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Acoustic Signa14. Acoustic Signal Processing

William M. Hartmann, James V. Candy

Signal processing refers to the acquisition, stor-
age, display, and generation of signals – also to
the extraction of information from signals and
the re-encoding of information. As such, signal
processing in some form is an essential element
in the practice of all aspects of acoustics. Signal
processing algorithms enable acousticians to sep-
arate signals from noise, to perform automatic
speech recognition, or to compress information
for more efficient storage or transmission. Signal
processing concepts are the building blocks used
to construct models of speech and hearing. Now,
in the 21st century, all signal processing is effec-
tively digital signal processing. Widespread access
to high-speed processing, massive memory, and
inexpensive software make signal processing pro-
cedures of enormous sophistication and power
available to anyone who wants to use them. Be-
cause advanced signal processing is now accessible
to everybody, there is a need for primers that in-
troduce basic mathematical concepts that underlie
the digital algorithms. The present handbook
chapter is intended to serve such a purpose.

The chapter emphasizes careful definition of
essential terms used in the description of signals
per international standards. It introduces the
Fourier series for signals that are periodic and
the Fourier transform for signals that are not. Both
begin with analog, continuous signals, appropriate
for the real acoustical world. Emphasis is placed
on the consequences of signal symmetry and on
formal relationships. The autocorrelation function
is related to the energy and power spectra for
finite-duration and infinite-duration signals. The
chapter provides careful definitions of statistical
terms, moments, and single- and multi-variate
distributions. The Hilbert transform is introduced,
again in terms of continuous functions. It is
applied both to the development of the analytic
signal – envelope and phase, and to the dispersion
relations for linear, time-invariant systems. The
bare essentials of filtering are presented, mostly

to provide real-world examples of fundamen-
tal concepts – asymptotic responses, group delay,
phase delay, etc. This introduction is followed by
more advanced ideas: matched filtering and time-
reversal processing. Spectral estimation in the
presence of noise is treated by several techniques:
parametric models, autoregressive procedures,
model-based signal processing implemented as
Wiener and Kalman filters, and matched-field pro-
cessing. There is a brief introduction to cepstrology,
with emphasis on acoustical applications. The
treatment of the mathematical properties of noise
emphasizes the generation of different kinds of
noise. Digital signal processing with sampled data
is specifically introduced with emphasis on digital-
to-analog conversion and analog-to-digital
conversion. It continues with the discrete Fourier
transform and with the z-transform, applied to
both signals and linear, time-invariant systems.
Digital signal processing continues with an intro-
duction to maximum length sequences as used in
acoustical measurements, with an emphasis on
formal properties. The chapter ends with a section
on information theory including developments of
Shannon entropy and mutual information.
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14.1 Definitions

Signal processing begins with signals. The simplest sig-
nal is a sine wave with a single spectral component,
i. e., with a single frequency, as shown in Fig. 14.1. It
is sometimes called a pure tone. A sine wave function
of time t with amplitude C, angular frequency ω, and
starting phase ϕ, is given by

x(t) = C sin(ωt +ϕ) . (14.1)

The amplitude has the same units as the waveform x,
the angular frequency has units of radians per second,
and the phase has units of radians.

Because there are 2π radians in one cycle

ω = 2π f, (14.2)
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Fig. 14.1 A sine wave with amplitude C and period T .
A little more than three and a half cycles are shown. The
starting phase is ϕ = 0

and (14.1) can be written as

x(t) = C sin(2π ft +ϕ) (14.3)

or as

x(t) = C sin

(
2π

t

T
+ϕ

)
, (14.4)

where f is the frequency in cycles per second (or Hertz)
and T is the period in units of seconds per cycle, T =
1/ f .

A complex wave is the sum of two or more sine
waves, each with its own amplitude, frequency, and
phase. For example,

x(t) = C1 sin(ω1t +ϕ1)+C2 sin(ω2t +ϕ2) (14.5)

is a complex wave with two spectral components having
frequencies f1 and f2. The period of a complex wave
is the reciprocal of the greatest common divisor of f1
and f2. For instance, if f1 = 400 Hz and f2 = 600 Hz,
then the period is 1/(200 Hz) or 5 ms. The fundamental
frequency is the reciprocal of the period.

A general waveform can be written as a sum of N
components,

x(t) =
N∑

n=1

Cn sin(ωnt +ϕn) , (14.6)
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Acoustic Signal Processing 14.2 Fourier Series 521

and the fundamental frequency is the greatest common
divisor of the set of frequencies { fn}.

An alternative description of the general waveform
can be derived by using the trigonometric identity

sin(θ1 + θ2) = sin θ1 cos θ2 + sin θ2 cos θ1 (14.7)

so that

x(t) =
N∑

n=1

An cos(ωnt)+ Bn sin(ωnt) , (14.8)

where An = Cn sin ϕn , and Bn = Cn cos ϕn , are the co-
sine and sine partial amplitudes respectively. Thus the
two parameters Cn and ϕn are replaced by two other
parameters An and Bn .

Because of the trigonometric identity

sin2 θ + cos2 θ = 1 , (14.9)

the amplitude Cn can be written in terms of the partial
amplitudes,

C2
n = A2

n + B2
n , (14.10)

as can the component phase

ϕn = Arg(An, Bn) . (14.11)

The Arg function is essentially an inverse tangent, but
because the principal value of the arctangent function
only runs from −π

2 to π
2 , an adjustment needs to be

made when Bn is negative. In the end,

Arg(An, Bn) = arctan

(
An

Bn

)
(for Bn ≥ 0)

(14.12)

and

Arg(An, Bn) = arctan

(
An

Bn

)
+π (for Bn < 0) .

The remaining sections of this chapter provide
a brief treatment of real signals x(t) – first as continu-
ous functions of time and then as sampled data. Readers
who are less familiar with the continuous approach may
wish to refer to the more extensive treatment in [14.1].

14.2 Fourier Series

The Fourier series applies to a function x(t) that is pe-
riodic. Periodicity means that we can add any integral
multiple m of T to the running time variable t and the
function will have the same value as at time t, i. e.

x(t +mT ) = x(t) , for all integral m . (14.13)

Because m can be either positive or negative and as
large as we like, it is clear that x is periodic into the in-
finite future and past. Then Fourier’s theorem says that
x can be represented as a Fourier series like

x(t) = A0 +
∞∑

n=1

[An cos(ωnt)+ Bn sin(ωnt)] . (14.14)

All the cosines and sines have angular frequencies
ωn that are harmonics, i. e., they are integral multiples
of a fundamental angular frequency ω0,

ωn = nω0 = 2π
n

T
, (14.15)

where n is an integer.
The fundamental frequency f0 is given by f0 =

ω0/(2π). The fundamental frequency is the lowest fre-
quency that a sine or cosine wave can have and still
fit exactly into one period of the function x(t) because
f0 = 1/T . In order to make a function x(t) with period

T , the only sines and cosines that are allowed to enter
the sum are those that fit exactly into the same period T .
These are those sines and cosines with frequencies that
are integral multiples of the fundamental.

The factors An and Bn in (14.14) are the Fourier
coefficients. They can be calculated by projecting the
function x(t) onto sine and cosine functions of the har-
monic frequencies ωn . Projecting means to integrate the
product of x(t) and a sine or cosine function over a dura-
tion of time equal to a period of x(t). Sines and cosines
with different harmonic frequencies are orthogonal over
a period. Consequently, projecting x(t) onto, for exam-
ple cos(3ω0t), gives exactly the Fourier coefficient A3.

It does not matter which time interval is used for in-
tegration, as long as it is exactly one period in duration.
It is common to use the interval −T/2 to T/2.

The orthogonality and normality of the sine and co-
sine functions are described by the following equations:

2

T

T/2∫
−T/2

dt sin(ωnt) cos(ωmt) = 0 , (14.16)

for all m and n;

2

T

T/2∫
−T/2

dt cos(ωnt) cos(ωmt) = δn,m (14.17)
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522 Part D Hearing and Signal Processing

and

2

T

T/2∫
−T/2

dt sin(ωnt) sin(ωmt) = δn,m , (14.18)

where δn,m is the Kronecker delta, equal to one if m = n
and equal to zero otherwise.

It follows that the equations for An and Bn are

An = 2

T

T/2∫
−T/2

dt x(t) cos(ωnt) for n > 0 , (14.19)

Bn = 2

T

T/2∫
−T/2

dt x(t) sin(ωnt) for n > 0. (14.20)

The coefficient A0 is simply a constant that shifts
the function x(t) up or down. The constant A0 is the
only term in the Fourier series (14.14) that could possi-
bly have a nonzero value when averaged over a period.
All the other terms are sines and cosines; they are neg-
ative as much as they are positive and average to zero.
Therefore, A0 is the average value of x(t). It is the direct-
current (DC) component of x. To find A0 we project the
function x(t) onto a cosine of zero frequency, i. e. onto
the number 1, which leads to the average value of x,

A0 = 1

T

T/2∫
−T/2

dt x(t) . (14.21)

14.2.1 The Spectrum

The Fourier series is a function of time, where An and
Bn are coefficients that weight the cosine and sine con-
tributions to the series. The coefficients An and Bn are
real numbers that may be positive or negative.

An alternative approach to the function x(t) deem-
phasizes the time dependence and considers mainly the
coefficients themselves. This is the spectral approach.
The spectrum simply consists of the values of An and
Bn , plotted against frequency, or equivalently, plotted
against the harmonic number n. For example, if we have
a signal given by

x(t) = 5 sin(2π 150t)+3 cos(2π 300t)

−2 cos(2π 450t)+4 sin(2π 450t) (14.22)

then the spectrum consists of only a few terms. The pe-
riod of the signal is 1

150 s, the fundamental frequency is
150 Hz, and there are two additional harmonics: a sec-
ond harmonic at 300 Hz and a third at 450 Hz. The
spectrum is shown in Fig. 14.2.

a) Amplitude A

b) Amplitude B

c) Magnitude C

d) Phase � (deg)

Fig. 14.2 (a,b) The amplitudes A and B for the signal in
(14.22); (c,d) the corresponding magnitude and phases

14.2.2 Symmetry

Many important periodic functions have symmetries
that simplify the Fourier series. If the function x(t) is
an even function [x(−t) = x(t)] then the Fourier series
for x contains only cosine terms. All coefficients of the
sine terms Bn are zero. If x(t) is odd [x(−t) = −x(t)],
the the Fourier series contains only sine terms, and all
the coefficients An are zero. Sometimes it is possible to
shift the origin of time to obtain a symmetrical function.
Such a time shift is allowed if the physical situation at
hand does not require that x(t) be synchronized with
some other function of time or with some other time-
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Acoustic Signal Processing 14.3 Fourier Transform 523

Fig. 14.3 The Fourier series of an odd function like this
sawtooth consists of sine terms only. The Fourier coeffi-
cients can be computed by an integral over a single period
from −T/2 to T/2 �

referenced process. For example, the sawtooth function
in Fig. 14.3 is an odd function. Therefore, only sine
terms are present in the series.

The Fourier coefficients can be calculated by doing
the integral over the interval shown by the heavy line.
The integral is easy to do analytically because x(t) is
just a straight line. The answer is

Bn = 2

π

(−1)(n+1)

n
. (14.23)

Consequently, the sawtooth function itself is given
by

x(t) = 2

π

∞∑
n=1

(−1)(n+1)

n
sin

(
2πn

t

T

)
. (14.24)
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A bridge between the Fourier series and the Fourier
transform is the complex form for the spectrum,

Xn = An + iBn . (14.25)

Because of Euler’s formula, namely

eiθ = cos θ + i sin θ , (14.26)

it follows that

Xn = 2

T

T/2∫
−T/2

dt x(t) eiωn t . (14.27)

14.3 Fourier Transform

The Fourier transform of a time-dependent signal is
a frequency-dependent representation of the signal,
whether or not the time dependence is periodic. Com-
pared to the frequency representation in the Fourier
series, the Fourier transform differs in several ways.
In general the Fourier transform is a complex func-
tion with real and imaginary parts. Whereas the Fourier
series representation consists of discrete frequencies,
the Fourier transform is a continuous function of fre-
quency. The Fourier transform also requires the concept
of negative frequencies. The transformation tends to be
symmetrical with respect to the appearance of positive
and negative frequencies and so negative frequencies
are just as important as positive frequencies. The treat-
ment of the Fourier integral transform that follows
mainly states results. For proof and further applications
the reader may wish to consult [14.1, mostly Chap. 8].

The Fourier transform of signal x(t) is given by the
integral

X(ω) = F [x(t)] =
∫

dt e−iωt x(t) . (14.28)

Here, and eleswhere unless otherwise noted, integrals
range over all negative and positive values, i. e. −∞ to
+∞.

The inverse Fourier transform expresses the signal
as a function of time in terms of the Fourier transform,

x(t) = 1

2π

∫
dω eiωt X(ω) . (14.29)

These expressions for the transform and inverse trans-
form can be shown to be self-consistent. A key fact in
the proof is that the Dirac delta function can be written
as an integral over all time,

δ(ω) = 1

2π

∫
dt e±iωt , (14.30)

and similarly

δ(t) = 1

2π

∫
dω e±iωt . (14.31)

Because a delta function is an even function of its ar-
gument, it does not matter if the + or − sign is used in
these equations.

Reality and Symmetry
The Fourier transform X(ω) is generally complex. How-
ever, signals like x(t) are real functions of time. In that
connection (14.29) would seem to pose a problem, be-
cause it expresses the real function x as an integral
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524 Part D Hearing and Signal Processing

involving the complex exponential multiplied by the
complex Fourier transform. The requirement that x be
real leads to a simple requirement on its Fourier trans-
form X. The requirement is that X(−ω) must be the
complex conjugate of X(ω), i. e., X(−ω) = X∗(ω). That
means that

Re X(−ω) = Re X(ω) (14.32)

and

Im X(−ω) = −Im X(ω) .

Similar reasoning leads to special results for signals
x(t) that are even or odd functions of time t. If x is even
[x(−t) = x(t)] then the Fourier transform X is not com-
plex but is entirely real. If x is odd [x(−t) = −x(t)] then
the Fourier transform X is not complex but is entirely
imaginary.

The polar form of the Fourier transform is normally
a more useful representation than the real and imaginary
parts. It is the product of a magnitude, or absolute value,
and an exponential phase factor,

X(ω) = |X(ω)| exp[iϕ(ω)] . (14.33)

The magnitude is a positive real number. Negative or
complex values of X arise from the phase factor. For
instance, if X is entirely real then ϕ(ω) can only be zero
or 180◦.

14.3.1 Examples

A few example Fourier transforms are insightful.

The Gaussian
The Fourier transform of a Gaussian is a Gaussian. The
Gaussian function of time is

g(t) = 1

σ
√

2π
e−t2/(2 σ2) . (14.34)

The function is normalized to unit area, in the sense
that the integral of g(t) over all time is 1.0. The Fourier
transform is

G(ω) = e−ω2σ2/2 . (14.35)

The Unit Rectangle Pulse
The unit rectangle pulse, r(t), is a function of time that is
zero except on the interval −T0/2 to T0/2. During that
interval the function has the value 1/T0, so that the func-
tion has unit area. The Fourier transform of this pulse
is

R(ω) =
[

sin

(
ω

T0

2

)]/(
ω

T0

2

)
, (14.36)
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Fig. 14.4 The Fourier transform of a single pulse with
duration T0 as a function of frequency f expressed in di-
mensionless form fT0

or, in terms of frequency

R( f ) = sin(π fT0)

π fT0
,

as shown in Fig. 14.4.
The function of the form (sin x)/x is sometimes

called the sinc function. However, (sin πx)/(πx) is also
called the sinc function. Therefore, whenever the sinc
function is used by name it must be defined.

Both the Gaussian and the unit rectangle illustrate
a reciprocal effect sometimes called the uncertainty
principle. The Gaussian function of time g(t) is nar-
row if σ is small because σ appears in the denominator
of the exponential in g(t). Then the Fourier transform
G(ω) is wide because σ appears in the numerator of the
exponential in G(ω). Similarly, the unit rectangle is nar-
row if T0 is small. Then the Fourier transform R(ω) is
broad because R(ω) depends on the product ωT0. The
general statement of the principle is that, if a function
of one variable (e.g. time) is compact, then the trans-
form representation, that is the function of the conjugate
variable (e.g. frequency), is broad, and vice versa. The
extreme expression of the uncertainty principle appears
in the Fourier transform of a function that is constant for
all time. According to (14.30), that transform is a delta
function of frequency. Conversely, the Fourier trans-
form of a delta function is a constant for all frequency.
That means that the spectrum of an ideal impulse con-
tains all frequencies equally.

A contrast between the Fourier transforms of Gaus-
sian and rectangle pulses is also revealing. Because the
Gaussian is a smooth function of time, the transform has
a single peak. Because the rectangle has sharp edges,
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there are oscillations in the transform. If the rectangle
is given sloping or rounded edges, the amplitude of the
oscillations is reduced.

14.3.2 Time-Shifted Function

If y(t) is a time-shifted version of x(t), i. e.

y(t) = x(t − t0) , (14.37)

then the Fourier transform of y is related to the Fourier
transform of x by the equation

Y (ω) = exp(−iωt0)X(ω) . (14.38)

The transform Y is the same as X except for a phase
shift that increases linearly with frequency. There are
two important implications of this equation. First, be-
cause the magnitude of the exponential with imaginary
argument is 1.0, the magnitude of Y is the same as the
magnitude of X for all values of ω. Second, revers-
ing the logic of the equation shows that, if the phase
of a signal is changed in such a way that the phase
shift is a linear function of frequency, then the change
corresponds only to a shift along the time axis for the
function of time, and not to a distortion of the shape of
the wave. A general phase-shift function of frequency
can be separated into the best-fitting straight line and
a residual. Only the residual distorts the shape of the
signal as a function of time.

