the longitudinal displacement ξ(x, t) =
ξ0 ei(ωt−kx) of plane sound waves satisfies the wave
equation

∂2ξ

∂x2
= 1

c2
0

∂2ξ

∂t2
. (15.7)

The dispersionless (independent of frequency) veloc-
ity of sound c0 = √

γ P0/ρ, where γ (≈ 1.4) is the ratio
of specific heats at constant pressure and volume, P0
(≈ 105 Pa or N/m2) is the ambient pressure and ρ

(≈ 1 kg/m3) is the density (the brackets give the values
for air at ambient pressure and temperature). The ratio
of acoustic pressure p = −γ P0∂ξ/∂x to the particle ve-
locity v = ∂ξ/∂t is referred to as the specific impedance,
z0 = p/v = ρc0.

The appearance of γ in the expression for the ve-
locity of sound reflects the adiabatic nature of acoustic
waves. This arises because acoustic wavelengths are
far too long to allow any significant equalisation of
the longitudinal temperature fluctuations arising from
the compressions and rarefactions of a sound wave. In
free space longitudinal heat flow between the fluctu-
ating regions is only important at very high ultrasonic
frequencies (MHz), where it leads to significant at-
tenuation. The major source of attenuation of freely
propagating acoustic sound waves arises from the water
vapour present. However, both viscous and transverse
thermal losses to the side walls of woodwind and brass
instruments can result in significant attenuation, as de-
scribed later.

The above expressions neglect first-order, nonlin-
ear, corrections to the compressibility, proportional to
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∂ξ/∂x, and other inertial correction terms in the nonlin-
ear Navier–Stokes equation. This approximation breaks
down at the very high intensities in the bores of the
trumpet and trombone when played very loudly [15.9],
which results in shockwave propagation, with a tran-
sition from a relatively smooth to a very brassy sound
(son cuivré in French). For the present, such corrections
will be neglected.

The speed of sound in air depends on the tempera-
ture θ (degrees centigrade) and, to a lesser extent, on the
humidity. For 50% humidity,

c0(θ) = 332 (1+ θ/273)1/2 ≈ 332(1+1.710−3θ) ,

(15.8)

giving a value of 343 m/s at 20 ◦C. Note that the air
inside a woodwind or brass instrument, once the instru-
ment is warmed up, will always be warm and humid,
which will affect the playing pitch.

Pressure and Intensity
The intensity I of sound radiated by a musical instru-
ment is given by the flow of acoustic energy (1/2ρv2

per unit volume) crossing unit area per unit time,

I = 1

2
ρc0v

2
max = 1

2
z0v

2
max = 1

2z0
p2

max . (15.9)

Sound pressure levels (SPL) are measured in dB rela-
tive to a reference sound pressure p0 of 2 × 10−5 Pa or
N/m2, so that SPL(dB) = 20 log10(p/p0). The reference
pressure is approximately equal to the lowest level of
sound that can be heard at around 1–3 kHz in a noise-
free environment. Relative changes in sound pressure
levels are given by 20 log10(p1/p2) dB. A sound pres-
sure of 2 × 10−5 Pa is very close to an intensity of
I0 = 10−12 W/m2, which is used to define the almost
identical intensity level, IL(dB) = 10 log10(I/I0). The
difference between the factor 10 and 20 arises because
sound intensity is proportional to the square of the
sound pressure.

Spherical Waves
In free space, sound from a localised source will
propagate as a spherical wave satisfying the three-
dimensional wave equation (Fletcher and Ross-
ing [15.5, Sect. 6.2]), with pressure

p(r) = A
ei(ωt−kr)

r
(15.10)

and particle velocity

v(r) = A

z0

(
1+ 1

ikr

)
ei(ωt−kr)

r
. (15.11)

Near and Far Fields
Note that, unlike plane-wave solutions, the velocity and
pressure differ in phase by an amount that depends on
the distance from the source and the wavelength. Close
to the source, in the near field (kr � 1), the pressure and
induced velocity are in phase quadrature. Such terms
therefore involve no work being done (proportional to∫

pvdt) and hence no radiation of sound. The near-field
term describes the motion of the air that is forced to
vibrate backwards and forwards with the vibrating sur-
face of the source, which simply adds inertial mass to
the vibrating mode. This term is responsible for the end
correction (ΔL ≈ a, where a is the pipe radius), which
extends the effective length of an open-ended vibrat-
ing air column. The additional inertial mass also lowers
the vibrational frequency of the relatively light vibrating
membranes of a stretched drum skin.

In contrast, in the far field (kr � 1), the pressure is
in phase with the velocity, so that work is done on the
surrounding gas. This accounts for the fact that sound
radiation varies in intensity as 1/r2.

The transition from the near- to far-field regions oc-
curs when r ≈ λ/2π, where λ is the acoustic wavelength
of the radiated sound. At 340 Hz, this corresponds to
a distance of only ≈15 cm. The difference in the fre-
quency dependencies of the near- and far-field sound
means that a violinist or piccolo player, with their ears
relatively close to the instrument, experiences a rather
different sound from that heard by the listener in the
far field. However, for most musical instruments, the
distance between the source of radiated sound and the
player’s head is already at least λ/2, so that even the
player is in the far field (kr > 1), at least for the high-
frequency partials of a musical tone.

Directionality and Multipole Sources
At very low frequencies, the acoustic wavelength λ is
often considerably larger than the physical size of the
radiating source (e.g. the open ends of woodwind and
brass instrument bores and the body of most stringed
instruments), which can then be considered as a point
source radiating isotropically into space. However, as
soon as the wavelength becomes comparable with the
size of the radiating source, the radiated sound will ac-
quire directional properties determined by the geometry
of the instrument and the vibrational characteristics of
the excited modes. The directional properties can then
be described by treating the instrument as a superposi-
tion of monopole, dipole, quadrupole and higher-order
multipole acoustic sources, with the directional radiat-
ing properties shown schematically in Fig. 15.2.
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Fig. 15.2a–c Typical radiation patterns and intensities for
(a) monopole, (b) dipole and (c) quadrupole sources. The
two colours represent monopole sources and sound pres-
sures of opposite signs

A monopole source can be considered as a pulsating
sphere of radius a with surface velocity veiωt result-
ing in a pulsating volume source 4πa2veiωt = Q eiωt .
Equations (15.10) and (15.11) describe the sound field
generated by such a source. Equating the velocities on
the surface of the sphere to that of the induced air mo-
tion gives, at low frequencies such that ka � 1,

p(r, t) = iωρ

4πr
Q ei(ωt−kr) . (15.12)

The radiated power P is then given by 1
2 p2/ρc0 inte-

grated over the surface of a sphere at radius r, so that

P(ka � 1) = ω2ρQ2

8πc0
. (15.13)

In the high-frequency limit (ka � 1), when the acoustic
wavelength is much less than the size of the sphere,

P(ka � 1) = ρc0

8πa2
Q2 = 4πa2 1

2
z0v

2 . (15.14)

Equation (15.12) is a special case of the general re-
sult that, at sufficiently high frequencies such that the
size of the radiating object � λ, the radiated sound is
simply 1

2 z0v
2 per unit area, though the sound at a dis-

tance also has to take into account the phase differences
from different parts of the vibrating surface. Note that

P(ka � 1)

P(ka � 1)
= (ka)2 . (15.15)

The radiated sound intensity from a monopole source
therefore initially increases with the square of the fre-

quency but becomes independent of frequency above
the crossover frequency when ka > 1. Hence members
of the violin family and guitar families are rather poor
acoustic radiators for the fundamental component of
notes played on their lowest strings, as are wind and
brass instruments, which radiate sound from the rela-
tively small open ends and side holes. However, it is
only because of such low radiation efficiencies, that
strong resonances can be excited in the air columns of
brass and woodwind instruments.

A dipole source can be formed by displacing two
oppositely signed monopoles ±Q a short distance along
the x-, y- or z-directions. For a dipole aligned along
the x-axis of strength qx = QΔx. The sound pressure
is simply the difference in pressure from monopoles of
opposite sign a distance Δx apart, so that in the far field
(kr � 1)

p(θ)dipole = p(θ)monopole × (ikΔx) cos θ . (15.16)

A polar plot of the sound pressure from a dipole is il-
lustrated schematically in Fig. 15.2, with intensity and
radiated power now proportional to ω4 and q2

x . In gen-
eral, any radiating three-dimensional object will involve
three dipole components (px , py and pz), with radiation
lobes along the three directions.

A quadrupole source is generated by two oppo-
sitely signed dipole sources displaced a small distance
along the x- ,y-, or z-directions (e.g. of the general
form qxy = QΔxΔy). The pressure is now given by
the differential of the dipole radiation in the newly dis-
placed direction, so that, for example, the pressure from
a quadrupole source qxy in the xy-plane is given by

pdipole = pmonopole × (−k2ΔxΔy) cos θ sin θ ,

(15.17)

as illustrated in Fig. 15.2. Note that each time the order
of the multipole source increases, the radiated pres-
sure depends on one higher power of frequency, while
the intensity increases by two powers of the frequency.
The radiated power from multipole sources therefore
decreases dramatically at low frequencies relative to
that of a monopole source. At low frequencies, radi-
ation from most musical instruments is dominated by
monopole components.

In general, six quadrupole sources (qxx, . . . , qyz)
would be required to describe radiation from a three-
dimensional source. However, because the acoustic
power radiated by a quadrupole source at low frequen-
cies is proportional to ω6, one need often only consider
the monopole and three dipole components to describe
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574 Part E Music, Speech, Electroacoustics

the low-frequency radiation pattern of instruments like
the violin and guitar family, as described in a recent
study of the low-frequency radiativity of a number of
quality guitars by Hill et al. [15.10]. However, at high
frequencies, when λ is comparable with or less than the
size of an instrument, the above simplifications break
down. The directionality of the radiated sound then has
to be computed from the known velocities over the
whole surface, taking into account phase differences
and baffling effects from the body of the instrument.

Radiation from Surfaces
Many musical instruments produce sound from the vi-
brations of two-dimensional surfaces – like the plates
of a violin or the stretched membrane of a drum. Imag-
ine first a standing wave set up in the two-dimensional
xy-plane with displacements in the z-direction vary-
ing as sin(kx x)eiωt . We look for propagating sound
waves solutions radiating from the surface of the form
sin(kx x)ei(ωt−kz z), which must satisfy the wave equation
and hence the relationship,

k2
z = ω2

c2
0

− k2
x = ω2

(
1

c2
0

− 1

c2
m

)
, (15.18)

where cm is the phase velocity of transverse waves on
the membrane or plate in the xy-plane. Sound will there-
fore only propagate away from the surface (k2

z > 0)

0 10 (Hz)5 0 10 (Hz)5

a)

1 period

b)

1 period

2.2 s

Fig. 15.3a,b Comparison of the envelope, repetitive waveform and spectrum of (a) a synthesised sawtooth and (b) a note
played on an oboe

when cm > c0. If the sound velocity is greater than
the phase velocity in the plate or membrane, energy
will flow from regions of positive to negative vertical
displacements and vice versa, with an exponentially de-
caying sound field, varying as e−z/δ where δ = |kz|−1.

Typical dispersionless wave velocities for the
stretched drum heads of timpani are around 100 m/s
(Fletcher and Rossing [15.5, Sect. 18.1.2]), so that they
are not very efficient radiators of sound. This is par-
ticular relevant for asymmetrical modes, when sound
energy can flow from the regions of positive to negative
displacement and vice versa. However, for even modes,
the cancellation between adjacent regions moving out
of phase with each other can never be complete, so that
such modes will radiate more effectively.

A particularly interesting case occurs for stringed
instruments, where the phase velocity of the transverse
vibrations of the thin front and back plates increases
with frequency as ω1/2 (Sect. 15.2.6). Hence, below
a critical crossover or coincidence frequency, when the
phase velocity in the plates is less than the speed of
sound in air, standing waves on the vibrating plates are
relatively inefficient radiators of sound, while above the
crossover frequency the plates radiate sound rather effi-
ciently. Cremer [15.11] estimates the critical frequency
for a 4 mm-thick cello plate as 2.8 kHz; for a 2.5 mm
violin plate the equivalent frequency would be ≈ 2 kHz.
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Radiation from Wind Instruments
The holes at the ends or in the side walls of wind instru-
ments can be considered as piston-like radiation sources.
At high frequencies, such that ka � 1, where a is their
radius, the holes will be very efficient radiators radiating
acoustic energy ≈ 1/2z0v

2 per unit hole area. How-
ever, over most of the playing range ka � 1, so that the
radiation efficiency drops off as (ka)2, just like the spher-
ical monopole source. Most of the sound impinging on
the end of the instrument is therefore reflected, so that
strong acoustic resonances can be excited, as discussed
in the later section on woodwind and brass instruments.

15.1.3 The Anatomy of Musical Sounds

The singing voice, bowed string, and blown wind in-
struments produce continuous sounds with repetitive
waveforms giving musical notes with a well-defined
sense of musical pitch. In contrast, many percus-
sion instruments produce sounds with nonrepetitive
waveforms composed of a large number of unrelated
frequencies with no definite sense of pitch, such as
the side drum, cymbal or rattle. There are also other
stringed instruments and percussion instruments, such
as the guitar, piano, harp, xylophone, bells and gongs,
which produce relatively long sounds, where the slowly
decaying vibrations produce a definite sense of pitch.

In all such cases, the complexity of the waveforms
of real musical instruments distinguishes their sound
from the highly predictable sounds of simple electronic
synthesisers. This is why the sounds of computer-
generated synthesised instruments lack realism and are
musically unsatisfying. In this section, we introduce the
way that sound waveforms are analysed and described.

Sinusoidal Waves
The most important, but musically least interesting,
waveform is the pure sinusoid. This can be expressed
in several alternative forms,

a cos(2π ft +φ) = a cos(ωt +φ) = Re(a eiωt) ,

(15.19)

where a is in general complex to account for phase, f is
the frequency measured in Hz and equal to the inverse of
the period T , ω = 2π f is the angular frequency meas-
ured in radians per second, t is time, and φ is the phase,
which depends on the origin taken for time.

Any sound, however complex, can be described
in terms of a superposition of sinusoidal waveforms
with a spectrum of frequencies. Figure 15.3 contrasts
the envelopes, waveforms and spectra of a synthesised

sawtooth waveform and the much more complex and
musically interesting waveform of a note played on the
oboe ( provides an audio comparison). Note
the much more complex fluctuating envelope and less
predictable amplitudes of the frequency components in
the spectrum of the oboe.

As we will show later, in defining the sound and
quality of any musical instrument, the shape and fluc-
tuations in amplitude of the overall envelope are just as
important as the waveform and spectrum.

Range of Hearing and Musical Instruments
A young adult can usually hear musical sounds from
around 20 Hz to 16 kHz, with the high-frequency
response decreasing somewhat with age (typically
down to between 10–12 kHz for 60-year olds). Au-
dio provides a sequence of 1 s-long sine
waves starting from 25 Hz to 12.8 kHz, doubling in
frequency each time. Doubling the frequency of a sinu-
soidal wave is equivalent in musical terms of increasing
the pitch of the note by an octave. Audio is
a similar sequence of pure sine waves from 8 kHz to
18 kHz in 2 kHz steps. Any loss of sound at the low fre-
quencies in will almost certainly be due to
the limitations of the reproduction system used, which
is particularly poor below ≈ 200 Hz on most PC lap-
tops and notebooks, while the decrease in intensity at
high frequencies in simply reflects the loss
of high-frequency sensitivity of the ear (see Fig. 15.16
and Chap. 13 for more details on the amplitude and fre-
quency response of the human ear).

The above sounds should be compared with the
much smaller range of notes on a concert grand piano,
typically from the lowest note A0 at 27.5 Hz to the high-
est note C9 at 4.18 kHz, as illustrated in Fig. 15.4. The
nomenclature for musical notes is based on octave se-
quences of C-major scales with, for example, the note
C1 followed by the white keys D1, E1, F1, G1, A1,
B1, C2, D2,. . . . Alternatively, the octave is indicated by
a subscript (e.g. A4 is concert A). Where the white notes
are a tone apart, a black key is inserted to play the semi-
tone between the adjacent white keys. This is indicated
by the symbol # from the note below or  from the note
above. Figure 15.4 also illustrates the playing range of
many of the instruments to be considered in this chapter.

Frequency and Pitch
It is important to distinguish between the terms fre-
quency and pitch. The frequency of a waveform is
strictly only defined in terms of a continuous sinusoidal
waveform. In contrast, the waveforms of real musical
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Harp

Octave

A0 C1 A1 C2

1 2 3 4 5 6 7

A2 C3 A3 C4 A4 C5 A5 C6 A6 C7 A7 C8D E F G

27.5 55 110 220 440 880 1760 3520
33 66 132 264 528 1056 2112 4224

Guitar

Violin

Viola

Cello

Bass

Piccolo

Flute

Oboe

Cor-anglais

B-flat clarinet

Bass clarinet

Bassoon

Contra

Cornet

Trumpet

Bass trumpet

Trombone

Bass trombone

Middle C Concert A

B

Fig. 15.4 Notation used for notes of the musical scale and the playing range of classical western musical instruments.
Subdivisions for stringed instruments represent the tuning of the open strings

instruments are in general complex, as illustrated by
the oboe waveform in Fig. 15.3. However, despite such
complexity, the repetition frequency and period T can
still be defined provided the waveform does not vary
too rapidly with time. The periodicity of a note (meas-
ured in Hz) can then be defined as the inverse of T .
This is generally the note that the player reads from
the written music. However, as described later, a repeti-
tive waveform does not necessarily include a sinusoidal
component at the repetition frequency, an effect referred
to as the missing fundamental. Furthermore, depending
on the strength of the various sinusoidal components
present, there can often be an ambiguity in the pitch of
a note perceived by the listener. The subjective pitch,
when matched against a pure sinusoidal wave, can of-
ten be an octave below or above the repetition frequency.

The subjective pitch, as its name implies, can differ from
person to person and within the musical context of the
note being played.

Musical Intervals and Tuning
In western music the octave interval is divided into six
tones (a whole-tone scale) and 12 semitones (the chro-
matic scale). Today, an equal temperament, logarithmic
scale is used to tune a piano, with a fractional increase
in frequency of 21/12 = 1.059 (≈ 6%) between any two
notes a semitone apart. The fractional increase between
the frequencies of a given musical interval (a given
number of semitones) is then always the same, whatever
the starting note. Twelve successive semitones played
in sequence therefore raises the frequency by an octave
((21/12)12 = 2). Any music played on the piano key-
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board can therefore be transposed up or down by a given
number of semitones, changing the pitch but leaving the
relationship between the musical intervals unchanged.
Such a scale was advocated as early as 1581, in a treatise
by the lutenist Vincenzo Galileo (the father of Galileo
Galilei). Although it is sometimes claimed that Bach
exploited such a tuning in his 48 Preludes and Fugues,
which uses all possible major and minor keys of the di-
atonic scale, historical research now suggests that Bach
used a form of mean-tone tuning, which preserved some
of the characteristic qualities of music written in partic-
ular keys [15.1].

To provide a greater discrimination in the meas-
urements of frequency, the semitone is divided into 100
further logarithmic increments called cents. The octave
is therefore equivalent to 1200 cents and a quarter-tone
to ≈ 50 cents, with the exact relationship between fre-
quencies given by

interval = 1200

ln 2
ln( f2/ f1) cents (15.20)

corresponding to ≈ 1.73 × 103(Δ f/ f ) cents for small
fractional changes Δ f/ f .

Early musical scales were based on various variants
of the natural harmonic series of frequencies, fn = n f1,
where n is an integer (e.g. 200, 400, 600, . . . 1600 Hz),
illustrated by the audio . These notes corre-
spond to the harmonics produced when lightly touching
a bowed string at integral subdivisions of its length (1/2,
1/3, 1/4, etc.) . These simple divisions give
successive musical intervals of the octave, perfect fifth,
perfect fourth, major third and minor third, with fre-
quency ratios 2/1, 3/2, 4/3, 5/4 and 6/5, respectively.
The seventh member of the harmonic sequence has no
counterpart in traditional western classical music, al-
though it is sometimes used by modern composers for
special effect [15.12].

Just temperament corresponds to musical scales
based on these integer fraction intervals. The Pythag-
orean scale is based on the particularly consonant
intervals of the octave (2/1) and perfect fifth (3/2),
which can be used to generate individual intervals of
the form 3p/2q or 2p/3q , where p and q are positive
integers. Although the Pythagorean and just-tempered
scales coincide for the octave, perfect fifth and fourth,
there are musically significant differences in the tun-
ing for all other defined intervals, and all intervals other
than the octave differ slightly from those of the equally
tempered scale. A comparison between the musical in-
tervals of just and equal temperament tuning is shown
in Table 15.1, with the fractional mistuning indicated

Table 15.1 Principal intervals and differences between
just- and equal-temperament intervals

Interval Just Equal Δ f/ f
Just-equal cents

Octave 2/1 2.00 0

Perfect fifth 3/2 27/12 = 1.498 +2

Perfect fourth 4/3 25/12 = 1.334 −2

Major third 5/4 24/12 = 1.260 −13

Minor third 6/5 23/12 = 1.189 +15

Tone 9/8 22/12 = 1.122 −4

Semitone 16/15 21/12 = 1.066 +1

in cents. Because of the differences in tunings of the
musical intervals, music transposed from one key to
another will generally sound badly out of tune (partic-
ularly for commonly used intervals like the major and
minor third) – unlike those played on a modern equal-
tempered keyboard. Prior to the now almost universal
practice of tuning keyboard instruments to a equal-
tempered scale, many tuning schemes were devised
which partially overcame the problems of tuning when
playing in a succession of different keys (see Fletcher
and Rossing [15.5, Sect. 17.6] and Barbour [15.13]
for further discussion). Singers, stringed and wind in-
strument players can adjust the pitch of the notes they
produce to optimise the tuning with other performers
and for musical effect.

Figure 15.5 and audio illustrate the dif-
ference in the sounds of a major triad formed from the
just intervals (1, 5/4, 3/2) and the equivalent equal-
tempered scale intervals (1 : 1.260 : 1.498). The rational
Pythagorean intervals give a repetitive waveform of
constant amplitude, while the less-consonant, inhar-
monic, equal-tempered intervals have a nonrepetitive

Fig. 15.5 Wave envelope of a major triad chord based on
the just tuning scale followed by the same chord on the
equal-tempered scale, with pronounced beats in the ampli-
tude arising from the departures from harmonicity in the
frequencies of the major third and perfect fifth
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waveform with an easily discernable periodic beat in
amplitude resulting from the departures in harmonicity
of its component frequencies, as illustrated in Fig. 15.5.
Interestingly, the pitch of the equally tempered intervals
also sounds slightly higher, though both share the same
fundamental.

A sequence of upward fifths (frequency ratio 3/2)
and downward octaves (ratio 1/2) can be used to fill
in all the semitones of an octave scale on the piano
keyboard. However, the resulting octave formed from
a succession of 12 upward fifths and six downward
octaves gives a frequency ratio of (3/2)12/26 = 2.027,
which is significantly sharper (higher in frequency)
than a true octave. In practice, a skilled piano tuner
listens to the beats produced when playing the above in-
tervals and tunes the upward fifth slightly flat, so that the
sequence returns to the exact octave. However, there are
striking psychoacoustic effects, in addition to physical
shifts in the frequencies of upper partials arising from
the finite rigidity of the strings, which result in pianos
being tuned on a slightly stretched tuning scale with the
octaves purposely tuned sharp at higher frequencies and
flat at lower frequencies (Fletcher and Rossing [15.5,
Sect. 12.8]).

Repetitive Waveforms
Before considering the more complex waveforms of
musical instruments, we consider the simple square, tri-
angular, sawtooth and triangular repetitive waveforms
(audio ) and the corresponding Fourier spec-
tra illustrated in Fig. 15.6.

Fourier Theorem
Fourier showed that any repetitive waveform, f (t +nT )
= f (t), can be described as a linear combination of si-
nusoidal components with frequencies that are exact
multiples of the inverse repetition period T or physi-
cal pitch of the wave. This is formally expressed by the
Fourier theorem,

f (t) =
∞∑

n=−∞
cn einω1t , (15.21)

where ω1 = 2π/T and

cn = 1

T

T∫
0

f (t)e−iωt dt , (15.22)

where n takes on all positive and negative integer val-
ues. The Fourier coefficients cn can be evaluated by
performing the integral over any single period of the
waveform. In general, the Fourier coefficients will have
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Fig. 15.6 Typical repetitive waveforms (synthesised from
the first 100 components of a Fourier series) and the am-
plitudes of the first few partials normalised to the amplitude
of the fundamental

both real and imaginary components describing both the
amplitude and phase.

For simple waveforms, such as the square, sawtooth
and triangular waveforms, the origin of time can be cho-
sen to make the waveforms symmetric or antisymmetric
in time. The Fourier expansion can then be expressed in
terms of the even cosine or odd sine functions,

f (t) =
∞∑

n=0

⎧⎪⎨
⎪⎩

an sin(nω1t)

or

bn cos(nω1t)

⎫⎪⎬
⎪⎭ , (15.23)

with corresponding coefficients given by(
an

bn

)
= 2

T

T∫
0

f (t)

(
sin(nω1t)

cos(nω1t)

)
dt , (15.24)

where n is now restricted to positive integer values.
The factor 2 is replaced by unity for the zero frequency
average component b0.

The first few terms of the square, sawtooth and trian-
gular waveforms are listed in Table 15.2. The origin of
time has been selected to make the waves odd-functions
of time, as illustrated in Fig. 15.6, with the Fourier
series only including sine terms. The Fourier compo-
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nents at integral multiples of the fundamental repetition
frequency are referred to as partials, harmonics, or over-
tones. The nth partial has a frequency fn = n f1. This
differs from the terminology used by musicians, who re-
fer to f2 as the first harmonic or overtone. Interestingly,
a waveform depends critically on the sign (phase) of the
individual Fourier components. In contrast, the ear is
largely insensitive to the phase of the individual partials,
with little change in the perceived sound when the sign
or phase of a component partial is changed, though the
waveforms will be very different.

For an arbitrarily chosen origin of time, the Fourier
expansion will include both sine and cosine terms. The
energy or intensity is proportional to the resultant am-
plitudes squared, a2

n +b2
n , which is independent of the

origin of time. The phase φn is given by tan−1(bn/an).
The spectrum of a waveform is often plotted in terms of
the modulus of the amplitude as a function of frequency,
without reference to phase, as in Fig. 15.6. However,
measurements of both amplitude and phase are impor-
tant in any detailed comparison with theoretical models
and in analytic measurements, such as modal analysis.

The square and sawtooth waveforms are closely re-
lated to the waveforms excited on bowed and plucked

Clarinet
D4 #

(ms)
0 25

1

0.5

0

–0.5

–1
5 10 15 20

(Hz)
0 2000

1

0.5

0
500 1000 1500

Violin
G3

(ms)
0 25

1

0.5

0

–0.5

–1
5 10 15 20

(Hz)
0 2000

1

0.5

0
500 1000 1500

Fig. 15.7 Short-period samples of clarinet (D#4) and bowed violin (G3) tones and the corresponding Fourier spectra. The
vertical scales are linear

Table 15.2 Fourier expansions of the square, sawtooth and triangu-
lar waveforms

Square
4

π

(
sin ω1t + 1

3
sin 3ω1t + 1

5
sin 5ω1t . . .

)

Sawtooth
2

π

(
sin ω1t − 1

2
sin 2ω1t + 1

3
sin 3ω1t − 1

4
sin 4ω1t . . .

)

Triangular
2

π

(
sin ω1t − 1

32
sin 3ω1t + 1

52
sin 5ω1t . . .

)

strings and loudly played notes on wind and brass in-
struments. The discontinuities in waveform generate
a very rich harmonic spectrum with Fourier components
or partials that decrease relatively slowly (as 1/n) with
increasing n. The strong higher partials give a much
harsher and more penetrating sound than simple sinu-
soids, which is why the oboe, which has a sound that is
very rich in higher partials, is used to sound concert A
when an orchestra tunes up. In contrast, the partials of
the triangular wave, with discontinuities in slope in-
stead of amplitude, decrease more rapidly as 1/n2, with
a resultant sound little different from that of a simple
sinusoidal wave.

Note the large difference between the sound of
a sawtooth waveform, which is closely related to the
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sound of an oboe in having a complete set of harmonic
components, and the hollow sound of the square wave-
form, which is more like the sound of the lowest notes
on a clarinet, with rather weak even-integer harmonics
or overtones on its lowest notes (Fig. 15.7).

Musical Waveforms and Spectra
The waveforms produced by musical instruments are
generally far more complicated than the above sim-
ple examples, as already illustrated for an oboe note
in Fig. 15.3. Waveforms and associated spectra of the
clarinet note D#4 (309 Hz) and the violin bowed open-
G-string G3 (195 Hz) are illustrated in Fig. 15.7. These
are simply representative waveforms. Unlike the im-
pression given in some elementary textbooks, there is
no such thing as a defining violin or clarinet wave-
form or spectrum. Both the waveforms and the spectra
change significantly from one note to the next – and
even within a note when played with vibrato, particu-
larly on stringed instruments. Despite the complexity
of the waveforms, any repetitive waveform can be de-
scribed as a linear superposition of sine waves, with
frequencies that are integer multiples of the fundamen-
tal, as illustrated by the spectra.

Plotting the amplitudes of the Fourier coefficients
on a linear scale often highlights the physical processes
involved in the production of the sound. For example,
the relatively small amplitudes of the second harmonic
or partial in the sound of the clarinet reflects the absence
of even-n modes of a cylindrical tube closed at one end,
which approximates to that of the clarinet. Similarly,
the small amplitude of the first partial in the sound of
a violin reflects the absence of efficient radiating modes
at low frequencies. However, because of the very wide
dynamic range of hearing (a factor of ≈ 1010 –1012 in
intensity), it is often more appropriate to plot the Fourier
coefficients in decibels on a logarithmic scale. Fig-
ure 15.8 shows the spectrum for clarinet and violin notes
re-plotted on a dB scale, which illustrates the strength
of all the partials over a very wide dynamical range. For
bowed instruments such as the cello, well over 40 har-
monic partials can be identified below 8 kHz. The sound
of an instrument will be determined by all such compo-
nents and not simply by the fundamental, which may
make a relatively small contribution to the perceived
sound. This is illustrated for a scale played on the violin
with each note first played as recorded and then with the
fundamental component removed by a digital filter (au-
dio ). The lowest notes of the scale, for which
the fundamental component is already very weak, are
little affected by the removal of the fundamental com-

(dB)
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0
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–40

–60
1 2 3

Clarinet D5#

(dB)

(kHz)
0 4

0

–20

–40

–60
1 2 3

Violin G4

Fig. 15.8 Typical spectra for a clarinet and violin note plot-
ted on a dB scale illustrating the large number of harmonics
or overtones excited by bowed and blown instruments

ponent; however, the sound gets progressively thinner
in the second half of the scale for notes for which the
fundamental partial makes an increasingly significant
contribution to the richness or warmth of the sound.

Transient and Non-Repetitive Tones
No musical note lasts for ever, so that musical sounds
are all, to some extent, transient. Moreover, the sound
of many percussion instruments is composed of many
strongly inharmonic partials, with no regime in which
the waveforms can be considered even quasi-repetitive.
Nevertheless, one can still use the Fourier theorem to
extract the spectrum of such a note, by considering each
transient signal as one of a sequence of such transients
repeated, say, every second, minute or even year. The
spectrum of such a repeated waveform will therefore in-
volve frequency components at integer multiples of the
inverse repetition period, which we can make as long
as we choose. In the limit of infinitely long repetition
times, the Fourier series of a nonrepeating waveform
can therefore be replaced by a continuous spectral dis-
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tribution over all possible frequencies, known as the
Fourier transform F(ω),

f (t) =
∞∫

−∞
F(ω)eiωt dt , (15.25)

where

F(ω) = 1

2π

∞∫
−∞

f (t)e−iωt dt . (15.26)

The Fourier transform spectra of important nonrepet-
itive waveforms are shown in Fig. 15.9. In all cases,
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Fig. 15.9 Fourier transforms of transient waveforms
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Fig. 15.10 Envelope, typical short-period waveform and spectrum for the sounds of a ratchet, cymbal and timpani

the width Δ f of the Fourier spectrum is inversely pro-
portional to the length τ of the input waveform, with
Δ f τ ≈ 1. For a rectangular pulse, the spectrum ex-
tends over a rather wide frequency range with the first
zero when f τ = 1, but with many ripples of decreas-
ing amplitude extending to higher frequencies. For an
impulse of negligible width (the delta-function), the
spectrum is flat out to very high frequencies. The spec-
trum of a Gaussian waveform varying as exp[−(t/τ)2]
is also a Gaussian proportional to exp[−(π f τ)2], with
a width Δ f = 1/πτ . Similarly, the spectrum of a sinu-
soidal waveform with a Gaussian envelope of width τ is
broadened by Δ f = 1/πτ .

Any waveform that involves variations on a time
scale τ will have Fourier components extending out to
frequencies ≈ 1/τ . To reproduce such waveforms faith-
fully, the bandwidth of any recording or reproduction
system must therefore extend to frequencies of at least
1/τ . Examples of nonrepetitive waveforms and their
associated spectra are illustrated in Fig. 15.10 for an
orchestral rattle, a cymbal crash and timpani.

The ratchet sound consists of a sequence of short
clicks illustrated by the selected short-section wave-
form. The spectrum is very broad with no individual
frequencies particularly dominant. The crash of a cym-
bal generates a very large number of very closely spaced
resonances, which appear as a fairly random set of
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582 Part E Music, Speech, Electroacoustics

peaks giving an overall broadband spectrum. The tim-
pani spectrum shows a small number of large peaks
corresponding to the prominent modes of vibration of
the drum head, superimposed on a very wide-band
spectrum largely associated with the initial transients
involving sound from all parts of drum.

Digital Recording
Nowadays almost all sound is recorded digitally using
an analogue-to-digital converter (ADC). This converts
the continuously varying analogue input signal into
a stream of numbers, which can be recorded digitally on
a computer or compact disc. Audio signals are typically
recorded at a sampling rate of 44.1 kHz with 16-bit reso-
lution corresponding to 1 part in 216. This allows signals
to be recorded in 65 536 equally divided levels between
the maximum positive and negative input signals (i. e.
between ±32.8 k levels).

For the highest-quality digital recordings, even
faster recording rates with higher-bit resolution are
used (typically 24-bit sampling at 96 kHz). This al-
lows for over-sampling of the recorded signal, so that
signals can be averaged, any errors detected and elim-
inated, and filtered more easily. As already noted, the
dynamic range of human hearing can be as large as
100 dB. To exploit such a large range and to capture
the details of both loud and soft sounds from a large
orchestra accurately requires the recording system to
have a large dynamic range. Table 15.3 shows the
dynamic range in terms of the number of bits used
to record the sound. Audio illustrates the
greatly enhanced signal-to-noise ratio and hence in-
creased dynamic range when sound is recorded at 16-bit
rather than 8-bit resolution.

Aliasing
When sound is recorded digitally, ambiguities can arise
when any of the input frequencies is larger than half
the sampling rate fD. This is known as the Nyquist
limit fNyquist = fD/2. For example, if a 2 kHz sine wave
were to be sampled at 2 kHz, the digital signal would
be recorded at exactly the same point of the waveform
each cycle. The recorded digital signal would then be

Table 15.3 Dynamic range of an analogue-to-digital con-
verter (ADC)

N-bit ADC Dynamic range ±2n−1 Dynamic range (dB)

8 bit 128 42

16 bit 32.8 k 90

24 bit 8.39 M 138

indistinguishable from a DC signal. It can easily be
shown that sinusoidal inputs at fNyquist +Δ f give the
same digital output as at fNyquist −Δ f and that the
recorded signal is the same for all frequencies differ-
ing in frequency by the digitising frequency, 2 fNyquist.
Thus for a steadily increasing input frequency the dig-
ital output is equivalent to that of a frequency which
first increases up to fNyquist then decreases to zero
when fin = fD = 2 fNyquist, with the process repeating
for higher input frequencies, as illustrated in Fig. 15.11.
In any replay system, an analogue output is gener-
ated that assumes a smooth curve between the sampled
points. Hence, recorded frequencies above the Nyquist
limit will be misinterpreted and will produce sounds be-
low fNyquist with no harmonic relevance to the original
input.

This ambiguity is illustrated in audio , in
which a sinusoidal input is swept in frequency from
200 Hz to 6 kHz. This is first recorded at 22.05 kHz,
when aliasing is not a problem, and then at 6 kHz,
when halfway through the increasing frequency signal,
at 3 kHz, the replayed sound starts to descend to zero
frequency at the end of the sweep, when the input sig-
nal has the same frequency as the sampling rate. The
single-frequency sweep is then followed by an ascend-
ing major triad (with intervals in the ratios 1 : 5/4 : 3/2)
recorded at 6 kHz, which illustrating the severe prob-
lems of aliasing in terms of musical harmonies, as soon
as any of the higher-frequency components in a signal
exceed the Nyquist limit, with the frequency of some
partials ascending while others are descending.

To avoid such problems, a high-frequency cut-off
input filter is generally used, with a cut-off frequency
slightly below the Nyquist frequency (see Chap. 14 by
Hartmann for further details).

fequiv

fNyquist 2fNyquist 3fNyquist finput

Fig. 15.11 Ambiguity of digital output for a steadily in-
creasing frequency exceeding the Nyquist limit
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Table 15.4 Decoded WAVE file information

Data provided Typical example

Mono (1), stereo (2) 2

Data acquisition rate 2.205 × 104

Resolution in bits 16

Data per second 4.41 × 104

First measurement from left channel 237

Simultaneous measurement −1356

from right channel

Second measurement from left channel 456

Simultaneous measurement −1972

from right channel

Repeated sequence until end . . .

of recorded sound

Sound File Formats
A sound signal is frequently recorded and stored as an
encoded WAVE file of the generic form *.wav, which
includes additional information on data acquisition rate,
stereo or mono format and bit resolution. The decoded
structure of a WAVE file is shown in Table 15.4.

Recording audio signals as WAVE files is very
expensive in memory, with 1 hour of stereo music
recorded at 22 kHz requiring ≈ 300 MB. Music files on
CDs are encoded so that the input is redistributed over
time and therefore over the surface of the disc. This en-
ables the original signal to be reproduced even in the
presence of dust, scratches and other small imperfec-
tions on the disc surface, eliminating the clicks that
were a familiar feature of older vinyl records. More so-
phisticated, adaptive, encoding schemes can be used to
significantly reduce the amount of memory used, such
as the now widely used mp3 format. An algorithm is
used, based on physical principles and on the way the
ear responds to musical sounds, to continuously anal-
yse and process the incoming data. The input data can
then be recorded using a much reduced number of bits,
in much the same sort of way that digital pictures are
encoded more efficiently in ZIP files and compact im-
age formats. The information used to encode the digital
signal is also recorded, so that the processed data can
be unscrambled on playback with relatively little loss in
perceived quality.

Discrete Fourier Transform
The digital form of the recorded data allows cer-
tain computational efficiencies in calculating the
Fourier spectrum. Consider a recorded sample of
N measurements, corresponding to a sample of length
Ts = N/ fD. To calculate the spectrum, this data set is

assumed to repeat indefinitely, to form a continuous
waveform with a repetition frequency. From the Fourier
theorem, the resulting spectrum is composed of Fourier
components that are exact multiples of the repetition
frequency, so that fn = n/Ts. Hence, a 1 s set of data
points will give a discrete Fourier spectrum with fre-
quencies at 1, 2, . . .n. . .Hz. In practice, the number of
Fourier components is limited to N/2, because each
component has both an amplitude and a phase, which
requires at least two independent measurements to be
made per Fourier component.

Windowing Functions
Using the sampled waveform to form a continuously re-
peating waveform will, in general, introduce a repeating
discontinuity Δ at the beginning and end of each re-
peated data set, since the start and end values will not
usually be the same. Any such discontinuity will gen-
erate spurious contributions to the spectrum, with addi-
tional Fourier coefficients with amplitudes proportional
to Δ/n. To circumvent this problem, a windowing func-
tion is used. This applies a smooth envelope to the data
set, which reduces the values at the start and end to zero,
thus eliminating the discontinuities. However, as de-
scribed above, the application of such an envelope will
give an extra width Δ f ≈ 1/Ts to the spectral features.

A typical windowing function is the Hanning func-
tion sin2(2πt/Ts). A number of other windowing func-
tions are illustrated in Fig. 15.12, each of which has
advantages for specific applications [15.14]. The Han-
ning windowing is widely used for general-purpose
measurements, while the Hamming function is used to
separate closely spaced sine waves. In general there is
a trade-off between the accuracy that can be achieved in

Amplitude

Time
0.0 1.0

1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4 term Blackmann –
Harris (BH)

Hanning

7 term BH

8 term BH

Constant

Fig. 15.12 Representative windowing functions (after
[15.14])

Part
E

1
5
.1



584 Part E Music, Speech, Electroacoustics

determining the frequency of individual spectral com-
ponents and the width of the low-amplitude side lobes
generated by application of a windowing function. Vari-
ous forms of the Blackman–Harris windowing function
can be used to optimise the fast Fourier transform (FFT)
for specific measurements. Windowing need not be used
for the accurate measurements of widely separated sinu-
soidal waves with similar amplitudes, though one should
be aware of the existence of the rather wide side lobes
generated unless the sampling period is an exact integer
multiple of the period of the waveform being measured.

Fast Fourier Transform (FFT)
To determining the amplitude and phase of the N /2
Fourier components from N input measurements re-
quires the inversion of an N × N matrix, requiring
a computation time proportional to N2. However, if N
is an integral power of 2 (e.g. 28 = 256, 216 = 65 536),
the FFT computing algorithm can be used to reduce
the computing time by many orders of magnitude (by

Analogue
input

Windowing
function

Anti-
aliasing
filter

ADC FFT

FFT
spectrum

N = 2n samples at
rate fD, sample length

TS = N/fD

Amplitude and phase of
N/2 frequencies from

0 to fD /2 spaced 1/TS apart

Fig. 15.13 A typical digital sampling and FFT analysis
scheme

0 1 2 (kHz)

Fig. 15.14 Time sequence of delayed FFTs illustrating the
decay of excited modes of a violin, when the A-string is
plucked, with an expanded section of the frequency scale
for the lowest resonances excited. The time between suc-
cessive traces is 10 ms

a factor ≈ N/ log N). The speed of modern computers
is such that FFT spectra of the sound of musical in-
struments can be calculated and displayed with delays
of only a few milliseconds, though any such delay will
always be limited by the length and hence frequency
resolution of the data set being analysed.

A typical implementation of the FFT method for
spectral analysis is shown schematically in Fig. 15.13.
An input anti-aliasing filter is first used to remove
frequency components above the Nyquist limit fD/2;
an ADC then converts the incoming signal to a digi-
tal output to give a data set of N = 2n measurements
over a time T = N/ fD. A windowing function re-
moves problems from discontinuities at the start and
end of the recorded set of data, and the computer eval-
uates the FFT giving the amplitudes and phases of the
Fourier components at N/2 discrete frequencies spaced
1/T = fD/N Hz apart.

A sequence of FFTs from data taken over successive
short periods of time can be used to illustrate the decay
of individual partials in transient and decaying wave-
forms, such as those of a plucked string, a piano note
or struck bell, as illustrated for the sound of a plucked
violin A-string in Fig. 15.14.

Envelopes of Sound Waveforms
The time dependence or envelope of the amplitude of
a sound signal is just as important a factor in the recog-
nition of any musical instrument as the spectrum of the
sound produced. In general, the envelope has a starting
transient, a period with a quasi-constant amplitude for
a continuously bowed or blown instrument, and a period
of free decay, when the instrument is no longer being
excited. The sound produced by musical instruments
is also significantly affected by the acoustic environ-
ment in which the instrument is played, but this will be
ignored for the moment. Typical initial transients and
overall envelopes of single notes played on a violin,
clarinet and trumpet are shown in Fig. 15.15.

The starting transient provides an immediate clue to
the ear enabling the listener to recognise the instrument
being played quickly. However, the characteristic fluc-
tuations in frequency and amplitude within the overall
envelope and noise associated with the method of exci-
tation (e.g. bowing and blowing) are just as important
in the recognition of specific instruments. This can eas-
ily be shown by removing the starting transient from
a musical sound altogether, as illustrated in .
In this example comparisons are made between the
sounds of a violin, flute, trombone and oboe played
first with the initial 200 ms transient removed and then
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Violin

Clarinet

Trumpet

Initial transient
Decay

Decay

Decay

50 ms

50 ms

50 ms

Fig. 15.15 Typical wave envelopes for a violin, clarinet and
trumpet with a 50 ms expanded view of the initial starting
transient

with the transient reinserted. In each case the instru-
ment can immediately be identified even in the absence
of the starting transient. The audio example ends with
a constant amplitude sawtooth waveform having an un-
varying sound quite unlike the sound of any real musical
instrument.

Nevertheless, the starting transient and subsequent
decay of sound are extremely important in the identi-
fication of the sounds of plucked or hammered strings
and all percussion instruments, where the waveform and
spectral content changes very rapidly with time after the
start of the note. This is illustrated by the dramatic dif-
ference in the unrecognisable sound of a piano when
played backwards and then replayed in the normal di-
rection ( ).

Noise
There are several potential sources of fluctuations in the
envelope of musical instruments, which help to charac-
terise their characteristic sounds, such as the breathiness
induced by the noise of turbulent air passing over the
sound hole in a recorder, flute or organ pipe (Verge
and Hirschberg [15.15]) and irregularities in the sound
of any bowed instrument due to inherent noise in the
slip–stick bowing mechanism (McIntyre et al. [15.16]).

Amplitude and Frequency Modulation
Another important source of fluctuations is vibrato,
which involves periodic changes in the amplitude, fre-
quency, or spectral content of a note and often all
three (Meyer [15.17], Gough [15.18]). Vibrato is pro-
duced on a stringed instrument by periodically changing
the length of the bowed string by rocking the fin-
ger stopping the string backwards and forwards. In
singing (Prame [15.19]) and wind instruments (Gilbert
et al. [15.20]) vibrato is produced by periodic modula-
tions of the pressure exerted by the lungs or mouth on
the exciting reed or air passage.

Amplitude modulation of a sinusoidal frequency
component can be expressed as

y(t) = (1+am cos Ωt) sin ωt

= sin ωt + am

2
[sin(ω+Ω)t + sin(ω−Ω)t] ,

(15.27)

where Ω is the modulation frequency and a the modu-
lation parameter. Amplitude modulation introduces two
side-bands with amplitude am/2 at frequencies Ω above
and below that of the principal central component. The
side-bands have a net resultant that remains in phase
with the central component giving a fractional change
in amplitude [1+am cos Ωt].

Frequency modulation should more strictly be re-
ferred to as phase modulation, with the phase varying
as

φ(t) = ωt +af cos Ωt . (15.28)

where af is frequency-modulation index. The time-var-
ying frequency can then be defined by the rate of change
of phase, such that

dφ

dt
= ω−afΩ sin Ωt , (15.29)

with a fractional shift in frequency varying as
Δω(t)

ω
= −af

Ω

ω
sin Ωt . (15.30)

For small modulation index, a phase-modulated wave
can be written as

y(t) = sin ωt + af

2
[cos(ω+Ω)t + cos(ω−Ω)t] ,

(15.31)

which again results in equally spaced side-bands about
the central frequency with amplitude af/2, but with a re-
sultant now in phase-quadrature with that of the central
frequency giving the above phase modulation.

Because of the multi-resonant frequency response
of all musical instruments, changes in driving frequency
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also induce significant fluctuations in amplitude. Such
fluctuations are particularly important for the strongly
peaked multi-resonant instruments of the violin family,
as illustrated in Fig. 15.15.

15.1.4 Perception and Psychoacoustics

In this section, we briefly highlight a number of psy-
choacoustic aspects of particularly importance in any
discussion of musical acoustics. See also Chap. 13 on
Psychoacoustics by Brian Moore.

Sensitivity of Hearing
We have already commented that the brain interprets
both frequency and intensity on a logarithmic scale.
The recognition of familiar intervals such as the octave,
perfect fifth, irrespective of the absolute frequencies,
provide an immediate example, as is the use of the dB
scale in the measurement of sound levels.

In the 1930s, Fletcher and Munson [15.22] un-
dertook a survey of a large population of subjects to
investigate how the sensitivity of the ear varies with fre-
quency and intensity (and age). These measurements
were later refined by Robinson and Dadson [15.21].
Their published values for normal equal-loudness level
contours, shown in Fig. 15.16, were adopted by the
International Standards Organization, as the original
ISO 226 standard for audio sensitivity, with data
recently refined to define the new ISO 226:2003
standard.

The plotted curves show population-averaged equal
loudness contours for sinusoidal sound waves measured

Sound level, dB SPL

Frequency, kHz
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Threshold

Fig. 15.16 Robinson–Dadson curves (after [15.21]) with
contours of perceived equal loudness measured in phons
on a dB scale

in phons on a dB scale, which equate to sound pres-
sure level (SPL) measurements in dB at 1 kHz. The SPL
dB scale is based on a reference root-mean-square pres-
sure of 20 μPa (equivalent to 2 × 10−5 Nm−2), which is
very close to an qintensity of 10−12 Wm−2. The thresh-
old contour is the population-averaged minimum sound
pressure that can be just detected under the quietest
environmental conditions. Above sound pressures of
≈ 120 dB, the ear experiences pain and potential per-
manent damage.

The equal subjective sound level contours reflect the
dynamics of the ear’s detection system. There is a rapid
fall-off in sensitivity at low frequencies, where the ef-
ficiency of the outer ear drum considered as a piston
detector falls off as ω4. The fall-off at high frequencies
is due to the increasing inertial impedance of the ear
drum and bones in the inner ear. However, the fall-off is
partially compensated by peaks in sensitivity from the
resonances of the outer air channel between the ears and
ear-drum. Older people experience a considerable loss
in sensitivity at high frequencies, which is strongly cor-
related with age. Fortunately, the losses are at relatively
high frequencies and are generally not too important for
the appreciation of music.

The sensitivity of the ear is particularly strong in the
frequency range 2–6 kHz, which is important for recog-
nising the consonants in speech. One would therefore
expect such frequencies to be equally important in the
identification and assessment of sound quality of musi-
cal instruments. Below around 200–400 Hz there is an
increasingly rapid fall-off in sensitivity, which will dif-
ferentially affect the subjective loudness of the lower
partials of any complex musical sound at these and
lower frequencies. At low frequencies the contours of
equal amplitude are more closely spaced, so that the
effect of increasing the SLP by 20 dB increases the
subjective loudness by considerably more. Turning up
the volume on any reproduction system changes the
perceived quality from a rather thin sound to a more ex-
citing sound with a much stronger bass and a somewhat
stronger high-frequency response.

From a musical acoustics viewpoint, it is often sen-
sible to invert the equal contour plot, as the inverted
plot essentially acts as a subjective, mid-frequency band
filter, de-emphasising the perceived intensities of the
lowest and highest-frequency partials in a complex
waveform.

Loudness levels will clearly vary with distance from
any source. Sounds levels exceed 120 dB close to an
aeroplane on take off or close to a loudspeaker in a noisy
rock concert, resulting in potential permanent damage
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to the ear. Sound levels close to a heavily used motor-
way are typically around 90 dB, around 70 dB inside
a car, about 50 dB in an office, 30 dB inside a quiet
house at night, 20 dB in a very quiet recording studio
and 0 dB inside an anechoic chamber. At the quietest
levels, one begins to hear the beating of the heart and
workings of other internal organs, which can be a some-
what disquieting experience. There would clearly be no
evolutionary reason to have developed a more sensitive
hearing system.

Audio is a short orchestral excerpt
played at successively decreasing 6 dB steps (half the
amplitude or a quarter the intensity). Musicians indi-
cate the loudness with which music should be played
using the dynamic markings pp, p, mp, mf, f and ff,
which roughly correspond to a subjective doubling of
intensity between each level. Such levels are clearly
only relative, since absolute values will vary strongly
with the distance of the listener from the source with
a 12 dB decrease in intensity on doubling the distance in
free space. Although the dynamic range of an individual
note on a musical instrument rarely exceeds 20 dB, with
only about six distinguishable dynamic levels within
this range, the total dynamic range of an instrument is
more like 45 dB (Patterson [15.23]). However, there is
a much larger range of sounds produced by different in-
struments (e.g. the trombone and violin. The carrying
power, penetration and prominence of musical sounds
is not simply a matter of absolute intensity, but also de-
pends on the harmonic content and transient structures
of the complex tones produced. This helps to explain
how a solo violinist can still be heard over the massive
sound of a large orchestra.

Subjective Assessment of Pitch
We have already noted that the perceived pitch of a note
is determined by the inverse period of a waveform and
does not necessarily require the presence of a Fourier
component at that frequency. This is illustrated in au-
dio , in which simple sinusoidal tones at
300 Hz and 200 Hz are first played in succession and
then played together to produce a repeating waveform
sounding an octave lower at 100 Hz, which is then fol-
lowed by a pure 100 Hz tone of the same amplitude but
sounding very much quieter. The final sinusoidal tone at
100 Hz may well not be heard on a typical PC laptop or
notebook sound production systems, which radiate little
sound below around 200 Hz. The absence of a Fourier
component at the pitch of a complex tone is often re-
ferred to as the missing fundamental phenomenon. It is
important in many stringed instruments, which produce

very little sound at the actual frequency of their lowest
open strings.

The missing fundamental phenomenon is a psy-
choacoustic rather than a nonlinear effect produced by
a distortion of the waveform in the ear. It reflects the
way that the ear processes sounds in the time domain at
low frequencies (Moore [15.24] and Chap. 13).

The ability of the ear to recognise the pitch at which
an instrument is playing, even though the lower partials
of the sound of individual instruments may be miss-
ing is very important in sound reproduction systems. It
enables the listener to recognise the distinctive sounds
of all the instruments in an orchestra, even when the
recording or reproduction system may have a very poor
low-frequency response – as in early gramophones and
the loudspeakers used in cheap radios and typical PC
laptops and notebooks.

Combining tones to produce a lower tone is ex-
ploited on the quint combination stop on the organ to
produce low-pitched sounds (e.g. a 16 ft pipe and a
16 × 2/3 = 10.66 ft pipe sounding a fifth above, when
sounded together, reproduce the sound of a 32 ft pipe,
as illustrated for the combination of 200 and 300 Hz
sine waves in above). Interesting, the ef-
fect is nothing like so strong in playing two bowed
strings a fifth apart (e.g. open A and open E on a vi-
olin), presumably because of the very rich spectrum of
higher partials and independent fluctuations of the two
sounds. However, such sounds can often be heard when
two flutes play well-tuned intervals together. The early
18th century virtuoso violinist Tartini recognised the
existence of such mysterious tones, whenever pairs of
notes were played together in exact intonation (e.g. in-
teger ratios such as 3/2 (perfect fifth), 5/4 (major third),
6/5 (major third)), and reputedly attributed them to the
devil. The effect is small, but is still used by violinists
when practising playing such intervals exactly in tune.

In general, complex tones are composed of a num-
ber of spectral components which have no particular
harmonic relationship to each other. One then has to
consider what determines the subjective pitch of the
perceived sound. This involves the way the brain pro-
cesses the signal and the relative emphasis given to the
spectral components present, which will depend on their
frequencies and intensities. It is important to recog-
nise that the perceived pitch is not necessarily that of
the lowest-frequency component present. This is illus-
trated in in which the fundamental and first
octave are fixed in frequency, while an intermediate par-
tial is swept upwards from the lower to the higher note.
First the fundamental is sounded by itself and then with
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the octave added producing a note at the same pitch
but with a different timbre. An intermediate partial is
then added and swept upwards in steps from the lower
to the upper note, giving the sense of a note of con-
tinuously rising pitch, though the fundamental and its
octave remain fixed. Although the fundamental and oc-
tave remain fixed, the rising partial gives the sense of
a note of increasing pitch. In this particularly simple ex-
ample, it is relatively easy to identify and follow the
pitch of each harmonic component separately. However,
for a musical instrument like a gong or bell, with no
preconceived knowledge of the likely pitch of the indi-
vidual partials, this is far more difficult. The perceived
pitch of the strike note of a bell and many other percus-
sion instruments, with an inharmonic combination of
excited modes, depends in a rather complex way on the
relative weighting of the partials present and the musical
context.

In assessing the subjective pitch of a note there
can often be an ambiguity of an octave in the appar-
ent pitch. This is illustrated by the famous example of
the apparent, ever-rising pitch of a note generated by
a continuously rising comb of logarithmically spaced
frequencies passing through a fixed hearing band of
frequencies, [15.25], which appears to be in-
creasing in pitch at all times though clearly repeating
itself. This illustrates the circularity of pitch perception
and is the audio equivalent of the visual illusion of con-
tinuously rising steps which return to the same point in
space in an Escher drawing.

Precedence Effect
Another important time-domain phenomenon in the
perception of musical sounds is the Haas precedence
effect, which enables a listener to locate the source of

a distant sound from the small difference in time that
sound arriving at an angle to the head takes to reach
the two ears. The brain gives precedence to the sound
arriving first, even though later sounds from other direc-
tions may be significantly stronger. Any sound arriving
within the first 20–40 ms (depending somewhat on fre-
quency and intensity) of the first sound to arrive simply
adds to the perceived intensity of the first sound. This
is very important in musical performance, with reflec-
tions from close reflecting surfaces adding strongly to
the intensity and definition of the music.

The precedence effect is illustrated in .
This is a stereo recording of identical clicks recorded
on the left and right channels with a delay of 20 ms be-
tween them, which is then reversed. Although the clicks
are too close together for the ear to distinguish them
separately, when replayed through a pair of stereo loud-
speakers (not earphones), the sound will appear to come
from the speaker providing the earlier click.

The precedence effect is one of the ways in which
one can locate the origin of a particular sound within an
orchestra or the sound of a particular voice in a crowded
room. Once located, the brain is able to focus on
the subsequent source even against a highly confusing
background of other sources. It is likely that fluctua-
tions within the characteristic sound of an individual
person or musical instrument enable the brain to focus
continuously on a particular source. In musical acous-
tics one must always recognise the formidable power
of the brain’s auditory processing capabilities, which
is far beyond what can be achieved using present-day
computers. Consequently, even very small effects on
a physical measurement scale can have a very signifi-
cant effect on the listener’s subjective response to the
sound of a particular instrument.

15.2 Stringed Instruments

In this section we describe the production of sound
by the great variety of musical instruments based on
the plucking, bowing and striking of stretched strings.
This will include an introduction to the different modes
of string vibrations excited by the player, the transfer
of energy from the vibrating string to the acoustically
radiating structural vibrations of the body of the instru-
ment via the bridge, and the modification of such sound
by the environment in which the instrument is played.
Although the production of sound is based on the vibra-
tions of relatively simple structures, such as strings and
plates, it is the interactions between these, extending the

physics well beyond introductory text-book treatments,
which results in the characteristic sounds of individual
stringed instrument, as summarised in this section.

The Physics of Musical Instruments by Fletcher and
Rossing [15.5, Chaps. 9–11] provides an authoritative
account of the acoustics of a wide range of string in-
struments, and a comprehensive set of references to the
research literature prior to 1998. The four volumes of re-
search papers on violin acoustics, collated and edited by
Hutchins [15.26, 27] and Hutchins and Benade [15.28],
also includes excellent introductions to almost every as-
pect of the acoustics of instruments of the violin family,
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much of which is just as relevant to other stringed in-
struments. Carleen Hutchins has been an inspirational
figure in the field of violin acoustics. The Catgut Acous-
tical Society, which she cofounded, published a journal
and an earlier newsletter [15.29] containing many im-
portant papers on violin research of interest to both pro-
fessional acousticians and violin makers. Her inspira-
tion has encouraged a world-wide school of violin mak-
ers, who use scientific measurements and plate tuning
in particular as an aide to making high-quality instru-
ments. The comprehensive monograph on the Physics
of the Violin by Cremer [15.30] provides an invaluable
theoretical and experimental survey of research on in-
struments of the violin family, with particular emphasis
on the bowed string, the action of the bridge, the vibra-
tions of the body and the radiation of sound.

The production of sound by any stringed instrument
is based on the same acoustic principles. The player
excites the vibrations of a stretched string by bowing,
plucking or striking. Energy from the vibrating string is
then transferred via the supporting bridge to the acous-
tically radiating structural vibrations of the instrument.
The radiated sound is then conditioned by the perform-
ing environment.

There are many different types of stringed instru-
ments formally classified as chordophones. Harp-like
lyres appear in Sumerian art from around 2800 BC.
However, more primitive instruments, like a plucked
string stretched over a bent stick and resonated across
the mouth, probably date back to soon after the emer-
gence of man the hunter [15.31, 32].

Stokes [15.33] was the first to recognise that the
vibrating string was essentially a linear dipole, which
radiated a negligible amount of sound at low frequen-
cies (see also Rayleigh [15.3, Vol. 2, Sect. 341]). To
produce sound, the vibrating string has to excite the
vibrations of a much larger area radiating surface. For
bowed and plucked instruments, such as members of
violin, lute and guitar families, almost all the sound is
radiated by the shell of the instrument, with the acous-
tic output at low frequencies usually boosted by the
Helmholtz resonance of the air inside the instrument vi-
brating in and out of the f- or rose-holes cut into the
front plate. On larger instruments, such as the piano and
harp, the sound is radiated by a large soundboard.

For any continuously bowed (or blown) instrument,
the sound is conditioned by a complex feedback loop
involving the instrument, player and surrounding acous-
tic, illustrated schematically for the violin in Fig. 15.17.
The expert string player controls the intonation and
quality of the sound produced using slight adjustments

Player

Fingers
Hands
Arms
Body
Ears

Ears

ListenerInstrument

Acoustic

Aural

Tactile

Bowing
Plucking
Striking

Brain

Brain

Fig. 15.17 A schematic representation of the complex
feedback and sound radiation systems involved in the gen-
eration of sound by a bowed string instrument

of the position of the left-hand fingers stopping the
string, and the pressure, velocity and position of the
bow on the string, in response to the sound heard from
both the instrument and the surrounding acoustic. In
addition, there is direct tactile feedback through the fin-
gers of both the left hand controlling the pitch of the
note and the right hand controlling the bow. A simi-
lar overall feedback system is also involved in playing
woodwind or brass instrument. The perception of the
sound by both player and listener is also strongly influ-
enced by the performing acoustic and the way the brain
processes the sound received by the sensory organs in
the ears, as illustrated schematically in Fig. 15.17. All
such factors are involved in determining the perceived
quality of the sound produced by a musical instrument.
However, for simplicity and physical insight into the
various mechanisms involved, it is convenient to con-
sider the acoustics of musical instruments in terms of
their component parts, like the vibrating string, the sup-
porting bridge and shell of the instrument. Nevertheless,
it is important not to lose sight of the fact that the sound
produced by any instrument will involve the interactions
of all such subsystems and, even more importantly, the
skill of the player in exciting and controlling the vibra-
tions ultimately responsible for the sound produced.

15.2.1 String Vibrations

The transverse vibrations ξ(x, t) of a perfectly flex-
ible stretched string, of mass μ per unit length and
tension T , satisfy the one-dimensional wave equation
(d’Alembert, 1747)

∂2ξ

∂x2
= 1

c2
T

∂2ξ

∂t2
, (15.32)
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where the velocity of transverse waves cT = √
T/μ. The

tension T = ESΔL/L , where E is Young’s modulus, S
is the cross-sectional area of the string and ΔL/L is the
fractional stretching of the string over its length L . For
the relatively small transverse displacements of bowed
and plucked strings on musical instruments, changes
in tension can be ignored. However, at larger ampli-
tudes, a number of interesting nonlinear effects can be
observed, which will be described in Sect. 15.2.2.

A string can also support longitudinal and tor-
sional modes, with velocities cL = √

E/ρ and cθ =√
E/ρ(1+ν), where ρ is the density and ν is the Pois-

son ratio (≈ 0.35 for most materials). The Poisson
ratio ν is the ratio of transverse to longitudinal strain
when the material is stretched along a given direction.
For strings on musical instruments, the longitudinal
and torsional wave velocities are typically an order
of magnitude larger than the transverse velocity, with
cL/cT ≈ √

L/ΔL.
Although both longitudinal and torsional waves play

important roles in the detailed physics of the bowed,
plucked and struck string, the musically important
modes of string vibration are the transverse modes –
apart from unwanted squeaks from longitudinal modes,
which are often excited by the beginner on the violin.
Unless otherwise stated, we only consider transverse
waves and drop the defining subscript, unless a distinc-
tion needs to be made.

Waves on an ideal string are dispersionless (inde-
pendent of frequency), so that any wave initially excited
on the string will travel along the string without change
in amplitude or shape. D’Alembert obtained a general
solution of the wave equation of the form

f (x, t) = f1(x + ct)+ f2(x − ct) , (15.33)

corresponding to two waves of unchanging shape trav-
elling with wave velocity c in opposite directions along
the string.

If the string is supported rigidly at its ends, the prop-
agated waves are reflected with a change in sign giving
zero displacement at the nodal end-points. Each prop-
agating wave will continue to be reflected with change
of sign on reflection at each end. For a string of length
L , the string displacement will therefore return to its
initial state in multiples of the transit time 2L/c. The
same is also true for the velocity and acceleration wave-
forms, since, if f satisfies the wave equation, then so
must all its temporal and spatial derivatives, ∂n f/∂xn

and ∂n f/∂tn . It follows that the repetition frequency
of any freely propagating wave on a given length of
a stretched string will always be the same, however

c c
F

T T

v

Fig. 15.18 Transverse motion of string induced by a lo-
calised force, with the dotted lines indicating the displace-
ment at an earlier time

the string is excited (e.g. sinusoidally or by plucking,
bowing or striking).

Excitation of Vibrations
First consider a string subject to a localised force F ap-
plied suddenly at a point along its length. This causes
the string to move with velocity v at the point of contact
exciting transverse waves travelling outwards in both di-
rections with velocity c, as illustrated schematically in
Fig. 15.18.

In a short time δt, the transverse waves travel a dis-
tance cδt along the string while the string at the point
of contact is displaced by a transverse distance vδt. For
v � c, one can make the usual small-angle approxima-
tions, so that equating the applied force to the transverse
force from the deformed string, we obtain

v =
( c

2T

)
F = 1

2R0
F , (15.34)

where R0 = μc is the characteristic impedance (force/
induced velocity) of the string, which for an ideal string
ignoring intrinsic losses is purely resistive. The factor of
two in the above equation arises because the force acts
on the two semi-infinite lengths of string in parallel. In
practice, any discontinuity in slope will be rounded by
the finite flexibility of real strings, as discussed later.

Force on End-Supports
The characteristic resistance R0 of the string is an im-
portant parameter, because it determines the transfer of
energy from the vibrating string to the acoustically radi-
ating modes of the instrument via the supporting bridge
at the end of the string. The transverse force exerted by
the string on an end-support at the origin can be written
as FB = T (∂ξ/∂x)0. This induces a transverse velocity
at the point of string support given by

vB = 1

ZB
FB = AB FB , (15.35)

where ZB and AB are the frequency-dependent charac-
teristic impedance and admittance at the end-support. In
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general, the induced velocity at the point of string sup-
port on the supporting bridge will differ in phase from
that of the driving force, so that Z(ω) and A(ω) will be
complex quantities.

The bridge on a musical instrument is never a per-
fect node otherwise no energy could be transferred
to the radiating surfaces of the instrument. Waves on
the string are reflected at the bridge with a frequency-
dependent reflection coefficient r and a fractional loss
of energy ε given by

r = R0 − ZB

R0 + ZB
and ε = 2R0

(
ZB + Z∗

B

)
|R0 + ZB|2 , (15.36)

where Z∗
B is the complex conjugate of the complex

impedance at the terminating bridge.
For strings on musical instruments, R0 � |ZB|, so

that to a first approximation we can consider the bridge
as a node. If this were not so, the vibrational frequen-
cies of strings would by strongly perturbed from their
harmonic values. Nevertheless, first-order corrections
are important, as they determine the energy transfer
from the strings to the body of the instrument and
hence the intensity of the radiated sound. The coupling
via the bridge also affects the string vibrations them-
selves, with the resistive losses at the bridge causing
damping and the reactive component of the admittance
perturbing their vibrational frequencies, as described in
Sect. 15.2.3. Such perturbations can sometimes be so
large that it is no longer possible to sustain a stable
bowed note, resulting in what is known as a wolf-note
(for an illustration of a bad wolf-note on the cello listen
to ).

Before considering the interaction of real strings
with the supporting structure, we first consider the sim-
plest cases of sinusoidal and simple Helmholtz modes
of vibration on an ideal string with perfectly rigid end-
supports.

Sine-Wave Modes
An ideally flexible string stretched between rigid end-
supports a distance L apart can support standing waves,
or eigenmodes, with transverse string displacements
given by

ξn(x, t) = an sin
(nπx

L

)
cos (ωnt +φn) , (15.37)

where ωn = 2π fn and an is the amplitude of the nth
mode with frequency fn = nc/2L and phase φn . Such
modes can be considered as the sum of two sine
waves of the d’Alembert form (15.33) travelling in op-
posite directions. For an ideal string, these solutions
form a complete orthogonal set of eigenmodes with

a harmonic set of eigenfrequencies, which are integer
multiples of the fundamental frequency c/2L .

The resonant response of individual modes of
a metal or metal-covered string can be investigated,
for example, with a photosensitive device to detect the
transverse string motion induced by a sinusoidal current
passing through the string placed in a magnetic field to
give a transverse Lorentz force (Gough [15.34]).

Because the wave equation is linear, any waveform,
however excited, can be described as a Fourier sum of
harmonic modes, such that

ξn(x, t) =
∞∑

n=1

sin
(nπx

L

)

× [An cos (ωnt)+ Bn sin (ωnt)] , (15.38)

where the Fourier coefficients An and Bn are de-
termined by the initial transverse displacement and
velocity along the length of the string, so that

An = 2

L

L∫
0

ξ(x, 0) sin
(nπx

L

)
dx , (15.39)

and

Bn = 2

Lωn

L∫
0

dξ(x, 0)

dt
sin

(nπx

L

)
dx . (15.40)

The transverse force on the end-support at x = L is
given by

Fend = −T

(
∂ξ

∂x

)
L

= −T
∑

n

(nπ

L

)
(−1)n

× [An cos (ωntn)+ Bn sin (ωnt)] . (15.41)

Helmholtz Modes
Although many physicists and most musicians intu-
itively associate waves on strings with the sinusoidal
waves of textbook physics, in practice, the vibrations
of a bowed, plucked or struck string are very different.
Nevertheless, because such waves are repetitive, it fol-
lows from the Fourier theorem that all such solutions
can be described as a sum of sinusoidal wave com-
ponents. However, the motions of plucked, bowed and
struck strings are much more easily described by what
are known as Helmholtz solutions to the wave equa-
tion [15.35]. These are illustrated for the plucked and
bowed string in Fig. 15.19a,b.

The Helmholtz solutions are made up of straight-
line sections of string. There is no net force acting on
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c

v bow

c

c

a)

b)

P

Fig. 15.19a,b Helmholtz waveforms for (a) a centrally
plucked and (b) a bowed string. The horizontal arrows in-
dicate the directions that the kinks are travelling in and the
vertical arrows the directions of the moving string sections.
The different colours represent string displacements at dif-
ferent times. P indicates a typical bowing position along
the string

any small segment within any such section, because the
transverse tension forces acting on its ends are equal and
opposite. By Newton’s laws, any such segment must
therefore be either at rest or moving with constant ve-
locity. Only where there is a kink or discontinuity in the
slope between adjacent straight-line sections (equiva-
lent to a δ function in the spatial double derivative)
can there be any acceleration. From our earlier discus-
sion, any such kink must travel backwards and forwards
along the string at the transverse string velocity c, re-
versing its sign on reflection at the ends. As the kink
moves past a specific position along the string, the dif-
ference in the transverse components of the tension on
either side of the kink results in a localised impulse,
which changes the local velocity of the string from one
moving or stationary straight-line section to the next. In
general, there can be any number of Helmholtz kinks
travelling along the string in either direction, each kink
marking the boundary between straight-line sections ei-
ther at rest or moving with constant velocity. Similar
solutions also exist for torsional and longitudinal waves.

We now consider the Helmholtz wave solutions for
the plucked, bowed and hammered string in a little more
detail.

Plucked String
Consider an ideal string initially at rest with an initial
transverse displacement a at its mid-point, as illustrated
in Fig. 15.19a. On release, kinks will propagate away
from the central point in both directions with velocity c,

but points on the string beyond the kinks will remain at
rest. When the kink arrives at a particular point along
the string, the associated impulse will accelerate the
string from rest to the uniform velocity of the central
section of the string. After a time t, the solution there-
fore comprises a straight central section of the string of
width 2ct moving downward with constant velocity c
(2a/L), with the outer regions remaining at rest until
a kink arrives. After a time L/2c, the kinks separating
the straight-line sections reach the ends and are reflected
with change of sign. After half a single period L/c, the
initial displacement will therefore be reversed and will
return to the original displacement after one full period
2L/c. In the absence of damping, the process would
repeat indefinitely.

Now consider the transverse force acting on the
end-support responsible for exciting sound through the
induced motion of the supporting bridge and vibrational
modes of the instrument. The initial transverse force
on the bridge is 2Ta/L , where we assume a � L . This
force is unchanged until the first kink arrives. On reflec-
tion, the direction of the force is reversed and is reversed
again when the second kink returns after reflection from
the other end of the string. The two circulating kinks
therefore cause a reversal in sign of the force on the end-
supports every half-cycle, resulting in a square-wave
waveform, as illustrated in Fig. 15.20. The spectrum of
a square wave has Fourier components at odd multi-
ples n of the fundamental frequency with amplitudes
proportional to 1/n, Fig. 15.20b.

Note that plucking a string at the mid-point excites
only the odd-n modes. This is a consequence of the
initial force being applied at a node of all the even-n
modes. If a string is plucked at a fractional position 1/m
along its length, any partial that is an integer multiples
of m will be missing. This is illustrated in Fig. 15.21,
showing the spectra of the force on the supporting
bridge for a string plucked at points 1/4 and 1/7-th along
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a) b)

Fig. 15.20 (a) Square-wave time dependence of transverse
force acting on the bridge from a string plucked at its centre
and (b) the corresponding amplitudes of the odd Fourier
components n varying as 1/n (dotted curve)
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Fig. 15.21 Normalised Fourier amplitudes for the force on
the bridge for a string plucked 1/4 and 1/7 of the string
length from the bridge. The dashed curves show the 1/n
envelope of the partials of a sawtooth waveform

its length. By selecting the plucking position along the
string, the guitar or lute player can change the har-
monic content of the sound produced. When plucked
near the bridge, the sound of the plucked guitar string
is rather bright, with nearly all the prominent partials
almost equally strongly excited (audio ).

In practice, the finite width of the plucking point,
the finite rigidity of the string and the loss of energy
at the bridge perturb the Helmholtz wave, removing the
unphysical discontinuities of the idealised model. This
results in a more rapid decrease in the intensities of the
higher partials excited.

Bowed String
The motion of the bowed string can be described rather
accurately by a simple Helmholtz wave with a sin-
gle kink circulating backwards and forwards along the
string. The kink now separates two straight sections
moving with constant angular velocity about the nodal
end-points, as illustrated in Fig. 15.19b. This is again
a solution that satisfies Newton’s laws of motion, with
the only acceleration occurring as the kink arrives at
a particular point along the string. Such a wave is just as
valid a solution to the wave equation as a sine wave and
once excited would continue indefinitely, if there were
no damping or energy losses on reflection at the bow or
supported ends.

The energy required to excite and maintain such
a wave is provided by frictional forces between the
moving bow hair and the string, involving what is
known as the slip–stick excitation mechanism. For
a typical bowing position, marked by the line at P in
Fig. 15.19b, the friction between the bow and string
forces the string to remain in contact with the bow hair
moving with constant bow velocity. This is referred to
as the sticking regime and occurs all the time the kink
is travelling to the left of the bowing position. How-

ever, when the kink is between the bow and supporting
bridge, the string moves in the opposite direction to the
bow. This is the slipping regime. Such motion is pos-
sible because the sliding friction between the bow and
string can be much smaller than the sticking friction,
when the bow and string are in contact. In this highly
idealised model, the frictional force is assumed to be
infinite in the sticking regime and zero in the slipping
regime.

A more detailed discussion of the slip–stick bowing
mechanism will be given later (Sect. 15.2.3), taking into
account more-realistic models for the frictional forces
between the bow and string and the transfer of energy
from the string to the vibrational modes of the struc-
ture via the bridge. However, the idealised Helmholtz
motion provides a surprisingly good description of the
vibrations of real strings, as confirmed in early meas-
urements by Raman [15.36] and many more-recent
publications to be cited later.

The amplitude of the Helmholtz bowed waveform
is determined by the velocity of the bow vbow and
its distance LB from the bridge. The transverse dis-
placement of the kink maps out a parabolic path as it
traverses the string (Fig. 15.19b). At the mid-point, the
string displacement executes a triangular-wave motion
with time, moving with velocity ±2ca/L in alter-
nate half-periods, where the maximum displacement
a = (L2/4LB)(vB/c), for a � L . At the bowing posi-
tion, the transverse string velocity alternates between
vbow in the sticking regime and −vbow (L − LB) /LB in
the slipping regime, as illustrated in Fig. 15.22.

Displacement

v bow

Velocity

vslip

t

Fig. 15.22 Displacement and velocity of string at the bow-
ing point. The mark-to-space ratio in the velocity is the
same as the division of the string by the bow
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To increase the sound, the player can therefore ei-
ther use a faster bow speed or play with the bow nearer
the bridge. Schelling [15.37] has shown that more-
realistic frictional models limit the playing range, as
discussed later (Fig. 15.31).

The transverse force on the bridge produced by
an idealised Helmholtz bowed wave has a sawtooth-
waveform time dependence, as shown in Fig. 15.23.
Each time the kink is reflected at the bridge, the trans-
verse force acting on the bridge reverses in sign. It then
increases monotonically with time until the process re-
peats again. The sense of the sawtooth motion reverses
with bow direction. The spectrum of the force acting
on the bridge includes both even and odd partials, with
amplitudes varying as 1/n.

The spectrum of the sound produced by the lowest
plucked and bowed notes on stringed instruments can
typically involve 40 or more significant harmonic par-
tials, as illustrated in Fig. 15.24 by the spectrum of the
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Fig. 15.23 Sawtooth time-dependence of force on the end
supports from Helmholtz bowed waveform and corre-
sponding amplitudes of the normalised Fourier spectrum
with partials varying as 1/n

20 dB markers

(kHz)
0 41 2 3

Fig. 15.24 The spectrum of the intensity of the lowest
bowed note on a cello, illustrating the very large number
of partials contributing to the sound of the instrument

sound produced by a bowed cello open C-string (C2
at ∼ 64 Hz, audio ). The FFT spectrum is
plotted on a dB scale to illustrate the large range of am-
plitudes of the partials (Fourier components) excited.
The amplitudes of the individual partials depend not
only on the force at the bridge exerted by the plucked
or bowed strings, but also on the frequency depen-
dent response and radiative properties of the supporting
structure, as discussed later.

Struck String
Many musical instruments are played by striking the
string with a hammer. The hammer can be quite light
and hard, as used for playing the dulcimer, Japanese
koto and many other related Asian instruments, or rel-
atively heavy and soft, like the felted hammers on a pi-
ano. Some time after the initial impact, the striking ham-
mer bounces away from the string, leaving the string in
a free state of vibration. There are a few instruments,
such as the clavichord (Thwaites and Fletcher [15.38]),
where the string is struck with a metal bar (the tangent),
which remains in contact with the string, defining its
vibrating length and hence the note produced.

Consider first a point mass m moving with veloc-
ity v striking an ideal stretched string of infinite extent.
In any small increment of time, the moving mass will
generate a wave moving outwards from the point of im-
pact. This will result in a decelerating force on the mass
equal to 2Tv/c = mcv, as illustrated in Fig. 15.18. The
displacement of the mass will then be described by the
following equation of motion

m
d2ξm

dt2
= −2T

cT

dξm

dt
. (15.42)

The transverse velocity of the impacting mass therefore
decays exponentially with time as

dξm

dt
= vm exp (−t/τ) , (15.43)

with τ = mc/2T . The is identical to the dynamics of
a trapeze artist dropping onto a stretched wire, with

cTcT

vm(t)

Displacement Velocity cTcTa) b)

Fig. 15.25a,b Time sequences of (a) string displacement
and (b) string velocity for a mass striking a string
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Fig. 15.26 (a) Time dependence of the upward force acting
on a light hammer impacting a string in arbitrary units of
time, and (b) amplitudes of Fourier coefficients of force
acting on end supports for a hammer after hitting the string
1/7 of the length from an end-support. The continuous line
shows the continuous spectrum for a string of semi-infinite
length

waves of displacement and velocity travelling outwards
in both directions away from the point of impact, as
illustrated in Fig. 15.25.

In general, the string will be struck at a distance a
from one of its end-supports. Hence, in a time (a/2L)T0,
a reflected wave will return to the mass and exert an
additional force, which will tend to throw the mass
back off the string. However, because the mass can-
not change its velocity instantaneously, any returning
wave will be partially reflected, so that the mass acts
as a source of secondary reflected waves travelling out-
wards in both directions. The total force acting on the
hammer is then given by any residual force from the
first impact plus the subsequent forces created by the
succession of reflections from the end-supports. This
problem was first correctly solved by Hall, in the first
of four seminal papers on the string–piano hammer in-
teraction [15.39–42].

Hall showed that the first reflected wave exerts an
additional decelerating force g(t′) ≈ (1− t ′/τ)e−t′/τ on
the mass, where t′ is the time after arrival of the first re-
flection. This is illustrated in Fig. 15.26 for a relatively
light mass impacting the string at a position 1/7-th of
the string length from an end. Provided the mass is suf-
ficiently small, the force from the initial impact will
have decayed significantly by the time the first reflec-
tion returns, so that the force acting on the mass will
become negative (the dotted section in Fig. 15.26a), and
the mass will detach itself from the string. The string
will then move away from the mass and will vibrate
freely, provided the hammer is prevented from falling
back onto the string. An elaborate mechanism is used on
the piano to prevent this from happening (see Rossing,
Fletcher [15.5, Sect. 12.2]), while the zither or dul-

cimer player quickly lifts the hammer well away from
the string after the initial impact using much the same
striking action as a percussionist playing a drum, where
the same considerations apply.

The heavier the mass, the longer it will remain in
contact with the string. Hall showed that it may then
take several reflections from both ends of the string and
sometimes several periods of attachment and detach-
ment before the mass is finally thrown away from the
string. A sufficiently heavy mass will never bounce back
off the string.

In general, the waveforms excited on the string
will therefore be rather complicated functions of the
properties of the string, hammer and striking position.
However, for a very light mass (� mass of the string),
which is thrown off the string by the first reflected wave,
the Fourier coefficients of the induced velocity wave-
form, and hence the force on the end-supports, are given
by vn ≈ (

1+ e−1+inπα
)

sin (nπα), where α = a/L , il-
lustrated in Fig. 15.26b for an impact 1/7-th of the way
along the string. Note that the seventh harmonic is miss-
ing, as again expected from general arguments, since no
work can be transferred to a particular mode of string
vibration for a force applied at a nodal position.

In practice, the spectrum is affected by the finite
size of the hammer, multiple reflections occurring be-
fore the hammer is thrown from the string, and the
elastic and often hysteretic properties of the hammer
material [15.39].

Striking Tangent
On the clavichord (Fletcher, Rossing [15.5, Sect. 11.6]),
a string is struck by a rising end-support, or tangent,
which remains in contact with the string, exciting trans-
verse vibrations of the string on both sides of the
tangent. If we assume a simplified model in which the
rising tangent moves with constant velocity until its
final displacement a is reached, there is again a sim-
ple Helmholtz wave solution. In practice, the length of
string on one side of the tangent is damped, so that free
vibrations are only excited on one side of the striking
point. We therefore need only consider the length of
string between the tangent and the end connected to
the soundboard. The discontinuities ±v in the tangent
velocity, occurring on initial impact and on reaching
its final displacement after a time Δt, generate propa-
gating kinks and discontinuities of velocity of opposite
sign separated in time by Δt. The striking therefore
excites waves with kinks, velocities and displacements
along the string shown in Fig. 15.27a. The solutions are
again Helmholtz waves, but now with two kinks of op-
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Fig. 15.27a–c Waveforms for a tangent hitting and sticking
to string: (a) displacement and (b) velocity profiles along
the string, at a succession of times (different colours) af-
ter the tangent hits the string, and (c) the spectrum of the
resultant force on the end-supports for β = 3/8 (see text)

posite signs travelling around the string in the same
direction.

The Fourier coefficients of the velocity waveform
shown in Fig. 15.27b can be written as

cn ≈ 1

n

a

L ′
(

1− ein2πβ
)

, (15.44)

where β = Δt/T1 is the fraction of the period
T1 = L ′/2c of the freely vibrating length of string dur-
ing which the striking tangent moves from its initial to
final position. Figure 15.27 also includes the spectrum
of the force acting on the end-supports for β = 3/8.

Very similar modes to the above will be excited
during the time a heavy hammer is initially in con-
tact with the string on instruments like the dulcimer,
zither and piano. Such modes therefore contribute to
the initial transient sounds of such instruments. Another
related example is the use of col legno on stringed in-
struments, when the strings are struck by the wooden
part of the bow. By hitting the string at specific posi-
tions along the string, pitched initial transients can be
produced, creating special sound effects, nageln, some-
times used in avant-garde contemporary music, audio

). The above simplistic model for striking
a clavichord string will, in practice, be modified by the
way the player depresses the key, which is directly cou-
pled to the rising tangent, both during and after the
initial impact. The player can therefore influence the
initial transient and the after-sound, including the use
of a small amount of vibrato on the after-note, resulting
in a particularly responsive and intimate but quiet in-
strument, which was particularly popular in the baroque
period.

Real Strings
We now consider a number of departures from the above
idealised models for real strings including:

1. The finite size of the plucking or striking point
2. The finite flexibility of the string
3. Nonlinear effects.

In a subsequent section, we consider the even larger per-
turbations resulting from coupling to the acoustically
radiating modes of the body of the instrument via the
bridge.

Finite Spatial Variation
Idealised models for the string, with infinitely sharp
kinks produced by plucking, bowing or striking, in-
volve waveforms with discontinuities in amplitude and
slope and an infinite number of Fourier components
are clearly unphysical. In practice, physics and geo-
metrical limitations, like the finite size of the player’s
finger or plectrum, will always limit the maximum
curvature of the string at the point of excitation.
The kinks will therefore no longer be δ-functions
(infinitely narrow) but will have a finite size. For
illustration, travelling kinks can be modelled as Gaus-
sian waveforms, ξ±(x, t) ≈ exp[−(x ± ct)2/2 (Δx)2],
which approximate to δ-functions when Δx → 0,
where Δx characterises the width of the kink. The
Fourier transform of such a function has a Gaus-
sian distribution of Fourier coefficients varying as
c(k) ≈ exp[−(k/Δk)2/2], where ΔkΔx = 1. This is
analogous to the uncertainty principle in position and
momentum in quantum wave mechanics. For long bend-
ing lengths, the amplitudes of the higher-frequency
Fourier components will be strongly attenuated.

The sound of a guitar string played with a sharp
plectrum is therefore much brighter, with many more
contributing higher partials, than when played with the
fleshy part of a finger, which limits the bending radius to
a few mm. This is illustrated by the sound of an acous-
tic guitar plucked first with a plectrum and then with the
thumb, both at a distance of ≈ 10 cm from the bridge
(audio ).

Finite Rigidity
Even for an infinitely narrow plectrum, the bending at
the plucking point will be limited by the finite flexibility
of the string. The wave equation is then modified by an
additional fourth-order bending stiffness term (Morse
and Ingard [15.43, (5.1.25)]),

ρS
∂2ξ

∂t2
= T

∂2ξ

∂x2
− ESκ2 ∂4ξ

∂x4
, (15.45)

where E is Young’s Modulus, S is the cross-sectional
area of the string (assumed homogeneous) and κ its ra-
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dius of gyration. For a uniform circular wire of radius
a, Sκ2 = πa4/4. Using dimensional arguments, any
changes in slope of the string will take place over a char-
acteristic length δ ≈ (ESκ2/T )1/2 = (a2 L/2ΔL)1/2,
where ΔL is the extension of the string required to
bring it to tension. This provides an intrinsic limit to the
sharpness with which the string is bent and hence to the
wavelength and frequency of the highest partials con-
tributing significantly to the sound of a plucked, bowed
or struck string.

The additional stiffness energy required to bend the
string will also affect wave propagation on the string
and the frequencies of the excited modes. Assuming
sinusoidal wave solutions varying as ei(ωt±kx), the mod-
ified wave equation (15.45) gives modes with resonant
frequencies

ω2
n = c2k2

n

(
1+ δ2k2

n

)
. (15.46)

Waves on a real string are therefore no longer
dispersionless, but travel with a phase and group ve-
locity that depends on their frequency and wavelength.
Any Helmholtz kink travelling around a real string
will therefore decrease in amplitude and will broaden
with time. To maintain the Helmholtz slip–stick bowed
waveform, with a well-defined single kink circulating
around the string, the bow has to transfer energy to the
string to compensate for such broadening each time the
kink moves past the bow (Cremer [15.30, Chapt. 7] and
Sect. 15.2.2).

If a rigidly supported string is free to flex at its ends
(known as a hinged boundary condition), solutions of
the form sin(nπx/L) sin(ωt). However, the mode fre-
quencies remain are no longer harmonic;

ω∗
n

ωn
=
(

1+ Bn2
)1/2 ≈ 1+ 1

2
Bn2 , (15.47)

with B = (π/L)2δ2, where the expansion assumes
Bn2 � 1.

When a string is clamped (e.g. by a circular
collet), it is forced to remain straight at its ends.
Fletcher [15.44] showed that this raises all the modal
frequencies by an additional factor ≈ [1+2/πB1/2 +
(2/π)2 B]. For a real string supported on a bridge, con-
nected to another length of tensioned string behind the
bridge, the boundary conditions will be intermediate
between hinged and clamped.

Kent [15.45] has demonstrated that finite-flexibility
corrections raise the frequency of the fourth partial
of the relatively short C5 (an octave above middle-C)
string on an upright piano by 18 cents relative to the
fundamental. The inharmonicity would be even larger

for the very short, almost bar-like, strings at the very top
of the piano. However, the higher partials of the highest
notes on a piano rapidly exceed the limits of hearing,
so that the resulting inharmonicity becomes somewhat
less of a problem. The inharmonicity of the harmonics
of a plucked or struck string results in dissonances and
beats between partials, providing an edge to the sound,
which helps the sound of an instrument to penetrate
more easily. This is particularly true for instruments like
the harpsichord and the guitar when strung with metal
strings.

Finite-rigidity effects are particularly pronounced
for solid metal strings with a high Young’s modulus.
To circumvent this problem, modern strings for musi-
cal instruments are usually composite structures using
a strong but relatively thin and flexible inner core, which
is over-wound with one or more flexible layers of thin
metal tape or wire to achieve the required mass (Picker-
ing [15.46, 47]). The difference in sound of an acoustic
guitar strung with metal strings and the same instrument
strung with more flexible gut or over-wound strings is
illustrated in .

15.2.2 Nonlinear String Vibrations

Large-amplitude transverse string vibrations can result
in significant stretching of the string giving a time-
varying component in the tension proportional to the
square of the periodically varying string displacement.
This leads to a number of nonlinear effects of con-
siderable scientific interest, though rarely of musical
importance.

Morse and Ingard [15.43] and (Fletcher and Ross-
ing [15.5, Chap. 5]) provide theoretical introductions to
the physics of nonlinear resonant systems and to non-
linear string vibrations in particular. Vallette [15.48] has
recently reviewed the nonlinear physics of both driven
and freely vibrating strings.

The Nonlinear Wave Equation
Transverse displacements of a string result in a frac-
tional increase of its length L by an amount 1/L0∫ L

0 1/2(∂ξ/∂x)2 dx and hence to a similar fractional
increase in tension and related frequency of excited
modes. For a spatially varying sinusoidal wave, the
induced strain and hence tension will vary with both po-
sition and time along the string. Any spatially localised
changes in the tension will propagate along the string
with the speed of longitudinal waves. As this is typi-
cally an order of magnitude larger than for transverse
waves, cL/cT ≈ √

L/ΔL, where ΔL is the amount that
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the string is stretched to bring it to tension, such pertur-
bations will propagate backwards and forwards along
the string many times during a single cycle of the
transverse waves. Hence, as pointed out by Morse and
Ingard [15.43], to a rather good approximation, trans-
verse wave propagation is determined by the spatially
averaged perturbation of the tension.

Consider a stretched string vibrating with large
amplitude in its fundamental mode with transverse
displacement u = a sin(πx/L) cos ωt. The spatially av-
eraged increase in tension is given by(

1+ π2

4

a2

ΔL L
cos2 ω1t

)

= [
1+β(1− cos 2ω1t)a2] , (15.48)

where β = π2

8
1

LΔL . Inserting this change in tension into
the equation of motion for transverse string vibrations
coplanar with a localised external driving force f (t), we
can write

∂2u

∂t2
+ ω1

Q

∂u

∂t
+ω2

1

[
1+β (1− cos 2ω1t) a2] u

= 2

m
f (t) . (15.49)

Mode Conversion
Nonlinearity results in an increase in the static tension
by the factor (1 +βa2) and hence an increase in fre-
quency of all the string modes. In addition, the term
varying as cos 2ω1t, at double the frequency of the prin-
cipal mode excited, will interact with any other modes
present to excite additional with frequencies fn ±2 f1.
Of special note is the effect of this term on the prin-
cipal mode of vibration itself, exciting a new mode at
three times the fundamental frequency 3 f1 and an addi-
tional parametric term (acting on itself) from the f1 −
2 f1 = − f1 contribution. The parametric term causes an
additional increase in frequency of the principal mode
excited, so that in total

ω2
1∗ = ω2

1

(
1+ 3

2
βa2

)
, (15.50)

where ω1 is the small-amplitude resonant frequency.
Nonlinear effects depend on the square of the am-

plitude of the strongly excited mode and inversely on
the amount by which the string has been stretched to
bring it to tension. To investigate nonlinear effects, it is
therefore advantageous to use weakly stretched strings
at low initial tension. Conversely, because the tension of
strings on musical instruments tends to be rather high,
nonlinear effects are not in general important within
a musical context.

Fig. 15.28 Nonlinear excitation of the third partial of
a stretched string plucked 1/3 of the way along its length;
the graticule divisions are 50 ms apart (after Legge and
Fletcher [15.49])

Figure 15.28 shows measurements by Legge and
Fletcher [15.49], which illustrate the nonlinear excita-
tion and subsequent decay of the third partial of a guitar
string plucked one third of the way along its length, so
that the third partial was initially absent.

In general, bowed, plucked and struck waveforms
have many Fourier components, each of which will
contribute a term proportional to a2

n to the nonlinear
increase in tension. However, in most cases, the funda-
mental will be the most strongly excited mode and will
therefore dominate the nonlinearity.

The inharmonicity and changes in frequency asso-
ciated with nonlinearity at large amplitudes can give
a strongly plucked string an initial rather twangy sound.
Nonlinear effects can also raise the frequency of a very
strongly bowed open C-string of a cello by almost
a semitone. However, under normal playing conditions,
nonlinearity is rarely musically significant, at least in
comparison with other more important perturbations
of string vibrations, such as their interaction with the
acoustically important structural resonances of an in-
strument, to be considered later.

Nonlinear Resonances
The nonlinear increase in frequency of modes with in-
creasing amplitude leads to string resonances, which
become increasingly skewed towards higher frequen-
cies at large amplitudes, as illustrated in Fig. 15.29. For
sufficiently large amplitudes and small damping, the
resonance curves develop an overhang. On sweeping
through resonance from the low-frequency side, the am-
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Fig. 15.29 (a) The effect of nonlinearity on the resonance
curves of a stretched string with a Q of 100, for increas-
ing drive excitation plotted against normalised resonant
frequency. The dashed curve represents the nonlinear am-
plitude of the frequency for free decay. Note the hysteretic
transitions at large amplitude; (b) the transition at large am-
plitudes from linearly polarised vibrations coplanar with
the driving force to elliptical and finally circular orbital
motion of the string at very large amplitudes. The two
continuous curves represent the induced amplitudes in the
directions parallel and perpendicular to the driving force

plitude rises causing the resonance frequency to shift
to higher frequencies, as indicated by the dashed line
in Fig. 15.29a. Damping eventually leads to a sudden
collapse, with the amplitude dropping to a much lower
high-frequency value, illustrated by the downward ar-
row. On decreasing the frequency, the response initially
remains on the low-amplitude curve before making
a sudden hysteretic transition back to the large ampli-
tude, strongly nonlinear, regime.

This behaviour is characteristic of any nonlinear os-
cillator with a restoring force that increases in strength
on increasing amplitude. For a spring constant that soft-
ens with increases displacement, as we will discuss later

in relation to Chinese gongs, the resonance curves are
skewed in the opposite direction.

Orbital Motion
Nonlinearity results in another surprising effect on the
driven resonant response. At sufficiently large ampli-
tudes of vibration, a sinusoidally driven string suddenly
develops motion in a direction orthogonal to and in
phase-quadrature with the driving force, illustrated
schematically in Fig. 15.29b. The transverse displace-
ments then execute elliptical orbits about the central
axis approaching circular motion at very large ampli-
tudes (Miles [15.50]). In this limit, the string is under
constant increased tension, producing an amplitude-
dependent inward force balancing the centrifugal force
of the orbiting string, resulting in an amplitude-
dependent orbital frequency ω2

1∗ = ω2
1(1+2βa2). For

circular motion, the extension of the string and hence
the increase in tension and resonant frequency are de-
termined by the orbital radius of the whirling string,
so there is now no variation in tension with time. The
sense of clockwise or anticlockwise rotation is deter-
mined by chance or in practice by slight geometrical
or material anisotropies of the string or supporting
structure.

Such transitions have been investigated by Hanson
and coworkers [15.51, 52] using a brass harpsichord
string stretched to playing tension. The transition from
linear to elliptically polarised motion was observed in
addition to chaotic behaviour at very large amplitude.
However, their measurements were complicated by the
very long time constants predicted to reach equilibrium
behaviour close to the transitional region and to rather
strong and not well-understood splitting of the degen-
eracy of the transverse modes, even at low amplitudes
when nonlinearity is unimportant.

A related effect occurs when a string is plucked
so that it is given some orbital motion, as is invari-
ably the case when plucking a string on a stringed
instrument such as the guitar. Nonlinearity introduces
coupling between motions in orthogonal transverse di-
rections, causing the orbits to precess (Elliot [15.53],
Gough [15.54], Villagier [15.48]), as illustrated by com-
putational simulations and measurements in Fig. 15.30.
The precessional frequency Ω is given by Ω

ω
= ab

LΔL ,
where a and b are the major and minor semi-axes of
the orbital motion and ΔL is the amount by which the
string is stretched to bring it to tension [15.54].

Such precession can lead to the rattling of the string
against the fingerboard on a strongly plucked instru-
ment, as the major axis of the orbiting string precesses
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Fig. 15.30 (a) The computed precession of the damped
elliptical orbits of a strongly plucked string, and (b) meas-
urements of the orthogonal transverse components of such
motion for a string plucked close to its mid-point (af-
ter [15.54])

towards the fingerboard. The nonlinear origin of such
effects can easily by distinguished from other linear ef-
fects causing degeneracy of the string modes and hence
beats in the measured waveform, by the very strong
dependence of the precession rate on amplitude, as il-
lustrated in Fig. 15.30b.

15.2.3 The Bowed String

Realistic Models
Although the main features of the bowed string can be
described by a simple Helmholtz wave, it is important
to consider how such waves are excited and maintained
by the frictional forces between the bow and string.
The simple Helmholtz solution is clearly incomplete for
a number of reasons including:

1. The unphysical nature of infinitely sharp kinks.
2. The insensitivity of the Helmholtz bowed waveform

to the position and pressure of the bow on the string.
In particular, the simple Helmholtz waveform in-
volves partials with amplitudes proportional to 1/n,
whereas such partials must be absent if the string
is bowed at any integer multiple of the fraction 1/n
along its length, since energy cannot be transferred
from the bow to the string at a nodal position of
a partial.

3. The neglect of frictional forces in the slipping
regime.

4. The neglect of losses and reaction from mechanical
coupling to structural modes at the supporting
bridge.

5. The excitation of the string via its surface, which
must involve the excitation of additional torsional
modes.

Understanding the detailed mechanics of the strongly
nonlinear coupling between the bow and string has been
a very active area of research over the last few decades,
with major advances in our understanding made possible
by the advent of the computer and the ability to simulate
the problem using fast computational methods. Cre-
mer [15.30, Sects. 3–8], provides a detailed account of
many of the important ideas and techniques used to in-
vestigate the dynamics of the bowed string. In addition,
Hutchins and Benade [15.28, Vol. 1], includes a use-
ful introduction to both historical and recent research
prefacing 20 reprinted research papers on the bowed
string. Woodhouse and Galluzzo [15.55] have recently
reviewed present understanding of the bowed string.

Pressure, Speed and Position Dependence
In the early part of the 20th century, Raman [15.36],
later to be awarded the Nobel prize for his research
on opto-acoustic spectroscopy, confirmed and extended
many of Helmholtz’s earlier measurements and theo-
retical models of the bowed string. Raman used an
automated bowing machine to investigate systemati-
cally the effect of bow speed, position and pressure
on bowed string waveforms. He also considered the at-
tenuation of waves on the string and dissipation at the
bridge. From both measurements and theoretical mod-
els, he showed that a minimum downward force was
required to maintain the Helmholtz bowed waveforms
on the string, which was proportional to bow speed and
the square of bow distance from the bridge. He also
measured and was able to explain the wolf-note phe-
nomenon, which occurs when the pitch of a bowed note
coincides with an over-strongly coupled mechanical
resonance of the supporting structure. At such a coinci-
dence, it is almost impossible for the player to maintain
a steady bowed note, which tends to stutter and jump in
a quasi-periodic way to the note an octave above, illus-
trated previously for a cello with a bad wolf note, audio

.
Saunders [15.56], well known for his work in

atomic spectroscopy (Russel–Saunders spin-orbit cou-
pling) was a keen violinist and a cofounder of the
Catgut Acoustical Society. He showed that, for any
given distance of the bow from the bridge, there was
both a minimum and a maximum bow pressure required
for the Helmholtz kink to trigger a clean transition from
the sticking to slipping regimes and vice versa. Subse-
quently, Schelling [15.57] derived explicit formulae for
these pressures in terms of the downward bow force F
as a function of bow speed vB, assuming a simple model
for friction between bow hair and string in the slipping
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region of μd F and a maximum sticking force of μs F,

Fmin = R2
0vB

2Rβ2 (μs −μd)
and

Fmax = 2R0vB

β (μs −μd)
= 4β

R

R0
Fmin , (15.51)

where R0 is the characteristic impedance of the string
terminated by a purely resistive load R at the bridge, and
β is the fractional bowing point along the string. If the
downwards force is larger than Fmax the string remains
stuck to the string instead of springing free into the slip-
ping regime, while for downward forces less than Fmin
an additional slip occurs leading to a double-slipping
motion.

Figure 15.31 is taken from the article by Schelling
on the bowed string in the Scientific American special
issue on the Physics of Musical Instruments [15.58]. It
shows how the sound produced by a bowed cello string
changes with bow position and downward bow pressure
for a typical bow speed of 20 cm/s. Note the logarithmic
scales on both axes. In practice, a string can be bowed
over a quite a large range of distances from the bridge,
bow speeds and pressures with relatively little change in
the frequency dependence of the spectrum and quality
of the sound of an instrument, apart from regions very
close and very distant from the bridge. Nevertheless, the
ability to adjust the bow pressure, speed and distance
from the bridge, to produce a good-quality steady tone,
is one of the major factors that distinguish an experi-
enced performer from the beginner.

R
el

at
iv

e 
bo

w
 f

or
ce

Distance from bridge to bow (cm)
0

1

0.1

0.01

0.001

1000

100

10

B
ow

 f
or

ce
 (

g)

0.02 0.04 0.1 0.2

0.7 1.4 2.8 7 14

0.01
ß

Higher modes

Minimum bow force

Brilliant Raucous

Sul tasto

Normal

Maximum bow force

Sul ponticello

Fig. 15.31 The playing range for a bowed string as a func-
tion of bow force and distance from bridge, with the bottom
and right-hand axis giving values for a cello open A-
string with a constant bow velocity of 20 cms−1 (after
Schelling [15.57])

Slip–Stick Friction
An important advance was the use of a more real-
istic frictional force, dependent on the relative ve-
locity between bow and string, shown schematically
for three downward bow pressures in Fig. 15.32. Such
a dependence was subsequently observed by Schuma-
cher [15.59] in measurements of steady-state sliding
friction between a string and a uniformly moving bow.
The frictional force is proportional to the downward bow
pressure.

Friedlander [15.60] showed that a simple graphical
construction could be used to compute the instantaneous
velocity v at the bowing point from the velocity vp(t) at
the bowing point induced by the previous action of the
bow. The new velocity is given by the intersection of
a straight line with slope 2R0 drawn through vp with
the friction curve, where R0 is the characteristic string
impedance. This follows because the localised force be-
tween the bow and string generate secondary waves
with velocity F/2Z0 at the bowing point as previously
described (15.34). In the slipping region well away from
capture, there will be just a single point of intersection,
so the problem is well defined. However, close to cap-
ture, as illustrated by the intersections marked by the
black dots with the upper frictional curve, the straight
line can intersect in three points (two in the slipping
regime and one in the sticking regime) as first noted by
Friedlander.

Vp(t) vB

String velocity vs(t)
0

Friction

Increasing bow pressure

Fig. 15.32 Schematic representation of the dependence of
the frictional force between bow and string on their relative
velocity and downward pressure of the bow on the string.
The straight line with slope 2R0 passes through the veloc-
ity vp of the string determined by its past history and the in-
tersection with the friction curves determines its current ve-
locity. The open circle represents the single intersection in
the slipping regime at low bow pressures, while the closed
circles illustrate three intersections at higher pressures
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Computational Models
This model has been used in a number of de-
tailed computational investigations of both the transient
and steady-state dynamics of the bowed string, no-
tably by the Cambridge group lead by McIntyre
and Woodhouse [15.61–63], their close collaborator
Schumacher [15.59, 64] from Carnegie-Mellon, and
Guettler [15.65], who is also a leading international
double-bass virtuoso. Readers are directed to the origi-
nal publications for details of the various computational
schemes used, which are also discussed in some detail
by Cremer [15.30, Sect. 8.2].

Whenever a string is bowed at an integer interval
along its length, the secondary waves excited by the fric-
tional forces between bow and string can give rise to
coherent reflections between the bow and bridge, giving
rise to pronounced Schelling ripples on the Helmholtz
waveform and hence significant changes in the spectrum
of the radiated sound. However, because the bowing
force tends to be distributed across the ≈ 1 cm width of
the bow hairs, such effects tend to be smeared out and are
not generally of significant musical importance. McIn-
tyre et al. [15.63] have also shown that uncertainties in
the sticking point from the finite-width strand of bow
hairs leads to a certain amount of jitter or aperiodicity in
the pitch of the bowed string amounting of a few cents,
which is again of little musical significance, though the
noise generated may be significant in contributing to the
characteristic sound of bowed string instruments.

It is instructive to consider the kind of computa-
tional methods developed by Woodhouse and his col-
laborators to investigate both the initial transient and the
steady-state dynamics of the bowed string. This is illus-
trated schematically in Fig. 15.33, where u and u′ rep-
resent the velocity under the bow from waves travelling

un

vn+1 v'n+1

u'n

Kn–m K'n–m

Bridge Bow End-stop

Fig. 15.33 Schematic representation of the model used by
McIntyre and Woodhouse to compute bowed string dynam-
ics. The velocities u and v represent incoming and outgoing
waves from the two ends, with reflections of impulse func-
tions from the bridge and end-stop represented in their
digitised form

towards the bow from the bridge and from the stopped
end of the string respectively, and v and v′ are the ve-
locities at the bowing point of the waves travelling away
from the bow. In the absence of any bowing force v = u′
and v′ = u. However, in the presence of a frictional
force between the bow and string, the outgoing waves
will acquire an additional velocity f/2R0, where the
frictional force is determined by the velocity from the
incoming waves u +u′ excited by previous events. The
outgoing wave travelling towards the stopped end or nut
of the string will simply be reflected, while the outgo-
ing wave reaching the bridge will not only be reflected,
but will also excite continuing vibrations at the bridge
from the excitation of the coupled structural modes.