14.3.3 Derivatives and Integrals

If v(t) is the derivative of x(t), i. e., v(t) = dx/dt, then
the Fourier transform of v is related to the transform of
x by the equation

V (ω) = iωX(ω) . (14.39)

Thus, differentiating a signal is equivalent to ideal high-
pass filtering with a boost of 6 dB per octave, i. e.,
doubling the frequency doubles the ratio of the output to
the input, as processed by the differentiator. Differenti-
ating also leads to a simple phase shift of 90◦ (π/2 rad)
in the sense that the new factor of i equals exp(iπ/2).
The differentiation equation can be iterated. The Fourier
transform of the n-th derivative of x(t) is (iω)n X(ω).

Integration is the inverse of differentiation, and that
fact becomes apparent in the Fourier transforms. If w(t)
is the integral of x(t), i. e.,

w(t) =
t∫

−∞
dt′ x(t′) , (14.40)

then the Fourier transform of w is related to the Fourier
transform of x by the equation

W(ω) = X(ω)

iω
+ X(0)δ(ω) . (14.41)

The first term above could have been anticipated based
on the transform of the derivative. The second term
corresponds to the additive constant of integration that
always appears in the context of an integral. The num-
ber X(0) is the average (DC) value of the signal x(t),
and if this average value is zero then the second term
can be neglected.

14.3.4 Products and Convolution

If the signal x is the product of two functions y and w,
i. e. x(t) = y(t)w(t) then, according to the convolution
theorem, the Fourier transform of x is the convolution
of the Fourier transforms of y and w, i. e.

X(ω) = 1

2π
Y (ω)∗ W(ω) . (14.42)

The convolution, indicated by the symbol ∗, is defined
by the integral

X(ω) = 1

2π

∫
dω′ Y (ω′) W(ω−ω′) . (14.43)

The convolution theorem works in reverse as well.
If X is the product of Y and W , i. e.

X(ω) = Y (ω) W(ω) (14.44)

then the functions of time x, y, and w are related by
a convolution,

x(t) =
∞∫

−∞
dt′ y(t′) w(t − t′) (14.45)

or

x(t) = y(t)∗w(t) .

The symmetry of the convolution equations for mul-
tiplication of functions of frequency and multiplication
of functions of time is misleading. Multiplication of
frequency functions, e.g. X(ω) = Y (ω)W(ω), normally
corresponds to a linear operation on signals generally
known as filtering. Multiplication of signal functions
of time, e.g. y(t)w(t), is a nonlinear operation such as
modulation.
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14.4 Power, Energy, and Power Spectrum

The instantaneous power in a signal is defined as
P(t) = x2(t). This definition corresponds to the power
that would be transferred by a signal to a unit load that
is purely resistive, or dissipative. Such a load is not at
all reactive, wherein energy is stored for some fraction
of a cycle.

The energy in a signal is the accumulation of power
over time,

E =
∫

dt P(t) =
∫

dt x2(t) . (14.46)

At this point, a distinction must be made between
finite-duration signals and infinite-duration signals. For
a finite-duration signal, the above integral exists. By
substituting the Fourier transform for x(t), one finds that

E = 1

2π

∫
dω X(ω) X(−ω) or

∫
dω E(ω) .

(14.47)

Thus the energy in the signal is written as the accumu-
lation of of the energy spectral density,

E(ω) = 1

2π
X(ω) X(−ω) = 1

2π
|X(ω)|2 . (14.48)

The symmetry between (14.46) and (14.47) is known as
Parseval’s theorem. It says that one can compute the en-
ergy in a signal by either a time or a frequency integral.

The power spectral density is obtained by divid-
ing the energy spectral density by the duration of the
signal, TD,

P(ω) = E(ω)

TD
. (14.49)

For white noise, the power density is constant on
average, P(ω) = P0. From (14.47) it is evident that
a signal cannot be white over the entire range of
frequencies out to infinite frequency without having in-
finite energy. One is therefore limited to noise that is
white over a finite frequency band.

For pink noise the power density is inversely propor-
tional to frequency, P(ω) = c/ω, where c is a constant.
The energy integral in (14.47) for pink noise also di-
verges. Therefore, pink noise must be limited to a finite
frequency band.

Turning now to infinite-duration signals, for an
infinite-duration signal the energy is not well defined.
It is likely that one would never even think about an
infinite-duration signal if it were not for the useful
concept of a periodic signal. Although the energy is un-
defined, the power P is well defined, and so is the power

spectrum, or power spectral density P(ω). As expected,
the power is the integral of the power spectral density,

P =
∫

dω P(ω) , (14.50)

where P(ω) is given in terms of X from (14.27),

P(ω) = π

2

∞∑
n=0

|Xn |2[δ(ω−ωn)+ δ(ω+ωn)] .

(14.51)

It is not hard to convert densities to different units.
For instance, the power spectral density can be written
in terms of frequency f instead of ω (ω = 2π f ). By the
definition of a density we must have that

P =
∫

d f P( f ) . (14.52)

This definition is consistent with the fact that
a delta function has dimensions that are the inverse of
its argument dimensions. Therefore, δ(ω) = δ(2π f ) =
δ( f )/(2π), and

P( f ) = 1

4

∞∑
n=0

|Xn |2[δ( f − fn)+ δ( f + fn)] .

(14.53)

14.4.1 Autocorrelation

The autocorrelation function af of a signal x(t) provides
a measure of the similarity between the signal at time t
and the same signal at a different time, t + τ . The vari-
able τ is called the lag, and the autocorrelation function
is given by

af (τ) =
∞∫

−∞
dt x(t) x(t + τ) . (14.54)

When τ is zero then the integral is just the square of
x(t), and this leads to the largest possible value for the
autocorrelation, namely E. For a signal of finite du-
ration, the autocorrelation must always be strictly less
than its value at τ = 0. Consequently, the normalized
autocorrelation function a(τ)/a(0) is always less than
1.0 (τ �= 0).

By substituting (14.29) for x(t) one finds a fre-
quency integral for the autocorrelation function,

af (τ) = 1

2π

∞∫
−∞

dω eiωt |X(ω)|2 , (14.55)
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or, from (14.47),

af (τ) =
∞∫

−∞
dω eiωτ E(ω) . (14.56)

Equation (14.56) says that the autocorrelation function
is the Fourier transform of the energy spectral density.
This relationship is known as the Wiener–Khintchine
relation. Because E(−ω) = E(ω), one can write af in
a way that proves that it is a real function with no imag-
inary part,

af (τ) = 2

∞∫
0

dω cos(ωτ)E(ω) . (14.57)

Furthermore, because the cosine is an even function of
its argument [af (−τ) = af (τ)], the autocorrelation func-
tion only needs to be given for positive values of the
lag.

A signal does not have finite duration if it is peri-
odic. Then the autocorrelation function is defined as

a(τ) = lim
TD→∞

1

2TD

TD∫
−TD

dt x(t)x(t + τ) . (14.58)

If the period is T then a(τ) = a(τ + nT ) for all inte-
ger n, and the maximum value occurs at a(0) or a(nT ).
Because of the factor of time in the denominator of
(14.58), the function a(τ) is the Fourier transform of
the power spectral density and not of the energy spectral
density.

A critical point for both af (τ) and a(τ) is that au-
tocorrelation functions are independent of the phases
of spectral components. This point seems counterin-
tuitive because waveforms depend on phases and it
seems only natural that the correlation of a waveform
with itself at some later time should reflect this phase

dependence. However, the fact that autocorrelation is
the Fourier transform of the energy or power spectrum
proves that the autocorrelation function must be inde-
pendent of phases because the spectra are independent
of phases.

For example, if x(t) is a periodic function with zero
average value, it is defined by (14.6). Then it is not hard
to show that the autocorrelation function is given by

a(τ) = 1

2

N∑
n=1

C2
n cos(ωnτ) . (14.59)

The autocorrelation function is only a sum of cosines
with none of the phase information. Only the harmonic
frequencies and amplitudes play a role.

14.4.2 Cross-Correlation

Parallel to the autocorrelation function, the cross-
correlation function is a measure of the similarity of the
signal x(t) to the signal y(t) at a different time, i. e. the
similarity to y(t + τ). The cross-correlation function is

ρ0(τ) =
∫

dt x(t) y(t + τ) . (14.60)

In practice, the cross-correlation is usually normal-
ized,

ρ(τ) =
∫

dt x(t) y(t + τ)[∫
dt1 x2(t1)

∫
dt2 y2(t2)

]1/2
, (14.61)

so that the maximum value of ρ(τ) is equal to 1.0. Un-
like the autocorrelation function, the maximum of ρ(τ)
does not necessarily occur at τ = 0. For example, if sig-
nal y(t) is the same as signal x(t) except that y(t) has
been delayed by Tdel then ρ(τ) has its maximum value
1.0 when τ = Tdel.

14.5 Statistics

Measured signals are always finite in length. Definitions
of statistical terms for measured signals, together with
their continuum limits are given in this section.

The number of samples in a measurement is N . The
duration of the measured signal is TD, and TD = Nδt,
where δt is the inverse of the sample rate.

The sampled signal has values xi , (1 ≤ i ≤ N), and
the continuum analog is the signal x(t), (0 ≤ t ≤ TD).

The average value, or mean, is

x = 1

N

N∑
i=1

xi or
1

TD

TD∫
0

dt x(t) . (14.62)

The variance is

σ2 = 1

N −1

N∑
i=1

(xi − x)2
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or

1

TD

TD∫
0

dt [x(t)− x]2 . (14.63)

The standard deviation is the square root of the vari-
ance, σ = √

σ2.
The energy is

E = δt
N∑

i=1

x2
i or

TD∫
0

dt x2(t) . (14.64)

The average power is

P = 1

N

N∑
i=1

x2
i or

E

TD
. (14.65)

The root-mean-square (RMS) value is the square
root of the average power, xRMS =

√
P.

14.5.1 Signals and Processes

Signals are the observed results of processes. A process
is stationary if its stochastic properties, such as mean
and standard deviation, do not change during the time
for which a signal is observed. Signals provide incom-
plete glimpses into processes.

The best estimate of the mean of the underlying pro-
cess is equal to the mean of an observed signal. The
expected error in the estimate of the mean of the un-
derlying process, the so-called standard deviation of the
mean, is

s = σ√
N

, (14.66)

where N is the number of data points contributing to the
mean of the observed signal.

14.5.2 Distributions

Digitized signals are often regarded as sampled data {x}.
If the data are integers or are put into bins j then the
probability that the signal has value x j is the proba-
bility mass function PMF( j) = N j/N , the ratio of the
number of samples in bin j to the total number of sam-
ples. If data are continuous floating-point numbers, the
analogous distribution is the probability density function
PDF(x). In terms of these distributions, the mean is given
by

x =
∑

x jPMF( j) or

∞∫
−∞

dx xPDF(x) . (14.67)

The most important PDF is the normal (Gaussian)
density G(x),

G(x) = 1

σ
√

2π
exp

[
(x − x)2

2σ2

]
. (14.68)

Like all PDFs, G(x) is normalized to unit area, i. e.
∞∫

−∞
dx G(x) = 1 . (14.69)

The probability that x lies between some value x1
and x1 + dx is PDF(x1) dx, and normalization reflects
the simple fact that x must have some value.

The probability that variable x is less than some
value x1 is the cumulative distribution function (CDF),

CDF(x1) =
x1∫

−∞
dx′ PDF(x′) . (14.70)

If the density is normal, the integral is the cumulative
normal distribution (CND),

CND(x) = 1

σ
√

2π

x∫
−∞

dx′ exp

(
x′2

2σ2

)
. (14.71)

It is convenient to think of the CND as a function of
x compared to the standard deviation, i. e., as a function
of y = (x − x)/σ , as shown in Fig. 14.5.

C(y) = 1√
2π

y∫
−∞

dy′ exp

(
y′2

2

)
. (14.72)

Because of the symmetry of the normal density,

C(−y) = 1−C(y) . (14.73)

Therefore, it is enough to know C(y) for y > 0. A few
important values follow.

�

�	�����

�

Fig. 14.5 The area under the normal density is the cumu-
lative normal. Here the area is the function C(y)
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Table 14.1 Selected values of the cumulative normal distri-
bution

C(0) 0.5000

C(0.675) 0.7500

C(1) 0.8413

C(2) 0.9773

C(3) 0.9987

C(∞) 1.0000

Table 14.1 can be used to find probabilities. For
example, the probability that a normally distributed
variable lies between its mean and its mean plus a stan-
dard deviation, i. e., between x and x +σ , is C(1)−
0.5 = 0.3413. The probability that it lies within plus
or minus two standard deviations (±2σ ) of the mean
is 2[C(2)−0.5] = 0.9546.

The importance of the normal density lies in the cen-
tral limit theorem, which says that the distribution for
a sum of random variables approaches a normal dis-
tribution as the number of variables becomes large. In
other words, if the variable x is a sum

x = x1 + x2 + x3 + . . . xN =
N∑

i=1

xi , (14.74)

then no matter how the individual xi are distributed, x
will be normally distributed in the limit of large N .

14.5.3 Multivariate Distributions

A multivariate distribution is described by a joint prob-
ability density PDF(x, y), where the probability that
variable x has a value between x1 and x1 + dx and si-
multaneously variable y has a value between y1 and
y1 + dy is

P(x1, y1) = PDF(x1, y1)dx dy . (14.75)

The normalization requirement is∫
dx
∫

dy PDF(x, y) = 1 . (14.76)

The marginal probability density for x, PDF(x), is
the probability density for x itself, regardless of the
value of y. Hence,

PDF(x) =
∫

dy PDF(x, y) . (14.77)

The y dependence has been integrated out.
The conditional probability density PDF(x|y) de-

scribes the probability of a value x, given a specific

value of y, for instance, if y = y1, then

PDF(x|y1) = PDF(x, y1)

/∫
dx PDF(x, y1) ,

(14.78)

or

PDF(x|y1) = PDF(x, y1)/PDF(y1) . (14.79)

The probability that x = x1 and y = y1 is equal to
the probability that y = y1 multiplied by the conditional
probability that if y = y1 then x = x1, i. e.,

P(x1, y1) = P(x1|y1)P(y1) . (14.80)

Similarly, the probability that x = x1 and y = y1 is
equal to the probability that x = x1 multiplied by the
conditional probability that if x = x1 then y = y1, i. e.

P(x1, y1) = P(y1|x1)P(x1) . (14.81)

The two expressions for P(x1, y1) must be the same,
and that leads to Bayes’ Theorem,

P(x1|y1) = P(y1|x1)
P(x1)

P(y1)
. (14.82)

14.5.4 Moments

The m-th moment of a signal is defined as

xm = 1

N

N∑
i=1

xm
i or

1

TD

TD∫
0

dt xm(t) . (14.83)

Hence the first moment is the mean (14.62) and the
second moment is the average power (14.65).

The m-th central moment is

μm = 1

N

N∑
i=1

(xi − x)m or
1

TD

TD∫
0

dt [x(t)− x]m .

(14.84)

The first central moment is zero by definition. The
second central moment is the alternating-current (AC)
power, which is equal to the average power (14.65) mi-
nus the time-independent (or DC) component of the
power.

The third central moment is zero if the signal prob-
ability density function is symmetrical about the mean.
Otherwise, the third moment is a simple way to measure
how the PDF is skewed. The skewness is the normalized
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third moment,

skewness = μ3

μ
3/2
2

. (14.85)

The fourth central moment leads to an impression
about how much strength there is in the wings of a prob-
ability density compared to the standard deviation. The

normalized fourth moment is the kurtosis,

kurtosis = μ4

μ2
2

. (14.86)

For instance, the kurtosis of a normal density, which has
significant wings, is 3. But the kurtosis of a rectangular
density, which is sharply cut off, is only 9/5.

14.6 Hilbert Transform and the Envelope

The Hilbert transform of a signal x(t) is H [x(t)] or
function xI(t), where

xI(t) = H [x(t)] = 1

π

∞∫
−∞

dt′ x(t′)
t − t′

. (14.87)

Some facts about the Hilbert transform are stated
here without proof. Proofs and further applications may
be found in appendices to [14.1].

First, the Hilbert transform is its own inverse, except
for a minus sign,

x(t) = −H [xI(t)] = − 1

π

∞∫
−∞

dt′ xI(t′)
t − t′

. (14.88)

Second, a signal and its Hilbert transform are or-
thogonal in the sense that∫

dt x(t) xI(t) = 0 . (14.89)

Third, the Hilbert transform of sin(ωt +ϕ) is
− cos(ωt +ϕ), and the Hilbert transform of cos(ωt +ϕ)
is sin(ωt +ϕ).
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Fig. 14.6 A Gaussian pulse x(t) and its Hilbert transform
xI(t) are the real and imaginary parts of the analytic signal
corresponding to the Gaussian pulse

Further the Hilbert transform is linear. Conse-
quently, for any function for which a Fourier transform
exists,

H

[∑
n

An cos(ωnt)+ Bn sin(ωnt)

]

=
∑

n

An sin(ωnt)− Bn cos(ωnt) (14.90)

or

H

[∑
n

Cn sin(ωnt +ϕn)

]

= −
∑

n

Cn cos(ωnt +ϕn)

=
∑

n

Cn sin
(
ωnt +ϕn − π

2

)
. (14.91)

Comparing the two sine functions above makes it clear
why a Hilbert transform is sometimes called a 90◦ rota-
tion of the signal.