Such problems can be solved using a Green’s func-
tion approach Cremer [15.30, Sect. 8.4], in which the
outgoing waves can be considered in terms of the re-
sponse to forces represented as a succession of short
impulses. The problem is then reduced to understanding
the response of the system for the reflection of a se-
quence of short impulses or δ functions. At the end-stop,
an impulse will simply be reflected with reversed sign,
but reduced amplitude in the case of a soft finger stop-
ping the string. The incoming wave u′ generated by the
reflected impulse will therefore be an impulse function
delayed in time by the transit time from the bow to
the end-stop and back. Similarly, the impulse returning
from the bridge will be an impulse delayed by the tran-
sit time between bow and bridge and back followed by
a wave generated by the induced motions of the bridge
on reflection. The time-delayed impulse responses from
reflections at the bridge and end-stop can described
by the functions K (t) and K ′(t). The incoming waves
(u(t), u′(t)) can then be described by the convolution
of K (t) and K ′(t) with the outgoing waves (v(t), v′(t))
considered as a succession of impulse functions at all
previous times t′, such that

u(t) =
t∫
v(t′)K (t − t′)dt′ and

u′(t) =
t∫
v′(t′)K ′(t − t ′)dt . (15.52)

To compute the resulting dynamics of string mo-
tion digitally, one simply computes the above velocities
at a succession of short time intervals, with the outgo-
ing waves determined from the incoming waves plus
the secondary waves induced by the resulting frictional
force, such that

v′
n+1 = un + fn/2R0 and

vn+1 = u′
n + fn/2R0 (15.53)
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and

un+1 =
n∑

vmKn−m and

u′
n+1 =

n∑
v′

mK ′
n−m , (15.54)

where K j and K ′
j are now the digital equivalents of

the time-delayed impulse responses, illustrated schemat-
ically in Fig. 15.33. The frictional force fn enter-
ing (15.53) is evaluated from the pressure- and vel-
ocity-dependent frictional force using the Friedlander
construction with the computed string velocity under
the bow given by un +u′

n .

Pressure Broadening and Flattening
As an example, Fig. 15.34 illustrates the computed
velocity of the string under the bow as a function of
increasing bow pressure (McIntyre et al. [15.61]). In
contrast to the rectangular waveform predicted by the
simple Raman model, the waveform is considerably
rounded, especially at low bow pressures. This results
in a less strident, less intense sound, with the higher
partials strongly attenuated. At higher pressures, but at

vs

a)

b)

c)

t

t

t

Fig. 15.34a–c Computed velocity of string at bowing point
for increasing bow pressures in the ratios 0.4 : 3 : 5 (af-
ter McIntyre and Woodhouse [15.61]) illustrating both the
broadened waveform and pitch dependence on bow pres-
sure compared with the idealised rectangular Helmholtz
bowed waveform

the same position and with the same bow velocity, the
rounding is less pronounced, so that higher partials be-
come increasingly important. The increased intensity
of the higher partials leads to an increased perceived
intensity with bow pressure, in contrast to the Raman
model, in which the waveform and hence intensity re-
mains independent of bow pressure. This is referred to
as the pressure effect. At even higher pressures, the am-
biguity in intersections noted by Friedlander leads to
a pronounced increase in the capture period and hence
the pitch of the bowed note, known as the flattening
effect. These features are discussed in considerable de-
tail along with his own important research and that
of his collaborators on such effects by Cremer [15.30,
Chaps. 7 and 8].

Initial Transients
Computational models can also describe the initial
transients of the bowed string before the steady-state
Helmholtz wave is established. Figure 15.35 compares
the computed and measured initial transients of the
string velocity under the bow for a string played with
a sharp attack (a martelé stroke) (McIntyre and Wood-
house [15.61]). These computations also include the
additional excitation of torsional waves, which are
excited because the bowing force acts on the outer
diameter of the wire, exerting a couple in addition to
a transverse force. The excitation and loss of energy
to the torsional waves appears to encourage the rapid
stabilisation of the bowed Helmholtz waveform.

For low-pitched stringed instruments such as the
double bass, it is very important that the Raman bowed
waveform is established very quickly, otherwise there
will be a significant delay in establishing the required
pitch. Remarkably, Guettler [15.65] has shown that, by

a)

b)

Fig. 15.35 (a) Computed transient string velocity at the
bowing point for a strongly bowed string including cou-
pling to both transverse and torsional modes and (b) the
measured string velocity for a strongly played martelé bow
stroke (after McIntyre and Woodhouse [15.61])
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simultaneously controlling both bow speed and down-
ward pressure, the player can establish a regular Raman
waveform in a single period. The speed with which
a steady-state bowed note can be established can be rep-
resented on a Guettler diagram, where the number of
slips before a steady-state Helmholtz motion is estab-
lished can be illustrated as a two-dimensional histogram
as a function of bowing force and acceleration of the
bow speed from zero.

To investigate such effects experimentally, Galluzzo
and Woodhouse [15.55, 67] have recently developed
a dynamically controlled bowing machine with ac-
tive feedback, providing programmable control of both
downward bow pressure and bow speed. This enables
reliable and reproducible results to be made over a very
wide range of possible playing parameters, extending
Guettler’s original measurements.

Viscoelastic Friction
Recent measurements have shown that the fric-
tional model assumed in these investigations is over-
simplistic. The force between the bow hairs and the
string is maintained by a thin layer of rosin which coats
them both. Rosin is a rather soft, sticky substance, with
a glass-to-liquid transition not far above room tempera-
ture, resulting in viscoelastic properties, which are very
sensitive to temperature (Smith, Woodhouse [15.66]).
As the bow slides past the bow hair, the frictional forces
will heat the rosin and hence reduce its viscoelastic-
ity frictional properties. During the sticking regime,
with no work being done at the bow–string interface,

Friction coefficient

Velocity (m/s)

1

0.8

0.6

0.4

0.2

0
–0.15 –0.1 –0.05 0 0.05

Fig. 15.36 Measured hysteretic frictional force between
string and a glass bow coated with rosin, with the dashed
line indicating previously assumed velocity dependence
(after Smith and Woodhouse [15.66])

the rosin will cool down and the friction will increase.
The frictional forces are therefore hysteretic and will
be strongly dependent on past history within a given
period of string vibration. Woodhouse et al. [15.68]
and Smith [15.69] have investigated this hysteretic be-
haviour in some detail using rosin-coated glass rods.
The hysteretic properties shown in Fig. 15.36 were de-
duced from measurements at the two supported ends
of the string. Woodhouse [15.70] subsequently extended
his computational models to incorporate the hysteretic
frictional properties. Somewhat surprisingly, this more
realistic model made little qualitative difference to the
predicted behaviour. Such measurements contribute to
our understanding of the physical processes underlying
viscoelastic properties of various coatings and lubri-
cants and have become an important tool in the field
of tribology (studies of friction).

15.2.4 Bridge and Soundpost

We now consider the role of the bridge and soundpost
in providing the coupling between the vibrating strings
and the vibrational modes of the body of instruments
of the violin family. We also consider the influence of
such coupling on the modes of string vibration, which
involves a discussion of the very important influence of
damping on the normal modes of any coupled system.

Bridges
Many plucked and struck stringed instruments, such as
the piano or guitar, use a rather low solid bridge to sup-
port the strings and transfer energy directly from the
transverse string vibrations perpendicular to the sup-
porting soundboard or front-plate of the instrument. The
bridge needs only to be sufficiently high to prevent the
strings from vibrating against the fingerboard or shell
of the instrument. This is also true for the Chinese two-
string violin, the erhu, which is held and played so that
the bow excites string vibrations perpendicular rather
than parallel to the stretched snake-skin membrane sup-
porting the bridge and strings. The strings of a harp are
attached to an angled sounding board, so that transverse
string vibrations in the plane of the strings couple di-
rectly to the perpendicular vibrations of the supporting
soundbox Fletcher and Rossing [15.5, Sect. 11.2].

For such instruments, the bridge and other string ter-
minations play a relatively insignificant acoustic role,
apart from adding a small inertial mass and additional
stiffness to the soundboard or top plate, which only
slightly perturbs the frequencies of the structural modes
of vibration.

Part
E

1
5
.2



Musical Acoustics 15.2 Stringed Instruments 605

3060 6100 985 2100 Hz

Fig. 15.37 The lowest in-plane resonant modes and fre-
quencies of violin and cello bridges (after Reinicke [15.71]).
The arrows represent the vibrational directions of the
bowed outer and middle strings

In contrast, the rather high bridges on instruments
of the violin and viol families have a profound influence
on the acoustical properties, particularly at frequencies
comparable with and above any mechanical resonances
of such structures. Figure 15.37 illustrates the shape of
modern violin (and viola) and cello bridges and indi-
cates their principal vibrational modes, as measured by
Reinicke and Cremer [15.71,72] using laser interference
holography. Bridges are cut from maple and taper in
thickness from the two feet to the top surface supporting
the four strings, which are set in small v-shaped locating
grooves.

Reinicke [15.71, 72] showed that the lowest vio-
lin bridge resonance at typically around 3 kHz involves
a rotational motion of the top half of the bridge about
its waist. The rotational motion induced by the vibrat-
ing strings supported on the top of the bridge results in
a couple acting on the top plate via the two feet. The
next most important in-plane resonance is at ≈ 6 kHz
and involves the top of the bridge bouncing up and
down on its feet, resulting in forces via the legs per-
pendicular to the supporting surface. The cello bridge
has rather longer legs, resulting in two low-frequency
twisting modes with resonances at around 1 and 2 kHz,
both of which exert a couple on the top plate. Longitu-
dinal forces from the vibrating strings can also induce
bridge motion perpendicular to its plane (at double the
frequency of the vibrating strings), but such motion is
generally rather small and will be ignored for the pur-
poses of this chapter.

Any transverse string force at the top of the bridge,
from bowing, plucking or striking the string, will be
transferred to the supporting body via the two feet. This
will induce a linear motion of the centre of mass of
the instrument, rotation about its centre of mass and
the excitation of both flexural and longitudinal waves
in the plates of the instrument. Because bowing in-
volves a static force which reverses with bow direction,

a bowed instrument has to be held fairly firmly by the
player, which introduces an extra channel for energy
loss through the supporting chin and fingers. The in-
duced linear and rotational motions of an instrument
are relatively unimportant at audio frequencies as they
involve the whole mass M of the instrument with admit-
tances varying ≈ 1/iMω.

If a tall bridge is placed centrally on a symmetric
shell structure, like the body of an early renaissance
viol, the plucked or bowed motion of the strings parallel
to the supporting top plate would excite only asym-
metrical modes of the supporting structure, whereas
perpendicular string vibrations would excite only sym-
metrical modes. For instruments of the violin family,
an offset soundpost is wedged between the front and
back plates, which destroys the symmetry. The coupled
modes will then involve a linear combination of sym-
metrical and asymmetric body modes, as discussed later
(Sect. 15.2.6).

The arching of the top of the bridge allows each of
the supported four strings to be bowed separately or to-
gether (double stopping), with the bow direction making
an angle of around ±15−20◦ relative to the top plate for
the outer two strings and almost parallel for the middle
two strings. Bowing on the outer two strings therefore
involves significant perpendicular in addition to parallel
forces, but only slightly different sounds from a sin-
gle type of string when supported in different positions
on the bridge. Audio compares the sound of
a bowed covered-gut D-string mounted in the normal
position and in the G-, A- and E-string positions on the
same violin. On a guitar almost all the sound is produced
by the vertical motion of the plucked string rather than
by parallel vibrations, which primarily excite nonradiat-
ing longitudinal modes of the top plate.

Simplified Bridge Model
Cremer [15.30, Chap. 9] gives a detailed historical and
scientific introduction to research on violin and cello
bridges and their coupling to the body of the instru-
ment. Relatively complicated mechanical models are
described composed of several masses and springs to
account for the various possible vibrational modes of
the bridge. However, the principal resonances of the vi-
olin bridge shown in Fig. 15.37 can be modelled very
simply by a two-degree-of-freedom mechanical model,
with effective masses representing the linear and rota-
tional energy of the top of the bridge coupled to the
supporting surface through the two supporting feet via
a rotational or vertical spring, illustrated schematically
in Fig. 15.38. The relatively light mass and added rigid-
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Fig. 15.38a,b Simplified mechanical models for the low-
est (a) rotational and (b) bouncing motions of the bridge
supported by its two feet on a rigid surface

ity of the lower half of the bridge will only slightly
perturb the resonant frequencies of the more massive
supporting plates and can therefore be ignored as a first
approximation. The effective masses and strength of
the coupling springs can be chosen to reproduce the
vibrational characteristics of the first two vibrational
modes of the violin (or cello) bridge, which dominate
the acoustical properties of the instrument.

At low frequencies, well below any resonant fre-
quency, the bridge will vibrate as a rigid body, adding
a small amount of additional mass, moment of iner-
tia and rigidity to the top plate, which will again only
slightly perturb the vibrational frequencies of the sup-
porting shell structure. The additional relative height of
the cello bridge compared with that of the violin bridge
enables a rather larger couple to be exerted by the bowed
string on the more massive top plate. There is a delicate
balance between increasing the coupling to enhance the
intensity at low frequencies without making it so strong
that troublesome wolf-note problems arise, as referred
to earlier.

Bridge-Hill (BH) Feature
Reinicke [15.71,72] and Cremer [15.30] highlighted the
importance of the bridge resonance on both the sound
of the violin and on admittance measurements, which
are traditionally made by exciting the violin at the top
of the bridge using an external force parallel to the
top supporting plate. In recent year, this problem has
attracted renewed interest, in an attempt to describe
the rather broad peak and associated phase changes
superimposed on the multi-resonant response of the in-
strument, which Jansson refers to as the Bridge-Hill
(BH) feature [15.74, 75].

Figure 15.39 shows recent measurements by Wood-
house [15.73] of the modulus of the admittance at the
bridge for a particular instrument using a series of
bridges with different masses but the same resonant fre-
quency at ≈ 2 kHz. A strong but rather wide overall BH
peak is observed in the vicinity of the bridge resonance.

(dB)

(kHz)
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Fig. 15.39 The admittance at the top of the bridge on a sin-
gle violin, plotted on the same but arbitrary dB scale, for
a number of violin bridges having the same height and res-
onant frequency (≈ 2 kHz) but different masses. The upper
curve corresponds to the lightest bridge that could be fab-
ricated from a standard bridge blank and the lowest curve
by the heaviest. Subtracting 45 dB from the results would
give the approximate admittance in units of ms−1N−1 (data
kindly provided by Woodhouse [15.73])

Note the marked decrease in admittance with increas-
ing bridge mass above the bridge resonance. There is
also an associated overall 90◦ change in the phase of
the admittance on passing through the peak.

Evidence for the BH feature can also be seen in
Dünnwald’s [15.76] superimposed measurements of the
sound output of a large number of high-quality Ital-
ian, modern master and factory violins as a function
of sinusoidal input force at top of the bridge, shown in
Fig. 15.40. A surprising aspect of these measurements is
the apparent lack of any such feature for modern master
violins, possibly because of a wider variation in bridge
resonances and effective masses of bridge and plate res-
onances in the chosen instruments. From measurements
of the radiated sound of over 700 violins, Dünnwald
proposed that the presence of a number of strong acous-
tic resonances in the broad frequency band from 1.5 to
4 kHz was one of the distinguishing features of a really
fine instrument. The influence of the bridge in account-
ing for such a peak and the reduced response at higher
frequencies is clearly important.

Woodhouse [15.77] has recently revisited the prob-
lem of the coupling between bridge and body of the
instrument and the origin of the BH peak. A sim-
ple theoretical model shows that the peak depends on
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Fig. 15.40 Overlays of the sound output of 10 typical old
Italian, modern master instruments, and 10 factory instru-
ments for a constant sinusoidal force at the top of the bridge
(after Dünnwald [15.76])

many factors, such as the effective masses, Q-values
and resonant frequencies of the major vibrational modes
of the bridge and the multi-resonant properties of the
instrument. To demonstrate the overall effect of the
bridge without having to consider the detailed vibra-
tional response of a particular instrument, Woodhouse
first considered coupling to a simplified model for the
vibrational modes of the coupled instrument. This as-
sumed a set of coupled vibrational modes each having
the same effective mass M and Q-value, with a constant
spacing of resonances ω0 = 2πΔ f . Different values
for these parameters would need to be used to model
the independent rotational or bouncing modes, though
Woodhouse concentrates on the influence of the low-
est frequency rocking bridge mode. The merit of such
a model is that the multi-resonant response of such
a system varies monotonically with frequency. The fea-
tures introduced by the resonant properties of the bridge
can then be easily identified and the input admittance
expressed relative to the admittance AV for a com-
pletely rigid bridge of the same mass, where

AV(ω) = 1

M

∑
n

iω

(nω0)2 −ω2 + iωnω0/Q
. (15.55)

The corresponding input admittance for the one-
degree-of-freedom model bridge is then given by

ABB(ω) = AV + iω/mω2
B

1− (ω/ωB)2 + iωm AV
, (15.56)

where m is the effective mass of the bridge and ωB its
resonant frequency and internal damping of the bridge
has been neglected.

We can also define a nonlocal admittance or mobil-
ity AVB to describe the induced body motion per unit
force at the foot of the bridge given by

AVB(ω) = AV

1− (ω/ωB)2 + iωm AV
. (15.57)

The simulations in Fig. 15.41 illustrate the major
effect of the bridge resonance on both the input re-
sponse and induced body motion and hence radiated
sound at, around and above the resonant frequency of
the bridge (3 kHz in the above example). For a real
instrument, the spacing and Q-values of the individ-
ual modes will be very irregular and highly instrument
dependent; nevertheless, the effect of the bridge reso-
nance on the overall response will be very similar. In
particular, the bridge resonance gives a broad peak in
input admittance followed by a 6 dB/octave decrease in
the admittance above resonance, where the response is
largely dominated by the bridge dynamics rather than
that of the instrument itself, with ABB ≈ 1/imω. Note
that the height and width of the peak is largely deter-
mined by energy lost to the coupled structural vibrations
(including, in practice, additional energy lost to all
the supported strings) rather than from internal bridge
losses, which have been neglected in this example.

The bridge resonance introduces a somewhat
smaller peak in the induced body mobility and hence
radiated sound. Well above the bridge resonance, the in-
duced body velocity is given by AVB(ωB/ω)2, with an
intensity decreasing by 12 dB/octave. Unlike the input
bridge admittance, the induced body motion and out-
put sound retains the characteristic resonances of the
instrument, though attenuated.

The predicted difference in admittance at the top
of the bridge ABB and top of the instrument AV is
illustrated in Fig. 15.42, in measurements by Moral
and Jansson [15.78] reproduced by Cremer ([15.30],
Fig. 15.9). Whereas the average admittance of the vio-
lin varies relatively little with frequency, the admittance
at the bridge shows a pronounced BH peak with a rel-
atively featureless and approximately 1/ f (the added
solid line) variation above the peak, as anticipated from
the above model.
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Fig. 15.41a,b Response curves for a one-degree-of-freedom
bridge coupled to an artificial set of regularly spaced
(200 Hz), constant effective mass (100 g) and constant Q
(50) structural resonances. Panel (a) illustrates the effect
of bridge mass on the admittance ABB measured at the
point of excitation at the top of the bridge, while (b) illus-
trates the corresponding induced body mobility AVB. The
coloured response curves are for lossless bridges with ef-
fective masses 1, 1.5 and 3 g (highest to lowest response),
having the same resonant frequency at 3 kH (after Wood-
house [15.77]) The black curves show the violin body
response AV that would be measured using a massless rigid
bridge

Woodhouse [15.77] has extended this idealised
model to describe the coupling of the bridge to a more
realistic, but still simplified, model for the vibrational
modes of the violin with a soundpost. This changes
the detailed response, but not the overall qualitative
features. Because the response of a violin depends
rather randomly at higher frequencies on the positions
and Q-values of the structural modes, Woodhouse uses
a logarithmic scale to average the peaks and troughs
at the maxima and minima of the admittance (approx-

(Hz)
2 105

10
dB

Fig. 15.42 Admittances of a violin measured at the top of
the bridge (top trace) and at the left foot of the bridge
(lower trace) illustrating a strong BH peak when meas-
ured at the top of the bridge but a relatively monotonic
dependence of the body of the instrument (after Cremer
[15.30, Fig. 12.9]). The added solid line represents the 1/ f
reduction in the predicted BH response above the bridge
resonance

imately proportional to Q and 1/Q), to give a skeleton
curve describing the global variation of the violin’s
complex admittance (more details are given in the later
Sect. 15.2.3 on shell modes). This enables Woodhouse
to illustrate the influence of various bridge parameters
on the acoustical properties of the instrument, suggest-
ing ways in which violin makers could vary bridge
properties to optimise the sound quality of an instru-
ment, though that will always be a matter of personal
taste rather than being scientifically defined.

The important role of the bridge in controlling the
sound of the violin or cello has often been overlooked,
even by many skilled violin makers. Indeed one of the
reasons why Cremonese violins generally produce such
highly valued sounds is the experience and skill in-
volved in adjusting the mass, size and fitting of the
bridge (and the position of the soundpost) to optimize
the sound quality, investigated experimentally by Hack-
linger [15.79].
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Added Mass and Muting
A familiar demonstration of the importance of the mass
of the bridge on the sound of an instrument is to place
a light mass or mute on the top of the bridge. This
dramatically softens the tone of the instrument by de-
creasing the resonant frequency of the bridge and hence
amplitude of the higher-frequency components in the
spectrum of sound. The added mass Δm lowers the
resonant frequency ωB by a factor [m/(m +Δm)]1/2.
Figure 15.43 illustrates changes in resonant frequency
measured by Reinicke for a bridge mounted on a rigid
support for an additional mass of 1.5 g and when
wedges are inserted between the wings of the bridge
to inhibit the rotational motion of the top of the bridge
and hence the resonant frequency. Audio il-
lustrates the changes in sound of a violin before and
after first placing a commonly used 1.8 g mute and then
a much heavier practice mute on top of the bridge, and
after wedges were inserted in the bridge to inhibit the
rocking motion.

Soundpost and Bass Bar
In instruments of the violin family, a soundpost is
wedged asymmetrically between the top and back
plates, as illustrated schematically in Fig. 15.44. Addi-
tionally, a bass bar runs longitudinally along much of
the length of the bass-side of the front plate. The sound-
post and bass bar give added mechanical strength to
the instrument, helping it to withstand the rather large
downward force from the angled stretched strings pass-
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Fig. 15.43 Measurements of bridge resonances from meas-
urements of the ratio of the force exerted by one bridge foot
on a rigid surface to the applied force, for an added mass
of 1.5 g and for wedges introduced between the wings of
the bridge to increase its rotational stiffness (after Reinicke
data reproduced in Fletcher and Rossing [15.5, Fig. 10.19])

Helmholtz
air resonance

Force rocks bridge

Bowing direction

Sound post

Bass bar

Fig. 15.44 Schematic cross section of the violin illustrat-
ing the position of the soundpost, bass-bar and f-hole
openings

ing over the bridge, which is typically ≈ 10 kg weight
for the violin.

The influence of the soundpost on the quality of
sound is so strong that the French refer to it as the
âme (soul) of the instrument. Its acoustic function is to
provide a rather direct coupling of the induced bridge
vibrations to both the back and the front plates of the
instrument and to provide an additional mechanical con-
straint, so that the bowed string vibrations excite normal
modes, which are linear combinations of the asymmet-
ric and symmetric modes of vibration of the front and
back plates of the instrument.

Of modern stringed instruments, only the violin
family makes use of a soundpost. However, soundposts
were probably used in the medieval fiddle and other
early instruments including the viol. The ancient Celtic
crwyth effectively combined the functions of the bridge
and soundpost by using a bridge with feet of unequal
length, the first resting on the top plate and the sec-
ond passing through a hole in the front face to rest on
the back plate – a bridge design still used today in the
folk-style Greek rebec (see Gill [15.80]).

15.2.5 String–Bridge–Body Coupling

We now consider the interaction of the strings with the
vibrational modes of the body of the instrument via the
bridge. Because we are dealing with the coupling of the
vibrational modes of the strings, bridge and body of the
instrument, the problem has to be considered in terms
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of the normal modes of the coupled system. An im-
portant aspect of this problem that is often not widely
recognised, but is always important in dealing with mu-
sical instruments, is the profound influence of damping
on the nature of the coupled modes. This is a generic
phenomenon for any system of coupled oscillators. As
we will see, the strength of the damping relative to the
strength of the coupling determines whether a system
can be considered as weakly or strongly coupled.

String–Body Mode Coupling
For simplicity, we only consider the perturbation of
string resonances from the induced motion of the bridge
and ignore any damping introduced by, for example,
a finger stopping the string at its opposite end. In gen-
eral, as we have already seen, the admittance at the point
of string support on the bridge will be a complicated,
multi-resonant, function of frequency reflecting the nor-
mal modes of vibration of the coupled structure. The
normal modes will include the combined motions of
all parts of the violin body, including the body, bridge,
neck, tailpiece, etc.

Each coupled normal mode will contribute a charac-
teristic admittance, which will be spring-like below its
resonant frequency, resistive at resonance and mass-like
above resonance. The effect of such terminations on the
vibrating string is therefore to shift its effective nodal
position, as illustrated in Fig. 15.45a–c, for a spring-like
string termination with spring constant K , an effective
mass M and a lossy support with resistance R.

For a spring-like termination with spring constant
K , the bridge will move in phase with the force acting
on it. This will increase the effective length of the vi-
brating string between nodes by a distance ΔB = T/K ,
lowering the frequency of a string mode by a fraction
T/KL . For a mass-like termination M, the end-support
will move in anti-phase with the forces acting on it,
so that the effective string length is shortened. The
string frequencies are then increased by the fraction
T/Mω2

n = (1/nπ)2m/M, where m is the mass of the
string. It is less easy to visualise the effect of a re-
sistive support because the induced displacement is in
phase-quadrature with the driving force. Mathemati-
cally, however, a resistive termination can be considered
as an imaginary mass m∗ = R/iω leading to an imagi-
nary fractional increase in frequency iωn1/(nπ)2m/R.
This imaginary frequency is equivalent to an expo-
nential decay e−t/τ for all modes with τ = π2 R/mω2

1,
where ω1 is the frequency of the fundamental string
mode. This result can also be derived using somewhat
more physical arguments, by equating the loss of stored

a) ω< ωo

b) ω> ωo

c) ω= ωo

Spring support

ΔB =F/K

δL

Mass support

ΔB = –F/Mω2

δL

Resistive

ΔB = –iωF/R

δL = 0

Fig. 15.45a–c Coupling of vibrating string to a weakly
coupled normal mode via the bridge for the string res-
onance (a) below the resonant frequency of the coupled
mode, (b) above the resonant frequency, and (c) at reso-
nance

vibrational energy to the energy dissipated at the end-
support.

The terminating admittance at the bridge for a single
coupled vibrational mode can be written in the form

An(ω) = 1

Mn

iω

ω2
n −ω2 + iωωn/Qn

, (15.58)

with the real part of this function determining the decay
time of the coupled string resonances and the imaginary
part the perturbation in their resonant frequencies. The
perturbations are proportional to the ratio of mass of the
vibrating string to the effective mass of the coupled res-
onance at the point of string support on the bridge and
vary with frequency with the familiar dispersion and
dissipation curves of a simple harmonic oscillator. For
a multi-resonant system like the body of any stringed
instrument, the string perturbations from each of the
coupled structural resonances are additive.

Normal Modes and Damping
Strictly speaking, whenever one considers the coupling
between any two or more vibrating systems, one should
always consider the normal modes or coupled vibrations
rather than treat the systems separately, as we have done
above. However, the inclusion of damping has a pro-
found influence on the normal modes of any system
of coupled oscillators (Gough [15.81]) and justifies the
above weak-coupling approximation, provided that the
coupling at the bridge is not over-strong. Although we
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consider the effect of damping in the specific context
of a lightly damped string coupled to a more strongly
damped structural resonance, the following discussion
is completely general and is applicable to the normal
modes of any coupled system of damped resonators.

Consider a string vibrating in its fundamental mode
coupled via the bridge to a single damped structural res-
onance. The string has mass m, an unperturbed resonant
frequency of ωs a Q-value of Qs and a displacement at
its mid-point of v. The coupled structural resonance has
an effective mass M at the point of string support, an un-
perturbed resonant frequency of ωM a Q-value of QM
and displacement of u.

The vibrating string exerts a force on the coupled
body mode, such that

M

(
∂2v

∂t2
+ ω

Qm

∂v

∂t
+ω2

Mv

)
= T

(π

L

)
u . (15.59)

Multiplying this expression through by ∂v/∂t, one re-
covers the required result that the rate of increase in
stored kinetic and potential energy of the coupled mode
is simply the work done on it by the vibrating string
less the energy lost from damping. Similar energy bal-
ance arguments enable us to write down an equivalent
expression for the influence of the coupling on the string
vibrations,

m

2

(
∂2u

∂t2
+ ω

Qm

∂u

∂t
+ω2

Mu

)
= T

(π

L

)
v , (15.60)

where the effective mass of the vibrating string is m/2
(i. e. its energy is 1/4 mω2u2). To determine the normal-
mode frequencies, we look for solutions varying as eiωt .
Solving the resultant simultaneous equations we obtain(

ω2
M −ω2 (1− i/QM)

) (
ω2

m −ω2 (1− i/Qm)
)

=
(

T
π

l

)2 2

mM
= α4 , (15.61)

where α is a measure of the coupling strength.
Solving to first order in 1/Q-values and α2 we ob-

tain the frequencies of the normal modes Ω± of the
coupled system,

Ω2± = ω2+ ±
(
ω4− +α4

)1/2
, (15.62)

where

ω2± = 1

2

[
ω2

M ±ω2
m + i

(
ω2

M

QM
± ω2

m

Qm

)]
. (15.63)

If the damping terms are ignored, we recover the
standard perturbation result with a splitting in the

frequencies of the normal modes at the crossover fre-
quency (when the uncoupled resonant frequencies of the
two systems coincide) such that Ω2± = ω2

M ±α2.
In the absence of damping, the two normal modes

at the crossover frequency are linear combinations of
the coupled modes vibrating either in or out of phase
with each other, with equal energy in each, so that
v/u = ±√

m/2M. Well away from the crossover region,
the mutual coupling only slightly perturbs the individ-
ual coupled modes, which therefore retain their separate
identities. However, close to the crossover region, when
|ωM −ωm| � 2α2/ (ωM +ωm), the coupled modes lose
their separate identities, with the normal modes involv-
ing a significant admixture of both.

The inclusion of damping significantly changes the
above result. If we focus on the crossover region, cou-
pling between the modes will be significant when

α2 ≈ ω2
M −ω2

m . (15.64)

At the crossing point, when the uncoupled resonances
coincide, the frequencies of the coupled normal are
given by

Ω2± = ω2
M (1+ i/2Q+)±

⎛
⎝α4 −

(
ω2

M

2Q−

)2
⎞
⎠

1/2

,

(15.65)

where

1

Q±
= 1

QM
± 1

Qm
. (15.66)

The sign of the terms under the square root clearly
depends on the relative strengths of the coupling and
damping terms. When the damping is large and the cou-
pling is weak, such that (ω2

M/2Q−)2 > α4, one is in the
weak-coupling regime, with no splitting in frequency of
the modes in the crossover region. In contrast, when
the coupling is strong and the damping is weak, such
that (ω2

M/2Q−)2 < α4, the normal modes are split, but
by a somewhat smaller amount than had there been no
damping.

Figure 15.46 illustrates the very different charac-
ter of the normal modes in the crossover region in
the weak- and strong-coupling regimes. The examples
shown are for an undamped string interacting with
a structural resonance with a Q of 25, evaluated for
coupling factors,

K = 2QM

ω2
M

α = 2QM

nπ

√
2m

M
, (15.67)
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Fig. 15.46 Normal modes of coupled oscillators illustrat-
ing the profound effect of damping on the behaviour in the
cross-over region illustrated for K -values of 0.75 and

√
5

for an undamped string resonance coupled to a body res-
onance with a typical Q = 25. The solid line shows the
shifted frequencies of the normal modes as the string fre-
quency is scanned through the body resonance, while the
dashed lines show the 3 dB points on their damped reso-
nant response (Gough [15.81])

of 0.75 and
√

5, in the weak- and strong-coupling
regimes, respectively.

In the weak-coupling limit, the frequency of the
vibrating string exhibits the characteristic perturbation
described in the previous section, with a shift in fre-
quency proportional to the imaginary component of the
terminating admittance and an increased damping pro-

portional to the real part. Note that the coupling also
weakly perturbs the frequency and damping of the cou-
pled structural resonance. However, there is no splitting
of modes at the crossover point and the normal modes
retain their predominantly string-like or body-like char-
acter throughout the transition region.

In the strong-coupling limit, K > 1, the normal
modes are split at the crossover point. The losses are
also shared equally between the split modes. As the
string frequency is varied across the body resonance,
one mode changes smoothly from a normal mode with
a predominantly string-like character, to a mixed mode
at cross over, and to a body-like mode at higher frequen-
cies, and vice versa for the other normal mode.

Our earlier discussion of the perturbation of string
resonances by the terminating admittance is therefore
justified in the weak-coupling regime (K � 1), which
is the usual situation for most string resonances on mu-
sical instruments. However, if the fundamental mode of
a string is over-strongly coupled at the bridge to a rather
light, weakly damped body resonance, such that K > 1,
the normal-mode resonant frequency of the vibrating
string, when coincident in frequency with the coupled
body mode, will be significantly shifted away from its
position as the fundamental member of the harmonic
set of partials. It is then impossible to maintain a steady
Helmholtz bowed waveform on the string at the pitch of
the now perturbed fundamental, which is the origin of
the wolf-note problem frequently encountered on other-
wise often very fine-stringed instruments, and cellos in
particular.

To overcome such problems, it is sometimes pos-
sible to reduce K by using a lighter string, but more
commonly the effective Q-value is reduced by ex-
tracting energy from the coupled system by fitting
a resonating mass on one of the strings between the
bridge and tailpiece. A lossy material can be placed be-
tween the added mass and the string to extract energy
from the system, which might otherwise simply move
the wolf note to a nearby frequency.

String Resonances
Figure 15.47 illustrates: (a) the frequency dependence
of the in-phase and phase-quadrature resonant response
of an A-string as its tension increased, so that its fre-
quency passes through a relatively strongly coupled
body resonance at ≈ 460 Hz; (b) the splitting in fre-
quency of the normal modes of the second partial
of the heavier G-string frequency tuned to coincide
with the frequency of the coupled body resonance.
Superimposed on these relatively broad resonances is
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In-phase and phase-quadrature string resonance

Frequency (Hz)
425 500450 475

90 phase

(Hz)400 500

180 phase

(Hz)400 500

a) b)

Fig. 15.47a,b Measurements of the in-phase and in-quadrature resonant response of violin strings coupled via the bridge
to a strong body resonance (Gough [15.34]). The shift of the broader resonances relative to the unperturbed narrow
resonance indicates the extent of the perturbative coupling. (a) tuning the A-string resonance through a coupled resonance
at ≈ 460 Hz; (b) the splitting of the string–body normal modes for the more strongly coupled, second partial, of the heavier
G-string

a very sharp resonance arising from transverse string
vibrations perpendicular to the strong coupling direc-
tion, to be explained in the next section. This very
weakly perturbed string resonance provides a marker,
which enables us to quantify the shifts and additional
damping of string vibrations in the strong coupling
direction.

When the frequency of the lighter A-string is tuned
below that of the strongly coupled body resonance, the
coupling lowers the frequency of the coupled string
mode, as anticipated from our earlier discussion. In
contrast, when tuned above the coupled resonance the
frequency of the coupled string mode is increased, while
at coincidence there is a slight indication of split modes
somewhat smaller than the widths. The splitting of
modes is clearly seen for the second partial of the much
heavier G-string (Fig. 15.47b), with symmetrically split
broad string/body modes above and below the narrow
uncoupled mode. Not surprisingly, this violin suffered
from a pronounced wolf note when played at 460 Hz in
a high position on the G-string, but not on the lighter
D- or A-string. Such effects tend to be even more pro-
nounced on cellos due to the very high bridge providing
strong coupling between the vibrating strings and body
of the instrument.

On plucked string instruments the inharmonicity of
the partials of a plucked note induced by coupling at
the bridge to prominent structural resonances causes
beats in the sound of plucked string, which contribute
to the characteristic sound of individual instruments.
Woodhouse [15.82,83] has recently made a detailed the-
oretical, computational and experimental study of such
effects for plucked notes on a guitar taking account of
the effect of damping on the coupled string–corpus nor-
mal modes. This is sometimes not taken into proper
account in finite-element software, in which the normal
modes of an interacting system are first calculated ig-
noring damping, with the damping of the modes then
added. As is clear from Fig. 15.46, such an approach
will always break down whenever the width of reso-
nances associated with damping becomes comparable
with the splitting of the normal modes in the absence
of damping, as is frequently the case in mechanical and
acoustical systems.

Polarisation
We have already commented on the response of a bridge
mounted centrally on a symmetrically constructed in-
strument, with string vibrations perpendicular to the
front plate exciting only symmetric modes of the body
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of the instrument, while string vibrations parallel to
the front plate induce a couple on the front plate
exciting only asymmetric modes. The terminating ad-
mittance at the bridge end of the string will therefore
be a strongly frequency dependent function of the
polarisation direction of the transverse string modes.
The angular dependence of the terminating admit-
tance lifts the degeneracy of the string modes resulting
in two independent orthogonal modes of transverse
string vibration, with different perturbed frequencies
and damping, polarised along the frequency-dependent
principal directions of the admittance tensor. If a string
is excited at an arbitrary angle, both modes will be ex-
cited, so that in free decay the directional polarisation
will precess at the difference frequency. The resultant
radiated sound from the excited body resonances will
also exhibit beats, which unlike the nonlinear effects
considered earlier will not vary with amplitude of string
vibration.

In instruments of the violin family, the soundpost
removes the symmetry of the instrument, with normal
modes involving a mixture of symmetric and asymmet-
ric modes. Measurements like those shown in Fig. 15.47
demonstrate that below ≈ 700 Hz, the effect of the
soundpost is to cause the bridge to rock backwards and
forwards about the treble foot closest to the soundpost,
which acts as a rather rigid fulcrum. This accounts for
the very narrow string resonances shown in Fig. 15.47,
which correspond to string vibrations polarised paral-
lel to the line between the point of string support and
the rigidly constrained right-hand foot, as indicated in
Fig. 15.44. In contrast, string vibrations polarised in the
orthogonal direction result in a twisting couple acting
on the bridge, with the left-hand foot strongly excit-
ing the vibrational modes of the front plate giving the
frequency-shifted and broadened string resonances of
the strongly coupled string modes.

By varying the polarisation direction of an elec-
tromagnetically excited string, one can isolate the
two modes and determine their polarisations (Baker
et al. [15.84]). When such a string is bowed, it will
in general be coupled to both orthogonal string modes.
The unperturbed string mode may well help stabilise the
repetitive Helmholtz bowed waveform.

String–String Coupling
A vibrating string on any multi-stringed instrument is
coupled to all the other strings supported on a common
supporting bridge. This is particularly important on the
piano, where pairs and triplets of strings tuned to the
same pitch are used to increase the intensity of the notes

in the upper half of the keyboard. Such coupling is also
important on instruments like the harp, where the strings
and their partials are coupled via the soundboard. On
many ancient bowed and plucked stringed instruments,
a set of coupled sympathetic string were used to en-
hance the sonority and long-term decay of plucked and
bowed notes. Even on modern instruments like the vio-
lin and cello, the coupling of the partials of a bowed or
plucked string with those of the other freely vibrating
open (unstopped) strings enhances the decaying after-
sound of a bowed or plucked note. This may be one
of the reasons why string players have a preference for
playing in the bright key signatures of G, D and A ma-
jor associated with the open strings, where both direct
and sympathetic vibrations can easily be excited.

The musical importance of such coupling on the pi-
ano is easily demonstrated by first playing a single note
and holding the key down so that the note remains un-
damped and then holding the sustaining pedal down, so
that many other strings can also vibrate in sympathy and
especially those with partials coincident with those of
the played note. Composers, such as Debussy, exploit
the additional sonorities produced by such coupling, as
in La Cathédrale Engloutie .

The influence of coupling at the bridge of the normal
modes of string vibration on the piano has been dis-
cussed by Weinreich [15.85] and for sympathetic string
in general by the present author [15.81]. Consider first
two identically tuned string terminated by a common
bridge with string vibrations perpendicular to the sound-
board and relative phases represented by arrows. The
normal modes can therefore be described by the com-
bination ↑↑ and ↓↑ with the strings vibrating in phase
or in anti-phase. When the strings vibrate in anti-phase
↓↑, they exert no net force on the bridge, which there-
fore remains a perfect node inducing no perturbation in
frequency or additional damping or transfer of energy
to the soundboard. In contrast, when the strings vibrate
in the same phase ↑↑, the force on the bridge and resul-
tant amplitude of sound produced will be doubled, as
will the perturbation in frequency and damping of the
normal modes, and the amplitude of the resultant sound,
relative to that of a single string.

Reactive terms in the common bridge admittance
tend to split the frequencies of the normal modes in
the vicinity of the crossover frequency region, while re-
sistive coupling at the bridge tends to draw the modal
frequencies together over an appreciable frequency
range. This is illustrated by Weinreich’s predictions
for two strings coupled at the bridge by a complex
admittance shown in Fig. 15.48, which shows the veer-
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Fig. 15.48 Normal modes of a string doublet coupled at
the bridge by a complex impedance. The dashed and dot-
ted curves illustrate the effect of increasing the reactive
component (after Weinreich [15.85])

ing together of the normal modes induced by resistive
coupling and the increase in splitting as the reactive
component of the coupling is increased.

If the two strings are only slightly mistuned, the am-
plitudes of the string vibrations involved in the normal
modes can still be represented as ↑↑ and ↓↑, but the
amplitudes of the two string vibrations will no longer be
identical. Hence, when the two strings of a doublet are
struck with equal amplitude by a hammer, the mode can
be represented by a combination of vibrations ↑↑ with
equal amplitude with a small component with opposite
amplitudes the ↓↑ dependent on the mistuning. This
leads to a double decay in the sound intensity, with the
strongly excited ↑↑ mode decaying relatively quickly,
leaving the smaller amplitude but weakly damped ↓↑
mode persisting at longer times. Figure 15.49, from
Weinreich [15.85], shows the rapid decay of a sin-
gle C4 string, when all other members of the parent
string triplet are damped, followed by the much longer
long-term decay of the normal mode excited when one
other member of the triplet is also allowed to vibrate
freely. More-complicated decay patterns with super-
imposed slow beats are observed for various degrees
of mistuning, from interference with small-amplitude

String displacement (dB)

(s)
0 50

0

–20

–40

–60

10 20 10 20 30 40

Fig. 15.49 Decay in string vibration of a struck C4
(262 Hz) piano string, first with other members of the string
triplet damped and then with one other similarly tuned
string allowed to vibrate also (after Weinreich [15.85])

orthogonally polarised string modes excited when the
strong-coupling direction is not exactly perpendicular
to the soundboard. Weinreich suggests that skilled pi-
ano tuners deliberately mistune the individual strings
of string doublets and triplets to maximise their long-
term ringing sound. Any weakly decaying component
of a decaying sound is acoustically important because
of the logarithmic response of the ear to sound intensity.

15.2.6 Body Modes

Stringed instruments come in a great variety of shapes
and sizes, from strings mounted on simple boxes or on
skins stretched over hollow gourds to the more complex
renaissance shapes of the viols, guitars and members
of the violin family. The vibrational modes of all such
instruments, which are ultimately responsible for the ra-
diated sound, involve the collective modes of vibration
of all their many component parts. For example, when
a violin or guitar is played, all parts of the instrument
vibrate – the individual strings, the bridge, the front and
back plates and ribs that make up the body of the in-
strument, the air inside its hollow cavity, the neck, the
fingerboard, the tailpiece and, for members of the violin
family, the internal soundpost also.

Because of the complexity of the dynamical struc-
tures, it would be well nigh impossible to work out
the modal shapes and frequencies of even the simplest
stringed instruments from first principles. However, as
we will show later in this section, with the advent of
powerful computers and finite-element analysis soft-
ware, it is possible to compute the modal vibrations
and frequencies of typically the first 20 or more nor-
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mal modes for the violin and guitar below around 1 kHz.
Such calculations do indeed show a remarkable variety
of vibrational modes, with every part of the instrument
involved in the vibrations to some extent. Such modes
can be observed by direct experiment using Chladni
plate vibrations, laser holography and modal analysis
techniques, as briefly described in this section.

The frequencies of the vibrational modes can be ob-
tained even more simply from the admittance measured
at the position of string support or other selected posi-
tion on the body of an instrument, when the instrument
is excited at the bridge by a sinusoidal electromagnetic
force or a simple tap. However, unless a large number
of measurements over the whole body of the instrument
(normal-mode analysis) are made, such measurements
provide very little direct information about the nature
of the normal modes and the parts of the violin which
contribute most strongly to the excited vibrations.

Although a particular structural mode can be very
strongly excited, it may contribute very little to the ra-
diated sound and hence the quality of sound of an instru-
ment. Examples of such resonances on the violin or gui-
tar include the strong resonances of the neck and finger-
board. However, even if such resonances produce very
little sound, their coupling to the strings via the body
and bridge of the instrument can lead to considerable
inharmonicity and damping of the string resonances, as
discussed in the previous section. Such effects can have
a significant effect on the sound of the plucked string of
a guitar and the ease with which a repetitive waveform
can be established on the bowed string.

To produce an appreciable volume of sound, the
normal modes of instruments like the violin and gui-
tar have to involve a net change in volume of the shell
structure forming the main body of the instrument. This
then acts as a monopole source radiating sound uni-
formly in all directions. However, when the acoustic
wavelength becomes comparable with the size of the
instrument, dipole and higher-order contributions also
become important.

For the guitar and instruments of the violin fam-
ily, there are several low-frequency modes of vibration
which involve the flexing, twisting and bending of the
whole body of the instrument, contributing very lit-
tle sound to the lowest notes of the instruments. To
boost the sound at low frequencies, use is often made
of a Helmholtz resonance involving the resonant vibra-
tions of the air inside the body cavity passing in and
out of f-holes or rose-hole cut into the front plate of the
instrument. This is similar to the way in which the low-
frequency sound of a loudspeaker can be boosted by

mounting it in a bass-reflex cabinet. The use of a res-
onant air cavity to boost the low-frequency response
has been a common feature of almost every stringed
instrument from ancient times.

Although finite-element analysis and modal analy-
sis measurement techniques provide a great wealth of
detailed information about the vibrational states of an
instrument, considerable physical insight and a degree
of simplification is necessary to interpret such meas-
urements. This was recognised by Savart [15.86] in the
early part of the 19th century, when he embarked on
a number of ingenious experiments on the physics of
the violin in collaboration with the great French violin
maker Vuillaume. To understand the essential physics
involved in the production of sound by a violin, he
replaced the beautiful, ergonomically designed, renais-
sance shape of the violin body by a simple trapezoidal
shell structure fabricated from flat plates with two cen-
tral straight slits replacing the elegant f-holes cut into
the front. As Savart appears to have recognised, the de-
tailed shape is relatively unimportant in defining the
essential acoustics involved in the production of sound
by a stringed instrument.

We will adopt a similar philosophy in this section
and will consider a stringed instrument made up of its
many vibrating components – the strings and bridge,
which we have already considered, the supporting shell
structure, the vibrations of the individual plates of such
a structure, the soundpost which couples the front and
back plates, the fingerboard, neck and tailpiece, which
vibrate like bars, and the air inside the cavity. Although
we have already emphasised that it is never possible to
consider the vibrations of any individual component of
an instrument in isolation, as we have already shown for
the string coupled to a structural resonance at the bridge,
it is only when the resonant frequencies of the coupled
resonators are close together that their mutual interac-
tions are so important that they change the character of
the vibrational modes. Otherwise, the mutual interac-
tions between the various subsystems simply provide
a first-order correction to modal frequencies without
any very significant change in their modal shapes.

Flexural Thin-Plate Modes
To radiate an appreciable intensity of sound, energy
has to be transferred via the bridge from the vibrat-
ing strings to the much larger surfaces of a soundboard
or body of an instrument. The soundboards of the
harp and keyboard instruments and the shell structures
of stringed instruments like the violin and guitar can
formally be considered as thin plates. Transverse or
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flexural waves on their surface satisfy the fourth-order
thin-plate equation (Morse and Ingard [15.43, Sect.
5.3]), which for an isotropic material can be written as

∂2z

∂t2
+ Eh2

12ρ(1−ν2)

(
∂4z

∂x4
+2

∂2z

∂x2

∂2z

∂y2
+ ∂4z

∂y4

)
= 0 ,

(15.68)

where z is the displacement perpendicular to the xy-
plane, h is the plate thickness, E is the Young’s
modulus, ν is the Poisson ratio, and ρ the density.

It is instructive first to consider solutions for a nar-
row quasi-one-dimensional thin plate, like a wooden
ruler or the fingerboard on a violin. One-dimensional
solutions can be written in the general form

z = (a cos kx +b sin kx

+ c cosh kx +d sinh kx)eiωt , (15.69)

where

ω =
(

E

12ρ(1−ν2)

)1/2

hk2 . (15.70)

The hyperbolic functions correspond to displace-
ments that decay exponentially away from the ends of
the bar as exp(±kx). Well away from the ends, the so-
lutions are therefore very similar to transverse waves on
a string, except that the frequency now depends on k2

rather than k with a phase velocity c = ω/k proportional
to k ≈ ω1/2. Flexural waves on thin plates are therefore
dispersive and unlike waves travelling on strings any
disturbance will be attenuated and broadened in shape
as it propagates across the surface.

The k values are determined by the boundary condi-
tions at the two ends of the bar, which can involve the
displacement, couple M = −ESκ2∂2z/∂x2 and shear-
ing force F = ∂M/∂x = −ESκ2∂3z/∂x3 at the ends of
the bar, where k is the radius of gyration of the cross
section (Morse and Ingard [15.43, Sect. 5.1]).

For a flexible bar there are three important boundary
conditions:

1. Freely hinged, where the free hinge cannot exert
a couple on the bar, so that

z = 0 and
∂2z

∂x2
= 0 , (15.71)

2. Clamped, where the geometrical constraints require

z = 0 and
∂z

∂x
= 0 , (15.72)

3. Free, where both the couple and the shearing force
at the ends are zero, so that

∂3z

∂x3
= ∂2z

∂x2
= 0 . (15.73)

A bar of length L , freely hinged at both ends,
supports simple sinusoidal spatial solutions with m half-
wavelengths between the ends and modal frequencies

ωm = h

√
E

12ρ(1−ν2)

(mπ

L

)2
. (15.74)

For long bars with clamped or free ends, the nodes
of the sinusoidal component are moved inwards by
a quarter of a wavelength and an additional exponen-
tially decaying solution has to be added to satisfy the
boundary conditions, so that at the x = 0 end of the bar

z ≈ A

[
sin(kmx −π/4)± 1√

2
e−km x

]
, (15.75)

where the plus sign corresponds to a clamped end and
the minus to a free end, and km = (m +1/2)π/L . The
modal frequencies are given by

ωm = h

√
E

12ρ(1−ν2)

(
(m +1/2) π

L

)2

(15.76)

which, for the same m value, are raised slightly above
those of a bar with hinged ends. Corrections to these for-
mulae from the leakage of the exponentially decaying
function from the other end of the bar are only signif-
icant for the m = 1 mode and are then still less than
1%.

The solutions close to the end of a bar for hinged,
clamped and free boundary conditions are illustrated
in Fig. 15.50, with the phase-shifted sinusoidal com-
ponent for the latter two indicated by the dotted line.
The exponential contribution is only significant out to
distances ≈ λ/2.

The above formulae can be applied to the bending
waves of quasi-one-dimensional bars of any cross sec-
tion, by replacing the radius of gyration κ = h/

√
12 of

the thin rectangular bar with a/2 for a bar of circular
cross section and radius a, and

√
a2 +b2/2 for a hollow

cylinder with inner and outer radii a and b (Fletcher and
Rossing [15.5, Fig. 2.19]).

Another case of practical importance in musical
acoustics is a bar clamped at one end and free at the
other. This would, for example, describe the bars of
a tuning fork or could be used to model the vibrations of
the neck or finger board on a stringed instrument. In this
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Hinged

Clamped

Free

Fig. 15.50 Boundary conditions for flexural waves at the
end of a one-dimensional bar. The dashed line represents
the phase-shifted sinusoidal component, to which the ex-
ponentially decaying component has to be added to satisfy
the boundary conditions

case, there is an addition m = 0 vibrational mode, with
exponential decay length comparable with the length of
the bar. The modal frequencies are then given (Fletcher
and Rossing [15.5, (2.64)]) by

ωm = h

4

(π

L

)2
√

E

12ρ(1−ν2)

×
[
1.1942, 2.9882, 52, . . . , (2m +1)2

]
.

(15.77)

In the above discussion, we have described the modes
in terms of the number m of half-wavelengths of the
sinusoidal component of the wave solutions within the
length of the bar. A different nomenclature is frequently
used in the musical acoustics literature, with the mode
number classified by the number of nodal lines (or
points in one dimension) m in a given direction not
including the boundaries rather than the number of half-
wavelengths m between the boundaries, as in Fig. 15.51.

Twisting or Torsional Modes
In addition to flexural or bending modes, bars can
also support twisting (torsional) modes, as illustrated in
Fig. 15.51 for the z = xy (1,1) mode.

The frequencies of the twisting modes are deter-
mined by the cross section and shear modulus G, equal
to E/2(1+ν) for most materials (Fletcher and Ross-
ing [15.5, Sect. 2.20]). The wave velocity of torsional
waves is dispersionless (independent of frequency) with
ωn = ncTk, where

cT = ω

k
=
√

GKT

ρI
= α

√
E

2ρ(1+ν)
, (15.78)

Fig. 15.51 Schematic illustration of the lowest-frequency
twisting (1,1) and bending (2,0) modes of a thin bar with
free ends

where GKT is the torsional stiffness given by the
couple, C = GKT∂θ/∂x, required to maintain a twist
of the bar through an angle θ and I = ∫

ρr2 dS is
the moment of inertia per unit length along the bar.
For a bar of circular cross section α = 1, for square
cross section α = 0.92, and for a thin plate with width
w > 6h, α = (2h/w). For a bar that is fixed at both ends,
fn = ncT/2L , while for a bar that is fixed at one end
and free at the other, fn = (2n +1)cT/4L , where n is an
integer including zero.

Thin bars also support longitudinal vibrational
modes, but since they do not involve any motion per-
pendicular to the surface they are generally of little
acoustic importance, other than possibly for the lowest-
frequency soundpost modes for the larger instruments
of the violin family.

Two-Dimensional Bending Modes
Solutions of the thin-plate bending wave solutions
in two dimensions are generally less straightforward,
largely because of the more-complicated boundary con-
ditions, which couple the bending in the x- and y-direc-
tions. For a free edge parallel to the y-axis, the boundary
conditions are (Rayleigh [15.3, Vol. 1, Sect. 216])

∂2z

∂x2
+ν

∂2z

∂y2
= 0

and

∂

∂x

[
∂2z

∂x2
+ (2−ν)

∂2z

∂y2

]
= 0 . (15.79)

Thus, when a rectangular plate is bent downwards along
its length, it automatically bends upwards along its
width and vice versa. This arises because downward
bending causes the top surface of the plate to stretch and
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the bottom surface to contract along its length. But by
Poisson coupling, this causes the top surface to contract
and lower surface to stretch in the orthogonal direc-
tion, causing the plate to bend in the opposite direction
across its width. This is referred to as anticlastic bend-
ing. The Poisson ratio ν can be determined from the
ratio of the curvatures along the bending and perpen-
dicular directions.

In addition, for orthotropic materials like wood,
from which soundboards and the front plates of most
stringed instruments are traditionally made, the elastic
constants are very different parallel and perpendicular
to the grain structure associated with the growth rings.
McIntyre and Woodhouse [15.88] have published a de-
tailed account of the theory and derivation of elastic
constants from measurement of plate vibrations in both
uniform and orthotropic thin plates, including the influ-
ence of damping.

For an isotropic rectangular thin plate, hinged along
on all its edges, a simple two-dimensional (2-D) sine-
wave solution satisfies both the wave equation (15.68)
and the boundary conditions, with m and n half-
wavelengths along the x- and y-directions, respectively,
giving modal frequencies

ωmn = h

√
E

12ρ(1−ν2)

[(
mπ

Lx

)2

+
(

nπ

L y

)2
]

.

(15.80)

By analogy with our discussion of flexural waves in
one-dimensional bars, we would expect the modal fre-
quencies of plates with clamped or free edges to be
raised, with the nodes of the sinusoidal components of
the wave solution moved inwards from the edges by
approximately quarter of a wavelength. For the higher-
order modes, the modal frequencies would therefore be
given to a good approximation by

ωmn = h

√
E

12ρ(1−ν2)

×

[(
(m +1/2) π

Lx

)2

+
(

(n +1/2) π

L y

)2
]

.

(15.81)

As recognised by Rayleigh [15.3, Vol. 1, Sect. 223], it
is difficult to evaluate the modal shapes and modal fre-
quencies of plates with free edges. The method used by
Rayleigh was to make an intelligent guess of the wave-
functions which satisfied the boundary conditions and
to determine the frequencies by equating the resulting

potential and kinetic energies. Leissa [15.89] has re-
viewed various refinements of the original calculations.
For a plate with free edges, the nodal lines are also no
longer necessarily straight, as they were for plates with
freely hinged edges.

Chladni Patterns
The modal shapes of vibrating plates can readily be vi-
sualised using Chladni patterns. These are obtained by
supporting the plate at a node of a chosen mode ex-
cited electromagnetically, acoustically or with a rosined
bow drawn across an edge. A light powder is sprin-
kled onto the surface. The plate vibrations cause the
powder to bounce up and down and move towards the
nodes of the excited mode, allowing the nodal line pat-
terns to be visualised. Figure 15.52 illustrates Chladni
patterns measured by Waller [15.87] for a rectangular
plate with dimensions Lx/L y = 1.5, with the number
of nodal lines between the boundary edges determining
the nomenclature of the modes. Note the curvature of
the nodal lines resulting from the boundary conditions
at the free edges.

Figure 15.53 illustrates the nodal line shapes and
relative frequencies of the first 10 modes of a square
plate with free edges, where f11 = hcL/L2√1−ν/2
(after Fletcher and Rossing [15.5, Fig. 3.13]).

Another important consequence of the anticlastic
bending is the splitting in frequencies of combination
modes that would otherwise be degenerate. This is illus-
trated in Fig. 15.54 by the combination (2, 0) ± (0, 2)
normal modes of a square plate with free edges. The
(2, 0) ± (0, 2) modes are referred to as the X- and ring-
modes from their characteristic nodal line shapes. The
(2, 0)−(0, 2) X-mode exhibits anticlastic bending in the
same sense as that induced naturally by the Poisson cou-
pling. It therefore has a lower elastic energy and hence

3

2

1

0

3210 4

Fig. 15.52 Chladni pattern with white lines indicating the
nodal lines of the first few modes of a rectangular plate
(after Waller [15.87])
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(1,1) (2,0)–(0,2) (2,0)+(0,2) (2,1) (1,2)

(2,2) (3,0) (0,3) (3,1)–(1,3) (3,1)+(1,3)

1.00 1.52 1.94 2.71 2.71

4.81 5.10 5.10 5.30 6.00

Fig. 15.53 Schematic representation of the lowest 10 vi-
brational modes of a square plate with free edge

(2,0)

(0,2)

(2,0)+(0,2)

(0,2)–(2,0)

Fig. 15.54 Formation of the ring- and X-modes by the su-
perposition of the (2, 0) and (0, 2) bending modes

lower vibrational frequency than the (0, 2)+(2, 0) ring-
mode, with curvatures in the same sense in both the x-
and y-directions. The ring- and X-modes will therefore
be split in frequency above and below the otherwise
degenerate mode, as illustrated in Fletcher and Ross-
ing [15.5, Fig. 13.11].

Plate Tuning
The modal shapes and frequencies of the lowest-order
(1,1) twisting mode and the X-and ring-modes are
widely used for the scientific tuning of the front and back
plates of violins following plate-tuning guidelines de-
veloped by Hutchins [15.90,91]. These are referred to as
violin plate modes 1, 2 and 5, as illustrated in Fig. 15.55
by Chladni patterns for a well-tuned back plate. The vio-
lin maker aims to adjust the thinning of the plates across
the area of the plate to achieve these symmetrical nodal
line shapes at specified modal frequencies.

The use of such methods undoubtedly results in
a high degree of quality control and reproducibility of

Mode 1 Mode 2 Mode 5

Fig. 15.55 Chladni patterns for the first twisting-(#1),
X-(#2) and ring-(#5) modes of a viola back plate (after
Hutchins [15.90])

the acoustic properties of the individual plates before
assembly and, presumably, of the assembled instru-
ment also, especially for the lower-frequency structural
resonances. Unfortunately, they do not necessarily re-
sult in instruments comparable with the finest Italian
instruments, which were made without recourse to
such sophisticated scientific methods. Traditional vio-
lin makers instinctively assess the elastic properties of
the plates by their feel as they are twisted and bent, and
also by listening to the sound of the plates as they are
tapped or even rubbed around their edges, rather like
a bowed plate. From our earlier discussion, it is clear
that the mass of the plates is also important in governing
the acoustical properties.

Geometrical Shape Dependence
The above examples demonstrate that the lower-
frequency vibrational modes of quite complicated
shaped plates can often be readily identified with those
of simple rectangular plates, though the frequencies of
such modes will clearly depend on the exact geome-
try involved. This is further illustrated in Fig. 15.56 by
the modal shapes of a guitar front plate obtained from
time-averaged holography measurements by Richard-
son and Roberts [15.92], where the contours indicate
lines of constant displacement perpendicular to the sur-
face. For the guitar, the edges of the top plate are rather
good nodes, because of the rather heavy supporting ribs
and general construction of the instrument. The bound-
ary conditions along the edges of the plate are probably
intermediate between hinged and clamped. The modes
can be denoted by the number of half-wavelengths
along the length and width of the instrument. Note that
circular rose-hole opening in the front face, which plays
an important role in determining the frequency of the
Helmholtz air resonance boosting the low-frequency re-
sponse of the instrument, tends to concentrate most of
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the vibrational activity to the lower half of the front
plate.

Mode Spacing
Although the frequencies of the modes of complicated
shapes such as the violin, guitar and piano soundboard
are rather irregularly spaced, at sufficiently high fre-
quencies, one can use a statistical approach to estimate
the spacing of the modal frequencies (Cremer [15.30,
Sect. 11.2]). For large m and n values, the modal fre-
quencies of an isotropic rectangular plate are given by

ωmn ≈ h

√
E

12ρ(1−ν2)

(
km

2 + k2
n

)
, (15.82)

where km = mπ/Lx and kn = nπ/L y. The modes can
be represented as points (m, n) on a rectangular grid in
k-space, with a grid spacing of π/Lx and π/L y along
the kx and ky directions. Each mode therefore occupies
an area in k-space of π2/Lx L y. For large m and n, the
number of modes ΔN between k and k +Δk is therefore
on average just the number of modes in the k-space area
between k and k +Δk, so that

ΔN = π

2
kΔk

Lx L y

π2
= π

2

Δω

2β

Lx L y

π2
, (15.83)

where we have made use of the dispersion relationship
ω = βk2.

The density of modes per unit frequency is then
constant and independent of frequency,

dN

d f
= 1

2β
Lx L y =

√
3
(
1−ν2

)
cLh

S ≈ 1.5
S

cLh
,

(15.84)

where S is the area of the plate. The spacing of modes
Δ f will therefore on average be ≈ cLh/1.5S, propor-
tional to the plate thickness and inversely proportional
to plate area. For large k values, this result becomes in-
dependent of the shape of the plate. For an orthotropic
plate like the front plate of the violin or guitar, the
spacing is determined by the geometric mean (cxcy)1/2

of the longitudinal velocities parallel and along the
grain. For the violin, Cremer [15.30, p. 292] estimates
an asymptotic average mode spacing of 73 Hz for the
top plate and 108 Hz for the back plate. Above around
1.5 kHz the width of the resonances on violin and gui-
tar plates becomes comparable with their spacing, so
that experimentally it becomes increasingly difficult to
excite or distinguish individual modes.

On many musical instruments such as the violin
and guitar, the presence of the f- and rose-hole open-

286 533 628 672 731 Hz

873 980 1010 1124 1194 Hz

Fig. 15.56 Typical modal shapes for a number of low-frequency
modes of a guitar top plate from time-averaged holographic meas-
urements by Richardson and Roberts [15.92]

ings introduce additional free-edge internal boundary
conditions, which largely confine the lower-frequency
modes to the remaining larger areas of the plate.
The effective area determining the density of lower-
frequency modes for both instruments will therefore be
significantly less that that of the whole plate. Any re-
duction in plate dimensions, such as the island region
on the front plate of the violin between the f-holes,
will limit the spatial variation of flexural waves in
that direction. Such a region will therefore not con-
tribute significantly to the normal modes of vibration
of the plate until λ(ω)/2 is less than the limiting
dimension.

Anisotropy of Wood
Wood is a highly anisotropic material with different
elastic properties perpendicular and parallel to the grain.
Furthermore, the wood used for soundboards and plates
of stringed instruments are cut from nonuniform circu-
lar logs (slab or quarter cut), so that their properties can
vary significantly across their area.

McIntyre and Woodhouse [15.88] have described
how the anisotropic properties affect the vibrational
modes of rectangular thin plates and have shown how
the most important elastic constants including their loss
factors can be determined from the vibrational frequen-
cies and damping of selected vibrational modes. For
a rectangular plate with hinged edges

ω2
mn = h2

ρ

[
D1k4

m + D3k4
n + (D2 + D4) k2

mk2
n

]
,

(15.85)
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where D1–D4 are the four elastic constants required
to describe the potential energy of a thin plate with
orthotropic symmetry. These are related to the more
familiar elastic constants by the following relationships

D1 = Ex/12μ , D3 = Ey/12μ , D4 = Gxy/3 ,

D2 = νxy Ey/6μ = νyx Ex/6μ , (15.86)

where μ = 1−vxyvyx . Gxy gives the in-plane shear en-
ergy when a rectangular area on the surface is distorted
into a parallelogram. This is the only energy term in-
volved in a pure twisting mode (i. e. z = xy). For an
isotropic plate, D4 = E/6(1+ν).

For many materials, (D2 + D4) ≈ 2
√

D1 D2, so that
(15.82) can be rewritten as

ω2
mn = h2

ρ

√
D1 D3

×

[
4

√
D1

D3

(
mπ

Lx

)2

+ 4

√
D3

D1

(
nπ

L y

)2
]2

.

(15.87)

The vibrational frequencies are therefore equivalent
to those of a shape of the same area with averaged elas-
tic constant

√
D1 D3 and length scales Lx multiplied

by the factor 8
√

D1/D3 and L y by its inverse. The rela-
tive change in scaled dimensions is therefore 4

√
D1/D3.

These scaling factors account for the elongation of the
equal contour shapes along the stiffer bending direction
in the holographic measurements of mode shapes for the
front plate of the guitar (Fig. 15.56), where the higher
elastic modulus along the grains is further increased
by strengthening bars glued to the underside of the top
plate at a shallow angle to the length of the top plate.

Typical values for the elastic constants of spruce
and maple traditionally used for modelling the violin
are listed in Table 15.5 from Woodhouse [15.77]. The
anisotropy of the elastic constants along and perpendic-

Table 15.5 Typical densities and elastic properties of wood
used for stringed instrument modelling (after Wood-
house [15.77]). (The values with asterisks are intelligent
guesses in the absence of experimental data)

Property Symbol Units Spruce Maple

Density ρ kg/m3 420 650

D1 MPa 1100 860

D2 MPa 67 140*

D3 MPa 84 170

D4 MPa 230 230*

Relative scaling 4√D1/D3 1.9 1.4

factors

ular to the grain of a spruce plate cut with the growth
rings running perpendicular to the surface would give
a relative scaling factor for a violin front plate of almost
double the relative width, if one wanted to consider the
flexural vibrations in terms of an equivalent isotropic
thin plate. The anisotropy is therefore very important in
determining the vibrational modes of such instruments.

Plate Arching
The front and back plates of instruments of the violin
family have arched profiles, which give the instrument
a greatly enhanced structural rigidity to support the
downward component of the string tension (≈ 10 kg
weight). The arching also significantly increases the fre-
quencies of the lowest flexural plate modes. In the case
of lutes, guitars and keyboard instruments with a flat
sounding board or front plate, the additional rigidity is
achieved by additional cross-struts glued to the back of
the sounding board. The bass bar in members of the vio-
lin family serves a similar purpose in providing addition
strengthening to that of the arching.

The influence of arching on flexural vibration
frequencies is easily understood by considering the
transverse vibrations of a thin circular disc. For a flat
disc, the modal frequencies are determined by the flexu-
ral energy associated with the transverse vibrations. The
longitudinal strains associated with the transverse vi-
brations are only second order in displacement and can
therefore be neglected. However, if the disc is belled
out to raise the centre to a height H , the transverse
vibrations now involve additional first-order longitu-
dinal strains stretching the disc away from its edges.
The energy involved in such stretching, which is re-
sisted by the rigidity of the circumferential regions of
the disc, introduces an additional potential energy pro-
portional to H2. By equating the kinetic to the increased
potential energy, is follows that the frequency of the
lowest-order symmetrical mode will be increased by
a factor [1+α(H/h)2]1/2, where α ≈ 1 has to be deter-
mined by detailed calculation. Reissner [15.93] showed
that, when the arching is larger than the plate thick-
ness, H � h, the frequency of the fundamental mode
is raised by a factor ω/ω0 = 0.68H/h for a circular disc
with clamped edges, and 0.84H/h with free edges. For
a shallow shell with H/a < 0.25, where a is the radius
of the disc, the asymptotic frequency can conveniently
be expressed as ωn ≈ 2(E/ρ)1/2 H/a2. The arching de-
pendence of the modal frequencies is greatest for the
lowest-frequency modes. At high frequencies, the ra-
dius of curvature is large compared to the wavelength,
so arching is much less important.
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The combined effect of the arching and the f- and
rose-holes cut into the front face of many stringed in-
struments is to raise the frequency of the acoustically
important lower-frequency modes to well above the
asymptotic spacing of modal frequencies predicted by
(15.82). For example, the lowest-frequency plate modes
of the violin front and back plates are typically in the
range 400–500 Hz compared with Cremer’s predictions
for an asymptotic spacing of modes ≈73 Hz for the top
plate and 108 Hz for the back plate [15.30, p. 292].

The more highly arched the plates the stiffer they
will be and, for a given mass, the higher will be their as-
sociated vibrational frequencies. High arching may well
contribute to the relatively soft and sweet sounds of the
more highly arched early Amati and Stainer violins and
the more powerful and brilliant sounds of the flatter later
Stradivari and Guarneri models.

Shell Structures
Although it is interesting to investigate the free plates of
violins and other instruments before they are assembled
into the instrument as a whole, once assembled their vi-
brational properties will generally be very different, as
they are subject to completely different boundary con-
ditions at their supporting edges and by the soundpost
constraint for instruments of the violin family. The sup-
porting ribs tie the outer edges of the back and front
plates together. The curvature of the outer edge shape
gives the 1–2 mm-thick ribs of a violin considerable
structural strength and rigidity, in much the same way as
the bending of a serpentine brick wall. In many instru-
ments there are extra strips and blocks attached to the
ribs and plate edges to strengthen the joint, which still
allow a certain amount of angular flexing, as indicated
by the schematic normal-mode vibrations illustrated in
Fig. 15.57. The supporting ribs add mass loading at the
edges of the plates and impose a boundary condition for
the flexing plates intermediate between freely hinged
and clamped.

For a simple shell structure, Fig. 15.57a represents
a low-frequency twisting mode in which the two ends
of the instrument twist in opposite directions, just like
the simple (z = xy) twisting mode of a rectangular
plate. Figure 15.57b–d schematically represent normal
modes involving flexural modes of the front and back
plates. Mode (b) is the important breathing mode, which
produces a strong monopole source of acoustic radia-
tion at relatively low frequencies. In mode (c), the two
plates vibrate in the same direction, resulting in a much
weaker dipole radiation source along the vertical axis.
The above examples assumed identical top and back

a)

Simple shell Soundpost and f-holes

b)

c)

d)

Fig. 15.57a–d Schematic cross-sectional representation of
typical shell modes for a simple box and a violin-type struc-
ture with f-holes and a soundpost

plates, whereas in general they will have different thick-
nesses arching, and will be constructed from different
types of wood with different anisotropic elastic proper-
ties: spruce for the front and maple for the back plate
of the violin. Hence, for typical high-frequency normal
modes (e.g. shown schematically in Fig. 15.57d), the
wavelengths of flexural vibrations will be different in
the top and back plates.

Note that, at low frequencies, several of the normal
modes involve significant motion of the outer edges of
the front and back plate, since the centre of mass of the
freely supported structure cannot move. Hence, when
an instrument is supported by the player, additional
mode damping can occur by energy transfer to the
chin, shoulder or fingers supporting the instrument at
its edges, as indeed observed in modal analysis inves-
tigations on hand-held violins by Marshall [15.94] and
Bissinger [15.95].

Skeleton Curves
In this idealised model, the normal modes of the struc-
ture at high frequencies will be similar to those of the
individual plates. Such modes will only be significantly
perturbed when the resonances of the separate plates
are close together, apart from a general background
interaction from the average weak but cumulative inter-
action with all other distant modes. Woodhouse [15.77]
has recently shown that the averaged amplitude and
phase of the admittance can be described by skeleton
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Admittance dB

200 Hz

60

40

20

500 1000 2000 5000

Phase

200 Hz

90

0

–90
500 1000 2000 5000

Fig. 15.58 The rotational admittance across the two feet of
a bridge on an idealised rectangular violin structure with
a soundpost under the treble foot but with no f-holes (after
Woodhouse [15.77])

curves, indicated by the dashed lines in Fig. 15.58, on
which peaks and troughs of height Q and 1/Q and
phase changes from individual resonances are super-
imposed. These curves were evaluated analytically for
the rotational admittance across the two feet of a bridge
mounted on the front plate of an idealised rectangu-
lar box-like violin without f-holes but with a soundpost
close to the treble foot of the bridge.

At low frequencies the averaged input impedance
across the two feet of the bridge is largely reactive, with
a value close to the static springiness, which can be iden-
tified with the low-frequency limit of the normal-mode
admittance

∑
n iω/mnω2

n , where the effective mass of
each mode will depend on where and how the instrument
is excited. However, at high frequencies the admittance
becomes largely resistive resulting from internal damp-
ing and energy loss to the closely overlapping modes.
The use of skeleton curves enables Woodhouse to il-
lustrate the effect of various different bridge designs on
the overall frequency response of a violin, without hav-
ing to consider the exact positions, spacing or damping
of the individual resonances of the shell structure. Al-
though the idealised model is clearly over-simplistic, the
general trends predicted by such a model will clearly be
relevant to any multi-resonant shell model.

Soundpost and f-Holes
The soundpost and f-holes cut into the front plate of
the violin and related instruments have a profound ef-

fect on the frequencies and waveforms of the normal
modes, illustrated schematically by the right-hand set
of examples in Fig. 15.57. The f-holes create an island
area on which the bridge sits, which separates the top
and lower areas of the front plate. Like the rose-hole on
a guitar illustrated in Fig. 15.56, the additional internal
free edges introduced by the f-holes tend to localise the
vibrations of the front plate to the regions above and be-
low the island area. In addition, the soundpost acts as
a rather rigid spring locking the vibrations of the top
and back plates together at it its ends. At low frequen-
cies, the soundpost introduces an approximate node of
vibration on both the top and back plates, unless the fre-
quencies of the uncoupled front and back plates modes
are close together.

For some low-frequency modes, the soundpost and
f-hole have a relatively small effect on the modes of the
shell structure, such as the twisting mode (a) and mode
(c), when the plates vibrate in the same direction. How-
ever, the breathing mode (c) will be strongly affected by
the soundpost forcing the front and back plates to move
together across its ends.

As indicated earlier, any string motion parallel to the
plates will exert a couple on the top of the bridge. In the
absence of the soundpost, only asymmetric modes of the
top plate could then be excited. However, to satisfy the
boundary conditions at the soundpost position, the rock-
ing action now induces a combination of symmetric and
antisymmetric plate modes (illustrated schematically
in Fig. 15.57b), approximately doubling the number of
modes that can contribute to the sound of an instrument
including the very important lower-frequency symmet-
ric breathing modes. Because of the f-holes, the central
island can vibrate in the opposite direction to the wings
on the outer edges of the instrument. The mixing of
symmetric and antisymmetric modes is strongly depen-
dent on the position of the soundpost relative to the
nodes of the coupled waveforms. As a result, the sound
of a violin instrument is very sensitive to the exact plac-
ing of the soundpost. The difference in the sound of
a violin with the soundpost first in place and then re-
moved is illustrated in .

To a good approximation, in the audible frequency
range, the violin soundpost can be considered as a rigid
body, as its first longitudinal resonance is ≈100 kHz,
though lower-frequency bending modes can also be ex-
cited, particularly if the upper and lower faces of the
soundpost fail to make a flat contact with the top and
back plates (Fang and Rogers [15.96]). At high fre-
quencies, there is relatively little induced motion of
the outer edges of top and back plates, so that the

Part
E

1
5
.2

http://extras.springer.com/2014/978-1-4939-0755-7/hb07-e15_RS210.wav


Musical Acoustics 15.2 Stringed Instruments 625

impedance Z(ω) (force/induced velocity) measured at
the soundpost position is simply given by the sum of
the impedances at the soundpost position, Z(ω)top +
Z(ω)back, of the individual plates with fixed outer edges.
If one knows the waveforms of the individual coupled
modes, it is relatively straightforward to evaluate the ad-
mittance at any other point on the two surfaces, and
hence to evaluate the rotational admittance across the
two feet of the bridge (Woodhouse [15.77]).

We have already described the important role of the
bridge dynamics in the coupling between the strings
and the vibrational modes of the instrument. For instru-
ments of the violin family, the island region between
the f-holes probably plays a rather similar role to the
bridge, as it is via the vibrations of this central re-
gion that the larger-area radiating surfaces of the front
plate are excited. At low frequencies this will be mainly
by the lowest-order twisting and flexing modes of the
central island region. It therefore seems likely that the
dynamics of the central island region also contributes
significantly to the BH hill feature and the resulting
acoustical properties of the violin in the perceptually
important frequency range of ≈ 2–4 kHz, as recognised
by Cremer and his colleagues [15.11].

Historically, the role of the soundpost and the cou-
pling of plates through enclosed air resonances were
first considered analytically using relatively simple
mass–spring models with a limited number of degrees
of freedom to mimic the first few resonances of the
violin, as described in some detail by Cremer [15.30,
Chap. 10]. Now that we can obtain detailed information
about not only the frequencies, but also the shapes of the
important structural modes of an instrument from finite-
element calculations, holography and modal analysis,
there is greater emphasis on analytic methods based on
the observed set of coupled modes.

The Complete Instrument
Bowing, plucking or striking a string can excite every
conceivable vibration of the supporting structure includ-
ing, where appropriate, the neck, fingerboard, tailpiece
and the partials of all strings both in front of and behind
the bridge. Many of the whole-body lower-frequency
modes can be visualised by considering all the possi-
ble ways in which a piece of soft foam, cut into the
shape of the instrument with an attached foam neck and
fingerboard, can be flexed and bent about its centre of
mass.

Figure 15.59 illustrates the flexing, twisting and
changes in volume of the shell of a freely supported
violin for two prominent structural resonances com-

Mode 10 @ 436 Hz

Mode 15 @ 536 Hz

Fig. 15.59 Representative finite element simulations of the
structural vibrations of a violin, with greatly exaggerated
vibrational amplitudes (after Knott [15.97])

puted by Knott [15.97] using finite-element analysis.
However, not all modes involve a significant change
in net volume of the shell, so that many of the
lower-frequency modes are relatively inefficient acous-
tic radiators. Nevertheless, since almost all such modes
involve significant bridge motion, they will be strongly
excited by the player and will produce prominent res-
onant features in the input admittance at the point of
string support on the bridge. They can therefore signif-
icantly perturb the vibrations of the string destroying
the harmonicity of the string resonances and resulting
playability of particular notes on the instrument, espe-
cially for bowed stringed instrument.

Helmholtz Resonance
Almost all hand-held stringed instruments and many
larger ones such as the concert harp make use of
a Helmholtz air resonance to boost the sound of their
lowest notes, which are often well below the frequencies
of the lowest strongly excited, acoustically efficient,
structural resonances. For example, the lowest acousti-
cally efficient body resonance on the violin is generally
around 450 Hz, well above the bottom note G3 of
the instrument at ≈ 196 Hz. Similarly, the first strong
structural resonance on the classical acoustic guitar is
≈ 200 Hz, well above the lowest note of ≈ 82 Hz.
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To boost the sound in the lower octave, a relatively
large circular rose-hole is cut into the front plate of the
guitar and two symmetrically facing f-holes are cut into
the front plate of instruments of the violin family. The
air inside the enclosed volume of the shell of such in-
struments vibrates in and out through these openings to
form a Helmholtz resonator.

The frequency of an ideal Helmholtz cavity res-
onator of volume V , with a hole of area S in one of
its rigid walls is given by

ωH =
√

γ P

ρ

S

L ′V
= c0

√
S

L ′V
, (15.88)

where L ′ is the effective length of the open hole. For
a circular hole of radius a, Rayleigh [15.3, Vol. 2,
Sect. 306] showed that L ′ = π

2 a, while for an ellipse
L ′ ≈ π

2 (ab)1/2, provided the eccentricity is not too
large. Noting that the effective length depends largely
on area, Cremer [15.30, Fig. 10.6] modelled the f-hole
as an ellipse having the same width and area as the
f-hole. The two f-holes act in parallel to give an air
resonance for the violin at ≈ 270 Hz, at an interval of
just over a fifth above the lowest open string. For the
acoustic guitar, the circular rose-hole produces an air
resonance around 100 Hz, which, like for the violin, is
close to the frequency of the second-lowest open string
on the instrument.

Any induced motion of the top and bottom plates
that involves a net change in volume results in coupling
to the Helmholtz mode. Such coupling will perturb the
Helmholtz and body-mode frequencies, in just the same
way that string resonances are perturbed by coupling
to the body resonances (see Cremer [15.30, Sect. 10.3]
for a detailed discussion of such coupling). Since the
acoustically important coupled modes are at consider-
ably higher frequencies than the Helmholtz resonance,
the mutual perturbation is not very large. Because of
such coupling, purists often object to describing this
resonance as a Helmholtz resonance. Similar objections
could apply equally well to string resonances, since
they too are perturbed by their coupling to body modes.
But, as already discussed, in many situations the normal
modes largely retain the character of the individually
coupled modes other then when their frequencies are
close together and, even then, when the damping of
either of the coupled modes is large compared to the
splitting in frequencies induced by the coupling in the
absence of damping (Fig. 15.46).

Well below the Helmholtz resonance, any change
in volume of the shell of the violin or guitar induced

by the vibrating strings will be matched by an identical
volume of air flowing out through the rose- or f-holes,
with no net volume flow from the instrument as a whole.
Since at low frequencies almost all the radiated sound is
monopole radiation associated with the net flow of air
across the whole surface of an instrument, little sound
will be radiated. However, above the air resonance, the
response of the air resonance will lag in phase by 180◦,
so that the flow from body and cavity will now be in
phase, resulting in a net volume flow and strong acous-
tic radiation. The Helmholtz resonance serves the same
purpose as mounting a loudspeaker in a bass-reflex cab-
inet, with the air cavity resonance boosting the intensity
close to and above its resonant frequency.

A number of authors have considered the influ-
ence of the enclosed air on the lowest acoustically
important modes of the violin (Beldie [15.98]) and gui-
tar (Meyer [15.99], Christensen [15.100] and Rossing
et al. [15.101]) using simple mechanical modes of in-
teracting springs and masses with damping and their
equivalent electric circuits. Figure 15.60 shows the me-
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Fig. 15.60a,b The mechanical (a) and equivalent electrical
(b) circuit for a three-mass model describing the vibra-
tions of the front and back plates of a stringed instruments
coupled via a Helmholtz resonance (after Fletcher and
Rossing [15.5]). The modulus of the admittance at the
top plate has been evaluated for identical front and back
plates with uncoupled frequencies of 300 Hz, coupled via
a Helmholtz air resonator at 250 Hz in the absence of
coupling. The frequencies of the uncoupled air and body
resonances are indicated by the vertical lines
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chanical and equivalent electrical circuits and resulting
admittance curve for the top plate for the illustrative
three-mass model used by Rossing et al., which ac-
counts for the qualitative features of the first three most
important resonances of a guitar body. To emphasise
a number of important points, we have calculated the
admittance for a cavity with identical front and back
plates with uncoupled resonances at 300 Hz, coupled
via a cavity Helmholtz resonance at 250 Hz. The close-
ness in frequencies of the coupled resonators has been
chosen to emphasise the influence of the coupling on
the modal frequencies.

Without concerning oneself with mathematical de-
tail, one can immediately recognise an unshifted normal
mode associated with the uncoupled body resonances
at 300 Hz, corresponding to the two plates vibrating
in the same phase, with no volume change and hence
no coupling to the air resonance. However, the cou-
pling via the Helmholtz resonance splits the degenerate
plate modes, to give a normal mode at a raised fre-
quency, with the plates vibrating in opposite directions
in a breathing mode. The coupling also decreases the
frequency of the Helmholtz cavity resonance. The un-
perturbed mode may dominate the measured admittance
and affect the playability of the instrument via its per-
turbation of string resonances. But, because there is
no associated volume change, it will be an inefficient
acoustic radiator. One should note that, because of
the changes in phase of the air resonance on passing
through resonance, it appears as a dispersive curve su-
perimposed on the low-frequency wings of the stronger
higher-frequency body resonances. The frequency of
the excited normal mode is not the peak in the admit-
tance curve (i. e. its modulus), as often assumed but is
more nearly mid-way between the maximum and min-
imum, where its phase lags 90◦ relative to the phase
of the higher frequency normal modes. Similarly, the
upper body mode results in a dispersive feature in the
opposite sense, as its phase changes from almost 180◦
to 0◦ relative to the unshifted normal mode. Very sim-
ilar, but narrower, dispersive features are also observed
in admittance-curve measurements from string reso-
nances, unless they are purposely damped.

Cavity Modes
In addition to the Helmholtz air resonance, there will be
many other cavity resonances of the air enclosed within
the shell of stringed instruments, all of which can in
principle radiate sound through the f- or rose-holes. Al-
ternatively, the internal air resonances can radiate sound
via the vibrations they induce in the shell of the instru-

ment, as discussed in some detail by Cremer [15.30,
Sect. 11.4]. Because of the relatively small height of the
violin ribs, below around 4 kHz the cavity air modes are
effectively two dimensional in character. Simple statisti-
cal arguments based on the overall volume of the violin
cavity show that there are typically ≈ 28 resonances
below this frequency, as observed in measurements by
Jansson [15.102]. Whether or not such modes play
a significant role in determining the tonal quality of
an instrument remains a somewhat contentious issue.
However, at a given frequency, the wavelengths of the
flexural modes of the individual plates and the inter-
nal sound modes will not, in general, coincide. The
mutual coupling and consequent perturbation of modes
will therefore tend to be rather weak. Even if such cou-
pling were to be significant, it is likely to be far smaller
than the major changes in modal frequencies and shapes
introduced by the f-holes and soundpost.

Finite-Element Analysis
To progress further in our understanding of the complex
vibrations of instruments like the violin and guitar, it is
necessary to include the coupled motions of every single
part of the instrument and to consider the higher-order
front and back plate modes, which will be strongly mod-
ified by their mutual coupling via the connecting ribs
and, for the violin, the soundpost as well.

Such a task can be performed by numerical simula-
tions of the vibrations of the complete structure using
finite-element analysis (FEA). This involves modelling
any plate or shell structure in terms of a large num-
ber of interconnected smaller elements of known shape
and elastic properties. This division into smaller seg-
ments is known as tessellation. Provided the scale of
the tessellation is much smaller than the acoustic wave-
lengths at the frequencies being considered, the motion
of the structure as a whole can be described by the
three-dimensional translations and rotations of the tes-
sellated elements. The motion of each element can be
related to the forces and couples acting on the adjoin-
ing faces of each three-dimensional (3-D) element. The
problem is then reduced to the solution of N simultane-
ous equations proportional to the number of tessellated
elements. Deriving the frequencies and mode shapes
of the resulting normal modes of the system involves
the inversion of a N × N matrix. Such calculations can
be performed very efficiently on modern computer sys-
tems, though the computation time, proportional to N2,
can still be considerable for complex structures, par-
ticularly if a fine tessellation is used to evaluate the
higher-frequency, shorter-wavelength, modes.
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Figure 15.59 has already illustrated the potential
complexity of the vibrational modes of a violin. The
displacements have been greatly exaggerated for graph-
ical illustration. In practice, the displacements of the
plates are typically only a few microns, but can eas-
ily be sensed by placing the pad of a finger lightly on
the vibrating surfaces. The first example shows a typical
low-frequency mode involving the flexing and bending
of every part of the violin, but with little change in its
volume, so that it will radiate very little sound. The sec-
ond example illustrates a mode involving a very strong
asymmetrical vibration of the front plate, excited by the
rocking action of the bridge with the soundpost inhibit-
ing motion on the treble side of the instrument. Such
a mode involves an appreciable change in volume of the
shell-like structure, which will therefore radiate sound
quite strongly.

One of the virtues of FEA is that the effects of
changes in design of an instrument, or of the ma-
terials used in its construction, can be investigated
systematically, without having to physically build a new
instrument each time a change is made. For exam-
ple, Roberts [15.104] has used FEA to investigate the
changes in normal-mode frequencies of freely sup-
ported violin as a function of thickness and arching,
the effects of cutting the f-holes and adding the bass
bar, and the affect of the soundpost and mass of the ribs
on the normal modes of the assembled body of the in-
strument, but without the neck and fingerboard. This
enables a systematic correlation to be made between
the modes and frequencies of the assembled instrument
with the modes of the individual plates before assem-
bly. Without the soundpost, the modes of the assembled
violin were highly symmetric, with the bass-bar having
only a marginal effect on the symmetry and frequency
of modes. As expected, adding the soundpost removed
the symmetry and changed the frequencies of almost all
the modes, demonstrating the critical role of the sound-
post and its exact position in determining the acoustic
response of the violin.

Similar FEA investigations have been made of
several other stringed instruments including the gui-
tar (Richardson and Roberts [15.105]). Of special
interest is the recent FEA simulation from first prin-
ciples of the sound of a plucked guitar string by
Derveaux et al. [15.103]. Their model includes in-
teractions of the guitar plates, the plucked strings,
the internal cavity air modes and the radiated sound.
A DVD illustrating the methodology involved in such
calculations [15.106] recently won an international
prize, as an outstanding example of science com-

munication. The effects of changing plate thickness,
internal air resonances and radiation of sound on both
admittance curves and the decay times and sound
waveforms of plucked strings were investigated. Fig-
ure 15.61 compares the admittance curves at the guitar
bridge computed for damped strings for a front-plate
thickness of 2.9 mm first in vacuo and then in air.
Note the addition of the low-frequency Helmholtz and
higher-order cavity resonances in air and the perturba-
tions of the structural resonances by coupling to the
air modes.

15.2.7 Measurements

In this section we briefly consider the various methods
used to measure the acoustical properties of stringed
instruments, a number of which have already been
referred to illustrate specific topics in the preceding
section.
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Fig. 15.61a,b FEA computations of admittance at bridge
for a guitar with a 2.9 mm-thick front plate (a) in vacuo and
(b) coupled to the air-cavity resonances (after Derveaux
et al. [15.103])
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Admittance
The most common and easiest method used to inves-
tigate and characterise the acoustical properties of any
stringed instrument is to measure the admittance A(ω)
(velocity/force) at the point of string support on the
bridge. Fletcher and Rossing [15.5] give examples of
typical admittance curves for many stringed (and per-
cussion) instruments including the violin, guitar, lute,
clavichord and piano soundboard.

As described earlier, the admittance is in reality
a complex tensor quantity, with the induced velocity de-
pendent on and not necessarily parallel to the direction
of the exciting force. In practice, most published ad-
mittance curves for the high-bridge instruments of the
violin family show the amplitude and phase of the com-
ponent of induced bridge velocity in the direction of an
applied force parallel to the top plate. In contrast, for
low-bridge instruments like the guitar, piano or harpsi-
chord, the induced motion perpendicular to the top plate
or soundboard is of primary interest.

The admittance at the bridge can be expressed in
terms of the additive response of all the damped nor-
mal modes, which includes the mutual interactions of
the plates of the instrument and all the component parts
including, where appropriate, the neck, tailpiece, finger-
board, and all the strings. The admittance can then be
written as

A(ω) =
∑

n

1

mn

iω

ω2
n −ω2 + iωωn/Qn

, (15.89)

where ωn and Qn are the frequency and Q-value of
the nth normal mode and mn is the associated effec-
tive mass at the point of measurement. The value of
mn depends on how well the normal mode is excited
by a force at the point of measurement on the bridge.
If, for example, the bridge on a guitar is at a position
close to the nodes of particular normal modes, then the
coupling will be weak and the corresponding effective
mass will be rather large. Conversely, the low-frequency
rocking action of the bridge on a bowed stringed instru-
ment couples strongly into the breathing mode of the
violin shell, so that the effective mass will be relatively
low. The strength of this coupling plays an important
role in determining the sound output from a particular
instrument and also affects the playability of the bowed
string and the sound of a plucked string.

In practice, by measuring the frequency response of
the admittance, including both amplitude and phase, it
is possible to decompose the admittance into the sum of
the individual modal contributions and hence determine
the effective mass, frequency and damping of the con-

tributing normal modes. For the violin there are ≈ 100
identifiable modes below ≈ 4 kHz (Bissinger [15.107]),
though not all of these are efficient acoustic radiators.

To avoid complications from the numerous sym-
pathetic string resonances that can be excited, which
includes all their higher-frequency partials, meas-
urements are often made with all the strings damped by
a piece of soft foam or a piece of card threaded between
the strings. However, it should always be remembered
that the damped strings still contribute significantly to
the measured admittance. At low frequencies the strings
still exert the same lateral restoring force on the bridge
whether damped or not, while at high frequencies the
damped strings present a resistive loading with their
characteristic string impedances μc in parallel. When
undamped, the strings present an additional impedance
and transient response, which reflects the resonances
of all the partials of the supported strings. This can
make a significant difference to the sound of an instru-
ment, notably when the sustaining pedal is depressed on
a piano and in the ringing sound of any multi-stringed
instrument, when a note is plucked or bowed and es-
pecially instruments like the theorbo and viola d’amore
with freely vibrating sympathetic strings.

Figure 15.62 illustrates admittance measurements
for six different violins by Beldie [15.98] reproduced
from Cremer [15.30, Fig. 10.1]. The arrows indicate
the position of the dispersive-shaped Helmholtz air
resonance, which is the only predictable feature in
such measurements, though its relative amplitude varies
significantly from one instrument to the next. Such
measurements provide a fingerprint for an individual in-
strument, highlighting the very large number of almost
randomly positioned resonances that can be excited,
which must ultimately be responsible for the distinc-
tive sound of an instrument. As described earlier, above
≈ 1500 Hz the admittance often exhibits an underlying
BH peak at ≈ 2 kHz followed by a characteristic de-
crease at higher frequencies, which can be attributed to
a resonance of the bridge/central island region [15.75,
77].

Although most instruments have very different
acoustic fingerprints, Woodhouse (private communica-
tion), in a collaboration with the English violin maker
David Rubio, demonstrated that it is possible to con-
struct instruments with almost identical admittance
characteristics, provided one uses closely matching
wood from the same log, with a nearly perfect match
of plate thickness and arching. The German violin
maker Martin Schleske [15.108] also claims consid-
erable success in producing tonal copies with almost
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Fig. 15.62 Admittance measurements at bridge for six vio-
lins (after Beldie [15.98]). The arrows indicate the position
of the Helmholtz air resonance. The horizontal lines are
20 dB markers

identical acoustical properties to those of distinguished
Cremonese instruments by grading the thickness and
arching of the plates to reproduce both the input admit-
tance and radiated sound.

In contrast, slavishly copying the dimensions of
a master violin rarely produces an instrument with
anything like the same tonal quality. This is easily un-
derstood in terms of the differing elastic and damping
properties of the wood used to carve the plates, which
remains a problem of great interest, but beyond the
scope of this article.

Traditionally, the admittance is usually measured
using a swept sinusoidal frequency source, often gener-

ated by a small magnet waxed to the bridge and driven
by a sinusoidally varying magnetic field. The admit-
tance can equally well be determined from the transient
response f (t) following a very short impulse to the
bridge, since it is simply the Fourier transform,

A(ω) =
∞∫

0

f (t)eiωt dt . (15.90)

If signal-to-noise ratio from a single measurement
is insufficient, one can use a sequence of impulses or
a noise source, which is equivalent to a random succes-
sion of short pulses. In addition to many professional
systems, relatively inexpensive PC-based versions us-
ing sound cards have been developed for researchers
and instrument makers, such as the WinMLS system by
Morset [15.109].

Laser Holography
Admittance measurements at the bridge provide de-
tailed information on the frequencies, damping and
effective masses of the normal modes of vibration of
an instrument, but provide no information on the na-
ture of the modes excited. Laser holography, which is
essentially the modern-day equivalent of Chladni plate
measurements, enables one to visualise the vibrational
modes of stringed and percussion instruments. In such
measurements, photographs or real-time closed-circuit
television images of the interference patterns of laser
light reflected from a stationary mirror and from the
vibrating object are recorded. Using photographic or
electronic/software reconstruction of the original im-
age from the recorded holograms, a 3-D image of the
vibrating surface is formed with superimposed con-
tours indicating lines of equal vibrational amplitude,
as already illustrated for a number of prominent guitar
modes in Fig. 15.56.

Recent developments in laser and electronic data-
acquisition technology allow one to record such in-
terferograms electronically and to display them in
real time on a video monitor (for example, Saldner
et al. [15.110]). To record the shapes of individual vi-
brational modes of an instrument excited by a sinusoidal
force, care has to be taken to avoid contamination from
neighbouring resonances, by judicious placing of the
force transducer (e.g. placing it at a node of an unwanted
mode). Cremer [15.30, Chap. 12] reproduces an inter-
esting set of holograms by Jansson et al. [15.111] for
the front plate of a violin at various stages of its con-
struction, before and after the f-holes are cut, before and
after the bass-bar is added and with a soundpost sup-
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ported on a rigid back plate. These highlight the major
effect of the f-holes and soundpost on the modal shapes
and frequencies, but the relatively small influence of
the bass-bar, consistent with the FEA computations by
Roberts [15.104] referred to earlier. However, the bass
bar strengthens the coupling between the island area be-
tween the f-holes and the larger radiating surfaces of
the top plate and therefore has a strong influence on the
intensity of radiated energy.

With modern intense pulsed laser sources, one can
also investigate the transient response of instruments
using single pulses. For example, Fletcher and Ross-
ing [15.5, Fig.10.15] reproduce interferograms of the
front and back plate of a violin by Molin et al. [15.112,
113], which illustrate flexural waves propagating out
from the feet of the bridge on the front face and from the
end of the soundpost on the back plate at intervals from
100–450 μs after the application of a sharp impulse at
the bridge. Holograms can even be recorded while the
instrument is being bowed [15.112, 113].

Modal Analysis
Modal analysis measurements have been extensively
used to investigate the vibrational modes of the vi-
olin, guitar, the piano soundboards and many other
stringed and percussion instruments (Chap. 28). Briefly,
the method involves applying a known impulse at one
point and measuring the response at a large number of
other points on the surface of an instrument, which al-
lows one to determine both the modal frequencies and
the vibrations at all points on the surface. The Fourier
transform of the impulse response is directly related to
the nonlocal admittance, which in terms of the normal
modes excited can be written as

A(r1, r2, ω) = iω
∑

n

1

mn

ψn(r1)ψn(r2)

ω2
n −ω2 + iωωn/Qn

,

(15.91)

where ψn(r1)ψn(r2) is the product of the wavefunctions
describing the displacements at the measurment and ex-
citation points normalised to the product at the point
of maximum displacement, and mn is now the effective
mass of the normal mode at its point of maximum am-
plitude of vibration (i. e. K Emax = 1/2mnω2ψ2

n |max).
An FFT of the recorded transient response will give
peaks in the frequency response, which can be decom-
posed into contributions from all the excited normal
modes. By keeping the point of excitation fixed and
moving the measurement point, one can record the am-
plitude and phase of the induced motion for a specific
mode and, using the spatial dependence in (15.91), can

map out the nodal waveform. Alternatively, one can
keep the measurement point fixed and apply the im-
pulse over the surface of the structure to derive similar
information.

One of the first detailed modal analysis investiga-
tions of the violin was made by Marshall [15.94], who
used a fixed measurement point on the top plate of the
violin near the bass-side foot of the bridge with a force
hammer providing calibrated impulses at a large num-
ber of points over the surface of the violin. From the
FFT of the resultant transient responses, the amplitudes
and phases of the excited normal modes of the violin in-
volving all its component parts including the body shell,
neck, fingerboard and tailpiece could be determined.
Marshall identified and characterised around 30 nor-
mal modes below ≈1 kHz. Many of the modes involved
the relatively low-frequency flexing and twisting of the
instrument as a whole. However, because such modes
involved little appreciable change in overall volume of
the shell of the instrument structure, they resulted in lit-
tle radiated sound. Nevertheless, it was suggested that
such modes might well play an important role for the
performer in determining the feel of the instrument and
its playability.

In any physical measurement, the instrument has to
be supported in some way. Rigid supports introduce ad-
ditional boundary conditions, which can significantly
perturb the normal modes of the instrument. Many
measurements are made with the instrument supported
by rubber bands, which provide static stability without
significant perturbation of the higher-frequency struc-
tural modes. However, Marshall [15.94] showed that,
when an instrument is held and supported by the player
under the chin, the damping of many of the normal
modes was significantly increased, which will clearly
affect the sound of the instrument when played. This
observation has also been confirmed in more recent
modal analysis measurements by Bissinger [15.95] and
by direct measurements of the decaying transient sound
of a freely and conventionally supported violin by the
present author [15.18].

Bissinger [15.107] has made extensive admittance,
modal analysis and sound radiation measurements on
a large number of instruments. Measurements were
made using impulsive excitation at the bridge and a laser
Doppler interferometer to record the induced velocities
at over 550 points on the surface of the violin. Si-
multaneous measurements of the overall radiation and
directivity were made using 266 microphone positions
over a complete sphere. Figure 15.63 shows cross sec-
tions illustrating the displacements associated with four
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159 Hz

281 Hz 425 Hz 480 Hz

Fig. 15.63 Modal analysis measurements illustrating the
displacements associated with four representative low-
frequency modes of a violin (data provided by George
Bissinger)

low frequency modes. The 159 Hz mode
involves major vibrations of the neck, fingerboard, tail-
piece and body of the instrument. The second example
at 281 Hz illustrates the body displace-
ments associated with the Helmholtz air resonance. The
mode at 425 Hz illustrates a mode with
asymmetric in-phase vibrations of the front and back
plates, with little net volume change and hence little ra-
diated sound, while the mode at 480 Hz is
a strong breathing mode.

By combining the modal analysis and radiativity
measurements, Bissinger has shown that the radiation
efficiency of the plate modes (i. e. the fraction of sound
energy radiated by the violin relative to a baffled pis-
ton of the same surface area having the same root
mean square surface velocity displacement) rises to
nearly 100% at a critical frequency of ≈2–4 kHz, when
the wavelength of the flexural vibrations of the plates
matches that of sound waves in air. Little apparent cor-
relation was observed between the perceived quality of
the measured violins and the frequencies and strengths
of prominent structural resonances below ≈1 kHz or
with the internal damping of the front and back plates.
This runs contrary to the general view of violin mak-
ers that the front and back plates of a fine violin should
be made of wood with a very long ringing time when
tapped. Interestingly, the American violin maker Joseph
Curtin has also observed that individual plates of old
Italian violins often appear to be more heavily damped
than their modern counterparts [15.114]. This is clearly
an area that merits further research.

15.2.8 Radiation and Sound Quality

As already emphasised, at low frequencies, when the
acoustic wavelength is smaller than the size of an in-
strument, the radiated sound is dominated by isotropic

monopole radiation. As the frequency is increased,
higher-order dipole and then quadrupole radiation be-
come progressively important, while above the critical
frequency, when the acoustic wavelength is shorter than
the that of the flexural waves on the shell of an in-
strument, the radiation patterns become increasingly
directional, so that it is no longer appropriate to consider
the radiation in terms of a multipole expansions.

Fletcher and Rossing [15.5, Fig. 10.30] repro-
duce measurements on both the violin and cello by
Meyer [15.115], which highlight the increasing di-
rectionality of the sound produced with increasing
frequency and the rather strong masking effect of the
player at high frequencies. More recently, Weinreich
and Arnold [15.116,117] have made detailed theoretical
and experimental studies of multipole radiation from the
freely suspended violin at low frequencies (typically be-
low 1 kHz). Interestingly, they made use of the principle
of acoustic reciprocity, based on the fact that the ampli-
tude of vibration at the top of the bridge produced by
incoming sound waves is directly related to the sound
radiated by a force applied to the violin at the same
point. The violin was radiated by an array of loudspeak-
ers to simulate incoming spherical or dipole sound fields
and the induced velocity at the bridge recorded by a very
light gramophone pick-up stylus.

Hill et al. [15.118] have used direct measurements
to investigate the angular dependence of the sound radi-
ated by a number of high-quality modern acoustic gui-
tars with different cross-strutting, when excited by a si-
nusoidal force at the bridge. From such measurements,
they were able to derive the fraction of sound radiated
as the dominant monopole and dipole (with components
in three directions) radiation, in addition to effective
masses and Q-values, for a number of prominent modes
up to ≈ 600 Hz. Significant differences were observed
for the three different strutting schemes investigated.

Bissinger [15.119] has made an extensive in-
vestigation of radiation from both freely supported
and hand-held violins, including measurements above
1 kHz, where the multimodal radiation expansion is
no longer appropriate. Bissinger correlates the sound
radiated over a large number of points on a sphere
surrounding the violin with measurements of the input
admittance at the bridge and the induced surface veloci-
ties over the whole violin structure. Figure 15.64 shows
a typical set of simultaneous measurements up to 1 kHz.
Although the low-frequency Helmholtz resonance con-
tributes strongly to the radiated sound, it results in
a relatively small feature on the mobility curves for
the body of the instrument (or on the measured admit-
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Fig. 15.64 Plots of the root-mean-square (rms) mobility
〈Y〉 (m/sN) averaged over the surface of the front and back
plate (solid shaded region) and ribs (white curve) of the in-
strument, the radiativity 〈R〉 (Pa/N) averaged over a sphere,
and directivity 〈D〉, the ratio of forward to backward radia-
tion averaged over hemispheres. The top arrows represent
the positions of the open-string resonances and their par-
tials. A0 is the position of the Helmholtz air resonance and
A1 the first internal cavity air resonance, CBR is a strong
corpus bending mode and B1 and B2 are the two strong
structural normal mode resonances of the coupled front and
back plates (data kindly supplied by George Bissinger)

tance at the bridge, not shown). Bissinger was unable to
find any significant correlation between the frequencies
and Q-values of the prominent signature modes excited
(see, for example, Jansson [15.120]) below ≈ 1 kHz and
the perceived quality of the instruments investigated.
Above ≈ 1 kHz the modes strongly overlap, so that it
becomes more appropriate to compare the frequency av-
eraged global features. The measurements show that the
fraction of mode energy radiated increases monotoni-
cally from close to zero at low frequencies up to around
almost 100% efficient at 4 kHz and above, where almost
all the energy is lost by radiation rather than inter-
nal damping. The ultimate aim of these detailed modal
analysis studies is to correlate the measured acoustical
properties with the results obtained from finite-element
analysis and to produce sufficient information about the
acoustical properties that might allow a more realistic
comparison between physical properties and the proper-
ties of an instrument judged from their perceived sound
quality and playability.
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Fig. 15.65 Ratio of sound intensities along neck and per-
pendicular to front plate for four violins of widely different
qualities (after Weinreich [15.121])

Directional Tone Colour
Although the acoustic power radiated averaged over
a given frequency range is clearly an important sig-
nature of the sound of a particular instrument, the
intensity at a particular frequency in the important au-
ditory range above 1 kHz can vary wildly from note
to note. This is illustrated in Fig. 15.65 by Weinre-
ich [15.121], which compares the intensities of radiated
sound in an anechoic chamber along the direction of the
neck and perpendicular to the front plate for four vio-
lins of widely differing quality, with 0 dB representing
an isotropic response. Above around 1 kHz, the wave-
lengths of flexural waves on the plates of the instrument
become comparable with the wavelength of the radi-
ated sound. This leads to strong diffraction effects in
the radiated sound, which fluctuate wildly with direc-
tion as different modes are preferentially excited. At
a particular point in the listening space, the spectral
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content of the bowed violin therefore varies markedly
from note to note, as will the sound within a single note
played with vibrato resulting in frequency modulation.
The spectral content will also vary from position to po-
sition around the violin, especially if the player moves
whilst playing. Weinreich has emphasised the impor-
tance of such effects in producing a greater sense of
presence and vibrancy in the perceived sound from a vi-
olin than would be produced by a localised isotropic
sound source, such as a small loudspeaker. Weinreich
has coined the term directional tone colour to describe
such effects. He has also designed a loudspeaker sys-
tem based on the same principles, which gives a greater
sense of realism to the sound of the recorded violin than
a simple loudspeaker.