Figure 14.6 shows a Gaussian pulse x(t) and its
Hilbert transform, xI(t). The Gaussian pulse was made
by adding up 100 cosine harmonics with amplitudes
given by a Gaussian spectrum per (14.35). The Hilbert
transform was computed by using the same amplitude
spectrum and replacing all the cosine functions by sine
functions.

Figure 14.6 illustrates the difficulty often encoun-
tered in computing the Hilbert transform using the time
integrals that define the transform and its inverse. If we
had to calculate x(t) by transforming xI(t) using (14.88)
we would be troubled by the fact that xI(t) goes to zero
so slowly. An accurate calculation of x(t) would require
a longer time span than that shown in the figure.

14.6.1 The Analytic Signal

The analytic signal x̃(t) for x(t) is given by the complex
sum of the original signal and an imaginary part equal
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to the Hilbert transform of x(t),

x̃(t) = x(t)+ i xI(t) . (14.92)

The analytic signal, in turn, can be used to calcu-
late the envelope of signal x(t). The envelope e(t) is
the absolute value – or magnitude – of the analytic
signal

e(t) = |x̃(t)| . (14.93)

For instance, if x(t) = A cos(ωt +ϕ), then xI(t) =
A sin(ωt +ϕ) and

x̃(t) = A[cos(ωt +ϕ)+ i sin(ωt +ϕ)] . (14.94)

By Euler’s theorem

x̃(t) = A exp[i(ωt +ϕ)] , (14.95)

and the absolute value is

e(t) = {A exp[i(ωt +ϕ)]A exp[−i(ωt +ϕ)]}1/2

= A . (14.96)

14.7 Filters

Filtering is an operation on a signal that is typically de-
fined in frequency space. If x(t) is the input to a filter
and y(t) is the output then the Fourier transforms of x
and y are related by

Y (ω) = H(ω)X(ω) , (14.97)

where H(ω) is the transfer function of the filter. The
transfer function has a magnitude and a phase

H(ω) = |H(ω)| exp[iΦ(ω)] . (14.98)

The frequency-dependent magnitude is the amplitude
response, and it characterizes the filter type – low pass,
high pass, bandpass, band-reject, etc. The phase Φ(ω)
is the phase shift for a spectral component with fre-
quency ω. The amplitude and phase responses of a filter
are explicitly separated by taking the natural logarithm
of the transfer function

ln H(ω) = ln[|H(ω)|]+ iΦ(ω) . (14.99)

Because ln |H| = ln(10) log |H|,

ln H(ω) = 0.1151G(ω)+ iΦ(ω) , (14.100)

where G is the filter gain in decibels, and Φ is the phase
shift in radians.

14.7.1 One-Pole Low-Pass Filter

The one-pole low-pass filter serves as an example to
illustrate filter concepts. This filter can be made from
a single resistor (R) and a single capacitor (C) with
a time constant τ = RC. The transfer function of this

filter is

H(ω) = 1

1+ iωτ
= 1− iωτ

1+ω2τ2
. (14.101)

The filter is called one-pole because there is a single
value of ω for which the denominator of the transfer
function is zero, namely ω = 1/(iτ) = −i/τ .

The magnitude (or amplitude) response is

|H(ω)| =
√

1

1+ω2τ2
. (14.102)

The filter cut-off frequency is the half-power point
(or 3-dB-down point), where the magnitude of the trans-
fer function is 1√

2
compared to its maximum value. For

the one-pole low-pass filter, the half-power point occurs
when ω = 1/τ .

Filters are often described by their asymptotic fre-
quency response. For a low-pass filter, asymptotic
behavior occurs at high frequency, where, for the
one-pole filter |H(ω)| ∝ 1/ω. The 1/ω dependence is
equivalent to a high-frequency slope of −6 dB/octave,
i. e., for octave frequencies,

L2 − L1 = 20 log

(
ω1

2ω1

)
= 20 log

1

2
= −6 .

(14.103)

A filter with an asymptotic dependence of 1/ω2 has
a slope of −12 dB/octave, etc.

The phase shift of the low-pass filter is the arctan-
gent of the ratio of the imaginary and real parts of the
transfer function,

Φ(ω) = tan−1
(

Im[H(ω)]
Re[H(ω)]

)
, (14.104)

Part
D

1
4
.7



532 Part D Hearing and Signal Processing

which, for the one-pole filter, is Φ(ω) = tan−1(−ωτ).
The phase shift is zero at zero frequency, and ap-
proaches 90◦ at high frequency. This phase behavior is
typical of simple filters in that important phase shifts
occur in frequency regions where the magnitude shows
large attenuation.

14.7.2 Phase Delay and Group Delay

The phase shifts introduced by filters can be inter-
preted as delays, whereby the output is delayed in time
compared to the input. In general, the delay is differ-
ent for different frequencies, and therefore, a complex
signal composed of several frequencies is bent out of
shape by the filtering process. Systems in which the de-
lay is different for different frequencies are said to be
dispersive.

Two kinds of delay are of interest. The phase de-
lay simply reinterprets the phase shift as a delay. The
phase delay Tϕ is given by Tϕ = −Φ(ω)/ω. The group
delay Tg is given by the derivative Tg = −dΦ(ω)/dω.
Phase and group delays for a one-pole low-pass fil-
ter are shown in Fig. 14.7 together with the phase
shift.

14.7.3 Resonant Filters

Resonant filters, or tuned systems, have an ampli-
tude response that has a peak at some frequency
where ω = ω0. Such filters are characterized by the
resonant frequency, ω0, and by the bandwidth, 2Δω.
The bandwidth is specified by half-power points
such that |H(ω0 +Δω)|2 ≈ |H(ω0)|2/2 and |H(ω0 −
Δω)|2 ≈ |H(ω0)|2/2. The sharpness of a tuned system
is often quoted as a Q value, where Q is a dimensionless

–φ

Fig. 14.7 The phase shift Φ for a one-pole low-pass fil-
ter can be read on the left ordinate. The phase and group
delays can be read on the right ordinate

number given by

Q = ω0

2Δω
. (14.105)

As an example, a two-pole low-pass filter with a reso-
nant peak near the angular frequency ω0 is described by
the transfer function

H(ω) = ω2
0

ω2
0 −ω2 + iωω0/Q

. (14.106)

14.7.4 Impulse Response

Because filtering is described as a product of Fourier
transforms, i. e., in frequency space, the temporal repre-
sentation of filtering is a convolution

y(t) =
∫

dt′ h(t − t ′)x(t′) =
∫

dt′ h(t′)x(t − t ′) .

(14.107)

The two integrals on the right are equivalent.
Equation (14.107) is a special form of linear proces-

sor. A more general linear processor is described by the
equation

y(t) =
∫

dt′ h(t, t′)x(t′) , (14.108)

where h(t, t′) permits a perfectly general dependence on
t and t′. The special system in which only the difference
in time values is important, i. e. h(t, t′) = h(t − t′), is
a linear time-invariant system. Filters are time invariant.

A system that operates in real time obeys a further
filter condition, namely causality. A system is causal if
the output y(t) depends on the input x(t′) only for t′ < t.
In words, this says that the present output cannot depend
on the future input. Causality requires that h(t) = 0 for
t < 0. For the one-pole, low-pass filter of (14.101) the
impulse response is

h(t) = 1

τ
e−t/τ for t > 0 ,

h(t) = 0 for t < 0 ,

h(t) = 1

2τ
for t = 0 . (14.109)

For the two-pole low-pass resonant filter of
(14.106), the impulse response is

h(t) = ω0√
1−[1/(2Q)]2

e− ω0
2Q t

× sin

{
ω0t
√

1−[1/(2Q)]2

}
, t ≥ 0 ,

h(t) = 0 , t < 0 . (14.110)
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14.7.5 Dispersion Relations

The causality requirement on the impulse response,
h(t) = 0 for t < 0, has implications for the transfer func-
tion. Causality means that the real and imaginary parts
of the transfer function are Hilbert transforms of one an-
other. Specifically, if the real and imaginary parts of H
are defined as H(ω) = HR(ω)+ iHI(ω) then

HR(ω) = 1

π
P

∞∫
−∞

dω′ HI(ω′)
ω−ω′ , (14.111)

and

HI(ω) = −1

π
P

∞∫
−∞

dω′ HR(ω′)
ω−ω′ .

The symbol P signifies that the principal value of a di-
vergent integral should be taken. In many cases, this
requires no special steps, and definite integrals from
integral tables give the correct answers.

These equations are known as dispersion relations.
They arise from doing an integral in frequency space to
calculate the impulse response for t < 0. The fact that
this calculation must return zero means that H(ω) must
have no singularities in the complex frequency plane
for frequencies with a negative imaginary part. Similar
dispersion relations apply to the natural log of the trans-
fer function, relating the filter gain to the phase shift as
in (14.100)

G(ω) = G(0)− ω2

0.1151π
P

∞∫
−∞

dω′ Φ(ω′)
ω′(ω′2 −ω2)

(14.112)

and

Φ(ω) = 0.1151 ω

π
P

∞∫
−∞

dω′ G(ω′)
ω′2 −ω2

.

Because G(ω) is even and Φ(ω) is odd, both integrands
are even in ω′, and these integrals can be replaced by
twice the integral from zero to infinity. The second
equation above is particularly powerful. It says that, if
we want to find the phase shift of a system, we only
have to measure the gain of the system in decibels, mul-
tiply by 0.1151, and do the integral. Of course, it is in
the nature of the integral that in order to find the phase
shift at any given frequency we need to know the gain
over a wide frequency range.

The dispersion relations for gain and phase shift
also arise from a contour integral over frequencies with
a negative imaginary part, but now the conditions on

H(ω) are more stringent. Not only must H(ω) have
no poles for Im(ω) < 0, but ln H(ω) must also have
no poles. Consequently H(ω) must have no zeros for
Im(ω) < 0. A system that has neither poles nor zeros
for Im(ω) < 0 is said to be minimum phase. The disper-
sion relations in (14.112) only apply to a system that is
minimum phase.

14.7.6 Matched Filtering

One of the most important problems in acoustics espe-
cially in sonar, nondestructive evaluation and medical
imaging [14.2] involves the transmission of a known
pulse or signal into the medium under investigation
followed by its reception. The noisy, distorted, mea-
surement is processed to extract the pulse that has
been reflected or scattered back from an object (tar-
get or scatterer). For instance, sonar, much like radar,
uses this information to obtain the range of the object
from the transmitter by simply monitoring the round-
trip travel time. In both nondestructive evaluation and
medical imaging, an ultrasonic pulse is transmitted into
the material or tissue medium under investigation and
the received signal is processed to remove the effects
of the transmitted pulse (deconvolution) to produce an
image of the medium for analysis [14.3].

The basic problem to be solved is that of maximiz-
ing the output signal-to-noise ratio (SNROUT) at the
receiver. The underlying system model is given by

y(t) = h(r, t)∗ x(t)+n(t) , (14.113)

where x is the transmitted pulse, y is the received sig-
nal or measurement, h is the impulse response of the
medium in both space r and time t, n is the contaminat-
ing zero-mean, uncorrelated (white) noise and ∗ is the
convolution operation.

The problem is:

Problem
GIVEN a known signal x(t) in additive uncorrelated
(white) noise n(t) of (14.113), FIND the optimum filter
response, hm(t) that maximizes the output signal-to-
noise ratio.

Here the output SNR is defined by

max
mf

SNROUT = ξOUT

E{n2(t)} = |hm(t)∗ x(t)|2
σ2

n

=
∣∣∣∫ T

0 dτhm(τ)x(t − τ)
∣∣∣2

σ2
n

(14.114)
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for hm the optimum processor or matched-filter, ξOUT,
the output signal energy and σ2

n the noise variance.
The solution to this problem is classical and reduces

to applying the Schwartz inequality [14.4, 5] to the nu-
merator of the previous expression, that is,

|hm(t)∗ x(t)|2 ≤ ξmf × ξx (14.115)

for ξ the respective energies. When hm(t) is related to
x(t) by a constant, say unity, then this relation is satis-
fied with equality at some time T such that its solution
is

hm(t) = x(T − t) (14.116)

the time-reversed, shifted (by T ) signal or replicant.
The matched filtering operation applied to the received
measurement is therefore

ρxy(T − t) = E{hm(t)∗ y(t)} = E{x(T − t)∗ y(t)} ,

(14.117)

where ρxy is the cross-correlation function of the known
signal x(t) and the measurement y(t).

As an example, consider the problem of detecting
and locating a known acoustic pulse of unity amplitude
(inset) transmitted and received on a noisy sensor (0 dB
SNR) as shown in Fig. 14.8. The matched-filter is the
time-reversed, shifted replicant of the pulse which is

Pulse
Matched-filter output
Data

0 50 100 150 200 250

Amplitude

Sample no.

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

Fig. 14.8 Matched-filtering of noisy acoustic pulse: Pulse
(inset), measurement/noise (dashed) at 0 dB SNR matched-
filter output (filled line)

used to process the raw data. After processing (cross-
correlation) of the data and replicant the result distinctly
shows the location of the pulse in the measurement
data.

14.7.7 Time-Reversal Processor

One of the more intriguing techniques in acoustic
signal processing is based on the concept of time-
reversal [14.2]. We have already noted in Sect. 14.7.6
that the optimum matched-filter is the time-reversed,
shifted replicant of the transmitted pulse, hm(t) = x(T −
t). In digital signal processing (e.g. MATLAB [14.6]),
two-pass filter design to remove phase lag is a standard
operation that actually time reverses the original filter
( f (t)) output to achieve a zero-phase design, that is,

F [ f (t)∗ f (−t)] = [F(ω) × F(−ω)]
= [F(ω) × F∗(ω)] = |F(ω)|2 ,

(14.118)

where ∗ is the conjugation operation.
In acoustics, time-reversal (T/R) is an intricate

part of nondestructive evaluation (flaw detection) and
medical operations (lithotripsy) [14.7]. T/R can be ap-
plied in two basic scenarios. The first is a monostatic
operation in which a transceiver (transmitter/receiver)
device transmits the signal or wave (transceiver array)
into the medium and receives the reflected or scat-
tered signal. The second is a bistatic operation that
occurs when a signal or wave is launched into the
medium by a transmitter(s) and captured by a separate
receiver(s) [14.8]. The fundamental theory can be found
in [14.2] and [14.8] for each case, respectively.

The key to the time-reversal processor evolves from
the matched-filter concept in which the known sig-
nal is simply replaced by the known impulse response
or Green’s function of the medium in both space
and time/frequency, g(r, r0; t) or G(r, r0; ω). For time-
reversal, we have that the matched-filter solution is
again found by maximizing the output SNR leading to
the modified numerator of (14.115)

|hm(t)∗ g(r, r0; t)|2 ≤ ξmf × ξg , (14.119)

that is satisfied with equality at some time T , if

hm(t) = g(r, r0; T − t) . (14.120)

Thus, for T/R, the optimal matched-filter solution
is the time-reversed, shifted Green’s function. Note that
in order for the time-reversal property to hold, then spa-
tial reciprocity from source-to-receiver (r0 → r) must
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be valid for receiver-to-source (r → r0) or, formally,
g(r, r0; T − t) ⇔ g(r0, r; T − t).

If an array is employed then these results include
the ability to focus the beam on reversal back to the
source yielding the optimal space/time matched-filter
solution [14.5]. Optimality occurs in temporal (autocor-
relation peak) and spatial (array focus) gains. For this
case, T/R processing is essentially a technique to fo-
cus on a reflective object through a homogeneous or
inhomogeneous medium that is excited by a broadband
source. It converts a divergent wave generated from
a source into a convergent wave focused on the source
while compensating for all geometric distortions and
reducing the associated noise [14.7].

We illustrate the basic T/R operation (bistatic) in
Fig. 14.9 where we observe (1) a point source transmit-
ting through the medium creating a divergent wavefront
sampled spatially by the receiver array, much like drop-
ping a pebble into a puddle, that is,

y(r�, t) = g(r�, r; τ)∗ δ(r − r0; τ − t) = g(r�, r0; t) .

(14.121)

The received data is (2) time-reversed

y(r�, −t) = g(r0, r�; −t) (14.122)

and re-transmitted propagating back through the medi-
um focusing on the source

x̂(r0, t) = g(r�, r0; t)∗ y(r�, −t)

= g(r�, r0; t)∗ g(r0, r�; −t) . (14.123)

Applying reciprocity, we have (3)

x̂(r0, t) = [g(r�, r0; t)∗ g(r�, r0; −t)
]= Agg(r�, t) ,

(14.124)

where Agg(r�, t) is the autocorrelation function at the
�-th sensor. Expanding these relations across an entire
L-element receiver array gives

x̂(r0, t) =
L∑

�=1

Agg(r�, t) = L ×Agg(r, t) . (14.125)

It can be observed by this example the key to
T/R processing is to time-reverse the Green’s function
(replicant) in order to mitigate the effects of the medium
and perform matched-filtering of Sect. 14.7.6. In prac-
tice, obtaining the Green’s function in the bistatic case
is obtained by first transmitting an impulse-like pulse
from the source to the array and then performing the
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Fig. 14.9a–c Time-reversal processing: (a) Divergent wavefront
point source transmission. (b) Reversal convergent wavefront fo-
cusing. (c) Time-reversal operation: convolve and sum

T/R operations above [14.7]. The monostatic case is
more complex but achieves similar results [14.2].