In addition to the intrinsic directionality of the vio-
lin, the time-delayed echoes from the surrounding walls
of a performing space also have a major influence on
the complexity of the sound waveforms produced by
a violin (or any other instrument) played with vibrato,
as first noted by Meyer [15.122]. This arises from the
interference between the different frequencies associ-
ated with the prompt sound reaching the listener (or
microphone) and the sound generated at earlier times
reflected from the surrounding surfaces. As discussed
by the present author (Gough [15.18]), the additional
complexity is largely a dynamic effect associated with
the time-delayed interference between signals of dif-
ferent frequencies rather than caused by the amplitude
modulation of individual partials associated with the
multi-resonant response of the violin, first highlighted
by Fletcher and Sanders [15.123] and Matthews and
Kohut [15.124].

Perceived Quality
No problem in musical acoustics has attracted more at-
tention or interest than the attempts made over the last
150 or so years to explain the apparent superiority of
old Cremonese violins, such as those made by Stradivar-
ius and Guarnerius, over their later counterparts, which
have often been near exact copies. Many explanations
have been proposed – a magic recipe for the var-
nish, chemical treatment of the wood and finish of the
plates prior to varnishing [15.125], the special quality
of wood resulting from micro-climate changes [15.126],
etc. However, despite the committed advocacy for par-
ticular explanations by individuals, there is, as yet, little
agreement between researchers, players or dealers on
the acoustical attributes that distinguish a fine Italian
violin worth $1M or more from that of a $100 student
instrument.

From a physicist’s point of view, given wood of the
same quality as that used by the old Italian makers,
there is no rational reason why a modern violin should
not be just as good from an acoustic point of view
as the very best Italian instrument. We have already
commented on Martin Schleske’s attempts to replicate
the sounds of fine Italian instruments, by making tonal
copies having as near as possible the same acoustical
properties [15.108]. In addition, we have also high-
lighted Dünnewald’s attempt to correlate the physical
properties of well over 200 violins with their acous-
tical properties [15.76], including the comparison of
selected student, modern and master violins reproduced
in Fig. 15.62. Such studies appear to show a correlation
between the amount of sound radiation in the acous-
tically important range around 3–4 kHz. As we have
emphasized, this is just the region where the resonant
properties of the bridge have a major influence on the
spectrum.

It must also be remembered that the changed de-
sign of the bridge, the increase in string tension, higher
pitch, increased size of the bass-bar, neck and sound-
post, and the use of metal-covered rather than gut
strings have resulted in a modern instrument sound-
ing very different from the instruments heard by the
17th and early 18th century maker and performer. Even
amongst the violins of the most famous Cremonese
luthiers, individual instruments have very different dis-
tinctive tones and degrees of playability, particular as
judged by the player. The gold standard itself is there-
fore very elusive. What is currently and may always
be lacking is reliable measurements on the individual
plates and shells of a large number of really fine in-
struments. We still largely rely on a small number of
measurements performed by Savart in the nineteenth
century and a few measurements by Saunders in the
1950s on which to base scientific guidelines for modern
violin makers.

Performance Acoustic
It should also be recognised that, when a violin (or any
other instrument) is played, the performer excites not
only the vibrational modes of the instrument but also the
multi-resonant normal modes of the performance space.
Whereas the sound heard by a violinist is dominated
by the sound of the violin, for the listener the acoustics
of the performance space can dominate the timbre and
quality of the perceived sound. To distinguish between
the intrinsic sound qualities of violins, comparisons
should presumably best be made in a rather dry acous-
tic, even though such an acoustic is generally disliked
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by the performer (and listener), who appreciates the
improvement in sound quality provided by a resonant
room acoustic.

One cannot review progress towards our under-
standing of what makes a good violin without recog-
nising the inspiration and enthusiastic leadership of
Carleen Hutchins, the doyenne and founder of the
Catgut Society and scientific school of violin mak-
ing, which has attracted many followers world-wide.
By matching the frequencies and shapes of the first
few modes of free plates before they are assembled
into the completed instrument (Fig. 15.55), the scientific
school of violin makers clearly achieve a high degree
of quality control, which goes some way towards com-
pensating for the inherent inhomogeneities and variable
elastic properties of the wood used to carve the plates.
However, in practice, there is probably just as much
variability in the sound of such instruments as there
is in instruments made by more traditional methods,
where makers tap, flex and bend the plates until they
feel and sound about right, this being part of the tra-
ditional skills handed down from master to apprentice
even today. That is certainly the way that the Italian
masters must have worked, without the aid of any sci-
entific measurements beyond the feel and the sound of
the individual plates as they are flexed and tapped.

Scientific Scaling
The other interesting development inspired by Carleen
Hutchins and her scientific coworkers Schelling and
Saunders has been the development of the modern vi-
olin octet [15.127], a set of eight instruments designed
according to physical scaling laws based on the premise
that the violin is the most successful of all the bowed
stringed instruments. The aim is to produce a consort
of instruments all having what are considered to be
the optimised acoustical properties of the violin. Each
member of the family is therefore designed to have
the frequencies of the main body and Helmholtz reso-
nances in the same relationship to the open strings as
that on the violin, where the Helmholtz air resonance
strongly supports the fundamental of notes around the
open D-string, while the main structural resonances sup-
port notes around the open A-string and the second and
generally strongest partial of the lowest notes played
on the G-string. Several sets of such instruments have
been constructed and admired in performance, though
not all musicians would wish to sacrifice the diversity
and richness of sounds produced by the different tra-
ditional violin, viola, cello and double bass in a string
quartet or orchestra. Nevertheless, the scaling methods
have led to rather successful intermediate and small-
sized instruments.

15.3 Wind Instruments

In this section we consider the acoustics of wind
instruments. These are traditionally divided into the
woodwind, played with a vibrating reed or by blowing
air across an open hole or against a wedge, and brass in-
struments, usually made of thin-walled brass tubing and
played by buzzing the lips inside a metal mouthpiece
attached to the input end of the instrument.

In general, the playing pitch of woodwind instru-
ments is based on the first two modes of the resonating
air column, with the pitch changed by varying the ef-
fective length by opening and closing holes along its
length. In contrast, brass players pitch notes based on
a wide range of modes up to and some times beyond
the 10th. The effective length of brass instruments can
be changed by sliding interpenetrating cylindrical sec-
tions of tubing (e.g. the trombone) or by a series of
valves, which connect in additional length of tubing
(e.g. trumpet and French horn). The pitch of many other
instruments, such as the organ, piano-accordion and
harmonium, is determined by the resonances of a set of

separate pipes or reeds to excite the full chromatic range
of notes, rather like the individual strings on a piano.

A detailed discussion of the physics and acousti-
cal properties underlying the production of sound in
all types of wind instruments is given by Fletcher
and Rossing [15.5], which includes a comprehen-
sive list of references to the most important research
literature prior to 1998. As in many fields of acous-
tics, Helmholtz [15.128] and Rayleigh [15.3] laid the
foundations of our present-day understanding of the
acoustics of wind instruments. In the early part of
the 20th century, Bouasse [15.129] significantly ad-
vanced our understanding of the generation of sound
by the vibrating reed. More recently, Campbell and
Greated [15.130] have written an authoritative text-
book on musical acoustics with a particular emphasis
on musical aspects, including extensive information on
wind and brass instruments. Recent reviews by Ned-
erveen [15.131] and Hirschberg et al. [15.132] provide
valuable introductions to recent research on both wind
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and brass instruments. Earlier texts by Backus [15.133]
and Benade [15.134], both leading pioneers in research
on wind-instrument acoustics, provide illuminating in-
sights into the physics involved and provide many
practical details about the instruments themselves. A re-
cent issue of Acta Acustica [15.135] includes a number
of useful review articles, especially on problems related
to the generation of sound by vibrating reeds and air jets
and on modern methods used to visualise the associated
air motions. For a mathematical treatment of the physics
underlying the acoustics of wind instruments, Morse
and Ingard [15.136] remains the authoritative modern
text. Other important review papers will be cited in the
appropriate sections, and selected publications will be
used to illustrate the text, without attempting to provide
a comprehensive list of references.

We first summarise the essential physics of sound
propagation in air and simple acoustic structures before
considering the more complicated column shapes used
for woodwind and brass instruments. An introduction is
then given to the excitation of sound by vibrating lips
and reeds, and by air jets blown over a sharp edge. The
physical and acoustical properties of a number of wood-
wind and brass instruments will be included to illustrate
the above topics.

A brief introduction to freely propagating sound in
air was given in Sect. 15.1.3. In this section, we will be
primarily concerned with the propagation of sound in
the bores of wind and brass instruments, the excitation
of standing-wave modes in such bores, the mechanics
involved in the excitation of such modes and the resul-
tant radiation of sound.

15.3.1 Resonances in Cylindrical Tubes

Standing waves in cylindrical tubes with closed or open
ends provide the simplest introduction to the acoustics
of wind instruments. For example, the flute can be con-
sidered as a first approximation as a cylindrical tube
open at both ends, while the clarinet and trombone are
closed at one end by the reed or the player’s lips. For
a cylindrical pipe open at both ends, wave solutions are
of the general form

pn(x, t) = A sin(kx x) sin(ωnt) , (15.92)

with the acoustic pressure zero at both ends. Neglecting
end-corrections, open ends are therefore displacement
antinodes and pressure nodes. These boundary con-
ditions result in eigenmodes with kn = nπ/L and
ωn = nc0π/L , where L is the length of the pipe and
n is an integer.

Such modes are closely analogous to the transverse
standing-wave solutions on a stretched string having n
half-wavelengths along the length L and a harmonic set
of frequencies fn = nc0/L , which are integral multi-
ples of the fundamental (lowest) frequency f1 = c0/2L .
When a cylindrical pipe open at both ends, such as
a flute, is blown softly, the pitch is determined by the
fundamental mode, but when it is overblown the fre-
quency doubles, with the pitch stabilising on the second
mode an octave above (audio ).

A cylindrical pipe played by a reed or vibrating
lips has a pressure antinode and displacement node at
the playing end. This results in standing-wave solutions
with an odd number of 1/4-wavelengths between the
two ends, such that kn = nπ/4L , where n is now lim-
ited to odd integer values. The corresponding modal
frequencies, ωn = nπ/4L , are therefore in the ratios
1 : 3 : 5 : 7 : etc. The lowest note on the cylindrical bore
clarinet, closed at one end by the mouthpiece, is there-
fore an octave below the lowest note on a flute of the
same length. Furthermore, when overblown, the clarinet
sounds a note three times higher than the fundamental,
musical interval of an octave plus a perfect fifth (au-
dio ). The weak intensity of the even-n-value
modes in the spectrum accounts for the clarinet’s char-
acteristic hollow sound, particularly for the lowest notes
on the instrument.

Real Instruments
For real wind and brass instruments, the idealised model
of cylindrical tube resonators is strongly perturbed by
a number of important factors. These include:

1. The shape of the internal bore of an instrument,
which is often noncylindrical including conical and
often flared tubes with a flared bell on the radiating
end

2. The finite terminating impedance of the reed or
mouthpiece used to excite the resonances, no longer
providing a perfect displacement node

3. Radiation of sound from the end of the instrument,
which is therefore no longer a perfect displacement
antinode

4. Viscous and thermal losses to the walls of the
instrument

5. Open and shut tone holes in the sides of wind in-
struments used to vary the pitch of the sounded
note

6. Bends and valves along the length of brass in-
struments, connecting additional lengths of tubing,
which allow the player to play all the notes of
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a chromatic scale within the playing range of the
instrument.

The skill of wind-instrument makers lies in their
largely intuitive understanding of the way that changes
in bore shape and similar factors affect the resonant
modes of an instrument. This allows the design of in-
struments that retain, as closely as possible, a full set of
harmonic resonances across the whole playing range of
the instrument. This facilitates the stable production of
continuous notes by the player, as the resulting harmonic
set of Fourier components or partials coincide with the
natural resonances of the instrument. For brass instru-
ments with a flaring end this can often be achieved for
all but the lowest natural resonance of the air column.

In discussing the acoustics of wind instruments with
variable cross-sectional area S, the flow rate U = Sv is
a more useful parameter than the longitudinal particle
velocity v. For example, the force acting on an ele-
ment of air of length Δx along the bore length of an
air column is then given by

−S
∂p

∂x
Δx = ρS

∂v

∂t
Δx = ρ

∂U

∂t
Δx . (15.93)

For travelling waves,ei(ωt±kx), this results in a ratio be-
tween the pressure and flow rate, defined as the tube
impedance

Z = p

U
= ±ρc0

S
, (15.94)

where the plus and minus signs refer to waves travelling
in the positive and negative x-directions, respectively.
There is a very close analogy with an electrical trans-
mission line, with pressure and flow rate the analogue
of voltage and current, as discussed later. Because the
impedance is inversely proportional to area, it can be
appreciably higher at the input end of a brass or wind
instrument than at its flared output end. The flared bore
of a brass instrument or the horn on an old wind-up
gramophone can therefore be considered as an acous-
tic transformer, which improves the match between the
high impedance of the vibrating source of sound to the
much lower impedance presented by air at the end of
the instrument. There is clearly an optimum matching,
which enhances the radialed sound without serious de-
gredation of the excited resonant modes.

Acoustic Radiation
In elementary textbook treatments, the pressure at the
end of an open pipe is assumed to be zero and the flow
rate a maximum, so that Zclosed = p/U = 0. However,
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Fig. 15.66 Real and imaginary components of f , the
impedance at the unbaffled open end of a cylindrical tube
of radius a, in units of ρc0/πa2, as a function of ka (after
Beranek [15.137])

in practice, the oscillatory motion of the air extends
somewhat beyond the open end, providing a pulsating
source that radiates sound, as described by Rayleigh
[15.3, Vol. 1, Sect. 313]. Such effects can be described
by a complex terminating load impedance, ZL = R +
jx. Figure 15.66 shows the real (radiation resistance) R
and imaginary (inertial end-correction) x components
of ZL as a function of ka, where a is the radius of the
open-ended pipe. The impedance is normalised to the
tube impedance pc0/πa2.

When ka � 1, the reactive component is propor-
tional to ka and corresponds to an effective increase in

–10dB
–20dB
–30dB

θ

ka = 0.5 ka = 1.5 ka = 3.83

Fig. 15.67 Polar plots of the intensity radiation from the
end of a cylindrical pipe of radius a for representative ka
values, calculated by Levine and Schwinger [15.138]. The
radial gradations are in units of 10 dB. The intensities in the
forward direction (θ = 0) relative to those of an isotropic
source are 1.1, 4.8 and 11.8 dB (Beranek [15.137])
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the tube length or end-correction of 0.61a. At low fre-
quencies, the real part of the impedance represents the
radiation resistance Rrad = ρc/4S(ka)2. In this regime,
the sound will be radiated isotropically as a monopole
source of strength U eiωt , illustrated in Fig. 15.67 by the
polar plots of sound intensity as a function of angle and
frequency.

When ka is of the order of and greater than unity,
the real part of the impedance approaches that of a plane
wave acting across the same area as that of the tube. Al-
most all the energy incident on the end of the tube is
then radiated and little is reflected. For ka � 1, sound
would be radiated from the end of the pipe as a beam of
sound waves. The transition from isotropic to highly di-
rectional sound radiation is illustrated for a sequence of
ka values in Fig. 15.67. The ripples in the impedance in
Fig. 15.66 arise from diffraction effects, when the wave-
length becomes comparable with the tube diameter.

For all woodwind and brass instruments, there is
therefore a crossover frequency fc ≈ c0/2πa, below
which incident sound waves are reflected at the open
end to form standing waves. Above fc waves generated
by the reed or vibrating lips will be radiated from the
ends of the instrument strongly with very little reflec-
tion. Narrow-bore instruments can have a large number
of resonant modes below the cut-off, while instruments
with a large output bell, like many brass instruments,
have far fewer.

For a narrow-bore cylindrical bore wind instrument
with end radius a ≈ 1 cm, the cut-off frequency (ka ≈ 1)
is ≈ 5.5 kHz. Below this frequency the instrument will
support a number of relatively weakly damped resonant
modes, which will radiate isotropically from the ends
of the instrument or from open holes cut in its sides. In
contrast, for brass instruments the detailed shape and
size ot the flared end-bell determines the cut-off fre-
quency. The large size of the bell leads to an increase
in intensity of the higher partials and hence brilliance
of tone-color, especially when the bell is pointed di-
rectly towards the listener. For French horns, much of
the higher-frequency sound is therefore projected back-
wards relative to the player, unless there is a strongly
reflecting surface behind.

For ka � 1, the open end of a musical instrument
acts as an isotropic monopole source with radiated
power P given by

P = U2
rms Rrad = ω2 ρ

8πc
(Sωξ)2 . (15.95)

For a given vibrational displacement, the radiated power
therefore increases with the fourth power of both fre-

quency and radius. This very strong dependence on size
explains why brass instruments tend to have rather large
bells and why high-fidelity (HI-FI) woofer speakers and
the horns of public address loudspeakers tend to be
rather large. Conversely, it explains why the sound of
small loudspeakers, such as those used in PC notebooks,
fall off very rapidly below a few hundred Hz.

Acoustic radiation will lower the height and in-
crease the width of resonances in a cylindrical tube. The
resulting Q-values can be determined from

Q = ω
stored energy

radiated energy

= ω

1
4ρSLω2ξ2

ω4 (ρ/8πc) S2ξ2
= 2πcL/ωS . (15.96)
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Fig. 15.68 Input impedance of a length of 1 cm diameter
trumpet tubing with and without a bell attached to the
output end (after Benade [15.134])
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Narrow-bore instruments will therefore have larger
Q-values and narrower resonances than wide-bore in-
struments such as brass instruments, where the flared
end-sections enhance the radiated energy at the expense
of increasing the net losses.

The increased damping introduced by radiation
from the end of an instrument is illustrated in Fig. 15.68,
which compares the resonances of a length of 1 cm-
diameter trumpet tubing, first with a normal open
end and then with a bell attached (Benade [15.133,
Fig. 20.4]). Attaching a bell to such a tube dramatically
increases the radiated sound from the higher partials
and perceived intensity, but at the expense of a cut-off
frequency at around ≈ 1.5 kHz and a significant broad-
ening of the resonances at lower frequencies. Audio

demonstrates the sound of a mouthpiece-
blown length of hose pipe with and without a conical
chemical filter funnel attached to its end.

Viscous and Thermal Losses
In addition to radiation losses, there can be signifi-
cant losses from viscous damping and heat transfer to
the walls, as discussed in detail in Fletcher and Ross-
ing [15.5, Sect. 8.2]. Although simple models for waves
propagating along tubes assume a constant particle dis-
placement across the whole cross-section, in reality the
air on the surface of the walls remains at rest. The
particle velocity only attains the assumed plane-wave
constant value over a boundary-layer distance of δη

from the walls. This is determined by the viscosity
η, where δη = (η/ωρ)1/2, which can be expressed as
≈ 1.6/ f 1/2 mm for air at room temperature. At 100 Hz,
δη ≈ 0.16 mm. which is relatively small in comparison
with typical wind-instrument pipe diameters. Neverthe-
less, it introduces a significant amount of additional
damping of the lower-frequency resonances of wind and
brass instruments.

The viscous losses lead to an attenuation of sound
waves, which can be described by adding an imaginary
component to the k value such that k′ = k − iα. Waves
therefore propagate as e−αx ei(ωt−kx), with an attenua-
tion coefficient

α = 1

ac0

√
ηω

2ρ
= kδη

a
. (15.97)

In addition, heat can flow from the sinusoidally vary-
ing adiabatic temperature fluctuations of the vibrating
column of air into the walls of the cylinder. At acoustic
frequencies, this takes place over the thermal diffusion
boundary length δθ = (κ/ωρCp)1/2, where κ is the ther-
mal conductivity and Cp is the heat capacity of the gas

at constant pressure. In practice, δθ ≈ δη, as anticipated
from simple kinetic theory (for air, the values differ
by only 20%). Viscous and heating losses are therefore
comparable in size giving an effective damping fac-
tor for air at room temperature, α = 2.2104k1/2/a m−1

(Fletcher and Rossing [15.5, Sect. 8.2]). The ratio of the
real to imaginary components of k determines the damp-
ing and effective Q-value of the acoustic resonances
from wall losses alone, with Qwalls = k/2α.

The combination of radiation and wall losses leads
to an effective Qtotal of the resonant modes given by

1

Qtotal
= 1

Qradiation
+ 1

Qwall-damping
. (15.98)

Because of the different frequency dependencies, wall
damping tends to be the strongest cause of damping of
the lowest-frequency resonances of an instrument. It can
also be significant in the narrow-bore tubes and crooks
used to attach reeds to wind instruments.

Input Impedance
The method used to characterize the acoustical proper-
ties of a wind or brass instrument is to measure the input
impedance Z in = pin/Uin at the mouthpiece or reed end
of the instrument. Such measurements are frequently
made using the capillary tube method. This involves
connecting an oscillating source of pressure fluctuations
to the input of the instrument through a narrow-bore
tube. This maintains a constant oscillating flow of air
into the instrument, which is largely independent of
the frequency-dependent induced pressure fluctuations
at the input of the instrument. Several examples of such
measurements, similar to those for the length of trumpet
tubing (Fig. 15.68), for woodwind and brass instruments
are shown and discussed by Backus [15.133] and Be-
nade [15.134], who pioneered such measurements, and
in Fletcher and Rossing [15.5, Chap. 15]. Alternatively,
a piezoelectric driver coupled to the end of the instru-
ment can provide a known source of acoustic volume
flow.

The input impedance of a cylindrical tube is a func-
tion of both the tube impedance Z0 = ρc0/S and the
terminating impedance ZL at its end. It can be cal-
culated using standard transmission-line theory, which
takes into account the amplitude and phases of the re-
flected waves from the terminating load. The reflection
and transmission coefficients R and T for a sound wave
impinging on a terminating load ZL are given by

R = ZL − Z0

ZL + Z0
and T = 2ZL

ZL + Z0
. (15.99)
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Real and imaginary components of Z
in 
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Fig. 15.69a,b Real and imaginary components of the in-
put impedance in units of Z0 as a function of 2kL/π for
(a) an ideally open-ended, ZL = 0, cylindrical tube with
wall losses varying as k1/2, and (b) the same components
shifted downwards for a pipe with radiation resistance pro-
portional to k2 also included

For a cylindrical tube of length L , the input impedance
is given by

Z in = Z0
ZL cos kl + iZ0 sin kl

iZL sin kl + Z0 cos kl
, (15.100)

with complex k values k − iα, if wall losses need to be
included.

In Fig. 15.69 we have plotted the kL dependence
of the real and imaginary components of the input
impedance of an open-ended cylindrical pipe. The up-
per plot includes wall losses alone proportional to k1/2

while the lower plot includes losses from the end of
the instrument with radiation resistance Re(ZL) varying
as k2. The input impedance is high when kn = nc0/4L ,
where n is an odd integer. The input impedance is a min-
imum when n is even.

It is instructive to consider the magnitude of the
input impedances on a logarithmic scale, as shown in
Fig. 15.70. When plotted in this way, the resonances and
anti-resonances are symmetrically placed about the tube
impedance Z0. The magnitude of the impedance of the
nth resonance is Qn Z0, where Qn is the quality fac-
tor of the excited mode. In contrast the anti-resonances
have values of Z0/Q. The widths Δω/ω of the modes
at half or double intensity are given by 1/Qn .

For efficient transfer of sound, the input impedance
of a wind instrument has to match the impedance of the

2kL /π
0 20

100

10

1

0.1

0.01
5 10 15

Zin /Z0

Fig. 15.70 The modulus of the input impedance plotted on
a logarithmic scale of cylindrical pipe with wall damping
alone and with additional radiative damping as a function
of k in units of π/2

sound generator. For instruments like the flute, recorder
and pan pipes, sound is excited by imposed fluctuations
in air pressure across an open hole, so that the generator
impedance is small. The resonances of such instruments
are therefore located at the minima of the anti-resonance
impedance dips, corresponding to the evenly spaced
resonances, fn = nc0/2L , of a cylindrical tube with
both ends open. In contrast, for all the brass instru-
ments and woodwind instruments played by a reed, the
playing end of the tube is closed by a relatively mas-
sive generator (the lips or reed). Resonances then occur
at the peaks of the input impedance with frequencies
fn = nc0/4L , where n is now an odd integer, corre-
sponding to the resonances of a tube closed at one end.
If we had plotted the magnitude of the input admittance,
A(ω) = 1/Z(ω), instead of the impedance, the positions
of the resonances and anti-resonances would have been
reversed. The resonant modes of a double-open-ended
wind instrument therefore occur at the peaks of the in-
put admittance, whereas the resonant modes of wind
or brass instruments played with a reed or mouthpiece
are at the peaks of the input impedance. This is a gen-
eral property of wind instruments, whatever the size or
shape of their internal bores.

15.3.2 Non-Cylindrical Tubes

Although there are simple wind instruments with cylin-
drical bores along their whole length, the vast majority
of modern instruments and many ancient and ethno-

Part
E

1
5
.3



Musical Acoustics 15.3 Wind Instruments 641

logically important instruments have internal bores that
flare out towards their ends. One of the principle reasons
for such flares is that they act as acoustic transformers,
which help to match the high impedance at the mouth-
piece to the much lower radiation impedance of the
larger-area radiating output end. However, increasing
the fraction of sound radiated decreases the amplitude
of the reflected waves and hence the height and sharp-
ness of the natural resonances of the air resonances. In
addition, the shape of the bore can strongly influence
the frequencies of the resonating air column, which de-
stroys the harmonicity of the modes. This makes it more
difficult for the player to produce a continuous note
that is rich in partials, since any repetitive waveform
requires the excitation of a harmonic set of frequencies.

Conical Tube
We first consider sound propagation in a conical
tube, approximating to the internal bore of the oboe,
saxophone, cornet, renaissance cornett and bugle. If
side-wall interactions are neglected, the solutions for
wave propagation in a conical tube are identical to those
of spherical wave propagating from a central point.
Such waves satisfy the wave equation, which may be
written in spherical coordinates as

∇2 (r p) = 1

c2
0

∂2 (r p)

∂t2
. (15.101)

We therefore have standing-wave solutions for r p that
are very similar to those of a cylindrical tube, with

p = C
sin kr

r
eiωt . (15.102)

Note that the pressure remains finite at the apex of the
cone, r = 0, where sin(kr)/r → k. For a conical tube
with a pressure node p = 0 at the open end, we there-
fore have standing wave modes with kn L = nπ and
fn = nc0/2L , where n is any integer. The frequencies of
the excited modes are therefore identical to the modes
of a cylindrical tube of the same length that is open at
both ends. The lowest note at f1 = c0/2L for a conical
tube instrument with a reed at one end (e.g. the oboe
and saxophone) is therefore an octave above a reed in-
strument of the same length with a cylindrical bore (e.g.
the clarinet) with a fundamental frequency of c0/4L .

The flow velocity U is determined by the accelera-
tion of the air resulting from the spatial variation of the
pressure, so that

ρ
∂U

∂t
= ∂(r2 p)

∂r
= C (sin kr + kr cos kr) eiωt .

(15.103)
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Fig. 15.71 Pressure and flow velocity of the n = 5 mode
along the length of a conical tube

Figure 15.71 illustrates the pressure and flow velocity
for the n = 5 mode of a conical tube. Unlike the modes
of cylindrical tube, the nodes of U no longer coincide
with the peaks in p, which is especially apparent for
the first few cycles along the tube. Furthermore, the am-
plitude fluctuations increase with distance r from the
apex (≈ r), whilst the fluctuations in pressure decrease
≈ 1/r. A conical section therefore acts as an acous-
tic transformer helping to match the high impedance at
the input mouthpiece end to the low impedance at the
output radiating end.

Attaching a mouthpiece or reed to the end of a con-
ical tube requires truncation of the cone, which will
clearly perturb the frequencies of the harmonic modes.
However, using a mouthpiece or reed unit having the
same internal volume as the volume of the truncated
section removed will leave the frequencies of the lowest
modes unchanged. Only when the acoustic wavelength
becomes comparable with the length of truncated sec-
tion will the perturbation be large.

Fletcher and Rossing [15.5, Sect. 8.7] consider the
physics of the truncated conical tube and give the input
impedance derived by Olson [15.139]

Z in = ρc0

S1

iZL

(
sin(kL−θ2)

sin θ2

)
+
(

ρc0
S2

)
sin kL

ZL
sin(kL+θ1−θ2)

sin θ1 sin θ2
+ j

(
ρc0
S2

)
sin(kl+θ1)

sin θ1

,

(15.104)

where x1 and x2 are the distances of the two ends
from the apex of the truncated conical section. The
length L = x2 − x1, the end areas are S1 and S2, with
θ1 = tan−1 kx1 and θ2 = tan−1kx2.
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Fig. 15.72a,b The first four resonant frequencies of trun-
cated cones with (a) both ends open, and (b) the input end
closed, as a function of the ratio of their input to output
diameters (after Ayers et al. [15.140])

For a cone with ZL = 0 at the open end, (15.104)
reduces to

Z in = − j
ρc0

S1

sin kL sin θ1

sin(kL + θ1)
, (15.105)

which is zero for kL = nπ. The resonant frequencies of
truncated cones with both ends open are therefore inde-
pendent of cone angle and are the same as the equally
spaced harmonic modes of a cylinder of the same
length with both ends open, as shown in Fig. 15.72a. In
contrast, the resonant frequencies of a truncated cone
with one end closed (e.g. by the reed of an oboe or
saxophone or mouthpiece of a bugle) are strongly de-
pendent on the cone angle or ratio of input to output
diameter, as shown in Fig. 15.72b, adapted from Ayers
et al. [15.140]. As the ratio of input to output diameters
of a truncated cone increases, the modes change from
the evenly spaced harmonics of an open-ended cylinder
of the same length, to the odd harmonics of a cylin-
der closed at one end. In the transitional regime, the
frequencies of the modes are no longer harmonically re-

Table 15.6 Instruments approximately based on cylindrical and conical air columns

fn = nc0/2L
n even and odd

fn = nc0/4L
n odd

fn = nc0/2L
n even and odd

Flute
Recorders
Shakuhachi
Organ flue pipes (e.g. diapason)

Clarinet
Crumhorn
Pan pipes
Organ flue pipes (e.g. bourdon)
Organ reed pipes (e.g. clarinet)

Oboe
Bassoon
Saxophone
Cornett
Serpent
Organ reed pipes (e.g. trumpet)

lated. This has a significant effect on the playability of
the instrument, as the upper harmonics are no longer co-
incident with the Fourier components of a continuously
sounded note. However, for an instrument such as the
oboe, with a rather small truncated cone length, the per-
turbation of the upper modes is relatively small, as can
be seen from Fig. 15.71b.

Cylindrical and nontruncated conical tubes are the
only tubes that can produce a harmonically related set
of resonant modes, independent of their length. Hence,
when a hole is opened in the side walls of such a tube,
to reduce the effective length and hence pitch of the
note played, to first order, the harmonicity of the modes
is retained. This assumes a node at the open hole,
which will not be strictly correct, as discussed later in
Sect. 15.3.3.

In reality, the bores of wind instruments are rarely
exactly cylindrical or conical along their whole length.
Moreover, many wind instruments have a small flare
at the end to enhance the radiated sound, while oth-
ers, like the cor anglais and oboe d’amore, have an
egg-shaped cavity resonator towards their ends, which
contributes to their characteristic timbre or tone colour.
Table 15.6 lists representative wind instruments that are
at least approximately based on cylindrical and conical
bore shapes. The modern organ makes use of almost ev-
ery conceivable combination of closed- and open-ended
cylindrical and conical pipes.

Hybrid Tubes
Although many brass instruments include consider-
able lengths of cylindrical section, they generally have
a fairly long, gently flared, end-section terminated by
a very strongly flared output bell to enhance the radi-
ated sound. The shape of such flares can be optimized
to preserve the near harmonicity of the resonant modes,
as described in the following section.

One can use (15.104) to model the input impedance
of a flared tube of any shape, by approximating the
shape by a number of short truncated conical sections
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joined together. Starting from the radiating end, one
evaluates the input impedance of each cone in turn and
uses it to provide the terminating impedance for the
next, until one reached the mouthpiece end.

A weakness of all such models is the assumed plane
wavefront across the air column, whereas it must always
be perpendicular to the walls and belled outwards in any
rapidly flaring region. We will return to this problem
later.

Typical brass instruments, like the trumpet and
trombone, have bores that are approximately cylindri-
cal for around half their length followed by a gently
flared section and end bell, while others have initial con-
ical sections, like the bugle and horn. The affect on the
resonant frequencies of the first six modes of adding
a truncated conical section to a length of cylindrical
tubing is shown as a function their relative lengths in
Fig. 15.73, from Fletcher and Rossing [15.5, Fig. 8.9].
Note the major deviations from harmonicity of the res-
onant modes, apart from when the two sections are of
nearly equal lengths. These results highlight the com-
plexity involved, when adding flaring sections to brass
instruments to increase the radiated sound.

Horn Equation
Physical insight into the influence of bore shape on the
modes of typical brass instruments is given by the horn
equation introduced by Webster [15.141], though simi-
lar models date back to the time of Bernoulli (Rossing

(Hz)
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Fig. 15.73 The frequencies of the first six modes of a com-
pound horn formed from different fractional lengths of
cylindrical and conical section (after Fletcher and Ross-
ing [15.5])

and Fletcher [15.5, Sect. 8.6]). In its simplest form, the
horn equation can be written as

1

S

∂

∂x

(
S
∂p

∂x

)
= 1

c2
0

∂2 p

∂t2
, (15.106)

where S(x) is the cross-sectional area of the horn at
a distance x along its length. Provided the flare is not too
large, the above plane-wave approximation gives a good
approximation to the exact solutions and preserves the
essential physics involved.

If we make the substitution p = ψS1/2 and look for
solutions varying as ψ(x)eiωt , the horn equation can be
expressed as

∂2ψ

∂x2
+
[(

ω

c0

)2

− 1

a

∂2a

∂x2

]
ψ = 0 , (15.107)

where the radius a(x) is now a function of position
along the length. The above equation is closely re-
lated to the Schrödinger wave equation in quantum
mechanics, with 1/a ∂2a/∂x2 the analogue of potential
energy and −∂2ψ/∂x2 the analogue of kinetic energy
−h2/2m ∂2ψ/∂x2, where m is the mass of the particle
and h is Planck’s constant. One can look for solu-
tions of the form ei(ωt±kx). At any point along the horn
at radius x the radius of curvature of the horn walls,
R = (∂2a/∂x2)−1, so that

k2 =
(

ω

c0

)2

− 1

aR
. (15.108)

If ω > ωc = c0/(aR)1/2, k is real, so that unattenuated
travelling and standing-wave solutions exist. However,
when ω < ωc, k is imaginary and waves no longer prop-
agate, but are exponentially damped as e−x/δ eiωt with
a decay length of c0/(ω2

c −ω2)1/2.
The propagation of sound waves in a horn is there-

fore directly analogous to the propagation of particle
waves in a spatially varying potential. If the curvature
is sufficiently large sound waves will be reflected be-
fore they reach the end of the instrument. However, just
like particle waves in a potential well, sound waves can
still tunnel through the potential barrier and radiate into
free space at the end of the flared section. For a horn
with a rapidly increasing flare, the reflection point oc-
curs when the wavelength λ2 ≈ (2π)Ra. The effective
length of an instrument with a flared horn on its end
is therefore shorter for low-frequency modes than for
the higher-frequency modes. This is illustrated schemat-
ically in Fig. 15.77 for resonant modes of a flared Bessel
horn, which will be considered in more detail in the next
section.
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Exponential Horn
We now consider solutions of the horn equation, for
a number of special shapes that closely describe sec-
tions of the internal bore of typical brass instrument.
Cylindrical and conical section horns are special so-
lutions with (1/a)∂2a/∂x2 = 0, so that ψ satisfies the
simple dispersionless wave equation. Figure 15.74 il-
lustrates a number of other horn shapes described by
analytic functions.

The radii of exponential and cosh function horns
vary exponentially as A emx and A cosh(mx), re-
spectively, so that (1/a)∂2a/∂x2 = m2. The cosh mx
function provides a smooth connection to a cylindrical
tube at the input end. For both shapes, the horn equation
can then be written as

∂2ψ

∂x2
+
[(

ω

c0

)2

−m2

]
ψ = 0 , (15.109)

which has travelling solutions for the sound pressure
p = ψ/S1/2, where

p(x) = e−mx ei(ωt−
√

k2−m2x2) , (15.110)

and k = ω/c0. Above a critical cut-off frequency,
fc = c0m/2, waves can propagate freely along the
air column with a dispersive phase velocity of
c0/

√
1− (ωc/ω)2, while below the cut-off frequency the

waves are exponentially damped. The cut-off frequency
occurs when the free-space wavelength is approxi-
mately six times the length for the radius to increase
by the exponential factor e.

Figure 15.75 compares the input resistance and re-
actance of an infinite exponential horn with that of
a baffled piston having the same input area (Kinsler
et al. [15.142, Fig. 14.19]). The plots are for an ex-
ponential horn with m = 3.7 m−1, which corresponds
to a cut-off frequency of ≈ 100 Hz, and a baffled pis-
ton having the same radius of 2 cm as the throat of the

Cylindrical

Conical

exponential ~ exp(3x /L)

cosh ~ cosh(3xL)

Bessel ~ (1.01–x/L)– 0.7

Fig. 15.74 Analytic horn shapes
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Fig. 15.75 Comparison of input impedance at the input
throat of an infinitely long exponential horn and a piston
of the same area set into an infinite baffle (after Kinsler
et al. [15.142])

exponential horn. Above ≈ 400 Hz, there is very little
difference between the impedance of an infinitely long
horn and a horn with a finite length of ≈ 1.5 m or longer,
though below this frequency reflections cause addi-
tional fluctuations around the plotted values. Below the
cut-off frequency, no acoustic energy can be radiated.
Above the cut off the input resistance rises rather rapidly
towards its limiting 100% radiating value. The exponen-
tial horn with a piston source at its throat is therefore
a much more efficient radiator of sound than a baffled
piston at all frequencies above the cut-off frequency.

The exponential horn illustrates how the flared cross
section of brass instruments enhances the radiation of
sound, though brass instruments are never based on ex-
ponential horns, otherwise no resonant modes could be
set up. However, exponential horns were widely used in
the early days of the gramophone. In the absence of any
electronic amplification, they amplified the sound pro-
duced by the input diaphragm excited by the pick-up
stylus on the recording cylinder or disc. They are still
widely used in powerful public address systems. Such
horns can also be used in reverse, as very efficient de-
tectors of sound, with a microphone placed at the apex
of the horn.

Bessel Horn
We now consider more realistic horns with a rapidly
flaring end bell, which can often be modelled by what
are known as Bessel horn shapes, with the radius vary-
ing as 1/xm from their open end. Typical flared horn
shapes are shown in Fig. 15.76 for various values of m,
where the horn functions A/(x + x0)m have been nor-
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Fig. 15.76 Bessel horns representing the rapid outward
flare of the bell on the end of a brass instrument, for
a sequence of m values giving a ratio of input to output
diameters of 10

malised by suitable choice of A and x0, to model horns
with input and output values 1 and 10. Increasing the
value of m increases the rapidity with which the flare
opens out at the end.

Again assuming the plane-wave approximation, the
horn equation can be written as

∂2ψ

∂x2
+
[(

ω

c0

)2

− m(m +1)

x2

]
ψ = 0 , (15.111)

with solutions

ψ(kx) = x1/2 Jm+1/2(kx) (15.112)

and pressure varying from the end as

p(kx) = 1

x1/2
Jm+1/2(kx) , (15.113)

where Jm+1/2(kx) is a Bessel function of order m +1/2,
giving the name to such horns.

In the plane-wave approximation, the sharpness and
height of the barrier to wave propagation arising from
the curvature could result in total reflection of the in-
cident waves, so that no sound would be emitted from
the end of the instrument. In reality, the curvature of
the waveform will smear out any singularity in the
horn function over a distance somewhat smaller than
the output bell radius. Nevertheless, despite its limi-
tations, the plane-wave model provides an instructive
description of the influence of a rapidly flaring bell on
a brass instrument. This is illustrated in Fig. 15.77 for

Fig. 15.77 Fundamental and fourth mode of an m = 1/2
Bessel horn, illustrating the increase in wavelength and re-
sulting shift inwards of the effective nodal position. The
dashed lines illustrate the extrapolated sine-wave solutions
from well inside the bore. The plot is of p(x)/x

the fundamental and fourth modes of a Bessel horn with
m = 1/2, with the pressure p(x) varying from the output
end as xJ1(kx).

The most important point to note is the way that
the flare pushes the effective node of the incident sine-
wave solutions (extended into the flared section as
dashed curves) away from the end of the instrument.
The effective length is therefore shortened and resonant
frequencies increased, the effect being largest for the
lower frequency modes. The flare and general outward
curvature of the horn cross section therefore destroys
the harmonicity of the modal frequencies. This is a com-
pletely general result for any horn with a flared end. In
practice, the nodal positions will also be affected by the
curvature of the wavefront, which will further perturb
the modal frequencies, but without changing the above
qualitative behaviour.

Benade [15.134, Sect. 20.5] notes that, from the
early 17th century, trumpets and trombones have been
designed with strongly flaring bell corresponding to m
values of 0.5–0.65, while French horns have bells with
a less sudden flare with m values of 0.7–0.9.

From Fig. 15.77, it is easy to see how the player can
significantly affect the pitch of a note on the French
horn, by moving the supporting hand up into the bell
of the instrument, which is referred to as hand-stopping.
The pitch can be lowered by around a semitone, by plac-
ing the downwardly cupped hand and wrist against the
top of the flared bell, effectively reducing the flare and
increasing the effective length of the instrument. Alter-
natively, the pitch can be raised by a similar amount
when the hand almost completely closes the inner bore.
This leads to a major perturbation of the boundary
conditions, effectively shortening the air column and re-
ducing the output sound. The increase in frequency can
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be explained by the player using an almost unchanged
embouchure to excite a higher frequency mode of the
shortened tube. Because of the increased reflection of
sound by the presence of the hand, the resultant sound
although quieter is also much richer in higher partials
(Fig. 15.113). Both effects are illustrated in Audio ex-
ample .

Flared Horns
Use is made of the dependence of modal frequencies on
the curvature of horn shapes to design brass instruments
with a set of resonances, which closely approximate
to a harmonic series with frequencies fn = n f1. This
should be contrasted with the modes of a cylindrical
tube closed at one end by the mouthpiece, which would

Mouthpiece pressure

116 Hz 2 104 6 8

Mouthpiece pressure

57.6 Hz 2 104 6 8
Mouthpiece pressure

43.2 Hz 2 104 6 83 13 18
Relative excitation frequency

Trumpet

Trombone

French horn

Fig. 15.78 Input impedances of the trumpet, trombone and
French horn with the positions of the resonant peaks
marked above the axis to show their position relative to
a harmonic series based on the second harmonic of the
instrument (after Backus [15.133])

only involve the odd-n integer modes with frequencies
of fn = c/2L .

Historically, this has been achieved by empirical
methods, with makers adjusting the shapes of brass
instrument to give as near perfect a set of harmonic
resonances as possible, as illustrated in Fig. 15.78 from
Backus [15.133, Chap. 12]. A harmonic set of modes
enhances the playability of the instrument, as the par-
tials of any continuously blown note then coincide with
the natural resonances of the instrument. However, the
fundamental mode is always significantly flatter than
required and is therefore not normally used in musi-
cal performance. Nevertheless, the brass player can still
sound a pedal note corresponding to the virtual funda-
mental of the higher harmonics by exciting a repetitive
waveform involving the higher harmonics, but with only
a weak Fourier component at the pitch of the sounded
note.

The way that this is achieved is shown schemati-
cally in Fig. 15.79 starting from the odd-n resonances of
a cylindrical tube closed at one end by the mouthpiece to
an appropriately flared horn of the same length. In prac-
tice, one can achieve a nearly perfect set of harmonic
resonances, midway between the odd-integer modes of
a cylindrical tube closed at one end, for all but the fun-
damental mode, which cannot be shifted upwards by
a sufficient amount to form a harmonic fundamental,
stopping and of the new set of modes.

Benade [15.134, Sect. 20.5] has given an empirical
expression for the frequencies of the partials of Bessel
horns closed at the mouthpiece end, which closely de-

Cylindrical
tube

Brass
instrument

fn fn

0

4'

7

3'

5

2'

3

1'

n = 1

Fig. 15.79 The transformation of the odd-n modes of
a cylindrical air column closed at one end to the near har-
monic, all integer, n′ modes of a flared brass instruments.
The lower dashed line indicates schematically what can be
achieved in practice for the lowest
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scribes these perturbations,

f ′
n

fn
≈
(

1+0.637

√
m(m +1)

2n −1

)
, (15.114)

where the (2n −1) in the denominator emphasising the
preferential raising in frequency of the lower-frequency
modes. This gives frequencies for the first six modes
of a Bessel function horn with m = 0.7 are in the ra-
tios 0.94, 2.00, 3.06, 4.12, 5.18 and 6.24, normalised
to the n = 2 mode. These should be compared with the
ideal 1, 2, 3, 4, 5, 6 ratios. Apart from the lowest note,
which is a semitone flat, the higher modes are less than
a semitone sharp compared with their ideal values.

Perturbation Models
Perturbation theory can be used to describe how
changes in bore shape perturb the resonant modes of
brass and woodwind instruments. Fletcher and Ross-
ing [15.5, Sect. 8.10] show that the change of frequency
of a resonant mode Δω resulting from small distributed
changes ΔS(x) in bore area S(x) is given by

Δωn

ωn
= −1

2

(
c0

ωn

) L∫
0

[
∂

∂x

(
ΔS(x)

S(x)

)
pn

∂pn

∂x
dx

]/

×

L∫
0

[
S(x)p2

n dx
]
. (15.115)

An alternative equivalent derivation uses Rayleigh’s
harmonic balance argument and equates the peak ki-
netic energy to the peak potential energy. To first order,
the perturbation is assumed to leave the shape of the
modal wavefunction unchanged. The kinetic and po-
tential energy stored in a particular resonant mode can
be expressed in terms of the local kinetic 1

2ρω2
nξ

2
n and

strain 1
2γ P0(∂ξn/∂x)2 energy densities. For simplicity,

we consider the perturbation of the nth resonant mode
of a cylindrical air column open at one end, with par-
ticle displacement ξn ≈ sin(nπx/L) cos(ωnt), where n
is an odd integer. Equating the peak kinetic and poten-
tial energy over the perturbed bore of the cylinder, we
can then write

ω
′2
n

L∫
0

ρ [S +ΔS(x)] sin2(kx)dx

= γ P0k2
n

L∫
0

[S +ΔS(x)] cos2 (kx) dx , (15.116)

where ω′
n is the perturbed frequency. This can be rewrit-

ten as

ω
′2
n

ω2
n

=
L∫

0

[S +ΔS(x)] cos2 (kx) dx

/

×

L∫
0

[S +ΔS(x)] sin2(kx)dx . (15.117)

Because the perturbations are assumed to be small, we
can rearrange (15.117) to give the fractional change in
frequency

Δωn

ωn
= 1

L

L∫
0

ΔS(x)

S
(cos2 kx − sin2 kx)dx .

(15.118)

Hence, if the tube is increased in area close to
a displacement antinode, where the particle flow is
large (low pressure), the modal frequency will increase,
whereas the frequency will decrease, if constricted close
to a nodal position (large pressure) (Benade [15.134,
Sect. 22.3]). This result can be generalised to a tube
of any shape. Hence, by changing the radius over an
extended region close to a node or antinode, the fre-
quencies of a particular mode can be either raised or
lowered, but at the expense of similar perturbations to
other modes. Considerable art and experience is there-
fore needed to correct for the inharmonicity of several
modes simultaneously.

Electric Circuit Analogues
It is often instructive to consider acoustical systems in
terms of equivalent electric circuit analogues, where
voltage V and electrical current I can represent the
acoustic pressure p and flow along a pipe U . For ex-
ample, a volume of air with flow velocity U in a pipe
of area S and length l has a pressure drop (ρl/S)∂U/∂t
across its length, which is equivalent to the voltage
L∂I/∂t across an inductor in an electrical circuit. Like-
wise, the rate of pressure rise, ∂p/∂t = γ P0U/V , as gas
flows into a volume V, is equivalent to the rate of volt-
age rise, ∂V/∂t = I/C across a capacitance C ≡ V/γ P0.

As a simple example, we re-derive the Helmholtz
resonance frequency, previously considered in relation
to the principal air resonance of the air inside a violin or
guitar body (Sect. 15.2.4), but equally important, as we
will show later, in describing the resonance of air within
the mouthpiece of brass instruments.

In its simplest form, the Helmholtz resonator con-
sists of a closed volume V with an attached cylindrical
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pipe of length l and area S attached, through which the
air vibrates in and out of the volume. All dimensions are
assumed small compared to the acoustic wavelength, so
that the pressure p in the volume and the flow in the pipe
U can be assumed to be spatially uniform. The volume
acts as an acoustic capacitance C = V/γ P0, which res-
onates with the acoustic inductance L = ρl/S of the air
in the neck. The resonant frequency is therefore given
by

ωHelmholtz = 1√
LC

=
√

S

ρl

γ P0

V
= c0

√
S

lV
,

(15.119)

as derived earlier.
Any enclosed air volume with holes in its con-

taining walls acts as a Helmholtz resonator, with an
effective kinetic inductance of the hole region equiva-
lent to a tube of the same diameter with an effec-
tive length of wall thickness plus ≈ 0.61 hole radius
(Kinsler et al. [15.142, Sect. 9.2]). This is the fa-
miliar end-correction for an open-ended pipe (Kinsler
et al. [15.142, Sect. 9.2]). Open holes of different diam-
eters will therefore give resonances corresponding to
different musical tones. The ocarina is a very simple
musical instrument based on such resonances, in which
typically four or five holes with different areas can be
opened and closed in combination, to give a full range
of notes on a chosen musical scale (audio ).
Because the sound is based on the single resonance
of a Helmholtz resonator, there are no simply related
higher-frequency modes that can be excited. Ocarinas
appear in many ancient and ethnic cultures around the
world and are often sold as ceramic toys.

Acoustic Transmission Line
There is also a close equivalence between acous-
tic waves in wind instruments and electrical waves
on transmission lines, with an acoustic pipe having
an equivalent inductance L0 = ρ/S and capacitance
C0 = S/γ P0 per unit length. For a transmission line the
wave velocity is therefore c0 = √

1/L0C0 = √
γ P0/ρ

and characteristic impedance Z0 = √
L0/C0 = ρc0/S,

as expected. The input impedance of a transmission line
as a function of its characteristic impedance and termi-
nating load is given by (15.100).

Valves and Bends
To enable brass instruments to play all the notes of the
chromatic scale, short lengths of coiled-up tubing are
connected in series with the main bore by a series of

piston- or lever-operated air valves. The constriction of
air flow through the air channels within the valve struc-
tures and the bends in the tubing, used to reduce the size
of the instruments to a convenient size for the player
to support, will clearly present discontinuities in the
acoustic impedance of the air bore and will lead to re-
flections. Such reflections will influence the feel of the
instrument for the player exciting the instrument via the
mouthpiece and will also perturb the frequencies of the
resonant modes of the instrument.

If the discontinuities are short in size relative to the
acoustic wavelengths involved, the discontinuity can be
considered as a discrete (localised) lumped circuit ele-
ment. Using our electromechanical equivalent, a short,
constricted channel through a valve can be represented
as an inductance ρLvalve/Svalve in series with the acous-
tic transmission line, or an equivalent additional extra
length of bore tubing LvalveStube/Svalve of cross sec-
tion Stube. For all frequencies such that kLvalve � 1,
the valve simply increases the length of the acoustic
air column slightly and the frequencies of all the lower
modes by the same fractional amount. Only at very high
frequencies, outside the normal playing range, will the
constricted air channel significantly change the modal
frequencies.

When a straight length of cylindrical tube of radius
a is connected to the same size tubing but bent into a cir-
cle of radius R, there will a small change in the acoustic
impedance and velocity of sound waves, which arises
because the forces acting on each element induces ro-
tational in additional to linear motion. The presence of
bends will lead to reflections and slight perturbations of
resonant frequencies, though these effects will again be
relatively small. Nederveen [15.143] showed that frac-
tional increase in phase velocity and decrease in wave
impedance of a rectangular duct is given by the factor
F1/2, where

F = B2

2

/[
1−

(
1− B2

)1/2
]

= 1− B2/4 for B � 1 , (15.120)

B = a/R, a is the half-width of the duct and R its
radius. Keefe and Benade [15.144] subsequently gen-
eralised this result to a bent circular tube, with its radius
r replacing a.

Finger Holes
In many woodwind instruments, tone holes can be
opened or closed to change the effective resonating
length of an air column and hence pitch of the sounded

Part
E

1
5
.3

http://extras.springer.com/2014/978-1-4939-0755-7/hb07-e15_RS305.wav


Musical Acoustics 15.3 Wind Instruments 649

note. The holes can be closed by the pad of the finger or
a hinged felt-covered pad operated with levers. To a first
approximation, opening a side hole creates a pressure
node at that position, shortening the effective length
of the instrument and raising the modal frequencies.
However, as described in Fletcher and Rossing [15.5,
Sect. 15.2] and in detail by Benade [15.134, Chaps. 21
and 22], the influence of the side holes is in practice
strongly dependent on the hole size, position and fre-
quency, as summarised below.

At low frequencies, when the acoustic wavelength
is considerably longer than the size and spacing of the
tone holes, one can account for the effect of the tone
holes by considering their equivalent capacitance when
closed and their inductance when open, as illustrated
schematically in Fig. 15.80.

Because the walls of wind instruments and par-
ticularly woodwind instruments have a significant
thickness, the tone holes when shut introduce additional
small volumes distributed along the length of the
vibrating air column. Each closed hole will intro-
duce an additional volume and equivalent capacitance
Cc-hole = πb2/γ P0, which will perturb the frequencies
of the individual partials upwards or downwards by
a small amount that will depend on its position rel-
ative to the pressure and displacement nodes and the
closed volume of the hole. In severe cases, the pertur-
bations can be as large as a few per cent (one semitone
is 6%), which requires compensating changes in bore
diameter along the length of the instrument, to retain the
harmonicity of the partials. However, this is essentially
a problem that depends on geometrical factors involv-
ing the air column alone. Once solved, like all acoustic
problems involving the shape and detailed design, in-
struments can be mass-produced with almost identical

b

a

d

t

L0 d /2 L0 d /2 L0 d /2 L0 d /2

Cc-hole C0 d Lo-hole C0 d

Fig. 15.80 Equivalent circuits for a short length d of cylin-
drical pipe containing a closed and an open tone hole,
shunting the acoustic transmission line with a capacitance
and inductance, respectively

acoustic properties, quite unlike the problems that arise
for stringed instruments.

The more interesting situation is when the holes are
opened, introducing a pressure node at the exit of the
tone hole and shortening the effective acoustical length
of the instrument. An open hole can be considered as
an inductance, L ≈ ρ(t + 0.6b)/πb2, where the effec-
tive length of the hole is increased by the unflanged
hole end-correction. Neglecting radiation losses from
the hole (Fletcher and Rossing [15.5, (15.21, 22)]), the
effective impedance Z∗ of an open-ended cylindrical
pipe of length l and radius a shunted by the inductive
impedance of a circular hole of radius b set into the wall
of thickness t is given by

1

Z∗ ≈ πb2

iωρ(t +0.6b)
+ πa2

iρc0 tan kl

= πa2

iρc0 tan kl′
. (15.121)

Thus can be expressed in terms of an impedance of an
effectively reduced length l′.

For kl � 1 ,
l′

l
=
[

1+ t +0.6b

l

(a

b

)2
]−1

.

(15.122)

The change in effective length introduced by the open
hole depends strongly on its area relative to that of the
cylinder, the thickness of the wall and its length from the
end. This gives the instrument designer a large amount
of flexibility in the positioning of individual holes on an
instrument. Figure 15.81 illustrates the dependence of
the effective pipe length on the ratio of hole to cylinder
radii for two lengths of pipe between the hole and end
of the instrument.

Not surprisingly, a very small hole with b/a � 1 has
a relatively small effect on the effective length of an in-
strument. In contrast, a hole with the same diameter as
that of the cylinder shortens the effective added length
to about one hole diameter.

In practice, there will often be several holes open
beyond the first open tone hole, all of which can affect
the pitch of the higher partials.

Consider a regular array of open tone holes spaced
a distance d apart. The shunting kinetic inductance of
each open hole is in parallel with the capacitance as-
sociated with the volume of pipe between the holes.
At low frequencies, such that ω � 1/

√
LholeC0d, the

impedance is dominated by the hole inductance, so that
each hole attenuates any incident wave by approxi-
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l'/l

b/a
0 1

1

0.8

0.6

0.4

0.2

0
0.80.60.40.2

Fig. 15.81 Low-frequency (kl � 1) fractional reduction of
effective length of a cylindrical end-pipe as a function of
hole to cylinder radius, for additional lengths of 10 (lower
curve) and 20 (upper curve) times the tube radius in length.
The side wall thickness is 0.4 times the tube radius

mately the ratio

≈ Lhole/ (Lhole + L0d) =
[

1+ d

t +1.5b

(a

b

)2
]−1

,

(15.123)

where L0 is the inductance of the pipe per unit length.
Incident waves are therefore attenuated with an effective
node just beyond the actual hole as discussed above.

However, for frequencies such that ω � 1/√
LholeC0d, the impedance of the shunting hole induc-

tance is much larger than that of the capacitance of the
air column, so that the propagating properties of the in-
cident waves is little affected be the presence of the open
hole. There is therefore a crossover or cut-off frequency

ω ≈ 1/
√

LholeC0d = c0
a

b

(
1

teffd

)1/2

, (15.124)

below which the incident waves are reflected to give
a pressure node just beyond the first hole of the array
and above which waves propagate increasingly freely
through the array to the open end of the instrument.

Figure 15.82 (Benade [15.134, Fig. 21.1]) illustrates
the effect of an array of open holes on the first few par-
tials of a typical woodwind instrument, highlighting the
increase in acoustic length of the instrument (indicated

Closed holes Open holes

neff

neff

neff

neff

Fig. 15.82 Schematic representation of the influence of
open holes on the first four partials of a woodwind instru-
ment, with the effective length indicated by the intercept
neff on the axis of the extrapolated incident wave (after
Benade [15.134])

by the intercept of the extrapolated incident waveform)
with increasing frequency. The dependence of the ef-
fective length of the acoustic air column on frequency
is therefore rather similar to the influence of the flare on
the partials of a brass instrument.

A consequence of the greater penetration at high fre-
quencies of the acoustic wave through the array of open
tone holes is the greater attenuation of such waves by ra-
diation and the consequent reduction in the amplitude of
the higher resonant modes in measurements of the input
impedance. This is illustrated in Fig. 15.83 for a length
of clarinet tubing first without and then with an added
section containing an array of equally spaced tone holes
(Benade [15.134, Fig. 21.3]).

Benade [15.134, Sect. 21.1] states that

specifying the cut-off frequency for a woodwind in-
strument is tantamount to describing almost the
whole of its musical personality

– assuming the proper tuning and correct alignment of
resonances for good oscillation. His measured values
of the cut-off frequency for the upper partials of clas-
sical and baroque instruments are 1200–2400 Hz for
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Input impedance

Frequency (Hz)
0 20001000

Pipe alone

Pipe plus
tone hole
lattice

Cutoff frequency

Fig. 15.83 Illustration of the cut-off-frequency effect,
when adding an addition length of tubing with an array of
open tone holes (after Benade [15.134])

oboes, 400–500 Hz for bassoons, and 1500–1800 Hz
for clarinets.

Cross-Fingering
The notes of an ascending scale can be played by suc-
cessively opening tone holes starting from the far end of
the instrument. In addition, by overblowing, the player
can excite notes in the second register based on the
second mode. As remarked earlier, instruments like the
flute and oboe overblow at the octave, whereas the clar-
inet overblows at the twelfth (an octave plus a perfect
fifth). To sound all the semitones of the western classi-
cal scale on the flute or oboe would therefore require
12 tone holes and the clarinet 20 – rather more than
the fingers on the two hands! In practice, the player
generally uses only three fingers on the left hand and
four on the right to open and close the finger holes.
The thumb on the left hand is frequently used to open
a small register hole near the mouthpiece, which aids
the excitation of the overblown notes in the higher
register.

In practice, cross- or fork-fingering enables all
the notes of the chromatic scale to be played using
the seven available fingers and combinations of open
and closed tone holes. This is illustrated in Fig. 15.84
for the baroque recorder (Fletcher and Rossing [15.5,
Fig. 16.21]). The bottom two notes can be sharpened
by a semitone by half-covering the lower two holes and
the overblown notes an octave above are played with

Thumb

1

2

3

1

2

3

4

C D E F# G# A# C

Fig. 15.84 Soprano recorder fingering for the first seven
notes of a whole-tone scale (after Fletcher and Ross-
ing [15.5])

the thumb hole either fully open or half closed. Cross-
fingering makes use of the fact that the standing waves
set up in a pipe extend an appreciable distance into an
array of open tone holes (Fig. 15.82), so that opening
and closing holes beyond the first open hole can have
an appreciable influence on the effective length of the
resonating air column.

Modern woodwind instruments use a series of in-
terconnected levers operated by individual keys, which
facilitates the ease with which the various hole-opening
combinations can be made.

Radiated Sound
Although the reactive loading of an open hole deter-
mines the effective length of the resonant air column,
particularly at low frequencies, it does not follow that
all the sound is radiated from the open tone holes. In-
deed, since the intensity of the radiated sound depends
on (ka)2, very little sound will be radiated by a small
hole relative to the much wider opening at the end of
an instrument. The loss in intensity of sound passing
an open side hole may therefore, in large part, be com-
pensated by the much larger radiating area at end of
the instrument. This also explains why the character-
istic hollow sound quality of a cor anglais, derived in
part from the egg-shaped resonating cavity near its end,
is retained, even when the tone holes are opened on the
mouthpiece side of the cavity.
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In practice, the sound from the end and open tone
holes of a woodwind instrument act as independent
monopole sources. When the acoustic wavelength be-
comes comparable with the hole spacing, interesting
interference effects in the output sound can occur con-
tributing to strongly directional radiation patterns, as
discussed by Benade [15.134, Sect. 21.4]. Similarly,
reciprocity allows one to make use of such interference
effects to produce a highly directional microphone by
placing a microphone at the end of a cylindrical tube
with an array of open side holes.

Brass Mouthpiece
Brass instruments are played using a mouthpiece insert,
against which the lips are pressed and forced to vibrate
by the passage of air between them. The mouthpiece not
only enables the player to vibrate their lips over a wide
range of frequency, but also provides a very important
acoustic function in significantly boosting the amplitude
of the higher partials, helping to give brass instruments
their bright and powerful sounds.

Typical mouthpiece shapes are shown in Fig. 15.85.
Mouthpieces can be characterized by the mouthpiece
volume and the popping frequency characterizing the
Helmholtz resonator comprising the mouthpiece vol-
ume and backbore. The popping frequency can easily
be estimated from the sound produced when the mouth-
piece is slapped against the open palm of the hand
(audio ).

By adjusting the tension in the lips, the shape of
the lips within the mouthpiece (the embouchure), and
the flow of air between the lips via the pressure in the
mouth, the skilled brass player forces the lip to vibrate
at the required frequency of the note to be played. This
can easily be demonstrated by making a pitched buzzing
sound with the lips compressed against the rim of the
mouthpiece cup. The circular rim constrains the lateral
motion of the lips making it far easier to produce stable
high notes. A brass player can sound all the notes on
an instrument by simply blowing into the mouthpiece
alone, but the mouthpiece alone produces relatively lit-
tle volume. The instrument both stabilises the playing

a) b)Mouthpiece Back bore Mouthpiece Back bore

Fig. 15.85a,b Cross sections of (a) trumpet mouthpiece
and (b) horn mouthpiece (after Backus [15.133])

Input impedance

0 20001000
Frequency (Hz)

Pipe alone

Pipe plus mouthpiece

Fig. 15.86 Input impedance of a length of cylindrical
trumpet pipe with and without a mouthpiece attached (after
Benade [15.134])

frequencies and increases the coupling between the vi-
brating lips and radiated sound.

Figure 15.86 illustrates the enhancement in the in-
put impedance around the popping frequency, when
a mouthpiece is attached to the input of a cylindrical
pipe, as measured by Benade [15.134]. Benade showed
that the influence of the mouthpiece on the acoustical
characteristics of a brass instrument is, to a first ap-
proximation, independent of the internal bore shape and
can be characterized by just two parameters, the internal
volume of the mouthpiece and the popping frequency.

Benade also measured the perturbation of the res-
onant frequencies of an instrument by the addition
of a mouthpiece, as illustrated in Fig. 15.87. At low
frequencies, the mouthpiece simply extends the effec-
tive input end of a terminated tube by an equivalent
length of tubing having the same internal volume as
the mouthpiece. In the measurements shown, Benade
removed lengths of the attached tube to keep the reso-
nant frequencies unchanged on adding the mouthpiece.
However, since the fractional changes in frequency are
small, the measurements are almost identical to the
effective increase in length from the addition of the
mouthpiece.

At the mouthpiece popping frequency (typically in
the range 500 Hz to 1 kHz depending on the mouth-
piece and instrument considered), the effective increase
in length is λ/4. This can result in decreases in reso-
nant frequencies by as much as a tone, which could have
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Equivalent length (cm)

fp

16

12

8

4

0

1 tone

1 semi-tone

λp/4

Vcup/Apipe

Trumpet mouthpiece

Fig. 15.87 The amount by which a trumpet tube of length
137 cm would have to be lengthened to compensate for
the lowering in frequency of the instrument’s resonant fre-
quencies when a mouthpiece is attached to the input (after
Benade [15.134]). The changes in length to give a semitone
and a whole-tone change in frequency are indicated by the
horizontal lines

a significant influence on the harmonicity, and hence
the playability, of an instrument. The effective length
continues to increase above the popping frequency be-
fore decreasing at higher frequencies. In many brass
instruments, such as the trumpet, there is also a longer
transitional conical section (the lead pipe) between the
narrow bore of the mouthpiece and the larger-diameter
main tubing. This reduces the influence of the mouth-
piece on the tuning of individual resonances and the
overall formant structure of resonances.

It is straightforward to write down the input
impedance inside the cup of a mouthpiece attached to
an instrument using an equivalent electrical circuit. The
volume within the cup is represented by a capacitance C
in parallel with the inductance L and resistance R of air
flowing through the backbore, which is in series with
the input impedance of the instrument itself, so that

Z in = 1

iωC

iωL + R + Zhorn

(1/iωC)+ iωL + R + Zhorn
. (15.125)

Figure 15.88 shows the calculated input impedance
of an 800 Hz Helmholtz mouthpiece resonator, of
volume 5 cm3 with a narrow-backbore neck section re-
sulting in a Q-value of 10, before and after attachment
to a cylindrical pipe of length 1.5 m and radius 1 cm,
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Fig. 15.88 The calculated impedance of an 800 Hz
Helmholtz mouthpiece (dark brown), an attached pipe
(black) and the combination of mouthpiece and pipe (light
brown)

radiating into free space at its open end. The input
impedance of the pipe alone is also shown. Note the
marked increase in heights and strong frequency shifts
of the partials in the neighbourhood of the mouthpiece
resonance. As anticipated from our previous treatment
of coupled resonators in the section on stringed instru-
ments, the addition of the mouthpiece introduces an
additional normal mode resonance in the vicinity of
the Helmholtz resonance. In addition, it lowers the fre-
quency of all the resonant modes below the popping
frequency and increases the frequency of all the modes
above.

Above the mouthpiece resonance, the input imped-
ance is dominated by the inertial input impedance of
the mouthpiece. The resonances of the air column are
superimposed on this response and exhibit the famil-
iar dispersive features already noted for narrow violin
string resonances superimposed on the much broader
body resonances. The calculated behaviour is very sim-
ilar to the measured input admittance of typical brass
instrument (Fig. 15.78) as extended to instruments with
realistic bore shapes by Caussé, Kergomard and Lur-
ton [15.145].

15.3.3 Reed Excitation

In the next sections, we consider the excitation of sound
by: (a) the single and double reeds used for many
woodwind instruments and selected organ pipes, (b) the
vibrating lips in the mouthpiece of brass instrument, and
(c) air jets used for the flute, certain organ stops and
many ethnic instruments such as pan pipes.
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a) b)

c)

d)

Fig. 15.89a–d Examples of wind and brass instrument
reeds: (a) a single reed (clarinet), (b) a double reed (oboe),
(c) a cantilever reed (harmonium) and (d) the mouthpiece
lip-reed (horn) (after Fletcher and Rossing [15.5])

Reed Types
Figure 15.89 shows a number of reed types used in
woodwind and brass instruments (Fletcher and Ross-
ing [15.5, Figs. 13.1, 7]).

Helmholtz [15.128] classified two main types of
reed: inward-striking reeds, which are forced shut by
an overpressure within the mouth, and outward-striking
reeds, forced open by an overpressure. Modern au-
thors often prefer to call such reeds inward-closing and
outward-opening or swinging-door reeds. In addition
there are reeds that are pulled shut by the decreased
Bernoulli pressure created by the flow of air between
them. Such reeds are often referred to as sideways-
striking or sliding-door reeds.

A more formal classification (Fletcher and Ross-
ing [15.5, Sect. 13.3]) characterises such reeds by a dou-
blet symbol (σ1, σ2), where the values of σ1,2 = ±1
describe the action of over- and under-pressures at the
input and output ends of the reed. When the valve is
forced open by an overpressure at either end, σ1,2 = +1;
if forced open by an under-pressure, σ1,2 = −1. The
force tending to open the valve can then be written as
(σ1 p1S1 +σ2 p2S2), where S1,2 and p1,2 are the areas
and pressures at the reed input and output. The op-
eration of reeds can therefore be classified as (+, −),
(−,+),(−,−) or (+, +). Single and double woodwind
reeds are inward-striking (−, +) valves, while the vi-
brating lips in a mouthpiece and the vocal cords involve
both outward-swinging (+, −) and sideways-striking
(+,+) actions.

Figure 15.90 summarises the steady-state and dy-
namic flow characteristics of the above reeds for typical
operating pressures across the valve, Δp = pm − pins,
where pm and pins are the input and output pressures
in the mouth and instrument input, respectively. For the

Fig. 15.90 Main classifications of vibrating reeds sum-
marising reed operation, nomenclature and the associated
static and ac conductance, with the negative resistance fre-
quency regimes indicated by solid shading

inward-swinging (−, +) reed, the flow rate initially in-
creases for a small pressure difference across the valve,
but then decreases as the difference in pressures tends
to close the valve, leading to complete closure above
a certain pressure difference pmax. Before closure, there
is an extended range of pressures where the flow rate
decreases for increasing pressure difference across the
reed. This is equivalent to an input with a negative resis-
tance to flow. This results in positive feedback exciting
resonances of any attached air column, provided the
feedback is sufficient to overcome viscous, thermal and
radiation losses.

It is less obvious why the outward-swinging (−, +)
reed can give positive feedback, because the steady-
state flow velocity always increases with increasing
pressure across the valve. However, this is only true at
low frequencies below the mechanical resonance of the
reed. Above its resonant frequency, the reed will move
in anti-phase with any sinusoidally varying fluctuations
in pressure. This will result in a regime of negative re-
sistance and the resonant excitation of any attached air
column, as discussed by Fletcher et al. [15.146].

Sideways-striking (+, +) or (−, −) reeds behave
rather like inward-striking reeds, with an extended re-

Part
E

1
5
.3

Frequency

Inward striking
inward swinging

Outward striking
outward swinging

(–,+) (+,–)

Pm U Pins Pm U Pins

Δp = pm – pins Δp = pm – pins

Static response Static response

U

Δppmax

U

Δp

∂Δp
∂U

Frequency

∂Δp
∂U

AC response AC response

Sideways striking,
sliding doors

(+,+) or (–,–)

Pm U Pins

Δp = pm – pins

Static response

U

Δp

Frequency

∂Δp
∂U

AC response



Musical Acoustics 15.3 Wind Instruments 655

gion of negative conductance. However, such reeds will
never cut off the flow completely, so that for large
pressure differences the dynamic conductance again be-
comes positive, as indicated in Fig. 15.90.

Bernoulli Pressures
Figure 15.91 schematically illustrates the variation
of flow velocity and pressure as air flows from the
mouth into the reed and attached air column. To solve
the detailed dynamic response from first principles
for a specific reed geometry would require massive
computer modelling facilities. Fortunately, the physics
involved is reasonably well understood, so that rela-
tively simple models can be used to reproduce reed
characteristics rather well, as illustrated for the clarinet
reed in the next section.

The operation of all reed generators is controlled by
the spatial variations in Bernoulli pressure exerted by
the air flowing across the reed surfaces. Such variations
in P arise because, within any region of streamlined
flow with velocity v, P + 1

2ρv2 remains constant. Hence
the pressure will be lowered on any surface over which
the air is flowing. The flow of air is determined by
the specific reed assembly geometry and the nonlinear
Navier–Stokes equation, which also includes the effects
of viscous damping.

After passing through the narrow reed constriction,
the air emerges as a jet, which breaks down into tur-
bulent motion on the downstream side of the reed. The
turbulence leads to a rapid lateral mixing of the air, so
that the flow is no longer streamlined. As a result, the

Vocal
tract Instrument

Mouth cavity

pmouth

pmouth

Local v vmax

pin
1/2  v 2

maxPressure

Streamlined flow Turbulent flow



Fig. 15.91 Schematic representation of vocal tract, mouth
cavity, reed and instrument, illustrating the variation of lo-
cal velocity and pressure for air flowing into and along the
reed and attached instrument

pressure on the downstream end of the reed opening
remains low and fails to recover to the initial pressure
inside the mouth. The double reeds used for playing
the oboe, bassoon and bagpipe chanter are mounted on
a relatively long, narrow tube connected to the wider
bore of the instrument. Turbulent flow in this region
could contribute significantly to the flow characteristics,
though recent measurements by Almeida et al. [15.147]
have shown that such effects are less important than
initially envisaged, as discussed later.

Single Reed
We first consider the clarinet reed, which is one of
the simplest and most extensively studied of all wood-
wind reeds (Benade [15.134, Sect. 21.2], Fletcher and
Rossing [15.5, Chap. 13], and recent investigations by
Dalmont and collaborators [15.148, 149]). Figure 15.92
shows a cross section of a clarinet mouthpiece, defin-
ing the physical parameters of a highly simplified but
surprisingly realistic model.

The lungs are assumed to supply a steady flow of
air U , which maintains a steady pressure Pmouth within
the mouth. Air flows towards the narrow entrance or
lip of the reed through which it passes with velocity
v. Because the air flowing into the reed is streamlined,
the pressure drops by 1

2ρv2 on entering the reed, while
the much slower-moving air on the outer surfaces of
the reed leaves the pressure on the outer reed surfaces
largely unchanged. The air is then assumed to stream
through the narrow gap of the reed to form an outward-
going jet, which breaks up into vortices and turbulent
flow on the far side of the input constriction, with no fur-
ther change in overall pressure p in the relatively wide
channel on the downstream side of the reed entrance.

The resulting pressure difference 1
2ρv2 across the

reed forces the reed back towards its closing position
on the curved lay of the mouthpiece, indicated by the
dashed line in Fig. 15.92. The pressure difference Δp is

Pmouth

U p

v

Fig. 15.92 Cross section of air flow through a clarinet
mouthpiece and reed assembly, illustrating the streamlined
flow into the gap with jet formation and turbulence on
exiting the reed entrance
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assumed to reduce the area of reed opening from S0 to
S0(1−Δp/pmax), where pmax is the pressure difference
required to close the reed. The net flow of air through
the reed is therefore given by

U(Δp) = α(Δp)1/2(1−Δp/pmax) . (15.126)

The player can control these characteristic by vary-
ing the position and pressure of the lips on the reed,
which is referred to as the embouchure. A lower pres-
sure is required to close the reed, if the reed is already
partially closed by pressing the lips against the reed to
constrict the entrance gap.

The flow rate U as a function of static pressure
across a clarinet reed is illustrated by the meas-
urements of Backus and Nederween [15.150] redrawn
in Fig. 15.93. Apart from a small region near clo-
sure, where the exact details of the closing geometry
and viscous losses may also be important, the shape
of these curves and later measurements by Dalmont
et al. [15.149, 151], which exhibit a small amount of
hysteresis from viscoelastic effects on increasing and
decreasing pressure, are in excellent agreement with
the above model. The measurements also illustrate how
the player is able to control the flow characteristics by
changing the pressure of the lips on the reed.

The reed equation can be written in the universal
form

U
(

Δp
pmax

)
Umax

= 33/2

2

(
Δp

pmax

)1/2 (
1− Δp

pmax

)
,

(15.127)

Flow through reed U

Pressure across reed Δp

Loose embouchure

Tight embouchure

Reed closes

Fig. 15.93 Quasistatic flow through a clarinet single reed
as a function of pressure across it illustrating the in-
fluence of the player’s embouchure on the shape (after
Benade [15.134])

with just two adjustable parameters: Umax the maximum
flow rate and pmax, the static pressure required to force
the reed completely shut. The maximum flow occurs
when Δp/pmax = 1/3.

Double Reeds
Instruments like the oboe, bassoon and bagpipe chanters
use double reeds, which close against each other with
a relatively long and narrow constricted air channel on
the downstream side before entering the instrument. The
turbulent air motion in the constricted air passage would
result in an additional turbulent resistance proportional
to the flow velocity squared, which would add to the
pressure difference across the reed. This could result in
strongly hysteretic re-entrant static velocity flow char-
acteristics as a function of the total pressure across the
reed and lead pipe (see, for example, Wijnands and
Hirschberg [15.152]).

A recent comparison of the flow-pressure character-
istics of oboe and bassoon double reeds and a clarinet
single reed, Fig. 15.94, by Almeida [15.147]) shows no
evidence for re-entrant double-reed features. Neverthe-
less, the measurements are strongly hysteretic, because
of changes in the properties of the reeds (elasticity and
mass), as they absorb and desorb moisture from the
damp air passing through them. In the measurements
the static pressure was slowly increased from zero to
its maximum value and then back again. Under normal

Normalized pressure flow characteristicFlow
1.2

1

0.8

0.6

0.4

0.2

0

Pressure difference
1 2 3 4 5 60

Clarinet

Oboe

Bassoon

Fig. 15.94 A comparison of the normalised, hysteric static
pressure/flow characteristics of single (clarinet) and double
(oboe and bassoon) reeds measured on first increasing and
then decreasing the flow rate of moist air through the reeds
(after [15.147])
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playing conditions, one might expect to play on a non-
hysteretic operating characteristic somewhere between
the two extremes of the hysteretic static measurements.
Thus, although the shape of the flow-pressure curves
for the double reeds differs significantly from those of
the clarinet single reed, the general form is qualitatively
similar, with a region of dynamic negative resistance
above the peak flow. The strongly moisture dependent
properties of reeds are very familiar to the player, who
has to moisten and play-in a reed before it is ready for
performance.

There therefore appears to be no fundamental dif-
ference between the way single and double reeds
operate. Indeed, the sound of an oboe is apparently
scarcely changed, when played with a miniature clar-
inet reed mouthpiece instead of a conventional double
reed (Campbell and Gilbert, private communication).

Dynamic Characteristics
Fletcher [15.153] extended the quasistatic model by
assuming the reed could be described as a simple mass–
spring resonator resulting in a dynamic conductance of

Y (ω) = Y (0)
1

1− (ω/ω0)
2 + iω/ω0 Q

(15.128)

where Y (0) = ∂U/∂ (Δp)|ω=0 is the quasistatic flow
conductance and the denominator describes the dy-
namic resonant response of the reed. The Q-value is de-
termined by viscous and mechanical losses in the reed.

The resistive and reactive components of Y (ω)reed
given by (15.128) are plotted in Fig. 15.95a,b for an
inward-closing reed (−, +), in the negative flow con-
ductance regime above the velocity flow maximum,

Re(Y)
Im(Y)

0 1

0

0 1f/f0 f/f0

a) b)

+ve

–ve

+ve

–ve

Fig. 15.95a,b Real (dark brown) and imaginary (light
brown) components of the reed admittance Y (ω) for (a) an
inward-closing reed in the negative dynamic conductance
regime and for (b) an outward-opening reed, as a function
of frequency normalised to the resonant frequency of the
reed for reeds having Q-values of 5

and for the outward-closing (+, −) reed. As discussed
qualitatively above, the negative input dynamic conduc-
tance of the inward-striking reed remains negative at all
frequencies below its resonant frequency, whereas the
conductance of the outward-opening reed only becomes
negative above its resonant frequency.

For the oscillations of any attached air column to
grow, feedback theory requires that

Im(Yr +Yp) = 0

Re(Yr +Yp) < 0 , (15.129)

where Yp and Yr are the admittances of the pipe and
reed, respectively. The negative dynamic conductance
of the reed must therefore be sufficiently small to over-
come the losses in the instrument. Furthermore, the
reactive components of the reed conductance will per-
turb the frequencies of the attached air column.

Fletcher and Rossing [15.5, Chap. 13] give an ex-
tended discussion of the dynamics of reed generators
including polar plots of admittance curves for typical
outward and inward-striking reed generators as a func-
tion of blowing pressure.

For the inward-striking reeds of the clarinet, oboe
and bassoon, the real part of the reed admittance is
negative below the resonant frequency of the reed.
For the oboe this is typically around 3 kHz, above the
pitch of the reed attached to its staple (joining sec-
tion) alone ( ). However, when attached to
an instrument, the negative conductance will excite the
lower-frequency natural resonances of the attached tube
( ). In this regime, the reactive load presented
by the reed is relatively small and positive and equiva-
lent to a capacitive or spring loading at the input end of
the attached pipe. This results in a slight increase in the
effective length of the pipe and a slight lowering of the
frequencies of the resonating air column.

Free reeds, like the vibrating brass cantilevers used
in the mouth organ, harmonium and certain organ reed
pipes (Fig. 15.89c), are rather weakly damped inward-
closing (−, +) reeds (Fletcher and Rossing [15.5,
Sect. 13.4]). The reed is initially open. High pressure on
one side or suction on the other (as in the harmonium or
American organ) forces the reed back into the aperture,
controlling the air flow. Like the clarinet reed, above
a certain applied pressure the reed will close and restrict
the flow resulting in a negative conductance regime. If
the reed is forced right through the aperture, it becomes
an outward-opening (+, −) reed with a positive conduc-
tance. Because of its low damping, the blown-closed
reed tends to vibrate at a frequency rather close to its
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resonant frequency. In practice, as soon as a thresh-
old pressure is reached that is significantly below the
maximum in the static characteristics, a harmonium
reed starts to vibrate with a rather large sinusoidal
amplitude (typically ≈ 4 mm) resulting in highly non-
sinusoidal flow of air through the aperture (Koopman
et al. [15.154]). For such high-Q-value mechanical res-
onators, the vibrational frequency is strongly controlled
by the resonant frequency of the reed itself, so that
a separate reed is needed for each note, as in the pi-
ano accordion, harmonium, mouth organ and reed organ
pipes. The reeds in a mouth organ are arranged in pairs
in line with the flow of air. They are individually excited
by overpressure and suction.

In contrast, the dynamic conductance of an outward-
opening reed (+, −) is only negative above its resonant
frequency. The conductance then decreases rather
rapidly with increasing frequency, so that there may
only be a relatively narrow range of frequencies above
resonance over which oscillations can occur. The vi-
brating lips provide a possible example of such a reed,
with an increase in steady-state pressure always increas-
ing the static flow through them. Above their resonant
frequency, the dynamic conductance becomes negative
and could excite oscillations in an attached pipe. In such
a regime, the reactive component of the reed admittance
is negative. This corresponds to an inductive or inertial
load, which will shorten the effective length of the air
column and increase its resonant frequencies. The in-
fluence of the reed on the resonant frequencies of an
attached instrument therefore provides a valuable clue
to the way in which a valve is operating, as we will
discuss later in relation to the vibrations of the lips in
a brass-instrument mouthpiece.

Small-Amplitude Oscillations
We now consider the stability of the oscillations excited
by the negative dynamic conductance of the reed. In
particular, it is interesting to consider whether the os-
cillations, once initiated, are stabilised or grow quickly
in amplitude into a highly nonlinear regime. Surpris-
ingly, this depends on the bore shape of the attached air
column, as discussed by Dalmont et al. [15.155]. Sev-
eral authors have investigated such problems, including
Backus [15.156] using simple theoretical models and
measurements, Fletcher [15.157] using analytic mod-
els, Schumacher [15.158,159] in the time rather than the
frequency domain, and Gilbert et al. [15.155, 160] us-
ing a harmonic balance approach, which we will briefly
outline in the following section. Recent overviews of
the nonlinear dynamics of both wind and brass instru-

ments have been published by Campbell [15.161] and
by Dalmont et al. [15.155].

We first consider the excitation of small-amplitude
oscillations based on the reed equation, which is replot-
ted in Fig. 15.96 as a universal curve together with the
negative dynamic admittance or conductance,−∂U/∂p
above the flow-rate maximum.

The onset of self-oscillations occurs when the sum
of the real and the imaginary parts of the admittance of
the reed and attached instrument are both zero (15.129).
If losses in the reed and the attached instrument were
negligible, resonances of the air column would be ex-
cited as soon as the mouthpiece pressure exceeded
1
3 pmax. However, when losses are included, the nega-
tive conductance of the reed has to be sufficiently large
to overcome the losses in the instrument. The onset then
occurs at a higher pressure, as illustrated schematically
in Fig. 15.96.

The onset of oscillations depends not only on the
mouthpiece pressure but also on the properties of the
reed, such as the initial air gap and its flexibility, which
will depend on its thickness and elastic properties. The
elastic properties also change on the take up of mois-
ture during playing. It is not surprising that wind players
take great care in selecting their reeds. Furthermore,
notes are generally tongued. This involves pressing the

Fig. 15.96 Plot of normalised flow rate and differential
negative conductance of an inward-striking reed valve
as a function of pressure across the reed normalised to
the pressure required for closure. The intersection of the
negative conductance curve with the real part of the in-
put admittance Yinst(ω) of the instrument determines the
pressure in the mouthpiece for the onset of oscillations,
illustrated schematically for Yinst(ω) ≈ 0.78Ymax
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tongue against the lip of the reed to stop air passing
through it, so that the pressure builds up to a level well
above that required to just excite the note. When the
tongue is removed, the note sounds almost immediately
giving a much more precise definition to the start of
a note.

The transition to the oscillatory state can be consid-
ered using the method of small variations and harmonic
balance (Gilbert et al. [15.160]). For a given mouth
pressure defining the overall flow rate, oscillations of
the flow rate u can be written as a Taylor expansion of
the accompanying small pressure fluctuations p at the
output of the reed, such that

u = A p+ Bp2 +C p3 + . . . . (15.130)

From the reed equation plotted in Fig. 15.96, the co-
efficient A is positive for mouthpiece pressures above
pmax/3, while B and C are positive and negative re-
spectively. We look for a periodic solution with Fourier
components that are integer multiples of the fundamen-
tal frequency ω, so that

p(t) =
∑

pn einωt , (15.131)

with a corresponding oscillatory flow u(t) superim-
posed on the static flow U ,

u(t) =
∑

un einωt . (15.132)

At the input to the instrument, the oscillatory flow can
be expressed in terms of the Fourier components of the
input pressure and admittance, so that

u(t) =
∑

pnY (nω) einωt . (15.133)

Using the method of harmonic balance, we equate the
coefficients of the Fourier components in (15.130) with
those in (15.133) having substituted (15.131) for the
pressure. The first three Fourier components are then
given by

p1 = ±
(

Y1 − A

2B2/ (Y2 − A)+3C

)
,

p2 =
(

B

Y2 − A

)
p2

1 ,

p3 =
(

C

Y3 − A

)1/2

p3
1 . (15.134)

For a cylindrical-bore instrument like the clarinet at low
frequencies, only the odd-n partials will be strongly
excited, so that Y2 is very large. The amplitude of
the fundamental component is then given by ±[(Y1 −
A)/C]1/2, with a vanishingly small second harmonic
p2. The amplitude p1 of small oscillations is then

stabilised by the cubic coefficient C. Stable, small-
amplitude oscillations can therefore be excited as soon
as the negative conductance of the reed exceeds the
combined admittance of the instrument and any addi-
tional losses in the reed itself.

Because the transition is continuous, p1 rises
smoothly from zero, taking either positive or negative
values (simply solutions with opposite phases). The
transition is therefore referred to as a direct bifurcation.
The player can vary the pressure in the mouthpiece and
the pressure of the lips on the reed to vary the coef-
ficients A and C and hence can control the amplitude
of the excited sound continuously from a very quiet to
a loud sound, as often exploited by the skilled clarinet
player.

In contrast, for a conical-bore instrument, the ampli-
tude of the fundamental,

p1 = ±
(

(Y1 − A)(Y2 − A)

2B2 +3C(Y2 − A)

)1/2

, (15.135)

involves the admittance of both the fundamental and
second partial. On smoothly increasing A by increasing
the pressure on the reed, Grand et al. [15.162] showed
that there can again be a direct smooth bifurcation to
small-amplitude oscillations, if 2B2 > −3C(Y2 − Y1).
However, if this condition is not met, there will be
an indirect transition, with a sudden jump to a finite-
amplitude oscillating state. This gives rise to the
hysteresis in the amplitude as the mouth pressure is
first increased and then decreased. This means that the
player may have to exert a larger pressure to sound the
note initially, but can then relax the pressure to produce
a rather quieter sound. It may also explain why it is
more difficult to initiate a very quiet note on the saxo-
phone with a conical bore than it is on the clarinet with
a cylindrical bore.

For a direct bifurcation transition, the small non-
linearities in the dynamic conductance will result in
a spectrum of partials with amplitudes varying as pn

1,
where p1 is the amplitude of the fundamental compo-
nent excited. The spectral content or timbre of wind
and brass instruments, as discussed later, therefore
changes with increasing amplitude. This is illustrated by
measurements of the amplitude dependence of the par-
tials of a trumpet, clarinet and oboe by Benade [15.134,
Fig. 21.6c], which are reproduced for the trumpet in
Fig. 15.104. For the largely cylindrical-bore trumpet
and clarinet, nonlinearity results in partials varying
as pn

1 over quite a large range of amplitudes. However,
for the oboe, with its conical bore, the relative increase
in strength of the partials is rather more complicated
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(Benade [15.134, Sect. 21.3]). Eventually, the small-
amplitude approximation will always break down, with
a transition to a strongly nonlinear regime. Benade as-
sociates this transition with a change in timbre and
responsiveness of the instrument for the player.

Large-Amplitude Oscillations
For a lossless cylindrical-bore instrument with only odd
integer partials, the large-amplitude solutions are par-
ticularly simple. The flow of air from the lungs and
pressure in the mouth is assumed to remain constant re-
sulting in an average flow rate through the instrument.
The pressure at the exit of the reed then switches pe-
riodically from a high-pressure to a low-pressure state,
with equal amplitudes above and below the mean mouth
pressure, spending equal times in each. The net acous-
tic energy fed into the resonating air column per cycle is
therefore zero, U

∫
p(t)dt = 0, as required for a lossless

system.
Such a solution can easily be understood in terms of

the excess-pressure wave propagating to the open end of
the instrument, where it is reflected with change of sign.
On return to the reed it reverses the pressure difference
across the reed, which switches to the reduced pressure
state. The subsequent reflection of the reduced pressure
wave then switches the reed back to its original high-
pressure state and the process repeats indefinitely, with
a periodic time of 4L/c0, as expected.

The dependence of the square-wave pressure fluc-
tuations on the applied pressure can be obtained by the
simple graphical construction illustrated in Fig. 15.97.
The locus of the static pressure required to excite
square-wave pressure fluctuations above and below the
mouth pressure is shown by the solid line drawn from
pmouth = 1/3 to 1/2pmax, which bisects the high and
low pressures for a given flow rate. If losses are taken
into account, the horizontal lines are replaced by load
lines with a downward slope given by the real part of
the instrument’s input admittance (Fletcher and Ross-
ing [15.5], Fig. 15.9). At large amplitudes, the solutions
can then involve periods during which the reed is com-
pletely closed. The transition from small-amplitude to
large-amplitude solutions is clearly of musical impor-
tance, as it changes the sound of an instrument, and
remains an active area of research [15.155].

Analogy with Bowed String
In recent years, an interesting analogy has been noted
between the large-amplitude pressure fluctuations of
a vibrating air column in a cylindrical or truncated
conical tube and simple Helmholtz waves excited on
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Fig. 15.97a,b Large-amplitude Helmholtz pressure fluctu-
ation of (a) a cylinder and (b) a truncated cone with length
to apex of 1/4 of its length, illustrating the dependence of
fluctuation amplitudes as a function of mouthpiece pres-
sure. For the cylinder, the mouthpiece pressure is single
valued for a given flow rate, but for the truncated cone there
are two possible solutions referred to as the standard and
inverted Helmholtz solutions

a bowed string (Dalmont and Kergomard [15.163]).
For example, the square-wave pressure fluctuations at
the output of the reed attached to a cylindrical tube
are analogous to the velocity of the bowed Helmholtz
transverse waves of a string bowed at its centre, il-
lustrated schematically in Fig. 15.98. Helmholtz waves

Winds Strings

L

Reed

tp(t)

Ll
p (t)

p (t)

Reed

tp(t)

2L

v(t)

tv(t)

Ll

v (t)

tv(t)

Fig. 15.98 Analogy between large-amplitude pressure
waves in the bores of wind instruments and the transverse
velocity of Helmholtz waves on a bowed stretched string,
where the reed position is equivalent to the bowing position
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could equally well be excited on a bowed string by
a transducer with a square-wave velocity output placed
halfway along the length of the string, in just the same
way that the reed with a square-wave pressure output
excites Helmholtz sound pressure waves into a cylinder,
which acts like half the string length.

The analogy is particularly useful in discussing the
large-amplitude pressure fluctuations in conical-bore in-
struments such as the oboe or saxophone. As described
earlier, the conical tube has the same set of resonances
as a cylindrical tube that is open at both ends. There-
fore, in addition to having the same set of standing-wave
sinusoidal solutions for the transverse oscillations of
a stretched string, a conical tube can also support
Helmholtz wave solutions. For the bowed string, the
closer one gets to either end of the string the larger be-
comes the mark-to-space ratio between the regions of
high to low transverse velocity. The same is also true
for the switched fluctuations in pressure in a lossless
conical tube, shown schematically in Fig. 15.97. Hence,
if one truncates a conical tube with a vibrating reed
system, the resonant modes of the remaining air col-
umn will be unchanged, provided the vibrating reed
produces the same pressure fluctuations that would oth-
erwise have been produced by the reflected Helmholtz
waves returning from the removed apex end of the cone.
Hence a conical tube, truncated by a vibrating reed at
a distance l from the apex, can support Helmholtz wave
solutions in the remaining length L . To produce such
a wave the reed has to generate a rectangular pressure
wave with a mark-to-space ratio and pressure fluctua-
tions about the mean in the ratio L : l , as illustrated in
Fig. 15.98, for a truncated cone with L/l = 4.

The period of the Helmholtz wave solutions of
a conical bore instrument modelled as a truncated cone
will therefore be 2(L + l)/c0, with a spectrum including
all the harmonics fn = nc0/2(L + l), other than those
with integer values of n = (L + l). To determine the am-
plitude of the rectangular pressure wave as a function
of mouthpiece pressure, a graphical construction can be
used similar to that used for the cylindrical tube, except
that the pressures have now to be in the ratio L/l, as in-
dicated in Fig. 15.97b. For the lossless large-amplitude
modes of a truncated cone, there are two possible so-
lutions involving high and low mouth pressures, which
are known as the standard and inverted Helmholtz solu-
tions, respectively.

Any complete model of a reed driven instrument
must include losses and departures from harmonicity
of an instrument’s partials. This leads to a rounding of
the rectangular edges of the Helmholtz waveforms and

Fig. 15.99 Measured pressure waveform at input to a sax-
ophone compared with the Helmholtz waveform expected
for a truncated cone (after Dalmont et al. [15.163])

additional structure, in much the same way that bowed
string waveforms are perturbed by frictional forces and
nonideal reflections at the end-supports (Fig. 15.34).
Figure 15.99 shows a typical pressure waveform input
for the conical-bore saxophone, which is compared with
the Helmholtz waveform predicted for an ideal lossless
system (Dalmont et al. [15.163]).

A completely realistic model for the excitation
of sound in wind instruments must also include
coupling to the vocal tracts (Backus [15.164] and Scav-
one [15.165]), since the assumption of a constant
flow rate and constant mouth pressure is clearly over-
simplistic.

Register Key
This analysis implicitly assumes that the reed excites
the fundamental mode of the attached instrument. In
practice, the reed will generally excite the partial with
the lowest admittance corresponding to the highest peak
in impedance measurements. For most instruments this
is usually the fundamental resonance. However, the am-
plitude of the fundamental can be reduced relative to the
higher resonances by opening a small hole, the register
hole, positioned between the reed and first hole used
in normal fingering of the instrument. Because of the
difference in wavelengths and position of nodes, open-
ing the register hole preferentially reduces the Q-value
and shifts the frequency and amplitude of the funda-
mental relative to the higher partials. This allows the
player to excite the upper register of notes based on
the second mode, which in the case of the conical-bore
saxophone, oboe and bassoon is an octave above the
fundamental but is an octave and a perfect fifth above
the fundamental for the cylindrical-bore clarinet. The
lower and upper registers of the clarinet are sometimes
referred to as the chalumeau and chanter registers, af-
ter the earlier instruments from which the clarinet was
derived.
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Mouthpiece pressure

Relative excitation frequency
151 (Hz) 112 3 4 6 8

Clarinet E3

Fig. 15.100 Resonance curves for the note E3 on a clar-
inet, showing the shift of the lowest partial on opening the
register hole (after Backus [15.133])

Figure 15.100 illustrates the lowering in amplitude
and shift in resonant frequency of the fundamental
mode on opening the register hole for the note E3 on
a clarinet, which leaves the upper partials relatively
unchanged (Backus [15.133]). The measurements also
show the significant departures from the 1, 3, 5, 7
harmonicity of the resonant modes of the instrument,
which act as a warning not to take ideal models for
the harmonicity of modes in real wind instruments too
literally. Fletcher has developed a mode-locking model
to account for the excitation of periodic waveforms on
instruments with inharmonic partials [15.166].

15.3.4 Brass-Mouthpiece Excitation

The excitation of sound by the vibrating lips in the
mouthpiece of a brass instrument cannot be described
by any of the above simple models alone, which con-
sider the reed as a simple mass–spring resonator. As
we will show, the vibrations of the lips are three-
dimensional and much more complicated. As a result,
in some regimes the lips behave rather like outward-
swinging-door valves, as first proposed by Helmholtz,
and Bernoulli pressure operated sliding-door reeds in
others. In addition the air flow is also affected by three-
dimensional wave-like vibrations on the surface of the
lips.

When playing brass instruments, the lips are firmly
pressed against the rim of the mouthpiece with the lips
pouted inwards. Pitched notes are produced by blow-
ing air through the tightly clenched lips to produce
a buzzing sound. The excitation mechanism can eas-
ily be demonstrated by buzzing the lips alone, though
it is difficult to produce a very wide range of pitched
sounds However, if the lips are buzzed when pressed

against the rim of a mouthpiece, the input rim pro-
vides an additional constraint on the motion of the
lips, which makes it much easier to produce pitched
notes over a wide range of frequencies ( ).
The audio demonstrates the popping sounds of trum-
pet and horn mouthpieces followed by the sound of the
player buzzing the mouthpiece alone up to a pitch close
to the popping frequency and back again. Attaching
the mouthpiece to an instrument locks the oscillations
to the various possible resonances of the instrument
( ).

Figure 15.101 shows a series of time-sequence plots
of spectra of the sound produced by a player buzzing
into a trumpet mouthpiece (Ayers [15.167]), which acts
rather like a simple Helmholtz resonator. In the lower
sequence, the player excites well-defined pitched notes
from low frequencies up to slightly above the mouth-
piece popping frequency (see Sect. 15.3.3). The middle
set of traces shows the spectrum as the player starts

f (kHz)
0 1

Steady note

Downward
slide

Upward
slide

Fig. 15.101 Time sequence (from bottom to top) of spectra
of the sound produced by a player buzzing into a trumpet
mouthpiece, first for an upward slide in frequency, then
for a downward slide and finally for a steady low note
at high intensity showing the excitation of a note with
many Fourier components. The dashed line is the spec-
trum of the popping note excited by slapping the open
end of the mouthpiece against the palm of the hand (after
Ayers [15.167])
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at a high frequency and lowers the pitch. The up-
per traces shows the spectrum of a loudly sounded,
low-frequency, note, illustrating the rich spectrum of
harmonics produced by the strongly nonlinear sound-
generation processes involved (see, for example, Elliot
and Bowsher [15.168]).

These measurements on the mouthpiece alone
strongly suggest that the lips can generate periodic
fluctuations at frequencies up to, but not significantly
beyond, the resonant frequency of any coupled acous-
tic resonator. This was confirmed in an investigation
of lip-reed excitation using a simple single-resonant-
frequency Helmholtz resonator by Chen and Weinre-
ich [15.170], who used a microphone and loudspeaker
in a feedback loop to vary the Q-value of the Helmholtz
resonator played using a normal mouthpiece. They con-
cluded that a player could adjust the way they vibrated
their lips in the mouthpiece to produce notes that were
slightly higher or lower than the Helmholtz frequency,
though the most natural playing parameters generated
frequencies in the range 20–350 Hz below the resonator
frequency.

Attached Mouthpiece
Ayers [15.167] also compared the frequencies produced
in the mouthpiece before and immediately after at-
tachment of the instrument. In these measurements the
player first excited a pitched note in the mouthpiece
with the instrument effectively decoupled by opening
a large hole in its bore close to the mouthpiece. The
hole was then closed and the immediate change in fre-
quency measured before the player had time to make
any adjustments to the embouchure. The results of
such measurements are shown in Fig. 15.102, where the
diagonal line represents the pitched notes before the
instrument was connected and the discontinuous solid
line through the triangular points are the modified fre-
quencies for the same embouchure with the instrument
connected.

At the higher frequencies, the jumps between suc-
cessive branches are from just above the resonant
frequency of one partial to just below the resonant
frequency of the next, with a monotonic increase in
frequency on tightening the embouchure in between.
However, for the first two branches, the instrument res-
onances initially have a relatively small effect on the
frequencies excited by the mouthpiece alone until such
frequencies approach a particular partial frequency. The
frequency then approaches the resonant frequency of
the instrument before jumping to a frequency well
below the next partial and the sequence repeats. The dif-

Playing frequency (Hz)

Lip frequency (Hz)
0 800

800

600

400

200

0
200 400 600

Fig. 15.102 Frequencies produced by a trumpet mouth-
piece without (diagonal line) and with (broken line) the
instrument strongly coupled using an unchanged em-
bouchure under the same playing conditions. The solid
horizontal lines are the resonant frequencies of the assem-
bled trumpet. The squares and circles are predictions for
the Helmholtz outwardly opening-door and sliding-door
models computed by Adachi and Sato [15.169] for a trum-
pet with slightly lower-frequency resonant modes indicated
by the dashed horizontal lines (after Ayers [15.167])

ference in behaviour of the lower and higher branches
suggests that more than one type of lip-reed action is
involved.

Comparison with computational models by Adachi
and Sato [15.169] appear to rule out the outward-
swinging-door model first proposed by Helmholtz,
indicated by the squares in Fig. 15.101, as the pre-
dicted frequencies are always well above those of the
instrument’s partials. The computed predictions for the
Bernoulli sliding door model, indicated by the circles,
are in better agreement with measurements, but with
predicted frequencies rather lower than those observed
and never rising above the resonant frequencies of the
instrument, in contrast to the observed behaviour for the
higher modes excited.

Any model for the lip-reed sound generator has
to explain all such measurements. Such measurements
also highlight the way that a brass player can adjust
the embouchure and pressure acting on the lips in the
mouthpiece to change the frequency of the excited
mode. On tightening the embouchure and pressure the
player can progressively excite successive modes and
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can lip the pitch of the note up and down by surpris-
ingly large amounts, used with great expressive effect
by jazz trumpeters.

Vibrating Lips
In practice, the production of sound by the vibrating
lips inside a mouthpiece is a highly complex three-
dimensional problem closely analogous to the produc-
tion of sound by the vocal folds – see, for example,
Titze [15.171]. A complete model would involve solving
the coupled solutions of the Navier–Stokes equations
describing the flow of air from the mouth, through the
lips and into the mouthpiece, and the three-dimensional
motions of the soft tissues of the lips induced by the
Bernoulli pressures acting on their surfaces.

Stroboscopic and ultra-fast photography of the brass
players lips while playing reveal highly complex three-
dimensional motions (Coppley and Strong [15.172],
Yoshikawa and Muto [15.173]) suggest that the upper
lip is primarily involved in the generation of sound. Fig-
ure 15.103 and the video clip provided by
Murray Campbell show high-speed photography clips
of such motion. The lips inside the mouthpiece open
and shut rather like the gasping opening and shutting
of the mouth of a goldfish, but speeded up several hun-
dred times. Points on the surface of the upper lip exhibit
cyclic orbital motions involving the in-quadrature mo-
tions of the upper lip parallel and perpendicular to the
flow. To model such motion clearly requires at least two
independent mass–spring systems to account for the in-
duced motions of the lips along and perpendicular to
the flow (Adachi and Sato [15.169]). In addition, there
is a pulsating wave-like motion along the surface of the
lips in the direction of air flow, with the rear portion of
lips moving in anti-phase with the front. Yoshikawa and

Fig. 15.103 High-speed photograph clips showing one cy-
cle of lip vibration in a trombone mouthpiece

Muto [15.173] identify such motion as strongly damped
Rayleigh surface waves travelling through the mucous
tissue of the upper lip.

The simplest possible model to describe such
motion therefore requires at least three interacting
mass–spring elements; one to describe the lip motion
along the direction of flow, and two to describe the mo-
tions of the front and back surfaces of the lips. But even
then, the model will still only be an approximation to
the three-dimensional bulk tissue motions involved. Not
surprisingly, research into the lip-reed sound-excitation
mechanism remains a problem of considerable interest.

Artificial Lips
To achieve a better understanding of lip dynamics and
its effect on the sound produced by brass instrument,
several groups have developed artificial lips to ex-
cite brass instrument (e.g. Gilbert et al. [15.174] and
Cullen et al. [15.175]). These can be used to investi-
gate instruments under well-controlled and reproducible
experimental conditions. Typically, the lips are sim-
ulated by two slightly separated thin-walled (0.3 mm
thickness) latex tubes filled with water under a con-
trolled pressure. The tubes are rigidly supported from
behind so that the internal pressure forces the lips to-
gether. The tubes are placed across an opening in an
otherwise hermetically sealed unit that represents the
mouth and throat cavities. Air is fed into the mouth
cavity at a constant flow rate. A fixed mouthpiece is
then pushed against the artificial lips with a measured
force. By varying this force, the applied pressure and the
pressure within the artificial lips, the experimenter can
simulate the various ways in which a player can control
the dynamics of the lips (the embouchure) to produce
different sounding notes. Despite the considerable sim-
plification in comparison with the dynamics of real lips,
the sound of brass instruments played by artificial lips
is extremely close to that produced by a real player.
Such systems enable acoustical studies to be made on
brass instruments with a much greater degree of flexi-
bility, reproducibility and stability than can be achieved
by a player. Using a fixed mouthpiece, the playing char-
acteristics of different attached instruments can easily
be compared.

Nonlinear Sound Excitation
When played very quietly, brass instruments can pro-
duce sounds that are quasi-sinusoidal with relatively
weak higher harmonics. However, as previously noted
for vibrating reeds, any nonlinearity will lead to the
generation of harmonics of the fundamental frequency
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ω at frequencies 2ω, 3ω, etc., with initially amplitudes
increasing as |p0 (ω)|n , where p0(ω) is the amplitude
of the fundamental. However, in the strongly nonlinear
region at high amplitudes, all partials become impor-
tant and increase in much the same way with increasing
driving force (Fletcher [15.176] and Fletcher and Ross-
ing [15.5, Sects. 14.6 and 14.7]). Such effects are
illustrated in Fig. 15.104 for measurements on a B-flat
trumpet by Benade and Worman [15.134, Sect. 21.3].
The spectral content and resulting brilliance of the
sound or timbre of a trumpet, or any other brass in-
strument, therefore depends on the intensity with which
the instrument is played. Benade noted a change in the
sound and feel of an instrument by the player in the
transition region between the power-law dependence of
the Fourier component and the high-amplitude regime,
where the harmonic ratios remain almost constant. Sim-
ilar characteristics were observed for the clarinet though
rather different characteristics for the oboe.

Examples of the strongly nonsinusoidal periodic
fluctuations of the pressure and flow velocity within the
mouthpiece for two loudly played notes on a trombone
are shown in Fig. 15.105 (Elliot and Bowsher [15.168]).

Intensity of p-th partial (dB)
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Fig. 15.104 Intensity of the first four partials of the note C4
on a trumpet as a function of the intensity of the first par-
tial, measured from the minimum to the maximum playing
intensity (after Benade [15.134, Fig. 21.8]). On this loga-
rithmic scale, the dashed lines through the measurements
for the second, third and fourth Fourier components have
slopes 2, 3 and 4, respectively

Fletcher and Rossing [15.5, Sect. 14.7] discuss such
waveforms in terms of the lips operating slightly above
the resonant frequency of their outward-swinging-door
resonant frequencies.