As an example, consider a communications problem
where a coded information sequence is to be recovered
from a signal transmitted through the channel medium
to a client [14.8]. The client station first transmits a pi-
lot signal that is a narrow pulse (impulse-like) to the
base station receiving array establishing a link or path
(g(r�, r0; t)). Once the link is established, the base sta-
tion transmits a coded message (information) sequence
i(t) consisting of ones and zeros to the client along with
the reversed Green’s function learned from the received
pilot

y(r�, −t) = g(r0, r�; −t)∗ i(t) (14.126)

as shown in Fig. 14.10a where we see the reversed
transmission with the coded message highlighted. After
propagation through the medium the data are received
at the client station as

zclient(r0, t) = g(r�, r0; t)∗ y(r�, −t)

= [g(r�, r0; t)∗ g(r0, r�; −t)
]∗ i(t)

(14.127)

Again applying reciprocity and recognizing the autocor-
relation (with array gain), we have

zclient(r0, t) = L ×A(r; t)∗ i(t) (14.128)
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Fig. 14.10a,b Time-reversal commu-
nications: (a) Reversed, transmitted
information sequence. (b) Zoomed
T/R processed data extracting the
transmitted code

as shown in Fig. 14.10b where we see the original re-
versed transmission and the desired code along with
the recovered symbols. Clearly placing a threshold at 0
and applying (> 0 → 1) would recover the information
perfectly. Thus, T/R establishes a unique link (path)
between base and client stations using the learned
Green’s function enabling an increase in SNR, both
temporal and spatial as well as establishing a secure
channel.

14.7.8 Spectral Estimation

Unfortunately measured signals rarely contain readily
available desired information; they are contaminated
with random noise (Sect. 14.9). Deterministic process-
ing or analysis techniques like Fourier transforms can be
calculated even though theoretically the transform does
not exist for this case. However, the Wiener–Khintchine
relation (Sect. 14.5) relates the autocorrelation (deter-
ministic) to the power spectrum as a Fourier transform
pair. Thus, the basis of random signal processing resides
in applying this relation in some form with the expecta-
tion operation incorporated to mitigate the randomness,
that is, for the sampled random signal xk we have

Pxx(z) = Z [ρxx (�)] = E{X(z)X∗(z)} and

ρxx (�) = 1

2πi

∮
Pxx (z)z−� dz . (14.129)

where z indicates the z-transform (Sect. 14.12). There-
fore, the autocorrelation and power spectrum enable
a way to statistically characterize a random signal.

Classical Spectral Methods
There are a variety of methods to estimate the power
spectrum from noisy measurements. Classical methods
evolved with the discovery of the fast Fourier trans-
form (FFT) techniques that led to the development of
the correlation method of spectral estimation which is
an application of the Wiener–Khintchine relation and is
given by

P̂xx(z) = Z
[
W(k) × ρ̂xx (�)

]
, (14.130)

where ρ̂xx is an estimate of the autocorrelation function
using lag sums or the FFT

ρ̂xx(�) = 1

Nx

Nx∑
k=0

x(k)x(k +�) , � = 0, 1, 2, · · ·

(14.131)

for lag �, data length Nx and spectral window function
W that must satisfy certain positivity constraints (e.g.
maximum at origin) [14.9, 10].

Another well-known classical approach, especially
useful when long data records are available, is the aver-
aged periodogram method [14.9]. Here windowed data
are sectioned, transformed (FFT) to create the peri-
odograms that are then averaged (P̄xx (z)) to produce the
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estimate,

P̂xx(z) = P̄xx(z) = 1

Nx

Nx∑
n=1

|X(z; n)|2 . (14.132)

Both methods suffer from the tradeoff of bias/var-
iance. For the correlation method the spectral window
choice specifies this tradeoff, while the periodogram ap-
proach enables choice of section window length and the
number of averages performed.

Parametric Spectral Methods
More of the current spectral estimation techniques in-
corporate parametric models of the signal into the
processor. We start with the discrete transfer function
model of Sect. 14.12, but with a noisy input for the
random case. The signal measurement Y (z) is given by

H(z) = Y (z)

E(z)
= B(z)

A(z)
, (14.133)

where E(z) is white noise with variance σ2, B(z) = b0 +
b1z−1 +· · ·+ bNb z−Nb and A(z) = 1 + a1z−1 +· · ·+
aNa z−Na are numerator and denominator polynomials
and can be factored as in Sect. 14.12 into the so-called
zeros and poles of H(z). Thus, with this representation
various models can be characterized as special cases,
that is,

Hpole-zero(z) = σ B(z)

A(z)
,

Hall-pole(z) = σ

A(z)
,

Hall-zero(z) = σ B(z) . (14.134)

Taking inverse Z-transforms of these relations and ap-
plying the delay property z−qY (z) → yk−q gives the
equivalent difference equation models as

yk +a1 yk−1 +· · ·+aNa yk−Na

= σ (b0ek +b1ek−1 +· · ·+bNb ek−Nb )

(pole-zero) ,

yk +a1 yk−1 +· · ·+aNa yk−Na

= σb0ek (all-pole) ,

yk = σ (b0ek +b1ek−1 +· · ·+bNb ek−Nb )

(all-zero) , (14.135)

where all-pole is called an autoregressive (AR) model,
all-zero is called a moving average (MA) model and
pole-zero model is called an autoregressive-moving-
average (ARMA) model. These models prove quite
useful in parametric signal processing applications as

well spectral estimators because the power spectrum
can be represented as

Ppole−zero(z) = Hpole−zero(z) × Hpole−zero(z−1)

= |Hpole−zero(z)|2 = σ2|B(z)|2
|A(z)|2 ,

Pall−pole(z) = Hall−pole(z) × Hall−pole(z−1)

= |Hall−pole(z)|2 = σ2

|A(z)|2 ,

Pall−zero(z) = Hall−zero(z) × Hall−zero(z−1)

= |Hall−zero(z)|2
= σ2|B(z)|2 . (14.136)

Parametric spectral estimation techniques require
two steps: (1) estimate the parameters of the paramet-
ric model {ân}, {b̂n}; and (2) calculate the corresponding
power spectrum as shown above varying z or using the
FFT.

A wide variety of methods exist to estimate the
power spectrum parametrically [14.11]. Perhaps one of
the most popular techniques evolved from the process-
ing of seismic and speech signals [14.9]. It is called
linear prediction or equivalently the maximum entropy
method (MEM) in which the algorithm is applied to
estimate an all-pole model from noisy measurements
and then used to estimate the spectrum as in (14.136).
The linear predictor solves the following set of equa-
tions recursively for the unknown parameters using the
well-known Levinson recursion [14.11]

â = R−1
xx × rxx , (14.137)

where Rxx is an Na × Na Toeplitz (covariance) matrix
and rxx is an Na × 1 covariance vector. Once the pa-
rameters are estimated using the recursion, the power
spectrum is estimated as discussed before.

Another technique that has evolved is the minimum
variance distortionless response (MVDR) processor
that is considered a data adaptive method because it
designs a set of optimal narrowband filters at each spec-
tral frequency bin while minimizing the measurement
noise variance. It is similar to the classical correla-
tion/periodogram techniques with the exception that the
narrowband filters adapt to the process. Theoretically,
the MVDR processor attempts to minimize the out-
put (noise) power at each spectral bin subject to the
constraint that the narrowband filters pass center fre-
quencies (ωm) at each bin with unity gain, |F(ωm)| = 1.
Mathematically, the formal problem is to

min
f

f T Ryy f � |F(ωm)| = 1 , (14.138)
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where f is an Ny × 1 vector of filter weights, Ryy is the
Ny × Ny covariance matrix (Toeplitz). The constraint in
the Fourier domain is

|F(ωm)| = 1 = dT(ωm) × f (14.139)

for dT(ωm) = [1e−iωn · · · e−iNyωn ].
The solution to this problem is obtained by applying

Lagrange multipliers to obtain ([14.11] for more details)

PMVDR(ωm) = 1

d†(ωm)R−1
yy d(ωm)

m = 1, 2, · · · ,

(14.140)

where † stands for the Hermitian (conjugate) transposed
operator.

In practice, the MVDR method exhibits more
resolution than the classical correlation/periodogram
estimators, but less than the all-pole (AR) technique. It
is interesting to note that there exists a relationship be-
tween the MEM and MVDR spectral estimators called
Burg’s formula [14.11] given by

1

PMVDR(ω)
= 1

Na

Na∑
n=1

1

PMEM(ω; n)
, (14.141)

which provides and alternate method of calculating
PMVDR by averaging all lower order AR models.

Subspace Spectral Methods
Another class of spectral estimators that has evolved is
the eigenvector or subspace methods. It follows from
the covariance matrix Ryy and its eigen-decomposition.
An eigenvalue λ of a matrix R is defined as a root of
det(R−λI) with corresponding eigenvector e satisfying
the relation (R −λI) × e = 0. The idea is based on esti-
mating sinusoidal signals in uncorrelated noise [14.11]
and was extended to the case of multiple sinusoids.
The well-known multiple signal classification (MUSIC)
method of spectral estimation is a special case of
the eigenvector methods with the eigenvalues set to
unity [14.12].

A suite of algorithms evolved with the basic idea
of first finding the rank of Ryy or equivalently the
dimension (Ne) of the signal subspace by eigen-
decomposition. If en is the n-th eigenvector of Ryy, then
the corresponding frequency (spectral) line estimator is
given by

PEIG(ωm) = 1
∑Ny

n=Ne+1

∣∣∣ 1
λn

d†(ωm)en

∣∣∣2
m = 1, 2, · · · (14.142)

Ne is the number of independent signal (eigenvectors)
vectors or equivalently the rank of Ryy.

It should also be noted that the temporal spectral and
frequency line estimators can be extended to the spa-
tial domain, that is, spatial spectral (power) estimation.
These techniques lead to the popular direction of arrival
(DOA) or localization methods mimicking those of the
time domain with the a wave space-time signal replac-
ing the time series x(r, t) → x(t), the spatial wavenum-
ber replacing the temporal frequency (κm → ωm) and
therefore, the spatial power spectrum replacing the
spectrum P(κm) → P(ωm) [14.12], [14.13].

Consider an application of these methods to synthe-
sized data consisting of sinusoids (35 Hz, 50 Hz, 56 Hz,
90 Hz) in broadband (30–70 Hz) noise at 0 dB SNR in
which we:

• Constructed an ensemble of 100 realizations of the
process;• Selected a spectral estimation method: FFT, corre-
lation, periodogram, MVDR, MEM, MUSIC;• Performed the spectral estimation for each ensem-
ble member (green in Fig. 14.11);• Estimated the average power spectrum over the en-
semble (red in Fig. 14.11); and• Estimated the average spectral peaks (blue list in
Fig. 14.11).

The results of the application are shown in Fig. 14.11.
Noting the performance of each of the estimators,
we see some of their interesting characteristics. In
Fig. 14.11a the FFT method produced a set of very sharp
spectral peaks in the correct frequency locations but un-
fortunately also included many extraneous peaks due to
the randomness of the bandpass noise. The correlation
method (Fig. 14.11b) performed the similarly but used
the windowed covariance function to reduce the noise,
while the periodogram (Fig. 14.11c) method smoothed
the signal eliminating some of the desired peaks. The
MVDR method (Fig. 14.11d) produced an enhanced
spectral estimate with noise reduction capability as
well. Both MEM and MUSIC frequency-line estima-
tors (Fig. 14.11e,f) performed quite well and extracted
the sinusoidal spectral line reliably with smaller vari-
ances. The completes the section on spectral estimation
using classical, parametric and eigen-decomposition
techniques.

Thus, classical spectral estimators fall into the all-
zero (MA) category, while the parametric estimators fall
into the pole-zero (ARMA) representations while the
eigen-decomposition processors fall into the subspace
category.
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Fig. 14.11a–f Power spectral estimation of sinusoids (35 Hz, 50 Hz, 56 Hz, 90 Hz) in bandpass (30–70 Hz) noise at 0 dB SNR:
(a) FFT method, (b) correlation method, (c) average periodogram method, (d) MVDR method, (e) MEM method, (f) MUSIC
method

Spectrogram
An extension of spectral estimation techniques to
time-varying spectra enables the development of the
spectrogram which is a member of the time-frequency
class of spectra (frequency versus time versus power).
Evolving from speech and sonar (bearing-time) sys-
tem developments, the spectrogram is a powerful
tool [14.3, 9]. It can be calculated using both clas-
sical and parametric methods. The classical spectro-
gram estimator uses the short-time (or windowed)
Fourier transform (STFT) in which a small (in length)
data window is slid through the data record us-
ing the FFT spectral approach, while the paramet-
ric approach relies on the sequential estimation of
model (AR, MA, ARMA) parameters providing an

instantaneous spectral estimate at each step (if de-
sired) [14.3].

The spectrogram or more properly instantaneous
power spectrum is defined by P(z; k), where z is the
transform (frequency) and k is the time sample (index).
The classical FFT spectrogram estimator is given by

P(z; k) = ∣∣F [
Wk × yk

]∣∣2 (14.143)

for W the short-time window function, while the para-
metric approach for the pole-zero (ARMA) spectral
estimator is

P̂ARMA(z; k) =
∣∣∣∣∣
σ B̂(z; k)

Â(z; k)

∣∣∣∣∣
2

, (14.144)
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Fig. 14.12 Spectrogram of sinusoids
in bandpass noise at 0 dB SNR using
an ARMA parametric processor

the polynomials B(z; k) and A(z; k) are identical to
those of (14.133) but with time-varying coefficients
{bn → bn(k); an → an(k)}.

The parameter estimation technique is sequential in
that each time sample is processed individually and the
ARMA parameters updated recursively (in time), that
is,

Θ̂k = Θ̂k−1 + Gk
(
yk − ŷk|k−1

)
, (14.145)

where Θ is the joint parameter (a and b coefficients)
vector, G is the weight vector and ŷ is the one-step pre-
diction of y based on k −1 samples [14.3]. Once these
parameters are estimated, the spectrogram is estimated
instantaneously at k (if desired) as P̂ARMA(z; k).

Reconsider the bandpass sinusoids example of the
previous sections and process it with the ARMA spec-
trogram estimator. The results are shown in Fig. 14.12.
Here we see that the spectra at the various sinusoidal
frequencies appear as horizontal lines of constant fre-
quency (red) across the spectrogram after the initial
transients settle down. If at any time there were any
changes in the spectrum, then the lines would indicate
these changes. This approach is especially useful in con-
dition monitoring for vibrations in machinery [14.14].
This completes the section, next we extend many of

these ideas to incorporate more direct knowledge of the
underlying acoustics into the processors.

14.7.9 Model-Based Signal Processing

Inherently, it seems like the more a-priori knowledge
about the measurement and its underlying acoustics that
can be incorporated into the processor, the better we can
expect it to perform – as long as the information that is
included is correct. One strategy called the model-based
approach provides the essence of model-based signal
processing. Many believe that all of the signal process-
ing schemes can be cast into this generic framework.
Simply, the model-based approach is

incorporating mathematical models of both physi-
cal phenomenology and the measurement process
(including noise/uncertainty) into the processor to
extract the desired information.

This approach provides a mechanism to include knowl-
edge of the underlying acoustics in the form of
mathematical propagation models, measurement sys-
tem models and accompanying uncertainties such as
instrumentation noise or ambient noise as well as model
uncertainties directly into the resulting processor [14.3].
In this way the model-based processor (MBP) enables
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the interpretation of results directly in terms of the prob-
lem acoustics. The model-based processor is really an
acoustic modeler’s tool enabling the incorporation of
any a-priori information about the particular applica-
tion problem to extract the desired information. The
fidelity of the model determines the complexity of the
processor. These models can range from simple implied
non-physical representations of the measurement data
such as the Fourier or wavelet transforms to parametric
models used for data prediction, to lumped mathemat-
ical physical representations characterized by ordinary
differential equations to full physical partial differen-
tial equation models capturing the critical details of
the acoustic wave propagation in a complex medium.
The dominating factor of which model is the most
appropriate is usually determined by how severe the
measurements are contaminated with noise and the un-
derlying uncertainties encompassing the philosophy of
letting the problem dictate the approach. If the signal-
to-noise ratio of the measurements is high, then simple
non-physical techniques can be used to extract the de-
sired information. Selecting the appropriate model to
increase the SNR usually requires that the complex-
ity of the model set increases to achieve the desired
results.

A simple spectral estimation example of estimating
sinusoids in noise as shown in Fig. 14.13 can be used
to illustrate this approach. Suppose we have a noisy
acoustical measurement (Fig. 14.13a) of an oscillation
in random noise (SNR = 0 dB) and we would like to
extract the desired information (oscillation frequency).
Our first simple approach to analyze the measurement
data would be to take its Fourier transform and inves-
tigate the various frequency bands for resonant peaks.
The result is shown in (Fig. 14.13b), where we basically
observe a noisy spectrum and a set of potential reso-
nances – but nothing really conclusive. Next we apply
a broadband power spectral estimator with the resulting
spectrum shown in Fig. 14.13c. Here we note that the
resonances have clearly been enhanced and appear in
well-defined bands while the noise is attenuated by the
processor, but their still remains a significant amount
of uncertainty in the spectrum due to all of the result-
ing spectral peaks. Upon seeing these resonances in the
power spectrum, we might proceed next to a model
to enhance the resonances even further by using our
a-priori knowledge that there is essentially one dom-
inant resonance we seek. The results of applying this
processor are shown in Fig. 14.13d.

Finally, we use this extracted model to develop an
explicit model-based processor (MBP) by developing
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Fig. 14.13a–e Simple sinusoid in noise oscillation example.
(a) Noisy oscillation (10.54 Hz) in noise (0 dB). (b) Fourier spec-
trum. (c) Correlation method spectrum. (d) MEM method spectrum
(AR model). (e) Model-based method spectrum (ODE)

a set of harmonic equations for a sinusoid in noise and
construct the MBP based on these relations.

yk = α sin(ω0k)+nk ,

(Measurement/Noise Model)

ŷk = α̂ sin(ω̂0k) , (MBP)

P̂ŷ ŷ(z) = F
[
ρŷ ŷ(�)

]
, (MBP-PSD)

(14.146)

where the MBP uses the knowledge of the sinusoidal
model and noise statistics to estimate the parameters
(α̂, ω̂0) and produce the enhanced spectral estimate.
The results for the MBP are shown in Fig. 14.13e. So
we see that once we have defined the acoustical prob-
lem, assessed the a-priori information including the
underlying phenomenology, then we can proceed to in-
corporate more sophisticated acoustic models into the
paradigm.
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The Wiener Filter
Model-based signal processing requires three primary
ingredients to develop a processor:

1. The model
2. The criterion
3. Algorithm.

Typically, once 1. and 2. are specified then 3. can
follow.

One of the most robust input/output models avail-
able in acoustic signal processing is the finite impulse
response (FIR) or equivalently moving-average (MA)
model (hk) expressed by the convolution operation of
(14.45). One of the most popular applications of the FIR
model is to identify an unknown system or black box by
exciting it with a known input and measuring its output
in order to provide data to estimate its impulse response.
This is the original Wiener filter problem and solutions
have been obtained in both time and frequency domains.

Suppose an unknown system is exited by an input xk
and with measured output yk. We would like to obtain
an estimate (linear) of the embedded signal sk based on
past excitation data, that is,

sk =
Nh∑

n=0

hn xk−n . (14.147)

If we represent the measurement yk as

yk = sk +nk , (14.148)

where n is zero-mean, white noise of variance Rnn , then
the optimal estimator is the solution to

min
h

Jk = E{e2
k} , (14.149)

where ek := yk − sk.
Following the standard minimization approach, we

differentiate (14.149) with respect to h j , set the result
to zero and obtain the orthogonality condition

∂J

∂h j
= 2E

{
ek

∂ek

∂h j

}
= 0 . (14.150)

The error gradient is

∂ek

∂h j
= ∂

∂h j
(yk − sk) = ∂

∂h j

⎛
⎝yk −

Nh∑
n=0

hn xk−n

⎞
⎠

= xk− j , (14.151)

and therefore substituting (14.151) into (14.150), we
obtain the orthogonality conditions

E
{
ekxk− j

}= E

⎧⎨
⎩
⎛
⎝yk −

Nh∑
n=0

hn xk−n

⎞
⎠ xk− j

⎫⎬
⎭

= 0 , j = 0, . . . , Nh , (14.152)

which yields the normal equations or the discrete
Wiener–Hopf equations for the estimation problem as

Nh∑
n=0

hn Rxx (n − j) = ryx( j) , j = 0, . . . , Nh .

(14.153)

Expanding these equations over the indices enables us
to obtain

Rxxh = ryx , (14.154)

where Rxx ∈ R(Nh+1)×(Nh+1) is a Toeplitz matrix. The
optimal estimate, ĥ is obtained by inverting Rxx to give
the Wiener filter solution,

ĥ = R−1
xx ryx . (14.155)

We summarize the batch FIR solution as:

• Criterion: J = E{e2
k};• Models:

– Measurement: yk = sk +nk,
– Signal: sk =∑Nh

n=1 hn xk−n ,
– Noise: Rnn ,• Algorithm: ĥ = R−1

xx ryx .

From this solution a variety of other problems can be
solved such as the optimal deconvolution problem, in
which the output and impulse response sequences {yk}
and {hk} are given and the input sequence {x̂k} is to be
found. That is, the Wiener solution to this problem is

x̂ = R−1
hh ryh , (14.156)

because convolution is an commutative operation (y =
h ∗ x = x ∗h).

A related application is that of time delay estimation
where we assume a homogeneous medium (attenuation
and delay)

hk =
Nd∑

m=1

αmδ(k − τm) , (14.157)

where α ≤ 1 represents the weights (attenuation), τ the
delays and hk is essentially an unequally-spaced se-
quence of impulses of decreasing amplitudes, that is,
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Fig. 14.14a–c Optimal time delay
estimation results for NDE applica-
tion: (a) Overlay of synthesized and
estimated NDE data. (b) Estimated
impulse response (time delays) and
envelope. (c) Squared, thresholded,
peak detected impulse response for
time-delay estimates

a delayed-attenuated impulse train. The objective in this
delay estimation problem is to extract (estimate) the im-
pulse train and locate the peaks corresponding to the
delay times.

We apply this model-based approach to synthesized
5 MHz ultrasonic data sampled at 20 ns. The objective
is NDE of material for flaw damage (pits) caused by ab-
lation. The synthesized data are shown in Fig. 14.14a
along with the resulting estimated response or fit using
the optimal estimator of (14.156), ŷk = ĥk ∗ xk. Here the
order of the FIR processor was selected to be Nh = 2500
weights for the 2750 simulated sample data set. Clearly,
the estimated response overlays the data quite well pro-
viding a sanity check on the processor. In Fig. 14.14b,
the estimated impulse response is shown along with
its corresponding envelope. Here we note in the physi-
cal application that the ideal delayed/attenuated impulse
train corresponding to the reflections from the flaws
is distorted by the more realistic, highly scattering
medium. However, the peaks corresponding to the de-
lays indicating the flaw locations are clearly discernible.
A practical approach is to use the squared impulse
response, select a reasonable threshold for peak detec-
tion and locate the peaks. The results of this operation

along with the corresponding envelope are shown in
Fig. 14.14c. The estimated delays correspond reason-
ably well to the known flaw locations estimated from
the delay and known sound-speed of the material.

We summarize the all-zero time-delay estimation
approach as follows:

• Criterion: J = E{ε2
k };• Models:

– Measurement: yk = sk +nk,
– Signal: sk = h(r; k)∗ pk,
– Noise: Rnn ,
– Algorithm: ĥ = R−1

ppryp,
– Peak Detect: τ̂k = maxk ĥk ∀k.

The Kalman Filter
The Kalman filter is the optimal, linear, recursive, state
(signal) estimator in Gaussian noise [14.3, 15]. It in-
corporates all of the information available. The filter
processes the measurement data to provide an estimate
of the parameters (states, signals, variables, etc.) by in-
corporating:

1. Process (acoustics) and measurement system knowl-
edge (dynamics)
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2. Statistical knowledge of process and measurement
noise as well as model uncertainties

3. Any information about the initial conditions or re-
quired parameters.

It combines all of this information along with the
data to provide the best estimate possible.

The Kalman filter can be thought of as a signal
reconstructor, a measurement filter and a whitening
filter all wrapped up into one processor. The mathe-
matics become quite involved and various derivations
evolve from the purely Bayesian perspective, that is, the
Kalman filter can be thought of as an optimal processor
recursively calculating the required conditional means
and covariances of the posterior Gaussian distribution
of the signals (states). It can also be thought of as an
orthogonal projector via the Gram–Schmidt procedure
over a random vector space or equivalently the inno-
vations approach to orthogonal decomposition. It can
also be thought of as the minimum mean-squared er-
ror processor evolving from a weighted least-squares
perspective. All of these approaches lead to the same
solution, the Kalman filter, only because there is one
unique optimum for this estimation problem.

Perhaps the simplest way to approach the develop-
ment of this model-based processor is by observing its
recursive form. All recursive (or sequential) processors
have the form

ŜNEW = ŜOLD + Ke , (14.158)

where the NEW estimate is simply the OLD estimate
(Ŝ) plus a K -weighted error (e) term. This is precisely
the recursive form of the Kalman filter

ŝk|k︸︷︷︸
NEW

= ŝk|k−1︸ ︷︷ ︸
OLD

+ Kk︸︷︷︸
GAIN

(
yk − ŷk|k−1

)
︸ ︷︷ ︸

ERROR

, (14.159)

where ŝk|k is the signal or state estimate at time k given
all of the data up to time k, Kk is the weight or gain
and ek is the innovation or residual error given by the
difference between the measurement data yk and its
corresponding estimate ŷk|k−1. In a nutshell, (14.159)
is the primary Kalman filter recursion which follows
the simple recursive form of (14.158). The rest of the
calculations are based on the model and conditional
covariances that are also calculated recursively.

The underlying representation for this processor is
the Gauss–Markov model in state-space form [14.3]
given by

sk = Ask−1 + Buk−1 +wk−1 ,

yk = Csk +vk , (14.160)

for s, u, y the Ns-signal (state), the Nu-input (determin-
istic) and Ny-measurement vectors, w, v the zero-mean,
random Gaussian noise vectors with covariance matri-
ces, Rww and Rvv, and the appropriately dimensioned
system and measurement matrices, A, B, C. Note that
this model is a linear transformation of Gaussian pro-
cesses causing all of the distributions to be Gaussian
and has the Markov property that the signal at k only
depends on it past value at k −1.

The simplest example of a Kalman filter is the recur-
sive form for the sample mean estimator. If the sample
mean is defined by

Ŝ(K ) = 1

K

K∑
n=1

sn ,

then removing the K -th term from the sum, and recog-
nizing the expression for Ŝ(K −1) leads to

Ŝ(K ) = 1

K
sK + K −1

K
Ŝ(K −1)

or rearranging, we obtain the desired recursive form

Ŝ(K )︸ ︷︷ ︸
new

= Ŝ(K −1)︸ ︷︷ ︸
old

+ 1

K︸︷︷︸
gain

[
sK − Ŝ(K −1)

]
︸ ︷︷ ︸

error

.

To obtain some insight into the filter operation, we can
think of it in terms of a predictor-corrector paradigm in
which the underlying phenomenological/measurement/
noise models are used to predict the signal in-between
the arrival of a new measurement. Once the new mea-
surement data is available, the processor corrects the
predicted signal estimate (OLD) as in (14.159). The
prediction-step embedding the dynamic model is given
by

ŝk|k−1 = Aŝk−1|k−1 + Buk−1 (Signal prediction) ,

(14.161)

which is accompanied by its corresponding prediction
error covariance, P̃k|k−1 := cov(sk − ŝk|k−1) for

P̃k|k−1 = AP̃k|k−1 AT + Rww

(Covariance prediction) , (14.162)

incorporating A the process (system) matrix, P̃ the
previous error covariance and Rww, the process noise
or uncertainty covariance matrix. So we see that the
dynamical model (A,B) and statistics (Rww,P̃) are in-
corporated into this step quite naturally.
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The correction-step (or update) incorporates the
measurement data into the processor through the recur-
sive form of (14.159) discussed earlier, that is,

ŝk|k︸︷︷︸
corrected

= ŝk|k−1︸ ︷︷ ︸
predicted

+ Kkek︸︷︷︸
DATA

(Signal correction) ,

(14.163)

along with the corresponding innovation (ek) and cor-
rected error covariance, P̃k|k := cov(sk − ŝk|k) given by

ek = yk − ŷk|k−1 = yk −Cŝk|k−1

(Error innovation) , (14.164)

and

P̃k|k = P̃k|k−1 − KkCT P̃k|k−1

(Covariance correction) , (14.165)

incorporating the gain, Kk and measurement system
model, C along with the predicted error covariance of
the previous step. The corrected error covariance en-
ables us to observe the quality (error) of the signal
estimate. The innovation (measurement error) plays a
key role in monitoring filter performance (on-line), since
the optimal solution (in theory) requires that {ek} be
a zero-mean and uncorrelated (white) sequence, if the
processor is operating properly. Performing whiteness
tests is a great advantage compared to other statistical
processors. The accompanying innovations covariance
is also computed as part of the scheme

Ree = C P̃k|k−1CT + Rvv

(Innovations covariance) , (14.166)

which incorporates both measurement system model
(C) and measurement statistics (Rvv).

Finally, to complete the processor, the weight or
gain (Kalman gain) is given by

Kk = P̃k|k−1CT R−1
ee , (Gain) . (14.167)

We summarize the Kalman filter or state-space MBP
steps in Fig. 14.15.

Next let us consider a structural vibration signal
enhancement problem. The structure (one story) is gov-
erned by the dynamic equation [14.14]

mẍ(t)+ cẋ(t)+ kx(t) = f (t) , (14.168)

where x is the displacement, f is the forcing function
and m, c, k are the respective mass, damping and spring
constants with the displacement measurement of gain G
given by

y(t) = Gx(t) . (14.169)
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~
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~
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~
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Fig. 14.15 Kalman Filter MBP: Predictor-Corrector Operations

The objective is to develop the Kalman filter for
this problem. First, we define the state vector as
s(t) := [x(t)ẋ(t)]T and input u(t) = f (t). Solving for the
highest derivative in (14.168), we obtain the state-space
relations

ṡ(t) = Acs(t)+ Bcu(t)

y(t) = Ccs(t) (14.170)

with continuous-time (subscript c) representations

Ac =
⎡
⎢⎣

0 | 1

− − −
− k

m | − c
m

⎤
⎥⎦ , Bc =

[
0
1
m

]
, Cc = [G 0] .

(14.171)

The data are digitized, so it is necessary to use
a sampled-data representation that we develop using
first differences

ṡ(t) ≈ sk − sk−1

Δtk

by substituting this approximation into (14.170) and ex-
tending it to a Gauss–Markov representation to obtain

sk = (I +Δtk Ac) sk−1 +Δtk Bcuk−1 +Δtkwk−1 ,

yk = Ccsk +vk , (14.172)
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or defining discrete notation, we have

A := I +Δtk Ac ,

B := Δtk Bc ,

C := Cc ,

Rww := Δtk Rww ,

Rvv := Rvv , (14.173)

and therefore, the sampled-data system of (14.172) can
be expressed simply as

sk = Ask−1 + Buk−1 +wk−1 ,

yk = Csk +vk .

Now the Kalman filter equations follow directly

ŝk|k−1 = Aŝk−1|k−1 + Buk−1 (Prediction) ,

ek = yk − ŷk|k−1 = yk −Cŝk|k−1 (Innovation) ,

ŝk|k = sk|k−1 + Kkek (Correction) ,

and the other required matrices follow. This completes
the formulation.

Concluding this section, we consider the problem of
the passive localization of a planar (nonlinear in param-
eters) source or target. This problem occurs in a variety
of applications such as the seismic localization of an
earthquake using an array of seismometers, the passive
localization of a target in ocean acoustics or the local-
ization of a flaw in NDE. For our problem in ocean
acoustics the model-based approach incorporates the
underlying physics represented by an acoustic propa-
gation (process) model depicting how the sound propa-
gates from a source to the sensor (measurement) array
of acoustic hydrophones. The statistics of the noise from
the background or ambient noise, shipping noise, or un-
certainty in the model parameters provides input to both
the process and measurement system models. Besides
the model parameters and initial conditions, the raw
measurement data is input to the processor with the out-
put being the filtered signal and unknown parameters.

Assume that a 50 Hz (ω0) nonlinear plane wave
source (target) at a bearing angle of 45◦ (θ0) is imping-
ing on a 2-element array at a 10 dB SNR. The plane
wave signal is characterized mathematically by

s�(t) = αeiκ0(�−1)Δ sin θ0−iω0t , (14.174)

where s�(t) is the space-time signal measured by the
l-th sensor, α is the plane wave amplitude factor with
κ0, Δ, θ0, ω0 the respective wavenumber, sensor spac-
ing, bearing angle, and temporal frequency parameters.
We would we like to solve the basic ocean acoustic

a)

b)

λ

λ

Fig. 14.16a,b Plane wave propagation: (a) Problem geom-
etry. (b) Synthesized 50 Hz, 45◦, plane wave impinging on
a 2-element sensor array at 10 dB SNR

processing localization problem estimating the target
bearing angle θ0 and temporal frequency, ω0 param-
eters. The basic problem geometry and synthesized
measurements (pressure-field) are shown in Fig. 14.16.

For the plane wave, we have the following models:

• Signal model:

s�(t) = αeiκ0(�−1)Δ sin θ0−iω0t ,

• Measurement model

p�(t) = s�(t)+n�(t) ,

• Noise model

n ∼ N (0, σ2
n ) ,

where n�(t) is zero mean, random (uncorrelated) Gaus-
sian noise with variance, σ2

n . We use the notation
“N (m, v)” to define a Gaussian or normal probability
distribution with mean m and variance v.

In essence, this is a problem of estimating a set
of parameters, {θ0, ω0} from noisy array pressure-field
measurements, {p�(t)}. More formally, the target bear-
ing angle and frequency estimation problem is stated as:

Problem
GIVEN a set of noisy array measurements {p�(t)},
FIND the best estimates of the target bearing angle (θ0)
and temporal frequency (ω0) parameters, θ̂0 and ω̂0.
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Fig. 14.17a,b Plane wave imping-
ing on a 2-element sensor array –
frequency and bearing estimation
problem. (a) Classical spectral
(temporal and spatial) estimation ap-
proach. (b) Model-based approach
using parametric adaptive processor
to estimate bearing angle, tempo-
ral frequency, and the corresponding
residual or innovations (error) se-
quence

The classical approach to this problem is to first
take one of the sensor channels and perform power
spectral analysis of the filtered time series to estimate
the temporal frequency ω0. The bearing angle can be
estimated independently by performing classical spa-
tial spectral estimation (beamforming) [14.13] on the
array data. The spatial spectral estimator is scanned
over bearing angle indicating the true source location
at the spectral peak of maximum power. The results
of applying this approach to our problem are shown
in Fig. 14.17a depicting the outputs of both spectral
estimators peaking at the correct frequency and angle
parameters.