The nonlinearity of the lip-reed excitation mech-
anism enables the player to vibrate the lips at the
frequency of the missing fundamental of the quasi-
harmonic series of modes of brass instruments, illus-
trated in Fig. 15.38. This is referred to as the pedal
note and is an octave below the lowest mode nor-
mally excited on the instrument. The lips vibrate at
the pedal-note frequency but only excite the quasi-
harmonic n = 2, 3, 4, . . . modes.

The pressure fluctuations in Fig. 15.104 of ≈ 3 kPa
correspond to a sound intensity of nearly 160 dB. As
the static pressure in the mouthpiece is only a few
percent above atmospheric pressure (105 Pa), such pres-
sure excursions are a significant fraction of the excess
static pressure. Even larger-amplitude pressure fluctu-
ations can be excited on the trumpet and trombone
when played really loudly, to produce a brassy sound.
Long [15.177] has recorded pressure levels in a trum-
pet mouthpiece as high as 175 dB, corresponding to
pressure fluctuations of ≈ 20 kPa.

At such high amplitudes, one can no longer neglect
the change in density of a gas when considering its
acceleration under the influence of the pressure gradi-
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Fig. 15.105 Non-sinusoidal pressure fluctuations within
the mouthpiece for two notes played at large amplitudes
on the trombone (after Elliot and Bowsher [15.168])
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ent. To a first approximation, the wave equation then
becomes

∂2ξ

∂x2
=
(

1+ ∂ξ

∂x

)
1

c2
0

∂2ξ

∂t2
. (15.136)

The speed of sound will now depend on both frequency
and wave shape, with the velocity varying as

c′ = c0

〈(
1+ ∂ξ

∂x

)−1/2
〉

x,t

≈ c0

[
1+α (kξ)2

]
,

(15.137)

where the averaging is taken over both time and wave-
length giving a value for α ≈ 1/8. In practice, for waves
propagating down a tube, other terms involving momen-
tum transport, viscosity and heat transfer also have to
be included in any exact solution. However, the essen-
tial physics remains unchanged. The net effect of the
nonlinearity is to progressively increase the slope of the
leading edge of any wave propagating along the tube.
A propagating sine wave is then transformed into a saw-
tooth waveform, or shockwave, with an infinitely steep
leading edge, at sufficiently large distances along the
tube.

Such waves have indeed been observed in trum-
pet and trombone bores, which are long and relatively
narrow. The effect is illustrated in Fig. 15.106 by the
measurements of Hirschberg et al. [15.178], for waves
propagating along a trombone tube. The sound in-
tensity of ≈ 175 dB is considerably higher than the
intensities illustrated in Fig. 15.99. As predicted, the
sharpness of the leading edge of the waveform pro-
gressively increased on propagating along the bore.
The discontinuity in waveform of the fully developed
shockwave dramatically increases the intensities of the
higher harmonics of a continuously played note and
gives the trumpet and trombone (and trompette organ
pipes) their characteristic brassy sound at very high in-
tensities ( ). The high-frequency components
of all such sounds will make them highly directional.
Campbell [15.161] reviews nonlinear effects in wood-
wind and brass instruments, with many references to
recent research.

To achieve such brassy sounds, the instrument must
have a sufficiently long length of relatively narrow pipe,
like the trumpet and trombone, in which the pressure
fluctuations remain high and have time to build up into
a shock wave. Shockwaves are far more difficult to set
up in instruments like the horn and cornet, with flaring
conical bores, because the pressure drops rather rapidly
with increasing diameter along the bore.
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Fig. 15.106a,b Internal acoustic pressure in a trombone
played at a dynamic level fortissimo (ff). (a) Pressure at
the input to the air column in the mouthpiece; (b) pres-
sure at the output of the slide section, showing the
characteristic profile of a shock wave (after Hirschberg
et al. [15.178])

Time-Domain Analysis
When nonlinearity is important or when the initial
transient response is of interest, it is more appropri-
ate to consider the dynamics in the time- rather than
frequency-domain, just as it was for analysing the
transient dynamics of the bowed string. Time-domain
analysis in wind and brass instruments was pioneered
by Schumacher [15.159], McIntyre et al. [15.179]
and Ayers [15.180], and is discussed in Fletcher and
Rossing [15.5, Sect. 8.14]. Time-delayed reflectometry
measurements are made by producing short pressure
pulses inside the mouthpiece generated by a spark or
by a sudden piezoelectric displacement of the mouth-
piece end-wall. The pressure in the mouthpiece is then
recorded as a function of time after the event.

In the linear response regime, measurement in the
time domain gives exactly the same information about
an instrument as measurements in the frequency do-
main, assuming both the magnitude and phase of the
frequency response is recorded. This follows because
the frequency response Z(ω) measured in the mouth-
piece is simply the Fourier transform of the transient
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pressure response p(t) for a δ- or impulse-function flow
(Av) induced by the spark or wall motion. Knowing
p(t) or Z(ω) one can obtain the other by applying the
appropriate Fourier transform

Z(ω) =
∞∫

0

p(t)e−iωt dt or

p(t) = 1

2π

∞∫
−∞

Z(ω)eiωt dω . (15.138)

Measurements of the impulse response are particularly
useful in identifying large discontinuities in the acous-
tic impedance along the bore of instruments produced
by tone holes, valves and bends, which can significantly
perturb particular partials. The position of any such dis-
continuity can be determined by the time it takes for the
reflected impulse to return to the mouthpiece.

Time-domain analysis is essential, if one wishes to
investigate starting transients, where reflections from
the end of the instrument are required to stabilise the
pitch of a note. This problem is particularly pronounced
for horn players pitching, for example, notes as high as
the 12th resonant mode of the instrument. The player
must buzz the lips a dozen or so cycles into the mouth-
piece before the first reflection from the end of the
instrument returns to stabilise the pitch. If the player
gets the initial buzzing frequency slightly wrong, the
instrument may lock on to the 11th or 13th harmonic
rather than the intended 12th, leading to the famil-
iar cracked note of the beginner and sometimes even
professional horn players. Furthermore, false reflec-
tions from discontinuities along the length of the tube,
may well confuse the initial feedback, making it more
difficult to pitch particular notes. This leads to small
pitch-dependent changes in the playing characteristics
of instruments made to different designs adopted by
different manufacturers.

15.3.5 Air-Jet Excitation

Many ancient and modern musical instruments are ex-
cited by blowing a jet of air across a hole in a hollow
tube or some other acoustic resonator. Familiar exam-
ples include the flute, pan pipes, the ocarina and simple
whistle in addition to many organ pipes. Sound excita-
tion in flutes and organ pipes was first considered by
Helmholtz [15.128] in terms of an interaction between
the air jet produced by the lips or a flue channel in the
mouthpiece of an instrument and the coupled air column
resonator.

In practice, the dynamics of sound production is
a very complex aerodynamic flow problem requiring
the solution of the Navier–Stokes equations govern-
ing fluid flow in often complex geometries. Various
simplified solutions have been considered by many au-
thors since the time of Helmholtz and Rayleigh [15.3].
Fletcher and Rossing [15.5, Sect. 16.1] provide refer-
ences to both historic and more-recent research. Fabre
and Hirschberg [15.181] have also written a recent re-
view of simple models for what are sometimes referred
to as flue instruments.

Rayleigh showed that the interface separating two
fluids moving with different velocities was intrinsically
unstable, resulting in an oscillating sinuous lateral dis-
turbance of the interface that grows exponentially with
time Fig. 15.107. This arises because, in the frame of
reference in which the two fluids move with the same
speed in opposite directions, any disturbance of the in-
terface towards one of the fluids will increase the local
surface velocity on that side. This will result in a de-
crease in Bernoulli pressure on that side of the interface
and increase it on the other, creating a net force in
the same sense as the disturbance, which will there-
fore grow exponentially with time. For a layer of air
moving at velocity V without friction over a stationary
layer, a sinusoidally perturbed deflection of the jet in the
laboratory frame of reference at rest increases exponen-
tially with distance as it travel along the interface with
velocity V /2.

Similar arguments were used by Rayleigh to de-
scribe the instability of an air jet of finite width b
and velocity V produced by blowing through an ar-
row constriction between the pouted lips when playing
the flute, or by blowing air through an air channel to-
wards the sharp lip of the recorder or an organ pipe.
Fletcher [15.182] showed that the lateral displacement
h(x) of the jet induced by an acoustic velocity field veiωt

between the jet orifice and the lip varies with position

u

V

b

Fig. 15.107 Propagating sinuous instability of an air jet
emerging from a flow channel with two possible positions
of the angled labium or lip to excite resonances of an at-
tached air column for a given jet velocity V
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and time as

h(x) = − j
( v

ω

) [
1− cosh μx exp(−iωx/u)

]
eiωt ,

(15.139)

illustrated schematically in Fig. 15.107. The first term
simply corresponds to the jet moving with the im-
pressed acoustic field, while the second describes the
induced travelling-wave instability moving along the
jet with velocity u ≈ V/2, which dominates the jet
displacement at the lip of the instrument. For long-
wavelength instabilities on a narrow jet, such that the
characteristic wavevector k � 1/b, Rayleigh showed
that the phase velocity u = ω/k ≈ kbV/2 = (ωbV/2)1/2,
while the exponential growth factor μ = (k/b)1/2.

In practice, the velocity profile of the jet is never
exactly rectangular but in general will be bell-shaped.
This results in a slightly different frequency, width b
and velocity dependence of the phase velocity, with

u = 0.55(ωb)1/3V 2/3 (15.140)

and corresponding changes in the exponential growth
factor (Savic [15.184]). Typical propagation velocities
of disturbances on the jet of flute and organ pipes
measured by Coltman [15.183] range from 6.7 m/s to
3.7 m/s with velocity ratios u/V from 0.35 to 0.5 for
blowing pressures from 1 to 0.15 inches of water.

Resonances of the attached resonator can be excited
when the air-jet instability is in phase with oscillations
within the resonator, as shown for the two positions
indicated in Fig. 15.107. This corresponds to an odd
number of half-wavelengths of the propagating in-
stability, so that ωl/u = nπ, which is equivalent to
f ≈ nV/4, where n is an odd integer and we have as-
sumed u ≈ V/2. For a given length between jet orifice
and lip, different frequencies can be excited by vary-
ing the jet velocity V = √

2Pmouth/ρ, where Pmouth is
the pressure in the mouth creating the jet. When cou-
pled to an acoustic resonator with a number of possible
resonances, such as an organ pipe or the pipe of a flute
or recorder, the interaction between the jet and oscil-
lating resonator causes the frequency to lock on to
a particular resonance, with hysteretic jumps between
the resonance excited as the blowing pressure is in-
creased and decreased, as illustrated schematically in
Fig. 15.108 (Coltman [15.183]). This explains why the
pitch of an instrument like the recorder or flute doubles
when it is blown more strongly. The line marked edge
tones indicates the frequency of the excited jet mode in-
stability for the same orifice–lip geometry without an
attached pipe and the line marked f = pipe resonance

Frequency

Jet velocity

f = pipe resonances

Edge tone

Fig. 15.108 Schematic representation of the frequency of
a jet-edge oscillator before and after coupling to a multi-
resonant acoustic resonator. The line marked f = pipe
resonator indicates the pressures when the frequencies are
the same as the modes of the uncoupled acoustic resonator
(after Coltman [15.183])

indicates when the frequency of the coupled jet coin-
cides with the free vibrations of the attached air column.
In practice the instrument is played in close vicinity to
the pipe resonances.

The above model is strictly only applicable
to small perturbations in jet shape (� b) and to
a nonviscous medium. In practice, measurements of
jet displacement by Schlieren photography, hot-wire
anemometry (Nolle [15.185]), smoke trails Cremer and
Ising [15.186] and Coltman [15.187] and particle im-
age velocimetry (PIV) (Raffel et al. [15.188]) show that
within an acoustic cycle the jet moves to either side
of the lip of the instrument with large displacement
amplitudes comparable with the physical dimensions
of the distance between the orifice and lip. In add-
ition, viscous forces lead to a change in profile of the
jet as it moves through the liquid from rectangular
to bell-shaped (Ségoufin et al. [15.189]). Furthermore,
the associated shear forces eventually induce vortic-
ity downstream, with individual vortices shearing away
from the central axis of the jet on alternate sides, as
observed by Thwaites and Fletcher [15.190, 191].

In recent years, major advances have also been made
in studying such problems by computation of solutions
of the Navier–Stokes equations describing the nonlin-
ear aerodynamic flow. An example is illustrated by
the simulated jet deflections by Adachi [15.192] shown
in Fig. 15.109. Adachi’s computational results are in
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Fig. 15.109 A computed snapshot showing the breakup of
a jet and generation of vortices (Adachi [15.192])

reasonably good agreement with Nolle’s flow meas-
urements [15.185] made with a hot-wire anemometer.
A sequence of such computations by Macherey for the
jet in a mouthpiece with flute-like geometry is included
in a recent review paper on the acoustics of wood-
wind instruments by Fabre and Hirschberg [15.193].
The computations show a relatively simple jet structure
switching from one side of the lip of a flute to the other
during each period of the oscillation.

Air-Jet Resonator Interaction
Despite the obvious limitations of any small-amplitude
linear approach to the jet–lip interaction and the exci-
tation of resonator modes, it is instructive to consider
the analytic model introduced by Fletcher [15.182],
which is discussed in some detail in Fletcher and
Rossing [15.5, Sect. 16.3], as it includes much of the
essential physics in a way that is not always apparent
from purely computational models. The assumed ge-
ometry is illustrated schematically in Fig. 15.110 and

M

Zm Zp

ejωt

Sp

Instability waves Mixing region
u

V

Fig. 15.110 Model to illustrate interaction between air jet
and pipe modes (after Fletcher [15.194])

can easily be generalised to model sound excitation
in air-jet-driven instruments with different mouthpiece
geometries such as the recorder, organ pipe or flute.
A uniform jet with a rectangular top-hat velocity pro-
file of width b and velocity V is assumed to impinge on
the lip or labium of the instrument, with the jet pass-
ing through a fraction A of the attached pipe area Sp.
The oscillating travelling-wave jet instability will result
in a periodic variation of the fractional area varying as
αeiωt . On entering the pipe channel, the jet will cou-
ple to all possible modes of the attached pipe, which in
addition to the principle acoustic modes excited, will in-
clude many other modes involving radial and azimuthal
variations [15.194] that are very strongly attenuated.
Much of the energy of the incident jet will therefore be
lost by such coupling with typically only a few percent
transferred to the important acoustic resonances of the
instrument.

To evaluate the transfer of energy to the principle
acoustic mode, we consider the pipe impedance across
the plane M. In the absence of the jet, the impedances
of the attached pipe and mouthpiece section are Zp and
Zm, where the mouthpiece section has a certain volume
and hole area, with the volume in the case of a flute
involving an adjustable length of pipe used for fine-
tuning. Fletcher simplified an earlier model introduced
by Elder [15.195], in assuming the principle of linear
superposition, with a jet flow superimposed on that of
the instrument. The oscillating incident jet then has two
principal effects: the oscillating fraction of area α of the
jet entering the pipe introduces a flow into the attached
pipe

U1 = αSp Zm/
(
Zm + Zp

)
, (15.141)

while the effective pressure acting on the plane M
derived from momentum-balance arguments results in
a pipe flow of

U2 = αρV 2/
(
Zm + Zp

)
. (15.142)

There is also an additional nonlinear term U3 mathemat-
ically arising from the nonlinear effect of the fractional
insertion area of the jet insertion at large amplitudes,
which is negligible in comparison with the many other
nonlinearities in any realistic model. This model in-
tegrates and simplifies earlier models introduced by
Cremer and Ising [15.186], Coltman [15.187] and El-
der [15.195].

It immediately follows from the above arguments
that, provided the phase of the jet instabilities are
appropriate, instabilities on the jet will excite strong res-
onances of the instrument when the series impedance
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(Zm + Zp) is a minimum, which is just the impedance
of the pipe loaded by the impedance of the mouthpiece
assembly. Provided the lengths involved are much less
than an acoustic wavelength, Zm = iρΔL/Sp where ΔL
is the end correction introduced by the mouthpiece as-
sembly. The net flow is then given by

Up = (V + iωΔL) ρVα

Sp
(
Zm + Zp

) . (15.143)

The resonances are therefore those of a pipe that is
open at both ends, but with a small end-correction for
the effective volume of the mouthpiece and any addi-
tional closed tuning tube and flow in and out of the
mouthpiece.

Because the mouthpiece impedance is reactive, the
induced vibrations in flow from direct jet flow (U1)
and that induced by the jet pressure (U2) are in phase
quadrature. In addition, the two terms have a different
dependence on jet velocity and frequency. In practice,
ωΔL is often larger than V , so that the second term usu-
ally dominates, though this will not necessarily be true
in more realistic models.

For small sinusoidally varying jet perturbations
and a top-hat velocity profile, the driving force would
only include single frequency components. However, in
practice, viscous damping results in a spreading out of
the velocity profile in the lateral direction with a bell-
shaped profile that increases in width with distance
along the jet. If such a profile is offset from the lip,
any sinusoidal disturbance of the jet will introduced
additional harmonics at frequencies, 2ω, 3ω, etc., with
increasing amplitudes for increasing jet oscillations. In
practice, the amplitudes of jet oscillation are so large
that the jet undergoes a near switching action, alternat-
ing its position from one side to the other of the lip.
The driving force is therefore strongly nonsinusoidal
and provides a rich spectrum of harmonics to excite
the upper partials of any sounded note. A flute player,
for example, has considerable control over the quality
of the sound produced, by variation of mouth pressure
and jet velocity, its velocity profile on leaving the lips,
and its direction in relation to the labium or lip of the
instrument.

For most musical instruments excited by an air jet,
the sinuous instability is the most important, though
Chanaud [15.196] and Wilson et al. [15.197] have high-
lighted the importance of varicose instabilities (periodic
variations in area of the jet), which were also investi-
gated by Rayleigh, as in whistles and whistling, where
the air passes through an aperture rather than striking an
edge.

Regenerative Feedback
We now consider the effective acoustic impedance of
the exciting air column as we did for the vibrating reed.
Our emphasis here is to highlight the essential physics
rather than provide a rigorous treatment. More details
and references are given in Fletcher and Rossing [15.5,
Sect. 16.4] and Fletcher [15.194].

The flow Um into the mouth of the resonator can be
expressed as

Um = vmSm = pmYm ≈ pmSp

iωρΔL
. (15.144)

From (15.139), the lateral displacement of the jet at the
lip a distance l from the exit channel of the jet is then
given by

hl ≈ i
(vm

ω

)
cosh μl exp (−ωl/u) , (15.145)

where u is the phase velocity for disturbances travel-
ling along the jet and the implicit time variation has
been omitted. From the ratio of the net flow into the
mouthpiece-end and attached resonator to the pressure
acting on the air jet, Fletcher and Rossing derive the
effective admittance of the air-jet generator,

Yi ≈ VW

ρω2ΔL

(
Sp

Sm

)
cosh μl exp

[
−i

(
ωl

u

)]
.

(15.146)

Apart from a small phase factor (φ ≈ V/ωL), which we
have omitted, the admittance is entirely real and neg-
ative when ωl/u = π, which corresponds to the first
half-wavelength of the instability just bridging the dis-
tance from channel exit to lip, as shown in Fig. 15.106.
This is also true for ωl/u = nπ, where n is any odd
integer, corresponding to any odd number of half-
wavelengths of the growing instability between the jet
exit and lip of the instrument.

These are just the conditions for positive feedback
and the growth of acoustic resonances in the pipe res-
onances will be excited when Im(Yp +Ym) = 0, which
is equivalent to the condition that Zs should be a mini-
mum, as expected from (15.129). As Coltman [15.183]
pointed out, the locus of Im(Yj) plotted as a function or
Re(Yj) as a function of increasing frequency is a spiral
about the origin in a clockwise direction (Fletcher and
Rossing [15.5, Fig. 16.10]). The jet admittance there-
fore has a negative real component at all frequencies
when the locus point is in the negative half-plane. Res-
onances can therefore be set up over frequency ranges
from ≈ (1/2 to 3/2)ω∗, (5/2 to 7/2)ω∗, etc. where ω∗,
3ω∗, 5ω∗ are the frequencies when the admittance is
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purely conductive and negative. By varying the blow-
ing pressure and associated phase velocity of the jet
instability, the player can therefore excite instabilities
of the jet with the appropriate frequencies to lock on to
the resonances of the attached air column, as illustrated
schematically in Fig. 15.108.

Measurements by Thwaites and Fletcher [15.190]
are in moderately good agreement with the above model
at low blowing pressures and reasonably high frequen-
cies, but deviate somewhat at low frequencies and high
blowing pressures. This is scarcely surprising in view of
the approximations made in deriving the above result.

Edge Tones and Vortices
Edge tones are set up when jet of air impinges on a lip
or thin wire without any coupling to an acoustic res-
onator. The high flow rates in the vicinity of the lip
or wire can generate vortices on the downstream side,
which spin off on alternating sides, setting up an alter-
nating force on the lip or wire. If the object is itself part
of a mechanical resonating structure, such as a stretched
telegraph wire or the strings of an Aeolian harp, wind-
blown resonances can be set up, with different resonant
modes excited dependent on the strength of the wind.
In extreme cases, the excitation of vortices can result
in catastrophic build up of mechanical resonances, as in
the Tacoma bridge disaster.

Before 1970, many treatments of wind instruments
discussed air-jet sound generation in such terms. Hol-
ger [15.198], for example, proposed a nonlinear theory
for edge-tone excitation of sound in wind instruments
based on the formation of a vortex sheet, with a suc-
cession of vortices already created on alternate sides of
the mid-plane of the emerging jet before it hit the lip or
labium of the instrument. Indeed, measurements of the
flow instabilities and phase velocity of instabilities in
a recorder-like instrument by Ségoufin et al. [15.189],
as a function of Strouhal number ωb/u, fit the Holger
theory rather better than models based on the Rayleigh
instability and refined by later authors for both short and
long jets, but the experimental errors are rather large.
However, the vortex-sheet model does not include the
growth of disturbances in the sound field with distance
(as measured by Yoshikawa [15.199]), which is a crucial
parameter for the prediction of the oscillation threshold
observed for instruments such as the recorder.

It is also clear that vortex production is important in
many wind instruments, especially where the acoustic
amplitude is large, as in the vicinity of sharp edges or
corners of both open and closed tone holes, as observed
in direct measurements of the flow field. For example,

Fabre et al. [15.200] have recently shown that vortex
generation is a significant source of energy dissipation
for the fundamental component of a flute note.

In view of the complexity of the fluid dynamics
involves, it seems likely that future progress in our un-
derstanding of jet-driven wind instruments will largely
come from computational simulations, though physi-
cal models still provide valuable insight into the basic
physics involved.

15.3.6 Woodwind and Brass Instruments

In this last section on wind instruments, we briefly de-
scribe a number of woodwind and brass instruments
of the modern classical orchestra. All such instruments
were developed from much earlier instruments, many
of which still exist in folk and ethnic cultures from
all around the World. Illustrated guides to a very large
number of such instruments are to be found in Musical
Instruments by Baines [15.201] and the encyclopae-
dia Musical Instruments of the World [15.31]. The two
text by Backus [15.133] and Benade [15.134], both
leading researchers in the acoustics of wind instru-
ments, provide many more technical details concerning
the construction and acoustics of specific woodwind
and brass instruments than space allows here, as does
Fletcher and Rossing [15.5, Chaps. 13–17] and Camp-
bell, Myers and Greated [15.7].

Woodwind Instruments
The simplest instruments are those based on cylindri-
cal pipes, such as bamboo pan pipes excited by a jet of
air blown over one end, or hollow resonators, such as
primitive ocarinas, which act as simple Helmholtz res-
onators with the pitch determined by the openings of the
mouthpiece and fingered open holes. Woodwind instru-
ments use approximately cylindrical or conical tubes
excited by a reed or a jet of air blown over a hole in the
wall of the tube. As we have seen, simple cylindrical
and conical tubes retain a harmonic set of resonances
independent of their length, which in principle allows
a full set of harmonic partials to be sounded when the
instrument is artificially shortened by opening the tone
holes. In practice, as discussed in the previous sec-
tion, the harmonicity of the modes is strongly perturbed
by a large number of factors including the strongly
frequency-dependent end-corrections from tone holes
and significant departures from simple cylindrical and
conical structures. Such perturbations can, to some ex-
tent, be controlled by the skilled instrument maker to
preserve the harmonicity of the lowest modes responsi-
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ble for establishing the playing pitch of an instrument.
We will describe the various methods of exciting vibra-
tions by single and double reeds and by air flow in the
next section.

Figure 15.111 shows four typical modern orchestral
woodwind instruments. All such instruments have dis-
tinctive tone qualities and come in various sizes, which
cover a wide range of pitches and different tone-colours.

The flute, bass flute and piccolo are based on the
resonances of a cylindrical tube, with the open end and
mouthpiece hole giving pressure nodes at both ends.
Like the recorder, all the chromatic notes of the musical
scale can be played by selectively opening and shutting
a number of tone holes in the walls of the instrument us-
ing the player’s fingers (on ancient and baroque flutes)
or felted hinged pads operated by a system of keys and
levers (on modern instruments). Primitive flutes appear
in most ancient cultures.

The clarinet is based on a cylindrical tube excited
by a single reed at one end. The reed and mouthpiece
close one end of the tube, so that the odd-integer partials
are more strongly excited than the even partials, par-
ticularly for the lowest notes, when most sideholes are
closed. In addition, when overblown, the clarinet sounds
a note three times higher (an octave and a fifth). Like
all real instruments, perturbations from the tone holes,

Flute Oboe Clarinet Bassoon

Fig. 15.111 The modern flute, oboe, clarinet and bassoon
(not to scale)

variations in tube diameter and the nonlinear processes
involved in the production of sound vibrations by the
reed strongly influence the strength of the excited par-
tials, all of which contribute to the characteristic sound
of the instrument.

The single-reed clarinet is a relatively modern
instrument developed around 1700 by the German in-
strument maker Denner. It evolved from the chalumeau,
an earlier simple single-reed instrument with a recorder-
like body, which still gives its name to the lower register
of the clarinet’s playing range. In the 1840s, the mod-
ern system of keys was introduced based on the Boehm
system previously developed for the flute [15.201].

The oboe is based on a conical tube truncated and
closed at the playing end by a double reed. As described
earlier, a conical tube supports all the integer harmonic
partials giving a full and penetrating sound quality that
is very rich in upper partials. This is why an oboe note is
used to define the playing pitch (usually A4 = 440 Hz)
of the modern symphony orchestra. Like all modern in-
struments, today’s oboe developed from much earlier
instruments, in this case from the double-reed shawn
and bagpipe chanters, which still exist in many ethnic
cultures in Europe, Asia and parts of Africa. In addition
to the bass oboe, the oboe d’amore and cor anglais, with
their bulbous end cavity just before the output bell, have
been used for their distinctive plaintive sounds by Bach
and many later composers. Like the flute and clarinet,
early oboes used mostly open-side holes closed by the
fingers, with only one or two holes operated by a key,
but developed an increasingly sophisticated key system
over time to facilitate the playing of the instrument.

The bassoon is a much larger instrument, producing
lower notes of the musical scale. Because of the length
of the air column, the spacing of the tone holes would be
far too wide to operate by the player’s fingers alone. To
circumvent this problem, the instrument is folded along
its length and relatively long finger holes are cut diago-
nally through the large wall thickness, so that normally
fingered holes can connect to the much wider separa-
tion of holes in the resonant air column. The bore of
the instrument is based on a largely conical cross sec-
tion, with the mouthpiece end terminated by a narrow
bent tube or crook to which a large double reed is at-
tached. Early bassoons included a single key to operate
the most distant tone hole on the instrument. Modern
instruments have an extended key system to facilitate
playing all the notes of the chromatic scale. The con-
trabassoon includes an additional folded length of tube.
Like the oboe, the sound of the bassoon is very rich in
upper partials and has a very rich, mellow sound.
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Related to the bassoon is the renaissance racket
played with a crook and double reed. The instrument
looks like a simple cylinder with a set of playing holes
cut into its surface. However, in reality, it is a highly
convoluted pipe with twelve parallel pipes arranged
round the inner diameter of the cylinder and inter-
connected with short bends at their ends to produce
a very long acoustic resonator with easily accessible
tone holes. This provides a beautiful example of the
centuries-old ingenuity of instrument makers in solving
the many acoustic and ergonomic problems involved in
the design of musically successful wind instruments.

Brass Instruments
Figure 15.112 illustrates the trumpet, trombone and
horn, which like all brass instruments are based on
lengths of cylindrical, conical and flared resonant air
columns. They are excited by a mouthpiece at one end
and a bell at the open end, as described in the previous
section. The player selects the note to be sounded by
buzzing the lips, usually at a frequency corresponding to
one of the natural resonances of the coupled air column.
The essential nonlinearity of this excitation process also
excites multiples in frequency of the playing pitch.
Ideally, for ease of playing, these harmonics should co-
incide with the higher modes of the excited air column.
As already described, brass instruments are therefore
designed to have a full harmonic set of modes. However,
because of their shape and outward flare, it is impossible
to achieve this for the fundamental mode (Fig. 15.77).

By adjusting the pressure and the tightness of the
lips in the mouthpiece, the player can pitch notes based
on the n = 2, 3, 4 . . . modes – the n = 2 mode, a fifth
above, an octave above, an octave and a fourth above,

Trombone
Positions 1  2  3  4  5  6  7

Trumpet

Horn

Fig. 15.112 The trombone, French horn and trumpet

etc. Trumpet players typically sound notes up to the
8–10 th mode, while skilled horn players can pitch
notes up to and sometimes above the 15th. In the higher
registers, the instruments can therefore play nearly all
the notes of a major diatonic scale. A few of the notes
can be rather badly out of tune, but a skilled player
can usually correct for this by adjusting the lip pressure
and flow of air through the mouthpiece. The low notes
are based on simple intervals: the perfect fifth, octave,
perfect fourth, etc. Trumpets and horns were therefore
often used in early classical music to add a sense of
military excitement and to emphasise the harmony of
the key in which the music is written. However, in later
classical music and music of the romantic period, all the
notes of the chromatic scale were required. To achieve
this, brass instruments such as the trumpet and horn
were developed with a set of air valves, which enabled
the player to switch in and out various combinations of
different lengths of tube, to change the effective res-
onating length of the vibrating air column and hence
playing pitch. Uniquely, the pitch of the trombone is
changed by the use of interpenetrating cylindrical slid-
ing tubes, which change the effective length. Modern
instruments generally use a folded or coiled tube struc-
ture to keep the size of the instrument to manageable
proportions.

The trombone can sound all the semitones of the
chromatic scale, by the player sliding lengths of closely
fitting cylindrical tubing inside each other. In the first
position, with the shortest length tube (Fig. 15.112),
the B-flat tenor trombone sounds the note B-flat at
≈115 Hz, corresponding to the n = 2 mode, an octave
below the lowest note on the B-flat trumpet. To play
notes at successive semitones lower, the total length has
to be extended sequentially by fractional increases of
1.059. From the shortest to longest lengths there are
seven such increasingly spaced positions. When fully
extended, the trombone then plays a note six semitones
lower (E) than the initial note sounded. One can then
switch to the n = 3 mode to increase the pitch by a per-
fect fifth, to the note B a semitone higher than the initial
note sounded. Using the closer positions enables the
next six higher semitones to be played. Higher notes
can be excited by suitable combinations of both position
and mode excited. The trombone is one of the few musi-
cal instruments that can slide continuously over a large
range of frequencies, simply by smoothly changing its
length. This is widely used in jazz, where it also enables
the player to use a very wide, frequency-modulated,
vibrato effect and bending of the pitch of a note for
expressive effect.
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The fully extended length of the vibrating air col-
umn in the first position is ≈ 2.5 m. Two-thirds of the
length is made up of 1.3 cm-diameter cylindrical tubing
with the remaining gently flared end-section opening
out to a bell diameter of 16–20 cm.

The trumpet achieves the full chromatic range by
the use of three piston valves, which enable additional
lengths of tubing to be switched in and out of the res-
onating air column. In the inactive up position, the
sound travels directly through a hole passing directly
through the valve. When the piston is depressed, the
valve enables the tube on either side of the valve to
be connected to an additional length of tubing, which
includes a small, preset, sliding section for fine tun-
ing. The pitch is decreased by a tone on depressing the
first piston and a semitone by the second. Pressing them
down together therefore lowers the pitch by three semi-
tones (a minor third). Depressing the third valve also
lowers the pitch by three semitones, so that when all
three valves are depressed the pitch is lowered by six
semitones. However, the tuning is not exact, because
whenever any single valve is depressed the effective
tube length is lengthened. Therefore, when a second (or
third) valve is depressed, the fractional increase in effec-
tive length is less when the second valve alone is used.
This is related to the need to increase the spacing of the
semitone positions on the trombone as it is extended.
Similar mistuning problems arise for all combinations
of valves used.

To circumvent these difficulties, compromises have
to be made, if the instrument is to play in tune
(Backus [15.133, pp. 270–271]). The added length of
tubing to produce the semitone and tone intervals are
therefore purposely made slightly too long, giving semi-
tone and tone intervals that are slightly flat, but which in
combination produce a three-semitone interval which is
slightly sharp. Similarly, the third valve is tuned to give
a pitch change of slightly more than three semitones.
This allows the full of range of semitones to be played
with only slight fluctuations above and below the cor-
rect tuning. The error is greatest when all three pistons
are depressed. In the modern trumpet, the mistuning can
be compensated by a small length of tubing operated by
an additional small valve operated by the little finger
of the playing hand. To regulate the overall tuning of
the instrument, the playing length of the instrument can
be varied by a sliding U-tube section at the first bend
away from the mouthpiece. As we will show later, the
skilled player can adjust the muscles controlling the dy-
namics of the lip-reed excitation to correct for any slight
mistuning inherent in the design of the instrument.

The bends and valves incorporated into the struc-
ture of brass instruments will clearly result in sudden
changes in acoustic impedance of the resonating air col-
umn, which will produce reflections and perturbations
in the frequency of the frequency of the excited modes.
Surprising, as shown earlier, such effects are acousti-
cally relatively unimportant, though for the player they
may affect the feel of the instrument and ease with
which it can be played. In particular, when a brass
player is pitching one of the higher modes of an in-
strument such as the horn several oscillations have to
be produced before any feedback returns from the end
of the instrument to stabilise the playing frequency. For
example, when pitching the 12th mode on a horn, the
player has to buzz the lips for about 12 cycles before the
first reflection returns from the end of the instrument,
which demonstrated the difficulty of exact pitching of
notes in the higher registers. Note that, because of the
dispersion of sound waves in a flared tube, the group ve-
locity determining the transit time will not be the same
as the phase velocity determining modal frequencies.
Any strong reflections from sharp bends and disconti-
nuities in acoustic impedance introduced by the valve
structures can potentially confuse the pitching of notes
and the playability of an instrument. Such transients can
be investigated directly by time-domain acoustic reflec-
tometry (see, for example, Ayers [15.180]). Different
manufacturers choose different methods to deal with
the various tuning and other acoustic problems involved
in the design of brass instruments and players develop
strong preferences for a particular type of instrument
based on both the sound they produce and their ease of
playing.

The trumpet bore is ≈ 137 cm long with largely
cylindrical tubing with a diameter of ≈ 1.1, which ta-
pers down to ≈ 0.9 cm at the mouthpiece end over a dis-
tance of ≈ 12–24 cm. It opens up over about the last
third of its length with an end bell of diameter ≈ 11 cm.
To reduce the overall length, its length is coiled with
a single complete turn, as illustrated in Fig. 15.112.

The cornet is closely related to the trumpet but has
a largely conical rather than cylindrical bore and is
further shortened by having two coiled sections. This
results in a somewhat lower cut-off frequency giving
a slightly warmer but less brilliant sound quality. The
bugle is an even simpler double-coiled valveless instru-
ment of fixed length, so that it can only sound the notes
of the natural harmonics. It was widely used by the mil-
itary to send simple messages to armies and is still used
today in sounding the last post, accompanying the burial
of the military dead.
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The modern French horn developed from long
straight pipes with flared ends played with a mouth-
piece. Technology then enabled horns to be made with
coiled tubes, like hunting horns, greatly reducing their
size. In early classical music, horns were only expected
to play a few simple intervals in the key in which the
music was written. For music written in different keys,
the player had to add an additional section of coiled tube
called a crook, to extend the length of the instrument
accordingly.

To extend the range of notes that a horn could
play, the player can place his hand into the end of
the instrument. Depending how the hand is inserted,
the pitch of individual harmonics can be lowered or
raised by around a semitone, producing what is re-
ferred to as a hand-stopped note. If the hand is partially
inserted into the bell, it dramatically increases the
cut-off frequency giving the player access to a much
larger number of higher modes, as illustrated in meas-
urements by Benade [15.134, Fig. 20.17] reproduced in
Fig. 15.113. Although the associated changes in pitch
may be relatively small, inserting the hand into the
end of a horn significantly changes the spectrum of
the radiated sound, which allows the horn player some
additional freedom in the quality of the sound produced.

The modern orchestral horn produces all the notes
of the chromatic scale using rotary valves to switch in
combinations of different length tube, rather like the
trumpet. The modern instrument is a combination of
a horn in F and a horn in B-flat, which can be inter-
changed by a rotary valve operated by the thumb of the
left hand, while the first three fingers operate the three
main valves, which are common to both horns.

The total length of the F horn is about 375 cm,
a third longer than the B-flat trombone, enabling it to
play down to the note F2. The F-horn is used for the
lowest notes on the instrument, while the B-flat horn
is used to give the player a much higher degree of se-
curity in pitching the higher notes. Like the primitive
hunting horn, the modern horn is coiled to accommo-
date its great length and has a bore that opens up gently
over its whole length from a diameter of ≈ 0.9 mm at

Input impedance

Frequency  (Hz)
0 20001000

Natural horn in B

Hand in bell

Open bell

Fig. 15.113 Input impedance measurements of a natural
horn, with and without a hand in the bell (after Be-
nade [15.134])

the mouthpiece end to a rapidly flared output bell with
a diameter of ≈ 30 cm.

There are many other instruments played with
a mouthpiece in both ancient and ethnic cultures around
the world. Many primitive instruments are simply
hollowed-out tubes of wood, bamboo or animal bones.
The notes that such instruments can produce are lim-
ited to the principal, quasi-harmonic, resonances of the
instrument. There are also many hybrid instruments
played with a mouthpiece, which use finger-stopped
holes along their length, just like woodwind instru-
ments. Important examples are the renaissance cornett
and the now almost obsolete serpent, a spectacularly
large, multiple bend, s-shaped, instrument. Many mod-
ern players of baroque-period natural trumpets have
also added finger holes to the sides of their instruments,
to facilitate the pitching of the highest notes.

15.4 Percussion Instruments

Compared with the extensive literature on stringed,
woodwind and brass instruments, the number of publi-
cations on percussion instruments is somewhat smaller.
This is largely because the acoustics of percussion
instruments is almost entirely dominated by the well-

understood, free vibrations of relatively simple struc-
tures, without complications from the highly nonlinear
excitation processes involved in exciting string and
wind instruments. However, as this section will high-
light, the physics of percussion instruments involves
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a number of fascinating and often unexpected features
of considerable acoustic interest.

The two most important references on the acoustics
of percussion instruments are The Physics of Musical
Instruments, Fletcher and Rossing [15.5, Chaps. 18–21]
and the Science of Percussion Instruments [15.202] by
Rossing, the general editor of this Handbook, who has
pioneered research on a very wide range of classical and
ethnic percussion instruments. James Blade’s Percus-
sion Instruments and their History [15.203] provides an
authoritative survey of the development of percussion
instruments from their primitive origins to their modern
use.

Percussion instruments are amongst the oldest and
most numerous of all musical instruments. Primitive in-
struments played by hitting sticks against each other or
against hollowed-out tree stumps or gourds are likely to
have evolved very soon after man discovered tools to
make weapons and other simple artefacts essential for
survival. The rhythmic beating of drums by Japanese
Kodo drummers, the marching bands of soldiers down
the centuries, and the massed percussion section of
a classical orchestra still instil the same primeval feel-
ings of power and excitement used to frighten away
the beasts of the forest and to raise the fighting spir-
its of early groups of hunters. The beating of drums
would also have provided a simple way of communicat-
ing messages over large distances, the rhythmic patterns
providing the foundation of the earliest musical lan-
guage – the organisation of sound to convey information
or emotion. Martial music, relying heavily on the beat-
ing of drums continues to be used, and as often misused,
to instil a sense of belonging to a particular group or
nation and to instil fear in the enemy.

In China, bells made of clay and copper were al-
ready in use well before 2000 BC. The discovery of
bronze quickly led to the development of some of the
most sophisticated and remarkable sets of cast bells ever
made, reaching its peak in the western Zhou (1122–
771 BC) and eastern Zhou (770–249 BC) dynasties
(Fletcher and Rossing [15.5, Sect. 21.15]). Inscriptions
on the set of 65 tuned chime bells in the tomb of Zeng
Hou Yi (433 BC), show that the Chinese had already es-
tablished a 12-note scale, closely related to our present,
but much later, western scale. The ceremonial use of
bells and gongs is widespread in religious cultures all
over the world and in western countries has the tra-
ditional use of summoning worshippers to church and
accompanying the dead to their graves.

In the 18th century classical symphony orchestra of
Haydn and Mozart’s time, the timpani helped emphasise

the beat and pitch of the music being played, particu-
larly in loud sections, with the occasional use of cym-
bals and triangle to emphasise exotic and often Turkish
influences. The percussion section of today’s symphony
orchestra may well be required to play up to 100 dif-
ferent instruments for a single piece, as in Notations
I–IV by Boulez [15.204]. This typical modern score in-
cludes timpani, gongs, bells, metals and glass chimes,
claves, wooden blocks, cowbells, tom-toms, marimbas,
glockenspiels, xylophones, vibraphones, sizzle and sus-
pended cymbals, tablas, timbales, metal blocks, log
drums, boobams, bell plates in C and B flat, side drums,
Chinese cymbals, triangles, maracas, a bell tree, etc.
Modern composers can include almost anything that
makes a noise – everything from typewriters to vac-
uum cleaners. The percussion section of the orchestra
is required to play them all – often simultaneously.

We will necessarily have to be selective in the instru-
ments that we choose to consider and will concentrate
largely on the more familiar instruments of the mod-
ern classical symphony orchestra. We will also constrict
our attention to instruments that are struck and will ig-
nore instruments like whistles, rattles, scrapers, whips
and other similar instruments that percussion players are
also often required to play.

15.4.1 Membranes

Circular Membrane
A uniform membrane with areal density σ , stretched
with uniform tension T over a rigid circular supporting
frame, supports acoustically important transverse dis-
placements z perpendicular to the surface described by
the wave equation

T

(
∂2z

∂r2
+ 1

r

∂z

∂r
+ 1

r2

∂2z

∂φ2

)
= σ

∂2z

∂t2
, (15.147)

which has solutions of the form

z (r, φ, t) = Jm(kmnr)

{
A cos mφ

+B sin mφ

}
eiωt .

(15.148)

Jm(kmnr) are Bessel functions of order m, where
n denotes the number of radial nodes and m the num-
ber of nodal diameters. The eigenfrequencies ωmn =
kmn

√
T/σ are determined by the requirement that

Jm(kmna) = 0 on the boundary at r = a. The frequency
of the fundamental (01) mode is (2.405/2πa)

√
T/σ ,

where J0(k01a) = 0. The relative frequencies of the first
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3.16 3.50 3.60 3.65 4.06 4.15

41 22 03 51 32 61

1 1.59 2.14 2.30 2.65 2.92

01 11 21 02 31 12

Fig. 15.114 The first 12 modes of a circular membrane
illustrating the mode nomenclature, nodal lines and fre-
quencies relative to the fundamental 01 mode

12 modes and associated nodal lines and circles are
shown in Fig. 15.114.

For ideal circular symmetry, the independent az-
imuthal cosine and sine solutions result in degenerate
modes having the same resonant frequencies. The de-
generacy of such modes can be lifted by a nonuniform
tension, variations in thickness when calfskin is used,
and a lack of ideal circularity of the supporting rim.
Any resulting splitting of the frequencies of such modes
can result in beats between the sound of given partials,
which the player can eliminate by selectively adjusting
the tension around the perimeter of the membrane or by
hitting the membrane at a nodal position of one of the
contributing modes.

Unlike transverse waves on a stretched string, the
modes of a circular membrane are inharmonic. As
a consequence, the waveforms formed by the combi-
nation of such partials excited when the drumhead is
struck are nonrepetitive. Audio illustrates
the frequencies of the first 12 modes played in sequence.

illustrates their sound when played together
as a damped chord, which already produces the realistic
sound of a typical drum, having a reasonably well-
defined sense of pitch, despite the inharmonicity of the
modes.

Although percussion instruments may often lack
a particularly well-defined sense of pitch, one can nev-
ertheless describe the overall pitch as being high or low.
For example, a side drum has a higher overall pitch than
a bass drum and a triangle higher than a large gong.
From an acoustical point of view, we will be particu-
larly interested in the lower-frequency quasi-harmonic
modes. However, one must never forget the importance
of the higher-frequency inharmonic modes in defining
the initial transient, which is very important in charac-
terising the sound of an instrument.

Nonlinear effects arise in drums in much the same
way as in strings (Sect. 15.2.2). The increase in tension,
proportional to the square of the vibrational ampli-
tude, leads to an increase in modal frequencies. In
addition, nonlinearity can result in mode conversion
(Sect. 15.2.2) and the transfer of energy from initially
excited lower-frequency modes with large amplitudes
to higher partials. Although the pitch of a drum is raised
when strongly hit, this may to some extent be compen-
sated by the psychoacoustic effect of a low-frequency
note sounding flatter as its intensity increased. Changes
in perceived pitch of a drum with time can often be em-
phasised by the use of digital processing, to increase the
frequency of the recorded playback without changing
the overall envelope in time (audio ).

Air Loading and Radiation
The above description of the vibrational states of
a membrane neglects the induced motion of the air
on either side of the drum skin. At low frequencies,
this adds a mass ≈ 8

3ρa3 to the membrane (Fletcher
and Rossing [15.5, Sect. 18.1.2]), approximating to
a cylinder of air with the same thickness as the ra-
dius a of the drum head. The added mass lowers the
vibrational frequencies relative to those of an ideal
membrane vibrating in vacuum. The effect is largest at
low frequencies, when the wavelength in air is larger
than or comparable with the size of the drumhead.
For higher-frequency modes, with a number of wave-
lengths λ across the width of the drumhead, the induced
air motion only extends a distance ≈ λ2π(� a) from
the membrane. Air loading therefore leaves the higher-
frequency modes relatively unperturbed.

Drums can have a single drum skin stretched over
a hollow body, such as the kettle drum of the timpani, or
two drum heads on either side of a supporting cylinder
or hollowed out block of wood, like the side drum and
southern Indian mrdanga (Fletcher and Rossing [15.5,
Sect. 18.5]). By stretching the drum head over a hol-
low body, the sound radiated from the back surface is
eliminated, just like mounting a loudspeaker cone in
an enclosure. At low frequencies, the drum then acts
as a monopole source with isotropic and significantly
enhanced radiation efficiency. This is illustrated by the
much reduced 60 dB decay time of the (11) dipole mode
of a stretched timpani skin, when the drum skin was at-
tached to the kettle – from 2.5 s to 0.5 s (Fletcher and
Rossing [15.5, Table 18.4]).

In addition, any net change in the volume of the en-
closed air resulting from vibrations of the drum skin will
increase the restoring forces acting on it and hence raise
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Table 15.7 Ideal and measured frequencies of the modal frequencies of a timpani drum head normalised to the acous-
tically important (11) mode before and after mounting on the kettle, and the internal air resonances of the kettle. The
arrows indicate the sense of the most significant perturbations of drum head frequencies and the asterisks indicate the
resulting quasi-harmonic set of acoustically important modes (adapted from Fletcher and Rossing)

Mode Ideal membrane Drumhead in air Coupled internal
air resonances

Drumhead
on kettle

01 0.63 82 Hz 0.53 (0,1,0) 385 Hz 127 Hz 0.85 ↑
(0,1,1)

11 1.00 160 1.0 (1,1,0) 337 Hz 150 1.00 ↓ ***

(1,1,1) 566 Hz

21 1.34 229 1.48 (2,1,0) 537 Hz 227 1.51 ↓ ***

(2,1,1) 747 Hz

02 1.44 241 1.55 (0,1,0) (0,2,0) 252 1.68 ↑
31 1.66 297 1.92 (3,1,0) (3,1,1) 298 1.99 ***

12 1.83 323 2.08 (1,2,0) (1,2,1) 314 2.09 ↓
41 1.98 366 2.36 366 2.44 ***

22 2.20 402 2.59 401 2.67

03 2.26 407 2.63 (0,1,0) 418 2.79 ↑
51 2.29 431 2.78 434 2.89

32 2.55 479 3.09 448 2.99 ***

61 2.61 484 3.12 462 3.08

the modal frequencies, see Table 15.7. In this example,
the coupling raises the frequency of the (01) drumhead
mode from 82 to 127 Hz, the (02) mode from 241 to
252 Hz, and the (03) mode from 407 to 418 Hz. In con-
trast, the asymmetric, volume-conserving, (11) mode
is lowered in frequency from 160 to 150 Hz, which
probably results from coupling to the higher frequency
337 Hz internal air mode having the same aerial sym-
metry.

As in any coupled system in the absence of sig-
nificant damping, the separation in frequency of the
normal modes resulting from coupling will tend to be
greater than the separation of the uncoupled resonators
(Fig. 15.46b). In addition, any enclosed air will provide
a coupling between the opposing heads of a double-
sided drum. For example, the 227 and 299 Hz (01)
uncoupled (01) modes of the opposing heads of a snare
drum become the 182 and 330 Hz normal modes of
the double-sided drum (Fletcher and Rossing [15.5,
Fig. 18.7]).

Excitation by Player
The quality of the sound produced by any percussion
instrument depends as much on the player’s skills as on
the inherent qualities of the instrument itself. Drums are
not simply hit. A player uses considerable manual dex-
terity in controlling the way the drumstick strikes and is
allowed to bounce away from the stretched drum skin,

xylophone bar or tubular bell. It is important that contact
of the stick with the instrument is kept to a minimum;
otherwise the stick will strongly inhibit the vibrational
modes that the player intends to excite. The lift off is
just as important as the strike, and it takes years of prac-
tice to perfect, for example, a continuous side drum or
triangle roll.

It is also important to strike an instrument in the
right place using the right kind of stick or beater to pro-
duce the required tone, resonance or loudness required
for a specific musical performance. As discussed ear-
lier in relation to the excitation of modes on a stretched
string and modal analysis measurements, one can se-
lectively emphasise or eliminate particular partials by
striking an instrument at antinodes or nodes of par-
ticular modes. A skilled timpani player can therefore
produce a large number of different sounds by hitting
the drumhead at different positions from the rim. Strik-
ing timpani close to their outer rim preferentially excites
the higher-frequency modes, while striking close to the
centre results in a rather dull thud. This is due to the
preferential excitation of the inefficient (00) mode and
elimination of the acoustically important (0n) modes.
The most sonorous sounding notes are generally struck
about a quarter of the way in from the edge of the drum.

The sound is also strongly affected by the dynam-
ics of the beater–drumhead interaction, which is rather
soft and soggy near the centre and much harder and
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springy near the outer rim. The sound is also strongly
affected by the type of drumstick used. Light, hard
wooden sticks will make a more immediate impact with
a bar or drum skin than heavily felted beaters. Such
difference are similar to the effect of using heavy or
light force hammers to preferentially excite lower- or
higher-frequency modes in modal analysis investiga-
tions. A professional timpanist or percussion player will
use completely different sticks for different styles of
music and obtain effects on the same instrument rang-
ing from the muffled drum beats of the Death March
from Handel’s Saul to the sound of cannons firing in
Tchaikovsky’s 1812 overture.

There has been much less research on the mechanics
of the drumstick–skin interaction than on the excita-
tion of piano strings by the piano hammer (Sect. 15.2.2),
though much of the physics involved is very similar.
In particular, the shortest time that the drumstick can
remain in contact with the skin will be determined by
the time taken for the first reflected wave to return from
the rim of the drum to bounce it off. This is illustrated
schematically in Fig. 15.115, which illustrates qualita-
tively the force applied to the drumhead as a function of
time for a hard and a soft drumstick struck near the cen-
tre (solid line) and then played nearer the edge (dashed).
The overall spectrum of sound of the drum will be con-
trolled by the frequency content of such impulses. Short
contact times will emphasise the higher partials and give
rise to a more percussive and brighter sound. Higher
partials will also be emphasised by the use of metal
beaters or drumsticks with hard-wooden striking heads
rather than leather or soft felt-covered stick heads. This
is illustrated by the second pulse, which would produce
a softer, mellower sound, without such a strong initial
attack. Clearly, the loudness of the drum note will be
proportional to the mass m of the striking drumstick

Force

Time

Heavy–Loud

Light–Quiet
Rim Centre

Hard Soft

Fig. 15.115 Schematic impulses from a striking drumstick,
illustrating the effect of exciting the drum head at different
positions, with different strengths, and with a hard and soft
drumstick

head and its impact velocity v, delivering an impulse
of ≈ mv.

Audio illustrates the change in sound of
a timpani note, as the player progressively strikes the
drum with a hard felt stick, starting from the outside
edge and moving towards the centre, in equal intervals
of ≈ one eighth of the radius. Audio illus-
trates the sound of a timpani when struck at one quarter
of the radius from the edge, using a succession of drum-
sticks of increasing hardness, from a large softly felted
beater to a wooden beater.

In modern performances of baroque and early clas-
sical music, the timpanist will use relatively light sticks,
with leather-coated striking heads, while for music of
the romantic period larger and softer felt-covered drum-
sticks will often be used.

Many drums of ethnic origin are played with the
hands, hitting the drum head with fingers, clenched fists
or open palms to create quite different kinds of sounds.
In some cases, the player can also press down on the
drum head to increase the tension and hence change
pitch of the note. For a double-headed drum, the cou-
pling of the air between the drum heads can even enable
the player to change the pitch and sound of a given note
by applying pressure to the drum head not being struck.

We now consider a number of well-known percus-
sion instruments based on stretched membranes, which
illustrate the above principles. These will include drums
with a well defined pitch, such as kettle drums (timpani)
and the Indian tabla and mrdanga, and drums with no
defined pitch, such as the side and bass drum.