The MBP is implemented by incorporating the
plane wave propagation, hydrophone array, and statis-
tical noise models; however, the temporal frequency
and bearing angle parameters are now unknown and
must be estimated jointly along with the simultane-
ous enhancement of the pressure-field. The solution to
this problem is performed by solving a joint (parame-
ter/enhancement) estimation problem [14.3,16]. This is
the parameter adaptive form [14.17] of the MBP used
in many applications [14.8]. The filter becomes nonlin-
ear (in the measurement model) as follows

θ̂k|k = θ̂k|k−1 + Kθeθ
k ,

ω̂k|k = ω̂k|k−1 + Kωeω
k ,

p̂k|k−1 = c
[
θ̂k|k−1, ω̂k|k−1

]
. (14.175)

The results are appealing as shown in Fig. 14.17b.
We see the bearing angle and temporal frequency esti-
mates as a function of time eventually converging to the
true values (ω0 = 50 Hz, θ0 = 45◦). The MBP also pro-
duces a residual error (innovations) sequence (shown in
Fig. 14.17), which is used to determine its performance.

We summarize the classical and model-based so-
lutions to the temporal frequency and bearing angle
estimation problem. The classical approach simply per-
forms spectral analysis temporally and spatially to
extract the parameters from noisy data, while the model-
based approach embeds the unknown parameters into its
propagation, measurement, and noise models enabling
a solution to the joint estimation problem. The MBP
also monitors its performance by analyzing the statis-
tics of its residual (or innovations) error sequence. This
completes the section, next we consider a relevant ex-
tension of the MBP approach.

Wiener/Kalman Filter Equivalence
In this section, we show the equivalence of the Wiener
filter as a special case of the Kalman filter. Is is well-
known that there was a great conceptual stress created
by the introduction of the recursive Kalman proces-
sor. Primarily due to the limitations of the Wiener filter
which was constrained to statistically stationary (no
time-varying statistics) signals. Of course, the Kalman
paradigm is not constrained to stationary processes and
easily handles time-varying models and statistics as

Part
D

1
4
.7



548 Part D Hearing and Signal Processing

well as multivariable problems (vector-matrix) making
it an extremely powerful methodology in its versatility
and application. Therefore, in order to demonstrate the
equivalence we must limit the discussion to stationary
processes and resort to the power spectral domain where
the Wiener solution evolved.

In order to show the relationship between the
Wiener filter and its state-space counterpart, the Kalman
filter, we state the Wiener solution and then show
that the steady-state Kalman (staionary) filter provides
a unique solution with all the necessary properties. We
use frequency-domain techniques to show the equiv-
alence using Z-transforms. We choose the frequency
domain for historical reasons, since the classical Wiener
solution has more intuitive appeal.

The Wiener filter solution in the frequency domain
can be solved by spectral factorization, since

H(z) = Psy(z) × P−1
yy (z) , (14.176)

where H(z) has all its poles and zeros within the unit
circle (stable). The classical approach to Wiener filter-
ing can be accomplished in the frequency domain by
factoring the power spectral density (PSD) of the mea-
surement sequence; that is,

Pyy(z) = H(z)HT(z−1) . (14.177)

The factorization is unique, stable, and minimum-
phase [14.15, 18].

Now we must show that the steady-state Kalman
filter (ignoring the deterministic input) given by

ŝk+1 = Aŝk + Kek ,

yk = Cŝk + ek = ŷk + ek , (14.178)

where e is the zero-mean, white innovations with
covariance Ree, is stable and minimum-phase and there-
fore, in fact, the Wiener solution. The transfer function
of the innovations model is obtained by taking Z-
transforms of (14.178) as

T (z) = Y (z)

E(Z)
= C(z I − A)−1 K . (14.179)

Let us calculate the measurement covariance of
(14.178),

Rŷŷ(�) = Cov[yk+�yk]
= Rŷŷ(�)+ Rŷe(�)+ Reŷ(�)+ Ree(�) ,

(14.180)

where ŷk := Cŝk. Taking Z-transforms, we obtain the
measurement PSD as

Pyy(z) = Pŷŷ(z)+ Pŷe(z)+ Peŷ(z)+ Pee(z) .

(14.181)

Using linear system theoretical relations [14.3], we see
that

Pŷŷ(z) = CPŝŝ(z)CT = T (z)Pee(z)T T(z−1) ,

Pee(z) = Ree

Pŷe(z) = CPŝe(z) = T (z)Pee(z) ,

Peŷ(z) = Pee(z)T T(z−1) . (14.182)

Thus, the measurement PSD is given by

Pyy(z) = T (z)Pee(z)T T(z−1)

+ T (z)Pee(z)+ Pee(z)T T(z−1)+ Pee(z) .

(14.183)

Since Pee(z) = Ree and Ree ≥ 0, the following factor-
ization always exists as

Ree = R1/2
ee (RT

ee)1/2 . (14.184)

Thus from (14.184), Pyy(z) of (14.183) can be written
as

Pyy(z) =
[
T (z)R1/2

ee R1/2
ee

]((RT
ee)1/2T T(z−1)

(RT
ee)1/2

)

:= Te(z) × T T
e (z−1) , (14.185)

which shows that the innovations model indeed admits
a spectral factorization of the type desired. To show
that Te(z) is the unique, stable, minimum-phase spec-
tral factor, it is necessary to show that |Te(z)| has all
its poles within the unit circle (stable). It has been
shown [14.15, 18], that Te(z) does satisfy these con-
straints. Therefore

Te(z) ≡ H(z)

is the Wiener solution. This completes the discussion on
the equivalence of the steady-state Kalman filter and the
Wiener filter.

Matched-Field Processing
One of the most popular methods of solving a large
suite of problems in a wide variety of acoustic
applications is the model-based matched-field proces-
sor (MFP) [14.19–21]. The MFP can be considered
a combination of spatial power spectral estimation,
matched-filtering and model-based signal processing.

The matched-field processor uses a propagation
model with an assumed location of a flaw for non-
destructive evaluation (NDE) or a target for sonar or
a tumor for medical by transmitting a pulse that inter-
rogates the medium (material, ocean, tissue). Matched
field propagates the pulse acoustically through the
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Fig. 14.18a,b MFP of component part with three flaws at (200 mm, 300 mm), (500 mm, 900 mm), (900 mm, 500 mm):
(a) MFP power image. (b) Flaw detection and localization: (207 mm, 297 mm), (498 mm, 898 mm) and (903 mm,

502 mm)

medium to known sensor position(s) generating a repli-
cant field (m) synthesized at each assumed target
(source) location to match the measured field (y) at the
sensor(s). The total power is estimated from the source
to the sensor(s)

P̂ (r) = |m′(r)y|2 = m†(r)Ryym(r) , (14.186)

where m(r) is the propagated field at r for each pre-
dicted source location and y is the measured field at
each sensor. A matrix or grid (or image) of power es-
timates at each source coordinate is created during the
search with the maximum peaks above a threshold se-
lected as the estimates of flaw, target, or tumor location

max
r

P̂ (r) . (14.187)

Consider the following NDE example to illustrate
this approach. There exists a large critical part of a ho-
mogeneous material that must be inspected for any
potential flaws. We would like to: (1) detect the pres-
ence of any flaws; and (2) determine their location. We
assume a simple homogeneous (geometric spreading
and time delay) material model in two dimensions.

The transmitted pulse is p(t) and the receiving ar-
ray consists of 64 sensors. The flaws are located at

xy-positions (200 mm, 300 mm), (500 mm, 900 mm),
and (900 mm, 500 mm) from the array center. The
space-time signals arriving at the array are governed
by spherical wave propagation in the homogeneous
medium (material) and satisfy

s(r� jk; t) = 1

|Δr� jk| × p(t − τ� jk) for Δr� jk

= |r� − r jk|; τ� jk = |Δr� jk|
ν

,

for τ the propagation delay, Δr the path length (source-
to-sensor), � the sensor element, j the x-position index,
k the y-position index and ν the sound speed in the ma-
terial. The signals are contaminated by white Gaussian
noise at a SNR of 40 dB.

The MFP is implemented in Cartesian coordinates
with the unknown (source) position given by

Δr� jk = |r� − r jk| =
√

(x� − x jk)2 + (y� − y jk)2

and corresponding matching function

m(x� jk, p� jk; t) = 1

|Δr� jk| pmodel� (t − τ� jk) ,
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550 Part D Hearing and Signal Processing

with the power at each pixel given by

P(x� jk, p� jk) = |m′(r; t)p(t)|2
=
∑
� jk

|m(x� jk, y� jk; t)p�(t)|2 .

Using the MFP approach, flaw locations are estimated
by:

1. Varying the assumed flaw positions (location param-
eter vector).

2. Calculating the matching vector (propagation
model).

3. Calculating the corresponding power at the speci-
fied pixel location, a power image can be generated
over desired range of pixels, j = 1, · · · , Nx; k =
1, · · · , Ny.

4. Thresholding the image and selecting the dominant
peaks.

In this problem, the resulting power field is shown
in Fig. 14.18a with the thresholded image shown in
Fig. 14.18b. The estimated flaw positions are: (207 mm,

297 mm), (498 mm, 898 mm) and (903 mm, 502 mm)
which are reasonable and can be attributed to the high
SNR.

14.8 The Cepstrum

The cepstrum (pronounced kepstrum) is the inverse
Fourier transform of the natural logarithm of the spec-
trum. Because it is the inverse transform of a function
of frequency, the cepstrum is a function of a time-like
variable. But just as the word cepstrum is an anagram
of the word spectrum, the time-like coordinate is called
the quefrency, an anagram of frequency. The field of
cepstrology is full of word fun like this.

The complex cepstrum of complex spectrum Y (ω)
is

q(τ) = 1

2π

∞∫
−∞

dω eiωτ ln[Y (ω)] , (14.188)

where τ is the quefrency. Because Y (ω) = |Y (ω)|eiϕ(ω),

q(τ) = 1

2π

∞∫
0

dω eiωτ [ln |Y (ω)|+ iϕ(ω)]

+ 1

2π

∞∫
0

dω e−iωτ [ln |Y (−ω)|+ iϕ(−ω)] .

(14.189)

For a real signal y(t), the magnitude |Y (ω)| is an even
function of ω, and ϕ(ω) is odd. Therefore,

q(τ) = 1

π

∞∫
0

dω [ln |Y (ω)|] cos(ωτ)

+ i

π

∞∫
0

dω ϕ(ω) sin(ωτ) . (14.190)

The real part of q comes from the magnitude, the imagi-
nary part from the phase. The phase must be unwrapped;
it cannot be artificially restricted to a 2π range.

It is common to deal only with the real part of the
cepstrum qR. It is evident that the calculation will fail if
|Y (ω)| is zero. The cepstrum is not applied to theoreti-
cal objects such as periodic functions of time that have
delta function spectra – hence zeros. The cepstrum is
applied to measured data, where it can lead to insight
into features of the underlying processes.

The cepstrum is used in the acoustical and vibra-
tional monitoring of machinery. Bearings and other
rotating parts tend to produce sounds with interleaved
periodic spectra. These periodicities lead to peaks at the
corresponding quefrencies, revealing features that may
not be apparent in the spectrum.

The cepstrum is particularly suited to the separation
of source and filter functions. If Y is a filtered version
of X, where the transfer function is H , then

|Y (ω)| = |H(ω)| |X(ω)| . (14.191)

The logarithm operation turns the product on the right-
hand side into a sum, so that

qR(τ) = 1

π

∞∫
0

dω [ln |H(ω)|] cos(ωτ)

+ 1

π

∞∫
0

dω [ln |X(ω)|] cos(ωτ) . (14.192)

For instance, if |Y | is the spectrum of a spoken vowel,
then the term involving the formant filter |H| leads
to a low-quefrency structure, and the term involving
source spectrum |X| leads to a high-quefrency peak
characteristic of the glottal pulse period.

The cepstrum can reveal reflections. As a simple ex-
ample, we consider a direct sound X plus its reflection
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Fig. 14.19 The cepstrum of an original signal to which is
added a delayed version of the same signal, with a delay of
2 ms (a = 1). The original signal is the sum of two female
talkers �

with relative amplitude a and delay TD. The sum then
has a spectrum Y ,

|Y (ω)|=[1+a cos(ωTD)]|X(ω)| (a < 1) . (14.193)

The logarithm of the factor in square brackets is peri-
odic in ω with period 2π/TD. The corresponding term
in the cepstrum leads to a peak at quefrency τ = TD, as
shown in Fig. 14.19. The addition of more reflections
with other delays will lead to additional peaks. Main-
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taining the anagram game, the separation of peaks along
the quefrency axis is sometimes called liftering.

14.9 Noise

Noise has many definitions in acoustics. Commonly,
noise is any unwanted signal. In the context of com-
munications, it is an excitation that competes with the
information that one wishes to transmit. In signal pro-
cessing, noise is defined as a random signal that can
only be defined in statistical terms with no long-term
predictability.

14.9.1 Thermal Noise

Thermal noise, or Johnson noise, is generated in a re-
sistor. An electrical circuit that describes this source of
noise is a resistor R in series with a voltage source that
depends on R, such that the RMS voltage is given by
the equation

V =√4RkBTΔ f , (14.194)

where R is the resistance in ohms, kB is Boltzmann’s
constant, T is the absolute temperature, and Δ f is the
bandwidth over which the noise is measured.

The corresponding noise power can be defined by
measuring the maximum power that is transferred to
a load resistor connected across the series circuit above.
Maximum power occurs when the load resistor also has
a resistance R and has zero temperature so that the load
resistor produces no Johnson noise of its own. Then the
thermal noise power is given by

P = kBTΔ f . (14.195)

Because kBT has dimensions of Joules and Δ f has
dimensions of inverse seconds, the quantity P has di-

mensions of watts, as expected. Boltzmann’s constant
is 1.38 × 10−23 J/K, and room temperature is 293 K.
Therefore, the noise power density is 4 × 10−21 W/Hz.
Because the power is proportional to the first power of
the bandwidth, the noise is white. Johnson noise is also
Gaussian.

14.9.2 Gaussian Noise

A noise is Gaussian if its instantaneous values form
a Gaussian (normal) distribution. A noise distribution is
illustrated in an experiment wherein an observer makes
hundreds of instantaneous measurements of a noise
voltage and plots these instantaneous values as a his-
togram. Unless there is some form of bias, the measured
values are equally often positive and negative, and so
the mean of the distribution is zero. The noise is Gaus-
sian if the histogram derived in this way is a Gaussian
function. The more intense the noise, the larger is the
standard deviation of the Gaussian function. Because
of the central limit theorem, there is a tendency for
noise to be Gaussian. However, non-Gaussian noises
are easily generated. Random telegraph noise, where in-
stantaneous values can only be +1 or −1, is an example.

14.9.3 Band-Limited Noise

Band-limited noise can be written in terms of Fourier
components,

x(t) =
N∑

n=1

An cos(ωnt)+ Bn sin(ωnt) . (14.196)
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552 Part D Hearing and Signal Processing

The amplitudes An and Bn are defined only statis-
tically. According to a famous paper by Einstein and
Hopf [14.22], these amplitudes are normally distributed
with zero mean, and the distributions of An and Bn have
the same variance σ2

n . The distributions themselves can
be thought of as representative of an ensemble of noises,
all of which are intended by the creator to be the same:
same duration and power, same frequency range and
bandwidth.

Because the average power in a sine or cosine is 0.5,
the average power in band-limited noise is

P =
N∑

n=1

σ2
n . (14.197)

An alternative description of band-limited noise is
the amplitude and phase form

x(t) =
N∑

n=1

Cn cos(ωnt +ϕn) , (14.198)

where ϕn are random variables with a rectangular dis-
tribution from 0 to 2π, and Cn =√A2

n + B2
n .

Given that An and Bn follow a Gaussian distribution
with variance σn , the amplitude Cn follows a Rayleigh
distribution fRayl

fRayl(Cn) = Cn

σ2
n

e−C2
n/(2σ2

n ) (Cn > 0) . (14.199)

The peak of the Rayleigh distribution occurs at Cn =
σ . The zeroth moment is 1.0 because the distribution is
normalized. The first moment, or Cn , is σn

√
π/2. The

second moment is 2σ2
n , and the fourth moment is 8σ4

n .
The cumulative Rayleigh distribution can be calcu-

lated in closed form,

FRayl(Cn) =
Cn∫

0

dC′
n fRayl(C

′
n) = 1− e−C2

n/(2σ2
n ) .

(14.200)

14.9.4 Generating Noise

To generate the amplitudes An and Bn with normal dis-
tributions using a computer random-number generator,

one can add up twelve random numbers and subtract
6. On the average, the amplitudes will have a normal
distribution, because of the central limit theorem, with
a mean of zero and a variance of 1.0.

To generate the amplitudes Cn with a Rayleigh dis-
tribution, one can transform the random numbers rn
that come from a computer random-number generator,
according to the formula

Cn = σ
√−2 ln(1− rn) . (14.201)

14.9.5 Equal-Amplitude
Random-Phase Noise

Equal-amplitude random-phase (EARP) noise is of the
form

x(t) = C
N∑

n=1

cos(ωnt +ϕn) , (14.202)

where ϕn is again a random variable over the range 0 to
2π.

The advantage of EARP noise is that every noise
sample has the same power spectrum. A possible disad-
vantage is that the amplitudes An and Bn are no longer
normally distributed. Instead, they are distributed like
the probability density functions for the sine or cosine
functions, with square-root singularities at An = ±C
and Bn = ±C. However, the actual values of noise are
normally distributed as long as the number of noise
components is more than about five.

14.9.6 Noise Color

White noise has a constant spectral density, which
means that the power in white noise is proportional to
the bandwidth. On the average, every band with given
bandwidth Δ f has the same amount of power. Pink
noise has a spectral density that decreases inversely with
the frequency. Consequently, pink noise decreases at
a rate of 3 dB per octave. On the average, every octave
band has the same amount of power.

14.10 Sampled Data

Converting an analog signal, such as a time-dependent
voltage, into a digital representation dices the signal
in two dimensions, the dimension of the signal voltage

and the dimension of time. Dicing the signal voltage is
known as quantization, dicing with respect to time is
known as sampling.
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14.10.1 Quantization
and Quantization Noise

It is common for an analog-to-digital converter (ADC)
to represent the values of input voltages as integers. The
range of the integers is determined by the number of bits
per sample in the conversion process. A conversion into
an M-bit sample (or word) allows the voltage value to
be represented by 2M bits. For instance, a 10-bit ADC
that is restricted to converting positive voltages would
represent 0 V by the number 0 and +10 V by 210 −1 or
1023.

A 16-bit ADC would allow 216 or 65 536 different
values. A 16-bit ADC that converts voltages between
−10 and +10 V would represent −10 V by −32 768
and +10 V by +32 767. Conversion is linear. Thus
0.3052 V would be converted to the sample value 1000
and 0.3055 V to the value 1001. A voltage of 0.3053
would also be converted to a value of 1000, no different
from 0.3052. The discrepancy is an error known as the
quantization error or quantization noise.

Quantization noise referenced to the signal is
a signal-to-noise ratio. Standard practice makes this ra-
tio as large as possible by assuming a signal with the
maximum possible power. For the positive and nega-
tive ADC described above, maximum power occurs for
a square wave between a sampled waveform value of
−2(M−1) and +2(M−1). The power is the square of the
waveform or 1

4 × 22M .
For its part, the noise is a random variable that rep-

resents the difference between an accurately converted
voltage and the actual converted value as limited by the
number of bits in the sample word. This error is never
more than 0.5 and never less than −0.5. The power in
noise that fluctuates randomly over the range −0.5 to
+0.5 is 1/12. Consequently the signal-to-noise (S/N)
ratio is 3 × 22M . Expressed in decibels, this value is
10 log(3 × 22M), or 20M log(2)+ 4.8 dB, or 6M + 4.8
dB. For a 16-bit word, this would be 96+4.8 or about
101 dB. An alternative calculation would assume that
the maximum power is the power for the largest sine
wave that can be reproduced by such a system. This sine
has half the power of the square, and the S/N ratio is
then about 6M dB.

14.10.2 Binary Representation

Digitized data, like a sampled waveform are represented
in binary form by numbers (or words) consisting of
digits 0 and 1. For example, an eight-bit word consist-
ing of two four-bit bytes and representing the decimal

number 7, would be written as

0 0 0 0 0 1 1 1 .

This number has 1 in the ones column, 1 in the twos
column, 1 in the fours column, and nothing in any other
column. One plus two plus four is equal to 7, which is
what was desired.

An eight-bit word (M = 8) could represent decimal
integers from 0 to 255. It cannot represent 2M , which is
decimal 256. If one starts with the decimal number 255
and adds 1, the binary representation becomes all zeros,
i. e. 255+1 = 0. It is like the 100 000-mile odometer on
an automobile. If the odometer reads 99 999 and the car
goes one more mile, the odometer reads 00 000.

Signals are generally negative as often as they are
positive, and that leads to a need for a binary repre-
sentation of negative numbers. The usual standard is
a representation known as twos-complement. In twos-
complement representation, any number that begins
with a 1 is negative. Thus, the leading digit serves as
a sign bit.

In order to represent the number −x in an M-bit sys-
tem one computes 2M − x. That way, if one adds x and
−x one ends up with 2M , which is zero.

A convenient algorithm for calculating the twos-
complement of a binary number is to reverse each bit, 0
for 1 and 1 for 0, and then add 1. Thus, in an eight-bit
system the number −7 is given by

1 1 1 1 1 0 0 1 .

14.10.3 Sampling Operation

The sampling process replaces an analog signal, which
is a continuous function of time, by a sequence of
points. The operation is equivalent to the process shown
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Fig. 14.20a–c An analog signal (a) x(t) is multiplied by
a train of delta functions s(t) (b) to produce a sampled
signal y(t) (c)
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554 Part D Hearing and Signal Processing

in Fig. 14.20, where the analog signal x(t) is multiplied
by a train of evenly spaced delta functions to create
a sequence of sampled values y(t).

Intuitively, it seems evident that this operation is
a sensible thing to do if the delta functions come along
rapidly enough – rapid compared to the speed of the
temporal changes in the waveform. That concept is most
clearly seen by studying the Fourier transforms of func-
tions x, s and y.

The Fourier transform of the analog signal is X(ω),
with a spectrum that is limited to some highest fre-
quency ωmax. By contrast, the Fourier transform of
the train of delta functions is, itself, a train of delta
functions, S(ω) that extends over the entire frequency
axis. Because the delta functions in time have period
Ts, the delta functions in S(ω) are separated by ωs,
equal to 2π/Ts. Because y(t) is the product of the time-
dependent analog signal and the train of delta functions,
the Fourier transform Y (ω) is the convolution of X(ω)
and S(ω), as shown in part (b) of Fig. 14.21. Because
of the convolution operation, Y (ω) includes multiple
images of the original spectrum.

It is evident from Fig. 14.21b that, if the ωmax is less
than half of ωs, the multiple images will not overlap.
That observation has the status of a theorem known as
the sampling theorem, which says that the sampled sig-
nal is an adequate representation of an analog signal if
the sample rate is more than twice the highest frequency
in the analog signal, i. e., ωs > 2ωmax.

As an example of a failure to apply the sampling
theorem, suppose that a 600 Hz sine tone is sampled at

	 �����
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Fig. 14.21 (a) The spectrum of the analog signal X(ω) is
bounded in frequency. (b) The spectrum of the sampled
signal, Y (ω), is the convolution of X(ω) and the Fourier
transform of the sampling train of delta functions. Conse-
quently, multiple images of X(ω) appear. Frequencies that
are allowed by the sampling theorem are included in the
dashed box. A particular frequency (circled) is followed
through the multiple imaging

a rate of 1000 Hz. The spectrum of the sampled signal
will contain 600 Hz as expected, and it will also contain
a component at 1000−600 = 400 Hz. The 400 Hz com-
ponent was not present in the original spectrum; it is an
alias, an unwanted image of the 600 Hz tone.

14.10.4 Digital-to-Analog Conversion

In converting a signal from digital to analog form, one
can begin with the train of delta functions that is sig-
nal y(t) as shown in Fig. 14.20c. An electronic device
to do that is a digital-to-analog converter (DAC). How-
ever, as shown in Fig. 14.21b, this signal includes many
high frequencies that are unwanted byproducts of the
sampling process. Consequently, one needs to low-pass
filter the signal so as to pass only the frequencies less
than half the sample rate, i. e., the frequencies in the
dashed box. Such a low-pass filter is called a recon-
struction filter.

Practical DACs do not produce delta-function volt-
age spikes. Instead, they produce rectangular functions
with durations pTs, where p is a fraction of a sample
period 0 < p ≤ 1. If p = 1, the output of the DAC re-
sembles a staircase function. Mathematically, replacing
the delta function train of Fig. 14.20c by the train of
rectangles is equivalent to convolving the function y(t)
with a rectangular function. The consequence of this
convolution is that the output is filtered, and the trans-
fer function of the filter is the Fourier transform of the
rectangle. The magnitude of the transfer function is

|H(ω)| = sin(ωpTs/2)

ωpTs/2
. (14.203)

The phase shift of the filter is a pure delay and conse-
quently unimportant. The effective filtering that results
from the rectangles, known as sin(x)-over-x filtering,
can be corrected by the reconstruction filter.

14.10.5 The Sampled Signal

This brief section will introduce a notation that will be
useful in later discussions of sampled signals. It is sup-
posed at the outset that one begins with a total of N
samples, equally spaced in time by the sampling pe-
riod Ts. By convention, the first sample occurs at time
t = 0 and the last sample occurs at time t = (N −1)Ts.
Consequently, the signal duration is TD = (N −1)Ts.

In dealing with sampled signals, it is common to
replace the time variable with a discrete index k. Thus,

x(t) = x(kTs) = xk , (14.204)
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Acoustic Signal Processing 14.11 Discrete Fourier Transform 555

where the equation on the left indicates that the original
data exist only at discrete time values.

14.10.6 Interpolation

The discrete-time values of a sampled waveform can be
used to compute an approximate Fourier transform of
the original signal. This Fourier transform is valid up
to a frequency as high as half the sample rate, i. e., as
high as ωs/2, or π/Ts. The Fourier transform can then
be used to estimate the values of the original signal x(t)
at times other than the sample times. In this way, the
Fourier transform computed from the samples serves to
interpolate between the samples. Such an interpolation
scheme proceeds as follows.

First, the Fourier transform is

X(ω) = Ts

∑
k

xk exp(−iωTsk) , (14.205)

where, as noted above, xk is the signal x(t) at the times
t = Tsk, and the leading factor of Ts gets the dimensions
right.

Then the inverse Fourier transform is

x(t) = Ts

2π

ωs/2∫
−ωs/2

dω eiωt
∑

k

xk e−iωTsk . (14.206)

Reversing the order of sum and integral and using the
fact that Tsωs/2 = π, we find that

x(t) =
∑

k

xk
sin π(t/Ts − k)

π(t/Ts − k)
. (14.207)

The sinc function is 1.0 whenever t = Tsk, and is zero
whenever t is some other integer multiple of Ts. There-
fore, the sum on the right only interpolates; it does not
change the values of x(t) when t is equal to a sample
time.

14.11 Discrete Fourier Transform

The Fourier transform of a signal with finite duration
is well defined in principle. The finite signal itself can
be regarded as some base function that is multiplied
by a rectangular window to limit the duration. Then
the Fourier transform proceeds by convolving with the
transform of the window. For example, a truncated
exponentially decaying sine function can be regarded
as a decaying sine, with the usual infinite duration,
multiplied by a rectangular window. Then the Fourier
transform of the truncated function is the Fourier
transform of the decaying sine convolved with a sinc
function – the Fourier transform of the rectangular
window. Such a Fourier transform is a function of a con-
tinuous frequency, and it shows the broad spectrum
associated with the abrupt truncation.

In digital signal processing the frequency axis is not
continuous. Instead, the Fourier transform of a signal is
defined at discrete frequencies, just as the signal itself
is defined at discrete time points. This kind of Fourier
transform is known as the discrete Fourier transform
(DFT).

To compute the DFT of a function, one begins
by periodically repeating the function over the entire
time axis. For example, the truncated decaying sine in
Fig. 14.22a is repeated in Fig. 14.22b where it should be
imagined that the repetition precedes indefinitely to the
left and right.

Then the Fourier transform of the periodically
repeated signal becomes a Fourier series. The funda-
mental frequency of the Fourier series is the reciprocal
of the duration, f0 = 1/TD, and the spectrum becomes
a set of discrete frequencies, which are the harmonics of
f0. For instance, if the signal is one second in duration,
the spectrum consists of the harmonics of 1 Hz, and if
the duration is two seconds then the spectrum has all the
harmonics of 0.5 Hz. As expected, the highest harmonic
is limited to half the sample rate. That Fourier series
is the DFT. Using xk to define the periodic repetition
of the original discrete function, xk, the DFT X(ω) is
defined for ω = 2πn/TD, where n indicates the n-th har-
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Fig. 14.22a,b A decaying function in part (a) is periodically re-
peated in part (b) to create a periodic signal with period TD
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556 Part D Hearing and Signal Processing

monic. In terms of the fundamental angular frequency
ω0 = 2π/TD, the DFT is

X(nω0) = Ts

N−1∑
k=0

xk e−inω0kTs , (14.208)

where the prefactor Ts keeps the dimensions right. The
product ω0Ts is equal to ω0TD/(N −1) or 2π/(N −1),
and so

X(nω0) = Ts

N−1∑
k=0

xk e−i2πnk/(N−1) . (14.209)

Both positive and negative frequencies occur in the
Fourier transform. Because the maximum frequency is
equal to [1/(2Ts)]/(1/TD) times the fundamental fre-
quency, the number of discrete positive frequencies is
(N −1)/2, and the number of discrete negative frequen-
cies is the same. Consequently the inverse DFT can be
written

xk = 1

TD

(N−1)/2∑
n=−(N−1)/2

X(nω0) ei2πnk/(N−1) ,

(14.210)

or

x(t) = 1

TD

(N−1)/2∑
n=−(N−1)/2

X(nω0) einω0t . (14.211)

A virtue of the DFT is that the information in the
DFT is exactly what is needed to create the original
truncated function x(t) – no more and no less. The
fact that the DFT spectrum actually creates the peri-
odically repeated function xk and not the original xk
is not a problem if we agree in advance to ignore xk
for k outside the range of the original time-limited sig-
nal. However, it should be noted that certain operations,

such as time translations, products, and convolution,
that have familiar characteristics in the context of the
Fourier transform, retain those characteristics only for
the periodically extended signal xk and its Fourier trans-
form X(nω0) and not for the finite-duration signal.

14.11.1 Interpolation for the Spectrum

It is possible to estimate the Fourier transform at values
of frequency between the harmonics of ω0. The proce-
dure begins with the definition of the Fourier transform
of a finite function,

X(ω) =
TD∫

0

dt x(t)e−iωt . (14.212)

Next, the function x(t) is replaced by the inverse DFT
from (14.211), and the variable of integration t is re-
placed by t ′, which has symmetrical upper and lower
limits,

X(ω)

= 1

TD

TD/2∫
−TD/2

dt′ e−iωt′

×
(N−1)/2∑

n=−(N−1)/2

X(nω0) einω0t′ e−iωTD/2 einω0TD/2 ,

(14.213)

which reduces to

X(ω) =
(N−1)/2∑

n=−(N−1)/2

X(nω0)
sin[(ω−nω0)TD/2]

(ω−nω0)TD/2

× e−iωTD/2 eiπn . (14.214)

14.12 The z-Transform

Like the discrete Fourier transform, the z-transform is
well suited to describing sampled signals. We consider
x(t) to be a sampled signal so that it is defined at dis-
crete time points t = tk = kTs, where Ts is the sampling
period. Then the time dependence of x can be described
by an index, xk = x(tk). The z-transform of x is

X(z) =
∞∑

k=−∞
xkz−k . (14.215)

The quantity z is complex, with amplitude A and
phase ϕ,

z = A eiϕ = A eiωTs , (14.216)

where ϕ is the phase advance in radians per sample.
In the special case where A = 1, all values of z lie

on a circle of radius 1 (the unit circle) in the complex
z plane. In that case the z-transform is equivalent to the
discrete Fourier transform. An often-overlooked alter-
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Acoustic Signal Processing 14.12 The z-Transform 557

Table 14.2 z-Transform pairs

xk X(z) Radius

of convergence

δk,k0 z−k0 all z

akuk z/(z −a) |z| > a

kakuk az/(z −a)2 |z| > a

ak cos(ωoTsk)uk
z2−az cos(ωoTs)

z2−2az cos(ωoTs)+a2 |z| > a

ak sin(ωoTsk)uk
az sin(ωoTs)

z2−2az cos(ωoTs)+a2 |z| > a

native view is that the z-transform is an extension of
the Fourier transform wherein the angular frequency ω

becomes complex,

ω = ωR + iωI , (14.217)

so that

z = e−ωITs eiωRTs . (14.218)

The extended Fourier transform will not be pursued fur-
ther in this chapter.

A well-defined z-transform naturally includes a func-
tion of variable z, but the function itself is not enough.
In order for the inverse transform to be unique, the defi-
nition also requires that the region of the complex plane
in which the transform converges must also be specified.
To illustrate that point, one can consider two different
functions xk that have the same z-transform function,
but different regions of convergence (Table 14.2).

Consider first the function

xk = 2k for k ≥ 0 , (14.219)

xk = 0 for k < 0 .

This two-line function can be written as a single line by
using the discrete Heaviside function uk . The function
uk is defined as zero when k is a negative integer and as
+1 when k is any other integer, including zero. Then xk
above becomes

xk = 2kuk . (14.220)

The z-transform of xk is

X(z) =
∞∑

k=0

(2/z)k . (14.221)

The sum is a geometric series, which converges to

X(z) = 1

1−2/z
= z/(z −2) (14.222)

if |z| > 2. The region of convergence is therefore the
entire complex plane except for the portion inside and
on a circle of radius 2.

Next consider the function

xk = −2ku−k−1 . (14.223)

The z-transform of xk is

X(z) = −
−1∑

k=−∞
(2/z)k or −

∞∑
k=1

(z/2)k .

(14.224)

The sum converges to

X(z) = − (z/2)

1− z/2
= z

z −2
(14.225)

if |z| < 2. The function is identical to the function in
(14.222), but the region of convergence is now the por-
tion of the complex plane entirely inside the circle of
radius 2.

The inverse z-transform is given by a counterclock-
wise contour integral circling the origin

xk = 1

2πi

∮
C

dzX(z)zk−1 . (14.226)

The contour C must lie entirely within the region of
convergence of x and must enclose all the poles of X(z).