Kettle Drums (Timpani)
The kettle drum or timpani traditionally used a specially
prepared calfskin stretched over a hollow, approxi-
mately hemispherical, copper kettle generally beaten
out of copper sheet. Nowadays, thin (0.19 mm) mylar
sheet is often used in preference to calfskin for the drum
skin, because of its uniformity and reduced susceptibil-
ity to changes in tension from variations in temperature
and humidity. The drum skin is stretched over a support-
ing ring attached to the kettle, with the tension of the
skin typically adjusted using 6–8 tuning screws equally
spaced around the circumference. The player adjusts
these screws to tune the instrument and to optimise
the quality of tone produced. In modern instruments,
a mechanical pedal arrangement can be used to quickly
change the tension and thereby the tuning, by pushing
the supporting ring up against the drumhead. Typically,
such an arrangement can increase the tension by up to
a factor of two, raising the pitch by a perfect fifth. In
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Fig. 15.116 Decaying waveform of a timpani note and FFT
spectra at the start of a note (upper trace) and after 1 s
(lower trace)

the modern classical symphony orchestra, the timpanist
will use two or three timpani of different sizes to cover
the range of pitched notes required.

Figure 15.116 shows the waveform and spectrum
of the immediate and delayed sound of a timpani note
(the first drum note in audio ). The initial
sound includes contributions from all the modes ex-
cited. This includes not only the vibrational modes of
the drum head, but also the air inside the kettle, the
kettle itself and even the supporting legs and vibra-
tions induced in the floor. Many of these vibrations die
away rather quickly, leaving a number of prominent,
slowly decaying, drum-skin modes. Note in particular,
the strongly damped (01) mode at ≈ 140 Hz and the less
strongly damped modes (02) and (03) modes at 210 Hz
and 284 Hz, tuned approximately to a perfect fifth and
an octave above the fundamental. As noted by Rayleigh
in relation to church bells [15.3, Vol. 1, Sect. 394],
the pitch of a note is often determined by the higher
quasi-harmonically related partials rather than the low-
est partial present. This is demonstrated by the second
drum beat in , which has all frequency com-
ponents below 250 Hz removed. The perceived pitch at

long times is unchanged, though there is a considerable
loss in depth or body of the resulting sound.

Modal frequencies for a typical kettle drum have al-
ready been listed in Table 15.7, which includes a set of
nearly harmonic modes indicated by asterisks achieved,
in part, by empirical design of the coupled membrane
and kettle air vibrations. To a first approximation, the
modal frequencies are determined by the volume of the
kettle rather than its shape. The smaller the enclosed
volume, the larger its effect on the lowest-order drum-
head modes. Nevertheless, there are distinct differences
in the sounds of timpani used by orchestras in Vienna
and those used elsewhere in Europe (Bertsch [15.205]).
Such differences can be attributed to the Viennese
preference for calfskin rather than mylar drum heads,
a small shape dependence affecting the coupling to the
internal air resonances, and a different tuning mecha-
nism. The modal frequencies of the Viennese timpani
measured by Bertsch were similar to those listed in Ta-
ble 15.7, with the (11), (21), (31) and (41) modes again
forming a quasi-harmonic set of partials, in the approx-
imate ratios 1:1.5:2.0:2.4:2.9. Rather surprisingly, the
relative frequencies of the lower two modes could be
interchanged with tuning.

Indian Tabla and Mrdanga
Another way of achieving a near harmonic set of res-
onances of a vibrating drumhead is to add mass to
the drum head and hence change the frequencies of
its normal modes of vibration. For the single- and
double-headed Indian tabla and mrdanga drums, this
is achieved by selectively loading the drum skin with
several coatings of a paste of starch, gum, iron oxide
and other materials – see Fletcher and Rossing [15.5,
Sect. 18.5]. The acoustics of the tabla was first in-
vestigated by Raman [15.206], who obtained Chladni
patterns for many of the lower-frequency modes of the
drum head. Rossing and Sykes [15.207] measured the
incremental changes in frequency of the loaded mem-
brane as each additional layer was added. A 100 layers
lowered the fundamental mode by about an octave.
The resulting five lowest modes were harmonically re-
lated and including several degenerate modes derived
from the smoothly transformed modes of the original
unloaded membrane. The results were very similar to
those obtained earlier by Raman. Investigations by Ra-
makrishna and Sondhi [15.208] and by De [15.209]
showed that, to achieve a quasi-harmonic set of low-
frequency modes, the areal density at the centre of such
drums should be approximately 10 times that of the
unloaded sections.
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Figure 15.117 illustrates the decaying waveform
and spectra of a well-tuned tabla drum (audio

) from 200 ms FFTs of the initial sound and
after 0.5 s. The spectra show three prominent partials
at 549, 826 and 1107 Hz, in the near-harmonic ratios
1:1.51:2.02, which results in a well-defined sense of
pitch. In contrast to the timpani, these partials dominate
the sound and determine the pitch from the very begin-
ning of the note. Note too the very wide spectrum of the
rapidly decaying initial transient.

Side and Snare Drum
The side or snare drum is the classical two-headed drum
of the modern symphony orchestra. It is usually played
with either very short percussive beats or as a roll, with
rapidly alternating notes from two alternating drum-
sticks. This results in a quasi-continuous noise source,
which can be played over a very wide range of in-
tensities, from very soft to very loud, to support, for
example, a Rossini crescendo. Because the side drum is
designed to produce short percussive sounds or a wide-
band source of noise, little effort is made to tune the
partial frequencies of the two drum heads.

Like the timpani and Indian drums, the vibrational
modes of the drumheads can be strongly perturbed in
frequency by the air coupling. When used as a snare
drum, the induced vibrations of the nonstriking head
can be sufficient for it to rattle against a number of
metal cables tightly stretched a few mm above the sur-
face of the nonstriking head. The resulting interruption
of the vibrations, on impact with the snares, leads to the
generation of additional high-frequency noise and the
sizzle effect of the sound excited. A not dissimilar ef-
fect is used on the Indian tambura, an Indian stringed
instrument investigated by Raman [15.210], which has
a bridge purposely designed to cause the strings to rattle
Fletcher and Rossing [15.5, Fig. 9.30].

Figure 15.118 shows the waveform and time-
averaged FFT of a side-drum roll (audio ).
The spectrum is lacking in spectral features other than
a modest peak in noise at around 100–200 Hz, associ-
ated with the vibration of the lower head against the
snares.

Although the exact placing of the vibrational modes
of the strike and snare heads are of little acoustic
importance, their coupling via the enclosed air illus-
trates the general properties of double-headed drums
of all types. The first four coupled normal modes are
shown in Fig. 15.119, which is based on data from Ross-
ing [15.211, Sect. 4.4]. For a freely supported drum,
momentum has to be conserved, so that normal modes

500 ms
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–60

–80

–100
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Fig. 15.117 Decaying waveform of a tabla drum with initial
FFT spectrum (upper trace) and after 0.5 s (lower) illus-
trating the weakly damped, near-harmonic, resonances of
the loaded drumhead

2 s

(dB)

(kHz)
0 8

0

–100
1 2 3 4 5 6 7

Fig. 15.118 Time-averaged FFT spectrum and waveform of
the sound of a snared side-drum roll of increasing intensity

with the two heads vibrating in the same phase will also
involve motion of the supporting shell of the drum, as
indicated by the arrows in Fig. 15.119.

As anticipated, the air coupling increases the separa-
tion of the (01) modes from 227 and 299 Hz to 182 and

Part
E

1
5
.4

http://extras.springer.com/2014/978-1-4939-0755-7/hb07-e15_RS407.wav
http://extras.springer.com/2014/978-1-4939-0755-7/hb07-e15_RS408.wav


682 Part E Music, Speech, Electroacoustics

Dipole Quadrupole

Monopole Dipole

(01) 227 182 Hz (11) 284 278 Hz

(01) 299 330 Hz (11) 331 341 Hz

Fig. 15.119 Coupled motions of the two drumheads of
a side drum, indicating the change in frequency of the
drumhead modes from air coupling within the drum
and the associated polar radiation patterns (after Zhao
et al. [15.212])

330 Hz, and the (11) modes from 284 and 331 Hz to 278
and 341 Hz. The perturbations in modal frequencies will
always be largest when the coupled modes have similar
frequencies. Such perturbations becomes progressively
weaker at higher frequencies, partly because the cou-
pling from the enclosed air modes becomes weaker and
partly because the frequencies of the two drum-head
modes having the same symmetry become more widely
separated. The higher modal frequencies are therefore
little different from those of the individual drum heads
in isolation.

Figure 15.119 also illustrates the anticipated po-
lar radiation patterns for the normal modes measured
by Zhao [15.212] and reproduced in Rossing [15.202,
Figs. 4.7 and 4.8]. The coupled (10) normal modes act
as a monopole radiation source, when the heads move in
opposite directions, and a dipole source, when vibrating
in anti-phase. In contrast, the (11) modes with heads vi-
brating in phase act as a quadrupole source, and a dipole
source, when vibrating in anti-phase.

Although any induced motion of the relatively
heavy supporting structure will not significantly affect
the frequencies of the normal modes, it can result in
appreciable additional damping. As a consequence, the
sound of a side drum can sound very different depend-
ing on how it is supported – freely suspended on rubber
bands or rigidly supported by a heavy stand (Ross-

Table 15.8 Modal frequencies in Hz of the batter head of
a 82 cm bass drum (after Fletcher and Rossing [15.5])

Mode Batter head with carry
head at lower tension

Batter head with heads
at same tension (Hz)

(01) 39 44, 104
split normal modes

(11) 80 76, 82
split normal modes

(21) 121 120

(31) 162 160

(41) 204 198

(51) 248 240

ing [15.202, Sect. 4.4]). Rossing has also made detailed
vibrational and holographic studies of the free drum
shell [15.202, Fig. 4.5]. As the induced motions are
only a fraction of a percent of those of the drumhead,
such vibrations will not radiate a very large amount of
sound. Nevertheless, they may play an important role in
defining the initial sound.

Bass Drum
The bass drum is large with a typical diameter of
80–100 cm. It can produce a peak sound output of
20 W, the largest of any orchestral instrument. Single-
headed drums are used when a well-defined sense
of pitch is required, but double-headed drums sound
louder because they act as monopole rather than
dipole sources. Modern bass-drum heads generally use
0.25 mm-thick mylar, though calfskin is also used.

The batter or beating drum head is normally tuned
to about a fourth above the carry or resonating head
(Fletcher and Rossing [15.5, Sect. 18.2]). The change
in modal frequencies induced by the enclosed air is
illustrated in Table 15.8 (Fletcher and Rossing [15.5,
Table 18.5]). Note the strong splitting of the lowest
frequency (01) and (11) normal modes, when the two
heads are tuned to the same tension. In this example, the
frequencies of the first five modes are almost harmonic,
giving a sense of pitch to the sound (audio
illustrates the rather realistic synthesised sound of the
first six modes of the batter head tuned to the carry
head with equal amplitude and decay times). Drums
with heads tuned to the same pitch have a distinctive
timbre.

15.4.2 Bars

This section is devoted to percussion instruments based
on the vibration of wooden and metallic bars, both
in isolation and in combination with resonating air

Part
E

1
5
.4

http://extras.springer.com/2014/978-1-4939-0755-7/hb07-e15_RS409.wav


Musical Acoustics 15.4 Percussion Instruments 683

columns. Such instruments are referred to as idio-
phones – bars, plates and other structures that vibrate
and produce sound without having to be tensioned,
unlike the skins of a drum (membranophones). Repre-
sentative instruments considered in this section include
the glockenspiel, celeste, xylophone, marimbas, vibra-
phone and triangle.

The vibrations of thick and thin plates have al-
ready been considered in the context of the vibrational
modes of the wooden plates of stringed instruments
(Sect. 15.2.6). The most important acoustic modes of
a rectangular plate are the torsional (twisting) and flexu-
ral (bending) modes, both of which involve acoustically
radiating displacements perpendicular the surface of the
plate.

The torsional vibrations of a bar are discussed by
Fletcher and Rossing [15.5, Sect. 2.20]. For a bar
of length L , the frequency of the twisting modes is
given by fn = ncθ/2L , where cθ is the dispersion-
less velocity of torsional waves. For a rectangular
bar with width w significantly larger than its thick-
ness h, by cθ ≈ 2t/w

√
E/2ρ(1+ν), where E is the

Young’s modulus and ν the Poisson ratio. For a bar
with circular, cross-section, like the sides of a triangle,
cθ = √

E/2ρ(1+ν).
Musically, the most important modes of a thin bar

are the flexural modes involving a displacement z per-
pendicular to their length, which for a rectangular bar
satisfies the fourth-order wave equation

E

12(1−ν2)
h2 ∂4z

∂x4
+ρ

∂2z

∂t2
= 0 , (15.149)

with standing-wave solutions of the general form

z(x, t) = (A sin kx + B cos kx

+C sinh kx + D cosh kx)eiωt , (15.150)

where

ω =
√

E

12ρ(1−ν2)
hk2 . (15.151)

As discussed in the earlier section on the vibrational
modes of soundboards and the plates of a violin or gui-
tar, the sinh and cosh functions decay away from the
ends of the bar or from any perturbation in the geometry,
such as local thinning or added mass, over a distance

k−1 ≈
(

E

12ρ
(
1−ν2

)
)1/4 √

h

ω
.

Well away from the ends of a bar, the standing-wave
solutions at high frequencies are therefore dominated
by the sinusoidal wave components.

1 : 2.76 : 5.40

1 : 3.9 : 9.23

1 : 3 : 6

1 : 4 : 8

1 : 4 : 9

Fig. 15.120 Ratio of the frequencies of the first three par-
tials of a simple rectangular bar for three selectively
thinned xylophone bars and a typical marimba bar (after
Fletcher and Rossing [15.5])

The lowest flexural modes of a freely supported
thin rectangular bar are inharmonic, with frequencies
in the ratios 1 : 2.76 : 5.40 : 8.93. However, by selec-
tively thinning the central section, the frequency of
the lowest mode can be lowered, to bring the first
four harmonics more closely into a harmonic ratio,
as illustrated schematically for a number of longitudi-
nal cross-sections in Fig. 15.120, which also includes
the measured frequencies of a more-complex-shaped
marimba bar (Fletcher and Rossing [15.5, Figs. 19.2
and 19.7]).

Pitch Perception
The audio contrasts the synthesised sounds
of the first four modes of a simple rectangular bar, fol-
lowed by a note having the same fundamental but with
partials in the ratio 1 : 3 : 6, while the final note has the
inharmonic (1 : 8.96) fourth partial of the rectangular
bar added. Despite the inharmonicity of the partials, the
synthesised sound of a rectangular bar has a surprisingly
well-defined sense of pitch. The main effect of replac-
ing the second and third partials with partials in the ratio
1:3:6 is to raise the perceived pitch by around a tone,
even though the first partial is unchanged at 400 Hz.
This again emphasises that the perceived pitch is deter-
mined by a weighted average of the partials present and
not by the fundamental tone alone. Adding the fourth
inharmonic partial gives an increased edge or metallic
characteristic to the perceived sound, without changing
the perceived pitch.

The metal or wooden bars of tuned percussion in-
struments are usually suspended on light threads or rest
on soft pads at the nodal positions of their fundamen-
tal mode, which reduces the damping to a minimum.
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The resulting 60 dB decay time for an aluminium vi-
braphone bar can be as long as 40 s (Rossing [15.202,
Sect. 7.3]) compared with a few seconds for the lower-
frequency notes on the wooden bars of a marimba
(Rossing [15.202, Sect. 6.4]). The damping of vibrat-
ing bars is therefore highly material dependent and is
largely determined by internal damping losses rather
than radiation. This accounts for the very different
sounds of wooden and metal bars on instruments like
the glockenspiel and xylophone.

Glockenspiel and Celeste
The simplest of all idiophones are those instruments
based on the vibrations of freely supported thin rectan-
gular plates. Such instruments include the glockenspiel
played with a variety of hard and soft round-headed
hammers and the celeste played with strikers operated
from a keyboard, with a sustaining pedal to control the
damping. The playing range of the glockenspiel is typ-
ically two and a half octaves from G5 to C8, while
the celeste has a range of 4–5 octaves, with a separate
box-resonator used for each note.

Both instruments produce a bright, high-pitched,
bell-like, sparkling sound, as in the Dance of the Sugar
Plum Fairy in Tchaikovsky’s Nutcracker Suite. No at-
tempt is made to adjust the thickness of the plates to
achieve a more nearly harmonic set of modes.

Transverse

a

b

c

d

Torsional

f1 = 1.00

f2 = 2.71

fa = 3.57

f3 = 5.15

fb = 7.07

f4 = 8.43

fc = 10.61

f5 = 12.21

fd = 13.95

1

2

3

4

5

Fig. 15.121 Measured flexural and torsional modes of
a glockenspiel bar (after Fletcher and Rossing [15.5])

Figure 15.121 illustrates the lowest order flexural
and torsional modes and measured ratios of frequencies
for a C6 glockenspiel bar (Fletcher and Rossing [15.5,
Fig. 19.1]). A typical wave-envelope and spectrum of
a glockenspiel note is shown in Fig. 15.122. FFT spectra
are shown for 200 ms sections from the initial transient
and after 200 ms. There are two strongly contributing
weakly damped partials at 1045 Hz and 2840 Hz (in
the ratio 1:2.72), which can be identified as the first
two flexural modes of the bar. The lower of the two
long sounding partials gives the sense of pitch, while
the strong inharmonic upper partial gives the note its
glockenspiel character. Audio compares the
recorded glockenspiel note with synthesised tones at
1045 and 2840 Hz, first played separately then together.
In this case, the inharmonicity of the strongly sounded
partials plays a distinctive role in defining the character
of the sound. The spectrum is typical of all the notes on
a glockenspiel, which demonstrates that only a few of

(dB)

(kHz)
0 5

0

–100
1 2 3 4

0.34 s

Fig. 15.122 The waveform envelope and FFT spectra of
the prompt sound (upper) and the sound after ≈ 0.2 s
(lower) of a typical glockenspiel note illustrating the long-
time dominance of a few slowly decaying, inharmonic
partials
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the modes shown in Fig. 15.121 contribute significantly
to the perceived sound.

Xylophone, Marimba and Vibraphone
We now consider a number of acoustically related idio-
phones, with bars that are selectively thinned to produce
a more nearly harmonic set of resonances and well-
defined sense of pitch.

The modern xylophone has a playing range of typ-
ically 3 to 4 octaves and uses wooden bars, which are
undercut on their back surface to improve the harmonic-
ity of the lower frequency modes (Fig. 15.120). Each
bar has an acoustic resonator immediately below it,
consisting of a cylindrical tube, which is closed at the
far end. Any of the flexural and torsional modes can
contribute to the initial sound, when the bar is struck
by a hammer; however, most modes die away rather

(dB)

(kHz)
0 10

0

–100
2 4 6 8

60 ms

Fig. 15.123 The initial 60 ms of a xylophone waveform
showing the rapid decay of high-frequency components
and FFT spectra at the start of the note (upper trace) and
after 0.2 s (lower trace), highlighting the persistence of the
strong low-frequency air resonances excited

quickly so that at longer times the sound is dominated
by the resonances of the coupled pipe resonator.

Figure 15.123 shows the initial part of the waveform
and spectrum of a typical xylophone note ( ),
illustrating the initial large amplitudes and rapid de-
cay of the higher frequency bar modes excited and the
strongly excited but slowly decaying resonances of the
first two modes of the air resonator. All modes con-
tribute to the initial sound but the sound at longer times
is dominated by the lowest-frequency bar modes and
resonantly tuned air resonators.

The marimba is closely related to the xylophone, but
differs largely in its playing range of typically two to
four and a half octaves from A2 (110 Hz) to C7 (2093),
though some instruments play down to C2 (65 Hz). In
contrast to xylophone bars, which are undercut near
their centre to raise the frequency of their second par-
tial from 2.71 to 3.0 above the fundamental, marimba
bars are often thinned still further to raise the frequency
of the second partial to four times the fundamental fre-
quency (Fig. 15.119).

Marimbas produce a rather mellow sound and are
usually played with much softer sticks than tradition-
ally used for the xylophone. Although the marimba is
nowadays used mostly as a solo percussion instrument,
in the 1930s ensembles with as many as 100 marimbas
were played together. In many ways, such ensembles
were the forerunners of today’s Caribbean steelbands,
to be described later in this section.

The vibraphone is similar to the marimba, but uses
longer-sounding aluminium rather than wooden bars
and typically plays over a range of three octaves from
F3 to F6. Like the marimba, the bar thickness is varied
to give a second partial two octaves above the funda-
mental. They are usually played with soft yarn-covered
mallets, which produce a soft, mellow tone. In addition,
the vibraphone incorporates electrically driven rotating
discs at the top of each tuned air resonator, which pe-
riodically changes the coupling. This results in a strong
amplitude-modulated vibrato effect. The wave envelope
of audio is shown in Fig. 15.124 for a suc-
cession of notes played on the vibraphone with vibrato,
which are then allowed to decay freely. The vibrato rate
can be adjusted by changing the speed of the electric
motor. Note the very long decay of the sound, which
can be controlled by a pedal-operated damper.

Triangle
The triangle is a very ancient musical instrument
formed from a cylindrical metal bar bent into the
shape of a triangle, with typical straight arm lengths
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10 ms

Strikes Free decay

Fig. 15.124 Envelope of a succession of notes on the vi-
braphone, which freely decay with modulated coupling to
tuned air resonators to produce an amplitude modulated
vibrato effect

of 15–25 cm. They are usually struck with a similar-
diameter metal rod. Although the instrument is small
and therefore a very inefficient acoustic radiator, it pro-
duces a characteristic high-frequency ping or repetitive
high-pitched rattle, which is easily heard over the sound
of a large symphony orchestra (audio ). The
quality of the sound can be varied by beating at different
positions along the straight arms. The triangle is usu-
ally supported be a thread around the top bend of the
hanging instrument.

The flexural modes of a freely suspended bar of cir-
cular cross section are fn ≈ (a/2)

√
E/ρ(2n +1)2π/8L2,

with frequencies in the ratios 32:52:72:92:112:132 (see
Sect. 15.2.4). Transverse flexural vibrations can be ex-
cited perpendicular or parallel to the plane of the
instrument. For vibrations perpendicular to the plane,
the bends are only small perturbations. Transverse
modes in this polarisation are therefore almost identical
to those of the straight bar from which the triangle are
bent (Rossing [15.213, Sect. 7.6]). However, for flexu-
ral vibrations in the plane, there is a major discontinuity
in impedance at each bend, because the transverse vi-
brations within one arm couple strongly to longitudinal
vibrations in the adjacent arms. Hence each arm will
support its own vibrational modes, which will be cou-
pled to form sets of normal-mode triplets, since each
arm is of similar length.

Figure 15.125 illustrates the envelope and 50 ms
FFTs of the initial waveform and after 1 s, illustrating
the very well-defined and only weakly attenuated high-

(dB)

(kHz)
0 10

0

–100

2.5 s

Fig. 15.125 The decaying waveform and FFT spectra at the
start (upper trace) and after 1 s (lower trace) of a struck
triangle note

frequency modes of the triangle. Note the wide-band
spectrum at the start of the note from the initial impact
with the metal beater.

Chimes and Tubular Bells
We include orchestral chimes and bells in this sec-
tion because their acoustically important vibrations
are flexural modes, just like those of a xylophone or
triangle. The radius of gyration of a thin-walled cylin-
drical tube of radius a is ≈ a/

√
2. The frequency

of the lowest flexural modes is then be given by
fn ≈ a

√
E/2ρ(2n +1)2π/8L2.

Orchestral chimes are generally fabricated from
lengths of 32–38 mm-diameter thin-walled tubing, with
the striking end often plugged by a solid mass of brass
with an overhanging lip, which provides a convenient
striking point.

Fletcher and Rossing [15.5, Sect. 19.8] note that the
perceived pitch of tubular bells is determined by the
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frequencies of the higher modes, excited with frequen-
cies proportional to 92, 112, and 132, in the approximate
ratios 2 : 3 : 4. The pitch should therefore sound an oc-
tave below the lowest of these. Readers can make there
own judgement from audio , which compares
the rather realistic sound of a tubular bell synthesised
from the first six equal amplitude modes of an ideal
bar sounded together, followed by the 92, 112, and 132

modes in combination, and then by a pure tone an oc-
tave below the 92 partial. Such comparisons highlight
the problem of subjective pitch perception in any sound
involving a combination of inharmonic partials.

15.4.3 Plates

Flexural Vibrations
This section describes the acoustics of plates, cym-
bals and gongs, which involve the two-dimensional
flexural vibrations of thin plates described by the
two-dimensional version of (15.149). Unlike stringed
instruments, we can usually assume that the plates of
percussion instruments are isotropic. Well away from
any edges or other perturbing effects such as slots or
added masses, the standing-wave solutions at high fre-
quencies will be simple sinusoids. However, close to
the free edges, and across the whole plate at low fre-
quencies, contributions from the exponentially decaying
solutions will be equally important over a distance
≈ (E/12ρ(1−ν2))1/4(h/ω)1/2. The nodes of the sinu-
soidal wave contributions will be displaced a distance
≈ 1/4λ from the edges. Hence, the higher frequency
modes of a freely supported rectangular plate of length
a, width b and thickness h will be given, to a first ap-
proximation, by

ωmn ≈ h

(
E

12ρ
(
1−ν2

)
)1/4

π2

×

[(
m +1/2

a

)2

+
(

n +1/2

b

)2
]

.

(15.152)

A musical instrument based on the free vibrations of
a thin rectangular metal plate is the thunder plate, which
when shaken excites a very wide range of closely spaced
modes, which can mimic the sharp clap followed by the
rolling sound of thunder in the clouds.

Before the age of digital sound processing, such
plates were often used in radio and recording companies
to add artificial reverberation to the recorded sound. The
plate was suspended in a chamber along with a loud-
speaker and pick-up microphone. The sound to which

reverberation was to be added was played through the
loudspeaker, which excited the weakly damped vibra-
tional modes of the plate, which were then re-recorded
using the microphone to give the added reverberant
sound. As described earlier (Sect. 15.2.4), the density
of vibrational modes of a flat plate of area A and thick-
ness h is given by 1.75A/cLh. This can be very high
for a large-area thin metal sheet, giving a reverberant
response with a fairly uniform frequency response.

Most percussion instruments which involve the flex-
ural vibrations of thin sheets are axially symmetric, such
as cymbals, gongs of many forms, and the vibrating
plate regions of steeldrums or pans used in Caribbean
steelbands. Such instruments have many interesting
acoustical properties, many derived from highly nonlin-
ear effects when the instrument is instrument is struck
strongly.

The displacements of the flexural modes of an axi-
ally symmetric thin plate in polar coordinates are given
by

z(r, φ, t) = [AJm (kmnr)+ BIm (kmnr)]

× [C cos (mφ)+ D sin(mφ)] eiωmnt ,

(15.153)

where Jm(kr) and Im(kr) are ordinary and hyperbolic
Bessel functions, the equivalent of the sinusoidally
varying and exponentially damped sinh and cosh func-
tions used to describe flexural waves in a rectangular
geometry. The hyperbolic Bessel functions are impor-
tant near the edges of a plate or at any perturbation, but
decay over a length scale of ≈ k−1

mn . The values of kmn
are determined from the boundary conditions, in just the
same way as considered earlier for rectangular plates.

The first six vibrational modes for circular plates
with free, hinged and clamped outside edges are shown
in Fig. 15.126, with frequencies expressed as a ratio rel-
ative to that of the fundamental mode (Fletcher and
Rossing [15.5, Sect. 3.6]). In each case, for large val-
ues of m and n, the frequency is given by the empirical
Chladni’s Law (1802),

ωmn ≈
√

E

12ρ
(
1−σ2

) π2h

4a2
(m +2n)2 , (15.154)

justified much later by Rayleigh [15.3, Vol. 1, Chap. 10].
For arched plates, Rossing [15.214] showed that the fre-
quencies are more closely proportional to (m +bn)p,
where p is somewhat less than 2 and b is in the the range
2–4.

All the axially symmetric modes involving nodal
diameters are doubly degenerate, with a complementary
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(2,0) (0,1) (3,0) (1,1) (4,0) (5,0)

1 1.73 2.33 3.91 4.11 6.30

(0,1) (1,1) (2,1) (0,2) (1,2) (2,2)

1 2.8 5.15 5.98 9.75 14.09

(01) (1,1) (2,1) (0,2) (3,1) (1,2)

1 2.08 3.41 3.89 5.00 5.95

Free

Hinged

Clamped

cLh
a2

f01= 0.229

cLh
a2

f01= 0.469

cLh
a2

f20= 0.241

Fig. 15.126 The vibrational modes of circular plates with
free, hinged and clamped outer edges, with the lowest
frequencies and ratio of frequencies of higher modes in-
dicated

solution with nodal diameters bisecting those drawn
in Fig. 15.126. Any perturbation of the structure from
cylindrical symmetry will split the degeneracy of such
modes. Modes with a nodal diameter passing through
the point at which the plate is struck will not be excited.

Instruments like the cymbal are slightly curved over
their major surfaces but with a sudden break to a more
strongly arched central section, to which the leather
holding straps or support stand are attached. The outer
edges can therefore be treated as free surfaces with
the transition to the central cupped region providing
an additional internal boundary condition, which will
be intermediate between clamped and hinged. In con-
trast, gongs tend to have a relatively flat surface but
with their edges turned though a right angle to form
a cylindrical outer rim. The rim will add mass to the
modes involving a significant radial displacement at the
edge, but will also increase the rigidity of any mode
having an azimuthal dependence. Thus, although the
modes of an ideal circular plate provide a guide to
modal frequencies and waveforms, we would expect
significant deviations in modal frequencies for real per-
cussion instruments. Any sudden change in plate profile
on a length scale smaller than an acoustic wavelength
will involve a strong coupling between the transverse
flexural and longitudinal waves resulting in reflections
from the discontinuity in acoustic impedance. This is
why, for example, the indented region on the surface of
a steeldrum pan can support localised standing waves on
the indented regions. Indented areas of different sizes

can then be used to produce a wide range of different
notes on a single drum head with relatively little leakage
in vibrations between them.

Nonlinear Effects
Figure 15.127 illustrates the cross section of some typ-
ical axially symmetric cymbals, gongs and a steelpan.
Nonlinear effects in such instruments can be important
when excited at large amplitudes. Such effects are par-
ticularly marked for gongs with relatively thin plates.
For Chinese opera gongs, the nonlinearity can result
in dramatic upward or downward changes in the pitch
of the sound after striking. In addition, nonlinearity
results in mode conversion, with the high-frequency
content of cymbal and large gong sounds increasing
with time, giving a characteristic shimmer to the sound
quality.

The shape dependence of the nonlinearity arises
from the arching of the plate. For the lowest mode
of a flat plate, the potential energy initially increases
quadratically with displacement, though the energy in-
creases more rapidly at large-amplitude excursions from
stretching, as indicated schematically in Fig. 15.128a.
Although the energy of an arched plate initially also in-
creases quadratically with distance about its displaced
equilibrium position, the energy will first increase then
decrease when the plate is pushed through the central
plane, (Fig. 15.128b). If the plate were to be pushed
downwards with increasing force, it would suddenly
spring to a new equilibrium position displaced about
the central plane by the same initial displacement, but in
the opposite direction. In combination with a Helmholtz
radiator, this is indeed how some insects such as ci-
cadas generate such strong acoustic signals – as high as
1 mW at 3 kHz (see Chap. 19 by Neville Fletcher). The
nonlinear bistable flexing of a belled-out plate can be

Cymbal
Lowering pitch

Rising pitch

Large gong or tam-tam

Steel pan Chinese opera gongs

Fig. 15.127 Schematic cross sections of axially symmetric
plate instruments and a steelpan, with arrows indicating the
principal areas producing sound
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Fig. 15.128a,b Potential energy and restoring force of
(a) a clamped flat and (b) arched circular plate as a function
of displacement from the central plane

disastrous, turning a cheap pair of thin cymbals inside
out, when crashed together too strongly.

The central peak in potential energy of an arched
plate, like the gently domed Chinese gong illustrated in
Fig. 15.127, therefore leads to a reduced restoring force
for large-amplitude vibrations and a lower pitch. In con-
trast, the restoring force of a flat plate, like the central
playing region of the upper of the two Chinese gongs,
increases with vibration amplitude. This arises from the
additional potential energy involved in stretching the
plate, in just the same way as we considered earlier for
the large-amplitude vibrations of a stretched string.

For a flat plate of thickness h, Fletcher [15.215]
has shown that the increase in frequency of the low-
est axisymmetric mode increases with the amplitude of
vibration a approximately as

ω ≈ ω0

[
1+0.16

(
a

h

)2
]

. (15.155)

The nonlinearity also generates additional components
at three times the frequency of any initial modes present
and at multiples of any new modes excited. In add-
ition it produces cross-modulation products when more
than one mode is present. For example, for modes with
frequencies fi and f2 initially present, the nonlinearity
will generate inter-modulation products at 2 f1 ± f2 and
2 f2 ± f1.

Grossmann et al. [15.216] and Fletcher [15.215]
have considered the vibrations of a spherical-cap shell

ω/ω0

a/H0

1.4

1.2

1.0

0.8

0.6

0.4
1 2

h/H 2.0
1.2

1.0
0.8

0.6

0.4

0.2

0.2

Fig. 15.129 Vibration amplitude a dependence of fre-
quency of lowest axisymmetric mode of a spherical cap
of dome height H as a function of thickness h to H ratio

of height H and thickness h. Interestingly, the change in
frequency of the asymmetric vibrations about the equi-
librium point depends only on the ratio of the amplitude
to the arching height, a/H , as illustrated in Fig. 15.129.
When the height of the dome is much less than the
thickness, the frequency increases approximately as a2,
as expected from the induced increase in tension with
amplitude. However, when the arching becomes compa-
rable with and greater than the thickness, the asymmetry
of the potential energy dominates the dynamics and re-
sults in an initial decrease in frequency, which increases
strongly with the ratio of arching height to thickness.
At very large amplitude, a � H , the frequency is dom-
inated by the increase in tension and therefore again
increases with amplitude like a flat plate. At large am-
plitudes, Legge and Fletcher [15.217] have shown that
changes in the curvature of the plate profile result in
a large transfer of energy to the higher-frequency plate
modes.

We now show how many of the above properties re-
late to the sounds of cymbals, gongs of various types
and steelpans.

Cymbals
Many types of cymbals are used in the classical sym-
phony orchestra, marching bands and jazz groups. They
are normally made of bronze and have a diameter of
20–70 cm. The low-frequency modes of a cymbal are
very similar to those of a flat circular plate and can
be described using the same (mn) mode nomencla-
ture (Fletcher and Rossing [15.5, Fig. 20.2]). However,
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small changes in curvature across a cymbal will results
in modes that are linear combinations of ideal circular-
plate modes.

Cymbals are usually played by striking with
a wooden stick or soft beater or a pair can be crashed
together, each method producing a distinctive sound.
They can even be played by bowing with a heavy
rosined bow against the outer rim. Rossing and Shep-
herd showed that the characteristic 60 dB decay time
of the excited modes of a large cymbal varies ap-
proximately inversly proportional with frequency, with
a typical decay time for the lowest (20) mode as long as
300 s (Fletcher and Rossing [15.5, Fig. 20.5])

Figure 15.130 shows the waveform envelope and
spectra of the initial sound of a cymbal crash and af-
ter 1 s. Audio illustrates a recorded cymbal
crash followed by the same sound played first through a
0–1 kHz and then a 1–10 kHz band-pass filter, illustrat-
ing the decay of the low- and high-frequency wide-band
noise.

When a cymbal is excited with a drumstick, waves
travel out from the excitation point with a dispersive
group velocity proportional to k, inversely proportional
to the dimensions of the initial flexural indention of the
surface made by the drumstick. The dispersive pulse
strikes and is reflected from the edges of the cymbal
and the transitional region to the central curved cup, so

(dB)

(kHz)
0 10

0

–20

–40

–60
1 2 3 4 5 6 7 8 9

3s 60 ms

0 s

1 s

Fig. 15.130 Wave envelope and spectrum at start and af-
ter 1 s of a cymbal clash illustrating wide-band noise at all
times

that eventually the energy will be dispersed across the
whole vibrating surface. This has been investigated us-
ing pulsed video holography by Schedin et al. [15.218].
On reflection there will also be considerable mixing of
modes. In addition, because the plates are rather thin
and are often hit extremely strongly, nonlinear effects
are important. On large cylindrical plates this results in
the continuous transfer of energy from strongly excited
low-frequency modes to higher modes. Many of the
nonlinear effects can be investigated in the laboratory
using sinusoidal excitation. Measurements by Legge and
Fletcher [15.217] have revealed a wide range of nonlin-
ear effects including the generation of harmonic, bifur-
cations and even chaotic behaviours at large intensities.

When a plate is struck by a beater, the acoustic
energy is distributed across a very wide spectrum of
closely spaced resonances of the plate. To distinguish
individual partials requires the sound to be sampled over
a time of at least ≈ 1/Δ f , where Δ f is the separation
of the modes at the frequencies of interest. However,
because the modes of a large cymbal are so closely
spaced, the times involved can be rather long. Unlike
the sound of pitched instruments such as the glocken-
spiel and xylophone, there are no particular resonances
of the cymbal that dominate the sound, which is charac-
terised instead by the sizzle produced by the very wide
spectrum of very closely spaced resonances almost in-
distinguishable from wide-band high-frequency noise.

Large Gongs and Tam-Tams
Gongs are also very ancient instruments, which have
a very characteristic sound when strongly struck by
a soft beater, notably as a prelude to classic films by
the Rank organisation. A typical tam-tam gong used in
a symphony is a metre or even larger in diameter. It is
made of bronze and, like cymbals, is sufficiently ductile
not to shatter when strongly hit. The damping is very
low, so the sound of large gongs can persist for very
long times.

When initially struck strongly by a soft beater,
the initial sound is largely associated with the lower-
frequency partials that are strongly excited. However,
on a time scale of a second or so, the sound can ap-
pear to grow in intensity, as nonlinear effects transfer
energy from lower- to higher-frequency modes (audio

). This is illustrated in Fig. 15.131 (Fletcher
and Rossing [15.5, Fig 20.8]), which shows the build up
and subsequent decay of acoustic energy in the higher-
frequency bands at considerable times after the initial
impact. The fluctuations in intensity within these bands
were taken as evidence for chaotic behaviour. How-
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0.4 s

162 (Hz)
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1000

2000
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Fig. 15.131 Buildup and decay in intensity of a struck tam-
tam sound in frequency bands centred on the indicated
frequencies (after Fletcher and Rossing [15.5])

ever, even in a linear system, interference between the
large number of very closely spaced inharmonic partials
would also result in apparently random fluctuations in
amplitude.

Chinese Opera Gongs
Chinese gongs provide the most dramatic illustration
of nonlinearity in percussion instruments, with upwards
or downwards pitch glides of several semitones over
a sizeable fraction of a second after being strongly
struck. The direction of the pitch glide depends on the
profile of the vibrating surface as previously described.

Figure 15.132 shows the decaying waveforms of the
sound of three Chinese gongs with a downward pitch
glide (audio ) played in succession. The ini-
tial spectrum of the third note played is followed by
spectra at 0.75 and 1.5 s after striking, illustrating the
transfer of energy to lower-frequency modes. The much
broader width of the initial spectrum reflects the de-
crease in lifetime of the initial modes struck resulting
from the nonlinear loss of energy to higher-frequency
modes. The two well-defined peaks between the two
major peaks are from the long-ringing principal partials
of the first two gongs.

(Hz)
200 500300 400

8 s

A B C

C

B
A

C

0
0.75 s
1.50 s

Fig. 15.132 The wave envelope of sounds from three
downward-sliding Chinese gongs followed by the spec-
trum of the third gong at the start, after 0.75 and 1.5 s
illustrating the nonlinear frequency shifts

Steelpans
Finally, in this section on percussion instruments based
on vibrating plates, we consider steelpans originating
from the Caribbean, which were initially fabricated by
indenting the top of oil cans left on the beaches by
the British navy after World War II. They have become
a immensely popular instrument in that part of the world
and are just as interesting from a musical acoustics
viewpoint (see Fletcher and Rossing [15.5, Sect. 20.7]
for further details).

Pitched notes on a given drum are produced by
hammered indentations of different sizes on the top
face of the drum. Different ranges of notes are pro-
duced by drums or pans of different sizes (e.g. lead
tenor, double tenor, alto, cello and bass). Typical in-
dented regions on a double-tenor steelpan are shown
in Fig. 15.133, adapted from drawings for a full set
of pans in Fletcher and Rossing [15.5, Fig. 20.17].
The various indented areas on the drum head can be
considered as an array of relatively weakly coupled
resonators. An individual indented area on an infi-
nite sheet would have very similar acoustic modes as
those of a hemispherical cap indented in an infinite
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E4
B4

B1

F4

A1

A4

C#4

G4

G5
Eb5

B5

F5

A5

C#5

C#6

Fig. 15.133 Typical indentation areas in a tenor steelpan
(after Fletcher and Rossing [15.5])

plate. The frequency of the modes would be deter-
mined by the size and arching of the indented areas.
The effective cap size would be defined by the rate
of change of the curvature of the plate and the asso-
ciated change in the acoustic impedance at the edge
of the indented region. However, all such regions on
a steelpan will be coupled together by the relatively
weak transfer of acoustic energy between them, to form
a set of coupled modes. Hitting one particular region
will therefore excite other regions, especially those that
have closely matching partials. The coupling between

(kHz)
0 21

0.28 s

0.1s

0 s

Fig. 15.134 Waveform and initial and time-delayed spectra
of the note C#4 on a steeldrum

such regions has been investigated holographically by
Rossing [15.202, Fig. 20.20].

Audio illustrates a succession of notes
played on a steeldrum. Figure 15.134 shows a typi-
cal decaying waveform with initial and time-delayed
spectra of a single note. A relatively large number of
well-defined modes can easily be identified. However,
the subjective absolute pitch of the note is not par-
ticularly well defined and there is a strong sense of
pitch circularity in the sound of an ascending scale
(Sect. 15.1.3 and audio ), sometimes making
it difficult to identify the octave to which a partic-
ular note should be attributed. Note the increase in
the amplitude of the second partial with time, which
could result from nonlinear effects in such thin-walled
structures, or possibly from interference beats between
degenerate modes split in frequency by the lack of axial
symmetry of the hand-beaten indentations.

15.4.4 Shells

Blocks and Bells
Finally, we consider the acoustics of three-dimensional
shell-like structures. This could include percussion in-
struments such as the wooden-block and hollow gourd
instruments like the maracas. However, the physics
of such instruments is essentially the same as that of
the soundbox of stringed instruments and involves lit-
tle of additional acoustic interest. In this section, we
will therefore concentrate on the acoustics of bell-like
structures, which are usually axially symmetric struc-
tures, closed at one end, and of variable thickness and
radius along their length. We will also consider nonax-
isymmetric bells with a quasi-elliptical cross section,
which produce two different pitched notes, depending
on where the bell is struck. All such structures have
a rich spectrum of modes, which are generally tuned
to give long-ringing notes with a well-defined sense of
pitch. The bronze used in their construction is typically
an alloy of 80% copper and 20% tin and has to be suf-
ficiently ductile not to crack under the impact of the
beater or clapper. Metallurgical treatment is required to
produce a grain structure producing little damping at
acoustic frequencies.

Some of the oldest bells are to be found in China.
Such bells are supreme examples of the art of bronze
casting dating to the fifth century BC. Bells in church
towers have traditionally marked the passage of time,
while peals of bells with internal swinging clappers con-
tinue to summon the faithful to worship. In more recent
times, carillons with up to 77 tuned bells have been

Part
E

1
5
.4

http://extras.springer.com/2014/978-1-4939-0755-7/hb07-e15_RS419.wav
http://extras.springer.com/2014/978-1-4939-0755-7/hb07-e15_RS115.wav


Musical Acoustics 15.4 Percussion Instruments 693

developed to play keyboard music from the top of spe-
cially constructed bell towers, notably in the centres of
Dutch and American towns and college campuses. Bells
come in all sorts of shapes and sizes ranging from small
hand bells to the giant church bells on display inside
the Kremlin walls. However, the acoustics of all bells is
essentially the same, so no attempt will be made to pro-
vide a comprehensive coverage of every type (for such
information, see Fletcher and Rossing [15.5, Chap. 21]
and Rossing [15.202]).

Bell modes can be related to the longitudinal, tor-
sional and flexural modes of a cylindrical disc that is
axially deformed into a bell-shaped domed structure.
Although the modal frequencies will clearly be strongly
perturbed by such a transformation, the modal shapes
will remain unchanged, as illustrated in Fig. 15.135,
where m represents the number of radial nodal lines and
n the number of nodal circles between the (fixed) centre
and free edge.

The first example in Fig. 15.135 illustrates the rim
displacements of the (0, n) extensional modes. Al-
though such breathing modes would be efficient sound
radiators the energy involved in stretching the surfaces
of the bell leads to very high modal frequencies, so that
such modes are not strongly excited. Likewise, the tor-
sional (0, n)–modes involve no motion perpendicular
to the bell surfaces, and therefore generate a negligi-
ble amount of sound. With the bell rigidly supported at
its top, the m = 1 swinging modes again involve large
elastic strains and cannot be strongly excited. The first
modes to produce a significant amount of sound are
therefore the m = 2 and above flexural modes, which
involve the transverse motions of the outer edges with
negligible extension in circumferential length for small
amplitude vibrations. When the wavelength of the flex-
ural waves is much smaller than the overall curvature,
the vibrational modes will be closely related to the flex-

(n, m) bell modes

0 0 1 2 3m

0 1 2 3n

Extensional Torsional Radially flexural

Fig. 15.135 Nomenclature of the (m, n) modes of a bell
illustrating displacements of rim for given m-values

ural waves of a circular disc, with frequencies satisfying
Chladni’s generalised empirical law, fmn ≈ c(m +2n)p,
as confirmed by Perrin et al. [15.219].

The flexural modes involve radial displacements
proportional to cos(mφ). Continuity requires that there
must also be a tangential displacement, such that u +
∂v/∂φ = 0, where u and v are the radial and tangen-
tial velocities respectively. Coupling to the tangential
motion explains why it is possible to feed energy into
a vibrating wine glass or the individual glass resonators
of a glass harmonica (Rossing [15.202, Chap. 14]), by
rubbing a wetted finger around the rim. The excitation is
very similar to the slip–stick mechanism used to excite
the bowed string (Sect. 15.2.4).

Figure 15.136 illustrates a set of holographic meas-
urements by Rossing [15.202, Fig. 12.4], which is
typical of most bell shapes. The (m, 1) and (m, 2)
modes can immediatly be related to the (m, n) modes
of a cupped disc. However, there is a distinct change
in character for n > 0, with an additional node appear-
ing close to the rim – referred to as a (m, 1#) mode.
Some insight is provided by the finite element solu-
tions for a typical large English church bell illustrated
in Fig. 15.137 [15.220]. The three modes illustrated are
very similar to the (3, 0), (3, 1) and (3, 2) modes ex-
pected from the simple cupped disc model, except for
the lowest frequency (3, 0) mode, in which the top sur-
faces of the bell move in antiphase with the rim, to

2,1 3,1 4,1 5,1 6,1

2,0 3,0 4,1# 5,1# 6,1#

2,2 3,2 4,2 5,2 6,2

Fig. 15.136 Holographic interferograms and nomencla-
ture for vibrational modes of a hand bell (after Ross-
ing [15.202])

Part
E

1
5
.4



694 Part E Music, Speech, Electroacoustics

(3,1) (3,1#) (3,2)

Fig. 15.137 Finite-element solutions for the lowest-order
m = 3 modes of an English church bell (after Perrin
et al. [15.221]) illustrating the (3,1), (3,1#) and (3,2) modes

give a nodal line about half-way along the length. Sim-
ilarly, the anticipated (4, 0), (5, 0) and (6, 0) modes of
the handbell investigated by Rossing [15.202] acquire
an additional nodal line close to the end rim denoted as
(4, 1#), (5, 1#) and (6, #) modes. Such features can gen-
erally only be accounted for by detailed computational
analysis.

Bell Tuning
Figure 15.138 shows the frequencies and associated
modes of a well-tuned traditional church bell (Ross-
ing and Perrin [15.222]), ordered into groups based on
mode shapes, which enable correlations to be made be-
tween bells of different shapes and sizes.

Group I

Group 0

Group II

Group III

End view

Tierce Nominal (Twelfth) (Upper octave)
(2,0) 0.5

Prime

Quint (Major third)1.0

0.30

0.19
0.54

0.19

0.54

(3,1) 1.2 (4,1) 2.0 (5,1) 3.0 (6,1) 4.2

(3,1#) 1.5 (4,1#) 2.5 (5,1#) 3.7 (6,1#) 5.0

(3,2) 2.6 (4,2) 3.3 (5,2) 4.5 (6,2) 5.9(2,2) 2.7

Fig. 15.138 Measured frequencies for a typical D5 church bell, in-
dicating the relative frequencies of the observed mode, with the
traditional names associated with such modes indicated (after Ross-
ing and Perrin [15.222])

Fine-quality bells are carefully tuned by the bell
maker, so that the lowest modes have harmonically
related frequencies, thereby achieving a well-defined
sense of pitch. This is achieved by selective thinning
of the thickness of the bell on a very large lathe after
its initial casting. In an ideally tuned bell, the principal
modes are designated as the hum (2,0) mode, an octave
below the prime or fundamental (2,1#) mode. A minor
third above the prime (ratio 5:4) is the tierce (3,1) mode,
a perfect fifth above that (ratio 3:2) is the quint or fifth
(3,1#) mode, and an octave above is the nominal (4,1)
mode. Fletcher and Rossing [15.5, Table 21.1] com-
pare these and higher modes with measured values for
a particular bell.

The art of tuning the partials of bells to achieve
a well-sounding note was initially developed in the sev-
enteenth century in the low countries (what is now
Holland and the northern parts of Germany and France).
Many fine bells from this period by François and
Pieter Hemony are still in use in carillons today (Ross-
ing [15.202]). However, the art of bell tuning then ap-
pears to have been lost until the end of the 19th century,
when it was rediscovered by Canon Arthur Simpson
in England, following Lord Rayleigh’s pioneering re-
search on the sound of bells [15.3, Vol. 1, Sect. 235].

Acoustic Radiation
The strongest-sounding partials of most bells are the
group I (m,1) modes, with a nodal circle approxi-
mately halfway up the bell (Fletcher and Rossing [15.5,
Sect. 21.11]). Such modes have 2m antinodal areas
providing spatially alternating sound sources in anti-
phase. The radiation efficiency of such modes increases
rapidly with size of bell and frequency. If the acoustic
wavelength is much larger than the separation of such
antinodes, the sound from such sources will tend to can-
cel out. However, above a crossover frequency, such
that the velocity of sound is equal to that of the flex-
ural waves on the surface of the bell, vflex = √

1.8cLh f ,
the spacing between the antinodes will exceed the wave-
length in air and the modes will radiate more efficiently.
For large church bells, this condition is satisfied for
almost all but the very lowest partials, so almost all par-
tials radiate sound rather efficiently. In contrast, hand
bells with rather thin walls are significantly less effi-
cient. There is also a small intensity of sound radiated
axially at double the modal frequencies, from the in-
duced fluctuations in the volume of air enclosed within
the bell.

When a bell is struck, usually by a cast or wrought-
iron, ball-shaped, clapper, the first sound heard, the
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strike note, contains contributions from the very large
range of largely inharmonic partials of the bell. Never-
theless the listener can usually identify a pitch to the
initial note, determined by the prominent partials ex-
cited. However, it is not always easy to attribute the
pitch of a note to a particular octave, which is a com-
mon feature of many struck percussion instruments (e.g.
notes on a xylophone, steeldrum and even timpani). The
pitch of the strike note appears to be determined prin-
cipally by the excited partials with frequencies in the
ratios 2:3:4. The ear attributes the pitch to be that of the
missing fundamental an octave below the lowest of the
partials principally excited, which does not necessar-
ily correspond to the pitch of the lowest partial excited,
unless the bell is well tuned.

The majority of the higher partials decay rather
quickly, with the long-term sound dominated by the
hum note. For a 70 cm church bell, Perrin et al. [15.219]
measured T60 decay times of 52 s for the (2,0) hum
mode, 16 s for the (2.1#) and (3,1) prime and minor third
modes, 6 s for the (4,1) octave and 3 s for the (4,1#) up-
per major third, with progressively shorter decay times
for the higher modes. Audio illustrates the
synthesised sound of the above harmonic modes excited
with equal amplitudes. This is followed by a synthe-
sised bell with a major rather than a minor third partial.
Such a bell has recently been realised (1999) based
on FEA studies at the Technical University in Eind-
hoven in collaboration with the Eijsbouts Bell foundry.
It produces a less mournful sound when played in the
major scale music in a carillon. In both cases the syn-
thesised sound reproduces the gentle sound of a bell
rather well, though it lacks the initial clang that results
from the higher-frequency inharmonic modes of a real
bell.

As an example of the waveform and spectrum of
a large bell, in Fig. 15.139 and audio signal ,
we illustrate the sound and rich spectrum of partials
of one of the most famous large bells in the world,
Big Ben, hung high above the Houses of Parliament
in London. This bell is broadcast each day following
the Westminster Chimes, marking the hours and end of
broadcasting on the BBC each night for UK listeners.

Non-Axial Symmetry
Bell modes with m > 1 are doubly degenerate with
orthogonal modes varying as cos mφ and sin mφ and
nodal lines in the azimuthal directions that bisect each
other. Any departures from axial symmetry will lift the
degeneracy and give rise to a split pair of orthogonal
modes. If both modes are excited together, the two fre-

(kHz)
0 0.80.6 10.40.2

5 s

Fig. 15.139 Decaying vibrations and spectrum of Big Ben,
London

quencies will beat against each other, as already evident
in the sound of Big Ben and in the sound ( )
of a slightly asymmetrical glass beaker with a pour-
ing spout, which lifts the degeneracy of the otherwise
axially symmetric modes.

Bells with strongly distorted or elliptical cross sec-
tions can have two completely different pitches, which
can be sounded independently by beating at the antin-
odal positions of one set of modes mode and nodes of
the other. Drums with quasi-elliptical cross sections will
therefore sound a single note when struck at the narrow-
est and widest cross-sectional radii, and a second note,
when struck at appropriate positions in between.

A dramatic example of axially asymmetric bells is
provided by the 65 ancient bells from the tomb of Zeng
Hou Yi found at Sui Xiang from around 433 BC. These
bells from the second millennium BC are masterpieces
of Chinese art and bell casting. They have oval cross
sections and range from small hand bells to well over
1.5 m in height. When struck at different positions along
the flattened surfaces, two quite distinct tones can be ex-
cited, which were designed to be about a major or minor
third apart. For further details of these and other Chinese
and other eastern bells see Rossing [15.202, Chap. 13]
and [15.223].
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