The regions of convergence when the functions x
and y are combined in some way are at least the in-
tersection of the regions of convergence for x and y
separately. Scaling and time reversal lead to regions of
convergence that are scaled and inverted, respectively.
For instance, if X(z) converges in the region between
radii r1 and r2, them X(1/z) converges in the region
between 1/r2 and 1/r1.

14.12.1 Transfer Function

The output of a process at time point k, namely yk, may
depend on the inputs x at earlier times and also on the
outputs at earlier times. In equation form,

yk =
Nq∑

q=0

βq xk−q −
N p∑
p=1

αp yk−p . (14.227)

This equation can be z-transformed using the time-shift
property in Table 14.3,

Nq∑
q=0

βqz−q X(z) =
N p∑
p=0

αpz−pY (z) , (14.228)
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558 Part D Hearing and Signal Processing

Table 14.3 Properties of the z-transform

Property Signal z-transform

Definition xk X(z)

Linearity axk +byk aX(z)+bY (z)

Time shift xk−k0 z−k0 X(z)

Scaling z ak xk X(z/a)

Time reversal x−k X(1/z)

Derivative w.r.t. z kxk −z dX(z)/dz

Convolution xk ∗ yk X(z)Y (z)

Multiplication xk yk
1

2πi

∮
C dz′/z′ X(z′)Y (z/z′)

where α0 = 1. The transfer function is the ratio of the
transformed output over the transformed input,

H(z) = Y (z)/X(z) , (14.229)

which is

H(z) =
∑Nq

q=0 βqz−q

∑N p
p=0 αpz−p

. (14.230)

From the fundamental theorem of algebra, the nu-
merator of the fraction above has Nq roots and the
denominator has N p roots, so that H(z) can be written
as

H(z) = (1−q1z−1)(1−q2z−1) . . . (1−qNqz−1)

(1− p1z−1)(1− p2z−1) . . . (1− pN pz−1)
.

(14.231)

This equation and its development are of central
importance to digital filters, also known as linear time-
invariant systems. If the system is recursive, outputs
from a previous point in time are sent back to the in-
put. Therefore, some values of the coefficients αp are
finite for p > 1 and so are the values of some poles, such

as p2. Such filters are called infinite impulse response
(IIR) filters because it is possible that the response of
the system to an impulse put in at time zero will never
entirely die out. Some of the output is always fed back
into the input. A similar conclusion is reached by rec-
ognizing that the expansion of 1/(1− pz−1) in powers
of z−1 goes on forever. Because the system has poles,
there are concerns about stability.

If the system is nonrecursive, no values of the output
are ever sent back to the input. Therefore, the denomi-
nator of H(z) is simply the number 1. Such filters are
called finite impulse response (FIR) filters because their
response to a delta function input will always die out
eventually as long as Nq is finite. The system is said to
be an all-zero system. The order of the filter is estab-
lished by Nq or N p, the number of time points back to
the earliest input or output that contribute to the current
output value.

The formal z-transform,

H(z) =
∞∑

k=−∞
hkz−k (14.232)

leads to conclusions about causality and stability.
A filter is causal if the current value of the output

does not depend on future inputs. For a causal filter hk
is zero for k < 0. Then this sum has no terms with posi-
tive powers of z, and the region of convergence of H(z)
includes |z| = ∞.

A filter is stable if

S =
∞∑

k=−∞
|hk| (14.233)

is finite. It follows, that H(z) is finite for |z| = 1, i. e., for
z on the unit circle. Thus, if the region of convergence
includes the unit circle, the filter is stable.

14.13 Maximum Length Sequences

A maximum length sequence (MLS) is a train of ones
and zeros that makes a useful signal for measuring
the impulse response of a linear system. An MLS can
be generated by a bit-shift register, which resembles
a bucket brigade. To make an N-bit MLS, one needs an
N-stage shift register. Each stage can hold either a one
or a zero. The register is imagined to have a clock which
synchronizes the transfer of bits from each stage to the
next. On every clock tick the content of each stage of
the register is transferred to the next stage down the line.

The content of the last stage is regarded as the output of
the register, and it is also fed back into the first stage. In
addition, the output can be fed back into one or more of
the other stages, and when that occurs the stage receiv-
ing the output, in addition to the content of the previous
stage, performs an exclusive OR (XOR) operation on
those two inputs. The XOR operation obeys the truth
table shown in Table 14.4. In words, the XOR of inputs
A and B is zero if A and B are the same and is 1 if A
and B are different.
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Acoustic Signal Processing 14.13 Maximum Length Sequences 559

Table 14.4 Truth table for the exclusive or (XOR) opera-
tion

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0


 *��
 


Fig. 14.23 A three-stage shift register [3: 1, 2] in which the
output is fed back into the first and second stages

Table 14.5 Successive values in the shift register of
Fig. 14.12

Step

0 1 1 1

1 1 0 1

2 1 0 0

3 0 1 0

4 0 0 1

5 1 1 0

6 0 1 1

7 1 1 1

8 1 0 1

9 1 0 0

A shift register with three stages is shown in
Fig. 14.23. With three stages and feedback taps to stages
1 and 2, it is defined as [3: 1,2].

At the instant shown in the figure, the register holds
the value 1,1,1. The subsequent development of the reg-
ister values is given in Table 14.5. The sequence repeats
after seven steps. The table shows that every possible
pattern of ones and zeros occurs once, and only once,
before the pattern repeats. There are 2N − 1 = 23 −
1 = 7 such patterns. There is one exception, namely the
pattern 0,0,0. If this pattern should ever appear in the
register then the process gets stuck forever. Therefore,
this pattern is not allowed. The output sequence is the
contents of the stage on the right, here, 1,1,0,0,1,0,1.
Because all seven register patterns appear before repeti-
tion, this output is a maximum length sequence. There is
nothing special about the starting register value, 1,1,1.
Therefore, any cyclic permutation of the MLS is also
an MLS. For instance, the sequence, 1,0,0,1,0,1,1 is the
same sequence.

*��
 
 


Fig. 14.24 A three-stage shift with feedback into all the
stages does not produce an MLS

Table 14.6 Successive values in the shift register of
Fig. 14.13

Step

0 1 1 1

1 1 0 0

2 0 1 0

3 0 0 1

4 1 1 1

5 1 0 0

6 0 1 0

An example of a three-bit shift register that does not
produce an MLS is [3: 1,2,3], shown in Fig. 14.24. The
pattern for this shift register is shown in Table 14.6. The
pattern of register values begins to repeat after only four
steps. Therefore, the sequence of output values, namely
1,0,0,1,1,0,0,1,1,0,0,1, is not an MLS.

14.13.1 The MLS as a Signal

To make a signal from an MLS requires only one
step: every 0 in the sequence is replaced by −1.
Therefore, the MLS for the shift register in Fig. 14.23
becomes: 1, 1, −1, −1, 1, −1, 1. For this three-stage
register (N = 3) the MLS has a length of seven; there
are four +1 values and three −1 values. These results
can be generalized to an N-stage register which has
2N −1 values; 2(N−1) are +1 values and 2(N−1) −1 are
−1 values. The average value is therefore 1/(2N −1).

14.13.2 Application of the MLS

The key fact about an MLS is that its autocorrelation
function is very nearly a delta function. To express that
idea, one can write the autocorrelation function in the
form appropriate for discrete samples,

ck = 1

2N −1

∑
k1

xk1 xk1+k . (14.234)

This sum, and all sums to follow, are over the 2N −1
values of the MLS sequence x. Because the sequence is
cyclical, it does not matter where one starts the sum.
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560 Part D Hearing and Signal Processing

An MLS has the property that

ck =
(

1+ 1

2N −1

)
δk,0 − 1

2N −1
. (14.235)

Therefore, ck is approximately a Kronnecker delta func-
tion

ck ≈ δk,0 . (14.236)

If we would like to know the impulse response h
of a linear system, we can excite the system with the
MLS x, and record the output y. As for filters, the linear
response y is the convolution of x and h, i. e.,

yk = x ∗h =
∑
k1

xk1+k hk1 . (14.237)

To find the impulse response, one can form the
quantity d, by convolving the recording y with the orig-
inal MLS x, i. e.,

dk = 1

2N −1

∑
k2

xk2+k yk2 (14.238)

or from (14.237)

dk = 1

2N −1

∑
k1,k2

xk2+k xk1+k2 hk1 . (14.239)

Table 14.7 Taps for maximum length sequences

Number of stages Length (bits) Number of taps Number of sets Set

2 3 2 1 [2: 1,2]

3 7 2 1 [3: 1,3]

4 15 2 1 [4: 1,4]

5 31 2 1 [5: 1,4]

6 63 2 1 [6: 1,6]

7 127 2 2 [7: 1,7], [7: 1,5]

8 255 4 6 [8: 1,2,7,8]

9 511 2 1 [9: 1,6]

10 1023 2 1 [10: 1,8]

11 2047 2 1 [11: 1,10]

12 4095 4 9 [12: 1,6,7,9]

13 8191 4 33 [13: 1,7,8,9]

14 16383 4 21 [14: 1,6,9,10]

15 32767 2 3 [15: 1,9], [15: 1,12], [15: 1,15]

16 65535 4 26 [16: 1,7,10,11]

17 131071 2 3 [17: 1,12], [17: 1,13], [17: 1,15]

18 262143 2 1 [18: 1,12]

19 524287 4 79 [19: 1,10,11,14]

20 1048575 2 1 [20: 1,18]

Only x ∗ x involves the index k2, and doing the sum over
k2 leads to

dk =
∑
k1

δk,k1 hk1 (14.240)

so that dk = hk. In this way, we have found the desired
impulse response.

As applied in architectural acoustics, the MLS is an
alternative to recording the response to a popping bal-
loon or gun shot. Because the MLS is continuous, it
avoids the dynamic-range problem associated with an
impulsive test signal, and by repeating the sequence one
can achieve remarkable noise immunity.

Similarly, the MLS is an alternative to recording the
response to white noise (the MLS is white). However,
digital white noise, such as random telegraph noise, has
an autocorrelation function that is zero only for a long-
term or ensemble average. In practice, the white-noise
response of a linear system is much noisier than the
MLS response.

14.13.3 Long Sequences

Table 14.7 gives the taps for some MLSs generated by
shift registers with 2–20 stages, i. e., orders 2–20. The
longest sequence has a length of more than one million
bits,
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For orders 2, 3, and 4, there is only one possible set
of taps. These sets have two taps, including the feedback
to stage 1. For orders 7, 15, and 17 there is more than one
set with two taps, and all of them are shown in the table.

Beginning with order 5 there are four-tap sets as
well as two-tap sets, except that for some orders, such

as 8, there are no two-tap sets. For every order the ta-
ble gives a set with the smallest possible number of
taps.

Beginning with order 7 there are six-tap sets. As the
order increases the number of sets also increases. For
order 19, there are 79 four-tap sets.

14.14 Information Theory

Information theory provides a way to quantify in-
formation by computing information content. The
information content of a message depends on the con-
text, and the context determines the initial uncertainty
about the message. Suppose, for example, that we re-
ceive one character, but we know in advance that the
context is one in which the character must be a digit
between 0 and 9. Our uncertainty before receiving that
actual character is described by the number of possible
outcomes, which is Ω = 10 in this case. Suppose in-
stead, that the context is one in which the character must
be a letter of the alphabet. Then our initial uncertainty
is greater because the number of possible outcomes is
now Ω = 26. The first step of information theory is to
recognize that, when we actually receive and identify
a character, the information content of that character is
greater in the second context than in the first because in
the second context the character has eliminated a greater
number of a priori possibilities.

The second step in information theory is to con-
sider a message with two characters. If the context of
the message is decimal digits then the number of possi-
bilities is the product of 10 for the first digit and 10 for
the second, namely Ω = 100 possibilities. Compared
to a message with one character, the number of possi-
bilities has been multiplied by 10. However, it is only
logical to expect that two characters will give twice as
much information as one, not 10 times as much. The
logical problem can be solved by quantifying informa-
tion in terms of entropy, which is the logarithm of the
number of possibilities

H = log Ω . (14.241)

Because log 100 is just twice log 10, the logical problem
is solved. The information measured in bits is obtained
by using a base 2 logarithm.

A few simple features follow immediately. If the
number of possible messages is Ω = 1 then the message
provides no information, which agrees with log 1 = 0. If
the context is binary, where a character can be only 1 or

0 (Ω = 2), then receiving a character provides 1 bit of
information, which agrees with log2 2 = 1.

If the context is an alphabet with M possible sym-
bols, and all of the symbols are equally probable, then
a message with N characters has Ω = MN possible out-
comes and the information entropy is

H = log MN = N log M , (14.242)

illustrating the additivity of information over the char-
acters of the message.

14.14.1 Shannon Entropy

Information theory becomes interesting when the
probabilities of different symbols are different. Shan-
non [14.23,24] showed that the information content per
character is given by

Hc = −
M∑

i=1

pi log pi , (14.243)

where pi is the probability of symbol i in the given
context.

The rest of this section proves Shannon’s formula.
The proof begins with the plausible assumption that, if
the probability of symbol i is pi , then in a very long
message of N characters, the number of occurrences of
character i, mi will be exactly mi = N pi .

The number of possibilities for a message of N
characters in which the set of {mi} is fixed by the corre-
sponding {pi} is

Ω = N !
m1! m2! . . . mM ! . (14.244)

Therefore,

H = log N !− log m1!− log m2!− . . . log mM ! .
(14.245)
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One can write log N ! as a sum

log N ! =
N∑

k=1

log k (14.246)

and similarly for log mi !.
For a long message one can replace the sum by an

integral,

log N ! =
N∫

1

dx log x = N log N − N +1 (14.247)

and similarly for log mi ! .
Therefore,

H =N log N − N +1

−
M∑

i=1

mi log mi +
M∑

i=1

mi −
M∑

i=1

1 . (14.248)

Because
∑M

i=1 mi = N , this reduces to

H = N log N +1−
M∑

i=1

mi log mi − M . (14.249)

The information per character is obtained by dividing
the message entropy by the number of characters in the
message,

Hc = log N −
M∑

i=1

pi log mi + (1− M)/N ,

(14.250)

where we have used the fact that mi/N = pi .
In a long message, the last term can be ignored as

small. Then because the sum of probabilities pi is equal
to 1,

Hc = −
M∑

i=1

pi (log mi − log N) , (14.251)

or

Hc = −
M∑

i=1

pi log pi , (14.252)

which is (14.243) as advertised.
If the context of written English consists of 27 sym-

bols (26 letters and a space), and if all symbols are
equally probable, then the information content of a sin-
gle character is

Hc = −1.443
27∑

i=1

1

27
ln

1

27
= 4.75 (bits) , (14.253)

where the factor 1/ ln(2) = 1.443 converts the natural
log to a base 2 log. However, in written English all sym-
bols are not equally probable. For example, the most
common letter, E, is more than 100 times more likely
to occur than the letter J. Because equal probability of
symbols always leads to the highest entropy, the un-
equal probability in written English is bound to reduce
the information content – to about 4 bits per character.
An even greater reduction comes from the redundancy
in larger units, such as words, so that the information
content of written English is no more than 1.6 bits per
character.

The concept of information entropy can be extended
to continuous distributions defined by a probability den-
sity function

h = −
∞∫

−∞
dx PDF(x) log[PDF(x)] . (14.254)

14.14.2 Mutual Information

The mutual information between sets of variables {i}
and { j} is a measure of the amount of uncertainty about
one of these variables that is eliminated by knowing the
other variable. Mutual information Hm is given in terms
of the joint probability mass function p(i, j)

Hm =
M∑

i=1

M∑
j=1

p(i, j) log
p(i, j)

p(i)p( j)
. (14.255)

Using written English as an example again, p(i) might
describe the probability for the first letter of a word and
p( j) might describe the probability for the second. It is
convenient to let the indices i and j be integers, e.g.,
p(i = 1) is the probability that the first letter is an ‘A’,
and p( j = 2) is the probability that the second letter is a
‘B’. Then p(1, 2) is the probability that the word starts
with the two letters ‘AB’. It is evident that in a context
where the first two letters are completely independent of
one another so that p(i, j) = p(i)p( j) then the amount
of mutual information is zero because log(1) = 0. In the
opposite limit the context is one in which the second
letter is completely determined by the first. For instance,
if the second letter is always the letter of the alphabet
that immediately follows the first letter then p(i, j) =
p( j) = p(i)δ( j, i +1), and

Hm =
M∑

i=1

p(i) log
p(i)

p(i)p(i)
(14.256)

which simply reduces to (14.243) for Hc, the informa-
tion content of the first letter of the word.
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In the general case, the mutual information is
a difference in information content. It is equal to
the information provided by the second letter of the
word given no prior knowledge at all, minus the in-
formation provided by the second letter of the word
given knowledge of the first letter. Mathematically,
p(i, j) = p(i)p( j|i), where p( j|i) is the probability that
the second letter is j given that the first letter is i. Then

Hm =
M∑

j=1

p( j) log
1

p( j)

−
M∑

i=1

M∑
j=1

p(i, j) log
1

p( j|i) . (14.257)

The information transfer ratio T is the degree to
which the information in the first letter predicts the in-
formation in the second. Equivalently, it describes the
transfer of information from an input to an output

T = −Hm∑M
i=1 p(i) log p(i)

. (14.258)

This ratio ranges between 0 and 1, where 1 indicates
that the second letter, or output, can be predicted from
the first letter, or input, with perfect reliability. The
mutual information is the basis for the calculation of
the information capacity of a noisy communications
channel.
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